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Limits of the Turbine Efficiency
for Free Fluid Flow

An accurate estimate of the theoretical power limit of turbines in free fluid flows is
important because of growing interest in the development of wind power and zero-head
water power resources. The latter includes the huge kinetic energy of ocean currents, tidal
streams, and rivers without dams. Knowledge of turbine efficiency limits helps to optimize
design of hydro and wind power farms. An explicitly solvable new mathematical model for
estimating the maximum efficiency of turbines in a free (nonducted) fluid is presented.
This result can be used for hydropower turbines where construction of dams is impossible
(in oceans) or undesirable (in rivers), as well as for wind power farms. The model deals
with a finite two-dimensional, partially penetrable plate in an incompressible fluid. It is
nearly ideal for two-dimensional propellers and less suitable for three-dimensional cross-
flow Darrieus and helical turbines. The most interesting finding of our analysis is that the
maximum efficiency of the plane propeller is about 30 percent for free fluids. This is in a
sharp contrast to the 60 percent given by the Betz limit, commonly used now for decades.
It is shown that the Betz overestimate results from neglecting the curvature of the fluid
streams. We also show that the three-dimensional helical turbine is more efficient than the

two-dimensional propeller, at least in water applications. Moreover, well-documented
tests have shown that the helical turbine has an efficiency of 35 percent, making it
preferable for use in free water currenttDOI: 10.1115/1.1414137

from the axis of the turbine, whei is the turbine radius. In the

GGS model, Fig. (b), the resultant force is applied at the center
1.1 The Betz Model for Rectilinear Flow. The efficiency of pressure that is calculated to be a distance R.86m the

limit of 59.3 percent was obtained by Betz back in the 1920s faurbine axis, much closer to the turbine shaft. In both models, the

propeller-type turbines in free flow. It became common practice tift and drag components of the resultant forces develop the torque

use this limit for estimating the maximum efficiency of such turthat rotates the turbine. Itis easily seen that the torque is greater in

bines, when designing wind farms. The derivation of the Bei® Betz model than in the GGS model as a result of the difference

i ; it the lever arms.
mg fnagcﬁgn];ggnd in many textbooks and other publications off Laboratory tests and measured efficiencies of operating turbines

Betz considered a one-dimensional model for a plane turbioften confirm that the Betz limit is too high for both hydraulic and
p %ﬁnd plane turbines. In particular, comparative performance of

Egrﬁgltgrr]\teij/ellrc])caitn Qéz?f;enssgitgﬁfvmg éﬁ?(tlgh'neizai)tr?raggs arious hydraulic turbines in free flows shown in Fig. 2 supports
Y y g : the thesis that the Betz limit highly overestimates the propeller

turbine was assumed to be under uniformly distributed pressur&,macity when used in the water. The same comparison leads to

The efficiency of the turbine was defined as the ratio of tht‘fa‘ue conclusion that the three-dimensional helical turbine would be
turbine power to the power of the unconstrained uniform flo referable to any plane propeller in free water flows. The non-

through the turbine area. By basing his ca_lculations on ;he MB%nstrained helical turbine has exhibited an efficiency of 35 per-
mentum rate change and the Bernoulli relations for the fluid rovE-

. - : . = - “Cent, for example, in well-documented hydraulic tests, and is su-
ing through the turbine, Betz obtained an efficiency limit as hig erior 10 otherFI)mown hydraulic turbomaghines
as 59.3 percent. '

= ) ., The mathematical formulation of the problem for plane turbine

The principal assumption of the Betz model was that the fluifl oo fiow, its definitions, and exact golution will ‘f)ollow after
flow remains rectilinear when passing through the turbine a”oc!ection 2
maintains a uniform distribution of the fluid pressure on the tur- ’
bine. Such a distributed load leads to overestimating the forces
and torque applied to the turbine and, as a result, to overestimat- . .
ing the turbine’s power and its efficiency. In reality, the flui¢® Hydraulic Turbines for Free Flow
streams are deflected from the rectilinear direction near the barPractically all hydraulic turbines that are presently used for hy-
rier, changing their motion to curvilinear trajectories and reducingropower generation have been developed for installation in water
their pressure on the turbine, as can be seen in Fig. By taking dams across streams. This conventional design is the most eco-
account of the curvilinear trajectories for the streams, one obtainémical and energy efficient for river hydropower plants because
a more correct turbine power and efficiency limit. it provides maximum water heads and forces all the water to flow
through the turbines under maximum hydraulic pressure. How-
ever, dams damage the environment and interfere with fish migra-
tion. They also cannot be used for power systems extracting en-
ergy from such huge potential sources as ocean currents or low-
grade rivers. Thus, new hydraulic turbines are needed that can
operate efficiently in free flow without dams.

