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FOREWORD

NASTRAN® (NASA STRUCTURAL ANALYSIS) 1is a Tlarge, comprehensive,
nonproprietary, general purpose finite element computer code for structural
analysis which was developed under NASA sponsorship and became available to
the public in late 1970. It can be obtained through COSMIC® (Computer
Software Management and Information Center), Athens, Georgia, and is widely
used by NASA, other government agencies, and industry.

NASA currently provides continuing maintenance of NASTRAN through COSMIC.
Because of the widespread interest in NASTRAN, and finite element methods in
general, the Seventeenth NASTRAN Users' Colloquium was organized and held at
The Menger Hotel, San Antonio, Texas on April 24-28, 1989. (Papers from
previous colloquia held in 1971, 1972, 1973, 1975, 1976, 1977, 1978, 1979,
1980, 1982, 1983, 1984, 1985, 1986, 1987 and 1988 are published in NASA
Technical Memorandums X-2378, X-2637, X-2893, X-3278, X-3428, and NASA
Conference Publications 2018, 2062, 2131, 2151, 2249, 2284, 2328, 2373, 2419,
2481 and 2505.) The Seventeenth Colloquium provides some comprehensive
general papers on the application of finite element methods in engineering,
comparisons with other approaches, unique applications, pre- and
post-processing or auxiliary programs, and new methods of analysis with
NASTRAN.

Individuals actively engaged in the use of finite elements or NASTRAN
were invited to prepare papers for presentation at the Colloquium. These
papers are included in this volume. No editorial review was provided by NASA
or COSMIC; however, detailed instructions were provided each author to achieve
reasonably consistent paper format and content. The opinions and data
presented are the sole responsibility of the authors and their respective
organizations.

NASTRAN® and COSMIC® are registered trademarks of the National Aeronautics and
Space Administration.
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N89-22941
IMPROVED PERFORMANCE IN NASTRAN®
by

Gordon C. Chan
UNISYS Corporation
Huntsville, Alavama

SUMMARY

PART I, SPEED IMPROVEMENTS

Three areas of improvement in COSMIC/NASTRAN, 1989 release, were
incorporated recently that make the analysis program run faster on large
problems, particularly on the VAX computer.

The first improvement on Bulk Data input cards was presented in great
detail in the last NASTRAN Users’ Colloquium. This paper completes the
previous presentation by compiling actual log files and actual timings on a
few test samples that were run on IBM, CDC, VAX, and CRAY computers. The
tabulated result shows a speed improvement in COSMIC/NASTRAN Link 1 from 3 to
4 times faster on the CDC computer to 50 to 60 times faster on the VAX. IBM
and CRAY show 20 to 30 times faster. The speed improvement is proportional to
the problem size and number of continuation cards.

The second improvement involves vectorizing certain operations in BANDIT,
that makes BANDIT run twice as fast in some large problems using structural
elements with many node points (such as 8-, 20-, and 32-node elements). BANDIT
is g built-in NASTRAN processor that optimizes the structural matrix
bandwidth.

The third improvement is on the VAX computer only. The VAX matrix packing
routine BLDPK was modified so that it is now packing a column of a matrix 3 to
9 times faster. The companion unpack routine INTPK is also running 3 to 9
times faster than before. The denser and bigger the matrix, the greater is the
speed improvement. This improvement makes a host of routines and modules that
involve matrix operation, such as MPYAD, DECOMP/SDCOMP, EMG, REIG/CEIG,
PARTN/MERGE, ELIM, SSG2B/C, FACTOR, TRNSP, SDR2, etc., run significantly
faster. This improvement also saves disc space for dense matrices; up to two-
thirds of the hardware storage space could be saved.

PART II, IMPROVEMENTS, NEW ENHANCEMENTS, AND NEW VERSION

1. A new UNIX version, converted from 1988 COSMIC NASTRAN, was tested
successfully on a Silicon Graphics computer using the UNIX V Operating System,
with Berkeley 4.3 Extensions. This version with small changes was also known
to run successfully on the SUN computer and Apollo workstations.

2. The Utility Modules INPUTT5 and OUTPUT5, developed in 1988, were
expanded to handle table data, as well as matrices. INPUTTS and OUTPUTS are



general input/output modules that read and write FORTRAN files with or without
format.

3. More user informative messages are echoed from PARAMR, PARAMD, and
SCALAR modules to ensure proper data values and data types being handled. The
ADD module was expanded to handle both single and double precision scale
factors.

4. Two new Utility Modules, GINOFILE and DATABASE, were written for the
1989 release. They can be requested via DMAP Alter.

(a) GINOFILE captures any scratch file of the preceding DMAP module and
makes it a legitimate GINO file.

(b) DATABASE copies (that is FORTRAN written) the grid point data,
element connectivity data, displacement, velocity, and acceleration vectors,
loads, grid point forces, eigenvectors, element stresses, and element forces
to a user tape (one of the UT1, UT2, INPT, INP1,...,INP9 tape), formatted or
unformatted. The grid point data is in system basic coordinates. The
displacement vectors can be in system basic or system global coordinates.

5. Seven new rigid elements are added to COSMIC NASTRAN. They are:
CRROD, CRBAR, CRTRPLT, CRBEl, CRBE2, CRBE3, and CRSPLINE.

PART I, SPEED IMPROVEMENTS, 1989 NASTRAN

A. Link 1 Improvement

In the sixteenth NASTRAN Users’ Colloquium, the author presented a paper
entitled "On Bulk BData Cards Processing”, in which a new method of processing
the NASTRAN raw input data was discussed in great detail. The only thing that
was missing in that paper was some actual numbers showing the timing
improvement of the 1988 NASTRAN version. Since then, further NASTRAN software
improvement, not directly involving the bulk data cards processing, also makes
Link 1 run faster. Appendix A tabulates a series of test runs showing the
actual timings on several computers, using NASTRAN 87, 88, and 88.5 (which is
now 89) versions. Appendix A begins with a cantilever model used throughout
all the tests. The model includes 10,000 grid points and 9999 QUAD2 elements,
with the grid points and elements intentionally not in sorted order. The
actual timings of the XCSA, IFP1, XSORT, and IFP modules were tabulated
directly from the NASTRAN log files of various NASTRAN versions on different
computers, the NASTRAN new sorter, XSORT2, and the old sorter, XSORT. The
conclusion from these tests indicates generally that the new Link 1 is 20 to
30 times faster, with only one exception: CDC tests showed only 2 to 3 times
faster. This CDC slowness is explained in the next two paragraphs. The Link 1
improvement on the VAX computer was actually more impressive; it showed 30 to
70 times faster. The new speed improvement of Link 1, however, must be
discounted somewhat due to certain source code standardization implemented in
the 1987 NASTRAN version. The 1987 version was 3 to 10 times slower then the
previous versions.



The CDC computer (a non-virtual memory model) is intended for number
crunching. It is, however, extremely slow in handling characters. The new
XSORT2 routine, where the bulk data are handled and sorted, and its supporting
subroutines are heavily character oriented (that makes this group of routines
completely machine dependent). In the 88.5 version, additional modifications
to this group of routines were made to avoid CDC’s weakness. The actual amount
of changes was not too extensive, and therefore will not be a big turden to
the other non-CDC computers. The following tests illustrate the CDC
deficiency.

A FORTRAN (FTN5) source code 'A=B’ is 5 times slower if A and B are
characters than if A and B are integers. Similarly, 'If (A .EQ. B) C=D’ is 15
times slower if A, B, C, and D are characters than if they are integers. These
timi-tests were made on the Langley Research Center Y computer (CDC CYBER
185).

B. Vectorizing BANDIT Operation

The grid point connectivity increases exponentially when elements of many
node points (8-, 20-, and 32-node elements) are used in a finite element
model. Consequently, BANDIT, the NASTRAN built-in bandwidth processor, would
require substantial computer CPU time for optimizing the connectivity of the
structural model. By modifying the source code using the array vectorizing
concept, the BANDIT timing on an actual huge problem was reduced by half.

C. Pack and Unpack on the VAX Computer

A1l matrix data in NASTRAN are packed; that is, all elements of zero
values are squeezed out, when the matrix data are written out to a storage
disc. Conversely, the matrix is unpacked into memory space when it is brought
back from the disc; that is, all missing zero elements are put back into their
correct positions in the matrix. For efficiency, the packing and unpacking
routines in NASTRAN are written in the machine dependent assembly languages
for IBM, CDC, and UNIVAC computers. However, FORTRAN is used in the VAX. The
FORTRAN source code of the VAX, which is much easier to understand, has been
studied thoroughly; and improvements were incorporated in key areas. The final
result shows great improvement in speed and reduction of disc space,
particularly in large and dense matrices. These improvements in matrix packing
and unpacking make a host of other modules, such as EMG, MPYAD, SDR2, SMP1,
PARTN/MERGE, ELIM, SSG2B/C, FACTOR, TRNSP, SDR2, DECOMP/SDCOMP, EIGR/EIGC,
etc. run significantly faster. As indicated by the test runs in Appendix A,
all VAX runs on the 88.5 version were at least 30 to 40 percent faster than
the corresponding runs on the 88 version.

PART II, IMPROVEMENTS, NEW ENHANCEMENTS, AND NEW VERSION, 1989 NASTRAN

A. UNIX Version of COSMIC NASTRAN

The present trend in computer applications is towards the UNIX operating
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system. The 1988 COSMIC NASTRAN has been converted to run on a Silicon
Graphics computer with UNIX V 0S, Berkeley 4.3 Extensions. A1l the machine
independent source code was converted without any major problems. (Only the
symbol ’‘4H/*(something)(something)’ needed to be changed.) The VAX machine
dependent source code (all written in FORTRAN) was used in the UNIX version.
Approximately 30 percent of this group of routines required modification and
special attention. The major problem encountered here was the usage of the
open core. This problem appeared to be very much machine dependent even in the
supposedly machine-independent UNIX operation environment. The UNIX versions
were also tried on the SUN computer and Apollo workstations successfully.

B. INPUTT5 and OUTPUTS Improved Capabilities

Utility modules INPUTT5 and OUTPUTS were incorporated into COSMIC NASTRAN
since 1987. OUTPUTS creates user written FORTRAN files, formatted or
unformatted, and INPUTTS reads the FORTRAN files, also formatted or
unformatted. The 1987 versions of INPUTTS and OUTPUT5 actually handle only
GINO (NASTRAN General Input/Output) matrix data blocks. Since matrix data are
either real or complex, in single or double precision forms, it is relatively
easy to read the GINO matrix data blocks and send them out (OUTPUT5) under
FORTRAN control, formatted or unformatted. Similarly, it is quite easy to read
(INPUTTS) from a FORTRAN file, formatted or unformatted, and re-create the
GINO matrix data block. The 1987 INPUTTS5 and OUTPUTS modules do not handle
GINO table data blocks, because a table array normally contains mixed types of
data, integers, reals, and BCD data, in endless combinations. To write an
array of mixed type data formatted is not an easy task.

The INPUTTS and QUTPUTS modules in the 19839 release are expanded to
include the GINO table data blocks, as well as the matrix data blocks. Again,
the data transfer between the GINO file and FORTRAN file can be formatted and
unformatted. The formatted file, in particular, can be used across different
computer manufacturers’ processors. Appendices B and C provide detailed
descriptions of the INPUTTS and OUTPUTS modules.

C. Improved and Expanded Data Handling in PARAMR, PARAMD,
PARAML, SCALAR, and ADD Modules

The original PARAMR, PARAMD, and SCALAR modules are difficult to use. In
most cases, the user has no idea whether the input data he specified is used
correctly, and the output from these modules is correctly computed. Unless
these modules are further checked by PRTPARM, the user is completely in the
dark. Usually, a user has no control over these modules even when errors are
found in the input or output parameters.

The PARAMR, PARAMD, and SCALAR modules in the 1989 version provide much
more user information. The actual input and output parameters are echoed out.
For example, if data are to be abstracted from matrix data blocks by PARAMR/D,
the precise row and column positions of the data element are printed, and the
user is also informed that the matrix type is real, complex, single precision,
or double precision. Similar useful information is echoed out for the table
data blocks. In PARAMR and PARAMD, the user is also given the ability to stop
or to continue a NASTRAN job at the end of these modules, in the cases of




error, or no error found. Appendices D and E provide detailed descriptions of
the PARAMD and SCALAR functional modules. PARAML was expanded in the 1988
version. Its manual update is reprinted in Appendix F.

The ADD module, which adds two matrices, [X] = a[A] + b[B], has been
expanded. The scale factors a and b can now be in single precision or in
double precision. The manual pages for ADD are updated and presented in
Appendix G.

D. Two New Utility Modules - GINOFILE and DATABASE

D.1 GINOFILE Module - to Capture A Scratch File of Preceding DMAP Module

NASTRAN’s General Input and Output (GINO) utility processor provides
three kinds of files for each NASTRAN DMAP operation - input files, output
files, and scratch files. Each DMAP module specifies its input files and
output files explicitly, and they are saved in the GINO system until an
explicit PURGE command is given. The scratch files, however, are not saved,
and are left in the computer system unprotected at the end of a DMAP module
operation. At this point they are ready to be over-written by anything in the
next module. There would be a tremendous amount of work in DMAP (or Rigid
Format) programming, and FORTRAN source code changes, if one would like to
save one or more of these scratch files by the regular GINO and DMAP rules.
After consulting the NASTRAN Theoretical manual and Programmer manual, and
possibly studying the NASTRAN FORTRAN source code carefully, some advanced
NASTRAN users would like to salvage certain scratch file(s) in a particular
DMAP module, so that they can do extraordinary work with those files and DMAP
Alters. A new DMAP functional module, GINOFILE, is provided in the 1989
version to capture one scratch file of the preceding DMAP module, and give it
a legitimate GINO data block name, and proper GINO data block formation. For
example, the scratch file captured may not have a header record and GINO name;
the new output file from GINOFILE will have a GINO name and proper header
record. This new GINOFILE module will work properly if and only if the scratch
file of the preceding module still exists in the computer system, and only the
last data written to that file is available if looping is involved. Appendix H
describes in detail the usage of GINOFILE module and its limitations.

D.2 DATABASE Module - to Copy Grid Point Data, Element Connectivity Data,
and Displacement Vectors (Velocities, Accelerations, Loads, Grid Point
Forces, Eigenvectors, Element Stresses, or Element Forces) to a User Tape

Many users have expressed the need to transfer NASTRAN basic data (grids,
elements, and displacements, etc.) to an external FORTRAN tape, or file, so
that they can use the data for other purposes. Typically, they would like to
1ink up the NASTRAN data to another commercially available program for
plotting interactively, or to user written software for data manipulation.
Very commonly, the users would like the grid point data and the displacement
data in the basic rectangular coordinate system, and all the grid point ID’s
in their external numbers. To do just that, the users must copy grid point
data in the GEOM1 (Geometry 1), or BGPDT (Basic Grid Point Definition Table)
file, the Coordinate System Transformation Matrices in CSTM file, element data



in the GEOM2 (Geometry 2), or EST (Element Summary Table) file, element type
data in the FORTRAN source code GPTABD BLOCK DATA, the EQuivalence EXternal
grid point vs. INternal grid point number tables in EQEXIN, and one or two
displacement OFP files (Output File Processor, a group of 20 to 25 files).
Since all the NASTRAN files are GINO (NASTRAN General Input and Qutput file
processor) written, the users most likely would use the OUTPUT2 module
(OUTPUTS is now available in 88 and 89 releases) for the data transfer. Only
then, the users would have enough data to convert the grid points from NASTRAN
global coordinates to the basic rectangular coordinate system, and from
NASTRAN internal grid point numbering system to the external numbers.
Normally, The users have to provide the conversion program either from a
commercial source or from their own written programs. In the latter case, the
users must be familiar with OUTPUT2 operations, and the contents of various
files and their exact data arrangements; they also must have a good knowledge
of coordinate transformation, and the User’s and the Programmer’s Manuals. A
seemingly easy job could turn out to be a mammoth task. It is to this end that
a new utility module, DATABASE, was written for the 1989 release.

The new DATABASE module copies the grid point data, the element
connectivity data, the displacement vectors, and other data out to a user tape
(UT1 or UT2 for CDC computer, INPT, INP1, INP2,... INP9 for other computers),
formatted or unformatted. A1l grid points are in basic rectangular
coordinates, and the displacement vectors (and others) are in basic
rectangular coordinates or NASTRAN global coordinates. All grid point ID’s are
in their external numbering system. The displacement vectors (and other data)
can be real or complex, ‘SORT1’ or ’‘SORT2’ formats, and single case with one
output record, or sub-cases with multiple records. The unformatted tape from
the DATABASE module is more efficient. The formatted tape can be printed out
for verification, or edited by the system editor. The formatted tape can also
be generated on one computer, and used on another computer of a different
manufacturer. Appendix I, the user manual update pages for the DATABASE
module, shows in detail the records being generated on the output tape.
Appendix J presents a NASTRAN example run using this new DATABASE module. The
formatted INP1 file of this example run is also listed. Appendix J also
includes a FORTRAN program which was used to check out the unformatted tape
during the development stage. This FORTRAN program is very useful as a guide
to read a typical unformatted FORTRAN tape.

E. New COSMIC Rigid Elements
In addition to the four rigid elements, CRIGD1, CRIGD2, CRIGD3, and

CRIGDR, in NASTRAN, seven new rigid elements are now available to COSMIC
NASTRAN users.

CRROD - a rigid pin-ended rod element (similar to CRIGDR)

CRBAR - a rigid bar element

CRTRPLT - a rigid triangular plate element

CRBE1 - a general rigid body connected to an arbitrary number of
grid points (similar to CRIGD3)

CRBE2 - a rigid body with independent d.o.f. at a single grid point,
and with dependent d.o.f. at an arbitrary number of grid
points (similar to CRIGD2)

CRBE3 - a rigid body that defines the motion at "reference" grid



points as the weighted average of the motions at a sef of
other grid points
CRSPLINE- a rigid element of multi-point constraints for interpolation
of displacements at specified grid points
The implementation of this group of new elements is as follows.
The input data of CRROD, CRBE2, and CRBEl are mapped into CRIGDR, CRIGDZ2,

and CRIGD3 data formats respectively, and thus they are treated as a CRIGDR, a
CRIGD2, or a CRIGD3 element.

The input data of CRBAR and CRTRPLT are mapped into the rigid general
element CRIGD3 data format, and they are each treated as a CRIGD3 element.

The CRBE3 and CRSPLINE have no COSMIC old rigid element equivalence. A
special subroutine was written to handle these two elements.

Appendix K provides the Users’ Manual update pages for this new group of
rigid elements.
F. Other Improvements
Other improvements in the 1989 release include:

(a) A new 'ECHO = NONO’ option that provides absolutely no input card
(and restart) echo.

(b) DIAG 38 will 1ist each element being processed by the EMG module.
Thus it may pinpoint which element that might have an input error.

(c) Complex stresses and forces for QUAD4 elements.

(d) Inclusion of QUAD4 in random analysis.



APPENDIX A
NASTRAN LINK1 TIME TESTS



(A) NASTRAN TIMING TEST INPUT DECK

NASTRAN BULKDATA=-1, TITLEOPT=-1

1D TEN THOUSAND GRID POINTS TEST PROBLEM, CM=250,000 (CDC)

$ 50K WORDS (VAX)

s 7.5M BYTES (IBM)

s 100K WORDS (UNIVAC)

$ OPEN CORE? (CRAY)

APP DISP

soL 1,0

SDIAG 42  $ TO USE OLD XSORT MODULE

TIME 20

CEND

TITLE = DATA INTENTIONALLY GENERATED NOT IN SORTED ORDER

SUBTITLE = NO CONTINUATION CARDS IN DECK

DISP = ALL

ECHO = NONE $ OR ECHO = SORT

SPC = 135

LOAD = 246

BEGIN BULK

s

s TEST MODEL - A LONG CANTILEVER BEAM

s Y

s |

s |

$ 5001 5002 S003 5004 5005 5006 5007 .. 9998 9999 10000 = GRID PTS
4occn- $ece- LIETER L IR toonn- LIEEEES +-- cepomnca EIEEEES +

s | I | | | | | | €49 | (49 | (QUAD2 ELEM.ID
S | M@ |G| ||| ... | 9| 9| INBRACKETS)
IR oo LT oo oo PEERT RS +-- cmgeeaca 4ecem- 4 ceccmccccccnas X
s 1 2 3 4 5 6 7 4998 4999 5000

3

GRID, 1,, 0.0, 0.0, 0.0
=(2499), *(2),, *(2.),==

GRID, 5000,, 4999.0, 0.0, 0.0
=,%(-2),,%(-2.),==

=(2498)

couap2, 1, 10, 1, 2, 5002, 5001
=(2498),%(2),=,%(2),///

GRID, 5001,, 0.0, 1.0, 0.0
=,%(2),,%(2.),==

=(2499)

GRID, 10000,, 4999.0 1.0 0.0
=,*(-2),,*(-2.),==

=(2498)

PQUAD2, 10 20 0.02

MAT1, 20 30.+6,, 0.33

CQUAD2, 4998 10 4999 5000 10000 9999
=,%(-2),3, *(-2),%(-2),%(-2),*(-2)
=(2497)

SPC1, 135 123456 1 5001

FORCE, 246, 5000,, 200., 0. 0. -1.
==, 10000, ==

ENDDATA



(B) TO GENERATE A FIXED-FIELD INPUT DECK FOR THE MODEL IN (A)
(NOT AVAILABLE ON IBM MACHINE)

Assume file ABC.DAT contains the above model.

Run LINKFF (an independent 1ink included in NASTRAN delivery tape, NASTO1).
Answer a new file name when asked, such as DEF.DAT.

Enter 'READFILE ABC.DAT'.

A fixed-field deck will be generated and saved in DEF.DAT (approx. 15020
cards).

(C) SUMMARY OF NASTRAN TIMINGS USING ABOVE CANTILEVER MODEL IN (A)

VAX TIMING, COSMIC VAX/780 VMS 4.7 -
(Runs were made before November 1988)

VAX NASTRAN 87 RELEASE TIMING:

17:21:49 3.0 ELAPSED SEC 1.0 CPU SEC  TTIO | TIMING COMPUTATION

17:22:32 46.0 ELAPSED SEC 26.0 CPU SEC  TTLP |

17:22:32 46.0 ELAPSED SEC 26.0 CPU SEC  XCSA | 32.0- 26.= 6.0 SEC
17:22:42 56.0 ELAPSED SEC 32.0 CPU SEC  1FP1 | 34.0- 32.= 2.0 SEC
17:22:46 60.0 ELAPSED SEC 34.0 CPU SEC  XSOR | 7495.- 34.=7461 SEC

19:36:17 8071.0 ELAPSED SEC 7495.0 CPU SEC  IFP BEGN
20:04:48 9782.0 ELAPSED SEC 9190.0 CPU SEC  IFP END| 9190.-7495.=1695 SEC
20:04:48 9782.0 ELAPSED SEC 9190.0 CPU SEC  XGPI |

VAX NASTRAN 88 RELEASE (WITH DIAG 42 ON, USING OLD XSORT) TIMING:

14:28:00 2.0 ELAPSED SEC 1.0 CPU SEC  TTIO |

14:28:00 2.0 ELAPSED SEC 1.0 CPU SEC XCSA | 7.0- 1.0= 6.0 SEC
14:28:10 12.0 ELAPSED SEC 7.0 CPU SEC  IFP1 | 9.0- 7.0= 2.0 SEC
14:28:14 16.0 ELAPSED SEC 9.0 CPU SEC XSOR | 8334.- 9.0=8325 SEC

17:00:16  9138.0 ELAPSED SEC  8334.0 CPU SEC IFP BEGN
17:32:40 11082.0 ELAPSED SEC  9893.0 CPU SEC 1FP END| 9893.-8334.=1559 SEC
17:32:40 11082.0 ELAPSED SEC  9893.0 CPU SEC  XGP ]

VAX NASTRAN 88 RELEASE TIMING:

14:13:05 2.0 ELAPSED SEC 0.0 CPU SEC TTIO |

14:13:05 2.0 ELAPSED SEC 0.0 CPU SEC XCSA | 6.0- 0.0= 6.0 SEC
14:13:14 11.0 ELAPSED SEC 6.0 CPU SEC IFP1 | 8.0- 6.0= 2.0 SEC
14:13:18 15.0 ELAPSED SEC 8.0 CPU SEC XSOR | 160.0- 8.0=154.0 SEC

14:16:50 227.0 ELAPSED SEC 160.0 CPU SEC  IFP BEGN
14:20:09 426.0 ELAPSED SEC 337.0 CPU SEC  IFP END| 337.0-160.=177.0 SEC
14:20:09 426.0 ELAPSED SEC 337.0 CPU SEC  XGPI |

VAX NASTRAN 88.5 NEW VERSION TIMING:

13:43:36 40.0 ELAPSED SEC 26.0 CPU SEC  TTLP |

13:43:37 41.0 ELAPSED SEC 26.0 CPU SEC  XCSA | 32.0-26.0= 4.0 SEC
13:43:46 50.0 ELAPSED SEC 32.0 CPU SEC  IFP1 | 33.0-32.0= 1.0 SEC
13:43:49 53.0 ELAPSED SEC 33.0 CPU SEC  XSOR | 149.0-33.0=116.0 SEC

13:46:52 236.0 ELAPSED SEC 149.0 CPU SEC  1FP BEGN
13:48:42 346.0 ELAPSED SEC 237.0 CPU SEC IFP END| 237.0-149.= 88.0 SEC
13:48:42 346.0 ELAPSED SEC 237.0 CPU SEC  XGPI |
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VAX/780 TIMING SUMMARY TABLE:

D R R e e L +
| VERSION | COSMIC 87 | COSMIC 88 | COSMIC 88 | COSMIC 88.5 |
| | | OLD XSORT | NEW XSORT2 | AVAILABLE IN 89 |
|-oeeeneees J-mmreeeneneanes Jorreaeneennas |-=eeannenneaes |=eremnnneane e |
| MoouLe | cPU | cPil [ cPU | CcPU |
|-=reeeneee |-oeremneeanees |--eeesmeeeaeees Rt |oeemeeeaeeaes |
| Xcsa | 6.0 | 6.0 | 6.0 | 4.0 |
| 1FP1 | 2.0 | 2.0 | 2.0 | 1.0 |
| XSORT | 74610 | 8325.0 | 154.0 | 116.0 |
| 1FP |  1695.0 |  1559.0 | 177.0 | 88.0 |
L L R L L L E L LT T +

VAX TIMING, COSMIC MICRO-VAX 3600 VMS 5.0-2 -
(Runs were made after December 1988, 100K HICORE)

VAX NASTRAN 88.5 RELEASE (WITH DIAG 42 ON, USING OLD XSORT)

14:13:42
14:13:42
14:13:46
14:13:48
14:41:49
14:43:14
14:43:14

1.0
1.0
5.0
7.0
1688.0
1773.0
1773.0

ELAPSED
ELAPSED
ELAPSED
ELAPSED
ELAPSED
ELAPSED
ELAPSED

SEC
SEC
SEC
SEC
SEC
SEC
SEC

0.0 cPU
0.0 CPU
2.0 cPU
2.0 cpU
1273.0 CPU
1321.0 CPU
1321.0 CPU

VAX NASTRAN 88 RELEASE TIMING:

09:30:48
09:30:48
09:30:52
09:30:54
09:32:48
09:34:11
09:34:11

1.0
1.0
5.0
7.0
121.0
204.0
204.0

ELAPSED
ELAPSED
ELAPSED
ELAPSED
ELAPSED
ELAPSED
ELAPSED

SEC
SEC
SEC
SEC
SEC
SEC
SEC

1.0 CPU
1.0 cru
3.0 crU
4.0 CPU
62.0 CPU
129.0 cpPu
129.0 cPU

VAX NASTRAN 88.5 NEW VERSION TIMING:

09:37:22
09:37:22
09:37:26
09:37:28
09:39:06
09:39:53
09:39:53

1.0
1.0
5.0
7.0
105.0
152.0
152.0

ELAPSED
ELAPSED
ELAPSED
ELAPSED
ELAPSED
ELAPSED
ELAPSED

SEC
SEC
SEC
SEC
SEC
SEC
SEC

1.0 CPU
1.0 CPU
3.0 cPu
3.0 cPU
48.0 CPU
79.0 CPU
79.0 cPU

SEC
SEC
SEC
SEC
SEC
SEC
SEC

SEC
SEC
SEC
SEC
SEC
SEC
SEC

SEC
SEC
SEC
SEC
SEC
SEC
SEC

1710
XCSA
1FP1Y
XSOR
1FP

1FP

XGP1

1710
XCSA
IFP1
XSOR
1FP

IFpP

XGPI

TT10
XCSA
1FP1
XSOR
IFP

IFP

XGP1

| 1273.- 2.0=1271.

BEGN

END| 1321.-1273.=48.0

3.0- 1.0= 2.0
4.0- 3.0= 1.0
62.0- 4.0= 58.0

END| 129.0-62.0= 67.0

END|

11

3.0- 1.0= 2.0
3.0- 3.0= 0.0
48.0- 3.0= 45.0

79.0-48.0= 31.0

SEC
SEC
SEC

TIMING:

TIMING COMPUTATION
2.0- 0.0= 2.0
2.0- 2.0= 0.0

SEC

SEC
SEC
SEC

SEC

SEC
SEC
SEC

SEC




MICRO-VAX 3600 TIMING SUMMARY TABLE:

L L LR R R TR R L L L T T +
| VERSION | cOSMIC 88 | COSMIC 89 | COSMIC 88 | COSMIC 88.5 |
| | OLD XOSRT | OLD XSORT | NEW XSORT2 | AVAILABLE IN 89 |
. |--eememneacees |-eenremneaneas [+oeeenneennnes |--oeemeeanenees |
| MOOULE | cPU | cru | CPU | CcPU

[--eemmeeees R |-eeemeeseeanens R [-oeeemssnonennes !
| xcsa | | 2.0 | 2.0 | 2.0 |
| trP1 | N/A | 0.0 | 2.0 | 0.0 |
| XSORT ] | 1271.0 | 58.0 | 45.0

| 1FP | | 48.0 | 67.0 | 31.0 |
L Rl R e L L L AT L T +

1BM TIMINGS, MSFC IBM 3084 -

IBM NASTRAN 87 RELEASE TIMING:
. 0.3 ELAPSED  0.088 CPU 1710 | TIMING COMPUTATION
. 0.4 ELAPSED  0.088 CPU XCSA | 0.241-0.088= 0.153 SEC
b 1.4 ELAPSED 0.241 cpU 1FP1 | 0.330-0.241= 0.092 SEC
* 2.4 ELAPSED 0.330 cpu XSOR | 222.975-0.330=222.645 SEC
®  274.1 ELAPSED 222.975 CPU IFP BEGN |
®  407.4 ELAPSED 319.521 CPU IFP END |
[ ]

l

407.4 ELAPSED 319.522 CPU XGP

319.521-222.975= 96.546 SEC

IBM NASTRAN 88 RELEASE TIMING (WITH DIAG 42 ON, USING OLD XSORT):
0.9 ELAPSED  0.093 CPU 1110 |
0.9 ELAPSED  0.094 CPU XCSA | 0.227-0.094= 0.133 SEC
2.2 ELAPSED  0.227 CPU 1FP1 | 0.306-0.227= 0.079 SEC
3.2 ELAPSED 0.306 cpu XSOR | 222.801-0.306=222.495 SEC
252.6 ELAPSED 222.801 CPU IFP  BEGN |
339.5 ELAPSED 297.420 CPU IFP END |
339.5 ELAPSED 297.421 CPU XGP |

297.420-222.801= 74.619 SEC

. @& o » 0 o

18M NASTRAN 88 RELEASE TIMING (FIRST RUN):

0.5 ELAPSED 0.097 cpu TTIO0

0.5 ELAPSED 0.097 cPU XCSA

2.0 ELAPSED 0.215 CPU IFP1

3.6 ELAPSED 0.274 cPU XSOR
36.9 ELAPSED 8.766 CPU IFP  BEGN
58.6 ELAPSED  16.813 CPU IFP END
58.6 ELAPSED  16.813 CPU XGP

0.215-0.097= 0.118 SEC
0.274-0.215= 0.059 SEC
8.766-0.274= 8.492 SEC

16.813-8.766= 8.047 SEC

® & % o 0 % »

IBM NASTRAN 88 RELEASE TIMING (SECOND RUN):
0.9 ELAPSED 0.100 cPU T710

0.9 ELAPSED 0.100 cPU XCSA

2.3 ELAPSED 0.221 cpPu 1FP1

3.3 ELAPSED 0.282 cpu XSOR

31.9 ELAPSED 8.819 CPU IFP  BEGN
51.9 ELAPSED  16.984 CPU IFP END
51.9 ELAPSED  16.984 CPU XGP1I

0.221-0.100= 0.121 SEC
0.282-0.221= 0.061 SEC
8.819-0.282= 8.537 SEC

16.984-8.819= 8.165 SEC

* 0 % o % o o

IBM NASTRAN 88.5 RELEASE TIMING:
* 1.4 ELAPSED  0.118 CPU 1710
®  10.2 ELAPSED  0.540 CPU TTLP |

12



Wi

. 10.2 ELAPSED  0.580 CPU XCSA | 0.703-0.580= 0.123 SEC
* 12.9 ELAPSED  0.703 CPU 1FP1 | 0.742-0.703= 0.039 SEC
* 14.4 ELAPSED  0.742 CPU XSOR | 8.135-0.742= 7.393 SEC
4 75.0 ELAPSED  8.135 CPU IFP  BEGN |

¢  139.0 ELAPSED  14.040 CPU IFP END | 14.040-8.135= 5.905 SEC

*  139.0 ELAPSED  14.040 CPU XGP1 ]

IBM TIMING SUMMARY TABLE:

L L LR AL R LR L R L LR Ly L L L LR +
| VERSION | cosMIC 87 | cosMiCc 88 | cosMiCc 88 | cosMmic 88.5 |
| | | OLD XSORT | NEW XSORT2 | AVAILABLE IN 89 |
[-remeencees [Feemneaneeneses [eeeeaeeaeeess ||oeonenceneeees Jooearnnnneneas !
| MOODULE | CcPU | cPU | CPU* | cPU |
e |-reameeceeneas [-eremreseeaess [rremeraneaaees Jrrenreaneanneaes |
| xcsa ] 0.153 | 0.133 | 0.120 | 0.123 |
| 1FPY | 0.092 | 0.079 | 0.060 | 0.039 |
| XSoRT | 222.645 | 222.495 ] 8.515 | 7.393 ]
i | 96.546 | 74.619 | 8.106 | 5.905 |
DR L R L LR L L LR R X R e L +

* AVERAGE OF TWO RUNS.

UNIVAC TIMING TEST NOT AVAILABLE

CRAY TIMINGS, MODEL X-MP (COS), COURTESY OF RPK CORPORATION -
(Log files slightly edited)

CRAY NASTRAN 88 RELEASE TIMING (WITH DIAG 42 ON, USING OLD XSORT):

WALL CLOCK TOTAL INCREMENTAL MODULE
TIME CPU SECONDS CPU SECONDS & STATUS
10:17:29 0.018 0.000 1710 | TIMING COMPUTATION
10:17:31 0.349 0.331 TTLP |
10:17:31 0.439 0.090 XCSA | 0.618- 0.439= 0.179
1D TEN THOUSAND GRID POINTS TEST PROBLEM, OPEN CORE? (CRAY)
10:17:34 0.618 0.179 1FP1 | 0.644- 0.618= 0.026
TITLE = DATA INTENTIONALLY GENERATED NOT IN SORTED ORDER
10:17:34 0.644 0.027 XSOR | 108.788- 0.644=108.144
10:22:24 108.788 108.144 IFP BEGN
10:23:43 141.799 33.010 IFP  END | 141.799-108.788= 33.011
10:23:43 141.799 0.000 XGP1 |
CRAY NASTRAN 88 RELEASE TIMING:
WALL CLOCK TOTAL INCREMENTAL MODULE
TIME CPU SECONDS CPU SECONDS & STATUS
10:05:16 0.018 0.000 1110 [
10:05:19 0.346 0.328 TTLP |



10:05:19 0.435 0.090 XCSA | 0.609-0.435=0.174 SEC
ID  TEN THOUSAND GRID POINTS TEST PROBLEM, OPEN CORE? (CRAY)
10:05:23 0.609 0.174 1FP1 | 0.626-0.609=0.017 SEC
TITLE = DATA INTENTIONALLY GENERATED NOT IN SORTED ORDER
10:05:23 0.626 0.017 XSOR | 5.539-0.626=4.913 SEC
10:05:41 5.539 4.913 IFP  BEGN
10:05:57 10.575 5.035 IFP END | 10.575-5.539=5.036 SEC
10:05:57 10.575 0.000 XGP1 |
CRAY TIMING SUMMARY TABLE:
L R L R Y L R R L R L LR Ry 23 +
| VERSION | COSMIC 87 | COSMIC 88 | COSMIC 88 | COSMIC 88.5 ]
| ] | OLD XSORT | NEW XSORTZ | AVAILABLE IN 89 |
|---eoeeeees |-=eremneeeaes Rt [-oesemeeenees [--oeenrennaneas l
| moouLe | CcPU | ] | cru | cPU |
[o-emeenes |-oemeeene e |-oeeeneeaeeeees Joeeeneacanee |--eeanenneeenees |
| xcsa | | 0.179 | 0.174 |
| 1FP1 | N/A | 0.026 ] 0.017 | N/A ]
| XSORT | | 108.144 | 4.913 | |
| IFP } ] 33.011 | 5.036 ] |
L e L R L e i Rl R R LT +
CDC TIMINGS, CYBER 855 AT LRC, COURTESY OF JOE WALZ -
CDC NASTRAN 88 RELEASE TIMING WITH DIAG 42 ON (OLD XSORT):
WALL ELAPSED cPU
cLock SECONDS  SECONDS MODULE
18.50.41. 3.0 1.245 TTIO ]  TIMING COMPUTATION
18.50.57. 19.0 5.698 TTLP |
18.50.58. 20.0 6.289 XCSA | 10.532- 6.289=  4.243 SEC
18.51.05. 27.0 10.532 IfP1 | 11.876- 10.532=  1.344 SEC
18.51.07.  29.0 11.876 XSOR | 650.388- 11.876= 638.512 SEC
19.16.03. 1525.0  650.388 IFP BEG |
20.27.41. 5823.0 3083.137 IFP END | 3083.137-650.388=2432.749 SEC
20.27.41. 5823.0 3083.141 XPGl |
CDC NASTRAN B8 RELEASE TIMING (NEW XSORT2):
08.26.25. 3.0 1.278 TT10 |
08.26.40. 18.0 5.895 TTLP |
08.26.41.  19.0 6.5017 XCSA ] 9.730- 6.501= 3.229 SEC
08.26.45. 23.0 9.730 IFP1 | 10.422- 9.730= 0.692 SEC
08.26.47. 25.0 10.422 XSOR |  695.797- 10.422= 685.375 SEC
08.45.31. 1149.0  695.797 1FP BEGN |
09.01.24. 2102.0 1335.940 IFP END | 1335.940-695.797= 640.143 SEC
09.01.24. 2102.0 1335.944 XGPI |
CDC NASTRAN BB.5 RELEASE TIMING (TEST RUN BY G.CHAN):
03.10.50. 1.0 .184 TTIO I
03.10.55. 6.0 4.541 TTLP |
03.10.56. 7.0 5.127 XCSA | 8.341- 6.501= 1.840 SEC
14
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03.10.58. 9.0 8.341 IFP1
03.10.59. 10.0 8.615 XSOR

[ 8.615- B8.341= 0.274 SEC

I
03.15.55. 306.0  408.704 IFP BEGN |

l

|

408.704- 8.615= 400.029 SEC

03.19.24. 515.0 708.021 IFP END 708.021-408.704= 299.317 SEC

03.19.24. 515.0 708.025 XGPI

CDC TIMING SUMMARY TABLE:

e e e P L R LR Ll +
| VERSION | COSMIC 88 | cosMic 88 | cosMIC 88.5 |
| |  OLD XSORT [ NEW XSORT2 |  NEW XSORTZ |
|--mnmneeeas . |--eseaoneaneees |noenmmeoenees |
|  MODULE | ELAPS CPU | ELAPS cPU | ELAPS CPU |
[oreeneeeaees [-mresnnreanneaes |oreenreaneaees R !
| xcsa | 7 642 | & 3.2 | 1 1.8 |
| FP1 | 2 13 | 2 0.7 | 2 o0.27 |
|  XSORT | 1493 638.5 | 1124 685.4 | 296 400.03 |
| 1FP | 4298 2432.7 | 953 &40.1 | 209 299.32 |
[-oeemneeaees [-oeremmresaennas |oreeneeeanneanes |-oremereaneeanee !
] Tor.cru | 3141.4 | 1337.8 | 713.9 |
| *sruts | 4259 | 1839 | 976 |
O e e e L L L L L LR LR il +

* CDC COMPUTER CHARGE 1S BASED ON SRU UNITS.
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DMAP MODULE DESCRIPTIONS
VI. PARAMETERS :

1. The meanings of the first three parameter values (P1, P2, P3) are the same as those
described for INPUTT2 Module, except (1) values -5 through -8 for Pl are not
available, and a new P1=-9 to rewind input tape; and (2) the user file code and the
FORTRAN file name are given below. (The default value for P2 is 16, or 12 for a CDC
computer.)

FORTRAN LOGICAL

UNIT, P2 USER FILE CODE
11 UT1 (CDC only)
12 UT2 (CDC only)
14 INPT (UNIVAC,VAX)
15 INP1 (A1
16 INP2 machines
: except
23 INPS CDC)
24 INPT (IBM only)

2. The fourth parameter (P4) for this module is used to specify whether the user tape
was written with formats (P4=1), or binary tape (P4=0). Default is P4=0.

VII.  METHODS:

Since INPUTT5 is intended to be a companion module to OUTPUTS, it is therefore suggested
that the user should refer to the Methods and Remarks sections of the OUTPUTS module for
input tape structure.

Subroutine INPTTS is the main driver for the INPUTT5 module. Its primary function is to
read matrix data blocks from the user ijnput tape. When a table data block is encountered,
INPTTS calls subroutine TABLEV to process the data. The user input tape always begins
with a tape ID record which tells when the tape was generated, on what machine, tape
identification, formatted or unformatted tape, and NASTRAN system buffer size. This tape
ID record can be skipped, or read by the following FORTRAN code:

INTEGER TAPEID(2),MACHIN(2),DATE(3),BUFSIZ,P4X
READ (TAPE ) TAPEID,MACHIN,DATE,BUFSIZ,P4X or
READ (TAPE,10) TAPEID,MACHIN,DATE,BUFSIZ,P4X

10 FORMAT (2A4,2A4,318,18,18)

17



II.

III.

Iv.

DIRECT MATRIX ABSTRACTION

NAME : INPUTTS (Reads A User-Written FORTRAN File, Formatted or Unformatted)
(The companion module is OUTPUT5)

PURPOSE: Recovers up to five data blocks from a FORTRAN-written user file, formatted or
unformatted. (The FORTRAN file may reside either on physical tape or on a mass storage
device.) This file may be written either by a user-written FORTRAN program or by the
companion module OUTPUT5. The Programmers’ Manual describes the format of the user tape

which must be written in order to be readable by INPUTTS. The unformatted binary tape can
only be read by a computer of the same manufacturer as the one that created the tape. The
formatted tape can be created and read by different computers (CDC, UNIVAC, IBM, and
VAX). The data blocks to be recovered can be matrices, tables, or both.

DMAP CALLING SEQUENCE:

INPUTTS  /DB1,DB2,DB3,DB4,DB5/C,N,P1/C,N,P2/C,N,P3/C,N,P4 §

INPUTTS is intended to have the same logical action as the FORTRAN User File module
INPUTT2 and the GINO User File module INPUTTI except for formatted tape. It is therefore
suggested that the examples shown under modules INPUTT2 and OUTPUT! be used for OUTPUTS
as well, excepting the addition of the P4 parameter.

INPUT DATA BLOCKS:

Input data blocks are not used in this module call statement.

QUTPUT DATA BLOCKS:

DBi are data blocks which will be recovered from one of the NASTRAN tape files INP1, INP2
through INPS (UTI, UT2 for CDC computer). Any or all of the output data blocks may be
purged. Only non-purged data blocks will be taken from the user tape. The data blocks
will be taken sequentially from the tape starting from a position determined by the value
of the first parameter. Note that any purged output file will cause skipping of a
corresponding file in the user input tape. The output data block sequence A,B,,, is not
equivalent to ,A,,B, or ,,,A,B.

18



DIRECT MATRIX ABSTRACTION

UNFORMATTED TAPE:
The rest of the unformatted tape can be read by the following FORTRAN code:

READ (TAPE) L,J,K, (ARRAY(I),I=J,K)

where L is a control word;
L = 0, ARRAY contains matrix (or table) header record
=+n, ARRAY contains data for the nth column of the matrix
=-1, ARRAY contains end of matrix record.
The ARRAY below J and above K are zeros.

The matrix header record and the table header record (L=0) differ only on the 5th and 6th
words of ARRAY. If both words are zeros, it is a table header, and the entire table data
can be read by:

READ (TAPE) L, (ARRAY(I),I=1,L)

where ARRAY may contain integers, BCD words, and real single and double precision
numbers.

Table data ends with a (1,0.0) record.

FORMATTED TAPE:
For matrix data, the rest of the formatted tape can be read by:

READ (TAPE,20) L,J,K,(ARRAY(I),I=J,K)
20 FORMAT (318,/,(10E13.6)) (for single precision data) or
20 FORMAT (318,/,(5D26.17)) (for double precision data)

where the control words L, J, and K are the same as in the unformatted case, and th
data type, single or double precision, is determined already by the 4th word of the
matrix trailer embedded in the matrix header record. (See Remark 5 of OUTPUTS
module)

For table data, the rest of the formatted tape can be read by:
CHARACTER*5 ARRAY(500)
READ (TAPE,30) J,{ARRAY(I),I=1,J)

30 FORMAT (I10,24A5,/,(26A5))

Motice the formatted record was written in the units of 5-byte character words, and the
first byte of each unit indicates what data type follows. The following table summarizes
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VIII.

VIII.

DMAP MODULE DESCRIPTIONS

the method to decode the character data in ARRAY.

DATA TYPE
FIRST BYTE OF ARRAY UNITS USED FORMAT

A BCD word 1 A4
‘1 Integer 2 19
'R’ Real, s.p. 3 E14.7
'p’ Real, d.p. 3 D14.7
‘X’ Filler 1 4X

Table data ends with a (1,’0’) record.

EXAMPLES:

COPY KJI AND KGG TO INP1 (UNIT 15), SEQUENTIAL FORMATTED TAPE

OUTPUTS KJI,KGG,,,//-1/15/*MYTAPE*/1 §

RECOVER THE 2 FILES FROM INP1 (UNIT 15) AND MAKE THEM NASTRAN GINO FILES
INPUTTS /OKJI1,0KGG,,,/-1/15/*MYTAPE*/1 §

REMARKS :

1.

2.

Since open core is used to receive data from user input tape, INPUTTS can handle all
kinds and all sizes of data blocks.

The UNIVAC and VAX users should read the Important Note at the end of the description
of the INPUTT2 module.

20
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II.

IIT.

DIRECT MATRIX ABSTRACTION

NAME : OUTPUTS (Creates A User-Written FORTRAN File, Formatted or Unformatted)
(The companion module is INPUTTS)

PURPOSE: Writes up to five NASTRAN GINO data blocks to a user FORTRAN file using a
FORTRAN write, formatted or unformatted. (The FORTRAN file may reside either on physical
tape or on a mass storage device.) If the data block contains matrix data, each matrix
column is first unpacked, then written out to the user file in unpacked form. If the data
block contains table data and formatted records are requested, a dynamic scheme is used
to generate the appropriate format for the FORTRAN write. Coded symbols are also included
in the formatted table data, so that they can be read back into the NASTRAN system by the
INPUTTS module, or by a user written FORTRAN program. Mixed matrix and table data blocks
are allowed in one QUTPUTS operation.

The unformatted (binary) user file is intended to be used later in the same computer, or
a similar computer of the same manufacturer. The formatted file can be generated in one
computer system and used later in another, with complete freedom in operating systems and
computer manufacturers. The formatted file can be viewed and edited by the use of the
system editor. The records contain 132 characters (or less) per line.

The parameters in OUTPUTS are modeled after QUTPUT2. They can be used to direct which
user output file (INP1, INP2, UT] etc.) is to be used, to write formatted or unformatted
records, to position the output file prior to writing, and to place an End-Of-File mark
at the end of the tape. Multiple calls are allowed. The user is cautioned to be careful
when positioning the user output file with OUTPUTS, since he may inadvertently destroy
information through improper positioning. Even though no data blocks are written, an EOF
will be written at the completion of each call, which has the effect of destroying
anything on the tape forward of the current position.

DMAP CALLING SEQUENCE:

OUTPUTS DBI1,DB2,DB3,DB4,DBS//C,N,P1/C,N,P2/C,N,P3/C,N,P4/C,N,T1/C,N, T2/
C,N,T3/...C,N,T10 §

OQUTPUTS is intended to have the same logical action as the FORTRAN User File module
OUTPUT2 and the GINO User File module OUTPUT1, except for formatted tape. It is therefore
suggested that the examples shown under modules QUTPUT2 and OUTPUT1 be used for OUTPUTS
as well, excepting the addition of the P4 parameter. A1l samples should be ended with a
call to OUTPUT5 with P1=-9. '



Iv.

