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Limits of the Turbine Efficiency
for Free Fluid Flow
An accurate estimate of the theoretical power limit of turbines in free fluid flow
important because of growing interest in the development of wind power and zero
water power resources. The latter includes the huge kinetic energy of ocean currents
streams, and rivers without dams. Knowledge of turbine efficiency limits helps to opt
design of hydro and wind power farms. An explicitly solvable new mathematical mod
estimating the maximum efficiency of turbines in a free (nonducted) fluid is prese
This result can be used for hydropower turbines where construction of dams is impo
(in oceans) or undesirable (in rivers), as well as for wind power farms. The model d
with a finite two-dimensional, partially penetrable plate in an incompressible fluid. I
nearly ideal for two-dimensional propellers and less suitable for three-dimensional c
flow Darrieus and helical turbines. The most interesting finding of our analysis is tha
maximum efficiency of the plane propeller is about 30 percent for free fluids. This is
sharp contrast to the 60 percent given by the Betz limit, commonly used now for dec
It is shown that the Betz overestimate results from neglecting the curvature of the
streams. We also show that the three-dimensional helical turbine is more efficient tha
two-dimensional propeller, at least in water applications. Moreover, well-docume
tests have shown that the helical turbine has an efficiency of 35 percent, mak
preferable for use in free water currents.@DOI: 10.1115/1.1414137#
e

t
o
m

i

u
a
u
r
m
i
b
i

a

o

er

the
que
er in
nce

ines
d
of

rts
ller
s to
be

on-
er-
su-

ne
r

hy-
ater
eco-
use
ow
w-

gra-
en-

low-
can

sfully
he
en-
ta-

in

t

1 Modeling Turbines for Free Flow

1.1 The Betz Model for Rectilinear Flow. The efficiency
limit of 59.3 percent was obtained by Betz back in the 1920s
propeller-type turbines in free flow. It became common practice
use this limit for estimating the maximum efficiency of such tu
bines, when designing wind farms. The derivation of the B
limit can be found in many textbooks and other publications
fluid mechanics.

Betz considered a one-dimensional model for a plane turb
positioned in an incompressible fluid with rectilinear streams
constant velocity across any section of the current~Fig. 1~a!!. The
turbine was assumed to be under uniformly distributed pressu

The efficiency of the turbine was defined as the ratio of
turbine power to the power of the unconstrained uniform fl
through the turbine area. By basing his calculations on the
mentum rate change and the Bernoulli relations for the fluid flo
ing through the turbine, Betz obtained an efficiency limit as h
as 59.3 percent.

The principal assumption of the Betz model was that the fl
flow remains rectilinear when passing through the turbine
maintains a uniform distribution of the fluid pressure on the t
bine. Such a distributed load leads to overestimating the fo
and torque applied to the turbine and, as a result, to overesti
ing the turbine’s power and its efficiency. In reality, the flu
streams are deflected from the rectilinear direction near the
rier, changing their motion to curvilinear trajectories and reduc
their pressure on the turbine, as can be seen in Fig. 1~b!: By taking
account of the curvilinear trajectories for the streams, one obt
a more correct turbine power and efficiency limit.

1.2 Suggested Model for Curvilinear Flow. A new model
~called the GGS model! for plane turbine in free flow with curvi-
linear streams is shown in Fig. 1~b!. Comparison between the Bet
and the GGS models demonstrates the following.

In the Betz model, Fig. 1~a!, the resultant force is applied t
each propeller at the center of pressure, which is a distanceR/2
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from the axis of the turbine, whereR is the turbine radius. In the
GGS model, Fig. 1~b!, the resultant force is applied at the cent
of pressure that is calculated to be a distance 0.37R from the
turbine axis, much closer to the turbine shaft. In both models,
lift and drag components of the resultant forces develop the tor
that rotates the turbine. It is easily seen that the torque is great
the Betz model than in the GGS model as a result of the differe
in the lever arms.

Laboratory tests and measured efficiencies of operating turb
often confirm that the Betz limit is too high for both hydraulic an
wind plane turbines. In particular, comparative performance
various hydraulic turbines in free flows shown in Fig. 2 suppo
the thesis that the Betz limit highly overestimates the prope
capacity when used in the water. The same comparison lead
the conclusion that the three-dimensional helical turbine would
preferable to any plane propeller in free water flows. The n
constrained helical turbine has exhibited an efficiency of 35 p
cent, for example, in well-documented hydraulic tests, and is
perior to other known hydraulic turbomachines.

The mathematical formulation of the problem for plane turbi
in free flow, its definitions, and exact solution will follow afte
Section 2.