For decades scientists and engineers have tried unsuccessfully

Comibuted by the Ad qE vt Division biication i thto utilize conventional turbines for free and low-head hydro. The
JOUROI\TAT ouFeENEzev%EsgSgZ?stEgiﬁéLoés\ﬁem;nué\gﬁll;)tnregezi\?;d llji/aﬂl%nAllrE]S §ery efficient hydraulic turbines in high heads become so expen-

Division, December 15, 2000; revised manuscript received August 14, 2001. Assﬁ_iye in applications for low and uItranw-head_ hyqroeleCtriC Sta'
ciate Editor: H. Metghalchi. tions that only very modest developments of this kind are found in

1 Modeling Turbines for Free Flow

1.2 Suggested Model for Curvilinear Flow. A new model
(called the GGS modgfor plane turbine in free flow with curvi-
linear streams is shown in Fig(l). Comparison between the Betz
and the GGS models demonstrates the following.

In the Betz model, Fig. (), the resultant force is applied to
each propeller at the center of pressure, which is a distRfi2e
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3A Fluid
pressure Resultant Loads
. distribution  ¢n Blades
Slipstream — 14
A -
v, — >V, — 2R
- |
Optimal conditions: Ayg=3A, V,= 12V, Efficiency = 59.3%
(@)
Fluid pressure
velocity distribution
4 Resultant Loads
on Blades
l0.37R
-———_—9-
Maximum Efficiency = 30.1% for ¢ =3n/8
" Efficiency = 0: for ¢ =0 (no filtration) or ¢ =x/2 (full filtration)
Fig. 1 Betz and GGS models for plane propeller in incompressible fluid flow— (a) Betz rectilinear flow model;  (b) suggested

curvilinear flow model (“GGS” model )

practice. For example, the unit cost of the Kaplan turbine jumpsge, resisting water flow and building up the water head. This
by a factor of 4 when the water head falls from 5-2 m. causes the fluid velocity to fall and the kinetic component of Ber-
The principal difference between exploiting high-head and freeeulli equation to become negligibly small compared to the po-
flow turbines is that the latter need large flow openings to captuiential component. That is the reason why the higher water heads
as much water masses as possible with low velocities and presfrespond to higher efficiency of hydraulic turbines, an effi-
sure. Conventional turbines, in contrast, are designed for higlkency that comes close to 90 percent in some cases. However, the
pressure and relatively small water ducts where all water has situation is completely reversed for free water flows. In this case,
chance to escape the turbine installed in the dam body. Accorditig kinetic part dominates, and conventional turbines perform
to the Bernoulli theorem, the density of potential energy of flow ipoorly, becoming very expensive.
proportional to the pressure, while the density of the kinetic en- Unlike the commonly used wheel-type turbines, the Darrieus
ergy is proportional to the square of velocity. Conventional wateeaction turbine for free flow, patented in 1931, has a barrelled
turbines utilize mostly the potential component at the expense sifape with a number of straight or curved-in plane airfoil blades
the kinetic one. In order to do so, they need so-called “high sand a shaft that is perpendicular to the fluid flow. This turbine
lidity” where turbine blades cover most of the inside flow pasallows high torque to develop in slow flows, maintaining a large
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Efficiency, %