VI.

DMAP MODULE DESCRIPTIONS ORIGINAL PAGE IS

OF POOR QUALITY
INPUT DATA BLOCKS:

DBi - Any data block which the user desires to be written on one of the NASTRAN FORTRAN
user files INPT, INPi, INP2,..., INP9. Any or all of the input data blocks may be
purged. Only unpurged data blocks will be placed on the user file.

QUTPUT DATA_BLOCKS: None.

PARAMETERS:

1. The meanings of the first three parameter values (P1, P2, P3) are the same as those
described for the OUTPUT2 Module, except the user file code and the FORTRAN file name
are given below. (The default value for P2 is 15, or 11 for a CDC machine.)

FORTRAN LOGICAL

UNIT, P2 USER FILE CODE
11 UT1 (CDC only)
12 UT2 (CDC onily)
14 INPT (UNIVAC,VAX)
15 INP1 (AN
16 INP2 machines
: except
23 INP9  CDC)
24 INPT (IBM only)

2. The fourth parameter (P4) for this module is used to specify whether the user output

tape is to be written formatted (P4=1), or unformatted (P4=0, default). Unless the
tape is to be used later by a different computer or a different operating system, the
unformatted tape should be used.

3. The 10 Ti parameters (T1, T2, T3,..., T10) are used only for table data blocks. They

are used only when a formatted output file is requested (P4=1), and the user wants to
override the automatic format generation of the OUTPUTS module. (Default - all Ti are
zeros)

The following rules are used to create user-directed output format:
a. 9 digits must be specified on a Ti parameter. Zero fill if necessary.

b. The digits are continued among the Ti parameters; therefore up to 90 digits are
allowed. The digits are arranged from left to right. First digit specifies the
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VII.

DIRECT MATRIX ABSTRACTION

format of the first data word. Second, third, fourth, etc., specify the second,
third, fourth data words, etc. (See exception below using digits 5 through 9)
¢. The values of digits and their meanings are -
0, format not specified; whatever format OUTPUT5 generated will be used,
1, specifies integer format,
2, specifies single precision real format,
3, specifies BCD format,
4, specifies double precision real format, and
5-9, specify multiple format of the same type indicated by next digit, which
must be 0 through 4.
e.g. 061352000 is same as 0111111322222000

METHODS :

The methods used to transfer data from NASTRAN GINO data blocks to the user output tape
(or file) depend on whether
a. the data blocks are matrix or table,
b. formatted or unformatted output tape is requested, and
c. data contains single precision real numbers or double precision numbers, or both.
(Table data block only)

The methods used must also guarantee continuity of mixed matrix and table types of block
data on the user output tape. That is, the mixed data must be able to be read back into
the NASTRAN system, or processed by a user’s program, by a common switching mechanism.

OUTPUTS treats any input data block as matrix if the 5th and the 6th words (maximum non-
zero matrix column length and matrix density) are both non-zero. Otherwise, the data
block is table. This method is, however, not perfect. Most table data blocks generated by
LINK1, such as GEOM1, GEOM2, EPT, MPT, etc. may have non-zero 5th and 6th trailer words.

UNFORMATTED TAPE -

The data transfer from a GINO file to an unformatted tape is comparatively simple. The
difference in processing matrix data and table data lies in a single key word of the
length of each record.

MATRIX - A matrix header record that includes the original GINO trailer is written to
user tape first. Thus the total number of records (equal number of columns) and the
length of each record (equal number of rows) are known. Each column of the matrix is
unpacked and copied out to the user tape, except that the leading and trailing zeros are
not copied out. The data is either single precision or double precision real numbers.
Each output record is also preceded by three control words. The following FORTRAN code
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can read one such column array (the ICOL matrix column):
READ (TAPE) ICOL,JB,JE, (ARRAY(J),JB,JE)

TABLE - A table header record, with the 5th and 6th trailer words set to zeros, is also
written out to indicate the following records are of table type. Records from the input
GINO data block are read and transferred to user tape directly, except each output record
is preceded by one additional word, which tells the total length of this current record.
The following FORTRAN code can be used to read one such record:

READ (TAPE) LENGTH, (ARRAY(J),J=1,LENGTH)

FORMATTED TAPE -

Most of the attributes of unformatted tape apply equally well to the formatted tape,
except tapes are written with FORTRAN formats.

MATRIX - A1l integers are written in I8 format, BCD in A4 format, single precision real
numbers in E13.6, and double precision numbers in D26.17. Only the matrix header record
can have all four data types; the matrix column records contain only real numbers. The
following FORTRAN code reads the header record and/or a matrix column:

WRITE (TAPE,10) I,J,K,(A(L),L=J,K)
10 FORMAT (318,/,(10E13.6 )) (for single precision data) or
10 FORMAT (318,/,( 5D26.17)) (for double precision data)

TABLE - A1l integers are written in ('1’,19) format, BCD in ('/’,A4) format, single
precision real numbers in (‘R’,E14.7) format, and double precision numbers in
(‘D’,E14.7). Notice that 5 bytes are used for BCD, 10 bytes for integer, and 15 bytes for
real numbers, single or double precision. NASTRAN table data blocks often contain
integers, BCD, and single and double precision real numbers in a mixed fashion. Each
table record may have a different table length. To write formatted NASTRAN tables and to
read them back later present a real challenge in FORTRAN programming. The OUTPUTS module
calls subroutine TABLES to process table data, and the INPUTT5 module calls subroutine
TABLEV to read them back.

TABLES generates dynamically a unit of format - ('1,19), (’/',A4), etc. - to match each
data type - integer, BCD, etc. When the synthesized format reaches 130 characters (or
bytes), a line of data is written out. A table therefore may require multiple lines (each
line physically is a record). In addition, the first word of the first line contains the
total length of this table. The following FORTRAN code can be used to read back a table

25



DIRECT MATRIX ABSTRACTION
from the user tape into 5-character ARRAY:

CHARACTER*S ARRAY (500)
READ (TAPE,20) LENGTH, (ARRAY(J),J=1,LENGTH)
20 FORMAT (110,24A5,/,(26A5))

The first byte of each 5-character ARRAY (which is I,/,R, or D) can be used to convert
the 5-, 10-, or 15-character data back to BCD, integer, or real numbers (single or double
precision). For more details, see INPUTT5 module and INPTTS5 FORTRAN source subroutine.

TABLES calls subroutine NUMTYP to determine the data type, then issue the corresponding
format for output. NUMTYP, however, is not one hundred percent foolproof. One in five or
ten thousand times, NUMTYP may err in determining exactly the data type. Also, when
TABLES passes a computer word to NUMTYP with no other information, NUMTYP cannot tell if
it is part of a double precision word, or if it is a single precision word. (In this
case, single precision word is assumed.) Finally, NUMTYP cannot distinguish between
integer zero and real number zero. (A period may be important in the output format).
TABLES therefore may generate the wrong format due to NUMTYP’s internal limitations.

In case that TABLES does produce erroneous format, the user can override the automatic
format generation by the Ti parameters which supply OUTPUTS the exact format to use, in a
condensed, coded form. 90 {or more if 5, 6, 7, 8, or 9 are used in the Ti specification)
unit formats can be specified.

The following example illustrates the use of the Ti parameter.

Data on table:
3 4 3.4 S5.0E-3 TESTING .6D+7 9 G 3.2 8 0. 0 41213 14 15 28 61 88
14 44 .7D+7

Ti specification:
T1=112233413, T2=212516140 or
T1=604000025, T2=060400000 (7th and 24th words are d.p.
and 12th word is real)
NOTE - 2 BCD words in 'TESTING’,
all others are 1 computer word per data entry.
T2, the last Ti used here, must fi11 up with zeros to make up a 9-digit word.

When viewed with a system editor, the above example looks like this (first line):
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371 31 4R 5.0000000E-3/TEST/ING D 6.00000000+07 etc.
hemmmaean B S LT B R L T
Ist 2nd 3rd 4th 5th data etc.

The first 37 indicates there are 37 5-byte words in this record.
the '++----' line and the ’1st,2nd...’ line are added here for video purposes.

Since the formatted data line may not end exactly at 130 bytes, one or two fillers of the
form ‘X’ and four blanks may appear at the end of an output line.

The matrix data blocks are handled by the main routine OUTPTS. OUTPT5 calls TABLES only
when the former encounters a table data block input.

VIII. EXAMPLES:

$ Copy KJI, KGG, and CASECC to INP2 (unit 16), sequential formatted tape
OUTPUTS KJI,KGG,CASECC,,//-1/16/*MYTAPE*/1 §

$ Recover the files from INP2 (unit 16) and make them NASTRAN GINO files
INPUTTS /OKJI,0KGG,QCASECC,,/-1/16/*MYTAPE*/1 $

IX. REMARKS:

1. Formatted tape (P4=1) takes a lTonger time and more space to write than the
unformatted tape. Unless the tape is intended to be used later by a different
computer, unformatted tape should be selected (P4=0).

2. The OUTPUTS ’‘records’ are written to tape ’identically’ with both formatted and
unformatted FORTRAN write commands. The matrix header and the table header can be
read ’identically’ without prior knowledge of what type of data, matrix or table, is

coming up next.

3. A1l matrix records are written to tape in a standard way, except the first matrix
header record.

A1l table records are written to tape in a standard way, including table header
record and the last ending record.

4. The first tape header record is composed of 9 words as shown below:
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RECORD WORD CONTENTS P4=0 Pa=1
0 1,2 Tapeid (=P2) 2*BCD 2A4
3,4 Machine (CDC,UNIVAC,IBM,VAX) 2*BCD 274

5-7 Date 3*INT 318

8 System BUFFER SIZE INT 18

9 P4 used in creating tape (0,1) INT 18

This remark and the next one deal only with matrix data blocks.

Three types of data records follow the header record, or the EOF record of a previous
data block. They are:

a. Matrix header record
b. Matrix column data record
c. EOF record

These records are written to tape in a standard procedure. Three control words are
written out first, followed by the actual data. Binary FORTRAN write is used in
unformatted tape (P4=0), and each logical record holds a complete set of data. The
following FORTRAN statement is used to write the entire data record:

WRITE (TAPE) I,J,K,(A(L),L=J,K)

For formatted tape, multiple logical records are actually written for each compiete
set of data. The following FORTRAN statements are used to write the entire data
record:

WRITE (TAPE,30) I,J,K,(A(L),L=J,K)
30 FORMAT (318,/,(10E13.6)) (for single precision data) or
30 FORMAT (318,/,(5D26.17)) (for double precision data)

In the above WRITE statements, the value of I is used to indicate the type of record
Just read.

VALUE OF 1 TYPE OF RECORD
0 Matrix header record
+n Nth matrix column data
-1 End-of-matrix

The column data is written to tape from the first non-zero row position (J) to the
last non-zero row position (K). The following table describes the contents of the
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data records written to tape by the OUTPUTS module.

RECORD+ WORD CONTENTS P4=0 P4=1
1 Matrix header record -

1 ] INT 18

2,3 1,1 2*INT 218

4 0.0 F.P. E13.6 or
D26.17
5-10 Matrix trailer 6*INT 618
(Col,Row,Form,Type,Max,Density)

11,12 DMAP Name of DB1 2*BCD 2A4

2 1 1 (First matrix column) INT 18

2 Row pos. of first non-zero elem. INT 18

3 Row pos. of last non-zero elem. INT 18

4-W First banded column data 6*INT (**)

(W=Word3-Word2)

3 1 2 (Second matrix column) INT 18 »
2 Row pos. of first non-zero elem. INT 18
Row pos. of last non-zero elem. INT 18
4-W Second banded column data 6*INT (**)
4 1 3 (Third matrix column) INT 18
2 Row pos. of first non-zero elem. INT 18
Row pos. of last non-zero elem. INT 18
4-W Third banded column data 6*INT (**)
L 1 L-1 (last matrix column) INT 18
Row pos. of first non-zero elem. INT 18
Row pos. of last non-zero elem. INT 18
4-W Last banded column data 6*INT {(**)
L+1 ] -1 INT 18
2,3 1,1 2*INT 218
4 0.0 F.P. D26.17

(Repeat records 1 through L+1 for next matrix data block.)

Where (**) is (10E13.6) or (5026.17).
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(+RECORD No. does not correspond one to one to the actual physical
record No.)

A record of (n,1,1,0.0) is written out for a null Nth column.
This remark deals only with table data blocks.

Three types of data record follow the header record, or an EOF record of previous
data block. They are:

a. Table header record
b. Record(s) of a table {a table data block can have more than one table record)
¢. EOF record.

The table header record has a general structure as in the standard procedure for the
matrix records, except that the 5th and 6th words of the matrix trailer section are
zeros.

The table record was discussed in great detail in the METHOD section for both
format¢ted and unformatted output tape. A table record is created for each table in
the input data block, and no skipping forward or backward is allowed on the input
file.

If double precision data are encountered in a table record, the double precision data
will be truncated to single precision, but the format of (’'D’,E14.7) will be used.
(INPUTTS will re-generate the data back to their double precision status.)

An End-Of-File record in the form of ‘-1 1 1 0.0D+0’ ends the table record output.

Since the formatted tape (P4=1) is intended to be used in different computers, the
QUTPUTS module appends no system control word(s) to the FORTRAN written formatted
records. The output tape must be unlabeled, fixed block size with record size of 132
characters, and ANSI unpacked character data set. The specification of the tape is
either internally specified (UNIVAC) by a FORTRAN open statement, or uses system
default tape specification (IBM and VAX). The CDC user must specify the output tape
externally by the appropriate FILE, LABEL, or REQUEST cards: -

For example:
LABEL, TAPE,NT,D=1200,CV=AS,F=S,LB=KU,PO=W.
FILE, TAPE,MRL=132,MBL=132,RT=F,BT=C.

Since open core is used in data processing, the OUTPUTS module is capable of handling
all kinds and all sizes of input data blocks.

30



APPENDIX D
USERS’ MANUAL UPDATE PAGES FOR PARAMD MODULE

31



I1.

I1.

Iv.

VI.

DIRECT MATRIX ABSTRACTION

NAME: PARAMD (Parameter Processor - Double Precision)

PURPOSE: To perform specified arithmetic, lTogical, and cenversion operations on double
precision real or double precision complex parameters.

DMAP CALLING SEQUENCE:

PARAMD // C,N,OP / V,N,0UTD / V,N,IND1 / V,N,IND2 / V,N,OUTC / V,N,INC1 / V,N,INC2 /
. V,N,FLAG §

INPUT DATA BLOCKS: None.

OUTPUT DATA BLOCKS:

None.

PARAMETERS:

op - Input-BCD operation code from the table below - no default
ouTD - Output D.P.-default = 0.0D+0

IND1 - Input-D.P.-default = 0.0D+0

IND2 - Input-D.P.-default = 0.0D+0

ouTC - Output-D.P.-complex-default = (0.00+0, 0.0D+0)

INC1 - Input -D.P.-complex-default = (0.0D+0, 0.0D+0)

INC2 - Input -D.P.-complex-default = (0.0D+0, 0.0D+0)

FLAG - Output/output-integer-default= 0 (See Remark 6)

The values of parameters are dependent upon OP as shown in the table described in PARAMR
module (pages 5.5-40 and 41). In addition, a new OP operation code is added:

op OUTPUTS

............................................................................

ERR If Flag is set to 0 (or by default), NASTRAN system NOGO fiag (the 3rd
word of /SYSTEM/) is set to integer zero unconditionally.
If FLAG is set to non-zero by user, NASTRAN job will terminate if any
preceding PARAMD (or PARAMR) has non-fatal error(s).
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REMARKS :

1. A1l parameters, except OP, must be "V" type. Default parameter values will be used in
case of error. Error in input parameter(s) would cause output parameter(s) to pick up
the original default value(s).

2. A1l input errors are non-fatal, with error messages printed.
3. PARAMD does its own SAVE; therefore, a SAVE is not needed following the module.

4, For OP = DIV or OP = DIVC, the output is zero if the denominator is zero, and FLAG is
set to +1.

5. For OP = SIN, OP = COS or OP = TAN, the input must be expressed in radians.

6. The default value of FLAG is zero as stated in the Programmer’s manual. A11 NASTRAN
releases prior to 1989 actually used a +1 instead of 0. The case where FLAG = -1, was
not affected.

7. Remarks 1, 2, and 6 also apply to the PARAMR module. The new ERR operation code is
also available in PARAMR.

EXAMPLES :

PARAMR //*ERR* §

PARAMR //*ADD* JV,N,RISP4 /V,N,R1  /V,N,SP4
PARAMR //*SUB* JV,N,RISP4 /V,N,R1  /V,N,SP4
PARAMR //*ABS* /V,N,ABSR1 /V,N,R1

PARAMR //*SQRT*  /V,N,SQTR1 /V,N,ABSRI

PARAMR //*MPYC* ////V,N,CMPY  /V,N,SCPLX /V,N,CS1
PARAMR //*COMPLEX*//V,N,R1 JV,N,SP4  /V,N,0UTC
PARAMR //*LE*  //V,N,Rl /V,N,SP&////N,N,LEFLG
PARAMD //*MPY*  /V,N,RDPDP /V,N,RDPX /V,N,RDPX
PARAMD //*DIV*  /V,N,DP4X  /V,N,DP4  /V,N,RDPX
PARAMD //*EXP*  /V,N,EXPX /V,N,DP4  /V,N,RDP
PARAMD //*CONJ* ////V,N,CONJX /V,N,CDP4

PARAMD //*EQ*  //V,N,EXPX  /V,N,DP4////V,N,EQFLG §
PARAMD //*DIVC* ////V,N,DIVCX /C,Y,DCPLX4/V,N,CDP4 §
PARAMD //*ERR* //// // /CN, 1 $
PRTPARM // 0 $

P S SR S SRV RN R R LR R 4
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NAME: SCALAR (Converts matrix element to parameter)

PURPQSE: To extract a specified element from a matrix for use as a parameter.

DMAP CALLING SEQUENCE:

SCALAR DB // C,N,ROW/C,N,COL/V,N,RSP/V,N,RDP/V,N,CSX/V,N,CDX §

INPUT DATA BLOCKS:

DB - may be any type of matrix (single precision or double precision, real or complex)

OUTPUT DATA BLOCKS:  None.

PARAMETERS :

ROW - Row number of element to be extracted from [DB]. Integer input, default= 1

COL - Column identification of element. Integer inpyt, default= 1

RSP - Output, value of element(ROW,COL) in single precision real, default= 0.0

ROP - OQutput, value of element(ROW,COL) in double precision real, default= 0.D+0

CSX - Output, value of element(ROW,COL) in single precision complex, default= (0.,0.)

CDX - OQutput, value of element(ROW,COL) in single precision complex, default=
(0.D+0,0.D+0)

REMARKS :

1. RSP, RDP, CSX and CDX will be set by the module whenever they are present and of the
"V" type parameters. The parameters will be printed out in their respective formats
according to their precision types. Warning message will be printed if type mismatch
occurs or element specified is out of matrix range.
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-]

2. After execution, the parameter value will be delivered to NASTRAN’s executive VPS
table as a numerical value in the form specified by any of the parameters RSP, RDP,
CSX, or CDX. The output parameters can also be printed by the PRTPRM module which
carries normally more digits.

3. SCALAR does its own SAVE; therefore, a SAVE is not needed following the module. There
is no save for any invalid parameter, and the default value remains unchanged.

4. If [DB] is purged, all parameter default values remain unchanged.

5. A1l the output parameters can be printed out by PRTPRM module.

6. See PARAML for similar capability.

EXAMPLES:

Obtain the value of the element in column 8 and row 2 of the matrix KLL.

SCALAR KLL//C,N,2/C,N,8 /V,N,S1 §
SCALAR KLL//C,N,2/C,N,8 //V,N,D1/V,N,S2/V,N,D2 §

The output parameters give the following results:

S1 = KLL(2,8), in single precision real,

D1 = KLL(2,8), in double precision real,

S2 = KLL(2,8), in single precision complex expression, and
D2 = KLL(2,8), in double precision complex expression.
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NAME : PARAML (Abstract parameters from a list)

PURPOSE: To convert an element from a GINO matrix or table uata block, to a legitimate
NASTRAN parameter, or parameters

DMAP CALLING SEQUENCE:

PARAML DB // C,N,OP / V,N,P1 / V,N,P2 / V,N,RSP/ V,N,INT/ V,N,RDP/ V,N,BCD/ V,N,CSX/
V,N,CDX §

INPUT DATA BLOCKS:

DB - Any GINO data block file (table or matrix, single precision or double precision,
real or complex)

OUTPUT DATA BLOCKS: None

PARAMETERS:

oP - One of the following key words, BCD input, no default. ‘MATRIX’, ‘NULL’,
"PRESENCE’, ’TRAILER’, ’‘TABLEl’, ‘TABLE2’, or ’TABLE4’

P1,P2 - Input, see Remark 4 below, integer input, default= 1,1

P2 - Output, integer (only in OP=TRAILER)

RSP - OQutput, single precision real number, default= 0.0

INT - Output, integer number, default= 0

RDP - Output, double precision real number, default= 0.D+0

BCD - Output, two BCD words in 2A4 format, default= (VOID)

CSX - Output, single precision complex number, default= (0.,0.)
cbx - Output, double precision complex, default= (0.0+0,0.D+0)
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REMARKS :

RSP, INT, RDP, BCD, CSX and CDX will be set by the module whenever they are present
and of the "V" type parameters. The parameters will be printed out in their
respective formats according to their precision types. Warning message will be
printed if type mismatch occurs or end-of-record is encountered.

After execution, the parameter value will be delivered to NASTRAN’s executive VPS
table as a numerical value in the form specified by any one or some of the parameters
RSP, RDP, CSX, CDX, INT, or BCD (4 BCD characters per word, the rest of the word
blank filled).

PARAML does its own SAVE; therefore, a SAVE is not needed following the module.
Invalid parameter due to type mismatch or EOR encountered, is not saved and the
default value remains.

P1 and P2 control the location in the data block of the element to be selected. The
meaning of Pl and P2 depend on OP selection as explained in Remarks 5 through 9.

If OP = TABLEi (where i=1,2,0R 4), P1 is the record number and P2 is the word
position of the target element in DB. Word position is based on computer word count

(1 word per integer or s.p.real, 2 words per d.p.real or s.p.complex, and 4 words per

d.p.complex). The table data from record P1 and word P2 (or word P2 plus more) will
be delivered to the VPS table as a numerical value in the form specified.

If OP = TABLE1l, one data word from P2 word position, record Pl, will be used to form
the output parameter.

If OP = TABLE2, two data words from P2 and P2+1, record P1, will be used.
If OP = TABLE4, four words from P2, P2+1, P2+2, and P2+3, record Pl, will be used.
Since table data block DB can contain mixed types of data, the user must know ahead

of time what the original data type is, and select TABLEl, TABLEZ2, or TABLE4
accordingly.
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For example,
the data in P2, p2+1, P2+2, and P2+3 are a, b, c, d, and the output parameter
request is d.p.complex CDX,
TABLE1 gives CDX = (a.D+0, 0.D+0)
TABLE2 gives CDX = (a.D+0, b.D+0)
TABLE4 gives CDX = (e.D+0, f.D+0)
where e is a d.p.real number formed by the union of a and b,
and f, by the union of ¢ and d.

If OP = MATRIX, Pl is the row number and P2 is the column number of the matrix in
[DB] to be read. The matrix element of (ROW,COL) will be delivered to VPS as a
numerical value in the form specified by one or more of the parameters RSP, RDP, CSX,
or CDX. Requests for CSX or CDX from a real matrix will assign the value of (ROW,COL)
to the real part and zero to the imaginary part. The requested output parameter(s) ‘
are set to zero(s) and a warning message is issued if:

{1) P1 and/or P2 exceed the matrix order,

(2) requests for RSP and RDP from a complex matrix,

(3) requests for INT and BCD from [DB],
and the invalid output parameter(s) are not saved.

(Notice that row first and column second is consistent with SCALAR module parameter
input, and also with common practice in matrix element designation; (row,column)).

If OP = NULL and if [DB] is a matrix, INT is set to -1 if the sixth word of the
matrix trailer, the matrix density, is zero.

If OP = PRESENCE, INT will be -1 if input data block is purged.

If OP = TRAILER, P2 is output as the value of ith word of the matrix trailer where i
is set by P1 in accordance with the following table.

Pl TERM OF MATRIX TRAILER
1 ' Numbers of columns
Number of rows
Form of matrix
Precision of matrix
Maximum number of nonzero terms in any column of the matrix
Matrix density

D ;s

One or more of the output parameters can be requested simultaneously.
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11. After execution, a user information message prints out the parameter value in the
format prescribed by the user. The output parameters can also be printed by the
PRTPRM module which carries normally more digits. (PRTPRM may actually print integer
zero in a real number format, 0.0)

12. See SCALAR module for similar capability.

VIII. EXAMPLES:

Obtain the value in column 1, row 4 of a real matrix, and record 2 word 5 of a table.

PARAML KGG //*MATRIX*/C,N,4/C,N,1 /V,N,STERM §
PARAML KGG //*MATRIX*/C,N,4/C,N,1 ///V,N,DTERM $
PARAML KGG //*MATRIX*/C,N,4/C,N,1 /////V,N,CSTERM §
PARAML KGG //*MATRIX*/C,N,4/C,N,1//////V,N,CDTERM $
PARAML KGG //*MATRIX*/C,N,4/C,N,1/V,N,TERM1//V,N,TERM2//V N, TERM3/V,N, TERM4 §
PARAML CASECC //*TABLE1*/C,N,2/C,N,2 //V,N,ATERM $
PARAML CASECC //*TABLE2*/C,N,2/C,N,5////V,N,BTERM §

The above output parameters yield the following results:

STERM ,TERM1 = KGG(4,1), in single precision,
DTERM ,TERM2 = KGG(4,1), in double precision,
CSTERM, TERM3 = KGG(4,1), in single precision complex expression,
CDTERM, TERM4 = KGG(4,1), in double precision complex expression

ATERM = 2nd word of the 2nd record of CASECC, integer, and
BTERM = 5th and 6th words of the 2nd record of CASECC, 2 BCD words.
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I. NAME: ADD (Matrix Add)

I1. PURPOSE: To compute [X} = a[A] + b[B] where a and b are scale factors.

III. DMAP CALLING SEQUENCE:

ADD A,B/ X/ C,Y, ALPHA=(1.0,2.0) / C,Y, BETA=(3.0,4.0)

/ C,Y,DALPHA=(5.D+0,6.D-1) / C,Y,DBETA=(7.D+2,8.D-3) §

Iv. INPUT DATA BLOCKS:

A - Any GINO matrix

B - Any GINO matrix

V. OUTPUT DATA_BLOCKS:

X - Matrix

VI, PARAMETERS:

ALPHA - Input-complex-single precision, default = (0.0, 0.0). This is a, the scalar
multiplier for [A] if DALPHA and DBETA are zeros.

BETA - Input-complex-single precision, default = (0.0, 0.0). This is b, the scalar
multiplier for [B] if DALPHA and DBETA are zeros.

DALPHA - Input-complex-double precision, default = (0.0D+0, 0.0D0+0). This is a, the
scalar multiplier for [A] if ALPHA and BETA are zeros.

DBETA - Input-complex-double precision, default = (0.0D+0, 0.0D+0). This is b, the
scalar multiplier for [B] if ALPHA and BETA are zeros.

VII. SUBROUTINE: DADD

VIII. METHOD:

The parameters are checked. If [A] is not purged, the number of columns, rows, and form
of [X] are set to those of [A]. Otherwise the [B] descriptors are used. The flags for the
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type of [X] (see Remark 2) and multiply-add operations are set before calling subroutine
SADD, which performs the actual scalar multiplication and matrix addition.

REMARKS :

1. Matrix [A] and/or matrix [B] may be purged, in which case the corresponding term in
the matrix sum will be assumed null. The input data blocks must be unique.

2. Matrix [X] cannot be purged. The type of [X] is maximum of the types of [A], [B], a,
b. The size and shape of [X] are the size and shape of [A] if [A] is present. Otherwise
they are those of [B].

3. The use of double precision parameters DALPHA and DBETA will force the matrix
multiply-and-add operation to be performed in double precision unconditionally. The
single precision ALPHA AND BETA may cause the multiply-and-add operation to be performed
in singie precision or in double precision depending on the matrix original precision
types.

4. Either the DALPHA-DBETA pair or the ALPHA-BETA pair is used. They cannot be mixed;
that is, DALPHA-BETA pair is illegal; so is DALPHA-ALPHA.

5. If Im(ALPHA or DALPHA) or Im(BETA or DBETA) is zero, the corresponding parameter will
be considered real.
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Iv.

VI.

Vi1,

DIRECT MATRIX ABSTRACTION

NAME: GINOFILE (Gino File Creation)

PURPOSt: To capture data from a scratch file of a preceding DMAP module and copy the data
to a NASTRAN GINO file. Type of data can be table or matrix.

DMAP CALLING SEQUENCE:

GINOFILE /FILE/C,N,P1/C,N,P2/C,N,P3 §

INPUT DATA BLOCK: None.

QUTPUT DATA BLOCK:

FILE - Any GINO output file name

PARAMETERS :

P1 - Any 300-series scratch File number (301,302,303,...), integer.

P2 - Additional records to be skipped on Pl file before data transfer from Pl to
FILE, integer. GINOFILE will automatically skip over header record if a header
record exists in Pl, or it will not skip if it does not exist. (Default P2 =
0.) Data transfer starts from P2+1 record after header (or no header) record on
scratch file.

P3 - Last record to be copied, or up to an EOF mark on Pl file. Total number of
records copied is (P3 - P2), integer. (Default is to copy to EOF mark.)

SUBROUTINE :

GINOFL - Subroutine in GINOFILE module
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METHOD:

At the end of a NASTRAN executable module, all the input files, output files, and scratch
files are closed. The input files are read only and they will remain untouched. The
output files are saved, and their names are preserved. (The output file names are
actually allocated before the beginning of the module execution). The scratch files are
released without any mechanism of saving them. However, the data of the scratch files are
sti11l in the system disc space, and will remain there until they are over-written by
another part (or another module) of the NASTRAN program. It is at this point that
GINOFILE module grabs hold of a scratch file of the preceding module and copies the data
to a GINO output file, without changing the scratch file data. Tables or matrices are
copied the same way - as they exist in the original form on the scratch file.

A NASTRAN GINO file always has a header record and a 6 word trailer. However, the header
record and the trailer are not required for a scratch file, and they may or may not
exist. The GINOFILE module will first test the header record of the scratch file and skip
over it, if it exists. A header record is always generated by GINOFILE for the new GINO
file. The beginning record and the ending record where data are to be transferred are
under user control. Finally, a trailer for the output file is generated and saved. An EOF
record is written to the new GINO file at the completion of the module.

DESIGN REQUIREMENT:

The GINOFILE module is mapped in all NASTRAN Links, except LINK1. The user can request
this module through a regular NASTRAN DMAP Alter.

The user must request this module immediately following the DMAP module where the scratch
file was used. It is the user’s responsibility to see that the Executive Segment File
Allocator, XSFA, does not come in between the preceding DMAP module and this GINOFILE
module. If XSFA does intervene before GINOFILE execution, the FIAT/OSCAR table (see XSFA
Module description in section 4.9) is rearranged, and the scratch files are no longer
accessible.

If XSFA does intervene, the user can provoke the XSFA operation and FIAT/ OSCAR table
rearrangement before the execution of preceding DMAP module so that XSFA will not come in
between this preceding and GINOFILE modules. The technique here can involve a DMAP alter
to PURGE some obsolete files, TABPT to print some files that have been generated some
time ago, and currently are not on the FIAT/OSCAR table, or any other DMAP module that
would disturb the NASTRAN filing system. The user could turn on DIAG 2 and observe the
flow of the GINO files created or allocated by XSFA/FIAT/ OSCAR operation.
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If the scratch file in the preceding DMAP module was used repeatedly such as being used
in a loop, only the "last-time-used" set of data on the scratch file can be copied out by

GINOFILE.
The user should turn on DIAG 8,15,-n (where n is the current LINK number) and see that

the scratch file, FORTRAN unit number, and associated trailers are being processed
correctly.

DIAGNOSTIC MESSAGES

Message numbers 3001, 3002, and 3008 may be issued by GINOFILE.
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NAME: DATABASE (To Save Grids, Elements, Displacements, Velocities, Accelerations,
Loads, Grid Point Forces, Eigenvectors, Element Stresses, and Element
Forces on User Tape)

PURPOSE: To save following data on user tape, formatted, or unformatted for user
external use:

(1) Grid points - external numbers, and their x,y,z coordinates in basic rectangular
coordinate system;

(2) Connecting elements - element names, GPTABD element types, NASTRAN symbols, property
IDs (or material IDs if elements have no property IDs), number of grid points,
connecting grid (external) numbers; and

(3) Displacement vectors* - real or complex data in basic rectangular coordinate system,
or in NASTRAN global coordinate system, in SORT1 or SORT2 data format, single-case or
subcases, displacement or mode shape data.

(*including velocity, acceleration vectors, loads, grid point forces, eigenvectors,
element stresses, and element forces)

DMAP CALLING SEQUENCE:

DATABASE  EQEXIN,BGPDT,GEOM2,CSTM,0UGY//C,N,OUTTP/C,N,FORMAT/C,N,BASIC §

INPUT DATA BLOCKS:

EQEXIN - External-internal grid tables. Must be present.
BGPDT - Basic Grid Point Definition Table.
If purge, no grid point data sent to OUTTP output tape.
If BGPDT is purged, and OUGV is present, displacement vector will not be
converted to basic coordinates.
GEOM2 - Geometry 2 Data Block.
If purge, no element connectivity data sent to OUTTP.
CSTM - Coordinate System Transformation Matrix Data Block.
1f purge, displacement vectors remain in global coordinate system.
ouGv - Any output displacement (velocity, acceleration, load, grid point force,

eigenvector, element stress, and element force) data block written for OFP
module. If present, the displacement vectors are processed and results sent
out to user OUTTP tape. OUGV must be one of the following files characterized
by an 1, 2, 3, 7, 10, 11, 15, or 16 on the 2nd word, last 2 digits, of the
first header record, and an 8 or a 14 on the 10th word:
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0uDvl, O0UDVC1, OUGV1, OUHV1, OUHVC1, OUPV1, OUPVC],
0ouDv2, 0UDVC2, OUGV2, OUHV2, OUHVCZ2, OUPV2, OUPVCZ,
OUBGV1, OPHID, OPHIG, OPHIH, OCPHIP,

OpPGl, OPP1, OPPCI, 0QGl, o0QP1, 0QPC1, 0QBGI,
opG2, OPP2, OPPC2, 0QGZz, oQPz, 0QPC2, OBQGI1,
OEF1, OEFCl, OES1, OEsCl, OEFBl, OBEF1, OEFZ,
OEFC2, OES2, OEsC2, OtSBl, OBES]

If purge, no data are sent out to OUTTP.

v. QUTPUT DATA_BLOCK: No GINO output data block.

VI. PARAMETERS:

OUTTP - User output tape. Must be one of the UT1, UT2, INPT, INP1, ..., INP9 files;
tape or disc file. (Default INP1, FORTRAN Unit 15)

FORTRAN LOGICAL

UNIT, OUTTP USER FILE CODE
11 UT1 (CDC only)
12 UT2 (CDC only)
14 INPT (UNIVAC,VAX)
15 INP1 (AT}
16 INP2 machines
: except
23 INPS CDC)
24 INPT (IBM only)

FORMAT

0, unformatted output to OUTTP tape (Default);
= 1, formatted.

BASIC

0, displacement vectors in NASTRAN’s global coordinate system (Default);
= 1, displacement vectors in basic rectangular coordinate system.

VII. EXAMPLE:

DATABASE  EQEXIN,BGPDT,GEOM2,, /C,N,15/C,N,+1 b
DATABASE  EQEXIN,BGPDT,,CSTM,0UGV/C,N,16 $
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First example writes the grid points and element connectivity data out to INP1 tape,

formatted. The second example writes the grid points and displacement vectors in NASTRAN
global coordinates out to INP2 tape, unformatted.

SUBROUTINE :

DBASE - Subroutine for DATABASE Module.

METHOD:

There are three independent sets of data to be copied out to user tape OUTTP - grids
data, connecting elements data, and displacement vectors (velocities, accelerations,
eigenvectors, stresses, and forces). If BGPDT file is purged (that is, is not present),
the grid point data set is not generated. Similarly, if GEOM2 file is purged, the element
connectivity data is not generated; and the same with the OUGV file and the displacement
vectors. The exact contents in the output tape QUTTP depend therefore on the input file
assignment.

In all cases, EQEXIN file is opened and the grid point external number vs. the internal
number table is read. If BGPDT file is present, the basic grid point data is read, and
each internal grid point number is converted to its external ID number. The grid point’s
X, ¥, Z coordinates from BGPDT are already in the basic rectangular coordinate system.
The grid points data are then sorted by their external grid IDs before they are written
out to OUTTP tape, under FORTRAN control. The following table gives the precise contents
of each record in the OUTTP tape.

For UNFORMATTED tape - grid point data in one long record:

RECORD  WORD CONTENT (UNFORMATTED)
1 1-2 'GRID PTS-------- ', a 16-letter identification. (BCD)
2 1 No. of words (this first word not included) in this

record. (Integer)
2 External grid ID. (Sorted, integer)
3 0 (Not used; reserved for future use)
4,5,6 X,Y¥,Z coordinates in basic rect. coord. system.
{single precision real) i
Repeat words 2 thru 6 as many times as there are grids

{Total number of grid points = (WORD 1 of record 2)/5)
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To read the second record into array XYZ, one can use

READ (OUTTP) L, (XYZ(J),J=1,L)

For FORMATTED tape - grid point data in multiple short records:

RECORD WORD CONTENT FORMAT
1 1,2 ‘GRID PTS-------- ' identification 474
2 1. Total number of grid points 18
3 1 External grid ID (Sorted) I8
2 0 (Not used; Reserved for future use) I8
3,4,5 X,¥,z coordinates in basic rect. 3El2.6
coordinate system.
1-5 Repeat record 3 as many times as there
are grids

If GEOM2 file is present, the elements data will be generated next. An element
identification record is written out first.

RECORD  WORD CONTENT (FORMATTED or UNFORMATTED) FORMAT

1 1-2 "ELEMENTS---~---- ', identification. BCD 4A4

The element data in GEOM2 file will be written out to the OUTTP file almost in the same
way, and same order as the original data. A header record is written out for each type of
element, then followed by the element data. The element data will be written out in a
long record if the OUTTP is unformatted, and in multiple short records, one for each
element, if OUTTP is formatted. Notice that the element types are sorted according to the
NASTRAN’S GPTABD data block order; and within each type, the elements are sorted by their
element IDs.
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ELEMENT HEADER RECORD for the UNFORMATTED output tape:

RECORD WORD CONTENT (UNFORMATTED)
2 1-2 Element name. (BCD)

3 Element type number, according to GPTABD order.
{Integer)

4 Element symbol. (2 letters)

5 Number of grid points per element. (Integer)
Total no. of elements of this current element type.
(Integer)

7 No. of words in next record = WORD5 + 2 (Integer)

No. of 132-column lines needed in next record if OUTTP
is written with a format. (Integer)

ELEMENT RECORDS, Repeat as many times as there are elements not of the same type (that is
a record for each element type):

RECORD WORD CONTENT (UNFORMATTED)
3 1 Element ID. (Integer)
2 Property ID. (Positive Integer); or

0 (Element has no property ID nor material ID); or
Material ID. (Element has no property ID, but it has a
material ID. (Negative Integer)

0 (Not used; Reserve for future use, integer)

4,5,... Element connecting (external) grid points. (Integers)
Repeat words 1,2,3,4... as many times as there are
elements of this same tape.

(See WORD 6 in header record)

54



DMAP MODULE DESCRIPTIONS

For FORMATTED tape -

ELEMENT HEADER RECORD, in 8-column format:

RECORD COLUMNS CONTENT

8 "ELEMENT

16 Element name

24 ’ TYPE =’

28 Elem. type no. according to GPTABD

29,30 Blank

31-32 Element symbol

33-40 " GRIDS ='

41-48 No. of grids per element

49-56 ’ TOTAL =’

57-64 Total no. of elements of this elem
65-72 " WDS/EL='

73-80 No. of words per element in next r
81-88 * LINES =’

89-96 No. of lines (records) needed on n

A printout of thi

record for this element type

s header record may look like this:

FORMAT

8 Tetters
2A4
8 letters
14
2X
A2
8 letters
18
8 letters
. type i8
8 letters
ecords 18
8 letters
ext 18

(the ---+++ line is for video aid; it is not part of the record)

"ELEMENT CBAR

TYPE = 34 BR GRIDS = 2 TOTAL =
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ELEMENT RECORDS (FORMATTED) -
There should be (TOTAL X LINES) records in each element type:

RECORD WORD CONTENT FORMAT
3 1 Element ID. 18
2 Property ID. (Positive integer); or I8

0 (Element has no property nor material ID); or
Material ID. (Element has no property ID,
but it has a material ID)

3 0 (Not used; reserve for future use) 18
4-16 First 13 external connecting grid points 1318
4 (IF NEEDED, and LINES in header record = 2)
1-15 Next 15 Grid points 8X,1518
5 (IF NEEDED, and LINES in header record = 3)
1-15 More grid points 8X, 1518

Repeat element record 3 (and possible 4 and 5)
as many times as there are elements of the same
type.

Repeat the header record and the element records as many times as there are different
types of elements.

The end of element data records is signaled by an element ENDING record of the following
form, 8 words:

Words 1 and 2 form the word ’ -END-’,
Word 4 holds the symbol ’'--’,
and all other words are zeros

The ENDING ELEMENT RECORD of the FORMATTED tape looks like this:

-------- B s e s s s o R s a2 A2 S S S
"ELEMENT -END- TYPE = 0 -- GRIDS = 0 TOTAL = 0 etc.’

If the OUGV file is present, the displacement vectors will be processed and the final
results sent out to the OUTTP tape. {In this and the next few paragraphs, the word
*displacement” implies also velocity, acceleration, load, grid point force, eigenvector,
element stresses, and element forces.) The input OUGV file must be one of the GINO files
described in the INPUT DATA BLOCKS section, which gives the displacements in the g-set or
p-set, or the other data types. The output data are sorted by their external grid ID
numbers. The displacement records in OUTTP also begin with an identification record:
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RECORD ~ WORD ~ CONTENT (FORMATTED or UNFORMATTED) FORMAT
1 1-2 'DISPLCNT-------- ’ identification*. BCD 4A4
(* or 'VELOCITY-------- ’,
’ACCELERN-------- ’,
' LOADINGS - - -~ ---- ’
’G FORCES-------- ’,
"EIGENVCR-------- ’,
'E STRESS-------- '
*E FORCES-------- )

The original displacement data in NASTRAN are always in the global coordinate system. If
the parameter BASIC is zero (default), the displacement vectors will be passed over to
OUTTP without changes. However, if the parameter is set to +1, the displacement vectors
will be converted to the basic rectangular coordinate system. In this latter case, the
coordinate transformation matrices from CSTM will be brought into the computer, the grid
point coordinate CID will be identified, and proper coordinate transformation will be
applied to the displacements of each grid point. Again, the output OUTTP tape can be
formatted or unformatted. In the unformatted tape, each grid point and its displacement
values will form one logical record of 8 or 14 words (variable word length if element
stresses or element forces). In the formatted tape, one logical record (8 words) is used
if the displacement data is real, and an additional record (for data words 9 through 14)
if the data is complex. In either case, a formatted record has 128-column of words.
Similarly to the grid and element sets of data, a HEADER record is written out to OUTTP
first before the grid point displacement vectors.

DISPLACEMENT HEADER RECORD for UNFORMATTED TAPE -

RECORD WORD CONTENT (UNFORMATTED)
2 1 Subcase or mode number. (Integer)
2 Zero or frequency. (Real)
3 Number of words per entry in next record.
4-5 Original data file name, 2 BCD words
6-7 ’ GLOBAL ’ if BASIC=0, 2 BCD words

’ BASIC ’ if BASIC=1
8-13 CODE (See note below; 6 integers)
14-45 Title, 32 BCD words
46-77 - Subtitle, 32 BCD words
78-109 Label, 32 BCD words
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Note - Each code word holds 8 digits. Therefore there are 48 digits, from CODE(1)
through CODE(6), and from left to right, they describe the data type of the
next displacement record:

1 for integer

2 for real, and

3 for BCD
The first digit points to the first data word; 2nd, 3rd, 4th, etc. point to
2nd, 3rd, 4th data words, etc.

DISPLACEMENT RECORDS in UNFORMATTED tape - in one long record:

RECORD WORD CONTENT (UNFORMATTED)
3 1 No. of words (excluding this first word) in this

record. (Integer)
External grid point number. (Integer)

3 Point type (l=grid pt. 2=scalar pt.

3=extra pt. 4=modal pt., integer)

4-9 Displacements. (Real parts,

t1,t2,t3,ri,r2,r3, single precision real)
10-15 (COMPLEX data only)

Displacements. (Imaginary parts,
t1,t2,t3,rl,r2,r3, single precision real)
Repeat words 2 thru 9 (or 15) as many times as
there are grid points in OUGV file
Repeat record 3 as many times as there are
subcases or frequencies
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DISPLACEMENT HEADER RECORD for FORMATTED tape -

RECORD  WORD
2 1-2

3

a4

5-6

7

8-9

10-11
12-13
14-15
16-17
18-22

23

1-32
33-64
65-96

CONTENT (FORMATTED) FORMAT
* CASE = ’ or ’ MODE = '’ 8 Jetters
Subcase number 18
Zero or frequency 1PE12.5
’ WORDS =’ 8 letters

NWDS, number of words per entry in next 18
record (=8 for REAL data, or =14 COMPLEX,
for all displacement records)

" INPUT =’ 8 letters
Original GINO file name 2A4
’ COORD =’ 8 letters
’ BASIC ‘ or 'GLOBAL '’ 2A4
" CODE =' 8 letters
Format code 518
8 digits per word, 1 for INTEGER

2 for REAL
Ex. 13222200 3 for BCD

0 not applicable
NA4, number of words per entry in next 18
record, in A4-word count
Title, 32 BCD words 32A4
Subtitle, 32 BCD words 32A4
Label, 32 BCD words 32A4

DISPLACEMENT RECORDS in FORMATTED tape - in multiple short records:

RECORD WORD

1-6

CONTENT FORMAT
External grid point number. (Integer) 18
Point type (l=grid pt. 2=scalar pt. 18

3=extra pt. 4=modal pt., integer)
Displacements. (Real parts, 6El12.6

t1,t2,t3,r1,r2,r3, single precision real)
{COMPLEX DATA only)

Displacements (Imaginary parts, 16X,6E12.6
t1,t2,t3,rl,r2,r3, single precision real)

Repeat record 6 (records 6 and 7 if complex data)
as many times as there are grid points
displacement
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At the end of each subcase, if the output tape OUTTP is formatted, a ZERO record (two
records if data is complex) is written out to OUTTP tape. This ZERO record has the same
format as a DISPLACEMENT record, and consists of 8 or 14 zeros (first two are integers,
minus zeros). This ZERO record is not needed in the unformatted OUTTP output tape.

Repeat the HEADER record, the DISPLACEMENT records, and the ZERO record (formatted OUTTP
tape only) as many times as there are subcases. At the end of the last subcase, or end of
the input file OUGV, an ENDING record is written out. It has the same form as the HEADER
record:

DISPLACEMENT ENDING RECORD -

RECORD  WORD CONTENT (UNFORMATTED)

LAST 1 Zero. (Integer)
2 Zero. (Real)
3 Zero. (Integer)
4-5 * -END-’. (BCD)
6-101 96 Blank words. (BCD)
RECORD  WORD CONTENT (FORMATTED) FORMAT
LAST 1-2 ' CASE = ’ or ’ MODE = ' 8-LETTERS
3 Minus 0 (Integer) 18
4 Zero 1PE12.5
5-6 ’ WORDS =’ 8-LETTERS
7 Minus 0 (Integer) 18
8-11 ' INPUT = -END- ' 16-LETTERS
12-17 Blanks 4A4
LAST+1  1-32 Blanks 32A4
LAST+2 1-32 BLANKS 32A4
LAST+3  1-32 Blanks 32A4

If QUGY is an element stress or an element force file, the stress or force data have
variable length depending on the type of element. The stress or force records written to
the OUTTAP tape are therefore different from those of the displacement records.
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THE ELEMENT STRESS or FORCE RECORD HAS the following forms:

or

RECORD

WORD

CONTENT (UNFORMATTED)

Number of words, excluding this first word,

in this record. (Integer)

Element ID, stress or force data

(Variable data types are described in ‘CODE’)

Repeat (2-NWDS) words as many times as there

are elements.

Repeat record 3 as many times as there are subcases.

where NWDS is the number of computer words per entry, and CODE is the 6-word format

RECORD

code, as described in header record.

