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FOREWORD

NASTRAN® (NASA STRUCTURAL ANALYSIS) is a large, comprehensive,
nonproprietary, general purpose finite element computer code for structural analysis which was
developed under NASA sponsorship and became available to the public in late 1970. It can be
obtained through COSMIC® (Computer Software Management and Information Center), Athens,
Georgia, and is widely used by NASA, other government agencies, and industry.

NASA currently provides continuing maintenance of NASTRAN through COSMIC.
Because of the widespread interest in NASTRAN, and finite element methods in general, the
Twenty-first NASTRAN Users’ Colloquium was organized and held at the Sheraton Grand Hotel,
Tampa, Florida on April 26 - April 30, 1993, (Papers from previous colloquia held in 1971,
1972, 1973, 1975, 1976, 1977, 1978, 1979, 1980, 1982, 1983, 1984, 1985, 1986, 1987, 1988,
1989, 1990, 1991 and 1992 are published in NASA Technical Memorandums X-2378, X-2637,
X-2893, X-3278, X-3428, and NASA Conference Publications 2018, 2062, 2131, 2151, 2249,
2284, 2328, 2373, 2419, 2481, 2505, 3029, 3069, 3111 and 3145.) The Twenty-first Colloquium
provides some comprehensive general papers on the application of finite element methods in
engineering, comparisons with other approaches, unique applications, pre- and post-processing
or auxiliary programs, and new methods of analysis with NASTRAN.

Individuals actively engaged in the use of finite elements or NASTRAN were invited to
prepare papers for presentation at the Colloquium. These papers are included in this volume.
No editorial review was provided by NASA or COSMIC; however, detailed instructions were
provided each author to achieve reasonably consistent paper format and content. The opinions
and data presented are the sole responsibility of the authors and their respective organizations.

NASTRAN® and COSMIC® are registered trademarks of the National Aeronautics and
Space Administration.

PRECEDING PAGE BLANK NOT FILMED
iii vr

el \ R ey Wy R
PPN T e mmeer e TR S € L B A )






CONTENTS

Page
FOREWORD iii

1. IMPLEMENTATION OF MIXED FORMULATION ELEMENTS IN
PC/NASTRAN 1~
by Harry G. Schaeffer
(Thoroughbred CAE Software)

2. IMPROVED OMIT SET DISPLACEMENT RECOVERIES IN DYNAMICS
ANALYSIS g~ 2—
by Tom Allen, Greg Cook and Bill Walls
(McDonnell Douglas Aerospace)

3. MODELLING CHAOTIC VIBRATIONS USING NASTRAN 17 ==
by T. J. Sheerer
(Chrysler Technologies Airborne Systems)

4. FEM/SINDA: COMBINING THE STRENGTHS OF NASTRAN, SINDA,
I-DEAS, AND PATRAN FOR THERMAL AND STRUCTURAL ANALYSIS 41-
by P. Richard Zarda, Ted Anderson and Fred Baum
(Martin Marietta Missiles Systems)

5. GENERALIZED SEISMIC ANALYSIS 60 -~
by Thomas G. Butler
(Butler Analyses)

6. A NONITERATIVE IMPROVEMENT OF GUYAN REDUCTION 73 b
by N. Ganesan
(GE Government Services)

7. DESIGN OPTIMIZATION STUDIES USING COSMIC NASTRAN 81 =7
by S. M. Pitrof, G. Bharatram, and V. B. Venkayya
(Wright Laboratory)

8. THE ROLE OF NASTRAN IN THE PRELIMINARY DESIGN CYCLE 99 ~&
by H. R. Grooms and V. J. Baipsys
(Rockwell International Corporation)

PRECEDING PAGE BLANK NOT FILMSED

+

1
m ot
r G el LY EITRAS
pass I RSN i .
FAANTeRS sl

<



APPENDIX: UNPUBLISHED PAPERS PRESENTED AT THE TWENTIETH
NASTRAN USERS’ COLLOQUIUM HELD IN COLORADO SPRINGS, CO.,
APRIL 27 - MAY 1, 1992

A. A METHODOLOGY TO MODEL PHYSICAL CONTACT BETWEEN
STRUCTURAL COMPONENTS IN NASTRAN
by Annappa A. Prabhu
(GE Government Servies)

B. BENCHMARKING THE QUAD4/TRIA3 ELEMENT
by Stephen M. Pitrof and Vipperla B. Venkayya
(Wright Laboratory, Wright-Patterson AFB)

C. EIGENVALUE ROUTINES IN NASTRAN - A COMPARISON WITH
THE BLOCK LANCZOS METHOD
by V. A. Tischler and V. B. Venkayya
(Wright Laboratory, Wright-Patterson AFB)

D. AUTOMATIC ASET SELECTION FOR DYNAMICS ANALYSIS

by Tom Allen
(McDonnell Douglas Space Systems)

vi

111=7"

T
4

126-/©

142-11

175 72—

]



N94-17828

IMPLEMENTATION OF MIXED FORMULATION
ELEMENTS IN PC/NASTRAN

| . 5/-37
By ) 9057/
Harry G. Schaeffer /0 7
, President
Thoroughbred CAE Software

Louisville, KY 40206
and

Chairman and Professor
Mechanical Engineering Department
University of Louisville
Louisville, KY 40292

SUMMARY

The purpose of this paper is to describe the implementation and use of a
consistent family of two and three dimensional elements in NASTRAN. The
elements which are based on a mixed formulation include a replacement of
the original NASTRAN shear element and the addition of triangular
quadrilateral shell elements and tetrahedral, pentahedral and hexahedral
solid elements. These elements support all static loads including
temperature gradient and pressure load. The mass matrix is also generated

to support all dynamic rigid formats.

THEORETICAL CONSIDERATIONS

The principles of virtual and complementary virtual work allow us to
formulate the elasticity problem in terms of either displacements or stresses.
The formulation presented in (Ref. 1) provides us with the convenience of the
displacement approach for statically indeterminate structures and the ease of
stress recovery inherent in the stress approach. In the following we briefly
outline the procedure for calculating the element stiffness matrix for the
mixed formulation.

In order to derive the stiffness matrix we start with the complementary
virtual work for the element which can be written as:

5W, = [eTdadV — [vT8TdS 1)
v S

g



where T is the set of surface tractions on the boundary, S,.

The approach taken in the mixed formulation is to assume an equilibrium
stress field 0 within the element described in terms of a set of generalized
parameters f; and to describe the boundary displacements v in terms of the
grid point displacements u. The set of tractions T on the boundary are
related to the stress components ¢ and the geometry of the element boundary
so that it can be expressed in terms of the generalized coefficients B.

The equilibrium stresses are represented in the following form:
c=2Zf (2)

where the stress state does not include rigid body motion. The boundary
traction can now be expressed in terms of the stress components and the unit
normal to the boundary, which is only a function of geometry. It can thus be
represented conceptually in the following form:

T=L§p 3)

Finally, the displacements along the boundary can be represented in terms of
the grid point displacements as:

v =Nu 4)

where N is a set of assumed shape functions that are appropriate for the
order of the polynomial functions Z chosen to represent the equilibrium
stresses.

Using the relationships for 0, T, and v and Hooke's law to relate 0 and € we
can now write (1) as;

SW.=p Hop-u ROp=0 5)
where:

H-= _[zT E'zav 6)

R= INTLds )

Since 8f is arbitrary it follows that:

B H-u R=0 ®)



Solving for B gives:
p=H'Ru 9)

We can now write the internal strain energy in terms of displacements from
which it can be seen that the stiffness matrix k is:

k=RHR (10)

In the next section the set of equilibrium stresses assumed for each of the
elements that is included in the PC/NASTRAN element library is described.

Assumed Stress Fields

The assumed stress field used for the three dimensional stress field elements
is:

@) (B0 B B O B0,
oy, B. B, 0 B, 0 0 B, y
<o'u [ ﬁS ﬁll ﬁl2 O ﬁ“ O O 2 ¢
o, B, 0 0 B, 0 0 O
ol [B, B, O 0 0 o0 o |
o) (B0 B0 0 0 o "
(X ) (11)

where only the coefficients terms 1-6 are used for the constant stress
tetrahedron which is called the TETRA element in PC/NASTRAN. Similarly
the stress field for the two dimensional stress field membrane and bending
force and moment resultants are: ' '

Nx ﬁl 0 ﬁ4 l
N, r=|B, Bs OfKx (12)
N B, 0 Of|ly

x

and

M. [B B B.]
M, | |B B B

My =8 B, B
Qx ﬁa —ﬁl 0 ﬁlo
LQy ) _ﬂ7 -ﬂ9 Bu 0 . (13)




respectively. All of the coefficients in equations (12) and (1 3) are used for the
quadrilateral plate element which is called the QUAD4. However only the
constant terms 1-3 in equation (12) and 1-7 in equation (13) are used for the
triangular element which is called the TRIA3. Shell behavior is represented
as the the sum of membrane and bending behavior for both elements.

~ IMPLEMENTATION

An early decision was made to replace the on;nal two and three dimensional
elements with a consistent family of elements rather than to add to the
existing family. PC/NASTRAN thus no longer includes the TRIMEM,

QDMEM, HEXA1, HEXA2 etc. These have been replaced with
TRIA3 A triangular shell element with three vertex grid points
QUAD4 A quadrilateral shell element with four vertex grid points
TETRA A tetrahedral solid element with four vertex gﬁd points
PENTA A pentahedral solid element with six vertex grid points
HEXA A hexahedral solid element with eight vertex grid points

Element Matrix Generation

The element subroutines for the generation of element stiffness, mass
and stress matrices are called by EMGPRO in the EMG module. The
stiffness and mass matrices together with their directory entries are written
using EMGOUT for later use by the Element Matrix Assembler (EMA). In
addition the stress matrices and their directory is written out for subsequent
use in generating thermal loads and in recovering element stresses.

Element Load Generation

The calculation of element-dependent loads including thermal loading which
is specified by the standard NASTRAN thermal load Bulk Data and the grid
point forces due to pressure load requires access to the element stress matrix
and element geometry, respectively. Existing routines were modified to
include the new elements and a new capability for generating grid point
forces from surface pressure data was implemented. The associative Bulk
Data is called the PLOAD4 which allows the user to define a surface traction
with respect to either element of the global set of coordinates.



Elements Stresses and Forces

The SDR2 module was modified to accept the stress matrix and directory files
produced in EMG. The stress recovery subroutines were written to interface
with subroutine SDR2E.

Output Routines

The OFP module was modified to print the element stresses and forces for the
new elements. Since the stress output is easily calculated at any point in the
domain of the element, the stress and element forces are printed at the
element centroid and at each vertex point.

In addition to the standard Output File Processor, separate binary files for
each behavioral variable selected in Case Control can be created as a user
option. The data structure of each binary file closely follows that of the
associated file that is created for the OFP. The benefit in having the binary
files is they can be read directly in binary format rather than parsing the
ASCII output print file as many post processor programs do, thereby leading
to a great speed increase especially for large print files. Another benefit is a
reduction in the computer disk storage resources required to store the output.

Other Modifications

Several additional modifications were made to PC/NASTRAN to improve the
user friendliness and efficiency of the analysis program. These are:

1. Grid Point Resequencing

Grid point resequencing is automatically executed as a default but
may be bypassed at user option. The resequencing strategies
available to the user include Reverse Cuthill-McKee and Gibbs-
Poole-Stockmeyer.

2. Automatic Constraint Generation

In order to remove unconnected degrees of freedom a procedure is
introduced to determine whether a singularity at the grid point
level exists in the assembled stiffness matrix. If one does exist the
automatic constraint generator determines whether a single point
constraint or multiple point constraint equation is required to
remove the constraint. The USET is updated accordingly and if
the constraint is an MPC the associated data are written to a file
and added to any MPC constraints selected by Case Control and
those defined by rigid elements.

The automatic MPC capability means that grid point singularities



which do not align with displacement coordinate degrees of
freedom are handled correctly. The improvement can be
demonstrated easily using a single rod element whose axis is not
aligned with the displacement coordinate system as described in

Ref. 2).
3. Modified Givens Procedure

As new users of NASTRAN can attest, Fatal Error 3053 - MAA is
singular is rather esoteric to the uninitiated. For the initiates it
means that Givens Method for eigenvalue extraction has been
selected. The associated transformation of the eigenvalue problem
to standard form requires that the mass matrix be non-singular.
It can be time consuming to determine the set of massless degrees
of freedom which must be removed by static condensation prior to
using Givens method. An alternative is to reformulate the
eigenvalue problem using a shift point so that the matrix is to be
decomposed is always nonsingular. This method is called Modified
Givens.

Dynamic Solutions

The solution sequences for normal modes, transient dynamic response and
frequency response have been modified as required for the new elements.
The eigenvalue solution options have been verified by solving for the modes
and frequencies of several test models. In general, the results for the
eigenvalues are identical for Givens, Modified Givens and the inverse power
methods. Testing also shows that Givens and modified Givens will handled
approximately 250 degrees of freedom before spilling.

The transient response and frequency response algorithms for both the modal
and direct formulations produce results that agree well with those obtained
from other NASTRAN implementations. At this time the random response
capability has not been implemented.



RESULTS AND CONCLUSIONS

The implementation of mixed formulation elements in PC/NASTRAN has
shown that:

1. NASTRAN is a powerful test bed for the development of
computational structural mechanics algorithms.

2. PC/NASTRAN provides a low-cost powerful computational
environment on Personal Computers.

3. The mixed formulation elements generally equal the performance
of displacement-based elements with the same number of vertex
grid points.
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70657 2 IMPROVED OMIT SET DISPLACEMENT

RECOVERIES IN DYNAMICS ANALYSIS

(A Tom Allen
Greg Cook
__ Bill Walls

McDonnell Douglas Aerospace
Huntsville Division
ABSTRACT

Two related methods for improving the dependent (OMIT set) displacements after performing a Guyan
reduction are presented. The theoretical bases for the methods are derived. The NASTRAN DMAP
ALTERSs used to implement the methods in a NASTRAN execution are described. Data are presented that

~ verify the methods and the NASTRAN DMAP ALTERs.

1.0 INTRODUCTION

A NASTRAN user is faced with two major challenges when solving a dynamic eigenvalue problem.
First, an eigenvalue solution is expensive to perform for most structural problems encountered in
engineering analysis, and second, many more degrees of freedom (DOF) are required to define a
structure's elastic properties than are required to define its inertial properties.

A popular method for meeting these challenges is to reduce the problem size using Guyan reduction
(Reference 1). Guyan reduction allows the user to preserve the elastic properties of the problem set while
reducing the problem size to one that is more manageable for a dynamic eigenvalue analysis. At the same
time, the mass properties are also condensed with some penalty associated with the redistribution of mass
from the coordinates eliminated during the Guyan reduction. The present paper describes two approaches
that correct the inaccuracies caused by the condensation of the mass matrix without unduly affecting the
solution time.

The theoretical development of the improvement methods is provided in Section 2. Section 3 describes the
NASTRAN DMAP ALTERs used to implement the algorithms used for both methods. Verification of the
two methods, the second of which is a refinement of the first, is presented in Section 4. Conclusions and
recommendations are provided in Section 3.

2.0 THE IMPROVEMENT METHOD

We begin by deriving the Guyan reduction scheme.

The dynamic eigenvalue problem is given by the equation

([K] - A[M]){¢} =0 1)
where

the structural stiffness matrix

the structural mass matrix

the system eigenvalue

the eigenvector or modal displacements.

o> 2ZR
nmununn



We can partition Equation 1 into independent DOF, designated in NASTRAN as the analysis set, or A-set,
and dependent DOF, designated as the OMIT set, or O-set. After performing this operation Equation 1
becomes

_ _ N
Ru Ko || Mu M, { }go -
KIO KOO M':O MOO ¢°

where the subscript "a" denotes A-set DOF and the subscript "o" denotes O-set DOF.
Looking at the lower partition of Equation 2 we can say
T T
K9, +K 0, -AM, 6,-AM_¢6, =0 3)

The Guyan reduction method (Reference 1) makes the assumption that the inertial forces on the O-set
displacements are much less important than the elastic forces transmitted by the A-set displacements. A
constraint equation for Guyan reduction can be derived by ignoring the mass terms in Equation 3. The
resulting constraint equation is given by

¢, =G0, CY)
where
Go = 'K;::K'Io &)

This relationship constitutes a Ritz transformation of the eigenvalue problem. The transformation written
in terms of the full displacement set is

(0) = {z} - [6)(6,) = [, 10 ©
Using this Ritz transformation, the reduced mass and stiffness matrices become
M,,] = [G"[MI[G) )
and
X,,] = [G)'[K][G) (8)

The mass of the system is redistributed based upon the elastic connections between the O-set DOF and the
A-set DOF as shown in Equation 7.

The reduced mass and stiffness matrices shown in Equations 7 and 8, are then used to compute the
cigenvalues and the A-set displacements of the reduced system. Once the A-set displacements have been
computed, the Guyan reduction transformation of Equation 4 is used to recover the O-set displacements.
This back transformation ignores the inertial terms of the O-set displacements.



An improved back transformation for ¢, can be found using Equation 3 (see Reference 2). For mode i,
this back transformation is given by

(80); = -[Kog - WMol '[KL, + 0, - AMLJ(O); ®

Though Equation 9 will yield improved results, the first term on the right hand side must be inverted for
each mode calculated during the eigenvalue analysis, a computationally inefficient process. Clearly, a
more direct substitution would make the O-set displacement recovery more efficient. 7

Recasting Equation 3 for all the computed modes, we get
' T T
K0t Koo®o - M0, A-M,9, A=0 (10)

where ) is a square matrix with the system eigenvalues along the diagonal. Solving forthe¢o =
displacements that are not multiplied by 4, we get

G0, + KIMLO, A +K M 0. A =0, (11

From Equation 11 we can see that a closed form solution for ¢, does not exist. Itis possible, however, to
use Equation 11 to obtain an improved approximation to ¢..

A first approximation to ¢, can be determined by using the O-set displacements recovered by Equation 4,
or

¢ =G, (12)
Substituting these O-set displacements into Equation 11 yields
Goby + KatMLo0, B + KoM 3 = 677 (13)

where ¢(:) are the corrected O-set displacements. Thesg corrected displacements can be substituted back
into Equation 13 for ¢2’ and a better approximation, ¢§,3), can be computed. This process can be repeated
until the displacements at the (i +1) iteration are the same as the displacements at the it iteration. These
"super" improved displacements will be identical to those computed using Equation 9, and can be
determined without the computational penalty associated with inverting an O-set by O-set sized matrix for

each mode.

To summarize, three methods for recovering the O-set displacements after performing the Guyan reduction
and the reduced eigenvalue analysis have been presented . These three methods are:

1) Standard Guyan reduction recovery using Equation 4, henceforth designated as Guyan

displacements.
2) Improved O-set displacement recovery using Equations 12 and 13, henceforth designated as

improved displacements.
3) Successively iterated improved O-set displacements using Equation 13, henceforth designated as

"super improved" displacements. '

10



The reader will note that the A-set displacements are identical for all three methods described above. Itis
assumed that the eigenvalues and the A-set displacements computed during the eigenvalue analysis are
"accurate”. In other words, the accuracy (or inaccuracy) of the Guyan reduction itself is not in question.

Thus far, we have discussed improvements only in the O-set displacements. More importantly, any
quantity computed using these O-set displacements, such as element forces or element stresses, will also
be improved by methods 2 and 3.

The theory and methodology for improving the O-set displacements has been provided. The following
section describes the implementation of the improved displacement recoveries in NASTRAN.

3.0 IMPLEMENTATION IN NASTRAN

With the methodology in hand, the implementation in NASTRAN becomes an exercise in defining the data
blocks and the NASTRAN DMAP modules required to perform the desired operations. The DMAP
ALTER sequences used to recover the improved displacements are provided 1n Figure 1. The first ALTER
places the UPARTN module following the SMP 1 module while the second ALTER places the DMAP
modules used to recover the improved displacements after the SDR1 module. The user controls the
recovery method with the parameters defined in the DMAP ALTERs. The allowable parameter values and
the resulting action taken are provided in Table 1. Note that if no A-set is defined, the O-set recovery
section is skipped.

$

$ DMAP Alter to obtain required matrices for improvement. Place after the SMP2 Module,
ALTER 11 S where 11 = DMAP statement number of Module SMP2

UPARTN USET,MFF/,MAOT, ,MOO/*F*/*A%/%0* §

$

$ DMAP Alter to perform O-set displacement improvement. Place after the SDR1 Module.
ALTER 3J § where j3j = DMAP statement number of Module SDR1

COND SKIPIM,OMIT §

s

$ This PARAM defines whether Guyan recovery or improvement

$ recovery is to be performed (NOIMP < 0, Guyan recovery)

PARAM //*NOP*/NOIMP = -1 §

COND SKIPIM,NOIMP $§

s

$ This PARAM defines what recovery improvement will be performed
$ If NREPT = 0, improve once, NREPT > 0, iterate NREPT times

PARAM //*NOP*/NREPT =10 §

s

$ MATGEN creates a square matrix from the LAMA table
MATGEN LAMA/MLAMA/3/2 §

MPYAD GO, PHIA, /PHIO/0/1/0/ 8§

FBS 100, ,MAOT/C1/1/1 §

SMPYAD Cl, PHIA,MLAMA, , ,PHIO/A/3///1 §
FBS Loo, ,MOO/B/1/1 8§

LABEL IMPRV §

SMPYAD B,PHIO,MLAMA, ,,/C/3///1 §

ADD A,C/PHIO/ (1.0,0.0)/(1.0,0.0) §
REPT IMPRV, NREPT

UMERGE USET, PHIA,PHIO/PHIF/*Ft/%A*/¢0* §
UMERGE USET, PHIF, /PHIN/*N*/*F*/¢5% §
MPYAD GM, PHIN, /PHIM/0/1/0/ §

UMERGE USET, PHIN,PHIM/PHIG/*G*/*N*/*M* §
LABEL SKIPM S

Figure 1. O-set Displacement Improvement DMAP ALTERs

11



Table 1. DMAP Parameter Settings

E".‘I’F“‘m | NOIMP NREPT
 NA N/A

No A-set
Guyan -1 N/A
Improved 0 0
Super Improved 0 # repetitions )

Once the O-set displacements have been recovered, the rest of the standard solution sequence is executed.
This allows the user to define all data recoveries using the familiar NASTRAN Case Control Deck
commands. Displacements, element forces, clement stresses, or any other user requested data will be
printed and handled in the normal fashion. No special provisions are required to view the improved data.

4.0 METHOD VERIFICATION

Two sample problems were created to verify the method and the DMAP described in Section 3. The first
sample problem consists of a simple four story building. This problem was used to verify the
methodology and the DMAP ALTERs shown in Figure 1. The second problem consists of a 3600 DOF
substructured model. Element forces for this model were recovered from a transient response analysis
using the three O-set displacement recovery methods and compared to the benchmark element forces
obtained when no Guyan reduction was performed. These sample problems verify the improvement
methods and the DMAP ALTERs.

400 -400 0 0

m,=2.0 —> u,
400 1200 -800 0

k,=400.0 K= 0 -800 2000 -1200
0 0 -1200 2800
mz=20 _.__.._.’uz
2 0 0 0
=55 Ml 0 0 2 o
N " 0 0 0 2
k,= 1200.0 B2
20—, °=[ 0 37 ]
fy=1278Hz

A-set DOF = u, and u,

Figure 2. Simplified Four Story Building
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The four story building used for sample problem 1 is shown in Figure 2. This problem was selected
because it is easily represented with NASTRAN elements and may be solved using the NASTRAN
program. It may also easily be solved by hand so that the data produced by the DMAP ALTERs can be
verified. Data were recovered for the first mode only.

Table 2 presents the O-set displacements for the three methods as well as the unreduced benchmark
displacements. The data in Table 2 were recovered from NASTRAN using the DMAP ALTERs described
in Section 3. The reader can easily verify that the Guyan results are identical to those recovered by hand
using Equation 4, the improved results are identical to those recovered by hand using Equation 11, and the
super improved data are identical to those recovered by hand using Equation 9. These data verify the
DMAP sequence described in Section 3.

Table 2. Displacement Comparison
Disp. Guyan Improved Ims‘rlop:;d* ?P?gcgg

w

Uy 1.0000 1.0000 1.0000 1.0000

Uy 0.6015 0.6681 0.6764 0.6775

Us 0.4023 0.4023 0.4023 0.4069

Uy 0.1724 0.1806 0.1810 0.1828
|_MAC 0.99730 0.99995 0.99998 N/A
* These data were recovered using 10 iterations

The Modal Assurance Criterion (MAC) defined in Reference 4 is used to measure the accuracy of the
eigenvectors provided in Table 2. MAC values will vary between zero, indicating no correlation between
modes, to unity, indicating perfect correlation between modes. Based on the MAC values, it is clear that
both improvement methods produce better O-set displacements than the standard Guyan recovery method
produces alone.

The advantage of using the improved O-set recovery methods is clearer when element data, e.g. element
forces or stresses, are compared. The modal spring forces for all three O-set displacement recovery
methods are compared to the benchmark data in Table 3. From this it is clear that the improved
displacements produce spring forces that are vastly superior to those of Guyan reduction.

Based on this simple problem, the displacements can be dramatically improved by using the methods
described in Section 2. The next sample problem will show this more clearly.

The second sample problem uses the 3600 DOF Spacelab Pallet model shown in Figure 3. A transient
response analysis was performed with this model in two configurations, an unreduced configuration and a
Guyan reduced configuration. Transient element forces of all the bar elements were recovered using four
distinct PHASE3 executions, i.e. no A-set, Guyan, improved, and super improved.

13



Table 3. Spring Force Comparison

Super

Benchmark

Forces Guyan Improved roved 0 A-set)
F, 159 133 129 129
F, 159 213 219 217
F; 276 266 266 269
F, __ 276 289 290 293
AF, 30 4 0 N/A
AF, -58 -4 2 N/A
AF, 7 -3 -3 N/A
AF, -17 4 -3 N/A

Figure 3. NASTRAN Model for Sample Problem 2

14




The maximum absolute values for all of the bar forces for the three recovery methods were compared to
the benchmark case. These comparisons are shown in Table 4. The data are arranged according to a
percentage difference range. For each of the recovery methods, the percentage of the forces falling within
this range as well as the maximum difference between the benchmark data and the data produced by the
three recovery methods within this delta percentage range are provided.

For example, in the range between two and five percent, 8.53 percent of the forces from the Guyan
recovery method fell within this range with the maximum difference between the Guyan recovered data
and the benchmark data being 397. For the improved recovery method, only 0.10 percent of the forces
fell into this range with a maximum difference between the benchmark and the improved data being 5. The
percentage of items falling in this range for the super improved method was 0.09, with a maximum delta
of 7.

Table 4. Bar Element Force Comparisons
for Sample Problem 2
A% Guyan Improved Super Improvcd*
Range Percentage Maximum | Percentage Maximum | Percentage Maximum
in Range JA| in Range |Al in Range JAl
0-2 89.05 1045 99.90 102 99.76 114
2-5 8.53 397 0.10 S 0.09 7
5-10 1.48 48 0.00 0 0.03 4
10-25 0.60 82 0.00 0 0.00 0
25-50 0.03 0 0.00 0 0.00 0
>50 0.32 2281 0.00 0 0.13 36

* These data were recovered using 10 iterations

As was the case for the simplified model used for sample problem 1, the improved recovery methods
produce data that are superior to those data computed using Guyan reduction. The data appear to be the
most accurate for the simple improvement method. This is especially true when the computer CPU time
required to produce the data is considered. The improved displacement recoveries required 30 percent
more CPU time than the Guyan recovery, while the super improved displacement recoveries required 150
percent more CPU time than the Guyan recovery.

Because of the simplicity of this model, however, it would be premature to use these data to cast the super
improved method aside without first considering more complex models with equally complex loading.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Two methods for improving the O-set displacements were provided. It was demonstrated that both
improvement methods produce O-set displacements that are vastly superior to those produced using the
standard Guyan recovery alone. In addition, the NASTRAN DMAP ALTERs required to perform these
operations were presented along with the supporting data used to verify them. It remains only to
determine whether the additional accuracy that may be obtainable through the iterative procedure of Method
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3 is justified by the extra computational effort. After all, a significant degree of approximation is already
guaranteed by the initial use of Guyan reduction to determine the A-set displacements.

Because this study did not provide enough information to determine which of the two improved recovery
methods was best suited for the problems encountered in most engineering applications, it is recommended
that additional studies be performed to compare improved displacements from a set of models with varying
complexity to the benchmark unreduced data. These additional cases can be used to definitively determine
which improvement method is better in terms of accuracy and computational efficiency. Finally, it would
be of great interest to compare the results of a multi-mode transient response analysis before and after
modal improvement to assess its practical significance in terms of the end result. . - - -

6.0 REFERENCES
1. Guyan, R.J., "Reduction of Stiffness and Mass Matrices," AIAA Journal, Volume 3, pg. 380, 1965.

2. Cook, R.D., Concepts and Applications of Finite Element Analysis, John Wiley & Sons Inc., New
York, Second Edition, 1981.