2 Hydraulic Turbines for Free Flow
Practically all hydraulic turbines that are presently used for

dropower generation have been developed for installation in w
dams across streams. This conventional design is the most
nomical and energy efficient for river hydropower plants beca
it provides maximum water heads and forces all the water to fl
through the turbines under maximum hydraulic pressure. Ho
ever, dams damage the environment and interfere with fish mi
tion. They also cannot be used for power systems extracting
ergy from such huge potential sources as ocean currents or
grade rivers. Thus, new hydraulic turbines are needed that
operate efficiently in free flow without dams.

For decades scientists and engineers have tried unsucces
to utilize conventional turbines for free and low-head hydro. T
very efficient hydraulic turbines in high heads become so exp
sive in applications for low and ultralow-head hydroelectric s
tions that only very modest developments of this kind are found
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Fig. 1 Betz and GGS models for plane propeller in incompressible fluid flow— „a… Betz rectilinear flow model; „b… suggested
curvilinear flow model „‘‘GGS’’ model …
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practice. For example, the unit cost of the Kaplan turbine jum
by a factor of 4 when the water head falls from 5–2 m.

The principal difference between exploiting high-head and fr
flow turbines is that the latter need large flow openings to cap
as much water masses as possible with low velocities and p
sure. Conventional turbines, in contrast, are designed for h
pressure and relatively small water ducts where all water has
chance to escape the turbine installed in the dam body. Accor
to the Bernoulli theorem, the density of potential energy of flow
proportional to the pressure, while the density of the kinetic
ergy is proportional to the square of velocity. Conventional wa
turbines utilize mostly the potential component at the expens
the kinetic one. In order to do so, they need so-called ‘‘high
lidity’’ where turbine blades cover most of the inside flow pa
312 Õ Vol. 123, DECEMBER 2001
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sage, resisting water flow and building up the water head. T
causes the fluid velocity to fall and the kinetic component of B
noulli equation to become negligibly small compared to the p
tential component. That is the reason why the higher water he
correspond to higher efficiency of hydraulic turbines, an e
ciency that comes close to 90 percent in some cases. Howeve
situation is completely reversed for free water flows. In this ca
the kinetic part dominates, and conventional turbines perfo
poorly, becoming very expensive.

Unlike the commonly used wheel-type turbines, the Darrie
reaction turbine for free flow, patented in 1931, has a barre
shape with a number of straight or curved-in plane airfoil blad
and a shaft that is perpendicular to the fluid flow. This turbi
allows high torque to develop in slow flows, maintaining a lar
Transactions of the ASME



Fig. 2 Comparative performance of various turbines in free „nonducted … water currents

Fig. 3 Power systems for free flows with different helical turbines
i

t

g
i
a
s

e
or-
at is
on-

ny
fec-
water passage area. However, the Darrieus turbine has no
ceived wide practical applications, mostly due to the pulsat
during the rotation when blades change angles of attack trave
along the circular path. The turbine vibration often leads to
early fatigue failure of its parts and joints.

The new helical turbine, shown in Fig. 3, has all the advanta
of the Darrieus turbine without its disadvantages, i.e., the hel
turbine allows a large mass of slow water to flow through, c
tures its kinetic energy, and utilizes a very simple rotor, which i
Journal of Energy Resources Technology
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major factor of its low cost@1,2#. The helical arrangement of th
rotor blades eliminates the pulsation, improving its overall perf
mance and leading to an efficiency as high as 35 percent th
substantially better than for other hydraulic machines in n
ducted free flow, as shown in Fig. 2.

3 Definitions
Clearly, for a free flow turbine, the main problem is that a

attempt to use the flow passing through the turbine more ef
DECEMBER 2001, Vol. 123 Õ 313
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tively would result in the increase of streamlining flow and mig
eventually decrease the net efficiency. The mathematical form
tion of a free-flow turbine efficiency problem is discussed in t
section, and an explicitly solvable model describing a certain c
of flows is proposed in the next section.

The first important question of the efficiency problem can
formulated in terms of hydrodynamic resistance, disregarding
specific construction of the turbine. Denote the region where
turbines are located byV ~assume thatV is an open domain with
a smooth or piecewise smooth boundary!. Suppose also that th
turbines are placed in a straight, uniform laminar current flow
towards the positivex-axis at velocityV` . The shapeV is con-
sidered as a semi-penetrable obstacle for the stream with a r
tance densityr inside. That means that the filtration equation

2“p5rV (1)

holds inV together with the continuity equation“•V50, wherep
and V denote the pressure and the velocity of the flow, resp
tively. Denote the projection ofV onto theyz-plane byVn and its
area byuVnu. The power carried by the flow throughVn is equal
to

P`5
1

2
rV`

3 uVnu (2)

In terms of density of hydrodynamic resistance, the powerP con-
sumed by the turbine is given by

P5E
V
“p•V5E

V

1

r
u“pu25E

V
r uVu2 (3)

by virtue of ~1!.