WORD

CONTENT (FORMATTED) FORMAT

Element ID, stress or force data 33A4
(The data types are described in

‘CODE’; all integers in 2A4, real

numbers in 3A4, and BCD in A4)

(Maximum record length is 132 columns (33A4);
continuation into next record(s) if necessary)
Repeat above record(s) as many times as there
are elements

where NA4 is the number of words per entry in A4-word count, and CODE is S-word

format code

Notice that the DATABASE module does not copy out the external-internal grid points table
in EQEXIN file, nor the coordinate transformation matrices in CSTM. The coordinate
systems originally associated with the external grid points are never mentioned in the
OUTTP tape.

If the user must copy the EQEXIN and CSTM files (both are in table forms), the new

QUTPUTS can be used.

DESIGN REQUIREMENT:

The DATABASE module is mapped in NASTRAN Links 2, 4 and 14. This module is accessible
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only through a NASTRAN DMAP Alter.

Minimum open core requirement = 10 x (total number of grid points) words.

The formatted outputs are flagged only by the parameter FORMAT. The formatted cutput
records are designed not to exceed 132 columns in length and include printer carriage
control. In most cases, I8-formats are used for integers and E12.6 for real data (no
double precision words used); and BCD words are in multiples of 2A4. The entire OUTTP
file can be printed, or it can be edited by a system editor. The formatted OUTTP file, if
written on magnetic tape by a computer, can be used in another computer of a different
manufacturer.

The unformatted OUTTP file is more efficient; and the integer and real data are more
accurate. The grid point data and data of each connecting element type are written out
unformatted in long records; that requires large working space in the computer system. On
the other hand, only short records are written to the formatted QOUTTP file, and the
working space requirement is less critical.

XI. REMARKS :

1. Conversion of element stresses or forces to the basic coordinates is not allowed.

XII. DIAGNOSTIC MESSAGES:

Message numbers 3001, 3002, and 3008 may be issued by DATABASE.
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(A) A NASTRAN EXAMPLE USING DATABASE MODULE
(OUTPUT LISTING SHORTENED)

NASTRAN  TITLEOPT=-1, FILES=INP1

L2223
L] L ]
[
®* NASTRAN
[ ) [ ]
L] [ ]

hdedrd

DEC VAX COMPUTER SYSTEMS SYSTEM RELEASE - 1989 ED.
FTN VERSION - 50K

DISTRIBUTED BY

COMPUTER SOFTWARE MANAGEMENT AND INFORMATION CENTER (COSMIC)
UNIVERSITY OF GEORGIA
ATHENS, GEORGIA 30602
PHONE (404) 542-3265

NASTRAN EXECUTIVE CONTROL DECK ECHKO
1D TEST, VAX MACHINE

soL 1,0

APP DISP

ALTER 106

DATABASE EQEXIN,BGPDT,GEOM2,CSTM,OUGV1 //C,N,15/C,N,+1/C,N,+1 $

ENDALTER

TIME 10

CEND

CASE CONTROL DECK ECHO

CARD
COUNT

1 TITLE = TESTING DATABASE MODULE

2 SUBTITLE = USING CYLINDRICAL COORDINATES
3 LABEL = GRIDS, ELEMENTS, AND DISPLACEMENTS OUTPUT TO INP1, FORMATTED
4 sPC =10

5 DISP = ALL

(] OLOAD = ALL

7 ECHO = BOTH

8 SUBCASE 123

9 LOAD = 1000

10 SUBCASE 456
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1 LOAD = 2000
12 BEGIN BULK

INPUT BULK DATA DECK ECHO

mmefece 4442444 cc-Fooo 444ttt oD H44b44E c- =T F+48H44 -=-Q--- +44+10+4+
-FF- CORD1C, 3 101 333 999

-FF- GRID,101,, 10. ©O. 0.,0, 123456

-FF- GRID,111,, 20. 0. 0.,0, 123456

-FF- GRID,222,, 30. 0. 0.,0, 123456

-FF- GRID,333,, 40. 0. 0.,0, 123456

-FF- GRID,555,, 20. 0. -9.+9,0, 123456

~FF- GRID,999,, 10. 10. 10.,0, 123456

-FF- GRDSET, 7)3

-FF-  GRID, 1, 3, 5. 0. oO.
-FF-  =(6),%(N), =, =, *(15.), ==
-FF-  GRID, 11, 3, 5., 0., 10.
-FF- =(6),%(1), =, =, *(15.), ==
-FF-  GRID, 21, 3, 5., 0., 20.
-FF-  =(6),%(1), =, =, *(15.), ==
-FF-  GRID, 32, 3, 5., 15., 30.

-FF-  =(4),*(1), =, =, *(15.), ==
| -FF-  GRID, 31, 0, 40. 3.53553 3.53553 0
‘ -FF-  GRID, 37, 0, 40. -3.53553 3.53553 0
|

-FF-  CBAR, 1,2, 1 2, 101
-FF- 3(5),*(1),=, *(1)1/:=
-FF-  CBAR, 11,2, 11 12, 111

-FF- =(5),*(1),=, *(1),/,=

-FF-  CBAR, 21,2, 21 22, 222

-FF-  =(5),%(1),=, *(1),/,=

-FF-  CBAR, 31,2, 31 32, 333

-FF- =(5),%(1),=, *(1),/,=

-FF-  CBAR, 41,2, 1 11, 555

-FF- =(2),%*(1),=, *(10),/,=

-FF-  CBAR, 51,2, 7 17, 555

-FF- =(2),%(1),=, *(10),/,=

s

-FF-  CQUAD2,71, 7, 1 11 12 2
-FF- =(5),%(1), =,*(1),///

-FF-  CQUAD2,81, 7, 11 21 22 12
-FF- =(5),%(1), =,%(1),///

-FF-  CQUAD2,91, 7, 21 31 32 22
-FF- =(5),*%(N), =,*(D,///

)

-FF-  PBAR, 2,100, .4 .5 .3 .3
-FF-  PQUAD2,7,100, .05
-FF-  MAT1,100 3.0E+7,, .3 1.0
-FF-  SPC1,10,123456, 1 THRU 7
-FF-  FORCE,1000,31,0,100.0, 0.0, 0., -1.0
-FF-  FORCE,1000,37,0,160.0, 0.0, 0., -1.0
-FF-  FORCE,2000,34,3,200.0, -1.0, 0. 0.0
ENDDATA

TOTAL COUNT= 46
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SORTED BULK DATA ECHO
ceelece 442444 ==-Feon F444444 oS S440F4E - coTove 44844 - -9-cc 4410444
CBAR 1 2 1 2 101
CBAR 2 2 2 3 101
CBAR 5 2 5 [ 101
CBAR 6 2 6 7 101
CBAR 1 2 11 12 m
CBAR 12 2 12 13 11
CBAR 13 2 13 14 1
CBAR 25 2 25 26 222
CBAR 26 2 26 27 222
CBAR 31 2 3 32 333
CBAR 32 2 32 33 333
CBAR 36 2 36 37 333
CBAR 41 2 1 1" 555
CBAR 42 2 1" 21 555
CBAR 43 2 21 3 555
CBAR 51 2 7 17 555
CBAR 52 2 17 27 555
CBAR 53 2 27 37 555
CORDIC 3 101 333 999
CQuAD2 71 7 1 1 12 2
CQUAD2 72 7 2 12 13 3
CQUADZ2 76 7 6 16 17 7
CQUAD2 81 7 1 21 22 12
CQUAD2 82 7 12 22 23 13
CQUAD2 86 7 16 26 27 17
CQUADZ 91 7 21 3 32 22
CQUAD2 92 7 22 32 33 23
CQUAD2 95 7 25 35 36 26
CQUAD2 96 7 26 36 37 27
FORCE 1000 N 0 100.0 0.0 0. -1.0
FORCE 1000 37 o 100.0 0.0 0. -1.0
FORCE 2000 34 3 200.0 -1.0 0. 0.0
GRDSET 3
GRID 1 3 S. 0. 0.
GRID 2 3 5. 15. 0.
GRID 3 3 5. 30. 0.
GRID 4 3 5. 45, 0.
GRID 5 3 5. 60. 0.
GRID é 3 5. 5. 0.
GRID 7 3 5. 90. 0.
GRID 1" 3 5. 0. 10.
GRID 12 3 5. 15. 10.
GRID 13 3 5. 30. 10.
GRID 26 3 5. 5. 20.
GRID 27 3 5. 90. 20.
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*** USER INFORMATION MESSAGES FROM RESEQUENCING PROCESSOR - BANDIT

SEQGP
SEQGP

GRID 31
GRID 32
GRID 33
GRID 34
GRID 35
GRID 36
GRID 37
GRID 101
GRID 111
GRID 222
GRID 999
MAT1 100
PBAR 2
PQUAD2 7
sPct 10
ENDDATA

O W W WWwoOo
w
.

10.
3.0E+7
100 .4
100 .05
123456 1

BEFORE RESEQUENCING - - -
BANDWIDTH

3.53553 3.53553 0

0
0
0

15. 30.
30. 30.
45. 30.
60. 30.
75. 30.
-3.535533.53553 0
0. 0.
0. 0.
0. 0.
10. 10.
.3 1.0
S .3
THRY 7

(CRI=

1,

123456
123456
123456

123456

MTH= 3, MPC= O,

AFTER RESEQUENCING BY GIBBS-POOLE-STOCKMEYER (GPS) ALGORITHM - - -
BANDWIDTH

RMS WAVEFRONT

6

5.335

**% BANDIT SUMMARY ***

BANDWIDTH (B)
PROFILE (P)

MAXIMUM WAVEFRONT (C-MAX)
AVERAGE WAVEFRONT (C-AVG)

RMS WAVEFRONT (C-RMS)

NUMBER OF GRID POINTS (N)

NUMBER OF ELEMENTS (NON-RIGID)

BEFORE
9

199

9
7.107
7.500

NUMBER OF RIGID ELEMENTS PROCESSED*

CRITERION*
METHOD USED*

NO. OF NON-ACTIVE GRID POINTS
NO. OF SEQGP CARDS GENERATED

AFTER

145

5.179
5.335
34
48

RMS WAVEFRONT

GPS
6
9

SYSTEM GENERATED SEQGP CARDS

DEP=-1,

PCH=-1)



*irk

FOR

ik

FOR

Wik

SEQGP
SEQGP

101
555

29
33

m
999

30

**NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM**

USER INFORMATION MESSAGE 3035
SUBCASE NUMBER 1, EPSILON SUB E
USER INFORMATION MESSAGE 3035
SUBCASE NUMBER 2, EPSILON SUB E

USER INFORMATION MESSAGE -

DATABASE MODULE TRANSFERRED THE FOLLOWING 3 SETS OF DATA TO OUTPUT FILE

-2.6844558E

8.3046791E-13

-13

222 31

INP1

1. GRID POINT DATA - EXTERNAL NUMBERS AND BASIC RECTANGULAR COORDINATES

2. ELEMENT CONNECTIVITY DATA - ALL GRIDS POINTS ARE EXTERNAL NUMBERS

3. DISPLCNT DATA FROM INPUT FILE OUGV1

TESTING DATABASE MODULE
USING CYLINDRICAL COORDINATES

GRIDS, ELEMENTS, AND DISPLACEMENTS OUTPUT TO INP1, FORMATTED

POINT ID. TYPE T1

1 G 0.0

2 G 0.0

7 G 0.0
1 G -3.318057E-03
12 G -4.063191E-03
13 G -4.531379€-03
17 G -3.318057E-03
21 G -1.135364E-02
22 -1.389689€-02
36 G -2.659377€-02
37 G -4.714102E-04

101 G 0.0

m G 0.0

999 G 0.0

DISPL

T2
0.0
0.0

0.0
-3.292276€E-03
-2.321371E-03
-1.199775€-03

3.292276E-03
-1.133029€-02
-8.006683€E-03

1.533314€-02
2.952591E-05
0.0
0.0

0.0

ACEMENT

T3
0.0
0.0

0.0
-2.601234E-04
3.838165E-04

7.735121E-04

-2.601235E-04
-4.189800E-04
6.217674E-04

7.031241€E-04
-3.071109€-02

0.0

0.0

0.0

67

, DATA CONVERTED TO BASIC RECT. COORDINATES,

JANUARY

VECTOR

Rl
0.0
0.0

0.0

5.895234E-04
3.955249€-04
1.998269E - 04

~5.895234E-04
9.427494E-04
6.450522E-04

-7.324436E-04
1.414761E-05
0.0
0.0

0.0

333 32

(FORTRAN UNIT

2 sus

19, 1989

R2
0.0
0.0

0.0
-6.161431E-04
-7.332436E-04
-7.991001E-04

-6.161430€-04
-9.638459€E-04
-1.161740€E-03

-1.305977E-03
1.510598E-03
0.0
0.0

0.0

15), FORMATTED

CASES

RELEASE 1989 VAX

SUBCASE 123

R3
0.0
0.0

0.0

4.702619€E-06
4.287300€-06
2.540319E-06

-4.702721E-06
-2.057090E-06
-1.690856E-06

1.251280€-05
1.724372E-05
0.0
0.0

0.0



TESTING DATABASE MODULE
USING CYLINDRICAL COORDINATES
GRIDS, ELEMENTS, AND DISPLACEMENTS OUTPUT TO INP1, FORMATTED

POINT ID. TYPE
1 G
2 G
7 G
1 G
12 G
16 G
17 G
21 G
22 G
27
31
37 G
101 G
555 G
999 G

T
0.0
0.0

0.0
-3.318148e-03
~4.063299€E-03

-4 .063299€-03
-3.318147€-03
-1.134697€-02
-1.389428€E-02

-1.134696E-02
-4 . 712943€E-04

-4.712941E-04
0.0

0.0
0.0

TESTING DATABASE MODULE
USING CYLINDRICAL COORDINATES
GRIDS, ELEMENTS, AND DISPLACEMENTS OUTPUT TO INP1, FORMATTED

POINT ID. TYPE
31 G
37 G

T
0.0
0.0

TESTING DATABASE MODULE
USING CYLINDRICAL COORDINATES
GRIDS, ELEMENTS, AND DISPLACEMENTS OUTPUT TO INP1, FORMATTED

POINT ID. TYPE
34 G

T
-2.000000E+02

JANUARY
DISPLACEMENT VECTOR
T2 T3 R1
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
-3.292200E-03 -2.601124E-04  5.894569E-04
-2.321291E-03  3.838149E-04 3.955561E-04
2.321291E-03  3.838153£-04 -3.955560E-04
3.292200E-03 -2.601125E-04 -5.894569-04
-1.132912E-02 -4.194220E-04 9.431769E-04
-8.006698E-03  6.221989E-04  6.458150E-04
1.132912E-02 -4.194221E-04 -9.431769E-04
1.271940E-05 -3.068326E-02 2.592916E-05
-1.271908E-05 -3.068326E-02 -2.592964E-05
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
JANUARY
LOAD VECTOR
T2 T3 R1
0.0 -1.000000E+02 0.0
0.0 -1.000000E+02 0.0
JANUARY
LOAD VECTOR
T2 T3 R1
0.0 0.0 0.0

® @ e ENDOF JOB ® @ *
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19, 1989

R2
0.0
0.0

0.0
-6.161953€E-04
-7.332786E-04

-7.332786E-04
-6.161953E-04
-9.614227€-04
-1.160364E-03

-9.614226E-04
1.508337€-03

1.508337e-03
0.0

0.0
0.0

19, 1989

R2
0.0
0.0

19, 1989

R2
0.0

RELEASE

RELEASE

RELEASE

SUBCASE 456

R3
0.0
0.0

0.0
4.774461E-06
4.285285E-06

-4 .285384E-06
-4.774563E-06
1.676048E-06
9.538337£-07

-1.676340E-06
-1.354597€-05

1.354600€-05
0.0

0.0
0.0

SUBCASE 123

R3
0.0
0.0

SUBCASE 456

R3
0.0

1989 VAX

1989 VAX

1989 VAX



GRID PTS------

(B) FORMATTED INP1 FILE AS GENERATED FROM ABOVE NASTRAN RUN

(LISTING SHORTENED)

34= TOTAL NUMBER OF GRID POINTS

- NN -

- .
[aN]

W wWw NN
N =N O

37
101
111

555
999

ELEMENTS----~--

ELEMENT BAR

ELEMENT QUAD2
7
72
[£]
74
s
76
81

(= = T ~ B = I -~ B — T — T — Y - ]

(=2 - T~ I ]

o

N VNN NDNDNON

N NN

NN

N N NN SNSN~N

1.00000E+01 3.53553€+00 3.53553E+00
1.00000E+01 2.50000E+00 4.33013E+00
1.00000E+01 1.29410E+00 4.82963E+00
1.00000E+01 0.00000€+00 5.00000E+00
1.00000€+01-1.29410E+00 4.82963E+00
1.00000E+01-2.50000E+00 4.33013E+00
1.00000£+01-3.53553E+00 3.53553E+00
2.00000E+01 3.53553E+00 3.53553E+00
2.00000E+01 2.50000E+00 4.33013E+00

3.00000E+01-2.50000£+00 4.33013E+00
3.00000E+01-3.53553E+00 3.53553E+00
4.00000E+01 3.53553E+400 3.53553€+00
4.00000E+01 2.50000€E+00 4.33013E+00

4 .00000E+01-3.53553e+00 3.53553E+00
1.00000E+01 0.00000E+00 0.00000E+00
2.00000E+01 0.00000E+00 0.00000E+00

2.00000E+01 0.00000E+00-9.00000E+09
1.00000E+01 1.00000E+01 1.00000E+01

TYPE = 34 BR GRIDS = 2 TOTAL =
0 1 2
0 2 3
0 3 4
0 4 5
0 5 6
0 6 7
0 1 12
0 12 13
0 25 26
0 26 27
0 31 32
0 32 33
0 36 37
0 1 1
0 1 21
0 27 37

TYPE = 18 Q2 GRIDS = 4 TOTAL =
0 1 11 12 2
0 2 12 13 3
0 3 13 14 4
0 4 14 15 5
0 5 15 16 6
0 6 16 17 7
0 1 21 22 12

30 WDS/EL=

18 WDS/EL=

69

5 LINES =

7 LINES =



82

95

96
ELEMENT -END-
DISPLCNT------
CASE = 1

7 0 12 22 23 13

7 0 25 35 36 26
7 0 26 36 37 27
TYPE = 0 -- GRIDS = 0 TOTAL = 0 WDS/EL= O LINES =
23 0.00000E+00 WORDS = 8 INPUT =0UGV1 COORD = BASIC CLE = 11222222

TESTING DATABASE MODULE
USING CYLINDRICAL COORDINATES
GRIDS, ELEMENTS, AND DISPLACEMENTS OUTPUT TO INP1, FORMATTED

1 1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+0C 0.00000E+00 0.00000E+00

2 1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

7 1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000€+00 0.00000E+00
1 1-2.60123E-04-1.82304E-05-4.67421E-03 4.70262E-06 8.52535E-04-1.88229€-05
12 1 3.83816E-04-2.12288E-05-4.67951E-03 4.28730E-06 8.32770E-04-2.40871E-05
13 1 7.735126-04-1.39135E-05-4 .68750E-03 2.54032E-06 8.23590E-04-1.38043€-05
17 1-2.60124E-04 1.82304E-05-4.674621E-03-4.70272E-06 8.52535E-04 1.88230€-05
21 1-4.18980E-04-1.65105E-05-1.60400€-02-2.05709E-06 1.34817E-03-1.49174E-05
22 1 6.21767E-04-1.44541E-05-1.60384E-02-1.69086E-06 1.32862E-03-2.22383E-05
36 1 7.03124E-04 1.79987€-05-3.06975E-02 1.25128E-05 1.49723E-03 1.86739E-05
37 1-4.71410E-04 2.95259E-05-3.07111E-02 1.41476E-05 1.51060€-03 1.72437€-05
101 1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 ©.00000E+00
11 1 0.00000E+00 0.00000E+00 0.0000CE+00 0.00000E+00 0.00000E+00 0.00000E+00
999 1 0.00000E+00 0.00000E+00 0.CO0C00E+00 0.00000E+00 0.00000E+00 0.00000E+00
-0 -0 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

CASE = 456 0.00000E+00 WORDS = 8 INPUT =0UGV1 COORD = BASIC CODE = 11222222

TESTING DATABASE MODULE

USING CYLINDR
GRIDS, ELEMEN

-y e ) =

16
17
21
22

27
3

37
101

555

CASE =

ICAL COORDINATES

TS, AND DISPLACEMENTS OUTPUT TO INP1, FORMATTED
1 0.00000£+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 G.00000€+00 0.00000E+00

1 0.00000£+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 O.00000E+00
1-2.60112E-04-1.83478E-05-4.67422E-03 4.77446E-06 8.52525E-04-1.89070E-05
1 3.83815E-04-2.13520E-05-4.67957E-03 4.28529E-06 8.32816E-04-2.40777€-05

1 3.83815E-04 2.13524E-05-4.67957E-03-4.28538E-06 8.32816E-04 2.40777E-05
1-2.60113E-04 1.83480E-05-4.67422E-03-4.77456E-06 8.52525E-04 1.89070E-05
1-4.19422€-04-1.26166E-05-1.60344E-02 1.67605E-06 1.34676E-03-1.29017E-05
1 6.22199E-04-1.31377€-05-1.60362E-02 9.53834E-07 1.32781E-03-2.08896E-05

1-4.19422E-04 1.26157€-05-1.60344E-02-1.67634E-06 1.34676E-03 1.29018E-05
1-4.71294E-04 1.27194E-05-3.06833E-02 2.59292E-05 1.50834E-03-1.35460E-05

1-4.71294E-04-1.27191E-05-3.06833E-02-2.59296€-05 1.50834£-03 1.35460E-05
1 0.00000E+00 0.00000E+0C 0.00000E+00 0.00000€+00 0.00000E+00 0.00000E+00

1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
1 0.00000E+00 0.00000E+00 0.00000E+0C 0.00000E+00 0.00000E+00 0.00000E+00
-0 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0 0.00000E+00 WORDS = 0 INPUT = -END-  COORD = CODE =

70

SUBCASE 123

SUBCASE 456



0O 0000000000000 000000O00O0O000O0

70

80

1

1

1

(C) RDBASE - A FORTRAN PROGRAM TO READ UNFORMATTED
OUTPUT FILE GENERATED BY DATABASE MODULE

PROGRAM RDBASE

THIS FORTRAN PROGRAM READS THE UNFORMATTED OUTPUT FILE INP1
(FORTRAN UNIT 15) GENERATED BY DATABASE MODULE

(1) GRID POINTS DATA ARE READ AND SAVED IN GRID-ARRAY

(2) ELEMENTS DATA ARE READ AND SAVED IN ELM-ARRAY,
WITH ELEMENT NAMES AND POINTERS IN SAVE-ARRAY

(3) DISPLACEMENTS (VELOCITIES, ACCELERATIONS, LOADS, GRID-POINT
FORCE, OR EIGENVECTORS) DATA ARE READ AND SAVED IN DIS-ARRAY,
WITH SUBASES AND POINTERS IN SAVD-ARRAY

ANY OF ABOVE 3 SETS OF DATA NEED NOT EXIST IN ORIGINAL INP1 FILE

TO READ ELEMENT FORCES OR ELEMENT STRESSES, (3) ABOVE NEEDS SOME
CHANGES. PARTICULARLY WE NEED THE INFORMATION IN CODE YO GIVE US
THE TYPE OF EACH DATA WORD IN THE DATA LINE.
ASSUME CODE(1) = 11222222

CODE(2) = 31222000
THIS MEANS

THE 1ST, 2ND, AND 10TH DATA WORDS ARE INTEGERS;

9OTH DATA WORD IS BCD; AND

3RD THRU 8TH, 11TH, 12TH AND 13TH WORDS ARE REAL NUMBERS

WRITTEN BY G.CHAN/UNISYS, JAN. 1989

IMPLICIT INTEGER (A-2)

INTEGER GRID(5,500),ELM(35,300),D1S(11200),SAVE(4,10),
SAVD(3,20),NAME(2), TITLE(32),SUBTTL(32),
LABL(32),CODE(6)

REAL GRIR(5,1),RISC1),FREQ

DOUBLE PRECISION GED,GD,EL,DS,ENDD,COORD

EQUIVALENCE (GRID(1),GRIR(1)),(DIS(1),RIS(1))

DATA INTAP, NOUT, MAXGRD, MAXELM, MAXDIS, MAXWDS  /
15, 6, 500, 300, 11200, 35 /

DATA D, EL, DS, END1 /
BHGRID PTS, BHELEMENTS, 8HDISPLCNT, 4H -EN  /

REWIND INTAP
READ DATA IDENTICATION RECORD

READ (INTAP,END=400) GED

IF (NOUT .EQ. 6) WRITE (NOUT,80) GED
FORMAT (1X,A8,'==-===-~ )

IF (GED .EQ. GD) GO TO 100

IF (GED .EQ. EL) GO TO 200

IF (GED .EQ. DS) GO TO 300

STOP 'DATA TYPE UNKNOWN'
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O 00600

100

120

130
140

O 0O 00

200

(2]

210

(o BN o 2 o B & ]

220

230
240

PROCESS GRID DATA

READ GRID POINT DATA, ONE LONG RECORD OF MIXED INTEGERS AND REALS

READ (INTAP,END=400) L,(GRIDCJ,1),d=1,L)

IF (NOUT .NE. 6) GO TO 70

NGRID = L/5

IF (NGRID .GT. MAXGRD) STOP 'GRID DIMENSION TOO SMALL'
WRITE (NOUT,120) NGRID

FORMAT (1X,18,'=sTOTAL NO. OF GRID POINTS®)

DO 140 1=1,NGRID

WRITE (NOUT,130) GRID(1,1),GRID(2,1),GRIR(3,1),6RIRC4,1),GRIR(5,1)
FORMAT (1X,218,3(1PE12.5))

CONTINUE

60 70 70

PROCESS ELEMENT DATA

Js =0
JE

"
o

READ ELEMENT HEADER RECORD, 8 WORDS

READ (INTAP,END=400) NAME,TYPE,SYMBOL,GRIDS,TOTAL,WDS,LINE
IF (NAME(1).EQ.END1 .AND. TYPE.EQ.0) GO TO 250

IF (WDS .GT. MAXWOS) STOP 'ELM ROW DIMENSION TOO SMALL'

IF (JE .GT. MAXELM) STOP °*ELM COL DIMENSION TOO SMALL'

JB = JE#1

JE = JE+TOTAL

READ ELEMENT DATA, ONE LONG RECORD PER ELEMENT TYPE (ALL INTEGERS)

READ (INTAP) ((ELM(I,d),I=1,uWDS),J=JB,JE)
JS = JS+1
1F (JS .GE. 10) STOP 'SAVE DIMENSION TOO SMALL'

SAVE ELEMENT NAMES AND BEGINNING POINTERS IN SAVE-ARRAY
FOR EASY IDENTIFICATION

SAVE(1,JS) = NAME(1)
SAVE(2,JS) = NAME(2)
SAVE(3,JS) = JB
SAVE(4,JS) = WDS

If (NOUT .NE. 6) GO TO 210

WRITE (NOUT,220) NAME,TYPE,SYMBOL,GRIDS,TOTAL,WDS,LINE
FORMAT (1X,'ELEMNT =',2A4,' TYPE =',14,2X,A2,' GRIDS =',18,
1 ' TOTAL =',18,' WDS/EL=',18, " LINE =',18)
DO 240 J=JB,JE

WRITE (NOUT,230) (ELM(I,J),1=1,WDS)

FORMAT (1X,318,1318, /,(1X,8X,1518))

CONTINUE

6o T0 210
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c WRAP UP SAVE-ARRAY

c
250 JS = JS+1
SAVE(1,JS) = END1
SAVE(2,JS) = NAME(2)
SAVE(3,JS) = JE+1
SAVE(4,JS) = 0

IF (NOUT .NE. 6) GO TO 70

WRITE (NOUT,260)

WRITE (NOUT,270) ((SAVE(I,J),1=1,4),4=1,48)
260 FORMAT (/30X,'THIS REFERENCE TABLE IS NOT PART OF INPUT FILE')
270 FORMAT (40X,2A4,3H @ ,14,', WORDS=',I3)

Go 10 70

PROCESS DISPLACEMENT DATA

OO o000

290 STOP 'ERROR IN READING DISPLACEMENT DATA!

300 kB = 1
KS = 0

c READ DISPLACEMENT WEADER RECORD

310 KS = KS+1
IF (KS .GT. 20) STOP 'SAVD DEMINSION TOO SMALL'
READ (INTAP,END=380) CASE,FREQ,NWDS,NAME,COORD,CODE, TITLE,SUBTTL,
1 LABEL
IF (CASE+NWDS .EQ. 0) GO TO 380
IF (NOUT .NE. 6) GO TO 330
WRITE (NOUT,320) CASE,FREQ,NWDS,NAME,COORD,CODE(1),CODE(2), TITLE,
1 SUBTTL, LABEL
320 FORMAT (' CASES =',18,1PE12.5,' WORDS =!,18,' INPUT =',2A4,
1 * COORD =',A8,' CODE = ',2I8, /,(1X,3244))

DISPLACEMENT RECORS HAVE EITHER 8 OR 14 WORDS EACH DATA POINT
WITH CODE(1)=11222222, CODE(2) THRU (5) ARE ZEROS.

(IF THIS WERE TO READ ELEMENT STRESS RECORDS, THERE WOULD BE
NWDS DATA WORDS PER ELEMENT, AND THERE WOULD BE NWDS DIGITS IN
CODE INDICATING THE TYPE OF EACH DATA WORD. FIRST DIGIT (FROM
LEFT TO RIGHT) POINTS TO THE DATA TYPE OF FIRST DATA WORD,

2ND DIGIT TO 2ND DATA WORD, AND SO ON. SEE EXAMPLE AT THE
BEGINNING OF THIS SUBROUTINE)

OO0 000 0000

330 1IF (NWDS.NE.8 .AND. NWDS.NE.14) STOP 'WORD COUNT ERROR'
IF (CODE(1) .NE. 11222222) STOP 'FORMAT CODE ERROR'

c
c SAVE SUBCASE NUMBER AND BEGINNING POINTERS IN SAVD-ARRAY
c FOR EASY IDENTIFICATION
c

KBM1 = KB-1

SAVD(1,KS) = CASE

SAVD(2,KS) = KB
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o000 o0an

340

350
360
370

380

390

400

SAVD(3,KS) = NWDS

READ DISPLACEMENT RECORD, ONE LONG RECORD PER SUBCASE (OR FREQ.)
EACH GRID POINT DISPLACEMENT DATA IN EVERY 8 OR 14 WORDS,
2 INTEGERS + 6 (OR 12) REALS

READ (INTAP,ERR=290) L,(DIS(I+KBM1),1=1,L)

KE = L+KBM1

DO 370 K=KB,KE,NWDS

WRITE (NOUT,350) DIS(K),DIS(K+1), (RIS(K+I),1=2, 7)
IF (NWDS .EQ. 14) WRITE (NOUT,360) (RIS(K+1),61=8,13)
FORMAT (1X,218,6(1PE12.5))

FORMAT (1X,16X,6(1PE12.5))

CONTINUE

KB = KE+1

Go 10 310

WRAP UP SAVD-ARRAY

SAVD(1,KS) = 0

SAVD(2,KS) = KE+1

SAVD(3,KS) = 0

IF (NOUT .NE. 6) GO TO 70

WRITE (NOUT,260)

WRITE (NOUT,390) (SAVD(1,K),SAVD(2,K),SAVD(3,K),K=1,KS)
FORMAT (40X,'CASE',18,3H @ ,14,', WORDS=',14)

GO T0 70

REWIND INTAP
END
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APPENDIX K
USERS’ MANUAL UPDATE PAGES FOR THE NEW RIGID ELEMENTS
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BULK DATA DECK

Input Data Card CRROD Rigid Pin-Ended Rod

Description:

Defines a pin-ended rod that is rigid in extension-compression.

Format and Example:

1 2 3 4 5 6 7 8 9 10

e ittt R A T i S AR LR CET PR P +

JeRRoD | EID | 61 | 62 | o1 |2 | > | > | > |

| CRROD | 14 [ N - | 2 | | | | I |

Rt T e L E T TR PP P +

Field Contents

EID Element identification number (Integer > 0)

Gi Identification numbers of connection grid points {Integers > 0)

Ci Component number of one and only one dependent translational degree of freedom in
the global coordinate system assigned to either Gl or G2. (Integer equals to 1, 2,
or 3.) Either Cl or C2 must contain an integer and the other must be blank. See
Remarks 2 and 3.

Remarks: 1. Element identification number must be unique with respect to all other element

identification numbers.

. The grid point that associates with a blank Ci field, is designated as the

reference independent grid point.

. The dependent (that is constrained) degrees of freedom in a CRROD eiement may not

appear on OMIT, OMIT1, SPC, or SUPORT cards, nor may they be redundantly implied on
ASET or ASET1 cards. They may not appear as dependent degrees of freedom in other
rigid elements or on MPC cards. Degrees of freedom declared to be independent by a
rigid element can be made dependent by another rigid element or by an MPC card.

. Rigid elements, unlike MPC's, are not selected through the Case Control Deck.

. Forces of constraint are not recovered.

. Rigid elements are ignored in heat transfer problems.
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NASTRAN DATA DECK

7. The degree of freedom selected to be dependent must have a nonzero component along
the axis of the rod.

8. Nastran actually converts the CRROD input card into the CRIGDR card format, and
thus processes a CRROD card as if it were a CRIGDR card. The following table shows
the conversion, in free-field format, of two possible cases:

Case CRROD Card Equivalent CRIGDR Card

1 CRROD, EID, G1, G2, Cl, CRIGDR, EID, G2, G1, Cl
2 CRROD, EID, G1, G2, , C2 CRIGDR, EID, G1, G2, C2

9. See section 1.4.2.2 for a discussion of rigid elements.
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Input Data Card CRBAR Rigid Bar

Description: Defines a rigid bar with six degrees of freedom at each end.

Format and Example:

1 2 3 4 5 6 7 8 9 10
T +
| CRBAR | EID | G | 6 | IC1 | Ic2 |Dcl | DC2 |><| |
| CRBAR | 5 | 1 | 2 | 238 | 123 | | | | |
B e LT Y T Tyeuu Uy U EpULp Py PSP Uy +
Field Contents
EID Element identification number (Integer > 0)
Gi Identification numbers of connection grid points (Integers > 0)
ICi Independent degrees of freedom in the global coordinate system for the element at

grid points Gi (any of the digits 1-6 with no imbedded blanks. Integers » 0 or
blank.) See Remark 2.

DCi Dependent degrees of freedom in the global coordinate system assigned by the
element at grid points Gi (any of the digits 1-6 with no imbedded blanks. Integers
2> 0 or blank.) See Remarks 3 and 4.

Remarks: 1. Element identification number must be unique with respect to all other element
identification numbers.

2. The total number of degrees of freedom specified (IC1 and IC2) must equal six; for
example, IC1 = 1236, I1C2 = 34. Further, they should together be capable of
representing any general rigid body motion of the element.

3. If both DC1 and DC2 are zero or blank, all of the degrees of freedom not in ICl and
IC2 will be made dependent.

4. The dependent (that is, constrained) degrees of freedom in a CRBAR element may not
appear on OMIT, OMIT1, SPC, or SUPORT cards, nor may they be redundantly implied on
ASET or ASETI cards. They may not appear as dependent degrees of freedom in other
rigid elements or on MPC cards. Degrees of freedom declared to be independent by a
rigid element can be made dependent by another rigid element or by an MPC card.
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NASTRAN DATA DECK

. Rigid elements, unlike MPC’s, are not selected through the Case Control Deck.
. Forces of ctastraint are not recovered.
. Rigid elements are ignored in heat transfer problems.

. Nastran actually converts the CRBAR input card into the CRIGD3 card format, and

thus processes a CRBAR card as if it were a CRIGD3 card. The following table shows
the method of conversion, in free-field format:

CRBAR Card ===> Equivalent CRIGD3 Card
CRBAR, EID, G1, G2, IC1, IC2, DC1, DC2
===> CRIGD3, EID, G1, IC1, G2, IC2
,"MSET", G1, DCl1, G2, DC2

. See Section 1.4.2.2 for a discussion of rigid elements.
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Input Data Card CRTRPLT Rigid Triangular Plate

Description:

Defines a rigid triangular plate.

Format and Example:

1 3 4 5 6 7 8 9 10
....................................................................................... +
ICRTRPLT | EID ] 61 | G2 | G3 | IC1 | 1C2 | 1C3 |::>x<::|abc |
|CRTRPLT |7 | 1 | 2 | 3 | 1236 | 3 | 3 | |ABC
....................................................................................... +
+ --------------------------------------------------------------------------------------- +
l[bc | DCT | DC2 | OC3 |><|><|><|><|><| |
]+BC | I I |
LT e Tt R L LT PP PR TR P PR TR +
Field Contents
EID Element identification number (Integer > 0)
Gi Identification numbers of the triangular plate grid points. (Integers > 0)
ICi Independent degrees of freedom in the global coordinate system for the element at
grid points Gi (any of the digits 1-6 with no imbedded blanks. Integers > 0 or
blank.) See Remark 2.
DCi Dependent degrees of freedom in the global coordinate system (any of the digits 1-6
with no imbedded bianks. Integers > O or blank.) See Remarks 3 and 4.
Remarks: 1. Element identification number must be unique with respect to all other element

jdentification numbers.

. The total number of degrees of freedom specified for the reference grid points (ICl

IC2, and 1IC3) must be six; for example, IC1 = 1236, IC2 = 3, IC3 = 3. Further,
they should together be capable of representing any general rigid body motion of
the element.

. I1f DC1, DC2, and DC3 are all zero or blank or if the continuation card is omitted,

all of the degrees of freedom not in ICl, IC2, and IC3 will be made dependent.

. The dependent (that is, constrained) degrees of freedom in a CRTRPLT element may

not appear on OMIT, OMIT1, SPC, or SUPORT cards, nor may they be redundantly
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implied on ASET or ASET1 cards. They may not appear as dependent degrees of freedom
in other rigid elements or on MPC cards. Degrees of freedom declared to be
independent by a rigid element can be made dependent by another rigid element or by
an MPC card.

. Rigid elements, unlike MPC’s, are not selected through the Case Control Deck.

. Forces of constraint are not recovered.

. Rigid elements are ignored in heat transfer problems.

. Nastran actually converts the CRTRPLT input card into the CRIGD3 card format, and

thus processes a CRTRPLT card as if it were a CRIGD3 card. The following table
shows the method of conversion, in free-field format:

CRTRPLT Card ===> Equivalent CRIGD3 Card
CRTRPLT, EID, Gl, G2, G3, IC1, IC2, IC3
’ DC1, DC2, DC3
===> CRIGD3, EID, G1, IC1, G2, IC2, G3, IC3
,"MSET", 61, DCl, G2, DC2, G3, DC3

9. See Section 1.4.2.2 for a discussion of rigid elements.
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Input Data Card CRBEl Rigid Body Element, Form 1

Description: Defines a rigid body connected to an arbitrary number of grid points.

Format and Example:

1 2 3 4 5 6 7 8 9 10
L T T T T e +
| CRBE1 | EID j161 | €1 | 162 | Ic2 | 163 | 1IC3 I:::x<::|abc |
| CRBEL | 103 |11 | 1 | 12 | 2 | 13 | 4 | | ABC |
T T L LT T T T e P +
T T +
| +be |><| 164 | IC4 | 165 | IC5 | 166 | IC6 l><|def |
|+BC | | 14 | 3% | 15 | 6 ] | | |CDF |
T T T T T e R P LT +
T T R +
| +ef | "uv* | D61 | DCl | D62 | DC2 | DG3 | DC3 |><|gh1 |
| +DF | v |21 | 123 | 22 | 1 | 23 ]123456 | |EF1 I
R LT L LT et +
T T S I R R R P R +
|+hi |><| DG4 | DC4 | DG5S | DC5 | etc |>< |><| |
[4HI | | 24 | 456 | 25 | 2 | | | | [
Tl B e L i +
Field Contents
EID Element identification number (Integer > 0)
IGi Identification numbers of the reference independent grid points (Integers > 0.)
ICi Independent degrees of freedom in the global coordinate system for the preceding

reference grid point (any of the digits 1-6 with no imbedded blanks. Integer > 0.)
See Remarks 2, 3, and 5.

"um" BCD word that indicates the start of the data for dependent grid points.
DGi Identification numbers of the dependent grid points (Integér > 0).
DCi Dependent degrees of freedom in the global coordinate system for the preceding

dependent grid point (any of the digits 1-6 with no imbedded blanks. Integer > 0.)
See Remarks 4 and 5. '

82



Remarks:

10.

NASTRAN DATA DECK

. Element identification number must be unique with respect to all other element

jdentification numbers.

. The total number of degrees of freedom specified for the reference grid points (ICl

through 1C6) must be six; for example, ICl=1, IC2=2, 1C3=4, [C4=3,5, IC5=6.
Further, they should together be capable of representing any general rigid body
motion of the element.

. The first continuation card is not required if less than four reference independent

grid points are specified.

. The dependenf (that is, constrained) degrees of freedom in a CRBEl element may not

appear on OMIT, OMIT1, SPC, or SUPORT cards, nor may they be redundantly implied on
ASET or ASET] cards. They may not appear as dependent degrees of freedom in other
rigid elements or on MPC cards. Degrees of freedom declared to be independent by a
rigid element can be made dependent by another rigid element or by an MPC card.

. A degree of freedom cannot be both independent and dependent for the same element.

However, both independent and dependent components can exist at the same grid
point.

. Rigid elements, unlike MPC’s, are not selected through the Case Control Deck.
. Forces of constraint are not recovered.
. Rigid elements are ignored in heat transfer problems.

. Nastran actually converts the CRBEl input card into the CRIGD3 card format by

switching the "UM" BCD word to "MSET”, and thus processes a CRBEl card as if it
were a CRIGD3 card.

CRBE1 Card ===> Equivalent CRIGD3 Card

CRBE1, EID, IG1, IC1, IG2, ICZ2, IG3, IC3
, "UM", DG1, DC1, IG2, DC2, etc.
===> CRIGD3, EID, IG1, ICl, IG2, IC2, 1G3, IC3
, "MSET", DG1, DCl, DG2, DC2, etc.

See Section 1.4.2.2 for a discussion of rigid elements.
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Input Data C

Description:

BULK DATA DECK
ard  CRBE2 Rigid Body Element, Form 2
Defines a rigid body whose independent degrees of freedom are specified at a single

grid point and whose dependent degrees of freedom are specified at an arbitrary
number of grid points.

Format and Example:

Gi

Remarks: 1.

3.

2 3 4 5 6 7 8 9 10
............................................................................. +
m |1 | ¢ |6 | 6 | 6 | 64 | 6 jabc |

| 8 | 12 | 10 | 12 | 14 | 15 | 16 |ABC |
............................................................................ +
............................................................................ +
G6 ] 67 | 68 | etc | | | | [ |
20 | | | I I | | I l
____________________________________________________________________________ +

Contents

Element identification number (Integer > 0)

Identification number of the reference grid point, to which all six independent
degrees of freedom for the element are assigned (Integer > 0)

The dependent degrees of freedom in the global coordinate system for all the
dependent grid points Gi (any of the digits 1-6 with no imbedded blanks. Integer >
0.) See Remark 2.

Identification numbers of the dependent grid points (Integers > 0)

Element identification number must be unique with respect to all other element
identification numbers.

. The dependent (that is constrained) degrees of freedom in a CRBEZ element may not

appear on OMIT, OMIT1, SPC, or SUPORT cards, nor may they be redundantly implied on
ASET or ASET1 cards. They may not appear as dependent degrees of freedom in other
rigid elements or on MPC cards. Degrees of freedom declared to be independent by a
rigid element can be made dependent by another rigid element or by -an MPC card.

Rigid elements, unlike MPC’s, are not selected through the Case Control Deck.
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. Forces of constraint are not recovered.
. Rigid elements are ignored in heat transfer problems.

. Nastran actually converts the CRBE2 input card into the CRIGD2 card format, and

thus processes a CRBE2 card as if it were a CRIGD2 card. The following table shows
the method of conversion, in free-field format:

CRBE2 Card ===> Equivalent CRIGD2 Card

.....................................................................

CRBEZ2, EID, IG, C, Gl, G2, G3, etc.
===> CRIGD2, EID, IG, G1, C, G2, C, G3, C, etc.

. See Section 1.4.2.2 for a discussion of rigid elements.
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Input Data Card CRBE3 Rigid Body Element, Form 3

Description: Defines the motion at a "reference” grid point as the weighted average of the

motions at a set of other grid points.

Format and Example:

IC

Wi

Ci

2 3 4 5 6 7 8 9 10
'i'éif)""i%i"ié""i"ié""i"ﬁi'"'I"Ei""i'éiZi“’féi:i'"i;éé“"T
0T T 00 Tz 1o a1 13 A |
I
{61,3 | W2 | c2 |61 |622 |623 | W3 | €3 |def |
s T e T T T T e T s 2 e
I
| 63,1 | 63,2 63,3 | ws | c4 | G411 | G4,2 | G4,3 |ghi |
']"%""'i"'é"'i""""i"é'i"'i"i""’i'i%""'i'ié'""]""""iéﬁi""l
'1'3(»'15"'i'f){;i"'i'BEi'"'i'f)éé'"'I'béé""i'ééi""i'Béi""i}"{"ijii""T
'i"(»'1""i'iéé"'i"ii""i"é'""i"i""'i“%““'i"i'""i""""i&ii'"'l
T><"lve |oca [oes |Dcs [ o6 | DC6 | > | 1
I | l I | | I | | |
________________________________________________________________________________ H

Element identification number (Integer > 0)
Reference grid point (Integer > 0)

Global components of motion whose values will be computed at the reference grid
point (any of the digits 1-6 with no imbedded blanks. Integer > 0)

Weighting factor for components of motion on the following card at grid points
Gi,J (Real)

Global components of motion which have weighting factor Wi at grid points Gi,j (any
of the digits 1-6 with no imbedded blanks. Integers > 0)
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Gi,J

HUMH

DGi

DCi

Remarks:

1.

NASTRAN DATA DECK

Grid point whose components Ci have weighting factor Wi in the averaging equations
(Integers > 0)

BCD word that indicates the start of the data for the components of motion at grid

points DGi (Optional). The default is that all of the component in IC at the
referent grid point IG, and no others, are included in the dependent component set

{u )
m
Grid points with components DCi in (um} (Integers > 0)
Components of motion at grid point DGi (any of the digits 1-6 with no imbedded
blanks, Integers > 0)
Element identification number must be unique with respect to all other element

identification numbers.

Blank spaces may be left at the end of a Gi,j sequence.

. The default for UM should be used except in cases where the user wishes to include

some or all IC components in displacement sets exclusive from the (um) set.
If the default is not used for UM:

a. The total number of components in (um) (that is, the total number of dependent
degrees of freedom defined by the element) must be equal to the number of
components in IC (four in the above example).

b. The components in UM must be a subset of the components mentioned in IC and
(Gi,J; Ci).

c. The coefficient matrix [Rm] in the constraints equation
[RJ{u) + [R J(u} = 0 must be nonsingular.
mom n"on

. The dependent (that is constrained) degrees of freedom in a CRBE3 element may not

appear on OMIT, OMIT1, SPC, or SUPORT cards, nor may they be redundantly implied on
ASET or ASET] cards. They may not appear as dependent degrees of freedom in other
rigid elements or on MPC cards. Degrees of freedom declared to be independent by a
rigid element can be made dependent by another rigid element or by an MPC card.

Rigid elements, unlike MPC’s, are not selected through the Case Control Deck.

Forces of constraint are not recovered.
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. Rigid elements are ignored in heat transfer problems.

. Unlike the other rigid elements, this CRBE3 element and the CRSPLINE element cannot
be converted into CRIGD2 or CRIGD3 elements. A Fortran subroutine (in_single
precision version and in double precision version) was written to handle these two

special rigid elements.
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Input Data Card CRSPLINE

Description:

Defines multipoint constraints for the interpolation of displacements at grid
points

Format and Example:

1 2 3 4 5 6 7 8 9 10
T LT +
JCRSPLINE | EID [ D/L "} Gl | 62 | c2 | 63 | €3 | 64 |abe |
JCRSPLINE } 73 | .05 | 27 | 28 | 123456 | 29 | | 30 |ABC |
it R et E T T T +
L T T +
|+be ] ¢4 | 65 | ¢5 | @6 | etc. | | | [ |
| +BC ] 123 | 75 | 123 | N | | | | ! !
T T T T T T TP L L Lr CEEEE R +
Field Contents
EID Element identification number (Integer > 0)

D/L Ratio of the diameter of the elastic tube which the spline represents to the sum of
the Tengths of all segments. Default = 0.1 (Real > 0.)

Gi Identification number of the ith grid point (Integer > 0)

Ci Components to be constrained at the ith grid point (any of the digits 1-6 with no
imbedded blanks, or blank) See Remark 3.

Remarks: 1. Element identification number must be unique with respect to all other element

3.

identification numbers.

. Displacements are interpolated from the equations of an elastic beam passing

through the grid points.