3. NASTRAN User's Manual, NASA SP-222, Volume I, June 1986.
4. Ewins, D.J., Modal Testing: Theorv and Practice, John Wiley & Sons Inc., New York, June 1985.
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ABSTRACT:

Due to the unavailability and, later, prohibitive cost of the
computational power required, many phenomena in nonlinear dynamic
systems have in the past been addressed in terms of linear systems.
Linear systems respond to periodic inputs with perlodlc outputs,
and may be characterised in the time domain or in the frequency
domain as convenient. Reduction to the frequency domain is frequently
desireable to reduce the amount of computation required for solution.

Nonlinear systems are only soluble in the time domain, and may
exhibit a time history which is extremely sensitive to initial
conditions. Such systems are termed chaotic.

Dynamic buckling, aerocelasticity, fatigue analysis, control
systems and electromechanical actuators are among the areas
where chaotic vibrations have been observed. Direct transient
analysis over a long time period presents a ready means of simulating
the behaviour of self-excited or externally excited nonlinear
systems for a range of experimental parameters, either to
characterize chaotic behaviour for development of load spectra, or
to define its envelope and preclude its occurence.

INTRODUCTION:

Chaotic systems have been defined as those whose time history
is highly dependent on initial conditions. Without coining the term
"chaos"”, Henri Poincare (1) informally stated precisely this
definition early in the century, and there can be little doubt that
earlier than this the concept was known to dynamicists, and
remained undeveloped because, in the absence of digital computers
and modern instrumentation, it was not a profitable field of inquiry.

The availability of computational power at an unprecedentedly low
cost has extended the range of chaotic phenomena in mechanical
systems which may profitably be investigated. Such investigation
requires solution of the equations of motion of the system in the
time domain over a long time period and the subsequent processing
of the large body of data acquired to produce phase plots, power
spectral densities, peak loads etc. 1In effect the computer is
used to simulate in the time domain a physical test in the time
domain ( such as a shaker table test for vibration, a wind tunnel
test for aerocelasticity, or the experimental observation of the
behaviour of an electromechanical system under periodic actuation).
Results from the simulation may be processed in the same manner as
data from physical experimentation, to produce power spectral
densities, Poincare plots and other means of providing insight into
the system’s behaviour. Extension of analysis beyond the linear
domain has the potential of allowing less conservative design
assumptions, and of providing an alternative, less statistically
oriented approach to load spectrum development and fatigue analysis.
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CHAOTIC VIBRATIONS:

Consider a linear dynamic system subject to a periodic input.
The response of the system to this input at all degrees of freedom
will be a periodic output of amplitude and phase shift dependent
upon the mass, stiffness and damping of the system.

The system can be defined equivalently either by equations for
displacement as a function of time, or by equations for amplitude
and phase of displacement for different input frequencies and
amplitudes. The direct response and random analysis disciplines
within NASTRAN use the latter approach to generate an output Power
Spectral Density (PSD) for a given input PSD to a linear system,
Significant modes are determined by modal analysis, after which
the amplitude and phase of the system’s response to excitation at
and around these frequencies using the direct response method.
Finally, an input PSD is applied to the data from the direct
response analysis to produce an output PSD. of displacement,
load, stress or whatever variable is required.

The results obtained are statistical in nature, providing a
non-zero value of spectral density for any amplitude. The analyst
must determine an amplitude at which nonlinear factors will truncate
the PSD curve. This level is somewhat variable, and is generally
taken to be between 3 and 10 times the RMS value. Selection of
an appropriate truncation point can present problems to the analyst.

Introduction of significantly nonlinear spring constants or
nonuniform damping requires that the system must be analysed, in
NASTRAN, by direct time integration. Depending upon the degree of
nonlinearity and the degree of damping the response to a periodic
input may be periodic, quasiperiodic, limit cycle or chaotic.
Despite the distinction in names, the first three categories are
all periodic in the sense that they may be described by a Fourier
series of finite length.

A quasiperiodic system differs from a periodic one in that,
although it is expressible as a series of finite length, the
frequency components are cannot be expressed as a rational
number. It appears, therefore, that quasiperiodic oscillations can
not be modelled numerically. Numerical approximation will reduce a
quasiperiodic motion to a low frequency periodic one.

Limit cycle vibration is self-excited vibration whose amplitude
is limited by non-linear effects. Classical flutter is an example of
limit cycle vibration. o '

Classical flutter theory is limited to the location of regions
of negative damping in a linear aercelastic model, with the purpose
of ensuring that these regions are outside the flight envelope.
A time-domain solution of nonlinear aeroelatic equations offers the
prospect of defining the amplitude of an oscillation which may in
reality be either limit cycle or chaotic. T

A chaotic system, subject to self-excitation or to a periodic
input, will produce a non-periodic output. The system is entirely
deterministic and, given the displacement, velocity and acceleration
of all degrees of freedom at time tl, the same variables may be
calculated at any future time t2. It is interesting to note that
the process can not necessarily be reversed to find the state of
the system at any prior time. It follows from the above that,
if the system is sampled at a rate equal to the period of the input
excitation, with any phase shift, the same system state will never recur,
since if it did the system would thereafter behave periodically.
A self-excited system, not being subject to a periodic external load,
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will never exhibit the same state at any sampling frequency.

A useful definition of chaotic vibration might be a response to a
periodic input which can not be characterised by a Fourier series
of finite length.

Time-domain analysis of potentially chaotic vibrations subject to
periodic excitation provides information as to range of frequencies
and amplitudes of excitation for which a non-periodic response may
be expected, by examination of power spectral density and Poincare
plots, and also information allowing an informed decision as to
where to truncate the output PSD from a random response analysis,
if the response should prove to be approximately linear for the
levels of excitation of interest. For systems where the excitation
is dominated by a relatively small number of frequencies, the
system can be solved directly over a suitable time period by using
a combination of dynamic load cards to provide excitation with
several frequency components. Input excitations associated with
rotating machinery are a case in point.

In self-excited oscillations, such as flutter, a non-linear
analysis in the time domain can, by accounting for geometic and
material nonlinearities, provide the limit amplitude of a periodic
oscillation, or an envelope for chaotic oscillation. Other
potentially chaotic self-excited systems include control systems
with hysteresis and "galloping” of cables.

In all these cases it is potentially of interest to determine
whether the oscillation will result in immediate catastrophic
failure, will produce stresses affecting the life of the structure
or will be limited at a benign level by nonliearities.

ATTRACTORS, POINCARE MAPS AND POWER SPECTRAL DENSITY

Given a time history of a time-domain NASTRAN transient analysis,
of a self- or periodically excited system, the generation of an
output PSD is an obvious and simple step. This involves operating on
the output data in precisely the same manner as would be done with
experimental data. At least as important for potentially chaotic
systems are phase plots and Poincare plots, where the variable of
interest (usually position) is the ordinate and its first derivative
is the abscissa.

For a periodic oscillation, either externally or self-excited, such a
plot will form a closed path. The simplest case, an undamped single
DOF oscillator, appears in a phase plot as an ellipse (or a circle if
appropriately scaled) centered on the equilibrium position of the oscillat
of a damping term will produce a plot in phase space which spirals in to t
equilibrium position. The equilibrium point is an attractor for the
single DOF damped spring, since as the initial disturbance of the system
dies away, the system tends to this state. For a periodic oscillation
not decaying to equilibrium, such as the undamped single DOF oscillator,
the attractor is a close curve. Sampling at a rate egqual to the natural
frequency will reduce the plot to a single point. Such plots in phase spac
are termed Poincare plots. More complex periodic oscillations, having
several frequency components due to a forcing function with several freque
will appear in the phase plot as interleaved curves. By selecting a sampli
the appropriate sampling rate the output data will be a finite number of
loci defining a closed curve, with data points repeating after a finite
number of cycles. In a single DOF system, sampled at the forcing function
frequency, the coincidence of displacement and velocity implies a coincide
of aggeleration, and consequently the curve in the phase plot can not inte
itself.

For a quasiperioaic oscillation the attractor will form a closed curve
sampled at in phase space. Although all points will lie on the curve, none
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Results of the analysis may be interpreted in the same way as those
of a physical test.

(1): A time history of displacement or velocity may exhibit a
clear periodicity or may not. In the latter case the cause could be eithez
chaotic motion or the combination of several periodic components.

(2) : Power Spectral Density Analysis of the system response to a single
frequency forcing function. A system verging upon chaos will exhibit
several harmonics of the driving frequency, w1th the response becoming
broad-band as the system enters the chaotic regime. Judgement as to the
presence or absence of chaos must be made with regard to the system
analysed. In the case analysed below a single DOF system produces
several harmonics for certain levels of periodic excitation. The
conclusions drawn from it would not necessarily be justified from
observations of a single node in a complex structure.

(3,4,5): Phase plane observation, Poincare and 3-D plots: These are
discussed in some detail above.

DYNAMIC MODEL OF AN ELECTROMECHANICAL ACTUATOR SYSTEM:

The electromechanical actuator is a known, simple example of
a chaotic oscillator, described by Hendricks in 1983 (2).

Fig.{(1l) shows an electromechanical actuator system wherein
the armature is subject to an externally applied dynamic
load by appllcatlon of an electrical current to a coil. Such systems
are used in 1mpact print mechanisms, high speed relays and elsewhere.

The system 1s modelled as an armature GRID with a single DOF
moving between two GRIDS each occupying a deep potential well
defined by NCOLIN1 cards and representing the stops limiting the
armature’s travel. EPOINT NOLIN1l and TF cards are used to model the
impacting of the armature on the stops.

The armature GRID is also attached to ground by a scalar spring
whose stiffness was varied during the investigation. The armature
thus tends to a rest position with the scalar spring in an unloaded
state as shown in Fig. (2).

Also in Fig. (1) is a mechanical fastener transfering load between
two components having oversized holes. This system, representative
of structural details in aircraft construction or modification,
is from a mathematical point of view identical with the actuator
system. Note that by applying excitation at one of the constraining
grids the same model can represent, without further modification,
a system with nonlinear stiffness mounted on a a shaker table.

The actuator modelled was given travel between stops of
0.008 inch, peak applied force of 0.8 # and cycle time of 1KHz.
These times were based upon an actual device for which data was
available and were varied in the course of the study to induce
chaotic behaviour. It was determined that a time step of 0.5 uS was
required to adequately model the behaviour of the armature and stops
during impact. Inspection of the motion of the stops shows that they
are restored to equilibrium position between impacts and hence act
merely as nonlinear restoring forces on the armature. The armature
therefore acted, in effect, as a single DOF nonlinear system. A means
of applylng a load as a function of space and time was also devised and
is described in appendix (1).

~ RESULTS:

(1) : VARIATION OF DYNAMIC LOAD

Curves of displacement vs. time are plotted in Figs. (3-7) for
excitation at lkHz with peak forces from 0.1 # to 1.2 #, with
a travel of 0.008 inch between stops and a weak spring defining
the rest position of the armature. It is seen that for the extreme
limits of applied load the results do not appear to be periodic.
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will be coincident since the ratio of the component frequencies is not a
rational number. In a time-domain simulation the distinction from a perioc
oscillation is of no importance.

A chaotic oscillation, sampled in this manner, will never repeat itseltf
and may exhibit an interleaved phase plot. This state, not conforming to
any of the three cases in classical dynamics, is termed a strange attractc
While the static, periodic and quasiperiodic attractors define closed patl
strange attractors, while being confined to a finite area of phase space,
exhibit fine structure within their domain. Alternatively, in lightly
damped systems, the plot may appear to be randomly distributed. Such
systems are sometimes described as stochastic in nature.

A plot of displacement, velocity and acceleration is of interest.
In a self-excited single DOF system, the coincidence of position and
velocity imply a coincidence of acceleration, since the acceleration
is defined in terms of the other two variables. In chaotic systems, the
converse is true and no two points may be coincident in such a plot. In
a system with several degrees of freedom the presence or absence of
periodicity must be determined by examining, and seeking a coincidence in,
the displacement and velocity of all degrees of freedom simultaneously.
Graphically, this requires plotting in a space of 2N dimensions where
N is the number of degrees of freedom. For a system subject to an external
forcing function, the sampling must be done at the frequency of the forcir
function. Given that the analysis must be based upon a simulation of finit
span, it will not be possible to prove explicitly that a system is chaotic
and only in some clear-cut cases will it be possible to prove the converse
In practice, as in actual physical testing, several tests may be applie
which with a high degree of confidence discriminate between chaotic and
periodic behaviour. The envelope defined for motion of an apparently
chaotic system is no less useful if the system in fact is periodic with
a very long wavelength.

APPLICATION OF NASTRAN TRANSIENT ANALYSIS

The paradigm of chaos, the Lorenz attractor, was initially attributed
by some to the process of numerical simulation rather than to an underlyir
physical reality. This proposition will be sympathetically viewed by any
analyst who has used NASTRAN to model intermittent contact problems.

In impact studies and similar applications the greatest care must be te
to ensure that the time step is sufficiently small to prevent a node from
penetrating a significant distance into a region of high stiffness before
the stiffness matrix is updated to reflect this. The effect of such an
excessive time step can be that the node is reflected from the collision
with a velocity many times that of impact. At the same time, the total
number of time steps must, as far as possible, be minimized. For problems
such as a single impact, where the regions requiring small timesteps
can be estimated, or derived from a preliminary analysis, the problem may
be addressed by using several timesteps, with the small ones limited to
the appropriate times. In analysis of a chaotic system, however, a large
number of cycles must be analysed, and the behaviour is by definition
nonperiodic and unpredictable. A single value of time step must be employe
and experimentation is required to determine the maximum timestep
commensurate with conservation of energy in the system.

The application of periodic dynamic loads required the input of
a large amount of data, defining each of many cycles explicitly.
This 1s conveniently done using an external preprocessor to generate the
appropriate cards. The numerical and graphical output from direct transie
consists of the values of variables as a function of time, as would be the
case for a physical test. The desired output of phase plots (velocity vs.
position) and power spectral density may be readily obtained, however, frc
a punch file of the results, either by use of a batch program or by
importation into a spreadsheet or database program.
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The velocity plots in Figs. (8-12) provide a clearer picture of
the armature’s behaviour, with almost constant peak velocity for
dynamic loads from 0.24 to 0.8 # and considerable variation outside
that envelope. Figs. (13-17) are phase plots of velocity
vs. displacement for the same data. Figs. (18-19) show the
superimposed plots in the vicinity of the front and back stops.

The larger scale reveals considerable fine structure in the curves
for peak dynamic loads from 0.24 # to 0.8 #. R

Fig.(20) shows the displacement PSD for peak dynamic loads . ° ..
from 0.24 # to 1.2 #. The largest peak is for the 0.4# peak force,
but, if the results are normalised for the amplitude of the input
force, the 0.24% case will have almost the same magnitude, but with
much less marked secondary peaks. ' ,

Fig.(21) shows the 0.4# and 0.24# Poincare plots for a sampling
rate twice the excitation rate, phase shifted to encompass maximum
deflection. The loci near the equilibrium attractor are virtually
coincident while the loci mear maximum displacement show considerable
variation in velocity, but not position. Fig.(22) shows loci for peak
forces of 1.2# and 0.244 for a sampling rate equal to the excitation
rate. The 0.24# case suggests a long-period periodicity while the 1.2 #
case suggests chaotic vibration. Figs. (23-24) are 3-D plots for
peak loads of 0.8 # and 1.2 # respectively.

(2) : VARIATION OF NONLINEARRITY

By increase of the linear spring constant constraining the
armature from 1.0# to 100.0 # it becomes significant with respect to
the nonlinear forces. Fig. (25) shows the displacement vs. time
for a peak dynamic load Of 0.8 # for spring constants of 1.0 and
100.0 respectively. It is apparent from this and the Poincare plot
in Fig. (26) that the effect of reducing the range of stiffness
is to reduce the tendency to chaos.

(3): VARIATION ON INPUT FREQUENCY

The effect of increasing input frequency is to increase the tendency
to chaos. Fig. (27) shows phase plots for 0.8# peak input force at
1.0, 1.5 and 2.0 Khz. The chaotic behavior at 2.0 KHz is in accordance
with test data indicating a maximum stable drive frequency around
1.7 kHz. . ’ o - :

CONCLUSIONS:

The data described above for a magnetomechanical actuator are in
agreement with several years of experience in the design, analysis
and characterization of such devices. With small modifications, a
similar model could be applied to mechanical fasteners in aircraft
structures, vibration isolation and other areas where load
transmission between pieces of structure is via a nonlinear path.
Application of appropriate position-dependent loads should allow
nonlinear modelling of flutter and other self-excited phenomena.

Considerable care must be taken to ensure that effects observed are
due to physical characteristics of the system and not artifacts of the
simulation. Spurious self-excitation of the system due to an inadequate
time step is an obvious possibility.

Implementation of automatic time-step variation, such as is available
in some other FEA codes, is probably not desireable for an application
where there is a significant risk of mistaking numerical artifacts for
physical behaviour. A means of specifying a large number of periodic loads
on a single card would, however, be desireable. -
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Fig. (1): 1-D Nonlinear System
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Figs (3-7): Displacement vs. time for armature
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Figs. (8-12): velocity vs. time for armature
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Figs (21-22), Poincare plots sampled at 2kHz
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Fig. (23): 3-D plot for 0.8 # peak load i
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Fig. (24): 3-D plot for 1.2 # peak load
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Phase plots for different linear spring rates
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Fig. (27): phase plot at three different forcing freq.s
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FEM/SINDA:
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ABSTRACT

This paper describes the interface/integration between FEM/SINDA, a general purpose
geometry driven thermal analysis code, and the FEM software: I-DEAS, PATRAN, and
NASTRAN. FEM/SINDA brings together the advantages of the finite element method to
model arbitrary geometry and anisotropic materials and SINDA’s finite difference capability
to model thermal properties, loads, and boundary conditions that vary with time or temper-
ature. I-DEAS and PATRAN thermal entities are directly supported since FEM/SINDA
uses the nodes of the FEM model as the point at which the temperature is determined.
Output from FEM/SINDA ( as well as the FEM/SINDA input deck) can be used directly
by NASTRAN for structural analysis.

INTRODUCTION

The industry standard thermal analysis codes SINDA and MITAS are known for their ver-
satility in solving a wide range of thermal analysis problems. The input to these codes, how-
ever, generally involves tedious hand calculations of nodal capacitances and conductances.
The CAE group at Martin Marietta Missile Systems in Orlando, Florida has developed a
finite element - finite difference hybrid thermal analysis code which can take finite element
models developed in I-DEAS or PATRAN and produce a finite difference network model
which is then solved with MITAS, Martin Marietta’s version of SINDA (from this point
forward, any reference to SINDA implies MITAS as well).

Copyright@lDB! Martin Marietta Corporation, all rights reserved. Published by COSMIC, with permission.
I-DEAS is a registered trademark of SDRC. PATRAN is a registered trademark of PDA Engineering.
FEM/SINDA is & trademark of Martin Marietta Corp.
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A FEM/SINDA input deck can be generated from an I-DEAS universal file or a PATRAN
neutral file using the -DEAS-to-FEM/SINDA translator or the PATRAN-to-FEM/SINDA
translator. FEM/SINDA can then be run to produce nodal temperatures at the finite ele-
ment nodes. The solution algorithm to determine the nodal temperatures is SINDA’s finite
difference network solution. The conductors and capacitances used in the SINDA network
solution are mathematically equivalent to the thermal conductivity and thermal capacitance
matrices generated by using finite element techniques. A node in the finite element model
will necessarily be a node in the SINDA model.

This method will allow, at the I- DEAS or PATRAN level the mixing of 1-D (rod), 2-
D (shell) and 3-D (solid) elements and will generate the conductivity network that this
connectivity implies. This is in direct contrast to centroidal methods which require the
creation of additional elements when mixing 1-D, 2-D and 3-D elements (for example, the
connection between a shell coming into two nodes of a solid requires the creation of one or
more shell elements on the face of that solid).

Working with the true finite element nodes (versus the centroidal node) also allows boundary
conditions to be easily handled. Specified temperatures can be applied at the finite element
nodes which are generated on the true boundary of the object. Applying boundary condi-
tions to centroidal nodes can lead to erroneous answers since the node location is probably
not at the proper boundary. In addition, the thermal boundary conditions and loads (such
as convection, heat fluxes, radiation, etc.) can be specified in I-DEAS or PATRAN using
the current entities available in each of the pre-processors. In I-DEAS or PATRAN the user
can also specify whether the properties are isotropic or orthotroplc, and whether they are
constant or vary with temperature. Boundary conditions and loads are also specified by the

modeler to either be constant or vary with time and/or temperature.

FEM/ SINDA will automatically generate a SINDA input deck for the subsequent finite dif-
ference analysis. This deck can be automatically combined with a SINDA deck that has,
for example, a table that could specify how a thermal property (for example, a thermal
conductivity already flagged in I-DEAS or PATRAN) would vary with temperature. The
complete flexibility of SINDA is therefore available to the thermal analyst. Use of FOR-
TRAN subroutines and tables to account for thermal properties or boundary conditions
that vary with time and/or temperature is one of the strengths of SINDA.

FEM/SINDA is also integrated with TRASYS, a well-known code (developed by Martin

Marietta) for determining both radiation view factors and solar and planetary heat fluxes.
TRASYS has over ten years of development activity and is an industry standard. The
I-DEAS or PATRAN user can simply select which faces of shell or solid element radiate.
FEM/SINDA will generate the necessary input deck to TRASYS for view factor calcula-
tions. A subsequent TRASYS run will return SINDA radiation conductors. These radiation
conductors will reflect the view factors between the various radiating elements selected in
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I-DEAS or PATRAN. Moreover, the radiation conductors are between the finite element
nodes and can be combined with the SINDA deck of thermal conductors for a system anal-
ysis involving conduction, convection and radiation.

Existing I-DEAS or PATRAN stress and dynamic models may also be used, with some or no
modification, to drive FEM /SINDA. This will then insure, for example, that the temperature
field is determined at the nodes of a stress model. A subsequent thermal stress analysis is
therefore automatic since nodal temperatures are available. A centroidal method, on the
other hand, would require the interpolation/extrapolation of the centroidal temperatures to
determine the nodal temperatures - a possible source of misinterpretation and/or error.

Output from FEM/SINDA (either steady state or transient analyses) can be brought back
into - DEAS or PATRAN for processing (also available is the ability to read a FEM/SINDA
input deck into I-DEAS or PATRAN). Another feature of FEM/SINDA is that the input
deck can be either in free field and/or fixed field, and the card image format is almost
identical to a NASTRAN input deck. Existing NASTRAN decks, with slight modification,
could therefore be used as input to FEM/SINDA.

In short, the integration of -DEAS, PATRAN and NASTRAN with FEM/SINDA for ther-
mal analysis combines the power of finite element pre- and post- processing and discretization
techniques with the industry accepted SINDA code, taking advantage of the strengths of
both while preserving completely the conventional input to SINDA. This allows the FEM
user to completely specify his/her thermal model in - DEAS or PATRAN (conduction, con-
vection, radiation) and allows for boundary conditions, loads and thermal properties to vary
with time and/or temperature.

FEM THEORY

In order to understand the basic architecture of FEM/SINDA, a short review of some of
the basic techniques in finite element theory is in order. Consider the simple triangular
element shown in Figure la. The triangle has a constant thickness ¢ and an isotropic
thermal conductivity of k. The temperature field within the element is assumed to be a
linear function of the nodal temperatures: T3,T;, and Ty. It can be shown (see Reference
1) that the temperature field T at any point (x,y) within the element is given by

T;
1 1

T(z,y) = 24 [a; +biz+ 1y a2 + bz + 2y as + byz + csy] { T, } (1)
T,

where
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A = Area of triangle
t = Thickness of triangle
a; = Ty — TsY2 (2)
b =y2 — s
€L =23 —Z3

and a,,b,, ¢, as,bs, c3, are obtained by permuting the indices in Equation 2 (for example,
b, = ys — v1)- If the (x,y) coordinate in Equation 1 equals a nodal coordinate, T(x,y) will
reduce to that nodal temperature. Note also that the temperature field of equation (1) is

linear.

Next, based on variational principles (Reference 1), the thermal conductivity matrix (K] of
the element can be determined. For this triangular element, it is given by (Reference 1)

kt (82 +c}) (bybs + c163) (bads +c1cs) ,
(53 +¢3)  (bads + c2cs) , (3)

K= o
441 sym (82 + c2)

Note that the matrix is symmetric and not all the values in the matrix are independent. It
can be shown (based on the fact that a constant temperature can be maintained with no
heat input) that the sum of the values on any row (or column) must add up to zero. Stated
another way, the diagonal term on any row is minus the sum of all the off-diagonal terms

of that row. Thus, for

i ku ki2 kis
K] = ka2 ka2s (4)
SYM kss

once the upper triangular values, kj2,k;s,and kzs are known, all the other entries are de-

termined.

Next consider a conductor network between the same set of nodes as shown in Figure 1b.
The conductor values, g12,¢13, and gzs can be found such that this conductor network is
equivalent to the finite element of Figure 1a and Equation 4. This can be shown by recalling
that a conductor g between any two nodes A & B has a thermal conductivity matrix given

by:
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m=2 12 7 (5)

-9 9

The thermal conductivity matrix for the three conductors of Figure 1b is assembled by
applying Equation 5 to each conductor. Then the assembled 3 x 3 conductivity matrix for
the three conductors of Figure 1b is

1 2 3
1 | G12 + Gas -G -G
(K] =2 ~G12 G2+ G2y —Ghas (6)
s —Gis ~Gas G1s + Gas

Notice that the conductors are assembled in the matrix consistent with the conduction
matrix of Equation 5. Also the matrix exhibits the topology of all conductivity element
matrices: the matrix is symmetric and the sum of the off-diagonal terms on any row is
equal to minus the diagonal term of that row. Finally, the conductivity matrix of the finite
element of Figure la will exactly match that of the conductor network of Figure 1b by
equating Equation 6 to Equation 4. Only the upper triangular terms need to match (all the
others will then necessarily match). This gives

G2 = —ky2
Gi1s = —kis (7)
Gas = —kas

Equation 7 simply states that the conductor value between any two nodes i and j is simply
minus the off-diagonal i-j term of the thermal conductivity matrix of that element. That is,

Gij = —ki; (8)

Equation 8 applies not only for the triangular element but for any element. For example,
Figure 2a shows a quadrilateral shell element, and the six conductors between the four nodes
exactly correspond to the six upper triangle values of the thermal conductivity matrix shown
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in Equation 9.

k22 kas ka4
K| =
K] ks hse )
SYM kys

For any element (rod, shell or solid) the thermal conductivity matrix can be determined and
the conductivity network is given by Equation 8. The thermal conductivity matrix for most
elements can be found in either Reference 1 or Reference 2. Once the conductor network for
cach element is determined, FEM/SINDA looks towards SINDA (a finite difference code)
for solving the system of equations. This is in direct contrast to a finite element code that
generally solves a linear system of equations of the form

[K]{T} = {Q} (10)

the model), {T} is a vector of nodal temperatures, and {Q} is a vector of nodal heat flows.

The finite element method requires first the assembly of the system thermal conductivity
matrix [K] of Equation 10 and then the simultaneous solution to the set of Equations 10.

where [I\] is a thermal conductivity matrix of size N (N is the total number of nodes in

FEM/SINDA does not assemble the matrix [K]. It simply determines the conductivity matrix

of an individual element and thcn gcnerétes the appropnate SINDA conductors. The SINDA;

~ conductors can vary with time or temperature and hence handle nonlinearities that are
common in thermal analysis. On the other hand, finite element techniques are not nearly as
efficient (or even capable) in handling nonlinearities (NASTRAN thermal analysis package,
for example, is significantly slower than SINDA in solving nonlinear transient problems, and

will not handle something as fundamental as a heat transfer coefficient varying with time).

A code such as SINDA requires as input the conductor value between two nodes. For
the tnangﬂar ‘element of Figure 1a, Equation 3 (applying Equation 8) gives the conductor
values Thus the three concructors are

» ]
Gia=k .a(blbz + ¢y¢32)

o

[ ¢
Gis=k .2‘2(5153 + Cxcsr). (11)

. :
Gas =k .a(bzbs + Czcs)J
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These values (those given by Equation 11) can be input into SINDA in one of two ways.
If the thermal conductivity k is constant, FEM/SINDA will generate the following SINDA

card:

CONDUCTOR #, NODE;, NODE;, G;;
EXAMPLE: 37, 2, 3, 4.278

where the CONDUCTOR # is some unique label number, NODE; and NODE; are the
nodes that the conductor is between, and G;; is the conductor value which is given by
Equation 11. If k is not constant (but is to vary with temperature) the following SINDA
card is generated by FEM/SINDA:

CGS CONDUCTOR #, NODE;, NODE;, ARRAY #, (A/L);;
EXAMPLE: CGS 97,1, 3, A4, 0.789

where CGS implies a conductor that will vary, the ARRAY # (in the example, array A4)isa
table of conductivity vs. temperature that specifies how the thermal conductivity is to vary
with temperature, and (A/L);; (2 single number) is the “geometric part” of the conductor
and is the term in brackets in Equation 11. The table of k vs. T is added separately to the
SINDA deck.

