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FOREWORD

NASTRAN® (NASA STRUCTURAL ANALYSIS) is a large, comprehensive, nonproprie-
tary, general purpose finite element computer code for structural analysis
which was developed under NASA sponsorship and. became available to the public
in late 1970. It can be obtained through COSMIC (Computer Software Management
and Information Center), Athens, Georgia, and is widely used by NASA, other
government agencies, and industry. '

NASA currently provides continuing maintenance of NASTRAN® through COSMIC.
Because of the widespread interest in NASTRAN®, and finite element methods in
general, the Ninth NASTRAN® Users' Colloquium was organized and held at the
Kennedy Space Center, October 22-23, 1980. (Papers from previous colloquia
held in 1971, 1972, 1973, 1975, 1976, 1977, 1978, and 1979 are published in
NASA Technical Memorandums X-2378, X-2637, X-2893, X-3278, X-3428, and NASA
Conference Publications 2018, 2062, and 2131.) The Ninth Colloquium provides
some comprehensive general papers on the application of finite element methods
in engineering, comparisons with other approaches, unique applications, pre~
and post-processing or auxiliary programs, and new methods of analysis with
NASTRAN,

Individuals actively engaged in the use of finite elements or NASTRAN®
were invited to prepare papers for presentation at the Colloquium. These
papers are included in this volume. No editorial review was provided by NASA
or COSMIC, however, detailed instructions were provided each author to achieve
reasonably consistent paper format and content. The opinions and data pre-
sented are the sole responsibility of the authors and their respective organi-
zations.

Cochairmen:
Robert L. Brugh
COSMIC
University of Georgia
Athens, GA 30602
and
Henry Harris

John F. Kennedy Space Center
Kennedy Space Center, FL 32899

ii



CONTENTS

FOREWORD . « o ¢ v ¢ ¢ ¢ ¢« ¢ & o o o o s o o o o o o o o o o o o o

1.

N

10.

11,

NEW CAPABILITIES AND MODIFICATIONS FOR NASTRAN LEVEL 17.5
AT DTNSRDC v « v ¢ ¢ v o o o o o o ¢« o o o o o o o o &« » . .
by Myles M. Hurwitz (David W. Taylor Naval Ship Research and
Development Center)

IMPROVEMENTS IN SPARSE MATRIX OPERATIONS OF NASTRAN . . . . . .
by Shinichiro Harano (Hitachi, Ltd.)

SOLUTION SENSITIVITY AND ACCURACY STUDY OF NASTRAN FOR LARGE
DYNAMIC PROBLEMS INVOLVING STRUCTURAL DAMPING . . . . . « « .+ .
by A. J. Kalinowski (Naval Underwater Systems Center)

RING ELEMENT DYNAMIC STRESSES . . . « « « o « &+ o & e s e e
by Nancy Lambert (A. O. Smith Engineering Systems) and
Michael Tucchio (Naval Underwater Systems Center)

AN ENHANCEMENT OF NASTRAN FOR THE SEISMIC ANALYSIS OF STRUCTURES

by John W. Burroughs (Ontario Hydro)

SOLUTION OF ENFORCED BOUNDARY MOTION IN DIRECT TRANSIENT AND
HARMONIC PROBLEMS . . . . . . « + o « .« s e e e e e e e e e
by Gary L. Fox (NKF Engineering Associates, Inc.)

. APPLICATION OF NASTRAN TO THERMAL TRANSIENT ANALYSIS

WITH SURFACE ABLATION . . ¢ « & o o o s o s o o s o s o o s o @
by Karl Meyer (Planning Research Corporation)

ON THE APPLICATION OF NONLINEAR LOAD ELEMENTS TO THERMAL
ANALYSES USING THE NASTRAN THERMAL ANALYZER . . . . « « ¢ « o o
by Hwa-Ping Lee (NASA Goddard Space Flight Center)

NASTRAN ANALYSIS OF HEAT-TRANSFER FLUID FILL PIPE FAILURES . . .
by J. Ronald Winters (Tennessee Eastman Company) :

A NASTRAN INVESTIGATION OF SIMULATED PROJECTILE DAMAGE
EFFECTS ON A UH-~1B TAIL BOOM MODEL . . &+ &+ « ¢ o & o o o o o o
by Arnold T. Futterer (U. S. Army Armament Research and
Development Command, Ballistic Research Laboratory)

FINITE CIRCULAR PLATE ON ELASTIC FOUNDATION CENTRALLY

LOADED. BY RIGID SPHERICAL INDENTER . « ¢ ¢ ¢ o o o o o o o« o &
by S. K. Wadhwa and P. P. Yang (IBM General Systems Division)