A
4 Propeller turbines bla Cross—-flow turbines —— 3}
Gorlov (Helical) Turbine 35%
Source: Shiono, Suzuki, Kiho,
L Nar i oo| “The Characteristics of Darrieuse
S i oL 1997 | Turbine for the Tidal Power”
Source: Peter G, Garman, England * ’ Elsevier Science LTD, 1998
Source: “THE Tyson Turbine” _ pine Ny 1998 Darrieus Turbine 23.5% s
Horwood Bagshaw Australia LTD T IT-Power,Ltd Marine Turbine .
1995
20%
Garman Turbine 15-183% Daeriews rrbias
Tyson Turbine 16%
Source: “The Gorlov Turbine”,
Allied Signal Aerospace,
Report on independent testing
1T Poer's exrrent oubing at Michigan University, Dec.1997
L 1
Note: Some specific exploitation problems for Propeller and Darrieus turbines
1. Propeller turbines with fixed blades cannot be used directly in reversible tidal
flow as well as at shallow water sites
2. Darrieus turbines develop strong pulsation. They are not self- starting in most
cases
Fig. 2 Comparative performance of various turbines in free (nonducted ) water currents
Double-Helix Turbine Triple-Helix Turbine

{for underwater installation)

Fig. 3 Power systems for free flows with different helical turbines

water passage area. However, the Darrieus turbine has not mejor factor of its low cosf1,2]. The helical arrangement of the
ceived wide practical applications, mostly due to the pulsatimgtor blades eliminates the pulsation, improving its overall perfor-
during the rotation when blades change angles of attack travelim@ance and leading to an efficiency as high as 35 percent that is
along the circular path. The turbine vibration often leads to treubstantially better than for other hydraulic machines in non-
early fatigue failure of its parts and joints. ducted free flow, as shown in Fig. 2.

The new helical turbine, shown in Fig. 3, has all the advantaggs R
of the Darrieus turbine without its disadvantages, i.e., the helical Definitions
turbine allows a large mass of slow water to flow through, cap- Clearly, for a free flow turbine, the main problem is that any
tures its kinetic energy, and utilizes a very simple rotor, which isa@tempt to use the flow passing through the turbine more effec-
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tively would result in the increase of streamlining flow and might
eventually decrease the net efficiency. The mathematical formula- P= j [pP]V-n (6)
tion of a free-flow turbine efficiency problem is discussed in this )’
section, and an explicitly solvable model describing a certain class
of flows is proposed in the next section. and the expression for the efficiency becomes
The first important question of the efficiency problem can be
formulated in terms of hydrodynamic resistance, disregarding the

specific construction of the turbine. Denote the region where the f [pIV-n

turbines are located b2 (assume thaf) is an open domain with p Q

a smooth or piecewise smooth boundarSuppose also that the E= -1 ()
turbines are placed in a straight, uniform laminar current flowing * AVEITON

towards the positivec-axis at velocityV.,. The shapd) is con- 20 =

sidered as a semi-penetrable obstacle for the stream with a resis-
tance density inside. That means that the filtration equation
4 Modified Kirchhoff Flow in Application to the Prob-

—Vp=rVv (1) lem of Free-Flow Turbine Efficiency

The classic Kirchhoff flow is a two-dimensional Helmoltz-type
ef(J:c_)w in which the current encounters a lamina placed perpendicu-
larly to it [3]. Note that considering a two-dimensional model for
the turbine efficiency could only increase the estimate, because
the flow would become more constrained and might be closer to
the actual situation for a shallow stream. On the other hand, a

1 two-dimensional model allows us to apply conformal mapping
P.==pV3|Q,| (2) methods, which cannot be used in higher dimensions, since any
2 conformal map inR" is the composition of a similarity transfor-

mation and an inversion ifi=3 [5].

The Argand diagram presenting the classic Kirchhoff flow is
shown in Fig. 4. The stream separates from the edges forming a
stagnation region past the lamina bounded by free streamjines

P:f Vp-V=f E|Vp|2:f r|v|? 3) andy’. (These are symmetric to each other since the flow itself is
Q of Q symmetric) Outside the stagnation region, the flow is potential.
Let w be the complex potential of the flow, i.e., the complex
by virtue of (1). analytic function defined in the flow domaithe complement to
o o o ] the stagnation domajns.t.V=dw/dz. The conditionV=V,, is to
_ Definition.  The efficiency coefficienf of a free-flow turbine e satisfied on free streamlinesand y'. This condition com-
is the ratio of the consumed powErto the powerP.. carried by pletes the setup of the free boundary problem, which can be
the flow through the projection of the turbine section region onigy|yed by using the Kirchhoff transfori8,4] described in the
the plane perpendicular to it. forthcoming. The complex potential(z) maps the domain of the
flow to the complement of the positiveaxis; see Fig. 4.