Definition. The efficiency coefficientE of a free-flow turbine
is the ratio of the consumed powerP to the powerP` carried by
the flow through the projection of the turbine section region o
the plane perpendicular to it.

E5
P

P`
5

E
V
“p•V

1

2
rV`

3 uVnu
(4)

The efficiency coefficient can be maximized by optimizing t
resistance density. The optimal ratio between the streamlining
rent and the current passing through the turbines can be also
tained from this model. This parameter can be measured ex
mentally to determine how close a real turbine is to t
theoretically optimal one.

If one were to use the model in the case of inviscid liqu
however, one would encounter the well-known d’Alambert pa
dox that an inviscid liquid meets no resistance from a streamli
obstacle. In the classical situation of streamlining, without
liquid penetrating through the obstacle, this paradox is resolve
considering a Helmholtz-type flow with separation@3,4#. This ap-
proach can be generalized for the case of a semi-penetrable
stacle, but the model,~1!–~4!, should be slightly modified. The
filtration equation~1! has to be localized on the part of the boun
ary of V near which the flow remains laminar, before it separa
Denote this part of the boundary by]8V and the surface density o
resistance on it byr. In this case, the filtration equation takes t
form

@p#5rV•n (5)

wheren is the interior normal to]8V and@p# is the pressure jump
across]8V. The power consumed by the turbine is given by
314 Õ Vol. 123, DECEMBER 2001
ht
ula-
is
ass

be
the
the

ng

esis-

ec-

to

e
cur-

ob-
eri-

he

d,
a-
ed

he
by

ob-

d-
es.
f
e

P5E
]8V

@p#V•n (6)

and the expression for the efficiency becomes

E5
P

P`
5

E
]8V

@p#V•n

1

2
rV`

3 uVnu
(7)

4 Modified Kirchhoff Flow in Application to the Prob-
lem of Free-Flow Turbine Efficiency

The classic Kirchhoff flow is a two-dimensional Helmoltz-typ
flow in which the current encounters a lamina placed perpend
larly to it @3#. Note that considering a two-dimensional model f
the turbine efficiency could only increase the estimate, beca
the flow would become more constrained and might be close
the actual situation for a shallow stream. On the other hand
two-dimensional model allows us to apply conformal mappi
methods, which cannot be used in higher dimensions, since
conformal map inRn is the composition of a similarity transfor
mation and an inversion ifn>3 @5#.

The Argand diagram presenting the classic Kirchhoff flow
shown in Fig. 4. The stream separates from the edges formin
stagnation region past the lamina bounded by free streamling
andg8. ~These are symmetric to each other since the flow itse
symmetric.! Outside the stagnation region, the flow is potenti
Let w be the complex potential of the flow, i.e., the compl
analytic function defined in the flow domain~the complement to
the stagnation domain!, s.t.V5]w/]z. The conditionV5V` is to
be satisfied on free streamlinesg and g8. This condition com-
pletes the setup of the free boundary problem, which can
solved by using the Kirchhoff transform@3,4# described in the
forthcoming. The complex potentialw(z) maps the domain of the
flow to the complement of the positivex-axis; see Fig. 4.

In the hodograph planez5j1 ih5 ln ]w/]z, the image of the
flow domain is the semistrip$(j,h):2p/2<h<p/2,2`<j
<0% as shown in Fig. 4~c!. In order to determine free streamline
g and g8, the conformal map fromz-plane tow-plane is con-
structed by means of Christoffel—Schwarz integral, which allo
us to find the mapz(w). This method is also applicable in the ca
of partial penetration. For an arbitrary flow, its pictures in thew
andz-planes might be rather complicated; but if one assumes
the flow crosses the lamina at the same angle at any point,
Kirchhoff transform is still convenient to use. This angle will b
called thepitch angleand will be denoted byw. The pictures of
the flow in thez, w, andz-planes are shown in Fig. 5. Note tha
the units of length, time, and mass can be chosen in such a
that the density of the liquid, the breadth of the lamina, and
velocity of the flow at infinity are all equal to one.