A blank entry in Ci indicates that all six degrees of freedom at Gi are
independent. Since Gl must be independent, no field is provided for Cl. Since the
last grid point must also be independent, the last entry must be a Gi, not a Ci.
For the example shown, Gl, G3 and G6 are independent; G2 has six constrained
degrees of freedom while G4 and G5 each have three.
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. The dependent (that is, constrained) degrees of freedom in a CRSPLINE element may
not appear on OMIT, OMIT1, SPC, or SUPORT cards, nor may they be redundantly
implied on ASET or ASET] cards. They may not appear as dependent degrees of freedom
in other rigid elements or on MPC cards. Degrees of freedom declared to be
independent by a rigid efement can be made dependent by another rigid element or by
an MPC card.

. Rigid elements, unlike MPC’s, are not selected through the Case Control Deck.

. Forces of constraint are not recovered.

. Rigid elements are ignored in heat transfer problems.

. Unlike the other rigid elements, this CRSPLINE element and the CRBE3 element cannot
be converted into CRIGD2 or CRIGD3 elements. A Fortran subroutine (in single
precision version and in double precision version) was written to handle these two
special rigid elements.
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USING PATRAN AND SUPERTADB AS PRE- AND POSTPROCESSORS TO COSMIC/NASTRAN

Robert R. Lipman

David Taylor Research Center
Numerical Structural Mechanics Branch (Code 1844)
Bethesda, Maryland 20084-5000

SUMMARY

Patran and Supertab are interactive computer graphics pre- and postprocessors that can be used to
generate NASTRAN bulk data decks and to visualize results from a NASTRAN analysis. Both of
the programs are in use at the Numerical Structural Mechanics Branch of the David Taylor Research
Center (DTRC). This paper will discuss various aspects of Patran and Supertab including: geometry
modeling, finite element mesh generation, bulk data deck creation, results translation and visualiza-
tion, and the user interface. Some advantages and disadvantages of both programs will be pointed
out.

INTRODUCTION

Interactive computer graphics is an integral part of finite element mesh generation and analysis
results visualization. Gone are the days of typing GRID cards on a keypunch machine and pouring
over endless pages of stress and displacement output. NASTRAN has plotting capabilities in a batch
or interactive mode. However, in either mode, visual feedback while creating a finite element mesh
is not possible and the results visualization capabilities are limited.

Presently, there are many finite element pre- and postprocessors that run on PC’s, workstations,
and mainframe computers. The pre- and postprocessors allow the user to interactively define
geometry, approximate that geometry with a finite element mesh, apply loads and boundary condi-
tions, create input for a finite element analysis program, and visualize results from the analysis. The
programs provide a powerful, efficient, fast, and invaluable tool to an engineer to improve produc-
tivity.

Patran (ref. 1) and Supertab (refs. 2-5) are two of the more popular and widely used finite element
pre- and postprocessors. Patran is a product developed and marketed by PDA Engineering of Costa
Mesa, California. Supertab is a product developed and marketed by Structural Dynamics Research
Corporation (SDRC) of Milford, Ohio. Both of these programs have interfaces to NASTRAN and
can be used to generate finite element models and visualize analysis results. The scope of this paper
covers the usage of Patran and Supertab as related only to COSMIC/NASTRAN (ref. 6) and not any
other finite element analysis programs.

Several items about this paper should be noted. Both Patran and Supertab have a wide variety of
features; I have not used, nor am I familiar with all of them. However, I have had extensive experi-
ence with Patran for the last 4 years and Supertab over the last year to generate finite element models
of missile launchers, periscope masts and windows, propeller blades, and other Naval structures. In
the Numerical Structural Mechanics Branch there are also several other experienced Patran and
Supertab users. Any opinions expressed are my own and are not necessarily those of DTRC, the
Navy, or the Department of Defense.
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PATRAN OVERVIEW

The standard Patran software package consists of several integrated modules to generate geometry
models consisting of curves, surfaces, and solids (P/Solid module); develop a finite element mesh
consisting of nodes, elements, loads, boundary conditions, and material and physical properties
(P/Fem); and visualize the geometry model, the finite element model (P/Image), and the analysis
results (P/Post and P/Plot). Patran also has several optional modules that perform finite element
analysis, mechanical dynamics, composite analysis, and thermal analysis. Interfaces to finite element
analysis programs and IGES are also optional modules. Several utility programs are also provided,
including a set of Fortran subroutines to access a Patran database directly without entering Patran.

Patran runs on many of the standard workstations, mainframe computers, and graphics devices.
In the Numerical Structural Mechanics Branch, Patran version 2.2 is run on a network of Apollo
workstations and Patran version 2.3 is run on a VAX with a Tektronix terminal. The Branch uses an
interface to COSMIC/NASTRAN, but does not have any of the optional analysis modules.

Patran is a leased product. The lease fee is paid yearly and is determined by the number of con-
current users and the desired modules, interfaces, and graphics device drivers. The fee includes hot-
line support and software upgrades. Software upgrades are not released for all computers, modules,
or interfaces at the same time. Presently, the Apollo version is one level behind the current VAX
version.

SUPERTAB OVERVIEW

Supertab is one product of the I-DEAS (Integrated Design Engineering Analysis Software) family
of software. The different families of software are: solid modeling (Geomod), engineering analysis
(Supertab), system dynamics (Systan), drafting (Geodraw), and test data analysis (Tdas). Within
each family there are different modules. The modules within Supertab are: pre/post processing,
model solution, optimization, data loaders, and frame analysis. Most modules contain several tasks.
Some of the tasks within the Supertab pre/postprocessing module are: geometry definition, mesh gen-
eration, model checking, and postprocessing. The data loader module of Supertab contains transla-
tors for all supported finite element analysis codes. I-DEAS software can be configured to contain
only the required families and for some families, only the required modules. As part of the standard
I-DEAS software package, a relational database management system (Pearl), an IGES translator, and
several utility programs are provided, including software to integrate site-supplied software into I-
DEAS as its own module.

Supertab also runs on many of the standard workstations, mainframe computers, and graphics
devices. In the Numerical Structural Mechanics Branch, the I-DEAS product being used is called
Supertab Plus version 4.0 running on a network of Apollo workstations. Supertab Plus consists of
the pre/postprocessing and data loader modules of Supertab and the object modeling module of
Geomod. In terms of geometry definition, the pre/postprocessing module has basic geometric model-
ing capablities, while the object modeling module has very powerful solid modeling capabilities.

Supertab is a licensed product. The user pays a one-time fee depending on the number of con-
current users and the desired software products. An optional yearly maintenance fee provides hot-
line support and software upgrades. As with Patran, software upgrades are not released for all com-
puters, modules, or interfaces at the same time.
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PATRAN GEOMETRY MODELING

Before a user creates a finite element mesh, the geometry model must first be generated. In
Patran, the geometry model used to create a finite element model consists of points in space (Patran
GRID entities), curves (LINE), surfaces (PATCH), and solids (HYPERPATCH). There are many
ways to create these entities. For example, rotating a line about an axis will create a patch. A hyper-
patch can be created from the linear interpolation of the region between two patches. The intersec-
tion between two patches creates a line. However, two hyperpatches cannot be intersected to create
a third hyperpatch. Patches and hyperpatches could be reconstructed from the resulting lines of
intersection between the individual patch faces of the original hyperpatches.

The mathematical formulation of the geometric entities is a parametric cubic. This representation
has limitations; a line can go exactly through, at most, four grids; fitting a line through more than
four grids will result in a least squares approximation. The approximation may be sufficient, or more
than one line could be generated through the grids. The same problem occurs with generating a B-
spline line. Given n grids, n-1 parametric cubic lines will be generated that represent a B-spline for
those grids. Usually, the user would rather have one line through n grids. Having n-1 lines makes
more entities to manipulate and keep track of.

Patches are always four-sided entities and hyperpatches are always six-sided entities. Iowever,
degenerate three-sided patches and degenerate five-sided hyperpatches are allowed. The sides of a
patch are always single parametric cubic lines. A composite curve consisting of several lines defining
the sides of a patch is not allowed. Therefore, the geometry model for a three-dimensional (3-D)
object model will be divided into some combination of the geometric entities. The individual lines,
patches, and hyperpatches defining the geometry model will be used to create the finite element
model. Just as a finite element mesh normally is not discontinuous, the pattern of lines, patches, and
hyperpatches should also not be discontinuous. Given the restrictions on the number of sides for
patches (4 or 3) and hyperpatches (6 or 5), the desired finite element mesh, and the continuity of the
geometric entities, an excessive number of geometric entities may be required to model some objects;
and other objects will be almost impossible to model. This is more apparent when trying to divide an
object into hyperpatches.

Patran has another solid modeling capability. This feature involves using boolean operations on
solid primitives. The solid primitives available are bricks, cones, cylinders, elbows, spheres, and
tori. A solid primitive can also be created from any collection of patches provided they form a
closed surface. The boolean operations are difference, intersection, and union. The user can create
a solid cube with a hole through the center by using a brick, a cylinder, and the difference operation.
However, the primitives cannot be used directly to create a finite element mesh. First, the primitives
have to be converted into geometric entities. For the cube with a hole, the desired geometric entity
would be a set of hyperpatches. However, the resulting geometric entities are patches defining the
original cube without a hole, patches defining the original cylinder, and the lines defining the intersec-
tion of the cube and cylinder. The hyperpatches can be constructed from those lines and patches.
Using Patran primitives to generate geometric entities for finite element models is not very useful.
Patran primitives are more useful in generating conceptual solid models of objects.

SUPERTAB GEOMETRY MODELING

Usually, before a finite element mesh is created in Supertab, two-dimensional (2-D) and 3-D
regions, called mesh-areas and mesh-volumes, have to be defined. Mesh-areas and mesh-volumes are
generated from curves and surfaces. There are two methods for creating curves and surfaces in
Supertab. The first method is to generate a geometry model with the object modeling module of
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Geomod and to transfer the curves and surfaces to Supertab. The second method is to use the
geometry definition task in the pre/postprocessing module of Supertab.

The object modeling module of Geomod creates solid geometry models using 3-D primitives or 2-
D cross-sections. The primitives availables are the same as in Patran. User-defined primitives can be
generated by extruding or revolving cross-sections or by building an object from a set of cross-
sections. The primitives can be cut, joined, or intersected using boolean operations. The curves and
surfaces associated with the resulting primitives can be transferred to Supertab to be used in generat-
ing a finite element mesh.

The mathematical formulation of the curves and surfaces is a nonrational uniform B-spline
(NURB). This representation allows one curve to be fit to any number of points. However, only
planar outlines or cross-sections are allowed. Therefore, in Geomod and Supertab, a user-defined
NURB nuwst always lie in a plane. This is a limitation for some geometry models. For example, pro-
peller blades are usually defined in terms of radial cross-sections. A radial cross-section is not
allowed in Geomod or Supertab.

The geometry definition task of the pre/processing module of Supertab provides another alterna-
tive to create curves and surfaces that can be used to generate mesh-areas and mesh-volumes. This
task is similar to object modeling in Geomod; however, only 2-D cross-sections can be created. Hav-
ing only this geometry creation capability in Supertab is sufficient for many geometry models, making
Geomod unnecessary.

PATRAN FINITE ELEMENT MODEL GENERATION

Nodes and Elements

In Patran, a finite element mesh is generated on the lines, patches, and hyperpatches that define
the geometry model. For example, plate elements are generated on a patch. Two methods are avail-
able to create nodes and elements.

The first method is a two step process. In the first step, the GFEG command is used to create
nodes on a line, patch, or hyperpatch. For a patch, the user specifies the number of nodes on each
of two adjacent sides. This will create a mapped mesh of nodes from one side of the patch to the
opposite side. The GFEG command allows for biasing the nodes and some limited mesh transition-
ing. The second step uses the CFEG command which specifies the type of element (for example:
BAR, QUAD, HEX), the number of nodes per element, and a configuration code. The
configuration codes are used to differentiate between different element types with the same number of
nodes, such as CQUAD2 and CQUAD4. The number of elements generated depends on the pattern
and number of nodes created with the GFEG command.

The second, and more powerful, method for generating a finite element mesh was implemented in
the latest version of Patran. However, the method applies only to creating nodes and quadrilateral or
triangular elements on patches. The MESH command is used to specify the type of element, the
number of nodes per element, the configuration code, and the number of elements along all four
sides of the patch or the approximate element edge length. Each side can have an arbitrary number
of elements. This allows for whatever mesh transitioning or element size a user requires. A mesh
smoothing command can be used to modify the resulting pattern of nodes and elements created by
the MESH command.

The GFEG, CFEG, and MESH commands can create nodes and elements on more than one
geometric entity at a time. For example, a geometry model consisting only of patches, might require
that the GFEG command be repeated for each set of patches with the same pattern of nodes, and the
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CFEG command used only once to generate the same type of elements on all the patches.

Material and Physical Properties, Loads, and Boundary Conditions

In Patran, material and physical properties, loads, and boundary conditions are applied to the
finite element mesh with the PMAT, PFEG, and DFEG commands. Standard material models are
available such as isotropic, orthotropic, and anisotropic. The physical properties specified are the
same as would be required on a NASTRAN property card. Loads and boundary conditions can be
applied to the nodes and elements associated with a geometric entity, a specific node or element, or
all nodes or elements lying in a specified plane. Multi-point constraints (MPC’s) can also be gen-
erated. Loads, boundary conditions, and physical properties can be defined by an algebraic function
by using data entities or the FIELD command.

Equivalencing, Optimization, and Model Checking

When generating nodes on adjacent patches, nodes will be generated along the common boundary
associated with each patch. Equivalencing eliminates one of the coincident nodes between adjacent
geometric entities and readjusts the element connectivity. Optimization performs nodal resequencing
based on based on bandwidth or wavefront. This capability is the same as the resequencing pro-
cedure in NASTRAN. The model checking capability checks the aspect ratio, warp, skew, taper,
normals, and duplication of 2-D elements. If an element does not pass the check, the element can be
split into two elements. No element checking is available for 3-D elements.

SUPERTAB FINITE ELEMENT MODEL GENERATION

Nodes and Elements

Supertab usually generates a finite element mesh on 2-D (mesh-areas) and 3-D (mesh-volumes)
regions defined by curves and surfaces. The curves and surfaces come from the object modeling
module of Geomod or the geometry definition task in the pre/postprocessing module of Supertab. A
mesh-area is defined by a closed region of curves and a mesh-volume is defined by a closed volume of
mesh-areas. A mesh-area can be defined by any number of curves and does not have to be planar.
This is a very powerful tool to model any arbitrary 2-D region with only one mesh-area. The same is
true for mesh-volumes. For a 3-D model only one mesh-volume, made up of multiple mesh-areas, is
required.

Three methods for generating nodes and elements are available. The first method is mapped
meshing, similar to the GFEG and CFEG commands in Patran. The number of elements along two
adjacent “‘sides” of a mesh-area are specified. Because mesh-areas can have any arbitrary shape,
mapped meshing is more appropriate for mesh-areas that are four “sided”. Fach “side” of a mesh-
area, used for mapped-meshing, can be composed of any number of curves. The user specifies the
number of elements along each curve of the two adjacent “sides” of the mesh-area. Biasing of the
mesh is allowed. The element is specified by element type (rod, beam, plate, membrane, solid, etc.),
element order (linear, parabolic, cubic), and element topology (triangle, quadrilateral, wedge, hex-
ahedron, etc.). This specification does not distinguish between different NASTRAN elements that
have the same element type, order, and topology, such as CQUAD?2 and CQUAD4 elements.

Free mesh generation is the second method for generating nodes and elements. This capability
can be used for mesh-areas and mesh-volumes and is similar to the Patran MESH command. To use

free meshing, a global element size for a mesh-area or mesh-volume and the element type is specified.
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Local element sizes and the number of elements per curve can also be specified. Free meshing is a
very powerful capability, but care should be taken in creating mesh-areas and mesh-volumes and in
specilying element sizes so that the resulting mesh is acceptable.

The third method for finite element mesh generation does not require any geometry model.
Nodes can be created by entering or digitizing XYZ coordinates and copying, reflecting, or generating
nodes between existing nodes. Rectangular, cylindrical, or spherical coordinate systems can be used.
Elements can be created by picking the nodes for an element and copying, reflecting, extruding, or
revolving existing elements. This method for finite element mesh generation can be used with nodes
and elements created with either of the other two methods.

Material and Physical Properties, Loads, and Boundary Conditions

Material and physical properties are generated by creating tables of values for these properties.
Only the properties that Supertab allows are permitted in the tables, which may not be sufficient to
define all NASTRAN material and property cards. Both types of properties are associated with an
element when the element is created. Loads and boundary conditions are applied to individual nodes
and elements, nodes associated with elements, or nodes and elements on a geometric entity (curve,
mesh-area, or mesh-volume). Load values can be defined by an algebraic function.

Equivalencing, Optimization, and Model Checking

Nodal equivalencing and resequencing in Supertab is similar to that in Patran. Nodes can also be
resequenced by sweeping along a coordinate axis and sorting nodes based on nodal coordinates. Ele-
ment checking is available for 2-D and 3-D elements. The adaptive meshing task in Supertab can be
used to refine the finite element mesh based on element checking criteria.

BULK DATA DECK CREATION AND ANALYSIS RESULTS TRANSLATION

Patran

The ultimate goal of any finite element pre- and postprocessor is to create input for an analysis
program and to tranlate results for the postprocessor. The programs used by Patran to accomplish
this are PATCOS (PATran to COSmic/nastran translator) and COSPAT (COSmic/nastran to
PATran translator). PATCOS and COSPAT (refs. 7-9) are developed and supported by PDA
Engineering. Although PDA is currently updating the translators, the current versions of PATCOS
and COSPAT have several bugs and have not been updated to include many bulk data cards that are
new or which were missing from previous versions. Fortunately, when the Numerical Structural
Mechanics Branch originally obtained COSPAT and PATCOS, PDA supplied the Fortran source
code, which allowed us to bring COSPAT and PATCOS up-to-date by implementing many bug fixes,
additions, and enhancements.

To create a bulk data deck, a Patran neutral file must first be created. The neutral file is an
ASCII file containing all geometric and finite element model information and is generated by Patran.
PATCOS reads the neutral file and generates a bulk data deck. If a new type of bulk data card is
required, then PATCOS has to be modified. It is also possible to generate elements in Patran that
are not supported by NASTRAN or PATCOS, such as a 15-noded wedge. The user has to be aware
of the capabilities of PATCOS when generating a finite element model.
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COSPAT serves two functions. The first is to read in a NASTRAN bulk data deck and generate
a Patran neutral file. If COSPAT does not recognize a particular NASTRAN card type, then nothing
is written to the neutral file. The resulting neutral file can be read into Patran. Once in Patran, the
finite element model can be displayed and used for postprocessing.

The other function of COSPAT is to translate NASTRAN results into a format that can be read
into Patran. COSPAT reads in displacement and stress data blocks that are written to a NASTRAN
UT1 file with an OUTPUT?2 statement. COSPAT generates up to three different Patran results files.
One file contains nodal translations and rotations. The second file contains element centroidal
stresses. The third file is generated only if NASTRAN computes nodal stresses (CIHEX],
CQUAD2, CTRIA2, etc.). Any of these three files can be used in Patran to visualize analysis
results. With a user-written postprocessor, any type of data can be written in the Patran results files
format so the data can be visualized with Patran.

Supertab

To generate a bulk data deck in Supertab, the finite element model must first be written to an
I-DEAS Pear] database. The Pearl database is read by a programn that generates the bulk data deck.
Using the Pearl database to create the bulk data deck is a time-consuming procedure. A more
efficient way to generate a bulk data deck might be to create it directly from the model file or from an
I-DEAS universal file. A universal file is an ASCII file containing the geometry model, finite element
model, analysis resuilts, and viewing parameters. A universal file is similar to a Patran neutral file.
Because Supertab cannot differentiate between a CQUAD1, CQUAD?2, and CQUAD4 element, all
linear quadrilateral thin shell elements will be translated to a CQUAD?2 element. This problem also
affects other element types. The user has to edit the bulk data deck to change elements to the
desired element type. The source code for the program which generates the bulk data deck is not
available.

To read in results from a NASTRAN analysis the data loader module of Supertab is used. Simi-
lar to PATRAN, the NASTRAN data loader reads data blocks that are written to a NASTRAN
UT1 file with an OUTPUT?2 statement. In addition to displacement and stress data blocks, data
blocks for strains, forces, strain energy, and eight others which define the finite element model are
required: CSTM, GPL, GPDT, EPT, MPT, GEOM2, GEOM3, and GEOM4. CSTM is generated
only when a coordinate system definition card is included in the bulk data deck. If the default coor-
dinate system is being used, then a dummy coordinate card must be included in the bulk data deck to
force the generation of the data block CSTM. Although the user might not be interested in a particu-
lar type of output (for example, strain energy), the data block for that type of output is still required.

The NASTRAN data loader creates an I-DEAS universal file which can be read into Supertab.
The analysis results can then be used for postprocessing. The data loader cannot read a bulk data
deck to create a universal file of the finite element model. The source code for the data loaders is
available from SDRC.

VISUALIZATION

Both Patran and Supertab have similar capabilities for visualizing the geometry model, finite ele-
ment model, and analysis results. There are an infinite number of ways to display either type of
model. The user has control over: viewing angles, which parts of the model are to be displayed, the
color assigned to different entities (curves, mesh-areas, patches, element types, etc.), how to draw an
entity (shrink elements, a circle or dot for a node, etc.), entity labels, display options, etc. The
display option can be wireframe, hidden line, continuous tone (Supertab) or fill-hide (Patran), or

97



shaded image. For graphics terminals and workstations with hardware 3-D rotations and shading, the
user should be able to dynamically rotate a model drawn with any display option. Patran cannot
display a shaded image of a finite element model. Supertab has an advanced display capability known
as ray tracing. Ray traced images can have shadows, reflections, and transparency. However, ray
tracing, as implemented in Supertab, is extremely computationally intensive (several days for one
image on an Apollo DN580-T).

To visualize analysis results, several types of display options are available. They include:
deformed geometry, animation of modal vibrations, contour plots, color fringe plots, vector plots,
fill-hide plots, beam shear and moment diagrams, and XY graphs. The appropriate types of display
options can be dynamically rotated. Various attributes of these types of displays can be set by the
user. Patran can assign colors to elements based on analysis results or a value such as element or
material ID. Currently, COSPAT does not generate Patran beam results files that can be used for
beam shear and moment diagrams in Patran.

USER INTERFACE, DOCUMENTATION, AND BUGS

Patran

The Patran user interface is a mixture of a command-driven and menu-driven input system. The
user interface can be used in a command line mode or on-screen menu mode. In the command line
mode, the user enters whatever commands are desired. However, to do some tasks, a menu pick is
required. To pick a particular menu item, the user enters the number associated with it. Some tasks
can be executed by entering a command or using menu picks with the same results. Commands are
also available to jump to particular menus. In the on-screen menu mode, menu items are chosen by
using the cursor (controlled by a mouse, thumbwheels, etc.) to pick from a dynamic menu. Some
commands still have to be entered in the on-screen menu mode. Other commands can be set by
using the cursor. A less ambiguous and more structured user interface would be desirable for Patran.

Most commands in Patran can be divided into several catagories: commands for creating
geometric entities (GR, LI, PA, HP), commands for creating the finite element model (GFEG,
CFEG, PFEG, DFEG, etc.), and commands prefaced by SET, SHOW, or RUN. The SET and
SHOW commands are used to set and show the value of almost 300 parameters. Generally, only a
small subset of the parameters might have to be set. For example, labels can be turned on by enter-
ing SET,LABEL,ON. Currently, there are over 50 RUN procedures. The RUN procedures allow
the user to do such things as generate hidden line plots, assign colors to elements, or compute con-
tour line values.

The text that is entered for many of the commands, SET/SHOW parameters, and RUN pro-
cedures is not obvious. If the user did not know how to set the number of line segments plotted per
parametric cubic line, entering SET,NLSPPC,10 would not be obvious. Therefore, documentation is
essential. Patran documentation is divided into major tasks such as: creating geometric entities,
creating a finite element model, visualizing models and results, and using SET, SHOW, and RUN
commands. Generally, a description in words and graphics is given alphabetically for each command
in a task. There are also functional listings of SET, SHOW, and RUN commands. For some types
of commands there are conceptual descriptions of what can be done, along with related commands
that might be used. The documentation is a complete reference of any capability or option in Patran.
When running Patran, a user may access on-line help consisting of command descriptions.

No program of Patran’s size is without bugs. PDA publishes a technical bulletin every month or
two that lists a few known bugs and possible work-arounds. The releasc notes for a new version of
Patran contain a list of bugs that have been fixed. The user does not have a list of all known bugs.
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Supertab

Supertab’s user interface is a tree-structured menu-driven system. The user picks a menu
response which results in: (1) another menu, (2) a required alphanumeric response, or (3) a system
action (for example, an element is generated). Menu items can be picked by using the cursor or by
typing in the command. More than one command can be entered at a time, allowing the user to
move through several menus at one time. Menu picks that require an alphanumeric response (file
names, coordinate values, various parameters, etc.), generaily have a default value which is used if
the user hits the return key. In addition to the current menu, the user can pick from a global menu
that has commands that can be executed anytime within a module.

Generally, every task in Supertab has its own main menu with many submenus. The menu system
can be confusing. If the user knows what he wants to do, it is not always obvious what the command
name might be or under what menu to find the command. As part of the standard documentation,
menu guides are provided which list all the commands for each menu in a hierarchical form. The
standard manuals do not have an explanation of all of the commands. Rather, the manuals introduce
the use of Supertab conceptually and through step by step examples. This is a good method; how-
ever, the manuals are almost useless if a user is trying to determine what a specific command does.
Optional reference manuals are available that give a description of each command. When running
Supertab, a user may access on-line help consisting of command descriptions, a command search
capability, and some overviews and methods.

As with Patran, Supertab is not without bugs. SDRC publishes a quarterly update of all known
bugs and work-arounds and hints, limitations, and extended documentation for some features.
Although the list of bugs is extensive, it is not complete because not all bugs are reported to SDRC.

OTHER FEATURES

Patran

When Patran is run, a session file is generated containing everything that was entercd at the key-
board. This file can be used to reconstruct the model or to model objects with similar shape but
different dimensions. For example, a session file that made hyperpatches defining a cylinder could be
edited to change the radius and length. The session file could be rerun to create a new model with
new dimensions. A session file can only be input at the beginning of Patran. If a file of commands is
to be entered while already in Patran, the “read file” option under the geometry menu can be used.

Macros can be defined which create a user-defined text string that will represent several com-
mands. A file (OPTION.SET) is executed everytime a new Patran database is opened. This file can
be used to configure the user’s working environment and to define macros. A replay file can be gen-
erated in Patran that contains all the graphics that appear on the terminal. This file can be replayed
later with a utility program. A hardcopy file can generated and processed with another utility pro-
gram that sends the graphics to a plotter (Calcomp, laser printer, etc.).

A named component is an entity that is a user-defined collection of geometric and/or finite ele-
ment model entities. This provides a simple method to refer to a large number of entities of different
types. New named components can be created by mirroring, rotating, scaling, or translating existing
named components.
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Supertab

When Supertab is run, a program file can be generated. Similar to a Patran session file, a pro-
gram file contains everything that was entered at the keyboard. A program file can be input to Super-
tab at any time. In addition to Supertab commands, the program file can contain Fortran-like state-
ments including arithmetic operators, mathematical functions, character strings, and variables, as well
as commands to extract data from Supertab. Program files in this language can be written for any
application and executed from Supertab. The program file can contain “read” and ‘“‘write” state-
ments to prompt the user for input, in the same way Supertab prompts for input.

Macros can be defined as they are defined in Patran. A user-defined program file
(USERPROF.PRG) is executed everytime a new module is entered in I-DEAS. A picture file can be
generated of a graphic image and replayed within Supertab or with a utility program and sent to a
plotter. ‘

Supertab has an adaptive meshing capability which, given the finite element analysis results, will
refine the finite element mesh based on selected criteria. For example, a region of a mesh with high
stress gradients could be refined to have a higher mesh density in that region.

CONCLUSIONS

Either Patran or Supertab can be used successfully as a pre- and postprocessor to
COSMIC/NASTRAN. Each program has advantages and disadvantages. The user will have to
decide which program is better depending on his finite element pre- and postprocessing needs. My
personal opinion is that Supertab and Geomod are superior to Patran. However, if only simple finite
element models are required, Patran might be a better program to use once the user has become fam-
iliar with Patran. Both programs need a convenient capability for fitting a surface through a specified
set of points.

Patran

The solid primitive capability in Patran would be more useful if the primitives could be used
directly for finite element mesh generation. The finite element model generation capabilities are sim-
ple and straightforward. The MESH command should be extended to handle generating solid ele-
ments on hyperpatches. The bulk data deck generation and results translation processes are fast and
efficient provided the user has access to the source code for PATCOS and COSPAT. PDA
Engineering should provide up-to-date versions of PATCOS and COSPAT so that the user does not
have to become involved with the source code. The user interface leaves a lot to be desired. A new
user will find it difficult to come up to speed to generate even a moderately complex finite element
model.

Supertab

The solid modeling capabilities of Geomod are very powerful. However, the restriction that
cross-sections be planar is a limitation. The finite element mesh generation capabilities of Supertab
are also very powerful; however, not all element types can be generated. Creating an I-DEAS Pearl
database slows the bulk data deck creation process. The user should not have to generate NAS-
TRAN data blocks that define the finite element model to do postprocessing of analysis results. The
user interface is very good; however, a user can get lost in the tree-structured menu-driven input
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system. The user interface allows a new user to come up to speed very quickly to generate complex
geometry and finite element models.
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INTRODUCTION

Deutsch Metal Components Manufactures
advanced Fluid System Components for
the Aeropsace, Marine, and Petrochemical
Industries. These fittings permanently
connect Pipe and/or Tubing Systems and
are recognized under the trade names,
Permaswage® and Pyplok®.

The above photo shows the B-18
Bomber. This is one of the many
types of aircralt that uses the
Deutsch fittings.

ORIGINAL PAGE |S
OF POOR QUALITY
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Environmental Seal
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Silicone
Environmental Seal

DuPont Viton E* Seal
(Per MIL-R-83248/1)

FITTING DESIGN

The upper photo shows a cut-a-way
Permaswage?® fitting connecting together
two pieces oftubing. Thefittingisslidintothe
tubes and then swaged or crimped resulting
in a permanent light weight connection.
Completed connections feature 2 seals on
each side of the fitting. One is a positive
metal-metal seal the otheris a silicone back-
up seal.
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The lower photo shows the Pyplok® fitting
and pipe connecting system which is similar
in concept to Permaswage®, but is used on
piping systems in the Ship Building/Ship
Repair and Petrochemical Industries. Both
systems are available in the standard Pipe/
Tube fitting configuration, such as; Coupling,
Tees, Elbows, Reducers, etc.
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SWAGE TOOL

This Swaging Tool is one of the models of the
product line which is the subject of the
paper. There are 6 different models in the
product line: Model 5, 10, 20, 30, 40, and
Model 55. For simplicity in this paper only
one model will be discussed. The swaging
tool which performs the swaging or crimping
of these fittings is hydraulically actuated.
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The photo above shows this tool in operation.
The upper left hand slide shows the top portion
of the tool which contains a slotted Die which
transforms axial or linear force from an axial
direction to radially acting force. The next
slide shows a detail of this Swage Die.
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EXISTING SWAGE TOOL

This slide shows the previous generation Tool. Pressurized oil enters at the bottom of the Tool and
actuates the upper and lower pistons. These pistons force the lower die block against the slotted
die which performs the swaging operation.

DESIGN OBJECTIVE:

e To double the operational cycle life of the product.
e MCD felt that with some redesign of the tool, cycle life could be substantially extended.
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APPROACH USED TO
ACCOMPLISH DESIGN OBJECTIVE

First, we submitted the existing Swage Tool to finite element analysis.

Second, we determined the stress level required. This was based on a S-N Curve for the
selected material and the operational cycle life requirement.

Third, we concentrated our efforts on the highly stressed areas noted above.

Thelirstarea analyzed was A", the force on thisareais 1/2 the totaltonnage of the tool. Model
55 tool would have a total force of 110,000# of which 55,000# would be concentrated under
worst conditions on this area :

“B” is the reaction area.

“C” reacts the forces trhu the Strut and Top Cap back into the cylinder.
“D" is the area where the Top Cap Threads mate the cylinder.

These areas will be discussed in detail starting with “A”.
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18t the radius was increased as
shown above. This reduced the

stress.

3rd the compression area was
then made smaller. Again this
reduced the moment and the
associated stress.
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AREA “A”

| -

CONTACT} .
ANGLE |~

'Y

2ndthecontactangle whichwas
0°, was changed. This reduced
the stress some more. It should
be noted at this point, different
angles were tried from 0°-45°,
The optimim angle was found to
be 30°.



AREA “A” CONT.

7
i
N

2N

4ththe contactareawasreduced
and the radius moved inward.
This too lowered the stress level
because the area across the high
stress sectionwasincreased. The
contact stress was performed by
hand calculations. '

e
K4
/

$ ?\
N

o - - - -

-

.

Sththe overallsize was reduced.
This was possible because the
stress level had been substan-
tially reduced in all areas.

The actual final FEA are showlnl(c))n the following slides.
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THE SECOND AREA ANALYZED WAS THE
REACTION PRESSURE AREA AT “B”

1st the radius was increased as
shown above. This reduced the

stre

CONTACT AMNGLE

SS.

CONTACT ANGLE

3rd The radii on both parts were
made more generous & blended
together. This again reduced the
stress not only on the head, but
also the cylinder. The result was
asmallerandlightercylinderand
head. Actual FEA slides follow,
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2ndthecontactangle whichwas
10°, was changed tothe optimum
angle of 30°. The contact area
was also changed again. Both of
these changes lowered the
stresses.
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4 PIECE DESIGN

1 PIECE DESIGN

/’JN\
! ~
/ -
/ // N\ \\
0 VA \
STRUT | \, / |
a2 NN
| |
| |
| N§ |
KNURLLED \
NUT E§
@w T 3o o
! : /—TOP CAP
xR 4 CYL INDER
,\ h CYL INDER
s N > \_ '
\ A
1% 5055 '

THE 3RD AREA ANALYZED WAS “C”

Knowing the forces involved it was an easy step to go from a (4) piece design, to a (1) piece design.
The Strut, Knurled Nut, Top Cap and Cylinder were ali made part of the Cylinder. This completely
eliminated 3 parts. Finite elementsagainchecked all high stress areas. The firstanalysisonthe new
design found several areas which had excessively high stress. Adding more material to the O.D. of the
Cylinder and changing to a larger radius as shown resulted in acceptable stress levels.
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THE 4TH AREA ANALYZED WAS D"

Lab tests showed that premature failure occurred at the 1st and 2nd thread area before we could
reach therequired cyclelife. To solve the problem we made the following engineering modifications:

FIRST — More material was added to the O.D. of the cylinder where the failure occurred.
Repeated tests showed very little improvement in the cycle life.
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N L

ACTUAL THD. LENGTH THD LENGTH FOR FEA

SECOND — The thread area was submitted to finite element analysis. The analysis was made for
only 2 threads and was in 2 “D". 30% of the load was applied to each thread. This
loading was applied because studies have shown that 60% of the load on a screw
thread is concentrated on the first 2 threads.

FEA showed the weak area up immediately. It was, as expected, at the root of the
thread.
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HIRD —

Y

MODIFIED MALE THD. MAJOR DIA.

Using this configuration and finite element analysis it was found that a modified UNJ
thread with the thread root radius at the bottom of the cylinder (female) thread, as well
as, on the male thread, greatly reduced the root stress level. This now became a
modified thread because the standard UNJ thread only specified that the male have a
root radius. With this female root radius it was alsc necessary to modify the O.D. of the
male thread to prevent interference. Prototype models were then made, however, we
still did not meet our required 100,000 cycle life requirement.
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LARGER THAN STD. UNJ RAD.
WITH SMALL CONTACT AREA

FOURTH — The next step was to return to FEA which showed that an increase in the root radius
over and above the recommended UNJ radius would again lower stress levels. This
was then tested and it was proven to add significantly to the cycle life. This solved the
tool cycle life problem, however, because the area of contact was reduced the design
could be a problem in manufacturing. If manufacturing made the slightest deviation in
thread configuration failure could occur in the shear mode.
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FIFTH —

STD. PITCH THREAD
TAPERED PITCH THREAD

NUT

Jor \

WYY

THREAD

6O 1 1Ot |}—) ——f—— o —
1.0 2.0 3.0 4.0

LOAD/THREAD

BOLT

TAPERED
THREADS

TAPERED PITCHDIAMETER Asafinalstep, wefoundanarticlewrittenfor ASME on,
“Effect of taper on screw-thread load-distribution”. This article basically states that a
006 inch/inch taper of the pitch diawould resultin a fairly distributed thread load. This
design was first programmed on the CAD System and then subjected tofinite element
analysis. Results looked outstanding. Models were made and subject to test. The
100,000 cycle requirement was not only met but continuous cycle testing went well
beyond the 100,000 cycles without any signs of failure in this area. It should be noted
at this point that the cylinder wall was also reduced. The amount of reduction was
almost 50% less than the original concept. This whole exercise proves that adding

material does not necessarily make for a stronger product. The following slides show
the final FEA results. :
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WEIGHT 12.5 LBS

/-1.067 OIA

WEIGHT 4.0 LBS

.860 DIA
N

- ———— —————

ga,__-
&

8.933 L

|
BEFORE

‘INAL DESIGN

e above slide shows the “before and after” configuration afterincorporating the aforementioned
anges. The right hand slide shows the final design.

e 2 units shown have the same indentical swaging force and swage the same size fitting. The
arall height had changed from approximately 10" to 5%". The cylinder diameter from 3.235 to
67 diameter. The head width from 2.180 to 1.958 and the weight from 12.5 pounds to 4.0
unds.

is new design with its fewer and smaller parts has increased, in numerous areas, the profitability
d producibility of this product line.
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IMPORTANCE OF SIZE & WEIGHT

This smaller size design which we were able to generate was very important to the marketing
jepartment. The smaller configuration allowd the tooling to perform the swaging operationsinvery
confined and cramped areas such as would be found in military aircraft and piping banks aboard
ship. While the original objective was to increase operational cycle life it soon became very evident
‘hat the smaller size and weight was a definite plus in marketing this product.

ENGINEERING INNOVATIONS

\lthough, finite element analysis played a large part in accomplishing the design objectives there
vere some engineering innovations which also contributed to the success of this product. These
tems include the slide-on type head feature, the material selection, the tapered thread and the
shange from 5500 psito 10,000 psi hydraulic pressure. All otherchanges were directly attributed to
inite element analysis.
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MODEL 55

MODEL /40

MODEL 30A

MODEL 20
MODEL 10
MODEL 5

NEW W1. 23.0 LBS.
OLD WT. 47.0 LBS.

LEGEND

NEW WT. 1.3 LBS.
OLD WT. 4.7 LBS.

NEW MODELS

 EXISTING MODELS

COMPLETE PRODUCT LINE

he existing models are shown in the shaded area. The new models are shown in the white area
ithin the shaded areas.

SUMMARY

Ve started with the design objective to increase the operational cycle life of the Swaging Tool. To
ccomplish this increase in cycle life without increasing the size or weight of the tool would have
een engineeringachievement. However,we notonlyincrased the operationalcycle life between 2
> 10 x but simultaneously we decreased the size and weight of the Swage Tool by about 50%. This
ccomplishment now becomes an outstanding engineering achievement.

his achievei ient was only possible because of the computerized Patran, Nastran and Medusa
‘rograms.
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OFTWARE & HARDWARE USED FOR PROGRAM

1e analysis shown in this paperwas performed at the Deutsch Metal Components Division using
e Patran & Cosmic/Nastran programs. The geometry was generated on Medusa Program and
ansferred to Patran for analysis. The computer used was a Prime 2655. Hardcopies of the finite
ement model and analysis results were obtained by Patran through a Tektronix4115 terminal
yoked to a Tektronix 4692 ink-jet plotter.

EFERENCE:

.oeckly, E.E., and Macke, H.l, “Effect of Taper on Screw-Thread Load Distribition.” Transaction
74, AS.M.E, 1952, pg. 103.
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The Use of Cosmic Nastran in an Integrated
Conceptual Design Environment

By Gil White, Intergraph Corporation

Conceptual engineering is increasing with the advent of the engineering
workstation as a viable platform for numerical analysis, including finite
element analysis. Traditionally, engineers have used finite element analysis
after the detailed design stage had un. There were exceptions in the area
of load path models which were used early in the design process. New
hardware platforms and software techniques now bring tools for finite element
analysis into the mainstream conceptual design phase. A survey by a major
British aerospace firm determined that the first five percent of design time
dedicates an astounding eighty percent of the project cost. By using COSMIC
NASTRAN early in the design phase, the total project cost can be reduced.
The development of automated meshing routines that work within COSMIC
NASTRAN pre processors also reduce the cost associated with finite element
analysis and helps bring this tool into the conceptual design environment.
Even though specialized finite element analysis should be reserved for
professional engineers, there is a place for less experienced users in this area.
The development of advanced meshing routines also allow the user to have
confidence in the finite element mesh. Many systems also optimize the
element shapes. Other features that are becoming popular with engineers and
designers are adaptive refinement and geometry based analysis. Both of these
are made possible by systems that have a common database for design,
engineering and manufacturing. By using this same database, the finite
element analysis does not have to redefine the model. This reduces the chance
for errors and helps bring a product to market faster. These features are
bringing the use of finite element analysis into mainstream mechanical
conceptual design.

Intergraph Corporation has recently developed a suite of tools for mechanical
computer aided engineering (MCAE). These tools break from the traditional
design - analysis relationship in that both design and engineer‘mg data are
retained in a single database. = This concept, which is termed “geometry-based
analysis,” makes the analytical FEA model an extension of the design
geometry. To the COSMIC NASTRAN user, this means all model attributes
such as loads, boundary conditions, materials and properties are assigned to the
CAD design geometry before finite element analysis begins.
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These features are made possible by a system that differs structurally from
Computer Design and Analysis systems of the past. The basis for the design -
analysis relationships described above is a unique design tool named The
Intergraph Engineering Modeling System (I/EMS).  Built onto I/EMS are
application specific tools for finite element analysis, mechanism analysis and
other engineering-specific requirements. In the area of finite element analysis,
I/FEM is built directly onto I/EMS. I/FEM is a complete system for model
eneration, analysis and post processing as well as a full support system for
%’OSMIC NASTRAN. Some of the features of I/FEM include automatic mesh
generation and geometry-based analysis methods as mentioned above. Mesh
generation within the I/FEM environment includes traditional single and semi-
automatic, meshing as well as fully automatic meshing. With automatic
mesh generation, the user can mesh an entire surface model with a single
command, without extensive setup work. The mesher recognizes boundaries of
different material, load, or property and places nodes and elements at the
proper locations. In addition the system performs smoothing operations that
result in correctly shaped elements. At all times, the user has control over
element shape criteria and is warned when rules are violated. I/FEM is the
gnly finite element system system available with all of the following
eatures:

* Object oriented programming concepts.

* A common mathematical description for all geometric entities, the Non-
Uniform Rational B-Spline (NURB).

* The ability to generate surface, solid and wireframe entities within a
single model.

¥ A Relational Data Base.

These four features provide the basis for design - analysis relationships within
the Intergraph environment. Object oriented programming allows a graphic
entity such as a surface or solid to know its material composition. @ An
“object” can be defined as entities that contain within themselves both the
information that defines how they behave (action) and information that
defines their existence (state). Within an object-oriented software system, this
means that an object is a package (in memory) of data and procedures that go
together. In an object-oriented software environment, a subclass inherits all of
the instance variables, methods, and message protocols of its superclass. To
specialize from a class, one merely creates a subclass, adding additional instance
variables, methods and messages only as needed to define what is different
between the new subclass and its superclass. A subclass may also choose to
override a method which it inherits, if the overridden method performs
differently that the superclass method, based on some difference between the
two classes. This powerful concept has far reaching potential. The finite
element engineer can now receive an intelligent design geometry that includes
many modeling attributes. When combined with automatic meshing
capabilities, the result is reduced model generation time. In addition, these
features add a new dimension to adaptive refinement and optimization.
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Beyond the benefits in the traditional engineering areas, I/FEM offers its
greatest potential in the conceptual design phase. The use of engineering tools
in this phase of design is considered by many to be one of the ways
American manufacturing will again become competitive in the world market.
To bring tools like finite element analysis into mainstream mechanical design
the designer must be be given user friendly software tools. In many cases
designers can perform preliminary analysis that can be very beneficial. The
detailed analysis must of course be left to the finite element specialist.
Intergraph has designed a user interface into I/FEM that greatly simplifies
model generation. Other features such as adaptive refinement and element
shape optimization give the designer more confidence in finite element analysis.

Another major factor that will determine to what extent finite element
analysis will be used by design groups is hardware availability. Traditionally
engineers have run finite element analysis on lar%e computers. Recently
engineering workstations have proven to be a viable platform for numerical
analysis. All major finite element systems now run on engineering
workstations. By migrating to such platforms the user has more control over
the total process and in almost all cases has faster turnaround. COSMIC
NASTRAN runs on Intergraph’s workstations.

The geometry based application capability also applies to other areas of MCAE
including mechanism and computational fluid dynamics. These concepts result
in integration between different areas of engineering as well as between design
and engineering. For example mass properties from a finite element model can
be usecf directly by the mechanism model. The result is a system that brings
the engineer closer to the design and manufacturing process which in turn
reduces the overall cost associated with product development.

In summary, changes in both software and hardware are rapidly bringing
conceptual engineering tools like finite element analysis into mainstream
mechanical design. Systems that integrate all phases of the manufacturing
process provide the most cost benefits. The application of programmin
concepts like object oriented programming allow for the “encapsulation” of
intelligent data within the design geometry. This combined with declining
cost in per seat hardware bring new alternatives to the user. Such systems
are being offered by Intergraph today.
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A NASTRAN/TREETOPS Solution to a Flexible, Multi-Body Dynamics
and Controls Problem on a UNIX Workstation

Javier E. B d Norris R. L n A e
B Dynacs Engincering Co. mme. = N89=-22045

Clearwvater, Fla.

SUMMARY

Demands for non-linear time history simulations of large, flexible
multi-body dynamic systems has created a need for efficent interfaces be-
tween finite-element modeling programs and time-history simulations.

One such interface, TREEFLX, an interface between NASTRAN and TREETOPS,
a non-linear dynamics and controls time history simulation for multi-body
structures, is presented and demonstrated via example using the proposed
Space Station Mobile Remote Manipulator System (MRMS).

The ability to run all three programs (NASTRAN, TREEFLX and TREETOPS}),
in addition to other programs used for controller design and model reduction
(such as DMATLAB and TREESEL, both described in this paper), under a UNIX
Workstation environment demonstrates the flexibility engineers now have in
designing, developing and testing control systems for dynamically complex
systems.

INTRODUCTION
Traditionally, the "Modern" control design process has begun with a
linearized representation of a model. From this point several paths may be

taken to derive gains that form the basis of a feedback control system.

Many tools exist today that facilitate this control design process. One
such tool, DMATLAB, accepts the model via the (A,B,C,D) matrices defined by;

x(t) = A x(t) + B u(t)
y(t) = C x(t) + D u(t)
where: x(t) is the state vector x ¢ R7X
u(t) is the input vector u ¢ RPY
y(t) 1is the output vector y € R
t represents time teR
is the state matrix A ¢ RIZIX
B is the control matrix B ¢ RPXTTY
C is the state output matrix C e ROV
D is the control output matrix D ¢ gny
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The question arises, where do the (A4,B,C,D) system matrices come from?
TREETOPS, a non-linear time history simulation for multi-body systems with
active control elements, answers this question via a linearization option
vhich produces the (A,B,C,D) matrices as an output.

" . Co . PR,

TREETOPS numerically derives the equations of motion of systems based
on a user defined topology. For rigid systems, the process is simple. The
mass and inertia properties of each rigid body in the system is specified,
along with node point geometry. The relationship between the bodies is
specified by defining hinges. Sensors and actuators are easily included,
along with controllers and other simulation elements.

For flexible bodies the topology is defined in a similar manner;
however, additional modal data is needed for TREETOPS to accurately simulate
the flexible system response [ref. 1]. Until recently, this flex data had to
be generated off line and in a form compatible with TREETOPS.

The development of TREEFLX has allowed the use of NASTRAN to generate
flexible models of the individual bodies represented in the TREETOPS system.
TREEFLX utilizes the NASTRAN data to generate all of the terms required by
TREETOPS to simulate the time-history response of a flexible, multi-body
dynamic system.

This paper demonstrates the general modeling and control design process
and the role NASTRAN plays within it. The paper is organized as follows.
First, some comments on system observability/controllability and reduced
order controller design is presented, along with comments on a general
control design procedure. Next, the topology of the system of interest is
presented and a rigid model of the system is developed to facilitate con-
troller design. The controller is derived based upon the rigid system. With
this analysis complete, the bodies are modeled as flexible via NASTRAN. For
computational considerations, component model reduction is performed on the
flexible model. The reduced order model is used to evaluate the controller
designed with the rigid system.

It should be emphasized that all of the analysis, modeling and design
work for this paper was completed on UNIX Workstations, namely, a SUN 3/60
and Silicon Graphics Personal IRIS Workstation. The ability for an engineer
to model a complex multi-body flexible system with a complete version of
NASTRAN, design a controller for that system and simulate the non-linear
closed-loop time history on a relatively inexpensive UNIX Workstation is a
major advancement in computer aided engineering analysis and design.