Capacitance for each node of each element uses the “lumped mass” approach that is often
used in finite element structural analysis. Essentially this means that, for the triangular
element of Figure 1a, each node is assigned 1/3 of the mass of that element. For other ele-
ments the lumping of mass (and hence capacitance) is similar and can be found in Reference
1 and 2. FEM/SINDA will automatically generate the appropriate capacitance for SINDA.

The above procedure for determining the “finite element” conductors and capacitances for
each element is used in a similar way to handle convection and radiation. Convection and
radiation will lead to additional conductors in the network and will automatically be gener-
ated by FEM/SINDA. SINDA radiation conductors can also include view-factor calculations
based on a TRASYS run (the conductors are automatically generated by the TRASYS run).

FEM/SINDA will generate the conductors for each element used in the FEM model. When
two elements produce conductors between the same nodes, those conductors are combined
(in cases where the conductors are not constant but are referencing a different thermal con-
ductivity, they are not combined). The sorting and summing is performed by FEM/SINDA
not only for conductors (conduction, convection and radiation conductors) but also for ca-
pacitance and loads. This will generate a compact conductor network for the subsequent
thermal analysis.
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I-DEAS and PATRAN MODELING

The thermal analyst can define his/her entire thermal model within I-DEAS or PATRAN
and then subsequently generate a FEM/SINDA input deck. The key to the ease of generating
2 FEM/SINDA input deck from a FEM model is simple: a node in the FEM model will
necessarily be a node in the SINDA network. The I-DEAS entities available in I-DEAS 4.0
and the PATRAN entities available in PATRAN 2.3 will, in general, be used to directly to
drive the FEM/SINDA model. In particular, the I-DEAS and PATRAN entities shown in

Table 1 are directly supported by FEM/SINDA.

FEM/SINDA entity

I-DEAS/PATRAN entity

Cartesian coordinate system CORDR
Cylindrical coordinate system CORDC
Spherical coordinate system CORDS
Isotropic material table MATI
Orthotropic material table MATO
Spring physical table PCOND
Rod/Bar physical table PROD
Shell physical table PSHELL
Solid physical table PSOLID
Node NODE
Node-to-node translational spring| CONDUCT
Lumped mass CAPAC
Linear rod/bar ROD
Linear thin-shell triangle TRIA
Linear thin-shell quadrilateral QUAD
Linear solid tetrahedron TETRA
Linear solid wedge WEDGE
Linear solid brick BRICK
Nodal heat source NHEAT
Edge influx/Dist. heat source EFLUX
Face influx/Dist. heat source FFLUX
Distributed heat generation VFLUX
Edge convection ECNVECT
Face convection FCNVECT
Edge radiation ERADS
Face radiation FRADS or FRADT|
Nodal temperature TEMP
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The property and material values in - DEAS can be used and the corresponding FEM/SINDA
input deck will be properly generated. Some of the material values that are supported
in I-DEAS directly are isotropic and orthotropic thermal conductivity, specific heat and
material density. Convective heat transfer coefficients and the emmisivities (for radiation
calculations) are also input directly in I-DEAS in the “ANALYSIS_CASES” task. Note
that by supporting both edge entities and surface entities (as Table 1 shows) both 2-D and
3.D models can be fully generated in I-DEAS and analyzed by FEM/SINDA. Heat loads,
convection and radiation can be applied using I-DEAS’s heat transfer loads (see Table 1).
I-DEAS’s modeling of conductivity, specific heat, loads and boundary conditions that vary
with time or temperature is supported by entering a negative integer value for that prop-
erty. The FEM/SINDA translator (which translates a universal file into a FEM/SINDA
input deck) interprets all negative integer values for conductivity, specific heat, loads and

boundary conditions as a SINDA array reference (the SINDA array # is the absolute value
of the integer). The SINDA input deck must then include an array which describes how

that value is to vary with time or temperature.
The PATRAN interface to FEM/SINDA supports almost all FEM/SINDA entities which,
like I-DEAS, allows the user to input the entire model in the preprocessor. Nodes and
elements are generated with the standard GFEG and CFEG commands. Element properties
and material properties are entered with PROP and PMAT commands, respectively. Two
PMAT options are supported: thermal isotropic (TIS) and thermal anisotropic (TAN).
Material properties which vary with temperature may reference a SINDA array by entering
a negative array number in the PMAT command for that property. Boundary conditions are
entered with the standard DFEG command and may reference a SINDA time-varying array
by entering the array number in the UID field of the DFEG command. The only exception

is convection in which the array reference goes in the data field and the convection option

(time or temperature dependent) goes in the UID field.
I-DEAS or PATRAN modeling used in conjunction with FEM/SINDA allows the thermal an-
alyst to easily model his/her problem with the tools that are available in the pre-processors.
The mapped and free mesh generation, application of loads and boundary conditions to
geometric entities, mixing of rod, shell and solid elements are just a few of the FEM’s {fea-
tures that can be used (without playing games) to generate a thermal model. Fundamental
tasks such as free edge plots can be used meaningfully to show the absence of thermal con-
nections (this is in direct contrast to centroidal methods and any method which does not

L]

use the nodes of the finite element model as the point at which the temperature is to be
determined). FEM/SINDA’s interface with -DEAS and PATRAN truly allows the modeler
to use the pre-processor software consistent with its design, and hence makes the thermal

analyst more efficient in his/her modeling.
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FEM/SINDA INPUT DECK

The FEM/SINDA translator will read a I-DEAS universal file or a PATRAN neutral file of
a thermal model and generate a FEM/SINDA input deck. The input deck to FEM/SINDA
looks similar to a NASTRAN input deck (hence present NASTRAN decks can be used, with
slight modification, to perform a thermal analysis). Figure 3 shows a quick reference guide
describing a FEM/SINDA input deck, and Figure 5 shows an input deck for the simple
problem shown in Figure 4. This deck was completely generated from the -DEAS model
shown by first generating a universal file from I-DEAS and then running the FEM/SINDA
translator ( similiar techniques apply for PATRAN). The card image input is self explanatory
(Figure 3 can be used as a quick guide for the field description)._ The “SFILE” shown in
Figure 5 is the name of a supplementary SINDA file. The SFILE can contain SINDA array
definitions, FORTRAN subroutines, etc. that will augment the conductor network generated
from the finite element model to produce the SINDA input deck. This file could contain old
SINDA decks that will be thermally combined with the new finite element input deck. The
ECNVECT card shown in Figure 5 defines the heat transfer coefficient to the air gap (see
Figure 4) as a function of temperature to be defined by array “A1”. This array is specified

in the SFILE.

The quick reference guide (Figure 3) indicates which fields of the data input can vary (data
enclosed in {}) with time or temperature and hence reference an array. For example, the
edge flux card (EFLUX) allows for the flux to be specified by an array.

Radiation is specified (for which TRASYS will calculate the view factors and generate the
nodal radiation conductors) by the FRADT card. The radiation conductor network returned
from TRASYS is included with the SINDA input deck to form a complete system network
which models the integration of the conduction, convection and radiation thermal model.

Once the SINDA analysis is complete, a universal file or neutral file is generated by SINDA
that contains all of the nodal temperatures for post-processing. In a transient thermal
analysis, this file will contain a temperature data set for each output time step. SINDA can
also generate a set of NASTRAN “TEMP” cards that can be included with a NASTRAN
input deck for thermal stress analysis. '

FEM/SINDA EXAMPLES

The following examples of FEM/SINDA will help to illustrate the adirantﬁges of the -DEAS
/ PATRAN-tq—FEM /VSINDA combination to the thermal analyst. ]

Figure 6 shows the temperature contours for a 2-D model of a rectangular region. Heat
is input at the bottom of the region and the top is held at a constant temperature of
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zero. The thermal conductivity is constant. The grid shown (using 2-D shell elements)
was purposely made irregular to illustrate the strength of the finite element method. The
temperature field is linear for this model. FEM/SINDA will model a linear temperature field
exactly because of the finite element description of the conductor network (see Equation 1).
Three contour plots are shown: (a) FEM/SINDA results, (b) TMG results , and (c) a
centroidal method. The FEM/SINDA results give the exact solution, and the TMG results
are reasonably close to the exact solution. TMG uses a single “thermal node” per element,
but the “node” is not at centroid but at the intersection of the perpendicular bisectors of the
sides (assuming a triangular element - a quadrilateral can be broken up into triangles). It
can be shown that these “thermal node” points will model a linear temperature field exactly.
The apparent discrepancy (from Figure 6) is that TMG will not use these points when the
bisector intersection falls outside the triangle. The resulting TMG conductor network is
therefore not guaranteed to model the temperature field exactly (a trivial change to the
code could remedy this). Despite this, the TMG temperature field is acceptable. This is not
the case for the the centroidal temperature field show in Figure 6¢c. The conductor network
for this model is based on an in-house code that uses the centroid as the “temperature
node”. The results are unacceptable and clearly show that the irregular finite element grid
dramatically affects the results (a rectangular grid would give the exact solution).

If the analyst were to use a centroidal method (rather than FEM/SINDA), the modeling for
a large model could be complicated and very cumbersome. For example, besides the needed
shell elements shown in Figure 6 to model the 2-D conduction region, bar elements must be
used at the top and bottom boundary to designate the boundary conditions. This process
carried over to 3-D models requires shell elements to be put on the face of solid elements
to handle boundary conditions—a process that can add significant modeling time and that
is cumbersome. These “additional” elements are sometimes needed even within a solid
region; for example, at the interface of two materials with different conductivity. Failure to
do so will can cause interpolation algorithms to inadequately predict finite element nodal
temperatures from the “element” temperatures. Modeling convection and radiation can also
require the addition of elements on the appropriate boundaries. Mixing of 1-D, 2-D, and 3-D
conduction elements also requires the “additional” elements when such elements join (a 2-D
shell coming into two nodes of a solid requires the addition of a shell on the face of that solid
to force the thermal connectivity). Overall, these thermal “games” can significantly affect
the thermal analyst’s productivity in I-DEAS or PATRAN and can hinder the graphical
verification of his model.

Figure 7 shows a radiation-conduction problem that was performed both with FEM/SINDA
and NASTRAN. The top body is held at a constant temperature of 100 degrees and the
bottom body at 0 degrees. The circular region has a low thermal conductivity and & unit
depth is used. Space is at a temperature of 50 degrees. This model was generated in I-DEAS
including the designation of the radiating surfaces. FEM/SINDA generated the TRASYS
run which produced the view factors and the SINDA radiation conductors. Good agreement
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is shown between FEM/SINDA and NASTRAN for the relatively coarse grid used.

Figure 8 shows an example of a transient analysis. It consists of a splice ring used to attach
sections of a missile together. Normally, the thermal protection requirements of a missile
are determined by a 1-D analysis through a typical portion of the missile skin. In this
case two dimensional effects are considered important where the splice section and the bolt
area join. For this example, a 2-D mapped mesh mode] was constructed. Different thermal
properties were used for the splice ring, bolt and filler elements. Aerodynamic heating was
applied to the outer surface (top) by means of a time-varying adiabatic wall temperature
and convection coefficient. The outer surface was also allowed to radiate to the sky. The
inner surface (bottom) had constant free convection applied. The results of the five second
transient analysis are shown in two forms — four temperature contour plots at various points
in time and as a surface temperature versus time plot. The surface temperature time trace
compared favorably with the results from a 1-D in-house finite difference code, called F86,

which is also shown in the plot.

A practical example showing the use of FEM/SINDA is the model of a TV camera of an
electro-optical system that is shown in Figure 9. This model is composed of 2849 nodes
and 2834 elements which generated 19289 SINDA conductors (the largest model to date
with FEM/SINDA was 4897 nodes and 5423 elements). The model shown is a mixture of
rods, shells, and solid elements. Convection loads the exposed surfaces. Heat is input in
the mounting bracket (shown in the foreground) because of a direct connection between
the bracket and an electronics module. The results shown here represent the steady state
temperature distribution. The detail shown in the finite element model was needed for
structural analysis. The deflections of the optical train were driven by the temperature
distribution. The determination of the temperature distribution at the finite element by
FEM/SINDA) made the interface between the structural and thermal model a trivial matter.
The other important feature that is automatic in this model was the mixing of various
element types. For example, a rod coming into one node of a shell is thermally allowed and

easily modeled in PATRAN or I-DEAS. This connectivity is also easily verified in PATRAN
or .DEAS.

CONCLUSIONS

FEM/SINDA provides a general purpose geometry driven thermal analysis code to the ther-
mal analyst. Because of the finite-element-type input to the code (essientially identical to a
NASTRAN input deck), its interface with I-DEAS, PATRAN and NASTRAN is complete:
each FEM/SINDA entity corresponds naturally to a I-DEAS or PATRAN entity, and in most
cases to a NASTRAN entity (hence NASTRAN input decks can, with little or no modifi-
cation, be used as an input deck to FEM/SINDA). The nodal temperatures determined
from FEM/SINDA can be used directly to drive a thermal loading condition in NASTRAN.
FEM/SINDA combines the power of finite element techniques with the thermal community’s
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tested and well accepted workhorse: SINDA. This mix of the finite element-finite difference
worlds takes advantage of the strengths of both methods: the finite element method’s abil-
ity to handle arbitrary geometry, model non-homogeneous regions with different element
types, and model linear temperature fields exactly; and SINDA’s finite difference capability
to handle time and temperature dependent material properities, loads, and boundary con-
ditions, and add user written FORTRAN routines. FEM/SINDA’s interface with I-DEAS
and PATRAN allows the thermal analyst to take full advantage of all of a finite element
modeler’s capabilities in a manner consistent with the design of the FEM pre- and post-
processors. The key to that interface/integration is that a node of the finite element model
will necessarily be a node in the thermal conductor network. Therefore this technique does
not comprimise the inherent modeling integrity of FEM geometric discretization, and will
easily allow the alogrithms of both old and new finite element technology (for example, both
in meshing applications and finite element matrix manipulations) to be applied to general
purpose thermal analysis.

REFERENCES

(1) The Finite Element Method, O. C. Zienkiewicz, McGraw-Hill Book Company, 1977

(2) Concepts and Applications of Finite Element Analysis, Robert D. Cook, John Wiley & Sons,

Inc., 1981
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TITLL= $ Give some title

OUTPUT- $ SUPCRTAB, PATRAN, NASTRAN, and/or PLOT
ITDGP- $ Initial temperature

RTD= $ Tempersture of redistion infinity node
SPILE= $ Name of Slnd-_ter-ttod input file
MINCOND= $ Minimm abs(A/L) value to be written
BEGIN BULK )

$

$ Data enclosed in ( ) may be either & real constant
§ or reference an array

$

$ Coordinate systems:

CORDR, CID, Al, A2, A2,, B3, B2, 83, +Ccid

«cid, 1,02, O

CORDC, CID, Al, A2, A2,, B1, B2, B}, «Ccid

«cid, C1 , €2, A

CORDS, CID, Al, A2, A2,, Bl, B2, B3, «Ccid

«eid, A , 2, A

$

$ Nodes:

NODE I0 (e ¢} X Y 4
NoDE ID

$

§ Material properties:

MATT ap (K] tho (<p)

MATO Mo {kx}) (£5%)] {xz) tho [~
$

§ Physical properties:

POOND PID {KA/L)

PROD } 24 Map AREA

PSHILL PID MDD THENESS

PSOLID PID MID

$

$ Clements:

CAPAC N1 Mmss (o)

CONTUCT NI N2 {xaL}

FOOND NI 2 (roT) (o)

$

ROD [ 34¢] PID Nl 2

TRIA £ID PI1D N1 N2 N3

QUAD | 24.] 244 n n2 N [ ]
TETRA CI1D PID N1 ) .74 n | 1]

WEDGE, EID, PID, N1, M2, N3, M4, NS, N6

BRICX, EID, PID, N1, M2, N3}, M, N5, N6, +Beid
+Beid, N7, 18 . ’

$

$ Boundary Conditions:

NEAT  NOOC  (MEAT)

oFux  LIp EDGES  (FLuX1) ruue?

YL | » €] FACEY {ruuxi }

vrux  co (rusx1 )

EQWICT 1D oGLe (h) h2 oDE TYPE

FOQWECT EID FACES (L)} FNODE TYPL

DRADS  $ID EID EDGES

FRADS  SID EID FACES

INCLOSE SID) (2] $I1D2 *2 ri2 ™
FRADT  SID EID (£ =T B} 1

TOP O (TDP)

COMSTanT COmCCTION

TCrPCRATURE DEACROENT COMCCTION

Figure 4. Simple Model Generated in SUPERTAB

TITIE = PLATE MDOCL SAMPLE CASE

o = 50.0 $ Initial temperature

STILE = FLATE SNYPLE.MIT $ Sinda-formatted input file
OUTIUT = SUPERTAB § SUPERTAB Unv. file output
MINCOND= 1.0e~1$ $ Climinate all conductors

s vith ABS(AL) ¢ 1.0e-15
BECIN BRILK

MATT® 1 10.  200. .2

mzTe 2 20.  100. "

PSHELL 1 1 0.5

rscLL 2 2 0.5

ooE 1 0 0.0 0.0 0.0

e ¢ 4 2 0 0.0 4.0 0.0

NODE 3 ] 2.0 4.0 0.0

woor ‘ ° 2.0 0.0 0.0

moce s 0 €0 0.0 0.0

MooC 6 0 .0 4.0 0.0

woe ? ° 6.0 4.0 0.0

oo ’ ° 6.0 0.0 0.0

oL ’ 0 2.0 6.0 0.0

mooE 10 ° 2.0 0.0 0.0

QuAD 1 1 1 2 3 ‘
QuAD 2 1 5 ¢ ) »
QUAD 3 2 s ] ’ 10
TO® ’ 0.0

o 10 0.0

orux 1 1 1%0. 150,

rawecr 1 3 10. 10. 1000

ZOWECT 2 1 A 1000 1

Figure 3. General Description of FEM/SINDA
Input Deck
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Figure 5. Input Deck Generated from Model
Shown in Figure 4
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GENERALIZED SEISMIC ANALYSIS

Sy 6
o055 7T Thomas G. Butler _

/ Butler Analyses N 9 4: - 1 7 8 3 2 !"
g/\b

INTRODUCTION

motion of structures. Spacecraft need to be qualified for ac-
celeration inputs. Truck cargoes need to be safequarded from

road mishaps. Office buildings need to withstand earthquake
shocks. Marine machinery needs to be _able to,rwithstand hull

shocks. All of these kinds of enforced motions are being grouped

together under the heading of seismic inputs.

Attempts have Dbeen made to cope with this problem over
the years and they usually have endedhup with some 1limiting or
compromise conditions. The crudest approach was to limit the
problem to acceleration occurring only at a base of a structure,
constrained to be,,rigid The analyst uould assign arbitrarily
outsized masses to base points. He ,wouidw,then caiculate the
magnitude of force to apply to the base mass (or masses) in order
to produce the specified acceleration. 'He would of necessity
have to sacrifice the determination of stresses in the vicinity

[ N B T TR '

R R TR |

of the base, because of the artificial nature of the input
forces.
The author followed the lead of John M. Biggsl by using =
relative coordinates for a rigid base 1in a 1975 paper ., and -
i

1. "Introduction to Structural Dynamics by John M. Biggs,

McGraw Hill 1964, Sec 6.2: — R
2. “Fidelity in Shaker Simulation Analysis with NASTRAN P T G.

Butler, January 1975, Orally presented at the First MSC NASTRAN
Colloguium.

Wi Al jhv H‘n‘m
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GENERALIZED SEISMIC ANALYSIS

again in a 1981 paperB. This method of relative coordinates was
extended and made operational as DMAP ALTER packets to rigid
formats 9, 10, 11, & 12 under contract N60921-82-C-0128. This
method was presented at the twelfth NASTRAN Colloquium.4 An-
other analyst in the field, Gary L. Fox, develped a method 5
that computed the forces from enforced motion then applied them
as a forcing to the remaining unknowns after the knowns were
partitioned off. The method was translated into DMAP ALTER's,
but was never made operational. All of this activity jelled into
the current effort. Much thought was invested in working out
ways to unshakle the analysis of enforced motions from the 1limi-
tations that persisted. In the following theoretical development
the avenue to complete generality is charted. The method 1is in

the process of Dbpeing coaed and will be implemented as four new
rigi¢ formats.

THEORY

Seismic analysis 1in the displacement method becomes
especially challenging, because forces are required in NASTRAN to
provide loading for the dynamic solutions. The attempt here 1is
to admit displacement histories as acceptable loadings by con-
verting them into equivalent force loadings. The development of
this theory will start with a statement of the general dynamic
equation based upon all freedoms being present before any con-
straints or reductions are applied; this is known as the P-set

3. "Dynamic Structural Responses to Base Acceleration", Thomas
G. Butler, Proceedings of the Conference on Finite Element Method
& Technology, March 1981; Paper No. 8.

4. "Seismic Analysis Capapility in NASTRAN", Thomas G. Butler
and Robert F. Strang; Proceeaings of the 12th NASTRAN Colloquium,
May 7-11, 1984, pp 92 - 131.

5. "Solution of Enforced Boundary Motion in Direct Transient and
Harmonic Problems", Gary L. Fox, Proceedings of the Ninth NASTRAN
Users Colloguium, Oct 22-23, 1080, pp 96 - 105.
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GENERALIZED SEISMIC ANALYSIS

(set of all freedoms obtained from all points, grid and extra) in
NASTRAN. )

i-[MPPjPz + [Bpp:gp + [xPP]:!{up(t)} = {Pp(t)}, (1)

where lower case p stéﬂdé for theidifférential operator d/at

Freedoms which are directly ‘exposed to seismic forcings (acceler-
ations, velocities, & displacements) will bémgiven the designa-
tion "C" (standing for contact freedoms) and the complement of
this set with respect to the P-set will be designated "J". The P-

set of Equation (1) will be partitioned between J & C to get

| CCIMCJ|p2 . [PeciBeai l-KCCIKCJ-] {“c””} _ {PC‘“} 2)
l—_-_. - - .
.i' gciMya BsclBoc)w  Kacl®aal | (Ms'®) Py(t)

Points will be allowed to be loaded with both displacement and
force histories. This will provide for such cases as a space
craft being tested in a centrifuge with a shaker on board. In
such a case there will be body forces being appiied by the cen-
trifuge on all points including contact points, Po(t), and com-
plement points, PJ(t); and displacement histories being applied
by the shaker, uC(t) Singlie point é6h5ttaints (SPC’s) c¢an Dbe
applied only to J dof’ s, put multip01nt constraints (MPC’'s) can
exist between C & J dof’ s, however the C freedoms must be chosen
as independent when defining the constraint. Thus the known
guantities in eguation (2) are the forces on the complement set
PJ, the forces on the contact set PC, and the displacement his-

tories at the contact set U-r PUcs and p u-.
Since the set of u. are known, the terms involving them

can be expanded from equation (2). Take the known terms in the

upper partition first:

“ cc|p? + [Bcc]p + [KCC]]{UC} : (3)
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GENERALIZED SEISMIC ANALYSIS

The dimension of each of these 3 terms is force. Designate the

set of terms in expression (3) as Pg; i.e. the forces from dis-
placement histories on the contact freedoms. Next the known
terms in the lower partition expands into:

[cle® + [pacle + [ioc] [{oc) ()

C
J? {.e. the

forces on those complement freedoms, J, from displacement his-

Designate the set of terms in expression (4) as P

tories due to their being coupled to the contact freedoms, C.

The first term of expression (3) lMCCIP {uc} constitutes forces
that develiop from the accelerations of masses at the contact
surrface. Tne first term of expression (4) ‘MJcipz{uC} consti-
tutes forces tnat develop in the "compiement" set from the ac-
celerations of interior masses due to their couplings with the
contact set. The seconé term of expression (3) [Bccip{uc}
constitutes forces from the speeding of dampers that are con-
nected between members of the contact set. The second term of
expression (4) ;BJC!p{uC} constitutes forces that develop in the
"comoiement" set from the speeding of dampers that are connected
between the interior and the contact set. The third term of
expressiqn (3) IKCC‘{uC} constitutes forces that develop from the
deformation of elastic elements that are connected between mem-
bers of the contact set. The third term of expression (4)
[KJC]{uC} constitutes forces that develop in the “complement" set
from the deformation of elastic elements that are connected
between the interior and contact set. The portrayal of the
forces on the interior dof’s must be extracted from the J par-
titioning of the P-set, otherwise an incorrect distribution would
result from the increased coupling if they were extracted from a
reauced order such as N-set or A-set.
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GENERALIZED SEISMIC ANALYSIS

The scheme here is to treat the excitation histories as
known __;1 for the purpose of computing forces that develop from
displacements on contact points,rﬂgncgmtpe forces from displace-
ment histories are defined they will be added to boundary force
histories to give an array of excitations expressed entirely of
forces in spite of the fact that part develop from displacement
histories. After the forces from displacement histories are
fully defined, the contact freedoms us(t) vill henceforth be
treated as unknown. In effect the scheme is to re-solve for
displacement histories that are already known. This can be

W\lw [

””\‘HMIHI

I L KRR (N

characterized with the following example. Put simply, if one
wereitowloox at a single dof system dynamic equation

mp2x(t) + bpx(t) + kx(t) = P(t) (5)

one could compute the value of the external forcing P(t) if all
three éf‘éﬁe displacement histories were known. For the opp051teﬂrr
case, one could treat P(t) as known in equation (5), and inte-
grate it to find the acceleration, velocity and displacement at
any time.', The result would be to recover the values that were
originally known (assuming perfect differentiation and integra-

tion routines) This is not an unreasonable approach in view of

the power in today s computers.

W1th the displacements on contact points being treated as

unknowns, the forces in equation (2) can now Dbe augmented with
the forces from displacement histories as follows:

O TP 0 w11 I | 1|

- - : c : =
PM C‘MCJ| 2 fBCC|BCJ Keel¥eal | (uett? Pc(tl + Po(t) 7 *
Ty * BB + K;c utr] ~ ——. .| ® =
; JC: JJ' 12gciccl JC:i"JJl J Py(t) + Pylt) =

(t) would be recovered if PC(t) & PJ(t) were null.

Yc

}‘"‘II IIU\‘NUW”U TLI Ry
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GENERALIZED SEISMIC ANALYSIS

This lays the groundwork for implementation. Provision
must be made for admitting displacement history specifications as
bulk data; i.e. pz{u(t)}, p{u(t)}, and u(t). Next, the com-

C(t) and PC(t) must be provided for. Different

o J
parts of a structure can have certain portions involved in a

putation of P

given displacment excitation while other portions could be sub-
ject to distinctly different excitations. Thus a framework 1is
needed for the spatial specification of each distinct excitation.
There can also be spatially distinct time delays associated with
individual excitations. But a mechanism already exists in NAS-
TRAN for such specifications: i.e. DAREA for spatial specifi-
cation of magnitudes, TABLEDi for time varying amplifications,
and DELAY for spatial specifications of time delays. All of
these can Dbe wused with impunity and without confusion with re-
spect to the normal input of dynamic data by regquring unigue set
ID numbers ana by having a seismic assembler of enforced load-
ings. A new case control command called SEISLOAD and a new bulk
data ~card called SEISLOAD will be put into service. Bulk SEIS-
LOAD wiil act much iike TLOADi and RLOAD cards in organizing the
spatial, temporal, and phase aspects of displacement excitations.
It will incorporate one aaditional BCD field to specify the type
of dispilacement being input; DISP, or VELO, or ACCE. SEISLOAD
case control command will activate the bulk SEISLOAD card much
like the DLOAD case contol command that activates the bulk DLOAD
card. The Input File Processor (IFP) will assemble the seismic
bulk data into the initial data block called DYNAMICS. Case
control will direct the data from its SEISLOAD card to read the
data from the DYNAMICS data block with a new functional module
SPD (seismic pool distributor) whose function would be similar to
the DPD (dynamics pool distributor) to prepare SEISLT (seismic
load table) and SEISRL (seismic response list) similar to the DLT
& TRL. Now comes the actual work of processing these tables and
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lists into actual force histories. SEISLT & SEISRL would be

input to a second new module SEISLG (seismic Ioad generator) that

would treat each distinct displacement excitation as an individ-

ual case. That is, SEISLG would form the partitioning vector of
the P-set between the C& J sets for one distinct loading. It
would compute the equivalent set ’df three force loadings and
ready it for combining with loads ‘from Load generator ‘modules;
then turn to the next distinct caserand build another partitoning

vector for this succeeding case and proceea as before in -

computing the equivalent set of three loadings. A record should

probably be kept for purposes of checking and in setting wup

output sets for recovery of proof of re-solving for the input
specifications. 7

There are several situations that must be anticipated.
First an important premise must be stated. REGARDLESS OF WHAT
COMPONENTS OF SEISMIC EXCIATION ARE SPECIFIED (sz pU, OR U),
ALL THREE COMPONENTS EXIST AS A~ CONSEQUENCE OF THE EXISTENCE OF
ANY ONE OF THEM. For example, if a seismic acceleration were
given as a specification for excitation, the associated velocity
and displacment histories can be derived by integration. All 3
components of a seismic disturbance can produce excitation in a
structure provided that the structure contains appropriate ele-
ments that are coupled to the contact points. Therefore if only

one or two out of the three components are specified, the analy-

sis must be equipped to derive the missing component(s). This
means that seismic specifications must be differentiated and/or
integrated to complete the description of the excitation. Modules
will need to be written to perform Both integration and differen-
tiation of these displacementrhietories. ‘The options would be

these when all three components are needed:
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GENERALIZED SEISMIC ANALYSIS

(a) Only DISP is specified on the SEISLOAD card.
Consequence: Differentiate twice to obtain seismic velocity
and seismic acceleration.
(b) Only VELO is specified on the SEISLOAD card.
Consequence: Differentiate once to get seismic acceleration.
Integrate once to get seismic displacement.
(c) Only ACCE is specified on the SEISLOAD card.
Consequence: Integrate twice to get seismic velocity and
seismic displacement.
Once the three components of seismic excitation are fully enunci-
ated for one case they will be ready for delivery to SEISLG for
computation of forces. Each such triplet of histories must be
identified with its associated spatial companion. Some connec-
tion must be made with Case Control so as to keep these various
combinations of load separated for purposes of managing the
solution and data recovery operations.