holds inQ) together with the continuity equatidn- V=0, wherep
andV denote the pressure and the velocity of the flow, resp
tively. Denote the projection dR onto theyzplane by(), and its
area by|Q,|. The power carried by the flow throudh, is equal
to

In terms of density of hydrodynamic resistance, the poeon-
sumed by the turbine is given by

Vp.V In the hodograph plané=¢+in=In ow/dz, the image of the
o' P flow domain is the semistrip((¢,7):— m/2< p=<ml2,—w<¢
E=—-= 1 (4) <0} as shown in Fig. &). In order to determine free streamlines
* Epvim”' v and y', the conformal map froni-plane tow-plane is con-

structed by means of Christoffel—Schwarz integral, which allows
o o o o us to find the mag(w). This method is also applicable in the case
The efficiency coefficient can be maximized by optimizing thef partial penetration. For an arbitrary flow, its pictures in the
resistance density. The optimal ratio between the streamlining cHfd /-planes might be rather complicated; but if one assumes that
rent and the current passing through the turbines can be also gf& flow crosses the lamina at the same angle at any point, the
tained from this model. This parameter can be measured exp&firchhoff transform is still convenient to use. This angle will be
mentally to determine how close a real turbine is to thgalled thepitch angleand will be denoted by. The pictures of
theoretically optimal one. _ ~the flow in thez, w, and -planes are shown in Fig. 5. Note that
If one were to use the model in the case of inviscid liquidthe units of length, time, and mass can be chosen in such a way

however, one would encounter the well-known d’Alambert parahat the density of the liquid, the breadth of the lamina, and the
dox that an inviscid liquid meets no resistance from a streamlingd|ocity of the flow at infinity are all equal to one.

obstacle. In the classical situation of streamlining, without the

liquid penetrating through the obstacle, this paradox is resolved by

considering a Helmholtz-type flow with separati@y4]. This ap-

proach can be generalized for the case of a semi-penetrable ob-

stacle, but the model1)—(4), should be slightly modified. The .

filtration equation(1) has to be localized on the part of the bound®  Solution

ary of {) near which the flow remains laminar, before it separates. In order to obtain the differential equation for the potential
Denote this part of the boundary B%Q) and the surface density of construct the conformal mappingto w with the help of an aux-
resistance on it by. In this case, the filtration equation takes théliary variablet. The map from the-plane to the/-plane with the
form boundary extension as in Fig. 5 is given by

[p]=rv-n (5) 20 1 1 S
52—(1—7)"1 ?‘i‘? 1—t)—|(5—(p) (8)

wheren is the interior normal t@’ () and[p] is the pressure jump
acrossd’ (). The power consumed by the turbine is given by

314 / Vol. 123, DECEMBER 2001 Transactions of the ASME



C=w0

' x

4

2

(@)

-2

4

O=w

Fig. 5 Modified Kirchhoff flow—

Journal of Energy Resources Technology

Fig. 4 Classic Kirchhoff flow—

C=w0

4

0

0.3

0.2

0.1+

C=w

b

-0.2

0.2 0.4

C=w0

-1

Y

' (

3 2

-1 0

1

2 3

(a) z-plane, (b) potential w-plane, (c) hodograph ¢-plane, (d) t-plane

-3

2

-

O=w

w2-¢

@2

-2

0

0.8+

0.6
0.4

0.2}

C=w

0.2}
0.4}
0.6}
0.8+

(b)

@

-1 0.5

05 1

C=c0

(

LN

N 1.