CONTROL DESIGN CONCEPTS

It is generally acknowledged by control designers that the model and
control design processes are inseperable. Indeed, Skelton [ref. 2] refers to
this as the Modeling and Control Inseparability Principle. Simply put, the
modeling and control designs are necessarily iterative.

Often, simple models of a physical systems are employed to facilitate
the control design. As an example, consider a single beam modeled as a
flexible body by NASTRAN. Suppose 20 flexible modes are retained for the
TREETOPS representation of this beam, and that one rigid rotational degree
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of freedom is provided by a pinned hinge. Further, suppose that two sensors,
one to measure the hinge angle and the other to measure the rate of change
of the angle, along with a torque actuator, are co-located at this hinge.
The linearized TREETOPS state matrix would be size 42 by 42. Controllability
and observability (in the sense of a Linear Quadratic (LQ) control design)
is certainly not guaranteed and probably not likely.

Now consider the body as rigid, with a stiff spring placed at the
pinned hinge to approximate the body’s flexibility. For this model the
TREETOPS state matrix is size 2 by 2. In general, observability is
guaranteed and controllability is more likely; a solution to the LQ design
problem is, in general, easier to obtain with simpler models.

As Anderson and Liu mention [ref. 3], the above process is in reality a
crude, yet sometimes successful, approach to controller reduction.

A logical question to be asked here is: How does the performance of a
controller based on a simple model of a system change when applied to a more
complex representation of the same physical phenomenon?

Figure 1 shows the control design process used in this paper. Below
each process block is the name of the computer program(s) utilized in this
paper to accomplish the process’ objectives. Figure 2 shows the general
relationship and interaction between these programs as implemented in a UNIX
Workstation environment.

This paper demonstrates the design process of Figure 1 by example. A
simplified lumped flexibility model of the MRMS is developed to form the
basis of an LQ controller. Once settled upon, this controller is applied to
a more complex system derived from NASTRAN models. Performance characteris-
tics are compared between the two models.

MODEL TOPOLOGY

Figure 3 shows the general topology of the system of interest in this
paper, a model of the MRMS. Represented is a 4-body system, the first and
fourth bodies both being rigid, the second and third bodies both flexible.

Two sensors each are located at the second and third hinges. The first
sensor measures the Euler angle between each hinge’s inboard and outboard
body, the second sensor measures the rate of change of the angle. A torque
motor actuator is co-located with the sensors at both of the hinges. For
simplicity, only one rotational degree of freedom is modeled at both the
second and third hinge. All other hinges are locked. Physical properties of
the individual bodies are summarized in Table 1.

The control design objective is to minimize perturbations from the
initial conditions of the Euler angles, as measured by the sensors at the
second and third hinges, in the presence of a disturbance. The disturbance
is modeled within TREETQOPS by a non-periodic pulse acting at the end of the
third body.
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CONTROLLER DEVELOPMENT

To facilitate control design, a lumped flexibility model is developed
with the aid of TREESET and TREETOPS. This lumped flexibility model treats
each body as being rigid; flexibility is modeled by lumping the body
flexibility at the hinges with stiff springs.

The lumped flexibility model is entered into TREETOPS via TREESET, an
interactive setup program. The linearization option is chosen and the
simulation is set to run for one time step. Running the TREETOPS simulation
results in a file containing the linear, time-invariant (A,B,C,D) matrices
for the lumped flexibility model. This process is equivalent to Step 1 of
Figure 1. Table 2 1list the numerical values of the (A,B,C,D) matrices as
output from TREETOPS’ linearization option.

These matrices are entered into DMATLAB. DMATLAB provides many controls
analysis and design tools for both the "classical” and "modern" controls
designer. DMATLAB is used to design a controller based on the lumped
flexibility model. This is equivalent to Step 2 of Figure 1.

Feedback control gains are obtained via an LQ control design based on
full-state feedback. The state vector is defined by the two Euler angles and
their rates. If we represent the angles by 62 and 93, their rates by §2 and

§3 and the controller output (actuator commands) as u, and u, then the

control law gain is a matrix G such that ;

(92

ul [G] 93
u 0
2 2

L03-

The numerical values for G will be found in Table 2.

TREESET 1is wused to define a continuous matrix controller for the
TREETOPS simulation. Interconnects are established between the sensors and
the actuators, scaled by the gains determined in DMATLAB. This forms the
basis of a continuous feed-back control system for the non-linear, time-
history TREETOPS simulation. This simulation is the equivalent of Step 3 in
Figure 1.

For complicated systems, an iteration for the controller gains will
probably be required; indeed, the final controller gains for this paper were
selected only after several such iterations.
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NASTRAN MODEL

Since no official configuration for the MRMS has been established, the
NASTRAN models are based on Space Shuttle Remote Manipulator System (SRMS)
data [ref. 4]. '

The NASTRAN flex data is generated using CBAR elements to represent the
mass and stiffness properties of SRMS body elements. Fixed-free boundary
conditions were chosen for each body. Standard Solution 3 (Normal Modes
Analysis), with an DMAP alter added for the additional output required by
TREEFLX, is utilized. A separate OUTPUTS5 file is generated for each flexible
body in the topology. The development of the NASTRAN model is equivalent to
Step 4 of Figure 4.

TREEFLX, based on the NASTRAN data for each body, calculates all of the
required and optional modal data for the TREETOPS simulation. Table 3 sum-
marizes the modal terms presently generated by TREEFLX and used by TREETOPS.

To generate this data, TREEFLX requires the NASTRAN Nodal Mass,
Eigenvectors, Modal Mass, Modal Stiffness and, if available, Modal Damping
matrices. In addition, a matrix consisting of NASTRAN Grid Point Location
vectors, expressed in global coordinates, is required. The process of con-
verting NASTRAN output data to TREETOPS input data with TREEFLX is
represented by Step 5 of Figure 1.

A major assumption in TREEFLX is that the TREETOPS and NASTRAN models
use the same coordinate system for each individual body. Based on this
assumption, it is not necessary to designate the TREETOPS node location with
coordinates during the TREESET setup procedure, but rather, the user desig-
nates a corresponding NASTRAN grid point ID for each TREETOPS node. TREEFLX
uses this node/grid point correspondence to develop the TREETOPS nodal
geometry. Not all NASTRAN grid points have to be included in the TREETOPS
model. TREETOPS nodes are required only as hinge attach points, sensor and
actuator locations and for mass centers.

An important distinction must be made at this point. Notice in Table 3
that several TREETOPS terms are calculated with summations over the total
number of nodal bodies in the model. Even though all nodes may not be in-
cluded in the final TREETOPS data file, the TREEFLX nodal summations are
made over the entire set of NASTRAN grid points supplied in the NASTRAN
OUTPUTS file, not just over the sub-set of retained TREETOPS nodes.

COMPONENT MODE MODEL REDUCTION

An optional step may be inserted between Steps 5 and 6 of Figure 1.
Suppose the complex model developed by NASTRAN includes 100 modes for each
body, yet it is determined that a model with 47 modes for each body is
sufficient for an accurate time-history simulation (this paper does not
propose any method for this determination). This implies that a model reduc-
tion procedure might be inserted at this point of the design process.

TREEFLX provides for model reduction with a simple mode selection

technique. If model reduction is indicated, TREEFLX searches for a file that
lists the modes that should be retained for each individual body.

137



A natural question arises: Which modes should be retained in a reduced
order model? This paper does not present a theoretical discussion of com-
ponent mode model reduction procedures; however, TREESEL, a TREETOPS
companion program, can assist in the answering of the above question.

TREESEL uses several methods to rank the relative importance of the
system modes. One method, used in this paper to reduce the MRMS NASTRAN
model, is the Modified Component Cost method.

The Component Cost method is based on the assumption that each state
contributes to a cost function, ¥, defined by the model designer. By decom-
posing the cost function into its components, the relative contribution of
each system state to the cost function can be ranked.

In TREETOPS, each degree of freedom is a state. A beam with N flexible
modes will have at least 2*N states, 2 states for each mode. TREESEL ranks
these modal degrees of freedom in a concise form. Once ranked, the number of
modes to be retained depends on the open loop performance matching the
analyst would like to obtain. An iterative process of selecting modes is
usually required to obtain a suitable reduced order model. Table 4 lists the
NASTRAN modes as ranked by TREESEL. This ranking represents only a single
iteration with TREESEL using simply selected weights.

To demonstrate TREESEL model reduction techniques, the five highest
ranked modes for each body (10 system modes) were retained for the "complex"
NASTRAN/TREETOPS model.

Step 5 of Figure 1 1is accomplished by merging the NASTRAN/TREETOPS
model with the continuous matrix controller gains derived earlier. TREETOPS
is used to simulate the closed-loop time-history response of the system.

RESULTS

Figures 4 and 5 show the results of Steps 1, 2 and 3 of Figure 1.
Plotted is the time-history of the uncontrolled vs controlled hinge Euler
angles and rates for the lumped flexibility model. The results shown were
considered adequate to accept the controller design.

Figures 6 and 7 show the results of component mode model reduction
using the five highest body modes ranked by TREESEL. Shown are the uncon-
trolled hinge Euler angles and rates for the full-order (20 modes) and
reduced-order (5 modes) NASTRAN model. The TREESEL ranking was obtained with
just one run of the program and simply selected weight were used. The
results seem to indicate that reduced order models of higher order systems
can approximate the higher order system’s uncontrolled response.

Figures 8 and 9 show the results of Step 6 of Figure 1. Plotted is the
time-history of the uncontrolled vs controlled hinge angles and hinge angle
rates for the NASTRAN reduced-order model. Figures 10 and 11 compare the
uncontrolled responses of the Lumped Flexibility and NASTRAN reduced order
models. Figures 12 and 13 compare the controlled responses of the Lumped
Flexibility and NASTRAN reduced order models. The results indicate that, for
some systems, controllers designed on the basis of simplified models of
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complicated systems do perform adequately on higher fidelity models of the
same system.

Figure 14 compares the actuator commands (controller outputs) of the
Lumped Flexibility and NASTRAN reduced order models.

CONCLUSIONS

This paper demonstrates the use of NASTRAN and a UNIX Workstation
environment in the system modeling/control design process. An automated
design environment on a UNIX Workstation applicable to modeling and control
theory is presented.

TREEFLX is used to interface flexible body data from NASTRAN with the
flexible multi-body non-linear analysis program TREETOPS. Powerful modeling
and control design concepts are demonstrated via a non-trivial example.
Results support the feasibility of using all of the programs in conjuction
with one another to provide viable analysis and designs.

The ease in which the model or the controller can be changed further
enhances the analysis turn-around-time and the design process itself,
clearly demonstrating the advantages of working within a dedicated UNIX
Workstation environment.
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TABLE 1. - MASS AND GEOMETRIC PROPERTIES OF MRMS MODEL

BODY MASS Ixx Ivy izz LENGTH
2
(kg) ( kg-m™ ) (m)
1 63.3 0 41.04 41.04 1.06
2 139.2 0 1877.9 1877.9 6.38
3 100.0 0 1429.9 1429.9 7.06
4 50.0 0 15.0 15.0 1.00

TABLE 2. - (A,B,C,D) MATRICES AND CONTROLLER GAIN MATRIX G

-.008816 .016190 -9.41087 11.2336

A =} .016190 -.039067 17.28277 -27.1063
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0

.000176 -.000324

B = [-.000324 .000781
0.0 0.0
0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0
cC=]0.0 1.0 0.0 0.0 D= |0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0

G = [;5281.28 2243.41 1199.95  -386.81
3478.13 -8005.26 -4361.25 -1209.26
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TABLE 3. - TREETOPS MODAL TERMS CALCULATED BY TREEFLX

r NNB
=b {z | [moFo {0y} Fom T (93,) + m T (9],) + 3% 8,01)

NNB
g =1y {§=1 my (£55 = 4, X ibi)}

=b {z [-mTr . -m 04 .]}b

00 01 0o 001

NNB
Peg=b (L [om, 3

} b
o=1 i]

ok "o

b NNB

di= b {Z [y $or 013 = %o M Ty (454)

WHERE:
b represents the body reference frame
i,k represent the ith,kth modes
NNB

L is the sum over the number of nodal bodies
o=1

m is the mass of the oth nodal body

NNB
m is the body mass ; m =Y m

CONTINUED
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bo

Lok

’

ok

TABLE 3. - CONTINUED

th

is the inertia matrix of the o nodal body

h

is the k® mode shape at the oth nodal body

is the kth mode slope at the oth nodal body

th

is the vector location of the o nodal body mass center

is the vector location of the oth nodal body
represents a 3xl column matrix

represents a skew symmetric matrix, that is, suppose
by;
L=r)1i+r,7+ r3k

A

then T is;
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TABLE 4. - TREESEL RANKING OF SYSTEM MODES (BY BODY)

RANK BODY #2 MODES BODY #3 MODES
1 14 16
2 9 4
3 11 2
4 4 9
5 6 11
6 2 6
7 13 18
8 19 14
9 8 5

10 5 3

11 10 8

12 3 1

13 18 10

14 7 17

15 12 7

16 16 13

17 20 20

18 15 15

19 1 19

20 17 12

This table presents data obtained with only one TREESEL iteration.
Simply selected weights were used.
The five highest ranked modes were retained
for the TREETOPS flexible model.
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ENHANCEMENTS TO THE IBM VERSION OF COSMIC/NASTRAN
by

W. Keith Brown
RPK Corporation
Hayes, Virginia

SUMMARY

Major improvements have been made to the IBM version of COSMIC/NASTRAN by RPK
Corporation under contract to IBM Corporation. These improvements will become part of
COSMIC’s IBM version and will be available in the second quarter of 1989. The first improvement
is the inclusion of code to take advantage of IBM’s new Vector Facility (VF) on its 3090 machines.
The remaining improvements are modifications that will benefit all users as a result of the extended
addressing capability provided by the MVS/XA operating system. These improvements include the
availability of an in-memory data base that potentially eliminates the need for I/O to the PRIxx disk
files. Another improvement is the elimination of multiple load modules that have to be loaded for
every link switch within NASTRAN. The lastimprovement allows for NASTRAN to execute above
the 16 mega-byte line. This improvement allows for NASTRAN to have access to 2 giga-bytes of
memory for open core and the in-memory data base.

INTRODUCTION

Very few changes have been made to the IBM version of COSMIC/NASTRAN in the last few
years in order to take advantage of new hardware capabilities and new MVS/XA operating system
features. One of IBM’s new hardware capabilities is the Vector Facility that provides significant
CPU time reductions for programs with vector operations (Reference 1). Use of IBM’s new Vector
Facility allows NASTRAN to solve larger problems in a much faster manner. Problems that spend
alarge amount of CPU time in symmetric decomposition, matrix multiplication, forward/backward
substitution and eigenvalue analysis could greatly benefit from use of the Vector Facility.
NASTRAN has been modified to take advantage of the Vector Facility in these areas.

With the release of MVS/XA, IBM allowed users to reference up to 2 giga-bytes of memory in
a given job step. However, NASTRAN could only run under the 16 mega-byte line because of the
assembly language code and the memory management design. Of the 16 mega-bytes, the mosta user
could get was about 8 mega-bytes because of the operating system. Although 8 mega-bytes was
probably acceptable for open core, it was insufficient to contain any in-memory data files.
NASTRAN has now been modified to allow it to execute above the 16 mega-byte line and this in
turn allows access to a maximum of 2 giga-bytes of memory.

With access to 2 giga-bytes of memory, NASTRAN can now have the option of keeping DMAP
files in memory. These files were previously written to the PRIxx files using BSAM I/O. This in-
memory capability has been implemented and the implementation automatically allows for the use
of external files when memory for the in-memory files has been exhausted. The end result of this
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feature is that job turnaround will be improved because of the reduction of disk I/O.

Lastly, NASTRAN was previously delivered as 16 load modules. One load module was always
resident. The other 15 load modules were loaded into memory when needed but only one could
reside in memory at a given time. If a new load module was needed, the current memory-resident
load module would be deleted and the new load module loaded in its place. Therefore,as NASTRAN
was processing the job, load modules would be loaded and then deleted to allow for other load
modules. This resulted in lost time. Though the time that was lost was not appreciable, NASTRAN
isnow designed to eliminate this reloading procedure and all of NASTRAN now remains completely
in memory.

EXECUTION TIME OPTIMIZATION CONSIDERATIONS

There are several considerations that a user should be aware of when trying to setup his NAS-
TRAN run for optimal execution time. First, a user should be aware of the amount of open core that
he may need. If open core is not large enough, users may experience severe execution time
degradation due to possible spilling during decomposition or multiple passes on matrices used in
matrix multiplication or forward-backward substitution. There is no single formula that may be used
to determine the amount of open core needed for all cases; however, the following formulas provide
some rough estimates.

Size = 6 * (larger of (number of degrees of freedom in the a-set)
' or (number of degrees of freedom in the o-set) )
* (number of output cases (e.g., number of loads or number of eigenvalues) )

Size = .04 * (square of degrees of freedom in problem)

The above formulas are crude and should only be used as rough estimates. Users should check all
symmetric decomposition messages to determine if any spill groups were required and also all
matrix multiply-add (MPYAD) messages to determine if multiple passes were required. If either
spill groups or multiple passes were required, then open core should be increased.

In addition to the amount of open core given to a problem, all problems will benefit from the
use of the in-memory data base. The size of the in-memory data base is controlled by the REGION
size given by the user, the memory to be returned to the operating system and the memory to be used
for open core. The amount of memory to be used by the in-memory data base is computed as follows:

DB Size = (Region Size) - (Open Core Size) - (Operating System Memory)
- (NASTRAN Load Size)

(Note, the size of the NASTRAN load module is approximately 8000k bytes)
The in-memory data base capability eliminates much of the I/O performed by NASTRAN. This

results in faster turnaround and faster execution. CPU savings will be of the order of about 5%
for most problems.
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USE OF IBM's VECTOR FACILITY

Efficiency improvements come also from the use of IBM’s new Vector Facility. IBM’s new
Vector Facility allows programs with vector operations to use vector instructions for faster CPU
execution (Reference 2). Inherent in the use of vector hardware is the length of the vector(s) to be
processed. Due to the startup time and other associated overhead that goes with vector processing,
vectors must be of a certain minimum length before CPU gains can be realized. In some cases where
the vectors are very short, degradation can occur and longer CPU times canresult. In general, vectors
should have a length of 10 elements or more for real CPU gains to be realized. This is true for the
majority of problems in NASTRAN.

NASTRAN has been optimized for vectorization in the following areas: symmetric decompo-
sition, forward-backward substitution, eigenvalue analysis (Givens, Inverse Power and Feer) and
matrix multiplication (Reference 3). The gains to be realized to a user are dependent upon the
amount of the total CPU time that is spent in these areas. For most CPU intensive runs, analysis
shows that these are the areas where most of the CPU time is used.

The modifications to NASTRAN took advantage of IBM’s new Engineering and Scientific
Subroutine Library (ESSL) (Reference 4). This library is a set of high performance mathematical
subroutines that can be used by higher level languages such as Fortran. Use of the ESSL will ensure
users of optimal performance in the future as the hardware characteristics of the Vector Facility may
change.

Figure 1 shows improvements that were made on a statics, a normal modes and a frequency
response problem using the optimized version of NASTRAN. The jobs were run on an IBM 3090E
computer. A decrease of approximately 10% of the total CPU time could be realized if these
problems were run on an IBM 3090S computer. The vector affinity column gives a measure of how
much of the CPU time was spent in vector computations. Efficiency gains were realized from the
vector code, the ability to have larger open core (eliminating multiple passes in matrix multiplication
and forward-backward substitution) and the use of the in-memory data base (eliminating much of
the 1/O).

Depending on the problem characteristics, percentage improvements can vary greatly. There-
fore, there is no hard and fast rule that users can use to show improvements. However, Figure 2
shows percentages that may be obtained during various matrix operations in NASTRAN. These
figures are given only so the user can have some idea of expected improvements using the Vector
Facility.

USE OF IBM's EXTENDED ARCHITECTURE (MVS/XA)

Prior to the release of IBM’s MV S/XA operating system, the MV S operating system was based
on 24-bit addressing. This meant that any given program could not address more than 2*¥*16 bytes
or 16 mega-bytes of memory. Of this 16 mega-bytes, approximately 8 mega-bytes were available
to a program because of the operating system requirements. As software developments proceeded,
especially in the area of graphics, and as user problems to be solved became larger, it became
apparent that there was a need for programs to have access to more memory. With the coming of
MVS/XA, IBM switched to 31-bit addressing and this allowed for 2**31 or 2 giga-bytes of memory
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to be available. Many of the IBM-supplied compilers were modified to take advantage of this and,
most noticeably for NASTRAN, was the IBM VS Fortran compiler (Reference 5). Users could now
write programs in Fortran and take full advantage of the 31-bit addressing capability (Reference 6).

The 16 mega-byte line that resulted from 24-bit addressing still exists in a limited sense for
programs that have assembly language subroutines. Assembly language subroutines that perform
I/O functions must execute in 24-bit addressing mode with the possible exception of subroutines that
use execute channel program instructions (EXCPs) directly. Programs that have assembly language
I/O must be designed to take this into account. The assembly code and the I/O buffers must reside
below the 16 mega-byte line. In addition to the I/O considerations, sometimes assembly language
codes have other 24-bit design dependent considerations that require that they execute in 24-bit
addressing mode.

The previous IBM version of NASTRAN had a very small percentage of assembly language
subroutines (Reference 7). These subroutines were required to allow for dynamic loading of
NASTRAN load modules, to optimize computationally bound codes, to perform memory manage-
ment and to provide efficient random access I[/O. Because of these codes, NASTRAN required
modifications to allow it to execute in 31-bit addressing mode. The IBM version of COSMIC/
NASTRAN has now. been redesigned to take advantage of 31-bit addressing. The new design
resulted in two load modules. One load module is called NASTRAN and it executes above the 16
mega-byte line. This load module contains all of the analysis code and is by far the larger module.
The other load module is called IO and it executes below the 16 mega-byte line. This module does
all the non-Fortran I/O functions required by NASTRAN. Open core and the new in-memory data
base reside above the 16 mega-byte line. Figure 3 shows this design.

New assembly language programs were created to allow for this design. The main program in
the NASTRAN load module is the assembly language program NASTRAN. The main program in
the IO load module is the assembly language program IO. The functions of the NASTRAN assembly
language program are given below:

1. Reads and processes the job step parm. The format of the job parm has been changed and
will be described below.

2. Initializes the Fortran run-time environment. The job parm is also passed by NASTRAN to
Fortran during initialization to allow users the ability to take advantage of the new Fortran
job parms that became available with Fortran Version 2. One such Fortran parameter that
is recommended for use is the ‘““NOXUFLOW*’ parameter that suppresses a program
interrupt from a floating point underflow and allows for a hardware fixup instead of a
software fixup.

3. Performs memory management. The REGION value as given on the job step EXEC card
specifies the maximum amount of memory that NASTRAN can obtain. All memory that is
available after the loading of the program is obtained. Memory is then released for the
operating system use and the remaining memory is used by NASTRAN for open core and
the in-memory data base.

4. Loads the IO load module and initializes the interface between the two. This allows for
communication to all I/O subroutines that must reside below the 16 mega-byte line.

162



The 10 program provides all of the non-Fortran I/O for the NASTRAN data files.
The job step parm has been modified for this new level of NASTRAN. The format is as follows:

// EXEC PGM=NASTRAN,
// PARM="NOXUFLOW,0SMEM=200K,0CMEM=7000K,DBMEM=100000K’

The parameters are defined as follows:

NOXUFLOW  Parameter to Fortran to suspend underflow interceptions.

OSMEM Amount of memory to free back to the operating system.
OCMEM Amount of memory to allocate for open core.
DBMEM Amount of memory to allocate for the in-memory data base. A non-zero

value implies that memory is to be allocated for the in-memory data base.
A zero value eliminates the use of the in-memory data base.

The last three parameters determine how memory is to be allocated during the run. NASTRAN
first obtains all memory available based on the job step REGION value. It will then release back to
the operating system the amount of memory as specified on the OSMEM parameter. The memory
that remains will all be given to open core if DBMEM=0. Otherwise, the amount of memory as
specified by the OCMEM parameter is designated for open core and all that remains is used for the
in-memory data base. If the memory for the in-memory data base is greater than that specified on
DBMEM parameter, the larger value is used. If there is a lesser amount of memory available than
that specified on the DBMEM parameter, then the lesser amount is designated. If there is only
sufficient memory for open core, then nomemory is allocated for the in-memory data base regardless
of the value of DBMEM.

NASTRAN prints a summary of the load addresses and the memory allocations at the beginning
of the NASTRAN log file. A sample listing is shown in Figure 4.

IN-MEMORY DATA BASE

The in-memory data base will benefit users in job throughput and to a limited sense in CPU
utilization. Job throughput will increase because of the elimination of I/O to disk. The CPU savings
will be of the order of 5%. The in-memory data base is based on blocks of memory that are chained
together. There is one chain for free space. The block sizes in the free chain will vary. There is also
one chain for each DMAP file. Each DMAP file is a file in the in-memory data base. The size of
the blocks allocated for the DMAP files is based upon the size specified for the NASTRAN GINO
files. Blocks of memory are allocated for a DMAP file as the file is written and pointers are
maintained as to the current block being processed. Memory that is available for allocation of the
blocks is maintained by the free chain. As files are opened for write with rewind, the previously
allocated memory data blocks to a DMAP file are released back into the free chain and a new DMAP
file chain is established. Savings are realized because there is no I/O taking place and also there is
no moving of data. All data being written into the DMAP file are written directly into the allocated
memory block with no secondary transfer of data.
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The in-memory data base is designed so that when there is insufficient memory for additional
blocks of an existing DMAP file or for the creation of a new file, the external PRIxx, SECxx and
TERxx files are used as spill. Users should be aware that the PRIxx, SECxx and TERxx DD cards
are still needed, however the space allocations may need to be adjusted based on the amount of
memory provided for the in-memory data base.

A directory of the in-memory data base is provided when DIAG 2 is turned on. The directory
comes out after each DMAP module execution. Use of this DIAG is not recommended because of
the large amounts of printout that it may generate. Users may opt to use the following technique to
turn on DIAG 2 in order to get the in-memory data base directory at a specific point in the DMAP.

ALTER n $

PARAM //*DIAG*/2 $
ALTER n+1$

PARAM //*DIAGOFF*//2 $
ENDALTER $

where n is a DMAP instruction number.

A sample printout of the in-memory data base is given in Figure 5. The unit number defines the
unit number allocated to the DMAP file in the NASTRAN File Allocation Table (FIAT) and will
be used as the “‘xx’’ value to determine which PRIxx file is to be used for spill. The name field gives
the DMAP file name and the current number defines the current block at which the file is positioned.
For files that are closed with rewind, this value will be zero. For files that are closed without rewind,
this value will be the last block that was either read (file opened for read) or was written (file opened
for write). The in-mem blocks value defines the number of blocks allocated in the in-memory data
base to the DMAP file and the disk blocks value defines the number of blocks that could not be
contained in memory and were written to the PRIxx external file. The trailer values are the matrix
trailers associated with the DMAP file.

CONCLUDING REMARKS

The IBM version of COSMIC/NASTRAN has been enhanced to take advantage of IBM’s
Vector Facility and the extended addressing capability provided by IBM’s MVS/XA operating
system. The enhancements include modifications to subroutines that can take advantage of the
Vector Facility, modifications to allow NASTRAN to execute above the 16 mega-byte line and
modifications to allow for a new in-memory data base. When all of the above features are used, users
will be pleased at the performance increase. In addition, these modifications open up the door for
larger problems to be analyzed on IBM that were previously not practical because of CPU
requirements and/or open core requirements.
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PROBLEM G-SET | A-SET CPU

TYPE OF SCALAR { VECTOR | VECTOR |VECTOR CPU/

CPU AFFINITY | SCALAR CPU

(Sec.) (Sec.) (Sec.)
Statics 28828 11426 1264.3 672.3 520.2 53%
Normal Modes 8946 225 634.9 382.6 205.8 60%
‘Freq. Resp. 3852 3614 584.7 390.2 281.0 67%

Figure 1. Samples of Improvements in CPU Utilitzation
(Problems executed on IBM 3090E computer)

MATRIX OPERATION VECTOR CPU /SCALAR CPU
Symmetric Decomposition 45%
Forward-Backward Substitution 33%

Matrix Multiply-Add Method 1 72%
Matrix Multiply-Add Method 2 53%
Matrix Multiply-Add Method 3 20%

Figure 2. Improvements in Matrix Computations
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Relative Memory Address 0

10 Load Module

Memory for OS

16 Mega-Byte Line

NASTRAN Load Module

Open Core

In-Memory Data Base

Memory for OS

Figure 3. Memory Layout for IBM NASTRAN

ADDRESS OF BEGINNING OF NASTRAN LOAD MODULE = 04A009B0
ADDRESS OF END OF NASTRAN LOAD MODULE = 0514D000
ADDRESS OF BEGINNING OF 10 LOAD MODULE = 8000CF30
ADDRESS OF MEMORY OBTAINED = 0514D000
LENGTH OF MEMORY OBTAINED = (0D17F000
MEMORY TO FREE FOR OS = 00032000
MEMORY TO USE FOR OPENCORE = 005DCO000
MEMORY TO USE FOR IN-MEM DATA BASE = OCB70FF8
ADDRESS OF BEGINNING OF OPENCORE = 0514D000
ADDRESS OF END OF OPENCORE = 05729000
ADDRESS OF BEGINNING OF IN-MEM. DATA BASE = 05729008
ADDRESS OF END OF IN-MEM. DATA BASE = 12299FF8

(NOTE: ALL UNITS ABOVE ARE IN BYTES)

HEX

HEX
HEX
HEX

Figure 4. Example of NASTRAN Printed Summary on Log File
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MEMORY DATA BASE DIRECTORY

MAXIMUM ENTRIES= 100

CURRENT ENTRIES= 33

UNIT NAME CURRENT IN-MEM DISK
NUMBER BLOCKS BLOCKS
1 20 PHIG 0 41 0 14
2 6 SIP 0 1 0 0
3 22 SCRATCHI1 0 1 0 1
4 9 CASECC 0 1 0 1
5 4 BGPDP 0 2 0 1491
6 S5 SCRATCH2 0 39 0 14
7 14 QG 0 3 0 0
8 12 KGGX 0 406 0 8946
9 10 MI 0 1 0 14
10 19 MPTA 0 1 0 32768
11 18 SCRATCH6 0 26 0 225
12 17 OEIGS 0 1 0 14
13 7 GPL 0 2 0 1491
14 11 OPHIG 0 3 0 0
15 13 CSTM 0 1 0 1491
16 8 EQEXIN 0 2 0 1491
17 15 BGPDT 0 2 0 1491
18 16 SIL 0 1 0 1491
19 27 EST 0 10 0 560
20 29 GPECT 0 33 0 82
21 30 SCRATCH6 0 41 0 14
22 32 MDICT 0 3 0 2
23 23 LAMA 0 1 0 225
24 21 SCRATCH3 0 29 0 14
25 28 SCRATCHS8 0 14 0 225
26 33 GO 0 440 0 225
27 34 USET 0 3 0 0
28 35 KFF 0 321 0 4197
29 36 KFS 0 15 0 4557
30 24 PHIA 0 2 0 14
31 25 SCRATCH4 0 2 0 14
32 26 SCRATCHS 0 2 0 14
33 31 USETD 0 3 0 0
TOTAL IN-MEMORY BLOCKS = 1453
TOTAL DISK BLOCKS 0
TOTAL FREE SPACE IN WORDS = 48508896
NUMBER OF BLOCKS IN FREE SPACE CHAIN = 2585

8946

8946

8754

8946
14
128
225
225

8512

8946

1491
8946

4197
225
3972
8946
4197
4197
225
192
225
0

TRAILER

(o8]
~

CRNDNNNNAOODNNBANOONNODOODCOOCOONAADD, OO VNNON

Figure 5. Example of In-Memory Data Base Directory
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8778 4906
0 0
192 214
0 0

0 0
8394 4794
0 0
486 75
28 10000
0 0
450 10000
450 10000
0 0

0 0
)

0 0

0 0

0 0
1024 0
0 0
8778 4906
0 0

0 0
8394 10000
450 5022
7944 10000
0 0
486 330
28 10
450 10000
384 10000
450 10000
0 0
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A POWERFUL ENHANCEMENT TO THE DMAP ALTER CAPABILITY

by PN
N89-2294"%7
P. R. Pamidi
RPK Corporation
Columbia, Maryland

SUMMARY

A powerful enhancement to the DMAP alter capability has been developed by RPK Corpora:
tion and is available on all RPK-supported versions of COSMIC/NASTRAN. This enhancement
involves the addition of two new alter control cards, called INSERT and DELETE, to the Executive
Control Deck. These cards allow for DMAP alters to be made by referencing DMAP statements by
their module names rather than by their statement numbers in the rigid format DMAP sequence. This
allows for increased user convenience and flexibility and makes alters more meaningful to the user.
In addition, DMAP alter packages employing the new alter control cards will be much less
susceptible to future changes in rigid format DMAPs than alter packages employing the standard
ALTER control cards. The usage of the new cards is illustrated by examples.

INTRODUCTION
The most general way of using NASTRAN is by means of a user-written Direct Matrix
Abstraction Program (DMAP). However, in order to relieve the user of the burden of constructing

DMAP sequences for each of his analyses, standard DMAP sequences, called rigid formats, are
provided with NASTRAN to handle different types of analyses.

It is often desirable for the user to make changes to the DMAP sequences in the rigid formats.
This can be accomplished by using the DMAP alter capability (see Reference 1). Typical situations
that may call for using DM AP alters are to schedule an exit prior to completion, to request additional
intermediate output, to schedule diagnostic printing of tables and/or matrices and to modify the
standard solution sequences by the addition and/or deletion of functional modules.

DESCRIPTION OF THE STANDARD ALTER FEATURE

DMAP alters to the rigid formats are accomplished by means of ALTER control cards in the
Executive Control Deck (Reference 1). ALTER control cards are of two types.

An ALTER control card of the form
ALTERn $

indicates that DMAP instructions following this card are to be inserted after DMAP instruction
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number n in the rigid format under consideration.

~"An ALTER control card of the form
L

ALTERn1,n2$ (nl<=n2)

indicates that DMAP instructions in the range n1 through n2 (inclusive) in the rigid format are to be
deleted and replaced by any DMAP instructions that may follow this card.

The ALTER control cards serve a very useful purpose. However, the usage of these cards has
the following two distinct disadvantages:

* The ALTER control cards refer to DMAP statements by their numbers in the rigid format
DMAP sequence. This does not give a ‘‘feel’” for the DMAP changes as the numbers do not
have any particular significance to the user. In other words, the ALTER control cards are
by design really more programmer-oriented than user-oriented.

* Because the ALTER control cards refer to DMAP statements by numbers, they are very
susceptible to changes in rigid formats from one release to a subsequent one. Thus, even
minor changes in a rigid format, particularly in the earlier portion of the DMAP sequence,
may require wholesale revamping of the ALTER cards in an alter package.

DESCRIPTION OF THE ENHANCED ALTER FEATURES

In order to overcome the above shortcomings, RPK has developed a very attractive enhance-
ment to the DMAP alter capability. This enhancement involves the addition of two new alter control
cards, called INSERT and DELETE, for use in the Executive Control Deck. This feature is available
on all RPK-supported versions of COSMIC/NASTRAN, beginning with the 1988 release.

Detailed descriptions of the INSERT and DELETE cards are given in Appendix A. Anupdated
description of the ALTER card that takes into account the existence of the INSERT and DELETE
cards 1s also given in that appendix.

The INSERT control card identifies a specific module in the rigid format DMAP sequence after
which DMAP instructions following the INSERT card are to be inserted. The DELETE control card
identifies a specific module (or a range of modules) in the rigid format DMAP sequence which is
(or are) to be deleted and replaced by any DMAP instructions that may follow the DELETE card.

The INSERT control card is specified as follows:

INSERT specmod $

where specmod has the following general form:

nommod [(r)] [, n]
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The various terms in the above specification have the following meanings and connotations:

nommod is the nominal module (alphanumeric value, no default). This must be a valid
name of a module in the rigid format DMAP sequence. (It must be recognized in
this context that every DMAP instruction or DMAP statement is a module with a
specific name.)

T is the occurrence flag (integer >0, default = 1). The " occurrence of the nominal
module in the rigid format DMAP sequence (counting from the beginning of the
DMAP sequence) defines the reference module.

The default value of 1 for the occurrence flag implies that the reference module
is the first occurrence of the nominal module in the rigid format DMAP sequence.

n is the offset flag (integer, default = 0). The DMAP module that is offset from the
reference module by n DMAP statements in the rigid format DMAP sequence
defines the specified module.

Depending upon the sign of the offset flag n, the specified module may follow (n
positive) or precede (n negative) the reference module in the rigid format DMAP

sequence. The default value of O for the offset flag implies that the reference
module is the specified module.

specmod  is the module defined as per the above scheme after which DMAP statements
following the INSERT card are to be inserted.

The DELETE control card is specified as follows:
DELETE specmod1 [, specmodz] $
where specmodi has the following general form:

nornmodi [(ri NI ni]

The various terms in the above specification have the same meanings and connotations as in the
case of the INSERT control card.

} If only specmod1 is specified on a DELETE card, it identifies a single specified module that is

\ to be deleted and replaced by any DMAP statements that may follow the DELETE card. If both

1 specmod, and specmod,, are specified, they identify a range of specified modules that are to be
deleted and replaced by any DMAP statements that may follow the DELETE card.
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USAGE OF THE ENHANCED ALTER FEATURES

The new INSERT and DELETE cards described above and the existing ALTER card together
form a triad of alter control cards available to the user on all RPK-supported versions of COSMIC/
NASTRAN. When using these cards, the most important requirement that must be satisfied is the
one that has always existed with the usage of the standard ALTER control cards, namely, that the
DMAP statements (or modules) that are referenced on the ALTER, INSERT and DELETE control
cards in an alter package (either explicitly or implicitly, when a range is specified) must be
referenced in ascending order of their occurrence in the rigid format DMAP.

The new INSERT and DELETE cards can be used in conjunction with standard ALTER control
cards and any combination of the three control cards is acceptable. As a corollary, RPK-supported
versions of COSMIC/NASTRAN also support alter packages containing only ALTER control cards.
This ensures compatibility with standard versions of COSMIC/NASTRAN.

Table 1 lists several examples of the usage of alter control cards on RPK-supported versions of
COSMIC/NASTRAN. For each example, the table shows an alter using standard ALTER control
cards and indicates suggested usages by which the same alter can be accomplished by employing
equivalent INSERT or DELETE control cards. (All of the examples in the table refer to the DMAP
sequence of Rigid Format 3 - Displacement Approach, Release 1988, that is given in Appendix B.)

RPK encourages the users of its versions of COSMIC/NASTRAN to use the new alter control
cards. In order to demonstrate their usage, RPK has modified the data for all NASTRAN
Demonstration Problems that contain ALTER cards by commenting out all such cards and replacing
them by equivalent INSERT and/or DELETE cards. This is reflected in the data and the output of
the NASTRAN Demonstration Problems that are delivered to RPK’s clients.

ADVANTAGES OF THE ENHANCED ALTER FEATURES
The new alter control cards have several distinct advantages over the standard ALTER control
card. Some of these are obvious from the examples in Table 1. These advantages are discussed in

detail below.

1. Increased User Friendliness and Convenience

Unlike standard ALTER control cards, which refer to DMAP instructions by their statement
numbers in the rigid format DMAP, the new INSERT and DELETE control cards refer to DMAP
statements by their module names. This is certainly more user friendly and convenient as DMAP
module names are clearly more meaningful to the user than DMAP statement numbers. The user thus
has a better “‘feel’” for the alters.

2. Increased Flexibility

The general manner in which the specified module is identified on the INSERT and DELETE
control cards gives tremendous flexibility to the user.
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Using ALTER cards, a given alter can be accomplished only by a very specific and unique
ALTER card. However, by using INSERT (or DELETE) cards, the same alter can be accomplished
in several apparently different, but equivalent, ways. The user thus has a choice of ways in which
he can specify a given alter.

The above point can be best illustrated by an example. Consider Example 2 in Table 1 which
indicates that alters are to be made by inserting new DMAP statements after DM AP statement no.
69 (the PARAM module just before the READ module) in the DMAP.

By using ALTER control cards, the above alter can be accomplished only by using the following
very specific and unique alter:

ALTER 69 $

However, by using INSERT control cards, the above alter can be accomplished in many
different ways. The following are some ways of achieving this (the first two alters given below are
shown in Table 1 for this example):

INSERT DPD,2 $
INSERT READ,-1 $
INSERT RBMG4,4 $
INSERT SDR1,-5 %
INSERT BEGIN,68 $
INSERT END,-30 $

All of the above INSERT cards (the last two INSERTSs shown above are admittedly extreme
examples), though different in appearance, are all equivalent since they identify the same specified
module, namely, the PARAM module just before the READ module in the DMAP. They differ from

one another in that each of them employs a different reference module in conjunction with a
correspondingly different offset flag.

In a similar manner, if alters involve the deletion of DMAP modules, DELETE control cards
can be used to accomplish it in more than one way.

Assume that the number of DMAP statements in a rigid format DMAP sequence is m. Then,
by using INSERT control cards, a given alter of the form

ALTERn$ or ALTERnn$

can be accomplished in m different, but equivalent, ways by selecting each of the m DMAP modules
in the rigid format as a reference module with an appropriate offset flag.

In a similar manner, a given alter of the form
ALTER n1,n2 $ (nl #n2)
can be accomplished in m? different ways since each of nl and n2 can be specified in m different,
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but equivalent, ways.

3. Reduced Susceptibility to Future Changes in Rigid Format DMAPs

Because the new alter control cards refer to DMAP statements by their module names, alter
packages that contain these new cards will be much less susceptible to future changes inrigid formats
than if standard ALTER cards were used.

Consider, for instance, Example 1 in Table 1. This involves the insertion of new DMAP
statements after the SDR2 module. (Thisis the normal alter that is used to obtain NASTRAN output
for subsequent interface with post-processing programs like PATRAN.)

The only way of accomplishing the above alter by using standard ALTER control cards is to use
the following alter :

ALTER 79 $

The above alter will no longer be valid if future changes to the rigid format involve additions
ordeletions to the DMAP ahead of the SDR2 module. In that case, the new DMAP statement number
for the SDR2 module must be used in the above alter.

By using INSERT control cards, the above alter can be accomplished by the following alter:
INSERT SDR2 $

Because the above alter refers to the DMAP module by name, it will be unaffected by any future
additions or deletions to the DMAP.

CONCLUDING REMARKS

This paper has described a powerful enhancement to the DMAP alter capability that has been
developed by RPK Corporation and that is available on all RPK-supported versions of COSMIC/
NASTRAN. This enhancementinvolves the addition of two new alter control cards, called INSERT
and DELETE, to the Executive Control Deck. These cards allow for DMAP alters to be made by
referencing DM AP statements by their module names rather than by their statement numbers in the
rigid format DMAP sequence. This allows for increased user convenience and flexibility and makes
alters more meaningful to the user. In addition, DMAP alter packages employing the new alter
control cards will be much less susceptible to future changes in rigid format DMAPs than alter
packages employing the standard ALTER control cards. The usage of the new cards is illustrated
by examples.
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Table 1. Examples on the Usage of Alter Control Cards
(see Note 1 below)

Example Alters using Equivalent alters using
no. ALTER cards INSERT or DELETE cards
(see Note 2 below)

1 ALTER 79 § INSERT SDR2 $
2 ALTER 69 $ INSERT DPD,2

INSERT READ,-1 $
3 ALTER 31§ INSERT EMA(2) $
4 ALTER 30 $ INSERT EMA,2 $

INSERT EMA(2),-1 $
5 ALTER 82,82 $ | DELETE SCAN §
6 ALTER 2,3 $ DELETE PRECHK,FILE $
7 ALTER 32,35$% | DELETE GPWG,-1,GPWG,2 $
8 ALTER 84,87 $ | DELETE PLOT(2),-1,PLOT(2),2 §

Notes: 1. All of the alters given above refer to the DMAP

sequence of Rigid Format 3 - Displacement
Approach, Release 1988, given in Appendix B.

2. The equivalent alters using INSERT or DELETE
cards shown above are only suggested usages.
As explained in the paper, alters using INSERT
or DELETE control cards are not unique and
can be accomplished in more than one way.
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APPENDIX A

Description of Alter Control Cards
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Executive Control Card ALTER - Rigid Format DMAP Sequence Alteration Request

Dgsgr;ntion: Rque§ts the Dirgct Matrix Ab§traption Program (DMAP) sequence of a rigid format to
be changed by additions, deletions or substitutions.

Format and Examples:

ALTER{KL [, k21i$

ALTER 22 §

ALTER 5,5 §

ALTER 38,45 §

ALTER 25,19 §

Option

K1 only OMAP statement number (Integer > 0) after which DMAP instructions following
the ALTER card are to be inserted

K1 and K2 DMAP statement numbers (Integer > 0) identifying a single DMAP statement or a
range of DMAP statements to be deleted and replaced by any DMAP instructions
that may follow the ALTER card. See Remark 5.

Remarks: 1. See the descriptions of the INSERT and DELETE cards for alternate ways of

specifying DMAP sequence alteration requests.

2. The DMAP statements referenced on ALTER, INSERT and DELETE cards (either
explicitly or implicitly, when a range is specified) must be referenced in
ascending order of their occurrence in the rigid format DMAP,

3. See Volume 2, Sections 2, 3 and 4 for the listings of all rigid format DMAP
sequences.

4. See Volume 2, Section 1.1.5 for the manner in which DMAP alters are handled in
restarts.

5. If both K1 and K2 are specified and K1 # K2, a range of DMAP statements is
implied and either of them can be less than the other. If K1 = K2, a single DMAP
statement is implied.

2.2-4 (09/01/88)
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Executive Control Card DELETE - Rigid Format DMAP Sequence Alteration Request

Description: Requests the Direct Matrix Abstraction Program (DMAP) sequence of a rigid format to
be changed by deletions or substitutions.

Format and Examples:

DELETE specmod1 [, specmodzj $
where specmodi has the following general form:

n°m°d.i [(r1)] [’ "1']

DELETE SSG1 §

DELETE EMA(2) §

DELETE READ,1 $

DELETE SDR2(2),-1 $
DELETE SSG3,REPT §
DELETE GP2,GP3,-1 §
DELETE SMA3,1,7Al1,-1 $
DELETE REPT,2,REPT,3 $

Option

nommod ; Nominal module (Alphanumeric value, no default). See Remark 5.

rs Occurrence flag (Integer > 0, default = 1)}. The rgh occurrence of the
nominal module in the rigid format DMAP sequence (counting from the beginning
of the DMAP sequence) defines the reference module. See Remark 6.

n, Offset flag (Integer, default = 0). The DMAP module that is offset from the
reference module by n, DMAP statements in the rigid format DMAP sequence
defines the specified module. See Remark 7.

specmod1 only Specified module defined as per the above scheme that is to be deleted and
replaced by any DMAP instructions that may follow the DELETE card

specmod1 and Range of specified modules defined as per the above scheme that are to be

specmod deleted and replaced by any DMAP instructions that may follow the DELETE

pecmod, card. See Remark 8.
Remarks: 1. See the description of the ALTER card for an alternate way of specifying DMAP

sequence deletions and substitutions.
2. The DMAP statements referenced on ALTER, INSERT and DELETE cards (either

explicitly or implicitly, when a range is specified) must be referenced in
ascending order of their occurrence in the rigid format DMAP,

2.2-8a (09/01/88)
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See Volume 2, Sections 2, 3 and 4 for the listings of all rigid format DMAP
sequences.

See Volume 2, Section 1.1.5 for the manner in which DMAP alters are handled in
restarts.

The nominal module nommodi must be a valid name of a DMAP module in the rigid
format DMAP sequence.

The default value of 1 for the occurrence flag rs implies that the reference
module is the first occurrence of the nominal module in the rigid format DMAP
sequence.

The value of the offset flag n; may be positive, negative or 0. A positive

value means that the specified module follows the reference module by n; DMAP
statements in the rigid format DMAP sequence. A negative value indicates that the
specified module precedes the reference module by n; DMAP statements in the DMAP
sequence. A value of 0 ( the default) implies that the reference module is the
specified module.

If both specmod1 and specmod2 are specified, it implies a range of DMAP
statements and either of them can precede the other in the rigid format DMAP
sequence.

2.2-8b (09/01/88)
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Executive Control

Card INSERT - Rigid Format DMAP Sequence Alteration Request

Description: Requests the Direct Matrix Abstraction Program (DMAP) sequence of a rigid format to

e changed by add

tormat and Exampl

itions.

es:

INSERT specmod $

where spe

INSERT GP4 §
INSERT EMA(2) $
INSERT READ,1 $
INSERT SDR2(2),-1

Option

nommod

specmod

Remarks: 1.

cmod has the following general form:

nommod {(r)] [, n]

$

Nominal module (Alphanumeric value, no default). See Remark 5.