SEISLG must operate similar to TRLG in that it should
proauce P-set forces, and D-set forces, and S-set forces. It
will cdo this for the C-set based on the SEISLOAD data. It will
also have to determine which of the J-set are loaded and to what
extent, due to their individual coupling and prepare these addi-
tional 1loadings. After the dynamic load generator has done its
work on normal forcing, the forces due to displacements should be
added into the three different partitions of load vectors such as
therPé vector.

o) - e o o8} - (51 5 )

where { represents a distinct contact set.
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GENERALIZED SEISMIC ANALYSIS

For each C dof there exists a distinct set of coupling to
the J dof's for mass and for elasticity, and for damping. There-
fore, for each C dof for each C point there will be a distinct C-
J partitioning vector. For example, if there are 2 C-points and
if each point were being excited in 2 translational dof’s, there
are 4 possible couplings for mass, 4 possible couplings for
damping, and 4 possible couplings for stiffness. Thus there
would be 3 x ¢4 = 12 distinct J-C vectors, 12 distinct DAREA
patterns, 12 distinct TLOADl combinations, 2 x 2 X3 =12 dis-
tinct IAQ;EDi histories, 3 x 4 = 12 DELAY spatial distributions,

ané 1 SEISLOAD assemblage.

Translated into a specific example, if the two C-points
were numbered 50 and 60"anagfﬁéﬁéicitatiOns'ﬁere”iﬁ axial (x=1)
and transverse (y=2) directions, there will be 4 distinct ac-
ceieration histories: 50(x) and 50(y) plus 60(x) and 60(y). The
mass coupling between 50(x) and its J neighbors would probably
have a dlfferent pattern than that of the mass coupling between
50(y), 60(x) and 60(y) and their respective J neigbors So the
DAREA content for the spatial loading from ‘the acceleration
excitation at 50(x) will have to be derived from the mass coup-
ling to 50(x). Fortunately the DELAY content for the spatial
time lapse of the acceleration history at 50(x) will be the same
as the DAREA content for 50(x). Similarly, the DAREA & DELAY
distributions for 50(y), 60(x), and 60(y) will have to be derived
from the mass couplings between their J neighbors and at the

respective points 50(y), 60(x), and 60(y).

This same pattern of reasoning applies to the formation
of loadings for displacement histories stemming from stiffness
coupling between the C dof’'s and their J neighbors. And again
this same reasoning applies to the formation of loadings for the
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GENERALIZED SEISMIC ANALYSIS

velocity histories stemming from damping coupling from the C
dof’'s and their J neighbors.

TLOADl's and SEISLOAD for
loadings can be described thusly:

the 12
ACCE @ 50(x) TLOADl
1 DAREA from TABLED1 from DELAY from
mass coupling

to 50(x)

acce history

mass coupling

at 50(x) to 50(x)
VELO @ 50(x) TLOAD1
i 2 DAREA from TABLED]l from DELAY from
] damp coupling

velo history

damp coupling
to 50(x) at 50(x) to 50(x)
DISP @ 50(x) TLOAD1
3 DAREA from TABLED1 from DELAY from
stiff coupling disp history stiff coupling
to 50(x) at 50(x) to 50(x)
: ACCE @ S50(y) TLOAD1
: 4 DAREA from TABLED]1 from DELAY from
mass coupiing acce history mass coupling
to 50(y) at 50(y) to 50(y)
E VELO @ 50(y) TLOAD1
7 5 DAREA from TABLED]1 from DELAY from
; damp coupling velo history damp coupling
to 50(y) at 50(y) to 50(y)
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DISP @ 50(y) TLOADl
6 DAREA from
stiff coupling
to 50(y)

 ACCE @ 60(x) TLOADL

7 DAREA from
mass coupling
to 60(x)
VELO @ 60(x) TLOAD1
8 DAREA from
damp coupling
to 60(x)

DISP @ 60(x) TLOAD1
9 DAREA from
stiff coupling
to 60(x)

ACCE @ 60(y) TLOAD1
10 DAREA from
mass coupling
to 60(y)

VELO @ 60(y) TLOAD1
' 11 DAREA from
damp coupling
to 60(y)

" TABLED] from

disp history
at 50(y)

TABLED1 from

acce history
at 60(x)

TABLED1 from
velo history
at 60(x)

TABLED1 from
disp history
at 60(x)

TABLED1 from
acce history
at 60(y)

TABLED1 from
velo history
at 60(y)
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GENERALIZED SEISMIC ANALYSIS

DISP @ 60(y) TLOAD1

12 DAREA from TABLED] from DELAY from
stiff coupiing disp history stiff coupling
to 60(y) at 60(y) to 60(y)

COMBINED SEISLOAD

13 1.0 1.0 ACC @ 50(X) 1.0 VEL @ 50(X)
1.0 ACC @ 50(Y) 1.0 VEL @ 50(Y)
1.0 ACC @ 60(X) 1.0 VEL @ 60(X)
1.0 ACC @ 60(Y) 1.0 VEL @ 60(Y)

.0 DIS @ 50(X)
.0 DIS @ 50(Y)
.0 DIS @ 60(X)
.0 DIS @ 60(Y)

O e

Now all bookkeeping is in the hands of Case Control and
the loads are all in terms of force, so the dynamic solution can
proceed as it normally does, including the recovery of data. The
output should provide bookkeeping for the several C sets that
were ted to the SPD (Seismic Pool Distributor module) so that a
separate reporting of tnhese dynamic displacements can be as-
sembled for comparison with the specified seismic nistories
anc/or a differencing should take place to give a measure of the
effectiveness in re-solving for the specified seismic inputs.

AFPLICATION

This theory has been implemented in DMAP form for Direct
Transients. Although the problems were smalllpilot examples they
included extra points and DMIG ﬁétriteé Ahd involved excitations
from mass coupling, damping coupling and stiffness coupling. The
theory has been thoroughly certified. The pilot problem, shown
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in the plot, represents a simple truss bridge on three founda-

tions with a seismic wave travelling in the positive x direction
and disrupting these foundataions.

j8Y5

13

FON - -

CONCLUSION

Here at last is an automatic method for handling enforced
motion that is completely general. The method has been shown to
be operational in a DMAP mode. There is no special burden on the
analyst except to provide the usual engineering information
giving the particulars of his problem. The coding will be com-
pleted by the summer of 1993 and will be available in the 1994
release of NASTRAN. - -
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A Noniterative Improvement Of Guyan Reduction _ j l
833

N. Ganesan N 9 4 - 1 7;=

GE Government Services, Houston, Tezas

ABSTRACT: In determining the natural modes and frequencies of a lin-
ear elastic structure, Guyan Teduction is often used to reduce the size of
the Tmass and stiffness matrices and the solution of the Teduced system 1is
obtatned first. The Teduced system modes are then erpanded to the size of
the original system by using a static transformation linking the Tetained
degrees of freedom to the omitted degrees of freedom. In the present paper,
the transformation matriz of Guyan reduction is modified to tnclude ad-
ditional terms Jrom o series accounting for the inertial effects. However,
the tnertial teTms are dependent on the unknown frequencies. A practi-
cal approTrimation is employed to compute the inertial terms without any
iteration. This new transformation is tmplemented in NASTRAN using
o DMAP sequence alter. Numerical examples using a cantilever beam -
lustrate the mecessary condition Jor allowing a large number of additional
terms in the proposed series coTrection of Guyan reduction. A practical
ezample of a large model of the Plasma Motor Generator module to be
Jloun on a Delta launch vehicle is also presented.

1. Introduction: The dynamic analysis of complicated structures often produces large
finite element models. In some instances, the automated computer procedures to generate
finite element meshes also lead to large models. These highly refined models are really a
byproduct of the use of model generating software and they may not be needed for accuracy.
A common approach to reduce the size of the eigenvalue problem for structural dynamics
applications is Guyan reduction. This approximate method finds its place among other
applications also. For the purposes of cost-effectiveness, Guyan reduction is employed
in Coupled Loads Analysis using substructuring techniques. In the experimental modes
analysis, analytical selection of retained degrees of freedom for Guyan reduction is used as
a guide to select accelerometer locations on the test article. Mass weighted orthogonality
computations between the test and analytical modeshapes are performed using Guyan

reduction.

While Guyan reduction [1] is exact in static applications, it introduces approximations
in structural dynamics. The correct relationship between the retained and omitted degrees
of freedom can be expressed in the form of a series. The Guyan reduced mass and stiffness
matrices, available in explicit form, are used to compute the series terms approximately.
The Guyan reduced matrices provide the best possible solution without requiring any
further iterations. The condition for convergence of the series and the relationship of this
geries transformation to the improved reduced system (IRS) introduced by O’Callahan (2]

73



are examined in this paper.
2. Theory: The eigenvalue problem from the structural dynamic analysis is given as
Ku=AMu (1)

Eq. (1) can be written in the partitioned form as,

Kﬁﬂ KCO] uﬂ - A [Maa Mao] “d (2)
KOG KOO “0 Mon MOO uo
where 4, represents the eigenvector of the retained degrees of freedom and w, the eigen-
vector of the degrees of freedom omitted in the Guyan reduction. M;; and K;; are the

corresponding submatrices of the mass and stiffness matrices respectively and ) is the
eigenvalue. The second partition of Eq. (2) can be written separately as

(Koa — AMoa)a + (Koo — AM,,)u, =0 (3)
Expanding the vector %, in terms of ¥, from Eq. (3),
YU = — (Koo - Aﬁloo)_:l (Kon - AAlou)“a
= = (1= MK M.0) ™" (K7 Kow — AK M,,) 8,

(4

(4)
Guyan reduction transformation leaves out the frequency dependent terms in Eq. (3).
Hence, the regular Guyan reduction transformation becomes,

U, = -K;,-OIKaa‘a (5)

If the condition for convergence (Section 4.) is satisfied, the inverse of (I- AK ' M,,)
can be expanded in Neumann series as,

(T = AK I Moo) ™ =T+ MK Moo + 02 [K M) + ... (6)
Using Eq. (6) in Eq. (4) and simplifying the terms yields,
%, = — [K; ' Koo+ BA + AB)? + A?B)® 4 .. J g, (7)

where

A=K;'M,, and B=K;'M, - AK:'K,, (8)

The exact relationship between u, and u, in Eq. (7) involves nonlinear terms of the un-
known eigenvalues (A). A practical approximation to compute these terms in Eq. (7) can
be made from regular Guyan reduction by taking;,

K.ow, =AM u, (9)
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where K, and M, are Guyan reduced stiffness and mass matrices respectively and are
given explicitly as, '

Kr = Kaa - KaoKo..,lKou

. -1 (10)
M, = Mca - MaoK;,IKoc - KoﬂK;;lMoc + KcoK:o MooKoo Koa

From Eq. (9), it is seen that,
v, = M K%, (11)

Using Eq. (11) repeatedly, it can be shown that,

Nu, = (M7K,)’ w,
: (12)
Ny, = C's,, C = MK,

Substituting Eq. (12) into Eq. (7), the relationship between % in Eq. (1) and %, becomes,

u =Tu, (13)
where
I
T = _ ) (14)
K Ko+ Y A'BCY
1=1.2,..

By applying the relation between u and &, in Eq. (13), the new improved matrices from
series reduction can be obtained as,

K=TTKT and M =TTMT (15)

It is interesting to note that M,, vanishes for lumped formulations of the mass matrix.
Taking the value of i to be unity, the transformation in Eq. (14) reduces to

1
T=|_Kk=1K..+ BC (16)

which is the improved reduced system (IRS) proposed by O’Callahan [2].

3. DMAP Alter: A rigid format alter for dynamic analysis in NASTRAN has been
developed to incorporate the improved Guyan reduction with the series terms. A parameter
called GOPT is used to choose the number of correction terms. The alter listing is also
provided in this section.
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$$3335899833998858838589388383883888828855838835388385883888383833988838888883888

$ CSA/NASTRAN ALTER FOR IMPROVED GUYAN REDUCTION
$8993535988599353583838835838838838358938838855553555333585885688858888888888888
$

RFINSERT SMP2 §

PARAM //C,N,NOP/V,Y,GOPT=-1§

PARAM //C,N,SUB/V,N,GOUT/V,Y,GOPT/C,N,2 $
COND LGOPT,GOPT $

UPARTN USET,MFF/MAAB,MOA, MOO/*F*/*A*/*0O* §
FBS LOO,MOO/AMAT/1 §

FBS LOO,MOA/BMAT1/1 $

MPYAD AMAT,GO,BMAT1/BMAT $§

SOLVE MAA,KAA/CMAT/1 $

$

MPYAD BMAT,CMAT,/SUM $

COND OUT,GOUT $

MATMOD SUM,,,,,/PRDT,/13 $

LABEL LOOPTOP $

EQUIV SUM,SUMI1/NEVER §

EQUIV PRDT,PRDTX/NEVER §

SMYPAD AMAT,PRDT,CMAT,,,/PRDTX/3 §

ADD SUM,PRDTX/SUMI §

EQUIV SUM1,SUM/ALWAYS §$

EQUIV PRDTX,PRDT/ALWAYS $

REPT LOOPTOP,GOUT $

LABEL OUT $

ADD GO,SUM/GONE $

SMP2 USET,GONE,MFF/MAA $

SMP2 USET,GONE,KFF/KAA §

LABEL LGOPT $
$$$98583888555553585588355555539398359898$38889893538989588559833558889995888888

_4. Validity of Guyan Reduction: The inverse of the matrix [I — AK ;' M,,] in Eq. (4)
can be expanded as a converging Neumann series only if all the eigenvalues of AK ' M, are
less than unity. In other words, the Guyan reduction is valid only for those frequencies less
than the smallest frequency of the eigenvalue problem formed out of the omitted degrees
of freedom. The effect of violating this condition will be scrutinized in the next section.

5. Demonstration Examples:

5.1 Uniform Cantilever: The first example is concerned with a cantilevered bar clamped
at one end. The relevent structural parameters are taken to be the modulus of elasticity
(E) being equal to 30 x 10° psi, weight density (pg) as 0.2839 Ib/in®, area of cross section
as 1 in? and the length of the bar (L) as 72 in.

The characteristic equation of this cantilever is cos /p/EwLl = 0 from which the
theoretical natural frequencies can be computed. The cantilever is divided into twenty finite
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elements. The retained degrees of freedom for Guyan reduction are the axial displacements
at the free end and at two successive nodes. The reduction transformation includes n as
the number of additional series terms. The natural frequencies from improved Guyan
reduction for different values of n are listed in Tables 1 through 5.

Table 1. Cantilever Frequency Comparisons (n = 0)
Standard Guyan Reduction

Mode Theoretical Computed Error
Number | Frequency (Hz) Frequency (Hz) %
1 7.012E2 7.428E2 5.926E0
2 2.104E3 7.562E3 2.595E2
3 3.506E3 1.655E4 3.722E2

Table 2. Cantilever Frequency Comparisons (n = 1)

Mode Theoretical Computed Error
Number | Frequency (Hz) Frequency (Hz) %
1 7.012E2 7.012E2 8.014E-2
2 2.104E3 2.583E3 2.279E1
3 3.506E3 1.390E4 2.964E2

Table 8. Cantilever Frequency Comparisons (n = 2)

Mode Theoretical Computed Error
Number Frequency (Hz) Frequency (Hz) %
1 7.012E2 7.011E2 -2.169E-2
2 2.104E3 2.239E3 6.440E0
3 3.506E3 7.043E3 1.009E2

Table 4. Cantilever Frequency Comparisons (n = 3)

Mode Theoretical Computed Error
Number | Frequency (Hz) Frequency (Hz) %
1 7.012E2 7.012E2 -2.170E-2
2 2.104E3 2.167E3 3.003E0
3 3.506E3 3.879E3 1.063E1
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Table 5. Cantilever Frequency Comparisons (n = 4)

Mode Theoretical Computed Error
Number Frequency (Hz) Frequency (Hz) %
1 7.012E2 7.010E2 -3.235E-2
2 2.104E3 2.120E3 1.937E-1
3 3.506E3 3.680E3 4.950E0

The accuracy of the computed frequencies is improved by taking into account the
higher order correction terms. However, when n > 6, the reduced mass matrix is no longer
positive definite and the eigenvalue solution process breaks down. This limitation of adding
a finite number of correction terms can be explained by the fact that the third frequency
of the overall structure exceeds the lowest frequency of the omit set (O-set) system thus
violating the convergence criterion for Guyan reduction.

Another cantilever example is constructed by assuming that the three elements near
the free end are made up of a material with E = 30 x 10* psi instead of steel. By retaining
the same degrees of freedom as in the previous example of all steel construction, it becomes
possible to add an almost limitless number of correction terms. This is because there is
no overlap between the frequency spectrum of the first three modes of the full system and
that of the O-set system.

5.2 Plama Motor Generator (PMG): This example comes from the modal testing
and finite element analysis of the PMG Far End Package (Figure 1). The PMG experiment
is a payload on a Delta II 7925 launch vehicle. The mission is scheduled to take place in

July 1993.

Figure 1. PMG Far End Package
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The analysis set degrees of freedom correspond to the accelerometer locations used in
the modal survey test. The improved Guyan reduction is performed with different n on
the PMG Far End Package model. The computed frequencies are compared with those of
the full model which are taken as the reference solution and the results are listed in Tables
6 through 8. Several frequencies that were not found by the standard Guyan reduction
start to reappear by adding the correction terms.

Table 6. PMG Frequency Comparisons (n = 0)

Mode Reference Computed Error
Number | Frequency (Hz) Frequency (Hz) %

1 56.32 56.39 0.13

2 84.46 84.66 0.23

3 100.66 101.20 0.53

4 118.19 119.58 117

5 159.46 160.48 0.63
6 170.06 — —
7 185.19 — —

8 215.16 220.65 2.55

9 217.65 224.09 2.95

10 228.36 236.73 3.56
11 234.52 — —

12 243.43 256.55 5.38
13 264.53 —_ —
14 299.03 —_ —
15 305.16 330.53 8.31

Table 7. PMG Frequency Comparisons (n = 1)

Mode Reference Computed Error
Number Frequency (Hz) Frequency (Hz) %

1 56.32 56.32 0.00
2 84.46 84.46 0.45E-4
3 100.66 100.66 0.59E-3
4 118.19 118.20 0.46E-2
5 159.46 159.46 0.16E-2
6 170.06 171.65 0.92
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Table 8. PMG Frequency Comparisons (n = 2)

Mode Reference Computed Error
Number Frequency (Hz) Frequency (Hz) %
1 56.32 56.82 0.89

2 84.46 85.52 1.24

3 100.66 101.12 0.45

4 118.19 118.31 0.09

5 159.46 160.32 0.53

6 170.06 170.18 0.064

7 185.19 185.29 0.054

8 215.16 215.19 0.016

9 217.65 217.71 0.026
10 228.36 228.61 0.10

11 234.52 234.60 0.035

12 243.43 242.79 . -0.26

13 264.53 264.65 0.043
14 299.03 299.59 0.17
15 305.16 305.60 0.14

6. Conclusion:

A noniterative procedure to enhance the standard Guyan reduction with a series of terms
has been presented. In practice, it may be possible to add only a finite number of the

correction terms as demonstrated by the NASTRAN examples.
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DESIGN OPTIMIZATION STUDIES -
USING COSMIC NASTRAN 15057 7
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Wright-Patterson AFB OH 45433-7552

Summary

The purpose of this study is to create, test and document a procedure to
integrate mathematical optimization algorithms with COSMIC
NASTRAN. This procedure is very important to structural design
engineers who wish to capitalize on optimization methods to ensure that
their design is optimized for its intended application. The OPTNAST
computer program was created to link NASTRAN and design optimization
codes into one package. This implementation was tested using two truss
structure models and optimizing their designs for minimum weight,
subject to multiple loading conditions and displacement and stress
constraints. However, the process is generalized so that an engineer could
design other types of elements by adding to or modifying some parts of the
code.

Introduction

Since the advent of NASTRAN during the early 70's, engineers have
found many applications of finite element analysis in diverse fields. Its
popularity, which is still growing, has spawned many commercial and
research programs and they are available on just about every kind of
computer available on the market. The parallel development of graphics
interfaces, which started as pre- and post-processors to finite element
programs, have further stimulated fascinating applications in the analysis
of mechanical components, built-up structures, fluid-structure interaction
problems, thermal and heat transfer analysis, acoustics and other
engineering analyses. The reliability of finite element analysis is
increasingly attributed to the graphical aids. They are the means for model
error correction, display of analysis results such as displacements, mode
shapes (including animation), color coded displays of stresses and strains,
etc. With shrinking budgets and increasing competition for market share,
the industry is groping for ways to cut product development costs and
reduce development time from concept to market. Analysis tools such as
NASTRAN offer challenging opportunities for rapid parametric studies at
minimal cost. Adept use of these tools is the key to improving quality and
reducing cost of new products. These two aspects are the most important
ingredients for market leadership.
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Having realized the many advantages of finite element analysis
during the 70's, engineers have embarked upon the development of even
more ambitious integrated design systems in the name of computer aided
engineering (CAE). The basic elements of these multidisciplinary systems
are finite element analysis and mathematical optimization (nonlinear
programming) algorithms coupled by sensitivity analysis. The sensitivity
analysis is an extension of finite element analysis through first order
approximations. These integrated systems take full advantage of the ever
improving capabilities of modern digital computers and provide significant
reductions in product development costs and time. The objective of this
paper is to show how COSMIC NASTRAN, which is basically an analysis
tool, can be coupled to a nonlinear programming package to obtain an
optimized structure. Although the single discipline analysis architecture
of NASTRAN presents numerous difficulties, it is possible to achieve
objectives of optimization to a limited extent. The bridge between the
analysis and optimization is the sensitivity analysis and the procedure
outlined in Reference 1 is used in this implementation.

The next section provides a brief introduction to optimization theory
and sensitivity analysis, followed by some details of the implementation

using COSMIC NASTRAN. This is followed by discussion of the results
gained from this implementation as applied to simple truss problems.

Theory

The optimization problem is generally posed as follows:
Minimize an objective function:

Fx)=F (xl, X9, - xa)
Subject to a set of constraints:
Zl(z) = Zi (Xl, X2, ...Xa) < il

zj(;\:’) = zj (xl, X1, ...xa) =%

x'< g<x"
F is the user defined objective function, while x is the vector of design
variables. The first set of constraints, z;, is the inequality constraints. The
second set Z is the equality constraints. The third set is the constraints on

the variables (upper and lower bounds) themselves. The weight of the
structure is the objective function addressed in this paper while the
constraints are on the displacements and stresses. The variables in the
structural optimization problem described in this paper are the cross-
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sectional areas of the rods, but could instead be thicknesses of the plates or
some other design parameter.

The constraints are non-linear functions of the variables and thus
the problem comes under the category of nonlinear programming. The
iterative solution of the linear or nonlinear programming problems can be
written as:

XVt 1

~

=x"+1D

where x¥ and 5""'1 are the variable vectors in two consecutive cycles, D (

VF, VZ) is the travel direction or perturbation, and 7 is the step size. The
travel direction in most gradient-based solutions is based on the objective

and constraint function gradients ( VF and VZ).

So basically, the steps involved in the solution of the nonlinear
programming problem are as follows:

1. Initial solution X
Function evaluation
Selection of active constraints

Gradient evaluation

A

Determine the travel direction 12

6. Determine the step size 1.
7. Check for the optimality conditions.
8. Repeat the steps until the conditions are satisfied.

Gradient computations are as outlined in Reference 1. CONMIN, a
nonlinear programming package based on the modified method of feasible
directions, is used as the optimizer (Reference 2).

Implementation

As previously discussed, there is potential for considerable benefit in
performing structural design optimization studies using NASTRAN.
However, integrating optimization algorithms with NASTRAN has been a
daunting proposition. The effort required to develop a fully integrated
structural design optimization package is so extensive that only through
intensive, dedicated efforts such as the Air Force's Automated STRuctural
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Optimization Program (ASTROS) program can finite element analysis
codes and mathematical optimization algorithms be interfaced into a
system capable of performing structural design. A true integrated package
such as ASTROS consists of one executable program, with all capabilities
built into it. Another approach, which we will discuss in this paper, is to
synthesize separate executable files with a shell script program run by the
computer's operating system. The script program calls multiple
executable files and performs some rudimentary computations and data
processing activities. In the past few years two phenomena have emerged
to make our task of implementing optimization in NASTRAN far more
realizable.

The first is the emergence of code written in subroutine form to
compute values needed as inputs to optimization algorithms such as
constraint values and constraint sensitivities. Optimization algorithms
need to specify a design problem as an objective function to be maximized or
minimized. As design variable values change, the objective function value
changes. The algorithm also requires that bounds on the problem are
placed. These bounds take form as constraint values and design variable
upper and lower bounds. Much of the information required by optimization
algorithms is very simple and straightforward to compute. Some values
such as initial design variable values, design variable value upper and
lower bounds, and constraint limits are left to the user to define. Other
values such as objective function values and constraint values are fairly
simple to compute but require information about the structure such as
geometry and response to loading. Of significantly greater difficulty to
compute are objective function and constraint sensitivities. Sensitivity
values, which are defined as the first derivative of the objective and
constraint functions, tell the optimizer which direction in design space to
move. Recently, programs in subroutine form to compute such values have
become more available (exemplified in Reference 1) to calculate constraint
sensitivities for NASTRAN elements.

The second phenomenon is the emergence of open computer
operating architectures. Cosmic NASTRAN has in the past been available
on proprietary computer architectures such as CDC/CYBER and
VAX/VMS. As Unix systems are becoming more available, NASTRAN is
migrating to these new machines in order to take advantage of open
systems. This environment is especially amenable to programmers who
wish to integrate stand-alone programs into a package but either cannot or
choose not to rewrite stand-alone programs in subroutine format and link
operation by a main driver program. Since we have programs such as
NASTRAN to perform structural analyses , programs such as CONMIN to
perform optimization studies, and many miscellaneous programs to
formulate input values required for optimization from output values from
NASTRAN, Unix provides us with the necessary capability to synthesize
these programs into one system capable of performing structural
optimization tasks.
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The OPTNAST computer program was created to demonstrate the
feasibility of integrating NASTRAN with optimization methods in the
context of structural design. OPTNAST, which capitalizes on previously
written optimization code and the Unix operating system, consists of
several fortran programs and a Unix shell script program. The Unix c-
shell script was written to perform a loop operation between the analysis
program (NASTRAN) and the optimizer (CONMIN). In order to use the
script the user must obey some basic rules regarding his design problem.
These rules are imposed on the user in order to simplify the code
development process. The restrictions are as follows:

- No free format

- Only one material card

- All elements will be designed

- Constraints will be applied to all elements/nodes

- All load cases will be designed; limit of 5 load cases
With more extensive code development, any of these restrictions can be
removed. However, our intent is to develop a reasonably practical
methodology to conduct optimization with NASTRAN and thus some
restrictions are acceptable.

There are two input files required by the OPTNAST program. They
are a standard NASTRAN input file (e. g. tenbar.nid) and a file of
optimization parameters (e. g. tenbar.opt). The input file must obey the
previously discussed restrictions and must also include the following
statements:

- Request for OUTPUT?2 file with KELM matrix (for use in gradient

computations)

- Request for punch file with displacement and/or stress data (for use

in constraint calculations)
The optimization parameter file must contain the following:

- New CONMIN parameters to override defaults (if any are desired)

- Number of and values for displacement and stress constraints
Examples of each are contained in Appendices 1 and 2.