5 Solution
In order to obtain the differential equation for the potentialw,

construct the conformal mappingz to w with the help of an aux-
iliary variablet. The map from thet-plane to thez-plane with the
boundary extension as in Fig. 5 is given by

z52S 12
2w

p D lnS 1

t
1

1

t
A12t2D2 i S p

2
2w D (8)
Transactions of the ASME



Journal
Fig. 4 Classic Kirchhoff flow— „a… z-plane, „b… potential w -plane, „c… hodograph z-plane, „d… t -plane

Fig. 5 Modified Kirchhoff flow— „a… z-plane, „b… potential w -plane, „c… hodograph z-plane, „d… t -plane
of Energy Resources Technology DECEMBER 2001, Vol. 123 Õ 315



he
The map from thet-plane tow-plane is constructed by means of
Christoffel—Schwarz integral

dw

dt
5

2s

w
~ t221!w/pt ~122w/p! (9)

w~ t !5
2s

w E
0

t

~t221!w/pt~122w/p!dt (10)

Here, s is the width of the stagnation domain in thew-plane,
which can also be interpreted as the distance between the
streamlines at infinity, or the fraction of the flow passing throu
the turbines. Sincez5 ln dw/dz, then~8! yields

ln
dz

dw
5S 12

2w

p D lnS 1

t
1

1

t
A12t2D1 i S p

2
2w D (11)

dz

dw
5ei ~p/22w!~11A12t2!122w/pt2w/p21 (12)

and

Fig. 6 Efficiency « versus pitch angle w

Table 1
316 Õ Vol. 123, DECEMBER 2001
a

free
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dz

dt
5

dz

dw

dw

dt
5

2is

w
~11A12t2!122w/p~12t2!w/p (13)

Using ~13! and the fact that*0
1dz/dtdt5 i , one can computes as

s5
w

2I 2~w!
(14)

where

I 2~w!5E
0

1

~11A12t2!122w/p~12t2!w/pdt (15)

By virtue of the Bernoulli theorem, the pressure jump over t
lamina is equal to

@p#5
1

2
~V`

2 2V2! (16)

and the expression for the efficiency~7! becomes

Fig. 7 Flow through s versus pitch angle w

Fig. 8 Efficiency « versus flow through s
Transactions of the ASME
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E5

E
21

1

Vx~y!~V`
2 2V2!dy

2V`
3 (17)

5

E
0

1

Vx~y!~V`
2 2V2!dy

V`
3 (18)

5E
0

1S Re
dw

dzD S 12Udw

dzU
2Ddy (19)

5
1

i E0

1S Re
dw

dzD S 12Udw

dzU
2D dz

dt
dt (20)

5s2
1

i E0

1S Re
dw

dzD Udw

dzU
2 dz

dt
dt (21)

5s2sinw E
0

1Udw

dzU
3 dz

i dt
dt (22)

5
1

I 2~w! S w

2
2I 3~w!sinw D (23)

where

I 3~w!5
I 2~w!

i E
0

1Udw

dzU
3 dz

dt
dt (24)

5E
0

1

~11A12t2!4w/p22

3~12t2!w/pt326w/pdt (25)

6 Computations
The values of the efficiencyE and the fractions of the flow

passing through the turbines are computed numerically for a s
values ofw that are presented in Table 1; their graphs are show
Figs. 6–8. The pitch anglew ranges from 0~the classic Kirchoff
flow with complete streamlining! to p/2 ~undisturbed flow!. The
maximal efficiency is equal to 0.30113 and is attained whenw
53p/851.17810 ands50.61302.
Journal of Energy Resources Technology
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7 Conclusions

1 Despite only a narrow class~1-parameter family! of the flows
has been considered for optimization, the result obtained allow
to conjecture that the efficiency is maximal when the resistanc
rather small and a large part of the flow~61 percent! goes through.
In other words, the maximum efficiency could not be noticea
greater than what was obtained here.

2 The model of a free-flow turbine reveals a new class of pr
lems about streamlining with partial penetrating through an
stacle; some of these problems could admit explicit solutions
could have other applications.

3 The velocity of a flow vanishes at the origin of the propos
plane model. This makes the model specifically applicable
two-dimensional propeller-type turbines in free~nonducted! cur-
rents. The theoretical limit of the efficiency given by the model
30.1 percent. A number of tests, as well as constructed po
farms, support this thesis in regard to both hydraulic and w
applications. The efficiency of most water and wind propellers
free flows usually ranges from 10 to 20 percent. On the ot
hand, the three-dimensional hydraulic helical turbine develops
efficiency of about 35 percent in similar free flow conditions@2#.
This high efficiency might be explained by modeling a 3-D rot
as a combination of two plane turbines that reflect power con
butions from the front and back parts of the original cross-fl
turbine.
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