Occurrence flag (Integer > 0, default = 1). The rth occurrence of the
nominal module in the rigid format DMAP sequence (counting from the beginning
of the DMAP sequence) defines the reference module. See Remark 6.

Offset flag (Integer, default = 0). The DMAP module that is offset from the
reference module by n DMAP statements in the rigid format DMAP sequence
defines the specified module. See Remark 7.

Specified module defined as per the above scheme after which DMAP statements
following the INSERT card are to be inserted.

See the description of the ALTER card for an alternate way of specifying DMAP
sequence additions.

The DMAP statements referenced on ALTER, INSERT and DELETE cards (either
explicitly or implicitly, when a range is specified) must be referenced in
ascending order of their occurrence in the rigid format DMAP.

See Volume 2, Sections 2, 3 and 4 for the listings of all rigid format DMAP
sequences.

See Volume 2, Section 1.1.5 for the manner in which DMAP alters are handled in
restarts. o

The nominal module nommod must be a valid name of a DMAP module in the rigid
format DMAP sequence.

The default value of 1 for the occurrence flag r implies that the reference module
js the first occurrence of the nominal module in the rigid format DMAP sequence.

2.2-13a (09/01/88)
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The value of the offset flag n may be positive, negative or 0. A positive value
means that the specified module follows the reference module by n DMAP statements
in the rigid format DMAP sequence. A negative value indicates that the specified
module precedes the reference module by n DMAP statements in the DMAP sequence. A
valu? of 0 (the default) implies that the reference module is the specified
module.

2.2-13b (09/01/88)
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APPENDIX B

DMAP Listing of Rigid Format 3 - Displacement Approach, Release 1988
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LEVEL 2.0 NASTRAN DMAP COMPILER - SOURCE LISTING

OPTIONS IN EFFECT GO ERR=2 LIST NODECK NOREF NOOSCAR

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

BEGIN
PRECHK
FILE
PARAM

GP1

PLTTRAN
GP2
PARAML
PURGE
COND

PLTSET

PRTMSG
PARAM
PARAM
COND

PLOT

PRTMSG
LABEL
GP3

TA1

EQUIV
COND
PARAM

PARAM

DISP 03 - NORMAL MODES ANALYSIS - APR. 1988 $
ALL$

LAMA=APPEND/PHIA=APPEND $
/*MPY*/CARDNO/0/0 $

GEOM1,GEOM2/GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL/S,N,LUSET/
NOGPDT/ALWAYS=-1 $

BGPDT,SIL/BGPDP,SIP/LUSET/S,N,LUSEP $
GEOM2,EQEXIN/ECT $
PCDB//*PRES*////JUMPPLOT $
PLTSETX,PLTPAR,GPSETS,ELSETS/JUMPPLOT §
P1,JUMPPLOT $

PCDB,EQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/S,N,NSIL/
S,N,JUMPPLOT $

PLTSETX// $
/FMPY*/PLTFLG/1/1 $
/*"MPY*/PFILE/O/0 $
P1,JUMPPLOT §

PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL, ,ECT,,,/PLOTX1/
NSIL/LUSET/S,N,JUMPPLOT/S,N,PLTFLG/S,N,PFILE $

PLOTX1//$
P1$
GEOMB3,EQEXIN,GEOM2/,GPTT/NOGRAV $

ECT,EPT,BGPDT,SIL,GPTT,CSTM,MPT/EST,GEI,GPECT,, MPTX,PCOMPS,
EPTX/LUSET/S,N,NOSIMP/1/S,N,NOGENL/GENEL/S,N,COMPS $

MPTX,MPT/COMPS/EPTX,EPT/COMPS $
ERROR4,NOSIMP $
/I"ADD*/NOKGGX/1/0 $

/*ADD*/NOMGG/1/0 $
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25

26
27

28

30
31
32
33
34
35
36
37
38
39
40
41

42

43

45

46

47

49

EMG

PURGE
COND
EMA
LABEL
COND
EMA
COND
GPWG
OFP
LABEL
EQuIV
COND
SMA3
LABEL
GPSTGEN
PARAM

GP4

OFP
COND
PURGE
EQUIV
COND
MCE1

MCE2

EST,CSTM,MPT,DIT,GEOM2/KELM,KDICT,MELM,MDICT,,/S,N,NOKGGX/
S.N,NOMGG////C,Y,COUPMASS/C,Y,CPBAR/
C,Y,CPROD/C,Y,CPQUAD1/C,Y,CPQUAD2/C,Y CPTRIA1/C,Y,CPTRIAY
C,Y,CPTUBE/C,Y,CPQDPLT/C,Y,CPTRPLT/C,Y,CPTRBSC/
C,Y,VOLUME/C,Y,SURFACE $

KGGX/NOKGGX $

JMPKGG,NOKGGX $

GPECT KDICT,KELM/KGGX $§

JMPKGG $

ERROR1,NOMGG $

GPECT,MDICT,MELM/MGG/-1/C,Y, WTMASS=1.0 §

LGPWG,GRDPNT $
BGPDP,CSTM,EQEXIN,MGG/OGPWG/V,Y,GRDPNT=-1/C,Y, WTMASS §
OGPWG,,,,,//S,N,CARDNO $

LGPWG $

KGGX,KGG/NOGENL $

LBL11,NOGENL $

GEI| KGGX/KGG/LUSET/NOGENL/NOSIMP $

LBL11 $

KGG,SIVGPST $

I"MPY*/NSKIP/0/0 $
CASECC,GEOM4,EQEXIN,GPDT,BGPDT,CSTM,GPST/RG,YS,USET,
ASET,OGPST/LUSET/S,N,MPCF1/S,N,MPCF2/S,N,SINGLE/S,N,OMIT/
S,N,REACT/S,N,NSKIP/S,N,REPEAT/S,N,NOSET/S,N,NOL/S,N,NOA/
C,Y,ASETOUT/C,Y,AUTOSPC $

OGPST,,,,.//IS,;N,CARDNO $

ERROR3,NOL $

KRR,KLR,DMMLR,MR/REACT/GM/MPCF1/GO/OMIT/KFS/SINGLE/QG/NOSET $

KGG,KNN/MPCF1/MGG,MNN/MPCF1 §
LBL2,MPCF1 §
USET,RG/GM §

USET,GM,KGG,MGG,,/KNN,MNN,, $
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50

51

52

&

55

56

57

59

60

61

62

&

65

66

67

69

70

71

72

73

74

75

76

LABEL
EQUIV
COND
SCE1
LABEL
EQUIV
EQUIV
COND
SMP1
SMP2
LABEL
COND
RBMG1
RBMG2
RBMG3
RBMG4
LABEL

DPD

COND
PARAM
READ

OFP
COND
OFP
SDR1
COND
EQMC

LBL2 $

KNN,KFF/SINGLE/MNN,MFF/SINGLE $
LBL3,SINGLE $
USET,KNN,MNN, /KFF KFS, MFF,, $

LBL3 $

KFF,KAA/OMIT $

MFF,MAA/OMIT $

LBL5,OMIT $

USET KFF,,/GO,KAA,KOO,LOO,,,,, $
USET,GO,MFF/MAA $

LBL5 §

LBL6,REACT $

USET KAA MAA/KLL,KLR,KRR ,MLL,MLR,MRR $
KLL/LLL $

LLLLKLR,KRR/DM $

DM, MLL MLR,MRR/MR $

LBL6 $
DYNAMICS,GPL,SIL,USET/GPLD,SILD,USETD,,,,,,,EED,EQDYN/
LUSET/LUSETD/NOTFL/NODLT/NOPSDL/NOFRL/
NONLFT/NOTRL/S,N,NOEED//NOUE $
ERROR2,NOEED $

/*MPY*/NEIGV/1/-1 §

KAA,MAA MR,DM,EED,USET,CASECC/LAMA,PHIA M!,OEIGS/"MODES?/
S,N,NEIGV §

OEIGS,,,./S,N,CARDNO §

FINIS.NEIGV $

LAMA,,,,//S,N,CARDNO $

USET, PHIA,,,GO,GM, KFS, /PHIG, QG/1/*REIG* $
NOMPCF,GRDEQ $

CASECC,EQEXIN,GPL,BGPDT,SIL,USET KGG,GM,PHIG,LAMA,QG,CSTM/
OQM1/V,Y,OPT=0/V,Y,GRDEQ/-1 $
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77

78

79

80
81

82

8

85

86

87

89

90

91

92

93

94

95

96

97

98

OFP
LABEL

SDR2

OFP
OFP
SCAN
OFP
COND
PLOT

PRTMSG
LABEL
JUMP
LABEL
PRTPARM
LABEL
PRTPARM
LABEL
PRTPARM
LABEL
PRTPARM
LABEL
PURGE

END

oQMm1,,,,.//S,N,CARDNO $

NbMPCF $

CASECC,CSTM,MPT,DIT,EQEXIN,SIL,, BGPDP,LAMA,QG,PHIG,EST,,,
PCOMPS/,0QG1,0PHIG,0ES1,0EF1,PPHIG,OES1L,OEF1L/
*REIG*////COMPS $

OPHIG,0QG1,0EF1,0ES1,,//S,N,CARDNO $

OEF1L,0ESI1L,,, //S,N,CARDNO $

CASECC,OES1,0EF1/OESF1/"RF* $§

OESF1,,,,.//S,N,CARDNO §

P2,JUMPPLOT $

PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIP,,PPHIG,GPECT,OES1,
OES1L/PLOTX2/NSIL/LUSEP/JUMPPLOT/PLTFLG/S,N,PFILE $

PLOTX2// $
P2$

FINIS $
ERROR1 $
/I-1*"MODES* $
ERROR2 $
/1-2I"MODES* $
ERRORS3 §
/I-3/"MODES* $
ERROR4 $
/I-4/*MODES* $
FINIS $§
DUMMY/ALWAYS $
$
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A NASTRAN DMAP ALTER FOR LINEAR BUCKLINGN8 9 - 22 9 4 8

ANALYSIS UNDER DYNAMIC LOADING

Robert A. Aiello and Joseph E. Grady
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

A unique modification to the NASTRAN solution sequence for transient
analysis with direct time integration (COSMIC NASTRAN rigid format 9) has been
developed and incorporated into a DMAP alter. This DMAP alter calculates the
buckling stability of a dynamically loaded structure, and is used to predict
the onset of structural buckling under stress-wave loading conditions. The
modified solution sequence incorporates the linear buckling analysis capability
(rigid format 5) of NASTRAN into the existing Transient solution rigid format
in such a way as to provide a time dependent eigensolution which is used to
assess the buckling stability of the structure as it responds to the impulsive
load. As a demonstration of the validity of this modified solution procedure,
the dynamic buckling of a prismatic bar subjected to an impulsive longitudinal
compression is analyzed and compared to the known theoretical solution. 1In
addition, a dynamic buckling analysis is performed for the analytically less
tractable problem of the localized dynamic buckling of an initially flawed com-
posite laminate under transverse impact loading. The addition of this DMAP
alter to the transient solution sequence in NASTRAN facilitates the computa-
tional prediction of both the time at which the onset of dynamic buckling
occurs in an impulsively loaded structure, and the dynamic buckling mode
shapes of that structure.

INTRODUCTION

Composite laminates that are subjected to static, dynamic, or fatigue
loading are known to undergo delamination, or debonding, between the laminated
plies of which they are composed. Delamination causes a significant loss
stiffness and strength, and can considerably reduce the structural integrity
of a laminate. Once this damage has occurred, a compressive stress near the
delamination can induce local buckling of the delaminated plies. This buck-
ling may then cause further extension of the delamination and progressive wea-
kening of the laminate. In lieu of actual experimental testing, the ability
to computationally predict the onset of delamination buckling is necessary for
evaluating the durability of many composite structures.

The delamination buckling phenomenon has been observed experimentally
under both static and fatigue loading conditions (Refs. 1 to 4), and several
analytical and numerical methods have been proposed (Refs. 5 and 6) to model
this damage mechanism. Finite-element approaches (Refs. 7 to 9) have been
used as the basis for these analyses, but no comparable numerical methods exist
to analyze delimination buckling which occurs as a result of an impulsively
applied load. That is the topic of this paper.
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Experimental-obse¥vations of dynamic delamination buckling in transversely
impacted laminates were reported earlier (Refs. 10 to 12), using high-speed
photography and simultaneous strain measurements of transversely impacted lami-
nates. A related numerical analysis (Ref. 10) indicated that the buckling
behavior must be accounted for in the computational model in order to accu-
rately assess the damage tolerance capability of the laminate. This motivated
the present development of a NASTRAN DMAP alter analysis procedure that can
be used to computationally predict the onset of buckling instability under
transient stress-wave loading.

The objectives of this paper are, therefore, (1) to outline the dynamic
buckling analysis computational procedure and its implementation into the DMAP
alter sequence (2) demonstrate the validity of the dynamic buckling analysis
procedure by analyzing a simple one-dimensional example problem with a known
solution, and (3) apply the dynamic buckling analysis to the analytically less
tractable problem of the localized dynamic buckling of an initially flawed
composite laminate under transverse impact loading.

The NASTRAN transient solution sequence, when modified as indicated in
the following section, provides a new computational tool that can be used to
predict both the time at which the onset of dynamic buckling occurs and the
dynamic buckling mode shapes of an impulsively loaded structure.

Dynamic Buckling Analysis

Linear buckling analysis requires solution of the eigenvalues problem:

(1K1 + ATK 1 (0} = ] M
where
(K] structural stiffness matrix;
[(Kg]l stress stiffness matrix
X, {¢} denote the associated eigenvalue and eigenvector

In terms of the buckling analysis, the eigenvector {4} represents the
buckling mode shape, and the associated eigenvalue A indicates the multiple
of [Kg] needed to make equation (1) singular, that is, to cause buckling. In
a one-dimensional column buckling problem, each scalar eigenvalue satisfying
equation (1) physically represents the nondimensional ratio:

oA

A=, (2)

where o s the compressive stress in the column, A is the cross-sectional
area, and P, 1is the buckling load. If the eigenvalue has the critical value

of unity (oA = P,), buckling in the associated mode occurs.

In the dynamic case, the terms of [Ks]l in Eg. (1) vary with time as the
stress waves propagate through the structure. The eigensolution of (1) then
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becomes time dependent, and can be used to track the buckling stability as a
function of time. Figure 1 is a simplified representation of a modified
direct-time integration solution sequence in which the updated stress stiffness
matrix is formed after each time step At, and the associated eigenvalue prob-
lem in equation (1) is solved. The eigenvalue is now a function of time, and
it indicates the onset of buckling when it reaches the critical value of unity.
Figure 2 is the DMAP alter which incorporates this dynamic buckling algorithm
into the existing transient solution sequence.

DMAP Procedure

The functions of the DMAP statements shown in Fig. 2 are summarized
here. In line 2 the number of columns in the UPV matrix is determined. This
matrix contains the displacement, velocity and acceleration vectors for each
degree of freedom at each time step. Lines 2 through 16 follow the Bubble
Algorithm approach of Ref. 13. The DMI column matrices TIP1 and BAS1 from the
Bulk Data deck, each initially sized to contain more rows than columns in the
UPV matrix, are used to form two new column matrixes, MNTRJ and BOOTI. The
number of rows in each of these matrices is equal to the number of columns in
the UPV matrix. The monitor matrix MNTRJ initially contains unity in the
first row and zero in the remaining rows. The BOOTI matrix always contains
unity in the last row and zero in the remaining rows.

Having determined the size of the partitioning matrices, the eigenvalue
extraction data is determined in Tine 19 and the buckling calculations are now
performed. At the beginning of each pass through the RAALOOP, corresponding
to each integration time step of the requested output, the current column
position is compared with the number of columns in the UPV matrix, lines 25
through 27, ending the loop at the end of the available data. Continuing
within the loop the unity value of the MNTRJ matrix is advanced three rows,
lines 28 through 31, pointing to the location of the current displacement
vector in the UPV matrix. The MNTRJ matrix is used to partition the UPV
matrix, line 32, stripping the column containing the displacements. These
displacements are used in the DSMG! module, line 33, to form the time-varying
global differential stiffness matrix, KDGG. The reduced differential stiff-
ness matrix, KDAA, is then formed by eliminating the restrained and dependent
degrees of freedom, line 35 through 45, and in line 47 this matrix is multi-
plied by negative one, forming the KDAAM matrix. The stiffness matrices KAA
and KDAAM are then used in the READ module, line 48, to solve for the eigen-
values and eigenvectors for each integration time step initially requested for
output.

The eigenvalue for each time step is printed by line 52. Optionally,
ines 53 and 54 may be used to print eigenvalues and eigenvalue extraction
data. Line 58 may be used to print eigenvectors. The RAALOOP is ended at
line 64.

The computationally intensive nature of this analysis can be made more
efficient by slightly modifying the DAMP procedure. A promising method is to
perform the buckling analysis at specified time intervals in the transient
solution sequence rather than after every time step, as is done here. The
length of the time interval can be progressively decreased as the eigenvaiue
begins to change more rapidly, or as the critical value of unity is approached.
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This technique will significantly reduce the number of individual buckling
analyses performed, and hence will result in a more computationally efficient
algorithm.

Example Problem

In order to establish the validity of this analysis procedure, a simple
problem with a known solution, as given in Ref. 14, was analyzed. The propaga-
tion of a longitudinal compressive pulse in a long prismatic bar, shown in
Fig. 3, was modelled.

Assuming a one-inch diameter aluminum bar of uniform circular cross sec-
tion the elastic and geometric constants are:

6

E =10 x 107 psi (3)
I = lrj = T_ 1n4 (4)
4 64
L2
A=wr" = in.
T (5
2
o = 2.5x107% 1228 (6)
in.
L =100 in. (6)

where E  is the Young's Modulus, I is the area moment of inertia, A is the
cross-sectional area, p is the mass density, and L is the length of the bar.

The lowest buckling load is given by (Ref. 15):
2
Pe = mEIl =121 1b (N
4.2

As shown in Fig. 3, the applied load is identical to the static buckling load
in Eq. (D).

Using the above material constants, the bar wave velocity is given by
(Ref. 14):

£ in.
Co =vp = 200,000 Sec (8)

so the time for the longitudinal compression wave to travel from the impact
point to the distal end of the bar is

t = = = 500 ps
0 0

O|—

(9)
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A NASTRAN model consisting of ten rod elements, for a total of ten uncon-
strained axial degrees of freedom, was used to model the longitudinal impact
of the bar. The integration time step was taken as

1 L

to insure a numerically converged solution. The propagation of the compres-
sion wave from the point of impact to the clamped end of the bar is depicted
in Figs. 4¢a) and (b).

The compressive pulse, traveling at a speed Cg, reaches the complete
length of the bar at time tg (500 us). Because the distal end of the bar is
held fixed, the incident compressive pulse reflects (Ref. 15) as a pulse of
the same sign (compressive) which superimposes on the existing uniform compres-
sive stress in the bar. Figures 4(c) and (d) depict the progression of the
reflected pulse, traveling at a speed Co, back to the proximal end of bar,
effectively doubling the compressive load supported by the bar. Reflecting
from the proximal (free) end as a pulse of opposite sign (tensile) which super-
imposes on the existing compressive stress, the bar returns to its original
fully stressed state at time 3ty, (1500 ps) as shown in Figs. 4(e) and (f).
Finally, in Figs. 4(g) and (h), the tensile pulse reflects as a tensile pulse
from the fixed end which temporarily cancels the uniform compression at time
4ty (2000 ps), leaving the bar instantaneously unstressed. The stress states
depicted in Figs. 4(i) and (J), for all practical purposes identical to those
in Figs. 4(a) and (b), indicate that, assuming no damping exists, the above
cycle will repeat itself indefinitely.

The corresponding time dependence of the lowest eigenvalue is shown in
Fig. 5. The critical value of 1.0 is reached at times to, 3tgy, 5tg, 7tg,. . .
(500, 1500, 2500, 3500 ws,. . .); and whenever the bar supports a uniform com-
pressive stress corresponding to its buckling load. Similarly, the eigenvalue
reaches to its lower limit of 0.5 at times 2ty, 6ty, 10tgy,. . . (1000, 3000,
5000 us,. . .); and whenever the stress state is double that of the buckling
load. The eigenvalue becomes large (theoretically infinite) at time 0, 4tg,,
8ty,. . . (0, 2000, 4000, 6000 ps,. . .) ; and whenever the bar is unstressed.

Superimposed on the finite element results in Fig. 4 is the theoretical
1-D solution, assuming the stress wave propagates nondisperively at a constant
speed Co and reflects from the boundaries as described above. Good agree-
ment exists between the two solutions, even when relatively few finite ele-
ments are used to model the bar. The time behavior of the lowest eigenvalue,
shown in Fig. 5, can be interpreted directly in terms of the transient stress
distribution in Fig. 4. Since the applied compressive load is exactly equal
to the first static buckling load in Eq. (7), and no strain-rate dependence
was assumed in the finite element model, buckling is predicted whenever the
bar is uniformly stressed with its critical static buckling stress, which
occurs at odd multiples of ty, as shown in Fig. 4.

In a practical application, the above analysis is valid only until the
onset of buckling occurs, since no post-buckling behavior has yet been included
in the finite element model. The time itegration was extended in the example
problem only to physically interpret the results of the dynamic buckling
analysis.
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Dynamic Delamination Buckling

The example problem could have been solved without the use of a finite
element analysis because of the simple non-dispersive nature of the longitudi-
nal wave propagation. However, the propagation of flexural waves in beam-like
structures is dispersive by nature, and as such would pose a formidable chal-
lenge without the use of some type of computational simulation. In Ref. 11,
experimental measurements of delamination duckling in graphite/epoxy composite
laminates were reported. The beam-like experimental specimens had simulated
delaminations (ply disbonds) embedded in them during the fabrication process.
They were held clamped at both ends and impacted transversely, as depicted
schematically in Fig. 6. The subsequent flexure-induced local buckling of the
delamination was recorded using strain gages and high speed photography. A
finite element model of the initially flawed experimental specimen is used
here to verify that the dynamic delamination buckling phenomenon can be pre-
dicted using computational simulation. Figure 6 shows the geometry and loading
conditions for the initially flawed composite laminate subjected to a trans-
verse impact. The finite element discretization of this laminate near the
embedded flaw is shown schematically in Fig. 7. The layered structure of the
composite laminate is represented by layers of shell elements. Multipoint con-
straints are imposed on the degrees of freedom between neighboring nodal points
in the thickness direction such that simple beam bending displacements are
enforced; that is, plane sections remain plane and no strain exists in the
thickness direction. These constraints are removed in the delaminated region
to allow the delaminated plies to separate from the main laminate when a local
compression occurs in that area, as shown in Fig. 7. More complete details of
the finite element modeling procedure are given in Ref. 12.

The progression of the flexural waves out from the central impact point
to the boundaries of the laminate are shown in Fig. 8. As the disturbance
passes through the flawed region at 100 to 150 us after impact, the delaminated
ligament separates from the laminate and begins to support a compressive longi-
tudinal stress which increases in magnitude until it causes a local buckling
of the delamination. The eigenvalue behavior and corresponding buckling mode
are shown in Fig. 9. As the laminate deforms under the applied load, the
eigenvalue decreases monotonically in magnitude until it reaches the critical
value of unity, indicating the onset of buckling at approximately 190 us from
impact. The corresponding buckling mode shape is also depicted in the figure.

These results correspond closely with experimental observations. Both
the buckling mode shape and the time at which buckling occurs are in good
agreement with measurements taken from high speed photographs. A detailed com-
parison of finite element results and experimental measurements is given in
Ref. 11.

CONCLUSIONS

A dynamic delamination buckling analysis procedure has been incorporated,
in the form of a DMAP alter, into the transient analysis rigid format of
NASTRAN. MWith this enhancement, NASTRAN can be used to calculate the time at
which dynamic buckling occurs and the buckling mode shape of a structure sub-
jected to dynamic loading. Comparison of the calculated results with a known
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solution supports the validity of the analysis. Application of the dynamic
buckling analysis to the more complex problem of transverse impact of beam-
like laminate was demonstrated, and the results phenomenologically duplicated
those reported in earlier experiments.

10.
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IMPROVEMENTS TO THE CONTINUE FEATURE IN TRANSIENT ANALYSIS

by ' .
P. R. Pamidi N89-22949
RPK Corporation
Columbia, Maryland

SUMMARY

The CONTINUE feature in transient analysis as implemented in the standard release of
COSMIC/NASTRAN has inherent errors associated with it. As a consequence, the results obtained
by a CONTINUEA restart run do not, in general, match the results that would have been obtained
in a single run without the CONTINUE feature. These inherent errors have been eliminated by
improvements to the restart logic that have been developed by RPK Corporation and that are
available on all RPK-supported versions of COSMIC/NASTRAN. These improvements ensure that
the results of a CONTINUEG transient analysis run are the same as those of anon-CONTINUEd run.
In addition, the CONTINUE feature has been extended to transient analysis involving uncoupled
modal equations. The improvements and enhancement have been illustrated by examples.

INTRODUCTION

In transient analysis, it is frequently necessary to continue the integration of equations beyond
the last (or from any earlier intermediate) output time for which the results were obtained in a
previous run. Thus, the initial time for the new run is to be a specified output time of the previous
run and the initial conditions for the new run are to be the same as the conditions existing at the
specified output time of the previous run. The CONTINUE feature in NASTRAN makes it possible
to do this without re-executing the entire problem.

‘ The CONTINUE feature involves performing a checkpoint run of a transient analysis problem
followed by a restart run with the aim of continuing the integration from the last (or from any earlier
intermediate) output time for which the results were obtained in the checkpoint run. The details of
the usage of this feature are given in Vol. 2, Section 2.9.6 of the NASTRAN User’s Manual

k (Reference 1). The theoretical aspects of this feature are discussed in Section 11.4.2 of the

‘ NASTRAN Theoretical Manual (Reference 2) and the programming aspects are detailed in Section

4.65.7.3 of the NASTRAN Programmer’s Manual (Reference 3).

EQUATIONS FOR TRANSIENT ANALYSIS

The equations used in transient analysis are discussed in detail in References 2 and 3. For the
sake of convenience, they are summarized in the Appendix.
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The most important equation employed in transient analysis is Equation (1) given in the
appendix. After the integration is started, this equation is used to continue the integration by
computlng the displacements at successive times until there is a change in the time step. In order to

-compute the displacements at each time, this equation requires, in addition to the loads at that time,

the displacements and the loads at the two previous times.

When there is a change in the time step employed for the integration, Equation (2) in the
appendix is used to compute the displacements for the first time after the time step change. It is
important to note that this equation is employed only once for each time step change. Equation (1)
is then employed to resume the integration until there is another time step change. Every time
Equation (2) is employed, it requires, in addition to the loads at that time, the displacements at the
three previous times and the loads at the previous time.

CURRENT IMPLEMENTATION OF THE CONTINUE FEATURE

When the CONTINUE feature is employed in the standard release of COSMIC/NASTRAN to
restart a transient analysis problem, Equation (3) in the appendix is used to start the integration from
the specified time. Equation (1) or (2), as appropriate, is then used to continue the process. Inorder
to start the integration, Equation (3) uses the displacements, velocities and accelerations at the
specified output time of the checkpoint run. Unlike Equations (1) and (2), Equation (3) uses neither
the loads at the specified output time nor any displacements at solution times prior to that output time.

The CONTINUE feature, as described above, is based on the inherent assumption that the output
times of the checkpoint run do not include all of the solution times of the integration. In other words,
itis assumed that the TSTEP bulk data card (Reference 1) in the checkpoint run involves one or more
non-unity skip factors for output. As aresult, the CONTINUE feature initiates the integration in the
restart run by considering the conditions (namely, the displacements, velocities and accelerations)
only at the specified output time of the previous run; it does not take into account the conditions at
solution times just before that output time because the latter conditions are assumed to be not
available to the restart run.

The above approach to the CONTINUE feature introduces inherent errors into the procedure
(Reference 2). Asa consequence, the results of a CONTINUEd restart run do not, in general, match
the results that would have been obtained in a single run without using the CONTINUE feature.

It can also be seen from Equation (3) and the associated Equations (3a) through (3d) that the
initial time step used ina CONTINUEd run can affect its results. As a result, the errors mentioned
above may be magnified further if the initial time step in the CONTINUEd restart run is not the same
as that used in the checkpoint run just before the restart (Reference 2).

In addition to the above deficiency, the current implementation of the CONTINUE feature has

the further limitation that it is restricted to coupled equations and is not applicable to transient
analysis involving uncoupled modal equations.
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IMPROVED IMPLEMENTATION OF THE CONTINUE FEATURE

RPK has developed improvements to the CONTINUE feature that have removed the deficien-
cies described above. This involved extensive changes to the code in the TRD (Transient Analysis
- Displacement approach) module, including, in particular, the addition of an extra output data block
to this module, and minor related changes elsewhere. These changes also required minor
modifications to the DMAP of Displacement Approach Rigid Formats 9 (Direct Transient Re-
sponse) and 12 (Modal Transient Response). These improvements are available on all RPK-
supported versions of COSMIC/NASTRAN, beginning with the 1988 release.

The highlights of RPK’s improvements are described below.

1. The loads and displacements for all solution times of the checkpoint run, as well as the time
steps employed to obtain each of those solutions, are made available to the restart run. With
this information, the restart run using the CONTINUE feature now initiates the continuation
of the integration using the same procedure as that used in a non-CONTINUEd run. This
applies even in those cases where the time step used in the CONTINUEG restart run is
different from that used in the earlier checkpoint run just before restart. As aresult, Equation
(3) is no longer used and the restart run uses Equation (1) or (2), as appropriate, to initiate
the integration.

2. The key to providing the information required for the above procedure is the new data block
output from the TRD module. There are two possible cases that need to be considered with

regard to the generation of this data block.

Case 1. The TSTEP bulk data card in the checkpoint run has no non-unity skip factors

In this case, the output times, by definition, include all solution times. As a result, the
displacements for all solution times are available from the standard UDVT (displacement-
velocity-acceleration) matrix data block resulting from the TRD module in the checkpoint
run. Accordingly, the new data block in this case is designed to contain only the loads for
all solution times as well as the time steps used to obtain each of the solutions. This case is
identified in the new data block (for subsequent use in the restart run) by setting the fourth
word of its six-word trailer to 1.

Case 2. The TSTEP bulk data card in the checkpoint run consists of one or more non-unity
skip factors

Since the output times in this case are only a subset of the solution times, the new data block
is designed to contain not only the loads but also the displacements for all solution times, as
well as the time steps used to obtain each of those solutions. Further, the new data block in
this case has an additional special record that has information relating each output time to its
corresponding solution time. This case is identified in the new data block by setting the
fourth word of its six-word trailer to 0.

3. Using the information provided by the new data block described above, the restart run using
the improved CONTINUE feature determines whether all of the loads and displacements
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required for continuing the integration are available just from this data block alone (Case 2
above) or from both this data block and the UDVT data block (Case 1 above).

It should be emphasized that the new data block is generated only in checkpoint runs since
its sole use is in a subsequent restart run using the CONTINUE feature. Also, it should be
noted that, even when it is generated, this data block does not require any new computations
since all of the information it needs is already available.

4. The restart run then determines if the time step to be used for continuing the integration in
the restart run is the same as, or different from, the time step that was used for obtaining the
solution for the specified output time of the checkpoint run. If the former condition is true,
Equation (1) in the appendix is used to initiate the integration. If the latter condition is true,
Equation (2) in the appendix is used to initiate the integration. Depending upon which of
these two equations is used, the required loads and displacements for starting the integration
are retrieved from the appropriate data block or data blocks mentioned earlier.

5. The procedure outlined above for the CONTINUE feature ensures that the CONTINUEd run
starts the integration in the same manner as the integration would have continued had it
proceeded further in the original checkpoint run. This therefore ensures that the results
obtained by a CONTINUEGA run will be the same as those of a non-CONTINUEd run.

6. Separately, RPK has extended the CONTINUE feature to transient analysis involving
uncoupled modal equations. Since the equations in this case have closed-form solutions
(References 2 and 3), this development introduces no errors.

EXAMPLES

In order to illustrate the improvements to the CONTINUE feature mentioned above, NAS-
TRAN Demonstration Problem No. D09-01-1A (Transient Analysis with Direct Matrix Input) was
selected. Two variations of this problem with the same standard input data, but with different sets
of TSTEP bulk data input, were analyzed. These two cases are identified as Examples 1 and 2.

For both of the above examples, checkpoint and restart runs were made on the DEC VAX
version using the standard release of COSMIC/NASTRAN and on RPK’s CRAY version of
COSMIC/NASTRAN using the improvements to the CONTINUE feature described in the paper.
The results of these analyses are presented in Table 1 (for Example 1) and Table 2 (for Example 2).
To facilitate comparison of the results, the restart runs were made from an intermediate output time
of the checkpoint runs. It is quite clear from these tables that the results of the CONTINUEd restart
runs on RPK’s CRAY version match those of the non-CONTINUEA checkpoint runs perfectly,
thereby validating the improvements. The results of the DEC VAX version do not exhibit the same
correlation.

In order to illustrate the extension of the CONTINUE feature to transient analysis involving

uncoupled modal equations, NASTRAN Demonstration Problem No. D12-01-1A (Transient
Analysis of a Free One Hundred Cell Beam) was selected. This case is identified as Example 3.
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Checkpoint and restart runs for the above problem were made on RPK’s CRAY version
mentioned above. (No runs were made on the standard release of COSMIC/NASTRAN as it does
not support the CONTINUE feature for uncoupled modal equations.) Again, to facilitate compari-
son of the results, the restart run was made from an intermediate output time of the checkpoint run.
The results are presented in Table 3. It is again quite clear from this table that the results of the
CONTINUEd restart run on RPK’s CRAY version match those of the non-CONTINUEd checkpoint
run perfectly, thereby validating the new development.

CONCLUDING REMARKS

The CONTINUE feature in transient analysis as implemented in the standard release of
COSMIC/NASTRAN has inherent errors associated with it. As a consequence, the results obtained
by a CONTINUEd run do not, in general, match the results that would have been obtained in a single
run without the CONTINUE feature. These inherent errors have been eliminated by improvements
to the restart logic that have been developed by RPK Corporation and that are available on all RPK-
supported versions of COSMIC/NASTRAN. These improvements ensure that the results of a
CONTINUEC transient analysis run are the same as those of a non-CONTINUEd run. In addition,
the CONTINUE feature has been extended to transient analysis involving uncoupled modal
equations. The improvements and enhancement have been illustrated by examples.
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TABLE 1. RESULTS FOR EXAMPLE 1

(Transient Analysis Involving Coupled Equations)

Displacements for Extra Point 10 of NASTRAN Demonstration Problem No. D09-01-1A

TSTEP Bulk Data Card Input

Z.

Checkpoint Run: Number of time steps = 200
Time increment =(0.010 sec.
Skip factor for output = 10

Number of time steps = 50
Time increment = (.015 sec.
Skip factor for output = 5

Restart Run: Number of time steps = 100

Time increment =0.010 sec.
Skip factor for output = 5

OTES:

. The restart run on the DEC VAX version uses the CONTINUE feature available in the standard

release of COSMIC/NASTRAN.

The restart run on RPK’s CRAY version uses the improved CONTINUE feature described in the
paper. In this case, since the initial time step used in the restart run (0.010 sec.) is the same as that
used to obtain the output of the checkpoint run from where the restart is initiated, the CONTINUE
features uses Equation (1) in the appendix to initiate the integration.

. The restart run was initiated by setting the parameter NCOL in the rigid format DMAP to 11 just

before the TRLG module (see Volume 2, Section 2.9.6 of Reference 1 for details), thereby triggering
the continuation of the integration from the 11th output time of the checkpoint run.

Note that the time step changes from 0.010 sec. to 0.015 sec. at time = 2.000 sec.

. The % Error in the table is calculated by the following relationship:

(Displacement from Restart Run) - (Displacement from Checkpoint Run)
(Displacement from Checkpoint Run)

X 100




TABLE 1. RESULTS FOR EXAMPLE 1

(Continued)

Results from DEC VAX Version of

Results from RPK’s CRAY Version of

1988 COSMIC/NASTRAN 1988 COSMIC/NASTRAN
(See Note 1 above) (See Note 2 above)
Time Displacements | Displacements |% Error] Displacements | Displacements (% Error
(sec.) from from from from
(See Checkpoint Run Restart Run (See | Checkpoint Run Restart Run (See
Note 4 Note § Note 5
above) above) above)
.000 0.000000E+00 0.000000E+00
.100 8.404462E-01 8.404462E-01
.200 9.099538E-01 9.099538E-01
300 1.447636E-01 See 1.447636E-01 See
400 | -7.532177E-01 Note 3 -7.532178E-01 Note 3
500 | -9.602748E-01 above -9.602749E-01 above
600 | -2.864749E-01 -2.864749E-01
.700 6.501075E-01 6.501076E-01
.800 9.903484E-01 9.903484E-01
.900 4.221459E-01 4.221458E-01
1.000 | -5.332897E-01 -5.332897E-01 .00 | -5.332899E-01 -5.332899E-01 .00
1.100 | -9.995404E-01 -9.972498E-01 -.23 -9.995404E-01 -9.995404E-01 .00
1.200 | -5.489158E-01 -5.464416E-01 -.45 -5.489157E-01 -5.489157E-01 .00
1.300 4.052275E-01 4.056157E-01 .10 4.052276E-01 4.052276E-01 .00
1.400 9.876569E-01 9.856030E-01 -.21 9.876569E-01 9.876569E-01 .00
1.500 6.641117E-01 6.614999E-01 -.39 6.641117E-01 6.641117E-01 .00
1.600 | -2.686209E-01 -2.693950E-01 29 | -2.686212E-01 -2.686212E-01 .00
1.700 | -9.549485E-01 -9.531747E-01 -.19 | -9.549486E-01 -9.549486E-01 .00
1.800 | -7.653049E-01 -7.626103E-01 -.35 -7.653047E-01 -7.653047E-01 .00
1.900 1.263505E-01 1.274941E-01 91 1.263508E-01 1.263508E-01 .00
2.000 9.021050E-01 9.006485E-01 -.16 9.021051E-01 9.021051E-01 .00
2.015 9.624534E-01 9.606622E-01 -.19 9.624535E-01 9.624535E-01 .00
2.075 9.827350E-01 9.800652E-01 -27 9.827349E-01 9.827349E-01 .00
2.150 5.388174E-01 5.363594E-01 -.46 5.388172E-01 5.388172E-01 .00
2.225 | -1.927009E-01 -1.936352E-01 48 -1.927012E-01 -1.927012E-01 .00
2.300 | -8.213626E-01 -8.202745E-01 -.13 -8.213628E-01 -8.213628E-01 .00
2.375 | -1.011611E+00 | -1.009082E+00 -25 | -1.011611E+00 | -1.011611E+00 .00
2.450 | -6.618994E-01 -6.592784E-01 -40 | -6.618993E-01 -6.618993E-01 .00
2.525 4.110985E-02 4.242327E-02 3.19 4.111014E-02 4.111014E-02 .00
2.600 7.221763E-01 7.214810E-01 -.10 7.221765E-01 7.221765E-01 .00
2.675 1.017772E+00 1.015439E+00 -.23 1.017772E+01 1.017772E+00 .00
2.750 7.701184E-01 7.673931E-01 -.35 7.701182E-01 7.701182E-01 .00
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TABLE 2. RESULTS FOR EXAMPLE 2
(Transient Analysis Involving Coupled Equations)

Displacements for Extra Point 10 of NASTRAN Demonstration Problem No. D09-01-1A

TSTEP Bulk Data Card Input

Z

Checkpoint Run: Number of time steps = 200
Time increment = 0.005 sec.
Skip factor for output = 10

Number of time steps = 50
Time increment =0.015 sec.
Skip factor for output =5

Restart Run: Number of time steps = 50

Time increment =0.015 sec.
Skip factor for output =5

OTES:

. The restart run on the DEC VAX version uses the CONTINUE feature available in the standard

release of COSMIC/NASTRAN.

The restart run on RPK’s CRAY version uses the improved CONTINUE feature described in the
paper. In this case, since the initial time step used in the restart run (0.015 sec.) is not the same as
that used to obtain the output of the checkpoint run from where the restart is initiated (0.005 sec.),
the CONTINUE feature uses Equation (2) in the appendix to initiate the integration.

. The restart run was initiated by setting the parameter NCOL in the rigid format DMAP to 21 just

before the TRLG module (see Volume 2, Section 2.9.6 of Reference 1 for details), thereby triggering
the continuation of the integration from the 21st output time of the checkpoint run.

. Note that the time step changes from 0.005 sec. to 0.015 sec. at time = 1.000 sec.

. The displacement shown in the parentheses below is obtained only in the checkpoint run because this

run involves a change in time step. There is no corresponding displacement from the restart run as
the latter run does not involve any change in time step. In general, each change in time step results
in such an extra displacement in the output.

The % Error in the table is calculated by the following relationship:

(Displacement from Restart Run) - (Displacement from Checkpoint Run) X 100

(Displacement from Checkpoint Run)
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TABLE 2. RESULTS FOR EXAMPLE 2

(Continued)

Results from DEC VAX Version of

Results from RPK’s CRAY Version of

1988 COSMIC/NASTRAN 1988 COSMIC/NASTRAN
(See Note 1 above) (See Note 2 above)
Time Displacements | Displacements |% Error| Displacements | Displacements (% Error
(sec.) from from from from
(See Checkpoint Run Restart Run (See | Checkpoint Run | Restart Run (See
Note 4 Note 6 Note 6
above) above) above)
.000 | 0.000000E+0C0 0.000000E+00
050 4.792385E-01 4.792386E-01
100 8.412145E-01 8.412146E-01
.150 9.973578E-01 9.973578E-01
200 9.094625E-01 9.094625E-01
250 5.990351E-01 5.990351E-01
300 1.420328E-01 1.420328E-01
350 | -3.497228E-01 -3.497229E-01
400 | -7.559065E-01 See -7.559065E-01 See
450 | -9.771311E-01 Note 3 -9.771311E-01 Note 3
500 | -9.592662E-01 above -9.592662E-01 above
550 | -7.066831E-01 -7.066831E-01
600 | -2.811852E-01 -2.811851E-01
.650 2.131146E-01 2.131147E-01
.700 6.552684E-01 6.552685E-01
750 9.370877E-01 9.370878E-01
.800 9.896156E-01 9.896156E-01
.850 7.999993E-01 7.999992E-01
900 4.146350E-01 4.146349E-01
950 | -7.218431E-02 -7.218443E-02
1.000 | -5.413412E-01 | -5.413412E-01 .00 | -5.413413E-01 -5.413413E-01 .00
1.015 | (-6.622212E-01) See Note 5 (-6.622213E-01) See Note 5
1.075 | -9.761183E-01 | -9.721630E-01 -41 | -9.761184E-01 | -9.761184E-01 .00
1.150 | -8.898796E-01 | -8.838871E-01 -.67 | -8.898796E-01 | -8.898796E-01 .00
1.225 | -3.286562E-01 | -3.238251E-01 | -1.47 | -3.286560E-01 -3.286560E-01 .00
1.300 4.079918E-01 4.090828E-01 27 4.079919E-01 4.079919E-01 .00
1.375 9.268688E-01 9.236374E-01 -.35 9.268689E-01 9.268689E-01 .00
1.450 9.510176E-01 9.451886E-01 -.61 9.510176E-01 9.510176E-01 .00
1.525 4.675484E-01 4.622332E-01 | -1.14 4.675483E-01 4.675483E-01 .00
1.600 | -2.654808E-01 | -2.674452E-01 74 | -2.654810E-01 | -2.654810E-01 .00
1.675 | -8.568062E-01 | -8.543713E-01 -28 | -8.568063E-01 | -8.568063E-01 .00
1.750 | -9.908002E-01 | -9.852656E-01 -.56 | -9.908002E-01 -9.908002E-01 .00
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TABLE 3. RESULTS FOR EXAMPLE 3

(Transient Analysis Involving Uncoupled Modal Equations)

Displacements for Grid Point 26, Component T3, of
NASTRAN Demonstration Problem No. D12-01-1A

TSTEP Bulk Data Card Input

Checkpoint Run: Number of time steps = 30
Time increment =(0.001388 sec.
Skip factor for output = 1

Restart Run: Number of time steps = 14
Time increment = 0.001388 sec.
Skip factor for output = 1

NOTES:

1. For the restart run of this problem, RPK’s CRAY version uses the CONTINUE feature that has been
extended to uncoupled modal equations and that is mentioned in the paper. No runs were made on
the standard release of COSMIC/NASTRAN as it does not have this capability.

2. The restart run was initiated by setting the parameter NCOL in the rigid format DMAP to 17 just
before the TRLG module (see Volume 2, Section 2.9.6 of Reference 1 for details), thereby triggering
the continuation of the integration from the 17th output time of the checkpoint run.

3. The % Error in the table is calculated by the following relationship:

(Displacement from Restart Run) - (Displacement from Checkpoint Run) X 100

(Displacement from Checkpoint Run)
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TABLE 3. RESULTS FOR EXAMPLE 3

(Continued)

Results from CRAY Version of
1988 COSMIC/NASTRAN
(See Note 1 above)

Time Displacements | Displacements | % Error
(sec.) from from
Checkpoint Run Restart Run (See
Note 3
above)

0.000000E+00 0.000000E+00

1.388000E-03 3.346152E-03

2.776000E-03 1.799760E-02

4.164000E-03 3.245619E-02

5.552000E-03 2.809689E-02

6.940000E-03 3.562258E-03

8.328000E-03 | -3.010927E-02 See

9.716000E-03 | -6.037387E-02 Note 2
1.110400E-02 | -7.236326E-02 above
1.249200E-02 | -5.503825E-02

1.388000E-02 | -1.209147E-02

1.526800E-02 3.983471E-02

1.665600E-02 8.073034E-02

1.804400E-02 9.407332E-02

1.943200E-02 7.293699E-02

2.082000E-02 2.460154E-02

2.220800E-02 | -3.235601E-02 | -3.235601E-02 .00
2.359600E-02 -7.679893E-02 -7.679893E-02 .00
2.498400E-02 | -9.321987E-02 | -9.321987E-02 .00
2.637200E-02 | -7.703266E-02 | -7.703266E-02 .00
2.776000E-02 | -3.604619E-02 | -3.604619E-02 .00
2.914800E-02 1.333591E-02 1.333591E-02 .00
3.053600E-02 5.347509E-02 5.347509E-02 .00
3.192400E-02 7.224338E-02 7.224338E-02 .00
3.331200E-02 6.658045E-02 6.658045E-02 .00
3.470000E-02 4.226934E-02 4.226934E-02 .00
3.608800E-02 1.031458E-02 1.031458E-02 .00
3.747600E-02 | -1.823067E-02 | -1.823067E-02 .00
3.886400E-02 | -3.631594E-02 | -3.631594E-02 .00
4.025200E-02 | -4.226599E-02 | -4.226599E-02 .00
4.164000E-02 | -3.859226E-02 | -3.859226E-02 .00
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APPENDIX

The equations in this appendix are all taken from Section 4.65.7.3 of the NASTRAN Programmer’s
Manual (Reference 3). Readers are referred to that section for the complete definition and description of
the various terms involved in the equations.

The following general terminology is used in all of the equations in this appendix:

At --- time step

uo - displacement at time t
u, - velocity at time t

ul --- acceleration at time t,

Pi --- load at time t,

Ni --- non-linear load at time t
[K] --- stiffness matrix

[B] --- damping matrix
[M] --- mass matrix

The matrices [C], [D] and [E] used in the equations in this appendix are functions of the [K], [B] and
[M] matrices and the time step At and are defined as follows:

[C] = /A M] - (1/3) [K] (@)
[D] = (A) [M] + (11241 [B] + (1/3) [K] (b)
[E] = -(l/Atz)[M] + (1/2Av) [B] - (1/3) [K] (c)

Equation Used to Compute Successive Displacements After the Integration is Started

DI {u,,,} = (B (P, + P, + P} + (N} +[Cl{u, )+ [El{} @

1

Equation Used to Compute the First Displacement After a Time Step Change

It is assumed here that the time step changes from At1 to At2 at time L1 This is shown below.

4 Ll L2

I I __|
Ay | At,




Thg; [C], [D] and [E] matrices_gre formed with using At = Atz.

D] {u,,,) = B (Pl + P + P o} + (N} + [Clu, ) + [E)(w)
where:
(U} = WAL ({u,) - ()
(i} = AD) ((u,) - 2 (w) + (u,))
{ﬁil} = {ﬁi+1} ) {.lii+1}At2
{uil} = {ui+1} ) A‘z {ﬁi+1} + (At§/2) {h.i+1}
and
(B) = M1 (i) + [BI () + (K] (u)

[Dl{u,} = (/3) {P + Py +P,} + (Ng} + [Cl{uy) + [E}(u,}

where
(Py) = Kl {uy) + [B] (u,) + [MI {up)
fu,) = (ug) - At{ig) + (AC72) (i)
{ﬁ-l} = {ﬁo} - {.lio} At

and

(P} = IM] (i) + [B] (i) + K] {u,)

05

(2a)
(2b)
(2¢)

(2d)

(2e)

Equation Used by the CONTINUE Feature to Compute the First Displacement of the CONTINUEd Run

(3)

(3a)

(3b)

(3¢c)

(3d)

where {u_}, {u.} and {u} are the displacements, velocities and accelerations, respectively,
at the specified output time t,, of the checkpoint run and At is the initial time step for the
restart. {Pl} is the load at time t, = ty+ At and {NO} is the initial non-linear load.