Once the user has properly prepared the NASTRAN input file and
the optimization parameter file, the user is ready to run the OPTNAST
program (Figure 1). The OPTNAST program consists of a Unix script
(Appendix 3) file that calls the executable programs and processes the data
shared by the executables. There are three executable files called by
OPTNAST. The first is PREPARE, which preprocesses the bulk data file.
The second is NASTRAN, and the third is COSOPT, which performs all of
the optimization computations (Appendix 4). The OPTNAST script
performs the following operations:

- Reads the name of the input file

- Processes the input file to include load cases to calculate virtual load

vector response (for gradient calculations)

- Submits the problem to NASTRAN to calculate initial structural

design response to the applied loads

- Sends the data to the COSOPT program to:
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(1) calculate constraint and objective function and gradient values
(2) submit to CONMIN for optimization
(3) return a new NASTRAN input file if design has not converged or
a converge flag if it has
- Loop back and submit new input file to NASTRAN to continue
optimization task
- Continue looping until optimum is reached or maximum number
of 16 iterations is reached
While the OPTNAST program is not an integrated package, but rather a
collection of executables driven by a script file, it is fully capable of
performing all tasks necessary to solve the optimization problem.

Results and Discussion

The OPTNAST program was used to perform design optimization
studies on two structural models, each with varying constraint values and
load cases. The first model, the Ten Bar Truss (Figure 1) was modeled with
the properties as illustrated in the NASTRAN input file example (Appendix
1). This problem was solved with six different conditions, with
minimization of structure weight being the objective in each case. The first
case featured 2.0" displacement constraints applied to all grid points. The
second case featured 25000 psi stress constraints (both tensile and
compressive) on each element. The third case synthesized both the first two
cases. The fourth case featured stress constraints with two separate load
cases applied. The fifth case was identical to the second case except that no
linear approximations were made during the redesign phase (NASTRAN
was called to recalculate structural response after each iteration). The
sixth case was again identical to the second, except that the initial design
variable values are set to minimum gauge. This is what is described as an
infeasible design because all constraints are violated.

The second structural model designed was a Two Hundred Bar
Truss (Figure 3). The objective of this model is to provide an example of a
large structure in order to indicate feasibility of designing a large model.
This structure was solved with stress constraints applied to each element
and with two separate load cases. Since there are two hundred elements
and two load cases, this design model includes two hundred design
variables and four hundred constraints.

Each of the previously described models was run with the OPTNAST
program, and results are provided to compare with those provided by the
ASTROS program. Since ASTROS input is generally compatible with
NASTRAN and since ASTROS uses a similar optimization algorithm,
approximation concepts and gradient calculations, results gained from
each code should be comparable. This comparison is bourne out when
viewing the final results tabulated in Table 1. The results show that for any
design the final design's optimal weight for each method agree to within
one percent. One obvious penalty is that the amount of time required is
much less with an integrated package like ASTROS. Improvements to the
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OPTNAST program can be made to improve efficiency, but an integrated
package with a centralized database like ASTROS benefits from inherently
more efficient methods of processing, storing and sharing data between
modules. It should also be noted that the timing summary for the
OPTNAST program is only an approximation since the code was not
included to keep track of the actual time spent.

Concluding Remarks

This study has proved the feasibility of conducting optimization
studies with NASTRAN. The OPTNAST program generated for this study
can be used for designing truss structures with displacement and stress
constraints. As many as five different load cases can be considered with
the program. The program can achieve optimum designs very similar to
integrated design optimization packages such as ASTROS, but a
computational performance penalty is inherent and unavoidable. Still, this
method is very attractive when integrated packages do not offer the
necessary capabilities, such as element types or constraints that the user
needs to design for. As a result, this is a viable alternative when the user
has highly specialized design needs.
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Tables

Table 1: Results

Case OPTNAST ASTROS

Model | Constra- | Weight | Iteration Clock Weight | Iteration Clock
Name ints (1bs) cycles (min) (1bs) cycles (min)
10 Bar Disp 5024 12 12:00 5102 12 1:15
Truss

10 Bar Disp & 5066 10 10:00 5104 12 1:41
Truss Stress

10 Bar Stress 1594 14 14:00 1594 18 2:31
Truss Const

10 Bar | 2xl.cads, 1741 9 9:00 1738 15 1:26
Truss Stress

10 Bar Stress, 1609 144 Hrs - - -
Truss No

Approx , 1

10 Bar Stress, 1594 13 13:00 1593 16 1:30
Truss Infeas.
200 Bar | 2xLoads, 98.62 12 5Hrs 9875 6 8:47
Truss Stress
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NASTRAN Input File
(User Created)

Design Optimization
Parameter File
(User Created)

PREPARE Module:

- Creates new NASTRAN input file
with additignal load cases needed
for sensitivity analysis

COSMIC NASTRAN:

- Conducts structural analysis
- Writes stiffness matrix in output2 fmt
- Writes response data in punch format

COSOPT Module:

Reads NASTRAN analysis & optimi-
zation data, calculates constraint &
gradient info, sends to optimizer

No

Converged?

Optimization Data Output
p lmlz(%yo&yc?e) utpu

Figure 1: OPTNAST Program
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Figure 3: Two Hundred Bar Truss
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ID TENB,TENB
soL 1,0

TIME 50

ALTER 37 §

OUTPUT2 KELM//-1/15/ V,N,2 §
ouTtpuUT2,,,,//-9/15 $
ENDALTER $

CEND

TITLE = TEN BAR TRUSS
DISP(PRINT, PUNCH)=ALL

STRESS (PRINT, PUNCH)=ALL

SPC = 1

SUBCASE 1

LOAD = 1

BEGIN BULK

5

s TEN BAR TRUSS MODEL

s FROM SCHMIT, L.A., JR. AND MIURA, H., " APPROXIMATION
S CONCEPTS FOR EFFICIENT STRUCTURAL SYNTHESIS ",
s NASA CR-2552, MARCH 1976.

S

GRID 1 720.0 360.0 0.0

GRID 2 720.0 0.0 0.0

GRID 3 360.0 360.0 0.0

GRID 4 360.0 0.0 0.0

GRID 5 0.0 366.0 0.0

GRID 6 0.0 0.0 0.0

CROD 1 1 3 5

CROD 2 2_ 1 3

CROD 3 3 4 6

CROD 4 4 2 4

CROD 5 5 3 4

CROD 6 6 1 2

CROD 7 7 4 5

CROD 8 8 3 6

CROD 9 9 2 3

CROD 10 10 1 4

PROD 1 2 30.0

PROD 2 2 30.0

PROD 3 2 30.0

PROD 4 2 30.0

PROD 5 2 30.0

PROD 6 2 30.0

PROD 7 2 30.0

PROD 8 2 30.0

PROD 9 2 30.0

PROD 10 2 30.0

S

MAT1 2 1.E+7 0.3 0.1 25000.0
$

SPC1, 1, 123456, 5, 6

SPC1, 1, 3456, 1, THRU, 4

$

FORCE, 1, 2, , =-1.E5, 0.0, 1.0, 0.0
FORCE, 1, 4, , -1.E5, 0.0, 1.0, 0.0
S

ENDDATA

Appendix 1: NASTRAN Input File
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S AN EXAMPLE PROBLEM

INDMIN=0

0.10

$ PRINT CONTROL
IPRCTL=3

$ DISPLACEMENT CONSTRAINT

LMTDSP=2

6,-2.0 2 1
-2.0 2 2
-2.0 2 3
-2.0 2 4
-2.0 2 5
-2.0 2 &6
NZLMIT=4
IPRINT=1
FXMIN=1.0E+10
ITERT=40
XMIN=.1

XMAX=1000.0

Appendix 2: Optimization Parameter Input File
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# Unix c-shell script to optimize rod structure for displacement

# and stress constraints using NASTRAN to derive structural response

# quantities (displacements, stresses, K matrix), CONMIN optimization
# algorithm for optimization and assorted routines to calculate

# objective function, constraint values and sensitivities (sensitivity
# analysis uses virtual load vector method

#

# Inputs to program are NASTRAN input deck (no free format) <filename.nid> and
$ optimization parameter file <filename.opt>

#

$# get model name if not provided

if ($1 == "") then

echo ’'model name?’

set a = §<

else

set a = $§1

endif

# check to see if optimization parameter file exists

if (! -e Sa.opt) then

echo "RUN REQUIRES OPTIMIZATION PARAMETERS ($a.opt)

exit

endif

echo "1.0" >fort.85 #initialize last obj fn value to 1.0
cp $a.nid Sa.nid.old #save old input

cp $a.opt fort.4 #get optimization date

cp $a.nid fort.55 #copy input to unit 55

prepare <$a.nid >$a.out #add virtual load vectors to NASTRAN input

rm S$a.out $a.nid

mv fort.65 Sa.nid

# build script to execute cosmic
echo "¢" >cosfeed

echo $a >>cosfeed

echo "o" >>cosfeed

echo "i" >>cosfeed

echo "y" >>cosfeed

set it = 0

#begin loop

while ($it < 16) #maximum 16 iterations

cp S$a.nid fort.55

@ it = Sit + 1 #counter

cosmic <cosfeed >Sa.out #execute cosmic interactively
#prepare for optimization segment

#cp Sa.nid fort.55 #copy input file to unit 55

cp $a/PCH fort.25 #punch file to unit 25

cp $a/INPl fort.l1l5 $output2 file to unit 15

rm -rf $a

cosopt <fort.55 >Sa.opt.itS$it #submit to optimization program
if ( -e fort.65 ) mv fort.65 $a.nid

set loop = ‘cat fort.75"

if ( Sloop == "0" ) set it="16" #if optimization converged end loop
end

rm cosfeed fort.1l5 fort.25 fort.55 fort.75 fort.4 fort.85

Appendix 3: OPTNAST Unix Shell Script
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PROGRAM COSOPT

IMPLICIT DOUBLE PRECISION (A-H,0-2)

Program to submit NASTRAN output to CONMIN optimization algorithn
for rod structures with displacement and stress constraints

COMMON/CNMNl/DELFUN,DABFUN,FDCH,FDCHM,CT,CTMIN,CTL,CTLMIN,
+ALPHAX,ABOBJ1,THETA,OBJ,NDV,NCON,NSIDE,IPRINT,NFDG,
+NSCAL,LINOBJ,ITMAX,ITRM,ICNDIR,IGOTO,NAC,INFO,INFOG,ITER

SAVE/FUNPAR/
COMMON/FUNPAR/FXMIN,XL,XU,NZLMIT,ITERT,IPRINTl

Thickness (of membrane elements or area of bars--input)
DIMENSION TH( MAXELM )
SAVE /ANLYZ1/
COMMON /ANLYZ1/ TH, MEMBS, JOINTS, MM, NFI

Index to elements’ material properties

INTEGER MYOUNG( MAXELM )

Material properties

DIMENSION YOUNGM( MAXMTL ), POISON( MAXMTL ), RHO1l( MAXMTL )
Allowable Stresses

DIMENSION ALSTRS( 3, MAXMTL )

SAVE  /ANLYZ2/

COMMON /ANLYZ2/ EEE, PMU, RHO, YOUNGM, POISON, RHOI, MYOUNG,
+ ALSTRS, NMAT, MSSTRS

INTEGER NNODES( MAXELM )
Node number connectivities for each element
INTEGER MA( MAXELM ), MB( MAXELM ), MC( MAXELM ), MD( MAXELM )
Nodal coordinates for each joint
DIMENSION X( MAXJNT ), Y( MAXJNT ), Z( MAXJNT )
SAVE /ANLYZ3/
COMMON /ANLYZ3/ NNODES, MA, MB, MC, MD, X, Y, Z, INCHES
Degree of freedom numbers for restrained nodes (boundary conditions)
DIMENSION IBND( MAXBND )

Number of load components for each loading condition

Appendix 4: CQSOPT Optimization Module
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DIMENSION NJLODS( MAXLOD )

Displacement and force resultants for each degree of freedom and
and loading condition

DIMENSION DR( NNMAX,MAXLOD ), FR( NNMAX,MAXLOD )
Stiffness and mass matrices
DIMENSION SK( MAXSK ), GM( MAXSK )

Pointers to diagonal elements in stiffness matrix, SK;
Row number for first nonzero element in each Column of SK

DIMENSION IDIAG( NNMAX ), ICOL( NNMAX )

SAVE /ANLYZ4/

COMMON /ANLYZ4/ IBND, NJLODS, FR, DR, SK, IDIAG, ICOL, GM,
+ NBNDRY, NN, KIPS, NR, NONZRO

SAVE /ANLYZ5/

COMMON /ANLYZ5/ LOADS

Element Area (size) Minimum and Maximums,
Variable Bounds factor limits

DIMENSION AEMIN( MAXMEM ), AEMAX( MAXMEM )
DOUBLE PRECISION VBMIN, VBMAX
LOGICAL INDMIN, INDMAX

Key to Limited Displacements;

Number of Displacement Constraints;

Deflection constraints: maximum deflection for all nodes or
magnitude, direction, and node number for each node‘’s constraint

INTEGER LMTDSP, NDSPCN
DIMENSION DEFMAX( 3 ),
+ DEFMAG( MAXDEF ), IDRDEF( MAXDEF ), NNDDEF( MAXDEF )

Frequency limits (negative for lower bound);
Number of Frequencies Constrained, Mode number of Constrained freq.

DIMENSION FRQLMT( MAXFQL )
INTEGER NFRQCN, MODECN({ MAXFQL )

Flag for Rayleight Quotient Frequency Constraint Approximation;
Flag for inverting form of Frequency constraint.

LOGICAL FRQAPX, FRQINV
Structural to total mass modal energy ratios

DIMENSION GAMMAJ( MAXFQL )

SAVE /OPTIM2/

COMMON /OPTIM2/ FRQLMT, GAMMAJ, DEFMAX, DEFMAG, IDRDEF, NNDDEF,
AEMIN, AEMAX, VBMIN, VBMAX, INDMIN, INDMAX,

+
+ LMTDSP, NDSPCN, NFRQCN, FRQAPX, FRQINV, MODECN,
+ LMTSTR, NSTRCN, NDUMMY



Von Mises Effective Stress Ratio for each element

ann

DIMENSION VMEFSR( MAXCON, MAXLC )
Strain energies for each element & axial stress values

DIMENSION ENRG( MAXCON+1, MAXLC ), SX(MAXCON)

O Q00N

COMMON /OPTIM3/ VMEFSR, ENRG, SX
SAVE /OPTIM3/

N0

Allowable stress values
DIMENSION ALS(3)
SAVE /OPTIM12/
COMMON /OPTIM12/ ALS

DIMENSION A(Nl,N3),Al(NG,N7),AS(N1,N3),AD(Nl,N3),XOBJ(Nl),VLB(Nl),
+VUB(N1),G(N2),SCAL(Nl),S(Nl),Gl(N2),G2(N2),B(N3,N3),C(N4), DF(N1),

+ISC(N2),IC(N3),MS1(N5), ITYPG(N2), THAC (MAXCON+3) ,KMAT (K1,K1)
REAL OBJOLD
C Override selected CONMIN default parameters
DELFUN = 0.0001
DABFUN = 0.01
CTMIN = .0005
CTLMIN = .001
CT = -.003
CTL = -.01
ITRM = 3
NFDG = 1
NSCAL
LINOBJ =
ITMAX = 7
NSIDE = 2
=0

"
o

MM=3
C Read NASTRAN data deck to get structural data
CALL INPUT(SETFUN, NDV, NCON)
C Calculate initial design variable and objective function values
CALL INIDV(XOBJ, DF)
IF (NDSPCN .GT. 0 ) NFI=NFI+JOINTS
IF (NSTRCN .GT. 0 ) NFI=NFI+MEMBS
DO I = 1,NCON

ISC(I) = O
ENDDO
DO I = 1,NDV
VLB(I)=XL
VUB(I)=XU
ENDDO

WRITE(75,*)1
C Calculate objective function value

CALL CALOBJ(OBJ,DF,XOBJ,NDV,.FALSE.)
C Calculate constraint values

CALL CALCON(XOBJ,G, ITYPG)

NAC = 0

SF=1.0

PRINT*, ‘Constraint values’

DO J=1,NCON
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PRINT*, 'g(j)=',G(J)
ic(j)=0
IF (G(J) .GE. CT) THEN
NAC = NAC + 1 :
ic(nac)=j
ENDIF
ENDDO
PRINT*, 'Number of active constraints:’,NAC
C CALCULATE CONSTRAINT GRADIENTS
CALL VICKY1(KMAT)
IF (NDSPCN .GT. 0) THEN
CALL VICKY2(KMAT,INDEX,AD)
DO I=1,N7
DO J=1,N6
A(J,I)=AD(J,I)
ENDDO
ENDDO
IF (NSTRCN .GT. 0) THEN
CALL VICKY4 (KMAT, INDEX,AS)
DO K=1,NSTRCN
DO J=1,N6
A(J,K+NDSPCN)=AS(J,K)
ENDDO
ENDDO
ENDIF
ELSE IF (NSTRCN .GT. 0) THEN
CALL VICKY4 (KMAT,INDEX,AS)
DO I=1,N7
DO J=1,N6
A(J,I)=AS(J,I)
ENDDO
ENDDO
ELSE
PRINT*, "ERROR - NO CONSTRAINTS IDENTIFIED’
STOP
ENDIF
PRINT*,’Constraint Gradients’
do i=1,n7
do j=1,né6
WRITE(6,70) (a(j,i))
enddo
enddo
70 FORMAT (6E15.6)
CALL APXCMN(XOBJ, VLB, VUB, G, A, NDV, NCON, OBJ, DF, IHAC,
+ RTCNV, INVFLG, MAXCON, MAXNDV, IACT, IVIOL, ITYPG,NVC)
IF (NVC .EQ. 0) THEN
READ (85, * )OBJOLD
IF (ABS((OBJOLD-OBJ)/OBJOLD) .LE. 0.001) THEN
REWIND(75)
WRITE(75,*)0
PRINT*, 'COSOPT HAS CONVERGED’
ENDIF
ENDIF
REWIND(85)
WRITE (85, *)0BJ
PRINT*, 'XOBJ=', (XOBJ(I),I=1,NDV)
CALL UPDATE (XOBJ,MAXNDV)
WRITE(6,187)0BJ
187 FORMAT(5X,21HOBJECTIVE FUNCTION = ,E15.8)
STOP
END 98



THE ROLE OF NASTRAN IN THE PRELIMINARY DESIGN CYCLE

H. R. Grooms and V. J. Baipsys —% *37
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This paper explains how NASTRAN can be utilized advantageously in the preliminary design cycle. The -
initial portion of the preliminary design process lends itself to programs that can produce multiple -
configurations or variations on a particular design with minimal cost or effort. The latter portion of the
process encompasses refining the design and adding more detailed analyses (particularly for other

disciplines). A method for quickly generating balanced spacecraft loading conditions for use in preliminary
design and analysis also is explained.

SUMMARY

The following additional sections are included:
1. Background
. Symbols

. Analytical Process

. NASTRAN Applications

2
3
4. Aerodynamic Load Distributions
5
6. Conclusion

7

. References
BACKGROUND

The preliminary design cycle seeks to obtain general as well as specific information rapidly and
inexpensively, yet accurately. The preliminary design cycle (see fig. 1) for spacecraft or space systems
usually invoives evaluating multiple designs for a given configuration or evaluating several competing
configurations. A process for the analysis and evaluation work has been established (ref. 1) and used
(ref. 2) for several investigations. This process (fig. 1) starts with a solid representation of the design and
evolves into a finite element representation for static and dynamic analysis. Various systems are available for
performing the finite element analysis. Two such systems are IDEAS and NASTRAN. The process of
preliminary design has, among other things, two objectives that can be opposing: (1) to provide an
analytical representation that can be easily revised, and (2) to provide an analytical representation that can be
refined as part of the design improvement after a configuration has been accepted. The IDEAS system
readily lends itself to objective number (1), while NASTRAN is particularly useful for objective
number (2).

Various researchers have suggested approaches (ref. 3 and 4) for optimizing a structural design. The
optimization researchers usually start with a given configuration and loading condition. The preliminary
design issues addressed in this paper allow consideration for a broader viewpoint. This broader viewpoint
asks the following questions:

1. What is a good configuration?

2. What vehicle loads go with a particular configuration?
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SYMBOLS

The following symbols are used in this paper:

p air density (slugs/ft3)

o angle of attack (rad)

CAD computer—aided design

q dynamic pressure (1b/ft2)

o gimbal angle (deg)

Vgust gust velocity (ft/sec)

CNg normal force coefficient slope (1/deg)

PL payload

SRM solid rocket motor

Sref surface reference area (ft2)

T thrust (Ib)

Vvehicle vehicle velocity (ft/sec)

Vwind wind velocity (ft/sec)

Xcg X coordinate of the center of gravity (in.)
Xcp X coordinate of the center of pressure (in.)

Xgimbal X coordinate of thrust vector application point (in.)

ANALYTICAL PROCESS

The process starts with a candidate design or configuration that needs to be evaluated. A computer-aided
design (CAD) representation is created and serves as a basis for the finite element model. The basic finite
element model can serve as the starting point for investigating alternate configurations. It usually takes at
least one iteration through a segment (see fig. 2) of the process to get a reasonable estimate of the structural
sizing and weights. The first pass-through also provides a good test of the model fineness. The analyst
would like the finite element model to be fine enough to give believable stress and deflection predictions;
however, it should be crude enough to keep computing costs and time at a low level.

The box entitled “Finite Element Model” (see fig. 2) could utilize any one of a number of different
programs. The two most attractive systems for this project were IDEAS and NASTRAN. Table I gives a
comparison between the two systems. In order to generate a good preliminary design, both programs (or
other comparable ones) should be used: IDEAS (to compare configurations and to select one) and
NASTRAN (to provide the starting point for detailed design and certain specialized analyses [e.g., flight
control, flexible body loads, etc.]). This is shown in fig. 3.

Considerable effort has been spent in computing vehicle load conditions that are configuration
dependent. Any preliminary design can only be as good as the vehicle loads being used. The issue of
balanced load conditions is important because in the early stages (preliminary design) of a design
meaningful loads are very difficult to obtain. Balanced load conditions on a vehicle allow an analyst to look
at the computed stresses and deflections and not be concerned about how the results have been skewed by
assumed boundary conditions or unbalanced loads. A balanced load condition is one where the sum of all
forces and moments (aerodynamic, inertial, and thrust) acting on the vehicle are zero.
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Table 1. Comparison of IDEAS and NASTRAN

FINITE ELEMENT MODEL

IDEAS NASTRAN
uick tumaround « Easy to interface with other programs/disciplines

Compiete solutions « Wide usagein US.
Low cost « Highly portable
Static and dynamic resuits . Sophisticated solutions available
Color graphics
Database capability

Disadvaniages Disadvantages
Limited capability to interface with other « Not easy o generate muitiple configurations
programs/disciplines «  No builtin color graphics
Limited usage in U.S. «  No convenient database features
Available on limited piatforms « *Not so quick” tumaround
Specialty (e.g., buckiing, etc.) solutions not available |. Not particularly low cost

An auxiliary program was set up to provid
flight aerodynamic load distributions on launch vehicles. This met
the sensitivity of aerodynamic loads due to uncertainties. These uncerta

parameters, such as: dynamic pressure (q), angle of attack (o), or ve

Aerodynamic forces norm
the vehicle structure. They also require the rocket engines to be deflected (gimbaled) to balance the

aerodynamically induced overturning moment on the vehicle. As shown in fig. 4
inputs that define certain basic aerodynamic, vehicle, and trajectory parameters.

Aerodynamic inputs consist of t
longitudinal axis). The aerodynamic
elements, and the trajectory param
pressure (q). The vehicle size and shape determine the magnitude and shape
location of the airload center of pressure. The normal force is typically repres
force coefficient slope, CN along the vehicle. CN distributions are obtained empirically or

ref. 5) were used for estimating the CN

The magnitude of o is typically obtained from

shear and gusts. If trajectory simulations
superimposing the wind and gust speeds (r

AERODYNAMIC LOAD DISTRIBUTIONS

available for similar configurations. Empirical methods (
variations along vehicle components of various shapes and for

e flexible and rapid i

he normal aerodynamic forc
normal forces and moments depend on the

eters including: flight Mach n

al to the vehicle longitudinal axis cause local loads and bending moments on

a wide range of flight Mach numbers.

dynamic trajectory simulations with superimposed wind
are not available, an approximate value for & can be estimated by

ef. 6) on the vehicle speed.

Vuind+V
o= Tan_l( wind gust }ra d
Vyehicle
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With the trajectory parameters of q and a, and with the CN o distribution defined along the vehicle, the

auxiliary program is used (fig. 5). The method computes the distributed normal forces, net pressures, and
the summed forces and moments about the vehicle's center of gravity. Using this method, a vehicle segment
of incremental length is subjected to an aerodynamic normal force where the magnitude depends on CNg

q, and a.

ANormal Force = q Sef CNg @ 1b/in. )

where:

CNq = distributed normal force coefficient slope, 1/(in.-rad)
q = dynamic pressure, 172 p (V vchicle)2 (Ib/ft2)
Sref = reference area (f12)
o = angle of attack (rad)

p = atmospheric density (slugs/ft2)
The above equations are used to compute the normal load distribution along the vehicle. It is then integrated
within the auxiliary program to compute the load and moment summations about the center of gravity. The
presence of additional elements, such as solid rocket motors (SRMs), can be accounted for by adding their
point-load contributions to the total forces and moments.

Static balance calculations are included in the program to determine the amount of engine gimbal angle

(&) required to overcome (or balance) the aerodynamic moment. This is computed from the moment balance
between the aerodynamic forces and the engine thrust, as shown below.

TSin(8)(X gimbal = Xcg) = Z(CN,, )a0Sref (Xcg — Xcp) &)
The above equation is then solved for the gimbal angle, 3.

2(C aSref (Xcpg — X
& =Sin~1 Ng 4%ref (Xcg = Xcp) ,deg
T(Xgimbal ~ Xcg)

4)

X(CN a) = integrated normal force coefficient slope on vehicle (rad)

q= dynamic pressure (Ib/ft2)
Sref = reference area (ft2)
= engine thrust (1b)

Xcg = center of gravity station (in.)
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= center of pressure station (in.)
Xgimbal = engine gimbal station (in.)
o = angle of attack (rad)

5= engine gimbal angle for balancing the acro forces (deg)

For the case when additional engines exist, as in the case of SRMs, the above static moment balance is
altered to include such engines. With the SRM and Core subscripts used for the appropriate clements, the
moment balance expression becomes:

(TCore + TSRM)Sin(8)(X gimbal —Xcg) = qOSref {CNaC ore (Xcg = Xepcore)

+CN(ISRM (Xcg ~ XcpsrM } )
where CN, c corresponds to the core stage element and is equivalent to 2(CN a) in the previous
ore
moment balance equation.

Then:

anmf{CNaC ore Xc8 = Xcpcore )+ CNogpy Keg = *cpsrM )}

-
o =Sin
TCore (X gimbal — Xcg) + TSRM (X gimbal ~ Xcg)

,deg

(6)

With the gimbal angle defined, the axial and tangential thrust values are calculated. These thrust
components are then used to compute the axial and tangential accelerations (normal to the vehicle
longitudinal axis), which are input into the finite element model.

axial acceleration = total axial thrust 7
vehicle weight
tangential acceleration = total tangential thrust + >(normal force) @)

vehicle weight

Key load parameters can be changed easily in the program to see their influence on loads and engine

control deflections. A change in dynamic pressure, (q), angle of attack (o), or vehicle center of gravity
(Xcg) will readily show the sensitivity of acrodynamic loads to such changes.

NASTRAN APPLICATIONS
The Background section of this paper discussed using two different finite element programs for
structural analysis. Why not just use one model/program for the entire preliminary design cycle? The two
systems, IDEAS and NASTRAN, have different advantages and disadvantages (see table I).

The finite element solver that is internal to IDEAS is a valuable tool, especially when rapid results based
on model variations are desired; however, for certain applications, a NASTRAN finite element
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representation is much more useful. Figure 6 shows some of the static and dynamic applications that can be
supported by the NASTRAN model. ,

The IDEAS finite element model can be used in its full mass and stiffness representation to compute the
first few system mode shapes and natural frequencies of the accepted configuration. This information can be
used as a check on the mode shapes and frequencies that are later computed using a reduced dynamic model
(e.g., flexible body loads model) generated with NASTRAN.

CONCLUSION

The early portion of the preliminary design cycle makes the use of the finite element code in IDEAS
attractive because a vehicle analysis can be quickly redone after sizing changes are made. This paper
describes a procedure for preliminary design and shows how NASTRAN can be used as a vital tool in that
process. Additionally, a method for setting up balanced vehicle load conditions, as an integral part of that
procedure, has been explained in detail. The challenge in the preliminary design cycle is to create a large
amount of meaningful information rapidly and inexpensively, to use the preliminary design analytical
representation to interact with many disciplines, and to support the evolution of a detailed design.