3 =2

-1

0

1

2 3

(a) z-plane, (b) potential w-plane, (c) hodograph ¢-plane, (d) t-plane

DECEMBER 2001, Vol. 123 / 315



Table 1

No. | Pitch angle, ¢ | Efficiency, £ | Flow through, s 0.9l
0 0.00000 0.00000 0.00000
1 0.07854 0.01761 0.02294 08
2 0.15708 0.03646 0.04785 07k
3 0.23562 0.06922 0.09168 %
4 0.31416 0.07771 0.10405 2 06
5 0.39270 0.09998 0.13539 £
6 0.47124 0.12320 0.16961 5057
7 0.54978 0.14717 0.20623 Eo4l
8 0.62832 0.17164 0.24562 H
9 0.70686 0.19625 0.28793 ko3
10 0.78540 0.22050 0.33333 02l |
11 0.86394 0.24371 0.38199 ’
12 0.94248 0.26494 0.43409 0.1
13 1.02102 0.28292 0.48983
14 1.09956 0.29582 0.54940 % o0z o4 o5 06 1 12 14 18
15 1.17810 0.30113 0.61302 Pitch angle
16 1.25664 0.29521 0.68091
17 1.33518 0.27274 0.75331 Fig. 7 Flow through s versus pitch angle ¢
18 1.41372 0.22569 0.83044
19 1.49226 0.14158 0.91239
20 1.57080 0.00000 1.00000

dz_ dz dw_ 2is

Gt awdr - g (F V1-t2) 2971 —12)¢lm  (13)

The map from the-plane tow-plane is constructed by means of a
Christoffel—Schwarz integral Using (13) and the fact thaf jdz/dtdt=i, one can compute as

dw 2s
_ t271 ‘p/vt(lf2¢/77) 9 _ @
T (P( ) 9) = 51.(0) (14)
2s (t where
w(t):—f (rP—=1)¥m12eimqr (10)
¢ Jo
Here, s is the width of the stagnation domain in tiveplane, IZ((P):J (1+\J1—t2)t-2¢lm(1 —12)9lmgt (15)
which can also be interpreted as the distance between the free 0

streamlines at infinity, or the fraction of the flow passing through

the turbines. Sincé=In dw/dz then(8) yields . ) )
By virtue of the Bernoulli theorem, the pressure jump over the

lamina is equal to

dw

In%:(l— Z?QD)M(E-F%W)-H(g—(p) (11)

t

! V2 — V2 16
divv:el('n'/27¢)(1+ 17t2)172¢/7rt2‘,p/'n'71
and and the expression for the efficien¢y) becomes
0.35 ‘ . , , . 0.35 . ‘ . — . ‘ . ‘
0.3 i 03}
0251 1 0.25- 1
L i 0.2t ,
8 S
& 015} ] Eos
01t p 0.1} j
0.05} p 005
0 ‘ . . ‘ . ‘ 0 ‘ ‘ . ‘ ‘ ‘ . ‘ .
0 0.2 0.4 0.6 0.8 12 14 16 0 01 02 03 04 05 06 07 08 09 1
Pitch angle Fiow through the turbine

Fig. 6 Efficiency & versus pitch angle ¢
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Vi (y) (V2= V?)dy _ _
-1 1 Despite only a narrow clag&-parameter familyof the flows
&= VG (A7) has been considered for optimization, the result obtained allows us
” to conjecture that the efficiency is maximal when the resistance is
1 2 rather small and a large part of the flgél percentgoes through.
f V(Y)(VL—V9)dy In other words, the maximum efficiency could not be noticeably
_ . (18) greater than what was obtained here.
V2 2 The model of a free-flow turbine reveals a new class of prob-
lems about streamlining with partial penetrating through an ob-
1/ dw dw]|?
f (Redz) ( Yo

fl 7 Conclusions

d 19 stacle; some of these problems could admit explicit solutions and
y (19) could have other applications.
3 The velocity of a flow vanishes at the origin of the proposed

1 (Y dw dwl?\ dz plane model. This makes the model specifically applicable for
= i_J' (Rea) ( 1- e ) d (20) two-dimensional propeller-type turbines in fré@onductedl cur-
0 rents. The theoretical limit of the efficiency given by the model is
11 dw)|dw|?dz 30.1 percent. A number of tests, as well as constructed power
=s-— i_J (REE> azl gt dt (21)  farms, support this thesis in regard to both hydraulic and wind
0 applications. The efficiency of most water and wind propellers in
1dwl3 dz free flows usually ranges from 10 to 20 percent. On the other
=s—sing f | = (22) hand, the three-dimensional hydraulic helical turbine develops an
ol dz] idt efficiency of about 35 percent in similar free flow conditids.
This high efficiency might be explained by modeling a 3-D rotor
1 2 1(o)sin o3) as@ combination of two plane turbines that reflect power contri-
Cly(e)\ 2 s(e)sing (23) " butions from the front and back parts of the original cross-flow
turbine.
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