0
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SUMMARY

The various formulations of Maxwell’s equations are reviewed with emphasis on those
formulations which most readily form analogies with Navier’s equations. Analogies involving
scalar and vector potentials and electric and magnetic field components are presented.
Formulations allowing for media with dielectric and conducting properties are emphasized. It

is demonstrated that many problems in electromagnetism can be solved using the NASTRAN
finite element code.

Several fundamental problems involving time harmonic solutions of Maxwell’s equations with
known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh
requirements. Mesh requirements are studied as a function of frequency, conductivity, and
dielectric properties.

Applications in both low frequency and high frequency are highlighted. The low frequency
problems demonstrate the ability to solve problems involving media inhomogeneity and
unbounded domains. The high frequency applications demonstrate the ability to handle
problems with large boundary to wavelength ratios.

INTRODUCTION

The Applied Mathematics Division at the David Taylor Research Center (DTRC) has begun
developing methods using finite elements with NASTRAN to solve problems involving
electromagnetic waves propagating in various media or scattered by objects in the field. This
paper reports work supported by the Office of Naval Technology Exploratory Development

Program, DTRC Project Manager, Dr. Bruce Hood.

The fundamental equations governing the propagation of electromagnetic waves are the
Maxwell’s equations. For many applications, the electric and magnetic field components
satisfy the linear, damped wave or Helmholtz equation. While there are six field components
in electromagnetic problems, for time harmonic fields, only three are independent. The
equations are, therefore, similar to the Navier’s equations governing an elastic solid.
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In this paper, the several ways of formulating Maxwell’s equations are presented.
Formulations involving field vector components are compared with formulations involving
potential functions. It is shown in the next section that it is possible to form analogies
between Maxwell’s equations and the Navier’s equations. Standard finite element codes
which solve the equations of elasticity (such as the NASTRAN code), therefore, with
appropriate choices of material properties and boundary conditions, can be used to solve
problems in electromagnetics.

In this paper, several example problems in electromagnetism are solved using elastic analogies
and the NASTRAN finite element code. Examples of interest in low frequency applications
and high frequency radar cross section applications are presented. The examples are all two
dimensional; however, the analogies and the ability to solve electromagnetism problems with
NASTRAN are not limited to two dimensional applications. All the applications use the
IS2D8 element; however, any of the solid elements can be employed.

The problems of modeling point dipoles in both conducting and nonconducting media are
studied in this paper. The accurate modeling of dipole sources is critical for applications
involving electromagnetic waves. The results of these problems are compared with available
analytic solutions. An important result is determining the mesh requirements needed to
establish the dipole field accurately.

The mesh characteristics required for dipole modeling are employed for the study of the fields
generated from a point dipole source located in sea water (which is a conducting, attenuating
medium). Two frequencies representing the extremes of low frequency applications are
presented. Of special interest is the study of the effect of a layer of ice on the solutions.
While the example presented is somewhat idealized and limited, it should demonstrate to the
reader the methodology required for the solution of low frequency problems.

Another example problem is the scattering of a plane wave by a conducting object. The
problem of a circular cylinder in a plane wave field is solved and compared with the analytic
solution. Excellent agreement is demonstrated using the IS2D8 element. Convergence of
this element is quite superior to linear elements documented elsewhere. For this problem,
both the electric field vector and the magnetic field vector equations are solved. This is
analogous to the ‘‘sound soft”’ and ‘‘sound hard’’ scattering problems in acoustics.

Finally, the concluding section of this paper discusses areas where further development is

required to solve some difficult, three dimensional problems. There is great potential in using
standard finite element codes for the routine solution of electromagnetics problems.

MAXWELL’S EQUATIONS - FIELD STRENGTH AND POTENTIAL FORMULATION

Media in which electromagnetic waves travel often exhibit the properties of linearity, isotropy
and homogeneity. This type of medium is called a linear, isotropic, and homogeneous (LIH)
medium. For these media, the electric displacement vector, D, the magnetic field intensity,
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H, the electric field intensity, E, the magnetic induction vector, B and the free current
density, J are linearly related by the equations

D = ¢E, - H = B/y; J =0FE (1)

where ¢ is the permittivity , p is the permeability and o is the conductivity of the material. If
we restrict our discussion to time harmonic fields at a single, arbitrary frequency, the field
vectors E and H take the form

E = E° exp(iwt) @)
2
H = H° exp(iwt)

where w is the frequency and ¢+ = v-1. For time harmonic fields in an LIH medium, the
governing equations for the spatial field variations can be derived from the Maxwell’s
equations and are given by [1]

82E’i() 1 * 9
+ —p. e, wES =0
ax-‘axj CQ I‘Ll' T 1

82H'lo 1 * 9o
+ ?ure,w H® =0

dklaXJ
where
* 10
€ = ¢, - (4)
WeE,

is the complex permittivity, ¢ is the speed of light in the medium and ¢, is the permittivity of
free space. The subscript, r, is not summed as is standard in the literature of
electromagnetism [1] while the subscript i and j are summed in the standard cartesian tensor
notation These equations are damped wave equations.

The governing equations given in (3) are the general equations to be solved for any problem
in electromagnetics involving LIH media. It is important to note that these equations are
uncoupled. The boundary conditions, however, may involve combinations of the field
variables. The total problem, therefore, may be strongly coupled. This system, (3),
represents six partial differential equations in the three components of E and of H. These
variables, however, are not all independent. For time harmonic applications, only three of
these equations are independent. For two dimensional time harmonic problems, only two of
the components are independent. It is important, therefore, to insure that the problem under
investigation is well posed. In practice, three dimensional electromagnetic problems are
solved by solving for either E or H and calculating the other from the Maxwell equations.
For special applications, one could choose two components of one field and one of the other.
It is important to choose primary unknowns which are consistent with the available boundary
conditions.
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An alternative approach to the formulation of electromagnetic problems is to introduce
potential quantities and derive governing equations for them from the Maxwell equations. A
vector potential, A and a scalar potential ¢ are introduced by the relations

B =gyXxA

(5)
0A

B=-vo- o

The potentials are not independent. They can be related to each other using the Lorentz
gauge condition given by

¢
A 9 _o 6
VA ep— | (6)

This i1s not the only possible gauge condition relating these quantities; however, it is the most
widely employed [2].

If the relations in (5) are substituted into the Maxwell equations and the vector potential, A,
1s assumed to have a harmonic time variation given by

A = Axp(iwt) (7)

then the governing equation for A is

AL PAT L kAs — o (8)
KAPL ==
I%;0x; K Ox;0x; :
where
2 - 2
K = w_2 - zwuo’7 v o= - poc (g)
' w

This system, (8), is also a damped wave-like equation with ‘‘shear coupling”. The mixed
partial derivative term comes from the conductance property of the medium. For
nonconducting media, this equation reduces to an undamped Helmholtz equation.

NAVIER’S EQUATIONS AND ELASTIC ANALOGIES

For elastic bodies with time harmonic displacement response, the displacement vector for the
steady state forced response (at frequency, w) of the domain is given by

u = u’exp(iwt) (10)
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The governing equation for a damped, isotropic elastic media can be written as [3]

Of (MG O} 2 jwb)u? =0 11
0x;0x; + )Bxiaxj (W™ - iwbjuf = (11)

where G is the shear modulus, \ is the Lame constant, p is the mass density and b is the
damping coefficient. An alternative form is

% % ?

H ) Hou’ =0 12
an8Xj * laxiaxj + 2% ( )
where
A+-G pw? = iwb
H = — H, = 13
1 G ’ 2 G ( )

are complex material parameters. These are the equations which are solved by finite element
codes designed for the solution of forced, harmonic elastic systems (such as NASTRAN).

It is desired to draw an analogy between the Navier equations and the Maxwell equations.
This has been discussed in the literature previously for the scalar Helmholtz equation [4].
Following this approach, introduce the relation between Young’s modulus, Y and the shear
modulus G

Y = oG = 2(1+v)G (14)

where the Poisson’s ratio, v, is

[0

= — 15
y =2 (15)
If the parameter « is chosen large enough so that
o+l =~ « (16)
then
H =0 (17)

The Navier equations, under this choice of «, reduce to the Maxwell equations of (3). For
most computers, a value of & = 10% is usually sufficient [4]. The shear modulus, G, can be
chosen arbitrarily.

If the problem of interest is two dimensional, the Navier equations must be reduced to the

equations of either plane stress or plane strain. For plane stress, introduce the parameter, 3,
in the relation
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Y = BG (18)

where

uz—g——l (19)

If B 1s chosen so that
g+l ~ 1 (20)

then, for the case of plane stress, [4]

H, ~ 0 (21)

For scalar field problems on most computers, the choice of 8 = 107° is sufficient [4]. The
shear modulus, G, can still be chosen arbitrarily.

For either the two dimensional plane stress analogy or the three dimensional analogy, the
complex electromagnetic material properties are related to the elastic properties through the
equation

2 - .
Hy, — ﬁ%@_ ~ g{ure,w (22)

The full Maxwell equations for an arbitrary LIH medium (two or three dimensional) can be
solved by any finite element code which solves the Navier equations if the material properties
are chosen appropriately and if the boundary conditions can be related to the applied forces
and displacements. Boundary conditions will be discussed more rigorously in a later section.

An analogy can be formulated for the magnetic vector potential if the medium is
nonconducting. In this case, the procedure is identical to the previous discussion as the
mixed derivative terms do not appear. If the material is conducting, an analogy can be made
if

Hy =1; Hy =« (23)

This is possible if the elastic constants are complex. Since most structural codes do not
permit complex material constants, the implementation would prove difficult. If one
examines these material analogies, however, it can be seen that the required complex stiff ness
matrix can be formed by the sum of two real stiffness matrices multiplied by complex
coefficients. NASTRAN can accomplish this by using DMAP instructions. The imaginary
part of the stiffness matrix can be calculated in an analogy where
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wpo = Hy; B2 — H, (24)

This matrix can be saved, multiplied by — ¢, and added to the stiffness matrix for a problem
with

The new stiffness matrix will be the required matrix.

PIECEWISE HOMOGENEOUS MEDIA

In many applications, it is necessary to describe the electromagnetic fields which pass from
one medium to another. Such problems are piecewise homogeneous. For problems with
only dielectric materials (no conducting materials), this can be done by insuring all elements
contain only one material and using different element material properties for the different
media. The procedure is identical to solving problems where the density or elastic modulus
varies from element to element.

For conducting media, the “‘viscous’’ damping coefficient needs to vary from element to
element. This is not possible directly with the NASTRAN code. It is possible, through the
use of DMAP statements, to simulate this with two matrix formulation runs. Form the mass
matrix for the model with a mass density given by
p = G,t;,a produces M; (26)
ce,

The mass density in each element can be different representing the different conducting
media. It is desired to form a damping matrix, B, which has the element damping coeflicients
given by

Gu,o

c%e,

b =

produces B (27)

This is accomplished if

B =M, (28)

The first matrix formulation produces the M; matrix. This can be written out and read in
(using OUTPUT2/INPUT2) as the damping matrix in run two which now uses a mass density
Gep
p = ;I T produces M (29)
c

to form the true analogous mass matrix. Fach element can have different permittivities and
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permeabilities. The only requirement is that the material parameters are constant within an
element.

Using the approach summarized above, multiple conducting media can be modeled with
NASTRAN. An example of a layered media problem is presented in the following section.
When this procedure is applied in NASTRAN, it is necessary to add a single damper element
to the model with a zero damping coeflicient. This will signal NASTRAN that the problem is
fully complex and that the complex solver is required. Reading in the damping matrix is not
sufficient for NASTRAN to choose the complex solver. If other dampers are present in the
model, this is unnecessary.

TWO DIMENSIONAL EXAMPLE PROBLEMS

Several example problems are solved in this section to demonstrate the use of the analogies
described previously. The problems presented range from very low frequency examples (at 1
Hz) to high frequency scattering examples (at 3 x 10® Hz). All the models employ the 8
node, quadratic, isoparametric quadrilateral element (IS2D8). These elements perform well
for a variety of problems and yield accurate results for the problems with available analytic
solutions.

EXAMPLE 1: A DIPOLE SOURCE IN FREE SPACE

As the first problem, the field produced by a two-dimensional point dipole in free space was
computed to explore the use of analogies with NASTRAN. Information gained by computing
the fields for this case will also be useful if fields in layered media need to be computed with
a dipole source located in air. The finite element mesh used is shown in increasing detail in
Figures 1, 2, and 3. Similar mesh configurations were used with two sizes of elements. For
the larger elements the overall dimensions of the mesh (Figure 1) are 6-10% by 6:10% m.
Thus each of the larger square elements in Figure 1 are 10% by 10% m, and there are three of
these elements for each wavelength. The overall dimensions of the smaller mesh are 3-10% by
3-102 m. For this mesh there are six elements per wavelength. The relative dimensions of all
elements in the two meshes are equal, so each is portrayed by the figures. The radial mesh in
the lower left corner of Figure 1, which is graded down to ever smaller elements, contains the
dipole source. In this section of the mesh, which has dimensions 10% by 10% m in the larger
mesh (5:107 by 5107 m in the smaller), the elements are much smaller and the only
consideration on the element size is to keep the aspect ratios within reasonable bounds (less
than 1:8).

Boundary conditions are applied to the model to provide for wave absorption at the outer
boundary, to apply symmetry conditions on the axes of symmetry, and to model the dipole
source. The dipole boundary conditions are applied along the small circular boundary in the
lower left-hand corner of Figure 3. Along the outer boundaries (upper and right sides in
Figure 1), plane wave absorbing boundary conditions in the form of dashpots were applied.
Along the axes of symmetry (lower and left sides in Figures 1, 2, and 3), symmetric
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boundary conditions were applied. The dipole source is modeled by imposing enforced values
of the electric field for a dipole on the circular boundary sector in the lower left corner of
Figure 3. The radius of this sector is 0.1 m. The complete solution for a two dimensional
dipole can be found in [5]

The electric fields computed for this problem were compared with analytic solutions (5], and
both meshes were found to produce reasonably accurate values. The amplitude and phase of
the solution for the larger mesh are shown in Figures 4 and 5. and the amplitude and phase
of the near-field solution are shown in Figures 6 and 7. The values plotted are the z-
component of the electric field along a radial line 45 degrees from the lower axis. For the
larger mesh, the error in the large square elements was on the order of 5 percent, and in the
radial block the error was of the order of 1 percent. For this model, the region containing the
radial elements is considered to be the region of interest, and the outside region is included
only to model several wavelengths to provide for suitable wave absorbing boundaries.
Therefore, in the region of interest, very good results were obtained.

For the larger mesh, two wave lengths were modeled before the absorbing boundary
conditions are applied, and for the smaller mesh only one wave length was modeled.
Decreasing the number of wave lengths modeled inside the boundary increased the error in
the radial elements, the region of interest. The change in mesh size resulted in errors of 4
percent in both the square and radial elements in the smaller mesh. At the same time, the
increase in the number of elements per wave length in the outer region slightly increased the
accuracy there.

EXAMPLE 2: A DIPOLE SOURCE IN SEA WATER

Computing the field due to a dipole source in sea water was the first application to modeling
electromagnetic fields in a conducting medium. As with the preceding problem, the region
containing sea water was assumed to have infinite extent, so that comparisons could be made
to an analytic solution [5]. Since for frequencies near one Hertz, sea water is a good
conductor, the electromagnetic wave length, equal to 1581 m, is considerably shorter than
3-10% in free space. Therefore, the region modeled for this problem was correspondingly
smaller than the region for the preceding problem. The finite element mesh used is shown in
increasing detail in Figures 8, 9, and 10. The outer dimensions of this mesh are 5000 by
5000 m. In the outer region of Figure 8, the larger square elements are 250 m on a side, and
the smaller square elements on the left side are 125 m on a side. The elements on the left
were made smaller because this same mesh was to be used as part of the layered media
problem, and the use of various element sizes allowed checking the performance of
transitions from smaller to larger elements. The radial mesh in the lower left corner of
Figure 8 contains the dipole source which is too small to be seen in this figure, but can be
seen in Figure 10. This section of the mesh has dimensions 125 by 125 m. Here again the
elements are much smaller, and the principal consideration is to keep the aspect ratios
reasonable.
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Again, boundary conditions are applied to provide for wave absorption on the outer
boundary, to apply symmetry conditions on the axes of symmetry, and to model the dipole
source. The dipole boundary conditions are applied along the small circular boundary in the
lower left-hand corner of Figure 10. Along the outer boundaries (upper and right sides in
Figure 8), plane wave absorbing dashpots were applied. Along the axes of symmetry (lower
and left sides in Figures 8, 9, and 10), symmetric boundary conditions were applied. The
dipole source is modeled by imposing enforced values of the electric field for a dipole on the
circular boundary sector in the lower left corner of Figure 10. The radius of this sector is also
0.1 m.

The electric fields computed for this problem were compared with analytic solutions, and were
found to produce accurate values. The amplitude and phase of the solution along the
horizontal axis of symmetry are shown in Figures 11 and 12. The solution phase is plotted
between -180 degrees and 180 degrees, therefore, an apparent discontinuity arises at radii at
which the phase decreases past -180 degrees. The error in the solution was on the order of 1
percent everywhere. Again for this model, the region containing the radial elements is
considered to be the region of interest. The outside region is included only to model enough
of the medium to provide for wave absorbing boundaries. Therefore very good results were
obtained in the region of interest. The amplitude and phase of the solution along the vertical
axis of symmetry are shown in Figures 13 and 14. Excellent agreement with the analytic
solution is demonstrated in this direction also.

EXAMPLE 3: MODELING A DIPOLE SOURCE IN A FINITE DEPTH OF SEA WATER

The problem under consideration is a dipole source located in a finite depth of sea water.
The current modeling is limited to a two-dimensional line dipole. The general problem under
consideration is shown in Figure 15. A two-dimensional dipole is located at a distance A
beneath the surface of the sea water. The total depth of the sea water 1s H. The sea water
may be covered by a layer of ice of thickness D. The air on top and the mud beneath the sea
water are assumed to be infinite. The problem currently modeled assumes a sea depth of 250
m. The dipole source is located 125 m beneath the surface of the sea water. Models have
been developed for sea water without ice and for sea water covered by 1 m of ice. The total
mesh for the problem under consideration for a dipole source radiating at 1 hertz is shown in
Figure 16.

The sea water is modeled for a total of 7500 m (approximately 30 skin depths) and then is
terminated by a plane wave radiation boundary condition. The mud is modeled out to 16000
by 16000 m (which is approximately 20 skin depths). In the model shown, the air is also
modeled out to 16000 by 16000 m. Both media are terminated by plane wave radiation
boundary conditions. Since mud and sea water are attenuating media, the radiation boundary
condition assumption is not expected to significantly influence the solution (this has been
demonstrated for the case of a line dipole in an infinite region of sea water as discussed
previously). For the air, however, it is often required to model a region on the order of
several wave lengths. For air (at 1 hertz excitation), this corresponds to approximately
300,000,000 m. Results in air, however, are only of interest for distances less than 10,000 m
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from the source. The air, therefore, was modeled as far as the mud (for geometric
symmetry) and absorbing boundary conditions were applied at the edge of the mesh.

Figure 17 shows a blowup of the entire sea water region. The transitioning mesh in the air
and the sea water is shown. For the dipole in sea water, a mesh dimension of 125 by 125 m
was demonstrated to predict accurate results. This is the dimension of the elements in the
sea water as shown. In the air and mud, the elements are allowed to expand in a consistent
manner to a final dimension of 1000 by 1000 m. The larger elements are permissible since
the wavelength and attenuation distance in mud are larger than in sea water (the wavelength
in mud is in the order of 5000 m and the skin depth in mud is on the order of 796 m). The
transitioning is developed to insure that the element aspect ratios and interior angles remain
within acceptable limits. Near the dipole source, a radially expanding mesh is employed as in
the previous example. This mesh is sufficient to establish the near source field accurately.
As in the previous example, the dipole is modeled as a small circular ring of nodes. On that
ring of nodes, the analytic solution for a line dipole in an infinite medium of sea water is
apphed as a boundary condition. The model assumes, therefore, that close enough to the
dipole, the ice, air and mud will have a negligible effect on the field variable solutions. The
required inner mesh dimension will be determined by a convergence study. This parameter
will be dependent upon the location of the source relative to the boundaries and the
frequency of the source. The model described was modified to allow for a 1 m layer of ice.
The resulting mesh is the same as the previous one except that between the sea water - air
interface is a layer of elements 1 m thick which represent the ice. Since this dimension is
small relative to the domain modeled, it 1s observable only on a blowup of the mesh.

Figures 18 and 19 show the amplitude and phase of the electric field component, E;, along
the midline of the sea water. Solutions with and without ice are shown. A decaying field is
observed with a characteristic knee in the solution. This occurs near the point where the
phase crosses the zero line. This phenomena has also been observed experimentally [6]. The
dropofl in the phase near the tail of the plot is probably due to the dashpot boundary
condition. Figures 20 and 21 show the amplitude and phase of the E; component along the
surface of the sea water. Qualitatively, the solution is similar to the midline solution. The
amplitude does not, however, drop off as rapidly and the phase is shifted to a larger mean. It
is interesting to note that at this low frequency the ice has negligible effect on the solution.

The same problem was studied for a higher frequency source at 1000 hz. The mesh
employed is shown in Figure 22. The sea water region is modeled for 250 m by 250 m. This
corresponds to about 50 skin depths. The mud i1s modeled for an additional 500 m
corresponding to 20 skin depths in mud. The air is modeled out to 2000 additional meters.
On all exterior boundaries, the dashpot absorbing conditions are employed.

The amplititude and phase of the E; component are shown in Figures 23 and 24 along the
midline of the sea water. Again, solutions with and without ice are shown. The solution has
a typical decaying amplitude with a sawtoothed phase characteristic. This is similar to the
solution for a dipole in a conducting medium. It is interesting to note, however, that while
the wavelength corresponds to the wavelength of the media, the decay is slower than for a
dipole in infinite sea water. The ampltude is receiving significant contribution from the
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surface waves along the sea surface. Along the sea midline, little influence of the ice can be
seen.

Figures 25 and 26 show the amplitude and phase of the E; component along the surface of
the sea water (with and without ice). The ice clearly has a significant influence on this
solution. The amplitude without ice follows the amplitude with ice for about 10 skin depths
of the sea water. The two solutions then change and the amplitude with ice is larger. Even
though ice has a small conductivity (10"° mhos), it acts as a wave guide keeping the surface
wave of larger amplitude than without the ice. The phase, however, shows little difference
with and without ice. The solutions are qualitatively similar with the exception that the ice
guides the surface wave. Note that the deviation of the phase and the slight increase in
amplitude toward the end of the plots is probably due to reflections from the dashpots.

EXAMPLE 4: PLANE WAVE SCATTERING FROM A RIGHT CIRCULAR CYLINDER

As a final example, consider the scattering of an incident plane wave by an infinite, perfectly
conducting circular cylinder. The boundary condition on the cylinder is that the longitudinal
component of the electric field must vanish on the surface of the cylinder and that the
longitudinal component of the magnetic field must be normal to the surface. If the governing
equations for the scattered wave only are considered, the boundary conditions for the
scattered wave must remove the E; component of the plane wave at the cylinder surface. In
addition, the normal derivative of the H; component of the plane wave must vanish at the
surface of the cylinder. At infinity, the scattered wave must vanish. The problem considered
is for a 1 m cylinder with an incident plane wave of 1 m wave length (the frequency,
therefore, is 3 x 10% Hz).

The first mesh attempted employed eight elements in the azimuthal direction and quarter
wavelength dimension in the radial direction. As is shown subsequently, this mesh
performed adequately for the longitudinal component of the magnetic field but was not
sufficient to accurately solve the longitudinal electric field problem. The mesh employed for
the longitudinal electric field component is shown in Figure 27. The mesh was generated
using the IDEAS [7] package. The design criterion was to generate a mesh as close to
uniform in dimension as possible with an element size equal to one quarter of the incident
wave length. The performance of this mesh was superior to that of a mesh with fixed radal
dimensions of one quarter of a wavelength and aspect ratios within 1 to 5. The zero field
condition was modeled with absorbing dashpots. For this case, a cylindrical wave condition
would be superior due to the geometry of the problem. This was compared with the simple
dashpot condition for the magnetic field solution.

Figure 28 is a plot of the normalized amplitude of the scattered electric field intensity on the
forward scattering side of the cylinder. The overall agreement is quite good. The maximum
error is less than 5% compared with the analytic solution. Very near the cylinder, however,
the largest deviation is observed. Indeed it is only in this region where the error is larger
than 1% Figure 29 is a blowup of this region. The analytic solution flattens near the cylinder
while the finite element solution demonstrates a sharp dip. There is significant ripple in the
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solution in this region which may indicate reflection problems between the cylinder and the
dashpot. A blowup of the analytic solution is shown in Figure 30. The region which
appeared flat in Figure 29 has a slight dip as demonstrated in Figure 30. The finite element
solution exaggerates this dip. Since the elements are on the order of 0.25 m (one quarter of a
wavelength), it is evident from Figure 30 that this mesh density would be insufficient to
totally reproduce this phenomena. Overall, however, the solution is quite good.

Figure 31 shows a plot of the phase of the forward scattered field. The finite element results
are almost identical to the analytic solution. This demonstrates that while small amplitude
errors may be introduced into the solution, the general character of the waves are accurately
predicted by the finite element solution. Figure 32 shows the normalized amplitude of the
scattered electric field on the back side of the cylinder. The finite element results agree very
well with the analytic solution. All errors are bounded by 1% even near the dashpot
boundary condition. Figure 33 shows a plot of the phase of the electric field on the
backscattering side of the cylinder. Again, excellent agreement is seen. The sawtoothed
phase characteristic is accurately predicted and the ramping behavior is accurate.

For this example, the longitudinal component of the magnetic field vector was also resolved.
The longitudinal components of the E and H fields are the only independent components for
the two dimensional applications. Figure 33 shows the amplitude of the H; component as a
function of distance away from the cylinder along the back scattering side. The finite element
solution is only negligibly different from the analytic solution. Figure 34 shows the amplitude
along a radial line at 112.5 degrees from the incident wave. This represents the worst case
and yet the two solutions agree quite well. It should be noted that the total amplitude along
this line is quite small. It is remarkable that the solution is this accurate. In addition, the
finite element results quite accurately capture the spiked dip in the solution even though only
four elements per wavelength were employed.

An important observation is that accurate solutions were generated with approximately four
IS2D8 elements per wavelength. This problem has been solved previously with linear
quadrilateral elements [8]. In that study, ten elements per wavelength were required
necessitating a significantly greater number of degrees of freedom to achieve an accurate
solution.

CONCLUDING REMARKS

Maxwell’s equations were solved for a variety of example problems in two dimensions. An
interesting outcome of the low frequency examples was the ability to predict the wave guide
effects of the ice in the layered media problem and the knee response in the amplitude. In
addition, this problem demonstrated that relatively complicated problems can be solved by
routine methodology. This conclusion should also hold for three dimensional applications.

The scattering example demonstrates the ability to handle high frequency applications. The

conclusion that only four IS2D8 elements are required per wavelength indicates that
considerable economy should be realized by using quadratic elements for harmonic response
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applications. This conclusion should be valid for structural and acoustic applications as well as
for electromagnetic applications.

Since the two dimensional problems exhibit totally uncoupled boundary conditions, the
solution of two dimensional problems in electromagnetics is the same as solution of the scalar
wave equation. In three dimensions, this is not the case. The boundary conditions
encountered are often coupled. This poses a problem for certain situations.

A common three dimensional boundary condition is the perfect conductor condition of zero
tangential E and normal H. For high frequency applications, this is not a problem because
several skin depths of the conductor can be modeled easily since this dimension will be small
relative to the conductor’s size. The conductor will damp out and absorb the waves
appropriately. This indicates that radar cross section problems in three dimensions can be
handled by elastic analogies.

For low frequency applications, the presence of a conductor is not as easy to deal with since
the skin depth is often large relative to the size of the conductor. The vanishing of the
tangential E field can be handled by multipoint constraints (MPCs). The vanishing of the
normal H field is not as trivially solved. Methodologies for enforcing this condition are under
investigation. It may be possible to extend the concept of MPCs to include linear
combinations of first partial derivatives. This would solve the problem.

The other major problem to be addressed is the fact that many electromagnetic problems are
extertor problems. They involve either extremely large or infinite domains. The solution is
of interest, however, only in a small domain. It is necessary, therefore, to reduce the
modeled domain and to implement a boundary condition which accounts for the remaining
media. In this paper, the simple plane wave condition was employed. While this works,
often large domains must be modeled. Other conditions have been explored; however,
additional research is required. Infinite elements (employed for some limited scalar
applications [9]) hold promise. These are currently being investigated also.

The remainder of the boundary conditions encountered in most applications can be handled
trivially with elastic finite element codes like NASTRAN. This paper has demonstrated the
ability to handle two dimensional problems and has provided the formulation for three
dimensional problems. When absorbing boundary conditions become available and the zero
normality condition for the H field is developed, it will be possible to solve virtually all
problems in electromagnetics (which adhere to the assumptions of Maxwell’s equations) with
elastic finite element codes like NASTRAN.
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Fig. 1.

FINITE ELEMENT MODEL FOR POINT DIPOLE IN FREE SPACE

Fig. 2. RADIAL DIPOLE MODEL
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Fig. 9. RADIAL DIPOLE MODEL IN SEA WATER

Fig. 10. NEAR DIPOLE MODEL IN SEA WATER
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ABSTRACT

Numerical techniques for calculating the low frequency vibrational
resonances of submerged structures are reviewed. Both finite element and
boundary element approaches for calculating fully-coupled added mass matrices
for use in NASTRAN analysis are described and illustrated. The finite element
approach is implemented using existing capability in NASTRAN. The boundary
element approach uses the NASHUA structural—acoustics program to compute the
added mass matrix. The two procedures are compared to each other for the case
of a submerged cylindrical shell with flat end closures. It is concluded
that both procedures are capable of computing accurate submerged resonances
and that the more elegant boundary element procedure is easier to use but may
be more expensive computationally.

INTRODUCTION

One problem of interest in numerical structural—-acoustics is that of
determining the natural vibrational frequencies of general submerged
structures. At low frequencies, it is knownl that the fluid appears to the
structure like an added mass (i.e., the fluid pressure on the wet surface is
in phase with structural acceleration). At higher frequeuncies, the fluid

impedance (the ratio of fluid pressure to velocity) is mathematically complex,
since it involves both mass-like and damping-like effects. The primary

difference between these two situations from a computational point of view is
that the low frequency calculation can be performed using standard real
eigenvalue analysis techniques, whereas the higher frequency calculation
requires more expensive complex eigenanalysis. In addition, as frequency
increases, the added mass effects decline and the damping (or piston) effects
increase, so that the interpretation of the complex eigenvectors as "normal
modes"” becomes more difficult. For shell structures, such complications
become somewhat academic, since shells have high modal density above the
first few modes, making the usefulness of computing such modes in doubt
anyway.

Consequently, for this paper, we restrict our interest to the calculation
of low frequency modes, in which case the finite element calculation of

247



submerged resonances reduces to that of computing the added mass effects of
the surrounding fluid on the structure. The added mass calculation requires
solving Laplace's equation in the fluid domain exterior to the structure, a
calculation which can be performed using either finite element or boundary
element techniques, among others. Here we describe the NASTRAN computation
of submerged natural frequencies using both approaches. We start by
summarizing the relevant theory and then illustrate the two approaches using
as an example the vibrations of a submerged cylindrical shell with flat end
closures.

THEORETICAL APPROACHES

Consider an arbitrary three-dimensional elastic structure submerged in a
heavy fluid like water. The structure is modeled mathematically using the
equations of elasticity and the engineering approximations for beams, plates,
and shells. A finite element model of a free, undamped structure yields the
matrix equation

Md + Ku = 0, (1)

where M and K are the structural mass and stiffness matrices, respectively,
and u is the vector of displacement components. The fluid is modeled
mathematically as a medium for which the pressure satisfies (in the time
domain) the scalar wave equationZ,3

V2p = p/c2, : (2)

where ¢ is the speed of sound in the fluid. At the fluid-structure interface,
momentum and continuity considerations require that the fluid pressure be
applied to the structure and that the normal derivative of pressure be
proportional to normal acceleration:

dp/dn = -piip, (3

where n is the outward normal (from the structure into the fluid) at the
interface, and p is the mass density of the fluid. We consider two numerical
approaches to treating the fluid domain: finite element and boundary element.

Finite Element Approach
Since the scalar wave equation (2) is a special case of the vector wave
equation satisfied by the structural displacements, the fluid domain can be

modeled using the same types of elastic finite elements used to model the
structure if an analogy is drawn between structural displacement and fluid

248



pressure.4 Thus, if finite elements are used to model both structure and
fluid, the system of coupled equations which results is of the form

B L Ll

where p is the vector of fluid pressures at the fluid grid points, Q and H
are the fluid counterparts to the structural mass and stiffness matrices,
respectively, -L is the rectangular area matrix which converts a vector of
fluid pressures (positive in compression) at the wet structural points to a
vector of forces at all points in the output coordinate systems selected by
the user, aud C is a radiation boundary condition matrix with nonzero entries
only for fluid DOF on the outer boundary. (Radiation boundary conditions are
intended to transmit, rather than reflect, outgoing waves.) A useful
alternative to the nonsymmetric system, Eq. 4, is the symmetric potential
formulation,3 which is obtained by transforming from fluid pressure p to
fluid velocity potential q (the time integral of pressure) as the fundamental
fluid unknown:

T T L o

To model the fluid with standard elastic finite elements, we let the
z-component of displacement represent the velocity potential q, fix all other
DOF at fluid grid points, and specify the fluid element elastic properties as2

Gy = -1/p, E, = —1020/p, Ve = unspecified, (6)

where the subscript "e” is added to emphasize that these are the values
entered on input data cards (e.g., MAT1 in NASTRAN) for the elements. Under
the analogy, the element "mass density” p, specified for the fluid is

0, incompressible fluid (¢ + =)
Pe = (7)
-1/(pc2), compressible fluid (c finite).

This specification of material properties is required for symmetry of the
coefficient matrices in Eq. 5.

For large expanses of exterior fluid, only a small portion of fluid need
be modeled.3s6 For an incompressible fluid, the outer houndary may be located
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at one or two structural diameters away from the structure and a pressure-
release (p=0) boundary condition imposed (with SPCs). For a compressible
fluid, the outer boundary is located at one or two acoustic wavelengths away
from the structure, and dashpots of constant -A/(pc) are attached between

the fluid DOF and ground to absorb (approximately) the outgoing waves. (This
is the plane-wave absorbing boundary condition.)

The above theoretical description allows for the possibility of fluid
compressibility effects, which impose requirements on the fluid mesh size and
exteant and require complex eigenanalysis for the solution of Eq. 4. Since
often the interest is in low frequency vibrations, which is equivalent to
assuming fluid incompressibility, we specialize the above equations to the
case ¢ * ©, For an incompressible fluid, the matrices Q and C above vanish,
and the coupled system (4) simplifies to

I I  RE N

An alternative form of Eq. 8 results if the pressure vector p is eliminated
from this system to yield

(M +My) u+Ku-=0, (9)

where the symmetric, non—-banded matrix M, = pLH”lLT is referred to as the
added mass matrix.

The low frequency (added mass) vibration problem can be solved using the
symmetric potential formulation (Eq. 5 with Q and C both zero), the pressure
formulation (Eq. 8), or the added mass matrix formulation (Eq. 9). The last
form, Eq. 9, has the advantage of being in standard form for a real eigenvalue
problem and, moreover, allows the added mass matrix to be calculated using
any suitable approach, including boundary elements and finite elements.
However, Eq. 9 has the (considerable) disadvantage that matrix bandedness is
destroyed, since M, couples all the wet DOF to each other. 1If the surrounding
fluid domain is modeled with finite elements, the eigenvalue problem can
alternatively be solved using Eqs. 5 or 8, which have more DOF than Eq. 9 but
remain banded (if the structural and fluid unknowns are properly sequenced).
The main distinction between Eqs. 5 and 8 is that the latter involves
nonsymmetric coefficient matrices. Although Eq. 8 is a real eigenvalue
problem, it can not be solved as such by NASTRAN (because of the nonsymmetry)
and must be solved using complex eigenvalue analysis.
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Boundary Element Approach

The added mass matrix in Eq. 9 can also be obtained by boundary element
t:ec:hniques.7‘11 In the frequency domain, where the time depeundence exp(iwt)
is suppressed, the basis for such an approach is the Helmholtz surface
integral equation satisfied by the fluid pressure p on the surface S of a
submerged structure:

fs p(x)(3D(r)/3n)ds - fs q(x)D(r)ds = p(x')/2, x' on$ (10)
where D is the Green's function

D(r) = e~ikr/4qnr, (11)

q = 93p/3n = —-iwpv,, (12)

k = w/c 1s the acoustic wave number, ¢ is the speed of sound in the fluid,

r is the distance from x to x' (Fig. 1), p is the mass density of the fluid,
and v, is the outward normal component of velocity on S. As shown in Fig. 1,
x and x' in Eq. 4 are the position vectors for points Pj and Py on the surface
S, the vector r = x' - x, and n is the unit outward normal at P;. We denote
the lengths of the vectors x, x', and r by x, x', and r, respectively. The

normal derivative of the Green's function D appearing in Eq. 10 can be
evaluated as

aD(r)/9n = (e~ikr/4nr) (ik + 1/r) cos 8, (13)

FLUID

SHELL
VACUUM

Fig. 1. Notation for Helmholtz integral equation.
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where B is defined as the angle between the normal n and the vector r, as
shown in Fig. 1.

The substitution of Eqs. 11-13 into the surface equation (10) yields
p(x')/2 = [ p(x) (e”iKr/4mr) (ik + 1/r) cos B dS
S
=iwp [ v (x) (e7iKT/4rr)ds. (14)
S X

This integral equation relates the fluid pressure p and normal velocity v, on
S. 1If Eq. 14 is discretized for numerical computation (the details of which
were presented prev1ously9), we obtain the matrix equation

Ep = Cvp (15)

on S. The dimensionality of this system (i.e., the dimension of vectors p

and vp) is €, the number of fluid DOF (the number of wet points on the surface
S). Hence, the added mass matrix (the matrix which converts fluid
acceleration to fluid force) is, in terms of the fluid DOF,

M, = AE"Ic/iw, (16)

where A is the diagonal fxf area matrix for the wet surface. As given above,
M, is full, symmetric, frequency-dependent, and complex. The low frequency
(incompressible fluid) added mass matrix is obtained by evaluating M, in the
limit w + O. An inspection of the formulas? for the entries in the fluld
matrices E and C reveals that, for small frequency, E is real aand constant,
and C is purely imaginary and proportional to w. Thus, to compute M, in Eq.
16, we consider only the real parts of E and C/iw for small . W1th this
interpretation, the added mass matrix M, is now full, symmetric, real, and
independent of frequency.

To relate the f normal DOF on the wet surface to the complete set of s
independent structural DOF, we introduce a transformation matrix G, which is
defined as the rectangular sxf matrix of direction cosines to transform a
vector F,; of outward normal forces at the wet points to a vector F of forces
at all points in the output coordinate systems selected by the user. Thus,l0

s V_ = GTV, and a_ = GTa, (17)
n n n

where v and a are the velocity and acceleration vectors for the independent
structural DOF, respectively, and the subscript n is used to denote the
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outward normal components of these vectors. For time-harmonic analysis,
v = iwu and a = iwv. The transformation matrix G can then be used to
transform the added mass matrix displayed in Eq. 17 from normal DOF to
the independent structural DOF:

M, = GAE"L(c/iw)GT. (18)

Here again, we coansider only the real parts of E and C/iw for small w. The
matrix M, given above is the boundary element equivalent of the finite element
matrix of the same name defined following Eq. 9. M, is real, symmetric,
non-banded, and independent of frequency. (The symmetry of M,, while not
obvious from the above definition, follows by reciprocity arguments.)

We note that the coupling matrix L defined in Eq. 4 is the product of
the transformation and area matrices G and A.

We clearly could have started with the Laplace, rather than the
Helmholtz, integral equation and avoided the complex, frequency—dependent
matrices.il We chose this approach since the four matrices G, A, E, and C
needed to compute the added mass matrix M, are readily available in NASTRAN
form from the computer program called SURF, which is part of the NASHUA
structural-acoustics package.

NASTRAN IMPLEMENTATIONS
Finite Element Approach

The finite element procedure used here to compute resonances of submerged
shells is the symmetric potential formulation as shown in Eq. 5 except that,
for incompressible fluids, the matrices Q and C are both zero. To solve this
system with NASTRAN,12 a finite element model is required for both the
structure and a portion of the surrounding fluid. The model for the structure
is constructed in the usual way. The model for the fluid domain is
constructed using any of the general elastic elements which are geometrically
compatible with the elements chosen for the structure. Thus, if the structure
is modeled with QUAD4s, the fluid should be modeled with IHEX1ls; if the
structure is modeled with CONEAX elements, the fluid should be modeled with
TRIAAX or TRAPAX elements.

Since the z component of displacement represents, by analogy (in both
Cartesian and cylindrical coordinate systems), the scalar velocity potential
q in Eq. 5, all other DOF at fluid mesh points are eliminated by single point
constraints. The material properties are assigned to the fluid elements
according to Eqs. 6 and 7a. If the fluid is considered to be of infinite
extent, the finite element model of the fluid should be truncated not closer
than one shell diameter away from the shell, where a pressure-release (q=0)
boundary condition is imposed.
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The coupling matrix L is entered as a symmetric "damping” matrix using
NASTRAN's direct matrix input (DMIG) data cards. L has nonzero entries only
at the intersections of matrix columns associated with interface fluid DOF
with rows associated with the translational DOF of coincident structural
points. Each nonzero eatry of L is a component of the outwardly-directed
area vector, which is a normal vector whose magnitude is equal to the area
assigned to a wet point. The resulting system is solved using NASTRAN's
direct complex eigenvalue analysis (Rigid Format 7) because of the presence
of the coupling matrix in the "damping” matrix. (However, since there is no
actual damping, all the natural frequencies are real.)

Since both structural and fluid DOF are included in the finite element
model, the interpretation of tabular output is aided if only the structural
DOF are printed and the printing of the fluid unknowns is suppressed.

Boundary Element Approach

The boundary element generation of the added mass matrix is implemented
using the fluid matrix generation capability available in the NASHUA processor
called SURF.? For each unique set of symmetry constraints, the procedure
involves two steps, the first of which is identical to the first step of a
NASHUA structural-acoustic analysis. 1In general, this step is a NASTRAN
analysis whose primary purpose is to generate an OUTPUTZ2 file containing
geometric information and the definition of the wet surface of the structure.
The second step (described here for the first time for added mass matrix
generation) involves the sequential execution of SURF (which generates the
matrices G, A, E, and C appearing in Eq. 18) followed by NASTRAN for the real
eigenvalue analysis. For completeness, we describe both steps in the boundary
element approach to compute submerged resonances.

The first step is a modified NASTRAN direct frequency response analysis
in which the structure is defined and an outwardly-directed static unit
pressure load applied to the wet faces of all elements in contact with the
exterior fluid. This load, which is iavoked using the case control card
LOAD, is used to generate areas and normals. In addition, the following DMAP
Alter is inserted into the Executive Control Deck:

ALTER 1 $ NASHUA STEP 1, COSMIC 1988 RF8 (REVISED 12/14/87)
ALTER 21,21 $ REPLACE GP3

GP3 GEOM3, EQEXIN,GEOM2/SLT,GPTT/S,N,NOGRAV/NEVER=1 $ SLT

ALTER 117,117 $ REPLACE FRRD

SSG1 SLT,BGPDT,CSTM,SIL,EST,MPT,GPTT, EDT ,MGG , CASECC,DIT/
PG/LUSET/NSKIP $ PG

$SG2 USET,GM,YS,KFS,GO,DM,PG/QR,PO,PS,PL $ PL

OUTPUT2 BGPDT,EQEXIN,USET,PG,PL $
OUTPUT2 CSTM,ECT,,, $

OUTPUT2 ,,,, //=-9 §

EXIT $

ENDALTER $
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The UT1 file created by OUTPUT2 must be saved after the NASTRAN execution.

The second step in this procedure consists of the sequential execution
of the NASHUA processor SURF followed by NASTRAN. SUKRF reads the UTI file
generated in Step 1 and generates the matrices G, A, E, and C appearing in
Eq. 18. These matrices are written in NASTRAN's INPUTT2 format. Since SURF
generate's the frequency-dependent fluid matrices E and C for compressible
fluids, a small (but nonzero) frequency must be specified as input for the
generation of these matrices. The nondimensional frequency ka = 0.0l is a
reasonable choice, where a is a typical length (e.g., radius) of the
structure. Following SURF, a modified NASTRAN real eigenvalue (Rigid Format
3) analysis is performed. The following DMAP Alter is included in this run:

ALTER 1 $ ADDED MASS MATRIX, COSMIC 1988 RF3 (REVISED 12/22/88)
ALTER 38

INPUTT2 /G,A,CT,E,DAT $ READ FLUID MATRICES FROM SURF

ALTER 69 $ BEFORE READ

PARAML  DAT//*DMI*/1/2/FREQ $ GET FREQ FROM DAT

PARAMR  //*COMPLEX*//FREQ/O./FREQC $ FREQ+I*0

PARAMR  //*MPYC*////W/FREQC/(6.283185,0.) $ OMEGA

PARAMR  //*MPC*////IW/W/(0.,1.) $ I*OMEGA

PARAMR  //*DIVC*////IW1/(1.0,0.0)/iw $ 1/IW

DIAGONAL A/PVECF/*COLUMN*/0. $ FLUID SET VECTOR OF 1'S

DIAGONAL KAA/PVECA/*COLUMN*/0. $ A-SET VECTOR OF 1'S

ADD CT,/CTIW/IWLI $ CT/IW

PARTN CTIW,PVECF,/,,CTIWR,/1/1 $ EXTRACT REAL PART OF CT/IW
PARTN E,PVECF,/,,ER,/1/1 $ EXTRACT REAL PART OF E

TRNSP G/GT $

TRNSP CTIWR/CIW §

SOLVE ER,CIW/EICIW $

MPYAD A,EICIW,/AEICIW/1 $ REAL NONSYM ADDED MASS (FLUID DOF)
PARTN AEICIW,PVECF,/, ,MADDF,/1/1///6 $ REAL SYM ADDED MASS (F-DOF)
MPY3 GT ,MADDF, /MADDS $ REAL SYM ADDED MASS (STRUCTURAL DOF)
ADD MAA,MADDS/MSUM $ STRUCTURAL + ADDED MASS

EQUIV MSUM,MAA $ REPLACE MAA WITH SUM

ENDALTER $

This Alter combines the input matrices G, A, E, and C to form the added mass
matrix M, according to Eq. 18 and replaces the structural mass matrix M with
the sum M + Mye To assure compatibility with the frequency used in SURF, the
frequency is passed from SURF to NASTRAN for use in this Alter. The real
parts of the complex matrices E and CT/iw are extracted as soon as possible
in the Alter so that less expensive real arithmetic can be performed as much
as possible. (Real parts of matrices can be extracted by executing a dummy
PARTN module to redefine a complex matrix as real. The same trick can also
be used to declare as symmetric a symmetric matrix which NASTRAN thinks is
nonsymmetric.)

The use of checkpoint may optionally link the two steps in this

procedure. However, in any case, the user must ensure that NASTRAN's internal
grid point sequence (as generated by the BANDIT module) is the same in both
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steps. Otherwise, the sequence used for the generation of the SURF matrices
would not agree with that used when the matrices are combined in the second

step.

NUMERICAL EXAMPLE

We illustrate these procedures by computing, using both finite element
and boundary element techniques, the fluid-loaded resonances of a submerged

cylindrical shell with flat end closures. The particular problem solved has
the following characteristics:

a=5m mean shell radius

L =60 m shell length

h = 0,05 m shell thickness (shell and end plate)
E = 1.96 x 1011 N/m2 Young's modulus

v = 0.3 Poisson's ratio
pg = 7900 kg/m3 shell density

o = 1000 kg/m3 fluid density

¢ = 1500 m/sec fluid speed of sound

For the finite elemeat model of both structure and fluid, a half-length
model was prepared using axisymmetric elements (the coanical shell CONEAX for
the shell and the triangular ring TRIAAX for the fluid), as shown in Fig. 2.
The structural model consisted of 25 elements over the half-length and four
elements on the end plate. The outer boundary of the fluid model was located
about 16 meters from the axis of the shell. Symmetry conditions were imposed
at the mid-length, thus restricting the available modes to those symmetric
with respect to the mid-length. The NASTRAN bulk data for this model were
generated automatically by a special purpose fluid-structure data generator
called SFG written by Richard J. Kazden of the David Taylor Research Center.

Fig. 2. Axisymmetric finite element model of structure and fluid.
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For the analysis with added mass effects generated by boundary elements,
a general shell model of the structure was prepared using NASTRAN's four-node
isoparametric membrane/bending quadrilateral plate element QUAD4. A quarter
model was prepared (half the length and half the circumference) using 25
elements longitudinally, 12 elements circumferentially, and four elements
radially on the end plate, as shown in Fig. 3. Symmetry was imposed at both
planes of geometric symmetry. Since all fluid effects were computed by the
NASHUA processor SURF, no fluid mesh was required.