The later stages of the preliminary design can be effectively handled by NASTRAN because of its ability
to:

1. Handle many thousands of degree problems relatively cheaply
2. Run on many different platforms
3. Easily interface with other programs/data sources
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A METHODOLOGY TO MODEL PHYSICAL CONTACT
BETWEEN STRUCTURAL COMPONENTS IN NASTRAN

Annappa A. Prabhu N 9 4;7 1??8 39

G. E. Government Services, Houston Texas )50 57 ?
{

{ -

Two components of a structure which are located side by side,
will come in contact by certain force and will transfer the '
compressive force along the contact area. If the force acts in the
opposite direction, the elements will separate and no force will be
transferred. If this contact is modelled, the load path will be
correctly represented, and the load redistribution results in more
realistic stresses in the structure. This is accomplished by using
different sets of rigid elements for different loading conditions, or
by creating multipoint constraint sets. Comparison of these two
procedures is presented for a 4 panel unit (PU) stowage drawer
installed in an experiment rack in the Spacelab Life Sciences (SLS-
2) payload.

INTRODUCTION

The Spacelab is a reusable laboratory that is carried in the
cargo bay of the Space Shuttle. Experiments in several different
disciplines such as astronomy, life sciences, and material science
are accommodated in this modular laboratory for various Shuttle
missions. The experiment hardware is mounted in the experiment
racks located in either side of the module, in overhead lockers, or in
the center aisle, as shown in Figure 1.

4PU STOWAGE DRAWER
Configuration

The 4 Panel Unit Stowage Drawer is mounted in the experiment
rack used in the SLS-2 Mission. The experiment equipment and the
accessories are stowed in the drawer. The finite element model of
the drawer, with its coordinate system, is shown in Figure 2. The
drawer is connected to the slide with 6 screws on each slide, and
the slides are connected to the rack posts. The front panel is latched
to the front rack posts. Two configurations of the slides are
examined.
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Case 1: The contact surface is normal to the X-axis, as shown
in Figure 4, which is the actual configuration. The slide shown is
schematic, and not the actual slide.

Case 2: The contact surface is inclined. This is achieved by
raising the slide by 12.7 mm as shown in Figure 5.

The Method of Modelling the Contact
During liftoff and landing flight events, the Shuttle and its payload
are exposed to quasi-static and random loads. The +X force brings
the right slide and drawer in contact. As a result, this force is
transferred to the slide throughout the length of the slide and not
just by the screws. When the force acts to the left (-X), the contact
along the length is lost and the right slide is connected by screws

only. This time the contact takes place between the left slide and
the drawer.

Generally, this is modelled using rigid elements. For load case
101, which includes +X force (see Table 1), all the contacts are
modelled between the right slide and the drawer, and the analysis is
completed. For the load case 103, which includes -X force, contact
will be modelled between the left slide and the drawer with a new
set of rigid elements, removing the old set of elements, and a second
analysis will be performed. This means post-processing will be
performed on two output files. The rigid elements simulating
contact are shown in Figure 3. These are included in the analyses, as
needed.

Alternately, the contact is modelled with a multipoint
constraint equation in place of the rigid element. In this method, a
different set of MPC equation can be written for a different subcase,
resulting in a single analysis for multiple subcases.
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CASE 1. CONTACT SURFACE NORMAL TO THE GLOBAL X-AXIS
Modeli { Contact by MPC Equati

A rigid link is used to write the MPC equation, as shown in
Figure 6 (ref 1.). Since the physical contact cannot resist moments,
no rotations will be allowed at the end of the rigid link. In the
current case, the link is horizontal, i.e., AL = AX = uq.

The MPC equation is ujA-u1B = 0. The MPC set 1 is written for the

subcase 101 to represent right slide contact, and the MPC set 2 is
written for the subcase 103 to represent the left slide contact. The
MPC equations and the MPC forces are shown in Table 2. The grid
points shown are on the slide. Grid points 471 and 472 show forces
in opposite directions, indicating tension and lack of contact. In this
situation, these equations should be removed and reanalysis must be
performed. In the current analysis, this is not pursued.

Modeli ith CRIGD2 El I
The elements modelled and the results for subcase 101 and
subcase 103 are shown on Tables 3 and 4, respectively. The
dependent degree of freedom is 1. The equation generated
corresponds to row 1 of equation 56 (ref. 2) shown below.

(l.IA1 \ [ 1 00 0 (ZB'ZA) '(ya'yA) T (Ue1 \
qu 010 -(zB-zA) 0 (xB-xA) uBz
up 0 01 (yB-yA) -(xB-xA) 0 ug
3 3
<'uA4 looo 0 0 <’ u84> ' (s6)
uAs 0 0 O 0 1 0 uBS
u 0 00 0 0 1 u
\ %/ L b\

In the equation, (Zg - ZA) corresponds to ZAB on Figure 6 which is
zero for this case, and (Yg -Ya) is also zero. Hence, the equations

generated are the same as the MPC equations and the results from
both the analyses will be identical.

Di . f the Two Method
As expected, the results from both of these methods are the
same.
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CASE 2. CONTACT SURFACE INCLINED TO THE GLOBAL X-AXIS

Only subcase 101, which involves +X and +Z loads, will be used
in the following analyses. Due to these forces, contact will be made
in the X and Z directions as shown in Figure 5.

MPC equations are written to satisfy the geometry of the rigid
links shown in Figure 6. As stated before, no rotation will be
allowed.

. XA Z
Hence AL = TBu1 + _ﬁ_@_ us (1)
from the geometry of the inclined link in Figure 5,
XAB = 18.606 mm, Zag = 12.7 mm , L= 22.527 mm
Substituting in equation (1)
AL = 8259 uq + .5638 u3
ALA = 8259 uqp + .5638 uza

ALp» .8259 uqg + .5638 u3pg

to satisfy the condition ALA - ALg = 0, the MPC equation is
.8259 (u1A -u1B) + .5638 (uza -u3g ) =0 (2)

Table 5 shows all the MPC equations input for all the contacts,
followed by the forces of multipoint constraint, in the grid points on
the slides.

CRIGD2 are modelled with components 1 and 3 as dependent
degrees of freedom to simulate the contact in X and Z directions. The
constraint equations generated correspond to rows 1 and 3, in the
equation 56. The term (Zg -Za) in row 1 and (Xg -XA) in row 3 are

non-zero. These terms correspond to component 5, and it is expected
that constraint moment R2 will be generated. The list of elements
and the results are tabulated in Table 6.
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CRIGDR elements are modelled with component 1 as the
dependent degree of freedom. The remaining 5 translational
components are considered as reference degrees of freedom (ref. 2).
Equation 48 (ref. 2) is used in the element formulation shown below.

(UA1 - uB1) i + (UA2 -uB2) 2+ (ua3 -uB3 ) 13 = 0 (48)

ZAB
In this equation, direction cosine 12 = 0,14 = &A'L—B-,la -
which essentially is MPC equation (2), and the resuits from this
analysis will be same as from the MPC equation.

A list of the elements and the results are tabulated in Table 7.
Comparison of the Three Analyses

It is shown that the formulation of MPC equations and the
CRIGDR are identical, and the results tabulated in Tables 5 and 7 are
identical as expected. The CRIGD2 results are different than the
other two because this involves rotations. In this instance, R2
moments are generated as expected and the Z components are off by
about 120 percent.

CONCLUSIONS

The best way to model contact is by writing MPC equations
since a single analysis, is possible for multiple subcases. CRIGDR is
the second choice. '

REFERENCES
1. Harry G. Schaeffer: MSC/NASTRAN Primer, Static and Normal
Modes Analysis, Schaeffer Analysis Inc, Mont Vernon, 1979, pp.143-
145
2. The NASTRAN Theoretical Manual: NASA SP-221(06), National
Aeronautics And Space Administration, Washington D.C., 1981
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DIREICTION x Y z
.suscasc 101 160:i.2 1753 276.4
Suscast 103 -197.0 1133 276.4

TABLE 2 PARTIAL INPUT AND RESULTS - CASE !
'SUBCASES 101,103 - USE OF MPC EQUATIONS

''§ MPC LOUATIONS TO SIMULATE CONTACT IR X-DIR
§ POR SUBCASL 101 CASE 1

MPC 1 454 1 1.0 1070 1 -1.0
NPC 1 471 l 1.0 1104 1 -1.0
NPC 1 472 1 1.0 1138 1 -1.0
MPC 1 473 1 1.0 1172 1 ~1.0
nrc 1 474 1 1.0 1206 1 -1.90
Mrc b 473 1 1.0 1240 1 -1.0
MrC 1 474 1 1.0 1291 1 -1.0
nrc 1 477 l 1.0 1342 1 -1.0
MPC 1 478 1 1.0 1376 1 -1.0
$ MPC EQUATIONS TO SIMULATE CONTACT IN -X-DIR

§ FOR SUBCASE 103 CASE.l

MPC 2 5454 1 1.0 6070 1 -1.0
nrc 2 5471 1 1.0 6104 1 -1.0
MPC 2 5472 1 1.0 6138 1 -1.0
NPC 2 5473 1 1.0 6172 1 -1.0
MFC 2 5474 l 1.0 §206 1 -1.0
nrc 2 5475 1 1.0 §240 1 -1.0
NPC 2 5476 1 1.0 6291 ' -1 0
NPC 1 5477 1 1.0 6342 1 -1.0
nrc 2 5478 i 1.0 §376 1 -1.0

rorcets or MULT?TI~-POIRT CONSTRAINRNRT

suncase 101 CASE 1

POINT ID.  TYPE 21 T2 73 al R2 13

471 G 2.000683L+00 0.0 0.0 0.0 0.0 0.0

472 G 9.8278738-01 0.0 0.0 0.0 0.0 0.0

473 G -2.369567L-01 0.0 0.0 0.0 0.0 0.0

474 G -8.4071882-01 0.0 0.0 0.0 0.0 0.0

475 G ~4.436006K400 0.0 0.0 0.0 0.0 0.0

476 G -5.8991128400 0.0 0.0 0.0 0.0 0.0

4 G ~2.6444228400 0.0 0.0 0.0 0.0 0.0

470 G -4.0577685+400 0.0 0.0 0.0 0.0 0.0
SUBCASE 103 CASE 1

POINT ID. TYPE T1 T2 T3 31 R2 13

5471 G ~1.6095145400 0.0 0.0 0.0 0.0 0.

5472 G -7.57%473£-01 0.0 0.0 0.0 0.0 0.

5473 G 3.009112£-01 0.0 0.0 0.0 0.0 o.

5474 G $.103580E-03 0.0 0.0 0.0 0.0 0.

5475 G 3.7982778400 0.0 0.0 0.0 0.0 0.

5476 & 4.9368878400 0.0 0.0 0.0 0.0 _ 0.

5477 G 2.1519092400 0.0 0.0 0.0 0.0 o.

5473 G 3.2839992+00 0.0 0.0 0.0 0.0 o.
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TABLE ] PARTIAL INPUT AND RESULTS - CASE 1
SUBCASE 101 - USE OF CRIGD2 ELINMINTS
$ RIGID ECLEMENTS MODELID TO SINULATE CONTACT IN X-DIR
$ FOR LOADCASE 101 CAasSt 1

CRIGD2 480 454 1070 1

CRIGD2 (] B¥ 71 1104 1

CRIGD2 482 472 1138 b

CRIGD2 483 47 1172 1

CRIGD2 484 474 1206 1

CRIGD2Z 485 475 1240 1

CRIGD2 486 476 1291 b

CRIGD2 487 417 1342 1

CRIGD2 433 470 1376 1

SUBCASE 101 CASE}

PORCES or MULTI-POLINT CONSTRAMINT

POINT 1ID. TY?E T T2 T3 Rl R2 Rl
471 G 2.000663E+00 0.0 0.0 6.0 0.0 0.0
472 G 9.827873E-01 0.0 0.0 0.0 0.0 0.0
Lk ) G -2.365567E-01 0.0 0.0 0.0 0.0 0.0
474 G -8.407180£-01 0.0 0.0 c.o0 0.0 0.0
475 G -4.436086C+00 6.0 0.0 0.0 0.0 0.0
476 G -5.8991122+00 0.0 0.0 0.0 0.0 0.0
477 G -2.6444222+00 0.0 0.0 .0 0.0 0.0
478 G -4.057767E+00 0.0 0.0 0.0 0.0 0.0

TABLE 4 PARTIAL INPUT AND RESULTS -CASE I
SUBCASE 103 - USE OF CRIGD2 ELIMINTS
$ RIGID ELEMENTS MODELED TO SIMULATE CONTACT IN -X-DIR
$ POR SUBCASECASE 103 cCast 1

CRIGD2 5400 5454 6070 1
CRIGD2 5481 5471 §104 1
CRIGD2 5482 5472 6138 1
CRIGD2 5483 5473 6172 1
CRIGD2 S484 5474 §206 1
CRIGD2 5485 547% 6240 1
CRIGD2 5486 5476 6291 1
CRIGD2 5487 5477 6342 1
CRIGD2 54838 5478 6376 b

FORCES or MULTTI-POJgHNKT CONSTRAINT

POIRT ID. TYPE Tl T2 T3 Rl R2 R3
5471 G ~1.609514K+00 6.0 0.0 0.0 0.0 0.0
5472 G -7.3575473£-01 0.0 0.0 0.0 0.0 0.0
5473 G 3.009112£-01 0.0 0.0 0.0 0.0 0.0
5474 G 8$.103%80c-01 0.0 0.0 0.0 0.0 0.0
8478 G 31.798277£4+00 0.0 0.0 0.0 6.0 0.0
8476 G 4.936887E+00 0.0 0.0 0.0 0.0 0.0
5477 G 2.151909E+00 0.0 0.0 0.0 0.0 0.0
5473 G 3.283999L+00 0.0 0.0 0.0 0.0 0.0

119



(RS

TABLE 5 PARTIAL INPUT AND RESULTS -CASE 2
SUBCASE 101 -~ USE OF MPC EQUATIONS

$ MPC EQUATIONS TO SIMULATE CONTACT IN X AND Z DIR
$ POR SUBCASE 101 CASE 2 (INCLINED SURFACE)

MPC 1 454 1 0.8259 1070 1 -0.8259 +MPC)
+MPC1 454 l 0.5638 1070 1 -0.5638
MPC 1 471 1 0.82%9 1104 1 ~0.825%9 +MPC2
+MPC2 471 ] 0.563% 1104 ] -0.5638
MPC 1 472 1 0.82%9 1128 1 ~0.8259 +NPC3
+MPC3 472 3 0.5638 1138 } -0.5612
NPC 1 41 i 0.8259 1172 1 «0.8259 +MPCH
+MPC4 473 3 0.5638 1172 ] -0,.5610
nrc 1 474 1 0.8259 1206 1 -0.8259 +HPCS
+MPCS 474 3 0.563 1206 1 -0.5638
NPC 1 473 1 0.82539 1240 1 -0.0259 +MPCH
+MPC6 475 3 0.5638 1240 3 -0.5638
NPC 1 476 1 0.825% 1291 1 -0.8259 +NPCT
+MPCY 476 3 0.5638 1291 1 -0.5638
KrPC 1 477 1 0.8259 1342 1 -0.825% +HPCs
+MPCS 477 3 0.5638 1342 } -0.5638
MPC 1 478 1 0.8289 137¢ 1 -0.8259 +NPCY
+MPCH 478 3 0.5638 1376 ] -0.5638
SUBCASE 101 CASE 2 (INCLINED SURFACE)

FORCES oFr MULTI~-POINT CONSTRAINT

POINT ID. TYPE Tl T2 T3 R1 R2
471 G 2.349082E+00 0.0 1.604145E+00 9.0 0.0 0
472 G 1.092854E+00 0.0 7.460357E-01 0.0 0.0 0
471 G 1.3073C3E+00 0.0 8.924297£-01 0.0 0.0 ¢
474 G -1.051737E+00 6.0 =7.179675E-01 0.0 0.0 0
475 G -4.542925E+00 0.0 -3.101224£+00 0.0 0.0 0
476 G -6.415951L+00 0.0 -4.3798442+00 0.0 6.0 0
477 G -2.202427E+00 0.0 =1.503405L+00 0.0 0.0 0
478 G =3.147465E+00 0.0 -2.148615E+00 0.0 0.0 9

120

. .
(- - R - I - W - W

. e e



TABLE 6 PARTIAL INPUT AND RESULTS - CASE 2
SUBCASE 101 - USE OF CRIGDZ ELEMENTS

$ RIGID ELIMENTS MODELED TO

$ DUL SUBCASE 101 CASE 2

CRIGD2
CRIGD2
CRIGD2
CRIGD2
CRIGD2
CRIGD2Z
CRIGD2
CRIGD2
CRIGD2
SUBCASE 101
FORCES

POINT ID.
471
472
473
474
47S
476
477
478

480
4481
82
43
484
485
486
487
488

0

TIPL

(- -~ - -]

454 1070
471 1104
472 1138
473 1172
474 1206
475 1240
476 1291
477 1342
478 1376
CASE 2

MULTI-POIRT

T
2.494523E+00
1.101543E+00
1.320337E+00

-1.060023£+00
~4.534455E+00
-6.437643E+00
-2.220512E+00
-3.182428E+00

cococoocooocoo
.« . e o
coooco0oGCcOoON

PR R

13
13

CONTACT IK X AND Z-DIR

(INCLINED SURPACE)
CONSTRAINT

T3
2.121823E+00
9.281644£-01
5.0131/48=uv1

-5.814678E-01
-2.838911E+00
-3.742413K+00
-1.282993E2+00
-1.670981E+00

TABLE 7 PARTIAL INPUT AND RESULTS CASE 2
SUBCASE 101 -USE OF CRIGDR ELENMERTS
$ RIGID ELEMENTS TO SIMULATE CONTACT IN X ARD Z -DIR

00000 C OO
.
COO0OO0ODOEOOM

b ¥
1.069774E-01
1.291087E-01

-2.9295348-01
1.040062£-01
1.877255£-01
4.775038£-01
1.7046352-01
1.672205E~01

ccoo0O0O0CO
.« o .
cocOo0OOOOW

« s e s s

$ POR SUBCASE 101 CASE 2 (INCLIRED SURPACE)
CRIGDR 480 454 1070 1
CRIGDR 481 471 1104 1
CRIGDR 482 472 1138 1
CRIGDR 483 473 1172 1
CRIGDR 484 474 1206 1
CRIGDR 485 475 1240 1
CRIGDR 486 476 1291 1
CRIGDR 4487 477 1342 1
CRIGDR 488 478 1376 1
SUBCASE 101 CASE 2 (IRCLIRED PLANE)

FORCTES or MULTI-POIRNRT CONSTRAINT

POINT ID. TYPL T2 T2 T3 31 r2 a3
471 G 2.378163E+00 0.0 1.623320E+00 6.0 0.0 0.0
472 G 1.1192432+00 0.0 7.639883E-~01 0.0 0.0 0.0
473 G 1.316421L+00 0.0 8.985210E=-01 0.0 0.0 0.0
474 G ~1.053347E+00 0.0 -7.190084E-01 0.0 0.0 0.0
478 G -4.543006C+00 0.0 -3.101028E+00 0.0 0.0 0.0
476 G «6.414644E+00 0.0 -4.378596E+00 0.0 0.0 0.0
477 G -2.183337E+00 0.0 -1.490333E+00 0.0 0.0 0.0
478 G ~3.126624E+00 0.0 -2.134214E+00 2.0 0.0 0.0
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Y ;E?;a BENCHMARKING THE QUAD4/TRIA3 ELEMENT

/,570553 BY

STEPHEN M. PITROF & VIPPERLA B. VENKAYYA

p WRIGHT-PATTERSON AFB OHIO

INTRODUCTION )

NASTRAN*, These elements enable the user to analyze thin plate/shell struc-
tures for membrane, bending and shear phencmena. They are alsoc very new
elements in the NASTRAN library. These elements are extremely versatile and
constitute a substantially enhanced analysis capability in NASTRAN. However,
with the versatility comes the burden of understanding a myriad of modeling
implications and their effect on accuracy and analysis quality. The validity
of many aspects of these elements were established through a series of bench-
mark problem results and comparison with those available in the literature and
obtained from other programs like MSC/NASTRAN'® and CSAR/NASTRAN''., Never-
theless such a comparison is never complete because of the new and creative
use of these elements in complex modeling situations. One of the important
features of QUAD4 and TRIA3 elements is the offset capability which allows
the midsurface of the plate to be noncoincident with the surface of the grid
points. None of the previous elements, with the exception of bar (beam), has
this capability. The offset capability played a crucial role in the design of
QUAD4 and TRIA3 elements. It allowed modeling layered composites, laminated
plates and sandwich plates with the metal and composite face sheets., Even
though the basic implementation of the offset capability is found to be sound
in the previous applications, there is some uncertainty in relatively simple
applications. The main purpose of this paper is to test the integrity of the
offset capability and provide guidelines for its effective use. For the
purpose of simplicity, references in this paper to the QUAD4 element will
also include the TRIA3 element.

BACKGROUND

The QUAD4 element was added to the COSMIC/NASTRAN element library in 1987,
Although similar in use to the MSC/NASTRAN QUAD4 element of 1980, there are
differences in the theoretical formulation of the two. These differences are
primarily in the hardening of shear deformation and numerical integration.

The formulation for the QUAD4 isoparametric quadrilateral element incor-
porates a bilinear variation of geometry and deformation within the element.
The QUAD4 element has 5 degrees of freedom (dof) per node, i.e., the stiffness
for rotation about the normal to the mid-surface at each node is not defined.
Furthermore, it is assumed that plane sections remain plane and that the
variation of strains through the thickness is linear. 1In addition, direct
strain through the thickness is neglected (assumed to be zero).

The QUAD4 element may be used to model either membrane or bending
behavior, or both. Transverse shear flexibility may be requested as well as
the coupling of membrane and bending behaviors using nodal offsets or linear
variation of material properties through the thickness. In addition, the
QUAD4 element is capable of representing laminated composite materials, with
an option to compute interlaminar shear stresses and layer failure indices.

*NASTRAN without qualification refers to COSMIC/NASTRAN'D.
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The transverse shear stiffness is numerically conditioned to enhance the
accuracy of the element for a wide range of modeling practices including very
thick or thin elements, high aspect ratio elements, and skewed elements,'¥

FEATURES OF THE QUAD4

The QUAD4 element gives the NASTRAN user an accurate, all-purpose plate/
shell/membrane element. It can be used in place of all QUAD and QDMEM
elements. The QUAD4 element uses a linear, isoparametric formulation with
bilinear variation of geometry and deformation. It can be used toc model the
following types of plates:

~ Membrane plates
- Bending plates
- Membrane/bending (without nonlinear coupling)
- Membrane/bending (with offset coupling)
- Plates offset from the grid point plane
- Layered composite plates
- Laminated plates
- Sandwich plates (metal and composite face sheets)
= Thin and Thick plates

USE OF THE OFFSET CAPABILITY AND ITS IMPLICATIONS

There are several different ways to specify plate offsets in NASTRAN.
They are as follows:

- 20 field on CQUAD4 bulk data card

- 20 field on PSHELL bulk data card

- 20 field on PCOMP bulk data card

- Use of rigid element (RBAR) bulk data card

- Use of PCOMP card to model offset plate as unsymmetric laminate with
very soft layer (value of E 2 to 3 orders of magnitude less than plate)
serving as the offset space'®

However, the use of the Z0 field is sufficient for most users to model plate
offsets. The result of offsetting a plate depends on the loading condition.
For out-of-plane loading (as in the examples), the offset has no effect on
out-of-plane displacements, but in-plane displacements increase due to the
rotational arc of the element. For in-plane loading, displacements are
affected both in-plane and out—-of-plane due to the combination of in-plane
loading plus offset acting as a moment as well as rotational effects. Note
that membrane/bending coupling will play an important part in the correct
formulation of the problem, so material cards referenced by offset plates
must be provided for both membrane and bending stiffness.

The user must be aware of the differences in the definition of the offset
between the CQUAD4, PSHELL and PCOMP cards. The offset value that is used in
the 20 field on the CQUAD4 and PSHELL cards is the distance from the grid
point surface to the element mid-plane of the CQUAD4 element. However, on the
PCOMP card, the distance appearing on the Z0 field is measured from the grid
peint surface to the bottom surface of the CQUAD4 element. Also, the Z0 value
may be positive or negative depending on the node numbering scheme (clockwise
= negative 20, counterclockwise = positive 20) and the position of the CQUAD4
element relative to the grid point plane (element above grid point plane =
positive 20, element below grid point = negative z0). Please note that this
is different from what is documented in the User’s Manual as of 3/3/90, which
properly states offset definition for the PCOMP card only. See Figures 1 and
2 for further detail.
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DIFFERENCES BETWEEN COSMIC/NASTRAN, CSAR/NASTRAN AND MSC/NASTRAN

As mentioned in the previous discussion of QUAD4 theory, the theoretical
formulation of QUAD4 elements is different in different versions of NASTRAN.
COSMIC/NASTRAN and ASTROS share the same QUAD4 element so results compare
favorably between these two codes. The COSMIC/NASTRAN QUAD4 element tends to
be slightly stiffer and exhibits a closer relationship to linear theory than
CSAR and MSC QUAD4 elements. However, all codes give results that compare
within 3% of empirical solutions.

EXAMPLE PROBLEMS

1. CANTILEVER PLATE

The cantilever plate problem consists of a semi-monocoque-like structure
of plates (QUAD4 elements) attached to a bar (CBAR element) (see Figure 3).
The structure is fixed at the wall and has a plane of symmetry on the left
side. The cantilever plate can be modeled with the grid points running down
the center of the CQUAD4 elements and the bar offset, with the grid points
running down the center of the CBAR elements and the plates offset, or with
the grid point plane separate and both the CQUAD4 and CBAR elements offset.
The result of each of these three methods should compare toc each other
favorably. These results are located in Table 1.

Table 1

Maximum Displacements
z-displacements
x-displacements

CASE COSMIC CSAR MSC
A. Cantilever Plate -7.741E-2 -7.69E-2 -7.76E-2
Offset on CQUAD -1.963E-3 -1.961E-3 -1,961k-3
B. Cantilever Plate -7.741E-2 -7.701E~-2 =-7.771E=-2
Offset on CBAR +4.007E~4 +4.007E-4 +4.006E-4
C. Cantilever Plate -7.741E-4 -7.669E-2 -7.740E-2
CQUAD, CBAR Offset -3.336E-2 -2.332E-2 ~-3.327E-2
D. Cantilever Plate -7.741E-2 N/A N/A
Offset on PSHELL -1.963E-3

Note: CSAR/NASTRAN and MSC/NASTRAN do no offer field on PSHELL card.

2. MODIFIED CANTILEVER PLATE

The cantilever plate problem was modified to examine some accuracy and
user features of the offset capability. The first modification of the
cantilever plate was to remove the offset entirely, This results in a
cross-shaped cross section instead of a t-shaped cross section and as such
is expected to give entirely different results (see Figure 4). The second
modification to the cantilever plate is a modified load from a distributed
load to a point load at the end of the bar. This gives us a configuration
that can be easily compared to an empirical solution (see Figure 5). The
third modification to the cantilever plate problem is to change the height
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of the bar so that a "stepped"™ cantilever plate results (see Figure 6),.
This is to display the interaction of the 20 fields on the CQUAD4 and
PSHELL cards. The results are located in Table 2,

Table 2
Maximum Displacements
z-displacements
x-displacements
CASE COSMIC CSAR MSC
A. Cantilever Plate -2.794E-1 -2.789E-1 -2.794E-1
No offset 0.0 0.0 0.0
B. Cantilever Plate -3.400E-2 -3.399E-2 -3.413E-2
Theory=3.334E-2 (1.8% error) (1.8% error) (2.1% error)
C. Cantilever Plate 4.636E-2 N/A N/A
Stepped config. -1.385E-3

The results from case A show that the cantilever plate run in example 1 with
offsets removed show that the configuration is changed and the results are
significantly different. This verifies that the offsets used in example 1

are indeed working and giving excellent results. The results from case B

show that the cantilever plate with CQUAD4 offset and a point load on the tip
of the structure give very close correlation with a theoretical solution of a
T-shaped bar of the same dimensions. The results in case C show that placing
a standard offset in the 20 field on the PSHELL card is an efficient method to
model a structure where many plates are offset by the same distance. The 20
field on the PSHELL card can be overridden by an entry on the CQUAD4 card when
a few have different offsets (the alternative method is to place an entry in
EVERY CQUAD4 card, which can be quite laboricus and unnecessary for a large
model) .

3. CLAMPED PLATE
Note: This problem derived from "Theory of Plates & Shells",
by Timoshenko and Woinowsky-Krieger, P.206 (Reference 7)

The clamped plate model is a plate that is clamped on all four sides.
Due to the symmetric nature of the structure, only 1/4 of the structure is
modeled. There are no elements except CQUAD elements in this model. Three
model densities are examined, a 3x3 grid, a 6x6 grid, and a 12x12 grid (see
Figure 7). The model is tested with no offset and with a 1.0" offset.
According to Reference 7, the empirical solution for this model is -8.806E-4
(no offsets are considered). The results are located in Table 3.
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Table 3

Maximum Displacements
z-displacements

CASE COSMIC CSAR MSC

A. Clamped Plate -8.499%E~4 -8.95E-4 -8.776-4
3x3 grid, no offset

B. Clamped Plate -8.743E-4 -%3.00E-4 -8.923E-4
6x6 grid, no offset

C. Clamped Plate -8.802E-4 -8.962E-4 -8.874E-4
12x12 grid, no offset

D. Clamped Plate -8.499E-4 -1.478E-4 -8.961E-5
3x3 grid, 1.0 offset

E. Clamped Plate -8.743E-4 -2,885E-4 -1.154E-4
6x6 grid, 1.0 offset

F. Clamped Plate -8.802E-4 -5.515E-4 -2.639E-4
12x12 grid, 1.0 offset

The results show that, in the no offset case, the COSMIC QUAD4 element
is slightly stiffer and exhibits better correlation with linear theory as it
asymptotically approaches the empirical solution. All cases, however, compare
well with the empirical soclution. In the offset cases, the reason for great
differences in CSAR/NASTRAN and MSC/NASTRAN cannot be explained.

4. SANDWICH PLATE

The sandwich plate models 1/4 of a symmetric plate structure with all four
edges constrained in the out-of-plane direction and a loading in the center of
the symmetric section of the plate (see Figure 8). It is modeled using metal
and composite sandwich plates. The metal sandwich plates are modeled using a
separate material card to specify transverse shear properties. The composite
sandwich plates are modeled in a two step process, first using a PCOMP card to
input the properties of the composites, then from the output the equivalent
properties as PSHELL/MAT2 cards is extracted, and rerun with modified PSHELL
and MAT2 cards. This procedure is described at length in reference 4.

Results are located in Table 4. S
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Table 4

Maximum Displacments
z-displacements
x-displacements

CASE COSMIC CSAR MSC
A. Metal Sandwich -3.747E-2 -3.770E-2 -3.792E-2
No Offset 0.0 0.0 0.0
B. Metal Sandwich -3.72E-2 -2.960E-2 -3.690E-2
Of£set on CQUAD -5.00E-3 -2.406E-6 -1.520E-2
C. Composite Sandwich -2.667E-2 ~2.696E-2 -2.721£-2
No Offset 0.0 0.0 0.0
D. Composite Sandwich -2.626E-2 -1.394E-2 -2.663E-2
Offset on CQUAD +1.365E-4 +4.131E-7 +1.391E-4

The results show that both metal sandwich and composite sandwich plates
can be modeled with and without offset. The reason for different results
from CSAR/NASTRAN for offset cases cannot be explained.

S. LAMINATED PLATE

The laminated plate model is identical to the cantilever plate model
(see Figure 9). The difference is that in this case both metal and composite
laminated plates are used in place of the isotropic plate used in example 1.
The problem is run with the CBAR offset from the CQUAD4 and with the CQUAD4
offset from the CBAR with the CQUAD4 offset on the PCOMP card. The reason
that the 20 field was used on the PCOMP card rather than the CQUAD4 card is
that the 20 field on the CQUAD card, when used in conjunction with a PCOMP
card, appears to be inactive for both COSMIC/NASTRAN and CSAR/NASTRAN. It
is operating in MSC/NASTRAN. Note that this is not the case for the CQUAD4/
PSHELL combination, where the 20 can be used on either card. Results are
located in Table 5.
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Table 5

Maximum Displacements
z-displacements
x-displacements

CASE COSMIC CSAR MSC -
A. Metal Laminate ~3.406E-2 -3.319E-2 -3.404E-2
PCOMP Offset -9.786E-4 -9.686E-4 -9.741E-4
B. Metal Laminate -3.406-2 ~3.386E-2 -3.410E-2
CBAR Offset +1.979E-4 +1.978E~4 +1.978E-4
C. Composite Laminate -6.250E-2 -6.250E-2 -6.060E-2
PCOMP Offset -1.030E-3 -1.030E-3 -1.030E-3
D. Composite Laminate ~6.250E-2 -6.250E-2 ~6.230E-2
CBAR Offset +1.150E-3 +1.150E-3 +1.150E-3

The results show that laminated plates, both metal and composite, can be
accurately and easily modeled using offset capabilities.
CONCLUSION

The results of studies performed in this pPaper indicate that the offset
feature provided in COSMIC/NASTRAN for the QUAD4/TRIA3 elements is performing
as expected. The results are compared against empirical solutions and other
NASTRAN variations (MSC and CSAR). These results generally show excellent
agreement except in some comparisons with MSC and CSAR, where COSMIC results
appear to be correct.
REFERENCES
1. COSMIC/NASTRAN User’s Manual, Volume 1

. MSC/NASTRAN User’s Manual, Volume 1

2
3. CSAR/NASTRAN User’'s Manual, Volume 1

4. Venkayya, V.B., Tischler, V.A., QUAD4 Seminar, WRDC~TR-89-3046, April 1989
5. CSAR/NASTRAN User Newsletter, 4th Quarter 1991

6. MSC/NASTRAN Application Manual, Volume 2

7. Timoshenko & Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill,

1952.
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Eigenvalue Routines in NASTRAN"

A Comparison with the Block Lanczos Method

Si/35 by N94-17838

J 9055/ V. A. Tischler and V. B. Venkayya
. —’bi} Wright Laboratory
' Wright Patterson AFB OH 45433-6553
SUMMARY

The IﬂASA STRuctural ANalysxs (NASTRAN) (Ref 1) program is one of the most extensively
used engineering applications software in the world. It contains a wealth of matrix operations and
numerical solution techniques, and they were used to construct efficient eigenvalue routines. The
purpose of this Ppaper is to examine the current eigenvalue routines in NASTRAN and to make
efficiency compansons with a more recent implementation of the Block Lanczos algonthm by
Bocmg Computer Services (BCS). This eigenvalue routine is now available in the BCS mathe-
matics lxbrary as well as in several commercial versions of NASTRAN. In addition, CRAY main-
tains a modified version of this routine on their network. Several example problems, with a
varying number of degrees of freedom, were selected primarily for efficiency bench-marking.
Accuracy is not an issue, because they all gave comparable results. The Block Lanczos algorithm
was found to be extremely efficient, in particular, for very large size problems.

INTRODUCTION

In NASTRAN the real eigenvalue analysis module is used to obtain structural vibration modes

from the symmetric mass and stiffness matrices, M a4 and K44, which are gencrated in the pro-
gram using finite element models. Currently the user has a choice of four methods for solving

vibration mode problems: Determinant Method, Inverse Power Method with Sthts Tndlagonal
Method (Givens’ Method) and Tridiagonal Reduction or FEER Method. NASTRAN provides all
these options for user convcmence as well as for analysis efficiency. For example, the Givens’
Method is most af appropnate when all the clgcnvalucs are of cqual interest. By the same tokcn it is
not suitable (because of the need for excessive computer resources) when the number of degrees
of freedom is too large (greater than three to four hundred) unless preceded by Guyan reduction
(ASET or OMIT) The Inverse Power. Determinant and FEER Mcthods are most suitable when
only a small subset of thc exgenvalues are of interest. These methods take advantage of the
sparseness of the mass and stiffness matrices and extract one or a small subset of exgenva]ucs ata
time.

*NASTRAN without qualification refers to COSMIC-NASTRAN (or government version) in the paper.
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The purpose of this paper is to examine, in some detail, the real eigenvalue analysis methods cur-
rently available in NASTRAN and to make efficiency comparisons with the Block Lanczos algo-
rithm as implemented by Boeing Computer Services (BCS) and currently available in some
commercial versions of NASTRAN (for example MSC-NASTRAN and UAI-NASTRAN). The
accuracy of the eigenvalues is not an issue in this paper, because all the methods gave comparable
results. Efficiency in terms of computer time is the only issue in this bench-marking. This study
was made, for all cases, on a single platform, the CRAY XMP. The genesis of the Block Lanczos
Method in all the NASTRAN:S, as well as the CRAY version, is the one implemented by BCS with
some modifications.

Section 1 discusses the general form of the eigenvalue problem for vibration modes. In Section 2
a mathematical formulation of the four methods in NASTRAN is given with emphasis on the
FEER Method as a precursor to the Lanczos Method. A detailed mathematical description of the
Block Lanczos Method is given in Section 3. Also reference is made to the Lanczos method in
MSC NASTRAN and to its implementation by CRAY Research, Inc. In Section 4 selected fre-
quencies are calculated for five structures of varying complexity using the Inverse Power Method,
the FEER Method, MSC/NASTRAN Lanczos Method and CRAY Lanczos Method. Results are
discussed in Section 5 and recommendations are made for possible implementation into NAS-
TRAN.
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1.0 The Eigenvalue Problem
1.1 The general form of the eigenvalue problem for vibration modes is

Kx = AMx (H

where M and K are the symmetric mass and stiffness matrices, the eigenvalue A = o’ the square
of the natural vibration frequency, and x is the eigenvector corresponding to A. The dimension of
the matrices K and M is nxn, where n is the number of degrees of freedom in the analysis set. For
this paper it is assumed that X and M are at least positive semi-definite. Thus associated with Eq
(1) are n eigenpairs A, x; such that

Kx; = AMx; i=1,2,.,n (2)
Properties of the eigenvectors include:
M. for i=J
"'iTM""j = ( . 3)
0 for ;=

where M;; is referred to as the modal mass or generalized mass. It is evident from Eq (3) that the
eigenvectors are orthonormal with respect to the mass matrix. Also the eigenvectors are orthonor-
mal with respect to the stiffness matrix, i.e.

K. for i=J

x]Kx; = ( ii @)
0 for i=j

where K,-,-_ is the modal stiffness or generalized stiffness.

The Rayleigh quotient shows that the modal mass, M;;, and modal stiffness, K;;, are related to the
eigenvalue \ , i..
xlTKxi K.

11

A= = 5)
! xiTMxi Mii

For normalized eigenvectors with respect to modal mass, Eqs (3) can be written as

XIMx; = (”Of = )

J Ofor i#j

Now using Egs (5). Eqs (4) can be written as

}\'- .= .
xiTKxj = ( jfor = Q)
0 for i=j
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The central issue of a real eigenvalue or normal modes analysis is to determine the eigenvalues,
7»(., and the eigenvectors, x;, which satisfy the conditions stated by Eqgs (1-7). The next sections
present the important elements of the eigenvalue methods of interest.
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2.0 Eigenvalue Extraction Methods in NASTRAN

2.1 For real symmetric matrices there are four methods of eigenvalue extraction available in
NASTRAN: the Determinant Method, the Inverse Power Method with shifts, the Givens’
Method of Tridiagonalization and the Tridiagonal Reduction or FEER Method. Most methods of
algebraic eigenvalue extraction can be categorized as belonging to one or the other of two groups:
transformation methods and tracking methods. In a transformation method the two matrices M
and K are simultaneously subjected to a series of transformations with the object of reducing them
to a special form (diagonal or triadiagonal) from which eigenvalues can be easily extracted.
These transformations involve pre and post multiplication by elementary matrices to annihilate
the off-diagonal elements in the two matrices. This process preserves the original eigenvalues in
tact in the transformed matrices. The ratio of the diagonal elements in the two matrices gives the
eigenvalues. In a tracking method the roots are extracted, one at a time, by iterative procedures
applied to the dynamic matrix consisting of the original mass and stiffness matrices. In
NASTRAN the Givens’ and the FEER methods are transformation methods, while the
Determinant and the Inverse Power methods are tracking methods. Both tracking methods and
the Givens’ method will be discussed briefly in this section while the Lanczos algorithm, the main
emphasis of this paper, is outlined here and in more detail in the next section.

2.2 Determinant Method

For the vibration problem

Kx = AMx 8)

the matrix of coefficients, A, has the form

A = K-AM 9

The determinant of A can be expressed as a function of A e,
D(A) = 1A] = (l—ll) (?\.—lz) (?»—?\.n)

where A, i = 1, 2...n are the eigenvalues of A. In the determinant method D(A) is evaluated for
trial values of A, selected according to an iterative procedure, and a criterion is established to
determine when D(A) is sufficiently small or when A is sufficiently close to an eigenvalue. The
procedure used for evaluating D(A) employs the triangular decomposition

A=LU (10)
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for an assumed value of A where L is a lower unit triangular matrix and U is an upper triangular
matrix. D(A) is equal to the product of the diagonal terms of U. Once an approximate eigenvalue,
A, has been accepted, an eigenvector, x;, is determined from

LUx; = 0 an

by back substitution where one of the elements of x; is preset. Since L (A,) is nonsingular, only
U (X,) is needed. The determinant method may not be efficient in some cases if more than a few
eigenvalues are desired because of the large number of triangular decompositions of A.

2.3 Inverse Power Method with Shifts

The Inverse Power Method with shifts is an iterative procedure applied directly to Eq (1) in the
form

[K-AM]x =0 (12)

It is required to find all the cigenvalues and eigenvectors within a specified range of A. Let
A=A +A (13)

where A _ is a constant called the shift point. Therefore A replaces A as the eigenvalue. The iter-
ation algorithm is defined in the nth iteration step by:

[K—XOM]W = Mx

n
= ! 15
xn = E;wn ( )

ne1 (14

where c,, a scaler, is equal to that element of the vector w, with the largest absolute value. At
convergence 1/c, converges to A, the shifted eigenvalue closest to the shift point, and x,, con-
verges to the corresponding eigenvector ¢.. Note from Eq (14) that a triangular decomposition of
matrix K — AM is necessary in order to evaluate w,. The shift point A | can be changed in order to
improve the rate of convergence toward a particular eigenvalue or to improve accuracy and con-
vergence rates after several roots have been extracted from a given shift point. Also A_ can be
calculated such that the eigenvalues within a desired frequency band can be found and not just
those that have the smallest absolute value.

For calculating additional eigenvalues, the trial vectors. x,,, in Eq (14) must be swept to eliminate
contributions due to previously found eigenvalues that are closer to the shift point than the current
eigenvalue. An algorithm to accomplish this is given as follows:

m
X, =X, 3 (B;MX,)8, (16)

i=1
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where X, is the trial vector being swept, m is the number of previously extracted eigenvalues, and
¢; is defined by
- YN

A v
Xi, NYXi N

where x; y is the last eigenvector found in iterating for the ith eigenvalue.

17)

The inverse power method allows the user to define a range of interest [A , A,] on the total fre-
quency spectrum and to request a desired number of eigenvalues, ND, within that range. When
ND is grcatcr than the actual number of eigenvalues in the range, then the method guarantees the
lowest eigenvalues in the range.

2.4 Givens’ Method of Tridiagonalization

In the Givens’ method the vibration problem as posed by Eq (8) is first transformed to the form
Ax = Ax (18)

by the following procedures. The mass matrix, M, is decomposed into upper and lower triangular
matrices such that

M=_LLT (19)

If M is not positive definite, the decomposition in Eq (19) is not possible. For example, when a
lumped mass model is used, NASTRAN does not compute rotary inertia effects. This means that
the rows and columns of the mass matrix corresponding to the rotational degrees of freedom are
zero resulting in a singular mass matrix. In this case the mass matrix must be modified to elimi-
nate the massless degrees of freedom.

Thus Eq (8) becomes
Kx = ALLTx (20)

which implies after premulitplying by L and post multiplying by @Ty! that

-1

L—IK(LT) X = Ax (21)

ie.

Ax = Ax

where A=L‘1K(LT)'1 . Note that L~ is easy to perform, since L is triangular. Also

-1
A=L'k (LT) 1s a symmetric matrix. The matrix A is then transformed to a tridiagonal
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matrix, A,, by the Givens’ method, i.e a sequence of orthogonal transformations, Tj, are defined

such that

T.T,_y...-T,TAx = AT, T, .. T,Tx (22)

Recall that an orthogonal transformation is one whose matrix T satisfies

T =TT =1 23)

the identity matrix. The eigenvalues of A are preserved by the transformation, and if
_ T pT T T
x=TT,..T, T,y (24)
then from Eq (22)
T,T T T _ Tl T
T,T,_,..T,T\AT|Ty..T,_T/y = AT,T, _,..T,T\T{T5...T,y

ie.
TT T T _
by repeatedly applying Eq (23). Eq (25) implies that y is an eigenvector of the transformed matrix

T.T._,..T,T,AT:Ts...T"_,T. Thus x can be obtained from y by Eq (24).
The eigenvalues of the tridiagonal matrix, A, are extracted using a modified Q-R algorithm, i.e.,

A= QZ.A,Q, such that A, is factored into the product Q,R, where R, is an upper triangular
matrix and Q, is orthogonal. Thus

Ar = QrRr (26)
and
A, =040
r+1 rir=r
T from Eq (26)
= 0TO,R0,
Since @, is orthogonal, then
Ar+1 = RrQr (27)

In the limit as » — oo and A is symmetric, A, will approach a diagonal matrix. Since eigenvalues
are preserved under an orthogonal transformation, the diagonal elements of the limiting diagonal
matrix will be the eigenvalues of the original matrix A.

To obtain the ith eigenvector, y;, of the tridiagonal matrix, A, the tridiagonal matrix A, — A d is
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factored such that

A - 7&.‘1 = L,.Ui (28)

where L; is a unit triangular matrix and U; is an upper triangular matrix. The eigenvector y; is then
obtained by iterating on

U,yi(n) = yl(n -1 (29)

]

where the elements of the vector _v,.(o) are arbitrary. Note that the solution of Eq (29) is easily

obtained by back substitution since U; has the form

P9 N
Pr4272
U; = . (30)
-t " Pp-199-1
| pn_

The eigenvectors of the original coefficient matrix, A, are then obtained from Eq (24).

Note that in the Givens' method the dimension of A equals the dimension of A,. The major share
of the total effort expended in this method is in converting A to A Therefore the total effort is not
strongly dependent on the number of eigenvalues extracted.

2.5 Tridiagonal Reduction or FEER Method

The tridiagonal Reduction or FEER method is a matrix reduction scheme whereby the eigenval-
ues in the neighborhood of a specified point, ko, in the eigenspectrum can be accurately deter-
mined from a tridiagonal eigenvalue problem whose dimension or order is much lower than that
of the full problem. The order of the reduced problem, m, is never greater than

m= 2q+10
where § is the desired number of eigenvalues. So the power of the FEER method lies in the fact

that the size of the reduced problem is the same order of magnitude as the number of desired
roots, even though the actual finite element model may have thousands of degrees of freedom.

There are five basic step in the FEER method:

1. Eq(8) is converted to a symmetric inverse form

Bx = AMx 3D
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where

A= (32)

and 7«.0 is a shift value.

2. The tridiagonal reduction algorithm or Lanczos algorithm is used to transform Eq (31) into a
tridiagonal form of reduced order.

3. The eigenvalues of the reduced matrix are extracted using a Q-R algorithm similar to that
described in Section 2.4.

4. Upper and lower bounds on the extracted eigenvalues are obtained.
5. The corresponding eigenvectors are computed and converted to physical form.
To implement Step 1, consider Eq (8),

Kx = AMx

When vibration modes are requested in the neighborhood of a specified frequency, A,.Eq(8)can
be written

Kx - koMx = AMx - XoMx
(K-A M)x = (A=) )Mx (33)

Let K = K—A M and A’ = A—A_. Then from Eq (33)

Kx = MMx (34)
x = X'I?_IMx
Mx = VMK Mx
MR Mx = leMx (35)

Factor K by Cholesky decomposition, i.e.
E=rLaLT (36)

where L is a lower triangular matrix and d’ is a diagonal matrix. Then Eq (35) can be written
B
Ml 'L Hatx = oMx

ie.
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Bx = AMx

7,7 1,1 1 1 .
where B = M| (L") d° L |MandA = — = . Now step 1 is complete.
[ ] R =

To implement Step 2 rewrite Eq (31) as
Bx = Ax

where B = M"'B. Now B is reduced to tridiagonal form, A, us;ing ;inglc vector Lanczos recur-
rence formulas defined by

a;i = V:TBV:'
Vie1=BV;—a; Vi-dV;_; ti=12..,m G7
o 12
dig1= {Vig MV}
1 S .
Vl+1= VI+1 l=l,2,...m—l
i+l

where vector V,=0, V; is a random starting vector and d;=0. The reduced tridiagonal eigenvalue
problem is now given as

ay 4,
dy ay d;
Ay = d3 as3 d4 y = Xy (38)
\ \ \
dm—l AGn-1,m-1 dm
dm Qnm

where A approximates the eigenvalue A of Eq (31), and y is an eigenvector of A. The Lanczos
formulas generate a V matrix, vector by vector, i.e.

V= [V,V, ..V 39)

m)

and Eqgs (37) are modified by NASTRAN such that each vector V,, is re-orthogonalized to all
previously computed V vectors, i.e. V is orthonormal to M.

vimMv = 1 (40)
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Thus
A =ViBy 1)

Note from Eq (41) that A is an mxm matrix.
For step 3 the eigenvalues, A, and eigenvectors, y, of Eq (38) are obtained as described for the
Givens’ method in Section 2.4. The eigenvectors are normalized so that

iy =1 i=1,..,m @2)

For step 4 the following error bound formula has been derived and serves as a criterion for select-
ing acceptable eigensolutions

A i1 Ymi
A (1+ XOAI-)
In Eq (43) A, is an approximation to the exact eigenvalue A, in Eq(8), d,, , , is calculated from

Egs (37), y,,; is the last component of the mth eigenvector, y, , of A, and 1—\,. is the ith eigenvalue
of A. The ith eigenvalue A, is acceptable, if €, is less than or equal to a preset error tolerance.

< (43)

I
by
H

€i=

Now step 5 is implemented for acceptable eigenvalues. If (A, y) is an eigenpair of Eq (38), then
Ay = Ry
or from Eqs (40) and (41)
VIBVy = AVIMVy

BVy = AMVy (44)

Now if x=Vy, then

Bx = AMx

ie. (A, x) is an eigenpair of Eq (31).
Thus for step 5 the eigenvectors of Eq (31) or equivalently Eq (8) are calculated from
x=Vy 45)

and the eigenvalue A is calculated from Eq(32)ie.

A==+A (46)

1
A 0

Note that in the FEER method the matrix B enters the recurrence formulas, Eqgs (37), only through
the matrix-vector multiply terms BV,. Therefore B is not modified by the computations. Lanczos
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procedures for real symmetric matrices require only that a user provide a subroutine which for
any given vector, z, computes Bz.
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3.0 Block Lanczos Method

3.1 Recall that the eigenvalue problem in vibration analysis is given by Eq (8), i.e.

Kx = AMx

where K and M are symmetric positive definite matrices. Generally the eigenvalues of interest are
the smallest ones, but they are often poorly separated. However, the largest eigenvalues which are
not interesting have good separation. Also convergence rates are very slow at the low end of the
spectrum and fast at the higher end. Convergence rates can be accelerated to the desired set of
eigenvalues by a spectral transformation, i.e. consider the problem

M (K -oM) " 'Mx = uMx @7

where O, the shift, is a real parameter. It can be shown that (A, x) is an eigenpair of Eq (8) if and
only if (Aic"') is an eigenpair of Eq (47). The spectral transformation does not change the
eigenvectors, but the eigenvalues of Eq (47) are related to the eigenvalues of Eq (8) by

1

it = m (48)

This transformation will allow the Lanczos algorithm to be applied even when M is semidefinite.

Consider the effect of the spectral transformation on a satellite problem which will be discussed in
detail in Section 4. Figure 1 shows the shape of the transformation. Table A shows the effect of
the transformation using an initial shift of ¢ = .046037. Note that the smallest 8 eigenvalues are
transformed from closely spaced eigenvalues to eigenvalues with good separation.
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Satellite Problem

1
u =
A-c
FIGURE 1
ORIGINAL TRANSFORMED
I AW u(d) gap rel gap gap rel gap
1~ .07229| 38.09088| .03611 05357 22.05574] .60158
2 .10840| 16.03514) 01716 | .02546 3.46017 | .09438
3| 12556 12.57497| .18740 27800 8.82857 | .240803
4 i 31296 3.74640 | 6.000x 10| 8.9006x 10| .00084 | 2.29114x 10>
5 313021 3.74556 | .27055 40134 1.88521 | 05142
6  .58357| 1.86035 | .16180 24002 | 43042 | 01174
7 745370 142993 00103 00153 00210 572784 x 107
874640 142783
Table A

Our objective is to

define the Spectral Transformation Block Lanczos algorithm. Let’s consider
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first the Basic Block Lanczos Algorithm.
3.2 Basic Block Lanczos Algorithm

Consider the Lanczos Algorithm (Refs 2.3) for the eigenvalue problem.
Hx = Ax 49)

where H is symmetric
The block Lanczos iteration with block size p for an nxn matrix A is given as:
Initialization:
set 0, =0
setBy =0
choose R; and orthonormalize the columns of R; to obtain Q;
Lanczos Loop:
Forj=1,23...
setUj= HQj- Qj. B}
setA; = QjT U fi
setR joy = Uj- O
Compute the orthogonal factorization Q;,;B;,; = Ry
End Loop

Matrices Q;, U;, and R; for j= 1, 2, ... are nxp; A; and B; are pxp. A; is symmetric and B; is upper
triangular. The blocksize p is the number of column vectors of Q;. Soif p=1, then Q;is a column
vector, q. Thus the matrix H is not explicitly required, but only a subroutine that computes Hg for
a given vector q. A; and B; are generalizations of the scalers a; and d; in the ordinary Lanczos
recurrence.

The recurrence formula in the Lanczos loop can also be written as
- _ T
Rivy=0js1Bjpy = HQ-0QA;-0;_B; G0

The orthogonal factorization of the residual. R;, ;. implies that the columns of Q; are orthonormal.
Indeed it has been shown that the combined column vectors of the matrices. Q;. Q>. ... @}, called
the Lanczos vectors. form an orthonormal set.

The blocks of Lanczos vectors form an nxjp matrix W; where

W= 10,0y - Q)] (51)
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From the algorithm itself a jpxjp block tridiagonal matrix, Tj, is defined such that

[ T

AB) 0 .. 0
T

B,A, By .. 0

T, = (52)

T
0 ..B,_yA;_ B

0o.. O BJ AJ_1

Since the matrices B; are upper triangular, T; is a band matrix with half band width p+1. The first
j formulas defined by Eq (50) can be combined using Eqs (51) and (52) into a single formula

HW, = WT,+Q, B, E (53)

where E; is an rxp matrix of zeros except the last pxp block is a pxp identity matrix.

Premulitplying Eq (53) by W, implies

T _ wT T T
WjHWj = Wj WjTj+Wj Qj+ lBj+1Ej
ie.
winw. = T, (54)
J J J
since

T
- WW =1 and WQJ+1"'0

Eq (54) unplxes that T;is is the onhogonal pro;ectxon of H onto the subspace spanncd by the col-
umns of W;. Also if (9 s) is an eigenpair of T, i.e. Tjs-se then (A, st) is an approximate
eigenpair of H. A discussion on the accuracy of the approximation will be delayed until the spec-
tral transformation Block Lanczos Algorithm is considered. Basically the Lanczos algorithm
replaces a large and difficult eigenvalue problem involving H by a small and easy eigenvalue
problem involving the block tridiagonal matrix T;.

3.3 Spectral Transformation Block Lanczos Algorithm

Since our primary consideration is vibration problems, consider the eigenprobem posed by
Eq 47 ie.

MK -oM) 'Mx = uMx
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The Lanczos recurrence with block size p for solving Eq (47) is given by

( Initialization
setQ,=0

setB; =0
choose R; and orthonormalize the columns of R; to obtain Q; with QMQ, =1,
Lanczos Loop

Forj=1,2,3,..

set U; = (K-oM)” (MQ) - 01 B

st A; = U] (MQ))

set R, = U;j= QA
Compute Q}-+l and (MQJ-+ ;) such that

a) Qj+18j+l = Rj+l

b) Q. ,(MQ;,)) =1,
L End Loop

Note that the algorithm as written requires only one multiplication by M per step and no factoriza-
tion of M is required. The matrices Q; are now M orthogonal, rather than orthogonal, i.e.

oTMQ; = I (55)

Also the Lanczos vectors are M orthogonal, i.e.
T —
w j M Wj =1
The recurrence formula in the Lanczos loop can also be written as
_ _ -1 _ _ T
Qi ,1Bj+) = (K-oM)"'MQ;~QA;~0Q;_B; (56)
Now, as before, combining all j formulas of Eq (56) into one equation yields
-1 _ T
where W;, T}, and E; are as defined in Eq (53). Premulitplying Eq (57) by W}-M implies

T _ -1 _wT T 1
WIM(K—~oM)™ MW, = WMW,T +W;0;, B, |E;

ie.

WJTM (K - 6M) 'lMWj =T, (58)
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since

Tyw = To, =
WiMW, =1 ad WiQ; =0

Eq (58) implies that T, is the M-orthogonal projection of (K - oM) ~! onto the subspace spanned
by the columns of Wj. The eigenvalues of Tj will approximate the eigenvalues of Eq (47). If
(9, 5) is an eigenpair of T}, then (0, W]s) will be an approximate eigenpair of Eq (47).

Recall that our main interest is in solving Eq (8). From Eq (48)

or v=c+% 59)

i.e. if © is an approximate eigenvalue of T, then from Eq (59) v is an approximate eigenvalue of
Eq (8). Recall that the spectral transformation does not change the eigenvectors, therefore
y = W;s is an approximate eigenvector for Eq (8).