Four analyses were performed for this problem:

1 ~ conical shell model, in-vacuo, circumferential harmonic n < 5, 715 DOF,

[\
1

QUAD4 model, in-vacuo, 2093 DOF,

3 ~ conical shell model, fluid-loaded, finite element added mass effects,
n < 5, 1465 DOF, and

=~
i

QUAD4 model, fluid-loaded, boundary element added mass effects, 2093 DOF
(matrices not banded).

The first 21 natural frequencies and mode shapes were found among those
which have circumferential index n € 5 and are symmetric with respect to the
mid-length plane. The results of these calculations are shown in the table
on the next page. The second column in the table (Harm. n) denotes the
circumferential harmonic index, the number of full waves around the
circumference. (For the end plate, n thus denotes the number of nodal
diameters.) The third column (Shell m) denotes the number of longitudinal
half waves. The fourth column (Plate m) denotes the number of nodal circles
(plus one) in the end plate. The next two columns of the table list the
in-vacuo natural frequencies (in Hz.) of the cylindrical shell for both the
conical shell and QUAD4 models. The next two columns of the table list the

R T A A VAR
\\\\\\\\\\\\\\\\\\\\\\\\3
\ \\\\\\\\\\\\\\\\ VALV

-

Fig. 3. QUAD4 finite element model of cylindrical shell.

257



Table. In-Vacuo and Fluid-Loaded Natural Frequencies of Cylindrical
Shell with Flat End Plates

Mode Frequency (Hz)
Harm. |Shell|Plate| CONEAX QUAD4 CONEAX subm. |[QUAD4 subm. |Approx.
No. n m m in-vacuo | in-vacuo [(F.E. mass) [(B.E. mass)|Theory
1 1 0 0 0 0 0 0
2 2 1 2.72 2.72 1.13 1.13 1.11
3 3 1 3.84 3.90 1.79 1.81 1.77
4 0 1 4.27 4.22 1.63 1.44 1.38
5 4 1 7.04 7.19 3.61 3.67 3.57
6 4 3 9.29 9.34 4.81 4.82 4,70
7 1 1 9.53 9.20 bob4 4.26 4.22
8 3 3 10.4 10.4 4.94 4.93 4.82
9 5 1 11.3 11.6 6.31 6.38 6.18
10 5 3 12.2 12.4 6.83 6.86 6.67
11 1 3 13.4 13.3 7.04 6.88
12 2 1 15.6 15.1 8.31 8.02
13 5 5 15.8 15.9 8.99 8.88 8.65
14 0 2 15.9 16.4 8.66 8.40
15 4 5 17.0 16.9 8.94 8.85 8.66
16 2 3 3 18.6 18.5 8.05 8.07 7.75
17 3 1 22.7 22.4 13.2 13.0
18 5 7 22.9 22.8 13.2 12.9 12.6
19 3 5 24,5 24.1 11.9 11.9 11.5
20 1 2 26.6 27.2 15.4 15.5
21 4 7 28.4 28.2 15.3 15.1 14.7

fluid-loaded (fully submerged) resonances of the shell using both models.
The added mass effects were computed for the conical shell and QUAD4 models
using, respectively, the finite element and boundary element techniques
described above.

The last column of the table lists approximate theoretical predictions
for the fluid-loaded resonances. These values are computed in the following
way. In general, since frequency is inversely proportional to the square
root of mass, the ratio of submerged to in-vacuo resonant frequencies for a
structure is

f /£

wet/tdry 1+ Ma/M)—l/z’ (19)

where My, and M are the added mass and structural mass, respectively. For
both plates and cylindrical shells, this ratio of added to structural mass
can be written in the forml3,14
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Ma/M = a(p/pg)(a/h), (20)

where o is a dimensionless parameter which depends on the boundary conditions,
modal wavenumbers, and, for the case of a cylinder, the length-to~radius
ratio. For a finite length, simply supported cylindrical shell, o can be
approximated for the lobar (n > 1) modes asl3

o = n2/((n2 + 1)(n2 + (mra/L)2)1/2), (21)

For a clamped circular plate,l4 o = 0.6689 for the (0,1) mode and 0.3087 for
the (1,1) mode, where the two mode numbers denote, respectively, the number
of nodal diameters and the number of nodal circles plus one. Since the
conditions under which these relations apply are approximately satisfied with
our example, we include their predictions in the table for reference. The
ratio, Eq. 19, is applied in the table to the average of the two in-vacuo
predictions.

As indicated in the table, most of these 21 modes are either
predominantly shell modes or predominantly end plate modes. For one mode
(16), the shell and end plate are both active participants in the modal
behavior (although with varying levels of relative participation, depending
on the model and whether there was fluid loading).

The results in the table show generally very good agreement between the
predictions of the two approaches, both in-vacuo and fluid-loaded, even for
circumferential harmonics 4 and 5. For these two harmonics, the QUAD4 mesh
has only six and 4.8 elements per wavelength in the circumferential direction,
respectively, but still does surprisingly well. The two numerical approaches
show agreement to within about 2% for all the fluid-loaded modes which exhibit
predominantly shell behavior. The two fluid~loaded predictions for the end
plate modes all agree to within about 47, with the exception of Mode 4, the
fundamental drum head mode of the plate, where the difference is about 127.

In view of the similarity of the boundary element prediction to the
approximate theoretical prediction, the boundary element result is probably
the better of the two numerical predictions, perhaps indicating that the
finite element mesh used (Fig. 2) needs to be extended a little farther out
at the end of the structure.

BISCUSSION

From the results presented in the preceding section, we conclude that
both the finite element and boundary element procedures are capable of
computing accurate added mass effects due to fluid loading on fully submerged
structures. Of the two approaches, the boundary element procedure is the
easier to use, since it is highly automated and does not require the
generation of a fluid mesh. Even general purpose automatic mesh generators
cannot completely solve the fluid meshing issue, since they cannot generate
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the fluid-structure interface condition, which requires direct matrix input
of surface areas. On the other hand, the finite element procedure is somewhat
more general, since it can also treat structures which are near a free surface
(or other boundary) or are partially submerged.5 The boundary element
procedure used is applicable only to deeply submerged structures (i.e.,
structures far enough from a fluid boundary so that the boundary can be

ignored).

For structures similar to the cylindrical shell considered here, the
finite element procedure is also computationally less expensive than the
boundary element procedure. This difference is due primarily to the
exploitation by the finite element method of the banded matrices which occur
with long, slender structures. Consider, for example, the QUAD4 model of the
cylindrical shell shown in Fige. 3. The in-vacuo model had 2093 independent
DOF with an average matrix wavefront of 79. When the (boundary element)
added mass matrix was combined with the structural mass matrix, the average
wavefront increased about five—~fold to 394. With the eigensolution time
proportional to the product of the order of the matrix and the square of the
wavefront, the solution time for the submerged case increases by a factor of
about 25. On the other hand, a finite element model of a portion of the
surrounding fluid would typically double both the matrix order and the matrix
wavefront (compared to the in-vacuo case) since each structural grid point
(with six DOF) would require about six fluid grid points (each with one DOF)
to be added to the model. Such a model would therefore cost only about eight
times as much to run as the "dry” model. The trade—~off between the finite
element and boundary element procedures for solving the underwater vibration
problem thus reduces to a trade—off of engineering time with computer time.

It is concluded therefore that both the finite element and boundary
element procedures are capable of computing the fluid loading effects needed

for underwater resonance calculations and that the more elegant boundary
element approach is easier to use but may be more expensive computationally.
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ABSTRACT

The identification of power flow paths in dynamically
loaded structures is an important, but currently unavailable,
capability for the finite element analyst. For this reason,
methods for calculating power flows and mechanical
intensities in finite element models are developed here.
Formulations for calculating input and output powers, power
flows, mechanical intensities, and power dissipations for
beam, plate, and solid element types are derived. NASTRAN
is used to calculate the required velocity, force, and stress
results of an analysis, which a post-processor then uses to
calculate power flow quantities. The SDRC I-deas Supertab
module is used to view the final results. Test models include
a simple truss and a beam-stiffened cantilever plate. Both test
cases showed reasonable power flow fields over low to
medium frequencies, with accurate power balances. Future
work will include testing with more complex models,
developing an interactive graphics program to view easily and
efficiently the analysis results, applying shape optimization
methods to the problem with power flow variables as design
constraints, and adding the power flow capability to
NASTRAN.

INTRODUCTION

Structure-borne sound is the vibrational energy which travels through
dynamically loaded mechanical systems. This vibrational energy is radiated
eventually into an acoustic medium as noise. An example cited by Wohlever
and Bernhard! is an airplane wing loaded by engine vibrations. The vibrational
energy travels along the wing to the fuselage and 1s radiated as sound into the
cabin. Architects face the problem of structure-borne sound in hotels and
apartment buildings, where vibrational energy flows through walls and floors,
and is radiated as sound into other rooms. This problem is addressed by
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Luzzato and Ortola.?

Dynamic anglyses are performed to solve these problems, which output
exorbitant amounts of data. The analyst is then faced with the problem of
interpreting the “output. Tabular printouts can be analyzed, spectrum plots
generated, and deformed shapes plotted, all of which are useful methods of
defining the state of a structure. Another way of quantifying the propagation
of structure-borne sound is the calculation of power flows. This method will
identify the magnitude and direction of the power at any location in a
structure, helping an analyst to find the dominant paths of energy flow and the
energy sinks for a given problem. The understanding of the paths of energy
which flow from a vibration source (such as the engine in the aircraft example)
to certain parts of a structure (the cabin for example) would help an engineer
to more easily pinpoint and correct vibration problems.

The important terms used in this study are: power flow, which is
actually power, or energy flow, but is termed power flow by the scientific
community of this field; mechanical intensity, which is power flow per unit
area; and power dissipation, which is the time rate of energy dissipated in a
structure. Four main methods for identifying dominant power sources and
power flow paths are addressed in the literature: experimental methods,
statistical energy analysis, the finite element method, and the power flow
method.

Experimental solutions are the most common in the literature. The
authors of some of these papers®™’ use multiple transducers and digital signal
processing techniques to solve various power flow problems. A common
method is the calculation of cross spectral densities, where two accelerometers
are placed a known distance apart on a structure, and response spectra are
generated for the two measurement locations. The correlation between the
spectra is statistically analyzed, and power flows are computed over some
range of frequencies. This approach is similar to the two-microphone
technique used by acousticians to solve noise propagation problems in fluid
media. Once an experimental apparatus is set up, the analyst may easily vary
applied loads and loading frequencies. Unfortunately, accuracy problems may
occur due to the added weights and inertias of the transducers attached to an
experimental structure.

Statistical energy analysis (SEA) is a computational method used to
solve energy flow problems in the high frequency domain. A definitive
reference on SEA, although now out of print, is the text by R.L. Lyon.® A
brief summary of SEA follows. Large structures are split into smaller
subsystems; a modal density is estimated for each subsystem so the number of
modes in a given frequency band can be determined; dissipation loss factors,
which relate energy stored to power dissipated, are estimated for the
subsystems; and coupling loss factors, which relate differences of modal
energy of subsystems to power flow, are assigned to the junctions of the
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subsystems. The energy distribution, power flows, and power dissipations are
then computed.

SEA is a reasonable way of solving for the average response of
structures at high frequencies; however all spatial variations of the power flow
field in the substructures remain unknown. A more discrete method must be
used to identify specific power flow paths through a structure. Finite element
analysis (FEA) may be used for this purpose, but is only cost effective for low
to mid-range frequencies, since higher mode shapes are more complex,
wavelengths are shorter, and denser finite element meshes are required to
model a problem correctly. Mickol and Bernhard® succesfully used FEA to
identify power flow paths in simple beam and plate structures excited at low
frequencies.

Recently, some scientists have proposed a new method to solve for
power flows in the middle frequency range. Cuschieri,!® Nefske and Sung,!!
and Wohlever and Bernhard! have been studying this new approach: a finite
element analogy where input power is substituted for input force and the
power flow field may be solved for directly using a finite element solution.

In this paper FEA is used to solve the power flow problem. For lower
modes the method is accurate, models are simple to build and modify using
modern modeling software, and analysis results are viewed easily using post-
processing graphics packages. Since no commercial software contains a power
flow capability, the formulations and computer methods are developed here
for NASTRAN.'? The FEA studies presented in the literature consider only
the contribution of flexural wave motion to power flow. Other motion types of
power flow, such as axial and torsional, are ignored. In this study, all types of
power flow are considered.

First, general methods and formulations for power flows and
“mechanical intensities, power dissipations, input powers, and output powers
are developed for global models, beam elements, plate elements, solid
elements, and scalar elements. The required NASTRAN solution, the
algorithm of the power flow processor, and the use of I-deas Supertab are
outlined. Two test models are analyzed to verify the methods: a simple truss
and a beam-stiffened cantilever plate. Finally, based on the results of the test
case analyses, conclusions about the method are formed and some thoughts
about future directions for work are discussed.

THE FINITE ELEMENT SOLUTION

General Methods

A typical power flow cycle is shown in Fig. 1. The figure shows an
arbitrary structure mounted to a connecting structure by a spring and damper
coupling. A dynamic load is applied, and energy flows into the structure at the
load point. The input power then flows through the structure along multiple
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Power Flow
Power Dissipation

Fig. 1. Sample Power Flow Diagram.

flow paths denoted by arrows, whose lengths represent power flow magnitudes.
As the energy flows toward the mounting, it is dissipated by material damping
and sound radiation into a surrounding medium, and the flow arrows shorten.
The flow and dissipation processes continue until the remaining energy exits
the structure through the mounting and flows into the connecting structure.
Though only one power entry and exit point is shown in this drawing, multiple
loads and mountings may exist. A classic text which describes the flow of
structure-borne sound is the book by Cremer, Heckl, and Ungar.!

The power flow problem may be solved using NASTRAN. The
structure may be modeled using various element types; mountings are modeled
using scalar spring, damping, and mass elements; and constraints and loads
are directly applied. The steady-state response for the model is solved for a
given excitation frequency, and the power flow variables are calculated.

Power Flow and Mechanical Intensity

To calculate power input, power flow, or power output at some location
in a given direction, the force in that direction is multiplied by the in-phase
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part of the velocity in that direction. For example, a bending moment about
the x direction is multiplied by the in-phase part of the angular velocity about
the x direction. The power flow at that degree of freedom is the real part of
that result. This calculation may be visualized as taking the dot product of the
force and velocity phasors to solve for the real part of power.

Multiplying one complex number by the in-phase part of another
complex number is the same operation as multiplying the first number by the
complex conjugate of the other number. Therefore a general formula for
power flow in a structure is

Power = Fv’. (1)

Power flow is a complex number. The real part of the calculation is called the
active power, and the imaginary part is called the reactive power. The active
power is the quantity of interest here.

Mechanical intensity is power flow per unit area, or the stress multiplied
by the complex conjugate of velocity. Mechanical intensity is similar to
acoustic intensity, which is the pressure in a fluid medium multiplied by the
complex conjugate of velocity.

Damping and Power Dissipation

Power may be dissipated in different ways: by material damping, by
mountings and surrounding structures, and by radiation as sound. This section
discusses the power dissipation due to damping. At this time only material
damping is considered in the dissipation process. The effects of sound
radiation will be considered in the future.

Power dissipation is calculated differently from power flow and power
input. Since power dissipation is the rate of energy dissipation, the energy
level of a given element is calculated and multiplied by its damping coefficient.
Multiplying the energy dissipation by the angular frequency of excitation gives
the power dissipated in that element.

The effects of the material damping coefficient are significant. As the
damping coefficient is increased, the power dissipated will increase. If the
damping coefficient is zero, no scalar damping elements are applied to the
structure, and no sound radiation is considered, power dissipation will be zero
and no power flow will exist. This is because, with no damping, forces and
velocities will be exactly 90 degrees out of phase, and the in-phase part of
velocity is zero. Though this is a physically unrealistic situation, it is one that
may occur in a finite element analysis.

To solve for power dissipation, energy dissipation must first be
calculated. The energy level in an element is the sum of the element’s kinetic
energy and potential energy. Since this is a steady-state problem, and the
energy is a time-averaged quantity, it may be calculated as twice the kinetic
energy:
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E = mvv' s (2)

where
E = energy,
m = element mass, and
v = velocity.

Power dissipation 1s then calculated as
Piss = 2rinE, (3)

where
f = rotational frequency, and
n = material damping coefficient.

The nE term is the energy dissipation, and multiplying by the angular
frequency gives the energy dissipation per unit time, or power dissipation. The
result will be a real number, since the energy calculation multiplies velocity by
its complex conjugate.

The calculation of power dissipation includes the element mass, so the
calculation is mesh-dependent. As mesh density increases, element power
dissipations decrease. For example, if a beam element were subdivided into
two beam elements, the original power dissipation would be split between the
two new beams. A way to make the power dissipation calculations mesh-
independent would be to divide the results by their respective element masses.
At this point, however, the actual power dissipations are calculated because of
their importance in checking power balances (see the Power Balance section
below).

Also, power dissipation is directly related to the mode shapes of an
analysis, so areas of large displacements and velocities will be large energy
sinks, and nodes (points of near zero displacement) will dissipate almost no
power.

Power Input

Power inputs are calculated by multiplying input forces by the complex
conjugates of their corresponding velocities. Total input power is calculated as

P,, = Real [3F;v;], (4)
i=1
where

i = load point, and
n = number of loads.

This is a global calculation which is independent of element type.
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At this time only force inputs are considered. Other load types may
input power to a structure, such as displacements, velocities, and
accelerations. The calculation of input powers for these load types will be
derived in a subsequent paper.

Power Output

Power output is the power that leaves the system through its mountings
and enters the connecting system(s). The external system is modeled using
spring, damper, and mass elements. These scalar elements must be connected
to additional grid points which are grounded. The forces of constraint are
combined with the velocities of the grid attached to the scalar element to
calculate power output. The power output is calculated as

n
Pout = Real [EFiVi ]: (5)
i=1

where

1 = grounded grid, and
n = number of grounded grids.

Power Balance

The terms described above (power input, power dissipation, and power
output) are all used to verify a power balance for a given problem. The power
balance equation is

#elem

Pin = E Pdiss + Pout. (6)
1=1
This is the same equation used in SEA theory. Since P, Poy, and Py are
all calculated independently, if the power balance equation holds, then the
power flow solution is correct (assuming the original finite element solution is
accurate). This power equilibrium equation is therefore an important check
on the power formulations and calculations.

Element Formulations
Beam Elements

Most of the literature in the field of power flow is devoted to beams.
The landmark paper by Noiseux' described methods of measuring the flexural
power flow in beams. Many other authors, such as Verheij, Li,'® Wohlever
and Bernhard,! and Nefske and Sung'! have developed power flow capabilities
for beam elements.

All the methods developed, however, consider only flexural power flow.
Though flexure is arguably the dominant response in a beam, cases arise where
axial and torsional response are important. For this reason, all possible
components of power flow will be considered.
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and its force output conventions is shown in Fig. 2.

Power flow methods for BAR element types are derived below. Either
lumped mass or coupled mass solutions may be used. Unfortunately, torsional
inertia for the BAR element type is not calculated by NASTRAN.
Concentrated mass elements with beam torsional inertias entered as masses
must be added to the model at the appropriate degrees of freedom (DOF) to
solve for accurate torsional power flows.

Power Flow and Mechanical Intensity. A diagram of the BAR element

y Vi
fT l\}Ila N{lb
. I
~ N\ ] F, ‘»T
ks a Plane 1
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[ 3
\ /
N Plane 2
Vv,

Fig. 2. The BAR Element

Since a beam is a one-dimensional element, energy flows in only one direction:
in the local x direction, or along the length of the beam. The total power flow
for a beam element is

P, =Real [ — (va;—{—Vlv;—l-Vzv; +Tw;—M2w;+M1w;)],

where

F,
Vi
Vs

axial force,

shear force in y direction,
shear force in z direction,
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T = torsion about x,

M, = bending moment about y,

M; = bending moment about z,
v; = translational velocities in direction 1, and
w; = rotational velocities about axis i.

The negative sign in front of the result is due to force and displacement
direction conventions for the element. Negative signs appear in the
formulations for the plate and solid elements for the same reason. The
negative sign in front of the M, term is due to the NASTRAN force output
convention. In Fig. 2, M, is shown as positive in the opposite sense to wy.
Therefore, Mzw; is opposite in sign to the other power flow components.

Velocities are calculated by NASTRAN for each grid point, and beam
forces are calculated on an element level. This difference creates a problem,
because some way of solving for a power flow on an element level is required.
The solution is to solve for a power flow at each grid point, and calculate the
average quantity for an element.

Shear, axial, and torsional forces are constant through the element, and
are the same for each grid point. Bending moments are calculated at each end
of the beam element. Velocities are solved for at a global level, and a
coordinate system transformation must be performed to find the velocities at
the element level. Since the grid coordinates and beam orientation vector are
given, the velocity transformation is straightforward. After power flows at
each element end are calculated, they are averaged to give an element power
flow. Power flows are then transformed back to NASTRAN’s basic
coordinate system.

Mechanical intensity is power flow per unit area, and since all the power
flow in a beam is along the local x axis, intensity is simply the total power flow
divided by the beam’s cross sectional area.

Two important observations may be made about power flow in beam
elements. Since power flow is one-dimensional in beams, it is independent of
mesh variations. Increasing mesh density or varying the mesh pattern will not
affect greatly the power flow results (assuming the mesh is dense enough to
model accurately the mode shapes of the solution). Also, since power flow is
dependent on element force quantities that are discontinuous across element
boundaries (axial and shear forces, torsion), the power flow and mechanical
intensity quantities are not continuous across beam element boundaries.

Power Dissipation. The energy of a beam element includes both
translational and rotatory terms, and is calculated as

E = 1n(VxV;+vyv;+vzv;) + Ixxwxw;+lyywyw;+lzzwzw;, (8)

where
m = element mass,
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Iy, 1,, = mass moments of inertia about cross section,
I,x = polar mass moment of inertia about beam axis,
v; = local translational velocities in direction i, and
w; = local rotational velocities about axis i.

For a lumped mass formulation, the energy terms are calculated at the element
centroid; for a coupled mass formulation, they are calculated at the beam ends
and averaged. The element energy is then multiplied by 2mf, as in Eq. 3, to
yield power dissipation.

The rotational inertial energies are generally small. However, if the
beam lengths are long with respect to the cross section, the mass moments of
mertia become important. In the case of torsion, where the only large
displacement is rotation about the beam’s axis, the polar mass moment of
inertia term dominates the energy calculation.

Plate Elements

Since the beam element formulation included all components of power
flow, power flow capabilities for QUAD elements (QUAD2 and QUAD4),
which consider both flexural and membrane effects, are developed.

The literature concerning plate elements is growing, and publications by
Mickol and Bernhard,! Williams et al,’” Koshiroi and Tateishi,'® Noiseux,!?
Fahy and Pierri,’ and Cuschieri,? investigate mechanical intensities and
power flows through plate structures. Similar to the literature for beams
however, most approaches consider only flexural effects.

Power Flow and Mechanical Intensity. A diagram of a QUAD element
and its force and stress output conventions is shown in Fig. 3. The
quadrilateral element is two-dimensional, and power may flow in the local x
and y directions. The power flow in the x direction is calculated as

P, = Real [ — (Vyv; My +My oy +Fv+F vi)l; 9

the power flow in the y direction is

P, =Real [ — (Vyv; +My(U;—Mxyw;+Fyv;+Fyxv;)]’
where

V,,V, = transverse shear forces,

x,My = bending moments,
M,, = twisting moment,

F, Fy = membrane forces,
Fyy,Fyx = membrane shear,

v; = local translational velocities in direction i, and
w; = local rotational velocities about axis i.

. . . -~ ® *
The negative signs in front of the Myw, and My wy terms are due to the

271



Mxy <]

Plate element forces Membrane element forces

Fig. 3. The QUAD Element

NASTRAN force output convention. These bending moments are opposite in
sense to their corresponding rotational velocities.

As in the case of the beam elements, grid velocities must be
transformed to the local element coordinate systems to be used in the power
flow calculations. After the calculations, the power flow vectors are
transformed back to NASTRAN’s basic coordinate system.

The above formulation should work for the QUAD2 and QUAD4
element types. Unfortunately, the QUAD4 has not been fully implemented
for complex analysis yet, so only the QUAD2 may be used. This is
unfortunate, since the QUAD2 is not an isoparametric element, and its
membrane performance is poor. In fact, NASTRAN does not calculate
membrane forces for the QUAD?2, so they must be deduced from the
membrane stress outputs.

Calculating membrane forces involves approximating the element’s local
dx and dy lengths, which combined with the plate thickness will give dA values
in the local x and y directions. Multiplying these "side areas” by the stresses
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will give approximations for the membrane forces. All this additional
calculation introduces more error into a membrane formulation which is
already poor. If an element is greatly distorted, the membrane results could
be completely incorrect.

Finite element meshes for the QUAD?2 must be therefore as uniform as
possible, since the element is not isoparametric. Also, if membrane effects
are dominant in an analysis, the results will be suspect. When the NASTRAN
implementation of the QUAD4 is complete, the QUAD4 element will be used.

The mesh dependence of power flow for QUAD elements has not yet
been determined.

To calculate mechanical intensities, P, and P, are divided by the
estimated side areas.

Power Dissipation. The energy of a QUAD element, considering only
scalar mass terms, 1is

E = m(vxv; -|—VyV;+VZV;), (10)

where

m = element mass, and
v; = local translational velocities in direction 1.

Element energies are multiplied by nf to calculate power dissipations. Power
dissipation terms are calculated at each grid point and averaged to solve for
the element dissipation. This calculation is mesh-dependent, since power
dissipation 1s directly related to element mass.

Solid Elements

Since literature in the power flow field is largely from the experimental
sector, solid elements are generally not considered. An experimentalist
cannot place a measuring device inside the material of a solid structure. The
paper by Pavic,” however, describes a method for measuring structural surface
intensity. His method, which involves placing transducers on various surfaces
of a machinery system to measure two-dimensional mechanical intensities, may
be extended to three dimensions. Since a finite element code has no
restrictions on making "measurements” internal to a structure, mechanical
intensities may be calculated throughout a solid model.

Power Flow and Mechanical Intensity. For the BAR and QUAD
elements, force output is given by NASTRAN. For solid elements, stress
output is given at grid points and at the element centroid. Pavic’ uses stresses
and velocities in his formulation of structural surface intensities. His formulas
for mechanical intensities, extended to three dimensions, are
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I, = Real [ - (axVx+TxyVy+szVZ)]’ (11)
Iy = Real [ — (Oyvy+7yxvx+TyZVZ)]7
I, =Real | — (UZVZ+szVx+szVy)]’

where

Iy, Iy, I, = global mechanical intensities,
0x,0y,0, = normal stresses,
Ty Tyzs Txz = shear stresses, and

v; = global translational velocities in direction 1.

Since element stresses are given in the basic coordinate system, the velocities
do not have to be transformed to element coordinate systems as they were for
the BAR and QUAD element types. Calculations are made at each grid point
and averaged to calculate the element mechanical intensity.

At this point, no attempt is made to compute power flows using the
mechanical intensity results. Although the intensity vector is defined, the
problem of finding element face areas in the x, y, and z directions remains.

This formulation is valid for any solid element in NASTRAN, including
the linear, parabolic, and cubic isoparametric solid elements. Unfortunately,
the complex stress output for each of these clement types is incorrect. The
stress results in the OESC1 data block are wrong, and when they are passed to
the output file processor (OFP) module, errors result in the output file. These
errors appear to be related to data types, since asterisks appear in the grid
point field of the NASTRAN output file. -

The errors associated with the isoparametric elements restricts the
usable element types to the HEXAZ2, which is a superposition of ten
tetrahedron elements. As was the case for the QUAD elements, when the
NASTRAN errors are fixed, the higher level elements will be used.

The mesh dependence of mechanical intensity for solid elements has
not yet been determined.

Power Dissipation. The power dissipation calculations are the same as
those for the QUAD elements (Eq. 10). Only mass and translational velocity
terms are considered. Power dissipation terms are calculated at each grid
point and averaged. Again, since the element mass is directly related to the
element energy, power dissipation is mesh-dependent.

Scalar Elements

Scalar elements may be used to simulate mountings and structures
connected to the finite element model. ELASi and MASSi elements may be
used to model stiffness, damping, and mass effects. These elements may be
important for certain analyses, such as when a structure is not rigidly mounted.
In certain cases, power may flow out of a structurc into an isolator, which will
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absorb much of the energy, or into a surrounding medium. The accurate
modeling of boundary conditions must therefore include scalar element types.

Power Flow, Intensity, and Dissipation. Power flows and power
dissipations are not measured in scalar elements, but the presence of external
stiffnesses, dampers, and masses may significantly affect the results in the
structural element types.

Computer Methods

A flow chart of the solution process is shown in Fig. 4.

Input Deck:
Multiple Subcases,
Multiple Frequencies.

NASTRAN
Rigid Format 8

UT1 File
All Model Information
Velocity, Force, Stress Results for each Subcase and Frequency

Program McPOW
Solve for Power Flow Variables

Output File /Universal File /
Tabular Listing of Power
Flows, Mechanical Intensities, I-DEAS Supertab
and Power Dissipations Contour Plots, Vector Plots

Fig. 4. Power Flow Solution Process

NASTRAN’s Rigid Format 8 (Direct Frequency Response) is used to solve a
given problem for any combination of load cases and excitation frequencies.
The model information and problem solution output are written to a UT1 file,
which is used as input to the McPOW (Mechanical POWer) program. After
the power computations, power flows, mechanical intensities, and power
dissipations are written to two output files. One file contains a tabular listing
of the power flow results; the other file is formatted as input to the I-DEAS
Supertab?! post-processor, which is used to interpret visually the results.
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NASTRAN Solution

Before running Rigid Format 8, an eigenvalue extraction (Rigid Format
3) can be performed on the model to determine the resonant frequencies and
their corresponding mode shapes. Power flows can then be measured at
response peaks, and the dominant type of power flow, such as flexural or
axial, can be predicted by examining the mode shapes.

Several data blocks must be written to the UT1 output file for the
McPOW program. The following ALTER statements are put in the Executive
Control Deck:

$
$ THE FOLLOWING STATEMENTS CORRESPOND TO THE 1987,88
$ VERSIONS OF COSMIC NASTRAN, RF8

$

ALTER 23% AFTER THE TA1 MODULE
OUTPUT2 CASECC,EST,MPT,EQEXINS$

ALTER 135% AFTER THE SDR2 MODULE
OUTPUT2 OPPC1,0ESC1,0EFC1,0UPVC1$

ENDALTERS$

In the above alter, the CASECC data block contains case control
information, the EST data block holds element information, the MPT data
block contains material properties, and the EQEXIN data block holds grid and
SII. (Scalar Index List) information. The OPPC1 data block contains the
applied forces, the OESC1 data block lists the element stresses, the OEFC1
data block holds element forces, and the OUPVC1 data block contains grid
point velocities.

To ensure that all the required data are in the data blocks, the following
output requests must be made in the case control deck:

FORCE(PHASE)=ALL
STRESS(PHASE)=ALL
VELOCITY(PHASE)=ALL
OLOAD(PHASE)=ALL

The capability to calculate power flows for sets of elements will be
implemented later.

Power Flow Algorithn

The program McPOW is composed of four main sections: the model
information section, the NASTRAN output section, the power flow
calculation section, and the output section.
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The model information section simply reads the CASECC, EST, MPT,
and EQEXIN data blocks from the UT1 file. The NASTRAN output section
reads the OPPC1, OESC1, OEFC1, and OUPVC1 data blocks and assigns
forces and stresses to element variables, velocities to grid points, and input
loads to grid points.

The power flow calculation section first calculates input powers using
the input loads and corresponding grid velocities. Next, grid velocities are
assigned to elements. Power flows, mechanical intensities, and power
dissipations are then calculated using element forces, stresses, and the

velocities of the element grids.

The output section writes power flow information to two files. The first
contains a tabular listing of the solution variables for each subcase and
frequency; the second is a data file in I-DEAS Universal file format.

Post-Processing

The user may analyze the power flow output in two ways: by inspecting
the listed output, or using I'DEAS Supertab’s post-processor to draw contour
plots and arrow plots. Analyzing the tabular output is a good way to check
power balances. Power input is equal to power dissipated plus power output.

However, to visualize the entire power flow solution in any reasonably complex -

geometry, a good graphics post-processor is required.

Color contour plots can be used to display power flow magnitudes and
power dissipations. Power flow, however, is a vector, and arrow plots are
needed to display the direction of the flow. Other authors, such as Heckl,?
and Koshiroi and Tateishi,'® have used arrow plots to show power flows in
plate structures. An alternative unavailable in I-DEAS Supertab is a
combination of a contour and arrow plot, which would illustrate magnitude
and direction.

TEST CASES

The test problems illustrate the use of beam, plate, and scalar elements.
The QUAD4 and solid elements have not been tested yet.

Simple Truss
Problem Statement

A diagram of a simple truss is shown in Fig. 5. The truss members are
constructed of three different types of cross sections. The model was attached
to ground at its top and bottom by springs and dampers in all six DOF. The
scalar elements simulated the effects of fasteners and the surrounding
structure(s). An end load was applied in all six DOF over a range of
frequencies. The properties of the two W type sections are given in civil
engineering handbooks.
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Fig. 5. Simple Truss Problem

The finite element model consisted of 74 BAR elements, with each
beam section having a different mesh density. Section 1 was modeled with 40
elements of 0.25 m length, Section 2 consisted of 10 elements of 0.5 m length,
and Section 3 was made up of 24 elements of about 0.325 m length. For the
scalar elements, spring constants were set at about 100 to 1000 times the
stiffness of the members at the appropriate DOF; and the damping constant
was set at ten times the material damping constant, or 0.2. This model is a
good general test of the power flow methods outlined above, since it has a
varying mesh density and the three sections have different beam properties.

Results

The first analysis performed on the model was an eigenvalue extraction
(Rigid Format 3). Although there is damping in the model, and the modes are
actually complex, real modes may be calculated to estimate the resonances.
The first 50 modes ranged in frequency from 1.87 Hz to 174 Hz, with the three
members experiencing different types of motion in each mode (i.e., axial,
flexural, or torsional), showing the need for the calculation of all types of
power flows in beams.
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The end load was then applied for frequencies ranging from 1 to 100
Hz, with a resolution of 1 Hz. The plot shown in Fig. 6 shows the response of
section three at 100 Hz, or the 29th mode of the truss. The right end of the
plot is the loading point, and the left end is the junction with Section 1 and the
mounting at the bottom. Both power flow and power dissipation are plotted.
Power flow decreases as it propagates along the beam due to power
dissipation. Power dissipation oscillates from low to high points,
approximating the mode shape of the beam. When dissipation is large, power
flow slopes downward; when dissipation is small, power flow remains level.

Powers for Truss Section 3, £=100 Hz

3.5E-05

7

2.5E-05 /
2.0E-05 /
1.58-05 /

1.0E-05

Power (W)
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0.bo 0.25 0.50 0.75 1.00

6 o0 o o Pover Flow

Distance Along Beam (d/L)
00 aq Pover Dissipation

Fig. 6. Power Flows and Dissipations for a Single Frequency

The type of plot shown in Fig. 6 is an effective method of displaying the
power flow response for a specific case; however spectra plots are required to
illustrate the responses over the entire frequency range. An additional set of
plots is shown in Fig. 7 and consists of four plots showing power flow at
different locations on each of the truss sections. Section one is split into two
graphs: graph one is for the top half of the beam, and graph two is for the
bottom half.

Power flows are plotted for three distances along each member: at the
beginning, middle, and end (d/L = 0.0, 0.5, and 1.0 respectively). For the top
and bottom halves of Section 1, the beginning of the section is at the joint with
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Section 2; for Sections 2 and 3, the beginning of the member is at the load
point.

The expected response is a relatively uniform lowering of each curve as
power flow progresses from beginning to end along each beam. This is indeed
the case for some frequencies. However, at some joints, such as the junction
of Sections 1 and 2, and the junction between Sections 1, 3, and ground,
power flows in ways that are less intuitive. As a result, some of the plots
"cross over" each other and power flow increases from beginning to end. Fig.
8 contains three power flow diagrams which show some of the ways that power
may flow through the truss model in this analysis.

h

e e ol

Feiwt Feiwt Feiwt

7777 ez e ez e

Diagram 1 Diagram 2 Diagram 3

Fig. 8. Power Flow Diagrams for Truss Problem

Diagram 1 shows power entering Sections 2 and 3 at the load points and
flowing out toward Section 1. At the junction of Sections 1 and 2, the power
flows from Section 2 into the upper half of Section 1. At the junction of
Sections 1 and 3, power flows from Section 3 into the scalar elements
connected to ground and into the bottom half of Section 1. Power then flows
from the bottom of Section 1 to the top of Section 1, where it then flows up to
the scalar elements at the top and out of the model.

281



Diagram 2 shows a similar case, but with two differences. At the
junction of Sections 1 and 2, power from Section 2 flows into the top and
bottom halves of Section 1; and at the junction of Sections 1 and 3, power
flows only into ground.

In Diagram 3, power is input only into Section 2, and flows into the top
and bottom halves of Section 1. The power in the bottom half of Section 1
flows down to the junction of Section 1, Section 3, and ground, where some
power flows out of the model and some flows up into Section 3.

The cases shown in Diagrams 1 and 2 are the most common based on
examination of the printed output. Other possibilities exist, but do not occur
often for the range of frequencies analyzed. The type of power flow diagram
which occurs for a given frequency may be found by looking at the plots in
Fig. 7. When power flow increases travelling from d/L = 0.0 to d/L = 1.0,
then power has entered the beam at d/L = 1.0. When power flow decreases
travelling from d/L = 0.0 to d/L = 1.0, then power has entered the beam at
d/L =0.0.

Response peaks in the graphs shown in Fig. 7 correspond to different
types of motion in each section. Some peaks represent flexural motion, some
are due to axial response, and some are torsional in nature. A power flow
algorithm which considers only flexural response would give incorrect answers
to this problem.

Power balances (P;, = Pout+ Y, Paiss) Were reasonably accurate across
the frequency band, with small errors at frequencies of low response. It is
uncertain which quantities are in error (Pi,,Pou, or Pgs) for these cases,
however the errors are of little consequence with respect to the calculations at
higher responses. Power flows at the truss joints balanced as well. A
calculation similar to Kirchoff’s current law can be made, with power flows in
the BARs connected to the junctions analagous to currents.

Beam-Stiffened Cantilever Plate

The analysis of ribbed stuctures combines the power flow methods for
beams and plates. Nilsson® used SEA methods to predict the transmission of
structure-borne sound through ribbed plate models. Here, FEA is used to
calculate the low frequency response of a beam stiffened cantilever plate.

Problem Statement

A diagram of the model is shown in Fig. 9. Similar to the truss model,
the cantilever plate model was attached to ground at its end by springs and
dampers in all six DOF. The scalar elements simulated the effects of fasteners
and the surrounding structure(s). A uniform end load was applied in the axial,
transverse shear, and bending directions. A 12 x 30 mesh of QUAD2
elements was used to model the plate and two sets of 30 BAR elements
modeled the stiffeners. The BAR eclements were offset relative to the plates.
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Fig. 9. Beam-Stiffened Cantilever Plate Problem

For the scalar elements, spring constants were set at about 100 to 1000 times
the stiffness of the members at the appropriate DOF; and the damping
constant was set at ten times the material damping constant, or 0.2.

This model illustrates the power flow capability for plate elements, and
helps further test the beam element formulation. Also, the power balance
equation is checked for the case of multiple element types in a model; the total
power dissipation in the beams plus the total power dissipation in the plates
must match the difference of power input and power output.

Results

An eigenvalue extraction of the model showed the first 25 natural
frequencies ranging from 15 to 2,122 Hz. Loads were applied to the model for
a frequency range of 15 to 465 Hz with a resolution of 15 Hz.

A plot of power flows in one of the beam stiffeners over the frequency
range is shown in Fig. 10. Since the model and the loading function are
symmetric about the center of the plate, power flows through both beam



stiffeners are the same. Curves are graphed for three locations along the
beam, with d/L = 0.0 at the load point. Only two significant resonances
appear in the plot; one peak occured at 75 Hz, and the other at about 240 Hz.
Although the eigenvalue analysis of the problem predicts other resonant
frequencies in this analysis range, their effects are likely felt in the plate
section of the model.

Power Flows in Beam Stiffener
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Fig. 10. Power Flows for Three Locations Along Beam Stiffener

For a plate element problem, spectrum plots are more difficult to
generate and understand. Graphical (contour and vector) plots are needed to
show the spatial variation of the power flow variables. A contour plot of the
power flow magnitudes of the plate and beam elements is in Fig. 11. The
beam elements are illustrated as plates in the diagram so their results may be
visualized. Fig. 11 shows how power flows through the model at 455 Hz.
Power flows into the model at the load points at the end of the plate, where
some of it channels down the beam stiffeners, and the rest flows through the
plate.

Fig. 12 shows a vector plot of power flow, which shows the directions
that the power is flowing. The lengths of the arrows shorten as power travels
from load point to the mountings at the end of the plate. In this case, almost
all the power dissipated is due to material damping.
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Fig. 11. Power Flow Magnitudes, =455 Hz.

The effects of material damping are shown in Fig. 13, which is a plot of
power dissipation. As mentioned in the "Damping and Power Dissipation”
section earlier, a power dissipation field will resemble a mode shape, since
dissipations are directly related to the squares of the displacements. In this
case, the largest power sinks are outside the beam stiffeners and toward the
rear of the plate.

Power balances are reasonably accurate for all frequencies, with the
total power dissipations of the beam and plate elements matching the
differences between input and output powers. The results show that both
element types may be used accurately in a single model.

SUMMARY AND FUTURE WORK

A general capability for the calculation of power flow variables (power
flow, mechanical intensity, power dissipation, power input and power output)
has been developed for use with the finite elememt code NASTRAN. BAR,
QUAD?2, QUAD4, HEXA2, ITHEXi, MASSIi, and ELASi element types are
currently supported. Unlike most of the studies presented in the literature, all
types of power flows, flexural, axial, and torsional, are considered in the
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element formulations.

The results of the test problems indicate the method is a valid way of
predicting the power flow response of a dynamically excited system at
relatively low frequencies. Results for the test problems were more accurate
at resonances than between resonances. Inaccuracies in the off-resonant
responses are due to numerical problems; however, errors at low response are
not as critical as errors at peaks.

Using FEA to calculate power flows is accurate and economical for the
lower modes of a mechanical system. However the power flow results will
only be as good as the NASTRAN results. Good modeling techniques and an
understanding of the wavelength sizes of a problem are required. The shorter
the wavelengths, the denser the required mesh will be.

Future work is extensive, and includes calculating power losses due to
radiation damping, attaching dampers and active control devices to structures
and measuring their effects, applying shape optimization techniques to
structures with power flow variables as design constraints, determining the
effects of mesh dependence, adding the power flow capability to NASTRAN,
and developing a more specialized graphical post-processing package.
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FINITE ELEMENT ANALYSIS OF A MICROMECHANICAL
DEFORMABLE MIRROR DEVICE

T. J. SHEERER, W. E. NELSON AND L. J. HORNBECK
TEXAS INSTRUMENTS INCORPORATED, DALLAS TX.

ABSTRACT:

Texas Instruments has developed a monolithic spatial light
modulator chip consisting of a large number of
micrometer-scale mirror cells which can be rotated through an
angle by application of an electrostatic field. The field is
generated by electronics integral to the chip. The chip has
application in photoreceptor based non—-impact printing
technologies. Chips containing over 16000 cells have been
fabricated, and have been tested to several billions of cycles.
Finite Element Analysis (FEA) of the device has been used to
model both the electrical and mechanical characteristics.

INTRODUCTION:

The very high component density achieved in integrated
circuits is well-known. Using the same processing techniques it
is also possible to produce micromechanisms on a similar scale.
Petersen (1) has described the manufacture and testing of
extremely small silicon cantilevers and also lists several
commercial applications of micromechanical devices.

The deformable mirror device (DMD) consists of a chip
containing a large number of mirror cells as shown in Fig. (1).
The cell consists of a 19%um x 19 um aluminum mirror pivoted at
two corners by 4.5 um beams. The mirror and its support
structure are 0.375um in thickness while the beam is of
nominal width 1.0 um and nominal thickness 0.08 um. 2.3 um
below the structure are two address electrodes and two landing
electrodes. To rotate the mirror through an angle, , a bias
potential, ,is applied to the upper structure and landing
electrodes while appropriate address potentials are applied to
the address electrodes as shown in Fig.(2). The cell may be
used as an optical lever to deflect a light beam in and out of
the field of a projection lens as shown in Fig. (3). The effect
is thus of being able to activate and deactivate a '"pixel" at
the very high speed of the DMD cell. The DMD is more fully
described in (2) and (3). 1In an electronic printer using a
xerographic type process the 1light 1is used to selectively
dissipate charge on a transfer medium, prior to the charge
being transfered to paper,allowing the selective deposition of
"toner" material on the paper. The most common type of printer
using this process 1is the laser printer, which requires in
addition to the laser a complex optical system and a
mechanically rotating mirror to ’scan’ the transfer medium. Use
of the DMD (Fig. (4)) is simpler, allowing use of a conventional
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incandescent source. Additionally, by variation of the "on"
time of the cell, the DMD allows use of grey-scale printing.
Mechanical analysis of such devices by FEA 1is not different
from analysis of large structures, the only requirement being
judicious choice of units for dimensions and mechanical
properties to avoid faults due to arithmetic overflow or
underflow. Electrostatic analysis is also relatively simple, as
the equations of electrostatics are identical with those of
heat transfer. By use of COSMIC NASTRAN in these applications
it 1is possible to accurately model the behavior of a DMD and
assess the effects of design modifications without the very
considerable expense of a production run.

EQUATIONS OF ELECTROSTATICS AND THEIR ANALOGS:

The analogy between electrostatics and steady-state
heat transfer is exact, and NASTRAN’s heat transfer
capabilities can be used in the solution of electrostatic field
problems without modification. In heat transfer we have:

q =-k.V T (1)
whereas in electrostatics the polarization, D, is given by:

D =-£.V v (2)

Heat sources and sinks are equivalent to point charges and
fixed temperatures are equivalent to fixed potentials. In
electrostatics the potential gradient 1is refered to as the
field, E. There is no directly analogous term in heat transfer.
The analogy between the different terms is listed in Table (1)
below:

TABLE 1: ANALOGY BETWEEN ELECTROSTATICS AND HEAT TRANSFER

HEAT TRANSFER ELECTROSTATICS
TEMPERATURE POTENTIAL V
TEMPERATURE GRADIENT ELECTRIC FIELD E
HEAT FLUX POLARIZATION D
HEAT SOURCE POINT CHARGE q
CONDUCTIVITY PERMITTIVITY &
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The force exerted on a charge by an electric field is given by:
F= gqg.D (3)

where D is the electric polarization and g the charge. As the
charge 1itself contributes to the field it is necessary to
integrate the above expression to obtain a useful expression in
terms of E, giving normalized force, or pressure, in vacuo:

F = 0.5§&,E.E (4)

where is the permittivity of free space. This expression
allows calculation of the pressure exerted at an element face
directly from the output of the finite element analysis. The
charge distribution resulting from a potential distribution is
obtainable from the single point constraint forces which in the
case of heat transfer indicate heat sources and sinks. One
important difference in behaviour between the electrostatic
case and the thermal case is that a conducting material acts in
electrostatics in a manner equivalent to an infinitely
conductive material in heat transfer, so that all points on the
conductor are at the same potential. This can be modelled by
appropriate constraints in the NASTRAN input deck.

ELECTROSTATIC MODEL OF THE DMD:

A 3-D model of the DMD cell was constructed using solid
elements as shown in Fig. (5). Fig. (6) plots the z-component of
the electric field ,Ez, vs. x—-coordinate at the center and edge
of the model for a bias potential of -12V and address
potentials of +5V and zero. Fig. (7) is a fringe plot of Ez
superimposed on the model. On the basis of the results obtained
it was determined that fringeing effects were of relatively
small significance and a series of 2-D models were made with
mirror rotation angles form 1 to 9 degrees in the XY plane.
Rotation of approximately 9.2 degrees was sufficient to bring
the mirror in contact with the landing electrode. From each of
these models The useful component of electric field, Ey, was
obtained as a function of location on the mirror. In increments
corresponding to element size on the model, the force exerted
on the mirror was calculated as a function of location using By
and the mirror’s width as a function of location.Figs. (8-11)
are fringe plots of potential V and field Ey for two different
rotation angles, Figs. (12-13) plot Ey vs. location for
different rotation angles for bias potentials of -12V and -16V,
with an address potential of +5V. The choice of +5V allows use
of standard (TTL or CMOS) logic electronics to control the DMD,
with the bias potential being generated separately.
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MECHANICAL MODEL OF THE DMD:

The mechanical model of the DMD was constructed in order to
verify the assumption that the device acted as a rigid body
(the mirror) mounted on torsion rods. Using the measured
dimensions of the device a model was constructed using plate
and bar elements and subject