Let’s examine the approximations obtained by solving the block tridiagonal eigenvalue problem
involving the matrix T;. Let (6, s) be an eigenpair of T;iec.

TJs = 50
andlety = “7]-.9. Then Premulitplying Eq (57) by M and post multiplying by s gives
-1 _ T
M(K~cM)""MW;s~MWTs=MQ B, Es
-1 T
-1 T
M(K~-oM)™ My-My® = MQ,, \B; , E;s (60)
Recall for any vector q, HquM, = qTM"lq (Ref 4).
Therefore, taking the norm of Eq (60) and using Eq (55)
-1 T
[|M (K - oM) MY‘M-VQUM_u = IMQ;, \B; 1 Ejs I,

= T =
= 1B, E;s 11,=B 61)
Note that Bj is easily computed for each eigenvector s. It is just the norm of the p vector obtained

by multiplying the upper triangular matrix B8 ; +1 With the last p components of s.

From Ref 5 the error in eigenvalue approximations for the generalized eigenproblem is given by
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-1
||IM(K-cM) "My—My8 IIM,.

= B. (62)

IIMyIIM.. J

Thus B ; is a bound on how well an eigenvalue of T; approximates an eigenvalue of Eq (47).

Recall that if 8 is an approximate eigenvalue of T, then from Eq (48)

veor)
is an approximate eigenvalue of Eq (8). Consider
A-v| = k—c—é'

5| -0) (2= -9
0 -0
1 Bj

< —|A- < £

g |A - o Bj_ 52 (63)

Therefore |A-vi s %. Thus 5-; is a bound on how well the eigenvalues of Eq (47) approximate the
eigenvalues of Eq (8).
3.4 An Analysis of the Block Tridiagonal Matrix T

The eigenproblem for T is solved by reducing T; to a tridiagonal form and then applying the
tridiagomal Q; algorithm. The eigenextraction is accomplished in three steps:

1 An orthogonal matrix Q7 is found so that T, is reduced to a tridiagonal matrix H, i.e.
T
QTTjQT =H (64)

2. An orthogonal matrix Q is found so that H is reduced to a diagonal matrix of eigenvalues,
A le.

QLHO, = A (65)

3. Combining Egs (64) and (65) gives
T
(QHOP T;(Q7Qp) = A (66)

where Q0 is the eigenvector matrix for Tj. The orthogonal matrices O and Q; are a product
implex orthogonal matrices, Givens’ rotati . -
of simp g ens’ rotations, QH,QH, QH, or QT,QT, QT, The algo
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rithms used for steps (1) and (2) are standard and numerically stable algorithms drawn from the
EISPACK collection of eigenvalue routines.
Note from Eq (61) that only the bottom p entries of the eigenvectors of TJ are needed for the eval-

uation of the residual bound. Therefore it is unnecessary to compute and store the whole eigen-
vector matrix for 7. Only the last p components of the eigenvector matrix are computed.

The error bounds on the eigenvalues Eq (62) and (63) are used to determine which eigenvectors
are accurate enough to be computed. At the conclusion of the Lanczos run the EISPACK subrou-
tines are used to obtain the full eigenvectors of 7. Then the eigenvectors for Eq (47) are found
through the transformation
=W,
y i

3.5 Other Considerations in Implementating the Lanczos Algorithm.

The use of the block Lanczos algorithm in the context of the spectral transformation necessitates
careful attention to a series of details:

a. The implications of M-orthogonality of the blocks

b. Block generalization of single vector orthogonalization schemes

c. The effect of the spectral transformation on crthogonality loss

d. The interactions between the Lanczos algorithm and the shifting strategy.
All of these issues are addressed in detail in Refs. §,6.

3.6 The Block Lanczos algorithm as described in the previous sections was developed as a
general purpose eigensolver for MSC NASTRAN (Ref 7). Boeing designed the software such
that the eigensolver was independent of the form of the sparse matrix operations required to
represent the matrices involved and their spectral transformations. The key operations needed
were matrix-block products, triangular block solves and sparse factorizations. These, and the data
structures representing the matrices, are isolated from the eigensolver. Therefore, the eigensolver

code could be incorporated in different environments.

For this paper we tested the block Lanczos algorithm as incorporated in MSC NASTRAN and as
further developed by Boeing and incorporated into code by Cray Research, Inc. The block Lanc-
zos algorithm in MSC uses the factorization and solve modules which are standard operations in
'MSC. The Cray Lanczos code uses the Boeing eigensolver with matrix factorization, triangular
solves, and matrix-vector products from the mathematical libraries supplied by Boeing computer
services (BSCLIB-EXT). For vibration problems the CRAY code can be used with the stiffness
and mass matrices, K and M, as generated by NASTRAN. NASTRAN is run to generate binary
files containing the K and M matrices. These files are input files to the Cray code which calculates
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eigenvalues, checks the orthogonality of the ecigenvectors, x, via x Kx, calculates the Rayleigh
quotient x Kx/x Mx to compare with the computed eigenvalues, and calculates the norm of the
eigenvector residual. In addition binary eigenvalue and eigenvector files output from the CRAY
are suitable for input to NASTRAN for further processing if desired. Since the commercial
(MSC) and the government COSMIC) NASTRANS do not give M and K in the same formats,
they need to be reformatted before calling the CRAY code. CSAR-NASTRAN was used to repre-
sent NASTRAN on the CRAY XMP.
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4.0 Test Problems

In this section several test problems were solved using the inverse power and FEER eigenvalue
extraction methods in COSMIC NASTRAN, the Lanczos algorithm in MSC NASTRAN and the
Lanczos algorithm as implemented by CRAY Research. These problems were chosen based on
the complexity of the finite element model in terms of the kinds of elements used and the number
of degrees of freedom. All methods as expected gave approximately the same numerical results.
The only criterion used to compare the different methods was the number of seconds needed to
reach a solution given that all problems were solved on the same platform, a CRAY XMP.

4.1 Problem1 Square Plate

A square 200 in x 200 in plate in the x-y plane was modeled with QUAD4 elements only. Five
meshes were defined. Details are given in Table 1. All elements were 1.0 in thick. Material prop-
erties were constant for all meshes. Each plate was completely fixed along the x-axis and the y-

axis at x=200 in.

MESH

10x 10 20x 20 30x 30 40 x 40 50x 50
Number of Grid
Points 121 441 961 1681 2601
Number of
Elements 100 400 900 1600 2500
Number-of
Degrees of 515 2015 4515 8015 12515
Freedom

Table 1: DETAILS OF THE FIVE MESHES DEFINED ON THE SQUARE PLATE

For all cases 5 frequencies were requested in the interval [0, 20hz]. Table 2 gives the results for
the 10 x 10 plate, and Table 3 gives the results for the 50 x 50 plate. As expected within each case
the numerical results from the different eigenextraction techniques are approximately the same.
The differences in numerical results between the 10 x 10 case and the 50 x 50 case reflect the fine-
ness of the mesh for the 50 x 50 case. Both Lanczos algorithms were run with a fixed block size

ofp=7.
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COSMIC Inverse
Power

COSMIC FEER
MSC Lanczos
CRAY Lanczos

COSMIC Inverse
Power

COSMIC FEER
MSC Lanczos
CRAY Lanczos

Table 4 gives the CPU time in seconds from the CRAY XMP needed to extract five frequencies
for each case. Recall that the CRAY Lanczos algorithm needs to obtain the mass and stiffness
matrices in binary form from NASTRAN. Thus the time given for this algorithm is the total time
from two computer runs, i.e. the time to obtain the mass and stiffness matrices plus the time to run

FREQUENCIES IN Hz

1 2 3 4 5
6.2980 7.1720 11.6374 | 17.4440 | 18.3096
6.2980 7.1720 11.6374 | 17.4440 | 18.3096
6.2730 7.2173 11.7181 | 17.2125 | 18.3392
6.2730 7.2173 11.7181 | 17.2125 | 18.3392

Table 2: 10 x 10 SQUARE PLATE
FREQUENCIES IN Hz

1 2 3 4 5
6.4048 7.6103 12.5487 | 17.6764 | 19.3642
6.4048 7.6103 12.5487 | 17.6764 | 19.3642
6.4054 7.6159 12.5599 | 17.6745 | 19.3739
6.4054 7.6159 12.5599 | 17.6745 | 19.3739

Table 3: 50 x 50 SQUARE PLATE

the Lanczos algorithm separately.
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COSMIC Inverse
Power

COSMIC FEER
MSC Lanczos
CRAY Lanczos

MESH SIZE

10x10 | 20x20 | 30x30 | 40x40 | 50x50
14734 |50936 |97.801 |197.769 | 328.830
8.085 19363 | 39877 | 77994 |132.179
4.783 13.641 | 30973 |59283 |103.188
4.174 11.170 | 23.785 | 45.433 78.009

Table 4: CPU TIME IN SECONDS TO OBTAIN 5 FREQUENCIES

Figure 2 is a plot of the degrees of freedom versus the CPU time in seconds on the CRAY for the
four eigenvalue extraction techniques.

400
—=— CRAY LANCZOS
—& - MSC LANCZOS
- - COSMIC FEER  §
—p-- COSMIC INV POWER //
300 - o
m *
& ] /'/
Ll /,
w —/,
z /,/
W 2004 »
=
[
s |
.
QL

SN SRR
\QO ,\\O \10

s} Q 0 0O
QQO hl0()0 ‘3000 600 ,\00 %00 900

DEGREES OF FREEDOM

Figure 2: Degrees of Freedom versus CPU Time in Seconds.
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4.2 Problem 2 Intermediate Complexity Wing

A three spar wing shown in Figure 3 was modeled with 88 grids and 158 elements of the follow-
ing types: 62 QUAD4, 55 SHEAR, 39 ROD and 2 TRIA3. All elements varied in thickness or
cross-sectional area. Material properties were the same for all elements. The wing was com-
pletely fixed at the root which left 390 degrees of freedom. Five frequencies were requested in the
interval [0, 300hz]. Table 5 gives the frequencies calculated and the CPU time in seconds for the
four eigenextraction algorithms. As for Problem 1 both Lanczos algorithms were run with a fixed

block size of p= 7.

Figure 3: Intermediate Complexity Wing

COSMIC
Inverse Power 46.574

COSMIC FEER | 46.574

MSC Lanczos 46.573

CRAY Lanczos | 46.573

FREQUENCIES IN Hz nggg;ggg“
1 2 3 4 5
135.924 | 176.813 |205.030 |254.713 | 10314
135924 | 176.813 |205.030 |254.713 | 8.085
135918 | 176.811 |205.029 |254.690 | 4.886
135918 | 176.811 |205.029 |254.690 |4.873

Table 5: INTERMEDIATE COMPLEXITY WING RESULTS
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4.3 Problem3 Radome

A composite radome shown in Figure 4 was modeled with 346 grids and 630 elements of the fol-
lowing types: 54 TRIA2, 284 BAR and 292 QUAD4. The QUADA4’s were both isotropic and
compésite with 46 elements isotropic and 246 elements modeled as four cross-ply unsymmetric
laminates of 40, 38, 36, and 32 layers, respectively. The radome was completely fixed at the base
which left 1782 active degrees of freedom. Ten frequencies were requested in the interval
{0,100 hz]. Table 7 gives the frequencies calculated and the CPU time in seconds for the four
eigenextraction algorithms. Both Lanczos algoirthms were run with a fixed blocksize of p =7.

Figure 4: Radome

CPU
FREQUENCIES IN Hz TIME IN
SECS
1 2 3 4 175 6 7 8 9 10
COSMIC ' |
Inverse Power|56.325/67.946/69.290|81.486/90.835(90.971/92.074{92.410/93.365{101.441| 63.986
COSMIC ! " 2 ‘ : -
FEER  156.325167.94669.200181.486190.835/90.971192.074192.410(93.365/101.441] 21.318
MSC | | : : | :
Lanczos  56.068/66.958/68.213180.843:89.71590.248/90.768/91.676/92.365] 98.729 | 17.768
CRAY ' | : |
Lanczos |56.068|66.958|68.213|80.843189.715/90.248|90.768/91.676/92.365| 98.729 | 13.854

Table 6: Radome Results
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4.4 Problem 4 Satellite

A satellite shown in Figure 5 was modeled with 2295 grids and 1900 elements distributed as

shown in Table 7.

Number of
Elements

Figure 5: Satellite

ELEMENT TYPE
ROD BEAM[ELASI ELAS2| TRIA3 QUAD4| BAR | HEXA [PENTA| RBE2
A 134 ! 30 ; 8 45 777 297 40 56 498

Table 7: Satellite Element Distribution

Sixteen different materials were referenced. and 34 coordinate svstems were used. All elements

varied in thickness and cross-sectional area. and concentrated masses were added to selected

grids. The satellite has 5422 active degrees of freedom. Fifty frequencies were requested in the
interval [0, 20hz]. Table 8 gives every fifth frequency calculated and the CPU time in seconds for
the four eigenextraction algorithms. Again both Lanczos algorithms were run with a fixed block

sizeof p=7.
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COSMIC
Inverse
Power

COSMIC
FEER

MSC
Lanczos

CRAY
Lanczos

FREQUENCIES IN Hz

CPU

IN SEC

10

15

20

25

30

35

40

45

50

NO SOLUTION IN 2000 SECS

072

313]1.497

1.663

2419(5.414

9.000

10.974

13.328

17.474

19.758

294.759

072

313(1.497

1.63412.4065.417

9.056

10.975

13.267

17.104

19.649

121.065

072

313

1.497

1.635

2.406

5.418

9.056

10.975

13.268

17.111

19.650

81.016

Table 8: SATELLITE RESULTS

4.5 Problem 5 Forward Fuselage - FS 360.0 - 620.0

A section of a Forward Fuselage from FS 360.0 to 620.0 shown in Figure 6 was modeled with
1038 grids and 3047 elements distributed as shown in Table 9.

Eleven different materials were referenced. All elements varied in thickness or cross-sectional
area. The fuselage was fixed in the 123 directions at FS 620.0. The model had 6045 active
degrees of freedom . Sixty frequencies were requested in the interval [0, 20hz]. Table 10 gives

every fifth frequency calculated plus the last one and the CPU time in seconds for the four eigen-

extraction algorithms. Both Lanczos algorithms were run with a fixed block size ofp=7.
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Figure 6: Forward Fuselage

ELEMENT TYPE

BEAM | CONROD | SHEAR | TRIA3 | QUAD4 BAR
Number of Elements 1141 885 395 15 572 39

Table 9: Forward Fuselage Element Distribution
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COSMIC
Inv Power

COSMIC
FEER

MSC
Lanczos

CRAY
Lanczos

CPU

FREQUENCIES IN Hz “&45
SECS
11 5 ] 10 15 ] 20| 25 [ 30 [ 35] 40 | 45| 50 | 55 | 59
NO SOLUTION IN 3000 SECS
461 |.819 12.093 |3.090 |5.577 [7.467 [12.247}15.175]16.097|17.515(18.18319.403 {22.658 |180.348
462 1.823 12.507 [3.440 |5.546 {7.362 |10.767{14.020]15.682(16.688 |17.805 18.303{19.063 {135.812
462 1.823 12.507 [3.440 [5.546 |7.362 [10.767)|14.020(15.682|16.688|17.80518.303 {19.063 |66.011

Table 10

: Forward Fuselage Results
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5.0 Summary and Recommendations

The current real eigenvalue analysis capability in NASTRAN in quite extensive and adequate for
small and medium size problems. In particular the FEER Method’s performance is reasonable at
least for the problems tested in this paper. However, the Block Lanczos Method as implemented

by BCS is more efficient for all the problems.

An analysis of Section 4 results clearly shows that the Block Lanczos Algorithm merits consider-
ation for possible implementation into NASTRAN. ' Comparing CPU secs Table 4 implies that the
CRAY Lanczos method runs 94% to 64% faster than the FEER method. Similarly from Tables §,
6, 8 and 10 the CRAY Lanczos runs 66%, 54%, 260% and 177%, respectively, faster than the
FEER method.

The comparisons are not near as striking when we consider the CRAY Lanczos and the MSC
Lanczos. Comparing CPU seconds the CRAY Lanczos runs from .2% faster in Table 5 to 105.7%
faster in Table 10. The difference in CPU time reported for these two methods can be attributed to
two factors: (1) algorithm enhancements and (2) the Boeing Extended Mathematical Subprogram
Library (BCSLIB-EXT) versus the standard mathematical modules in MSC. The CRAY Lanczos
is based on [Ref 5] which is, most recent, dated July 1991. The MSC Lanczos is based on [Ref 6]
which is dated 1986 plus subsequent updates by MSC. All problems were run under MSC NAS-
TRAN Version 66a. Recent communications with Roger G. Grimes at Boeing, one of the devel-
opers of the-shifted Block Lanczos algorithm, reveals that the Lanczos algorithm is continuously
being refined and improved.

The problems chosen to test the four eigenextraction methods while diverse in terms of the num-
ber of degrees of freedom and element distribution were stable with no clusters of multiple eigen-
values. The multiple eigenvalue problem and its relation to the user chosen blocksize, p, is
discussed in detail in [Ref 5]. The authors conclude that based on timing results for the selected
problems, the shifted Block Lanczos Algorithm should be considered for possible implementation
into NASTRAN.

Boeing Computer Services is reluctant to sell or lease their Block Lanczos routine to public
domain programs such as COSMIC-NASTRAN or ASTROS. In view of this the authors recom-
mend the following altematives:

* Modify the FEER Method from a single vector Lanczos algorithm to a Block
Lanczos algorithm.

e Obtain the Block Lanczos algorithm from an alternate source.

* Provide links for calling subroutines from the commercial math libraries such as
the BCS or CRAY library.
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AUTOMATIC ASET SELECTION FOR DYNAMICS ANALYSIS

Tom Allen Ngiaff?gd

McDonnell Douglas Space Systems Va-=zr1 3 2/

Company - Huntsville Division ¢

A method for sclecting optimum NASTRAN analysis sct degrees of freedom for the °
dynamic eigenvalue problem is described. Theoretical development of the Guyan
reduction procedure on which the method is based is first summarized. The
algorithm used to sclect the analysis set degrees of freedom is then developed. Two
example problems are provided to demonstrate the accuracy of the algorithm,

1.0 INTRODUCTION

A NASTRAN user is faced with two major difficulties when solving a dynamic
cigenvalue problem. First, an eigenvalue solution is expensive for most structural
problems encountered in engineering applications. Second, many more degrees of
freedom (DOF) are required to define a structure's elastic propertics than are
required to define its inertial properties, which tends to exacerbate the first
difficulty.

A popular method for easing the severity of these difficulties is to reduce the

problem size using Guyan reduction (Reference 1). This method allows the user to
preserve the clastic properties of the reduced problem set while reducing the
problem size to one more manageable for a dynamic eigenvalue solution. At the same
time, the mass properties are also condensed with some penalty associated with the
reduction of mass from the coordinates being eliminated. The present paper
describes an approach for optimizing the partitioning process to minimize this
penalty.

Theoretical development of the Guyan reduction method is presented in Section 2.
Section 3 describes the algorithm used to select automatically the analysis set degrees
of freedom. Verification of the method is presented in Section 4. Conclusions are
presented in Section 5.

20 THE GUYAN REDUCTION METHOD
By way of introduction, the Guyan reduction method will first be reviewed.

The dynamic ecigenvalue problem is given by the equation
([K] - A[M]){¢) =0 o (N

where K is the structural stiffness matrix, M is the structural mass matrix, A is the
cigenvalue, and ¢ is the eigenvector or modal displacements. The Guyan reduction
method starts by partitioning Equation 1 into independent DOF, designated in
NASTRAN as the A-set, and dependent DOF, designated as the O-(for OMIT) set. After
performing this operation Equation 1 becomes
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where the subscript "a" denotes A-set DOF and the subscript "o" denotes O-set DOF.

- A
T

K K

Ku Kao I;iaa
ao 00 M

M
My
A set of constraints for the O-set displacements can be derived by solving for ¢o in
terms of ¢, using statics, or

T
Kyota + Koo®o =0 (3)

The O-set displacements mow become

¢, = Gola (4)
where
-1..T
Go = KoKao ()

Equation 4 dcﬁnes ¢o as the dcﬂcctxons ‘at O-set DOF duc to unit displacements at the
A-set DOF. Stated another way, the O-set dlsplaccmems ¢o.,arc constramcd to move in
relation to A-set displacements, ¢,, as governed by the transformanon matrix Gg. This

relationship constitutes a Ritz transformation of the c:gcnvaluc problem. The
transformation written in terms of the full displacement sect is

o, [l
(0) = 1o = (G110,) =| G, ] 44 (6)
Using this Ritz transformation the reduced mass and stiffness matrices become
[M,,] = [G] [MJ[G] (7
and
7 T
[K,,) = [G] [K]IG] (8)
Performing these operations on the matrices in Equation 2 we get
[M,,] = [M,,] + 2IM, J[G) + (Gl [MoolIGy] 9)

and

K, = [Ryy) + [K,olIGol (10)
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The mass of the system will be redistributed based on the elastic connections between
the O-set DOF and the A-set DOF as shown in Equation 9.

Note that Guyan reduction is exact when Mgo (and hence Myo) is a null matrix and
gives the best solution for any selected partition when it is not. It does not, however,
address directly the problem of selecting most effectively the set of independent DOF
that will best serve the aims of the user. For this, a means of removing terms from
the mass matrix so as to minimize the impact on the solution accuracy must be
determined.

3.0 ASET SELECTION ALGORITHM

As stated previously, Guyan reduction is exact when My, is null, or when the O-set
mass to stiffness "ratio” is zero. As the mass to stiffness "ratio” between Mgyo and Koo

increases, the accuracy of the Guyan reduction method decreases. This
generalization forms the basis of the A-set selection method.

The six step method for determining the A-set DOF is as follows:

1. Execute NASTRAN to obtain an initial My, Kaa, and A-set table. The mass and
stiffness matrices can be reduced as desired in NASTRAN as long as the modal
content over the frequency range of interest is retained. Note that no reduction
need be performed at this stage but the initial constraint equation must be
applied. .

2. Define the number of DOF that will be in the final A-set. These DOF may also
contain a "kemel" set of DOF that will remain in the A-set regardless of their
mass to stiffness ratio.

3. Determine the minimum mass to stiffness "ratio” for the O-set DOF. Because M
and K are diagonally dominant, this ratio is most ecasily approximated by
stripping the diagonal from M and K and scanning for the minimum M;i/Kjj
which we will call min(M/K). The min(M/K) DOF is then partitioned from M and
K and reduced from the system, provided it is not a member of the kemel set.

. Repeat step 3 until the desired number of DOF remain in the A-set.

Write NASTRAN ASET bulk data cards for the retained DOF

Check the A-set to determine if desired modes are adequately defined.

v n

To improve the efficiency of the check process, the mass and stiffness matrices may
be saved during Step 5. These matrices can then be used in an eigenvalue analysis to
determine if the selected A-set is adequate.

The user may, if desired, decide to refine the A-set further if it is concluded that more
DOF can be reduced from the problem. To simplify this second reduction, the A-set
listing and matrices from Step 5 can be used as input to Step 2. The process would
then proceed as before.

Occasionally, too few DOF will be defined in the A-set. By keeping track of the DOF
placed in the O-set during each iteration, the user may simply review DOF that were
omitted during previous iterations to determine DOF that are required to -define the
mode or modes lost because of the Guyan reduction. He may then selectively include
those DOF deemed necessary to the A-set by adding these DOF on his ASET bulk data
cards. Aliemnatively, he may save intermediate ASET card images for convenience.
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Because the algorithm currently works on one DOF at a time, the user should use
NASTRAN to make the problem size as small as possible to decrease the solution time.
Though reducing several DOF during cach iteration is a desirable feature, no
definitive method for including this feature in the algorithm has yet been developed.
More information on this topic is presented in the conclusions.

The algorithm described above virtually guarantees that the smallest A-set will be
obtained with minimal cffort, provided that too scverc a reduction is not specified.
The general procedure for sclecting the A-set automatically should be clear from the
discussion above. The process is best illustrated, however, by performing sample
calculations on a simplified model, as shown in the next section.

4.0 METHOD VERIFICATION

Two sample problems were developed to validate the A-set selection method. The first
problem is a simplificd model of a three story building. The reduction operations arc
performed by hand to clarify the algorithm. The second sample problem determines
the A-set of a 3600 DOF NASTRAN model. The A-set for this problem was generated
using a program developed by McDonnell Douglas Space Systems Company-Huntsville
Division (MDSSC-HSV). The data from these sample problems verify the algorithm
outlined in Section 3.

The simplified model of the three story structure is shown in Figure 1. The mass and
stiffness matrices are also shown. The fundamental frequency of this system is
1.45 Hz. We want to reduce the problem to a one DOF system.

m=20 p=——in u, 2 00 1.0
=1 0 2 O =30.
k ;= 400.0 M) (6,)=7058
L0 0 2 0.255
mz- 2.0 _———suz
- 400 400 0
kzn 800.0
[K]= 400 1200 -800
m=20 ——au, = 0 -800 2000
ky= 1200.0
f, =1.45Hz

NVVNVNVAND

Figure 1. Simplified Three Story Building
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First we find the min(M/K) for this system which is 2/2000 = 0.001 for displacement
uj. Panitioning this DOF from M and K yields

_ 2 0 0
M, = 0 2 M,, = 0 M, =2
i [ 400 -400] [ 0 ] "

= K..= = 2000
Kaa -400 1200 a0 1.800 00

The Gy matrix for this problem is

-1 _
Go=—2ooo [0 -800]=[0.0 04]

The reduced mass and stiffness matrices are found using Equations 9 and 10 and are

o o)
M _ =
a 1o 232

[ 400 -400]

K =

aa -400 880

We repeat the steps to determine the mass and stiffness of the one DOF system.
Performing these steps produces M = 248 and K = 218.2. The frequency for this one

DOF system is fj = 1.50 Hz which is 3.5 percent higher than the "exact" frequency of
1.45 Hz.

Though the frequencies show excellent agreement, correlation between the mode
shapes should also be verified. Back transforming using G, we get

1.0
{¢1) = 0.455
0.182

for the one DOF system. We will use the modal assurance criterion (MAC) described in
Reference 2 to measure the correlation between this mode shape and the "exact”
mode shape. The MAC between any two modes varies from zero, meaning no
correlation, to unity, meaning perfect correlation. The MAC for these modes is 0.987
indicating that little modal accuracy was lost during the reduction.

The second sample problem involves finding an A-set for the model shown in

Figure 2. The unreduced model has approximately 3600 DOF. Currently, the model
A-set has 180 DOF which was used as a starting point for this problem. This A-set was
further reduced to 50 DOF using the MDSSC-HSV developed program based on the
sclection algorithm described in Section 3. The final A-set size is approximately 25
percent of the original A-set size.
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Figurc 2. NASTRAN Mode! for Sample Problem 2

i

Table 1 shows a comparison between the frequencies and mode shapes of the 180 DOF
model and the 50 DOF model. The frequencies show excellent agreement with a
maximum difference of 1.4 percent for the sixth mode. The mode shapes are almost
perfectly correlated between the the 180 DOF model and the 50 DOF model. Indeed, it
may be possible to reduce the problem size even further.

Table 1. ‘Frequency and Modc Shape Comparison

Between 180 DOF Model and 50 DOF model
MODE f180 fso A% MAC
1 11.9 11.9 0.0 >0.999
2 12.9 13.0 0.8 >0.999
3 24.1 24.2 0.4 0.998
4 249 250 0.4 0.996
5 33.1 33.3 0.6 0.998
6 62.3 63.2 1.4 0.992

5.0 CONCLUSIONS

A method for automatically selecting the NASTRAN A-set DOF was described.
Theoretical development and an outline of the steps involved were provided. Two
example problems were provided that demonstraic the use and the accuracy of the
method. Some potential enhancements have been identified and will be briefly
summarized here.
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One potential enhancement noted carlier would be to reduce multiple DOF during
cach iteration. Because of the redistribution of the mass of the system, simply
reducing a certain percentage of the DOF at ecach iteration is to be discouraged. The
reason for this is best demonstrated with an example.

Consider the simply supported beam of Figure 3. Because all of the DOF have identical
mass to stiffness ratios, the removal would begin with the first DOF with this
min(M/K). If a 20 percent reduction rate were chosen then u; and u2 would be

removed in the first iteration, which could ultimately result in a poorly chosen A-set.

U, u, u, u, u, u, u, u, u,

Figure 3. Simply Supported Beam

A sccond potential enhancement would be including a method in the algorithm that
would determine the optimum number of A-set DOF based on a user defined upper
bound frequency of interest. Because the algorithm removes terms with a high
pseudo frequency, i.e. large K;jj/Mijj, an approach based on the pseudo frequencies of

the reduced system could be used to predict the minimum required number of A-set
DOF.

Even without these enhancements, the method has been successfully implemented at
MDSSC-HSV. The often tedious, and sometimes error prone A-set selection process has
been automated, saving engineering time while increasing A-set efficiency.
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