1ii

Page
. ii

. 106

. 121

. 140

. 161

. 173



- ) Page

12. ELASTIC-PLASTIC ANALYSIS USING A TRIANGULAR RING
ELEMENT IN NASTRAN . . « « &+ & « « ¢ o ¢ s o s o o s o« o o s » o » 190
by P. C. T. Chen (U. S. Army Armament Research and Development
Command, Benet Weapons Laboratory, LCWSL)

~ 13. DEVELOPMENT AND ANALYSIS OF THE LEARJET 54/55 FUSELAGE '
z NASTRAN MODEL USING SUBSTRUCTURE TECHNIQUES' )
by Robert R. Boroughs, Sivam Para@asivam, and Joanna Werner

(Gates Lear jet Corporation) :

14. COMPARISON OF FINITE ELEMENT ANALYSES OF A PIPING TEE
‘ USING NASTRAN AND CORTES/SA « &+ & & s o o = 5 s 5 s s o o o » « » 224
by Antonio J. Quezon and Gordon C. Everstine (David W. Taylor
Naval Ship Research and Development Center)

v



NEW CAPABILITIES' AND MODIFICATIONS FOR NASTRAN
LEVEL 17.5 AT DTNSRDC

Myles M. Hurwitz
David W. Taylor Naval Ship Research and Development Center

SUMMARY

Since . 1970 DTNSRDC has been modifying NASTRAN to suit various Navy require-
ments. These modifications have included major new capabilities as well as
user conveniences and error corrections. This paper describes the new features
added to NASTRAN Level 17.5 at DTNSRDC. The subject areas of the additions
include magnetostatics, piezoelectricity, fluid-structure interactions, iso-
parametric finite elements, and shock design for shipboard equipment.

INTRODUCTION

The David W. Taylor Naval Ship Research and Development Center (DINSRDC)
has been involved with NASTRAN since 1968. 1In the ensuing 3-4 years, prior to
the first public release of the program in 1972, engineers at DINSRDC gained
valuable experience with NASTRAN, often interacting with the program developers
on various theoretical, programming, and user aspects. The result of that
early effort was a detailed NASTRAN evaluation report, which included a brief
description of our first modification to NASTRAN--the addition of a heat trans-
fer finite element to the NASTRAN element library (ref. 1).

In subsequent years, the DTNSRDC modifications to NASTRAN were many and
varied, ranging from error correction and user conveniences to new finite
elements and new functional modules and rigid formats.

Since Level 17.5 was released in the Spring of 1979, our NASTRAN modifica-
tion effort has remained vigorous. The subject areas of new capabilities and
uses include magnetostatics, piezoelectricity, fluid-structure interactions,
isoparametric finite elements, and shock design of shipboard equipment. This
paper describes these subject areas as we have implemented them into NASTRAN,
sample applications of some of these areas, and the correction of an important
program error. All of this work will be transferred to the DTNSRDC version of
Level 17.6 after the standard version is released.

MAGNETOSTATICS

The prediction of static magnetic fields around ships and submarines is of




concern to the Navy because of the need for .these craft to remain undetected.

A numerical procedure which can predict these fields can also be used to
evaluate systems which might reduce the fields, e.g. degaussing coils. Such a
procedure, making use of a scalar potential rather than the less efficient
vector potential, was described in reference 2. Reference 3 describes a
capability for computing the magnetostatic fields about axisymmetric structures
that was added to NASTRAN. However, that work was limited to the TRAPRG and
TRIARG finite elements and to axisymmetric current coils. In Level 17.5, the
analysis has been extended to general built-up and continuum structures with
general current coil configurations. The finite elements allowed are those
available for NASTRAN heat transfer analysis (ref. 4), for reasons which may be
seen from the brief description of the applicable theory which follows.

The applicable Maxwell equations governing the magnetostatic case are

VxH =J (1)
VeB=20 ) 2)
where
H = magnetic field strength or intensity
B = magnetic induction or flux density
J = current density

The constitutive relation
B = uH : (3)

where u is the magnetic permeability is also required. If H is separated into
two parts

H=H +H (4)
c m
- where H , the field in a homogeneous region due to current density J (as might

occur in a current coil), may be computed using the Biot-Savart law, (ref. 5),
then H becomes the only unknown. By equations (1) and (4),

VxH =0 (5)
m .
so that
| Ho=V¢ | (6)
where ¢ is a scalar potential. By equations (2), (3), (4), and (6),
Ve e + 9 - uHC'= 0 (7)
which can be put into the standard form

K¢ = F (8)
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N being the displacement function for a finite element at the 1th grid point.
Equatlon (9) is of the same form as that .required to compute the conductivity
matrix in heat transfer, with p representing magnetic permeability rather than
thermal conductivity. Equation (10), which is dependent on the finite element
type, is not in a standard heat transfer form and was added to NASTRAN along
with the new bulk data cards needed to specify H.. Current coils may be
defined, from which NASTRAN computes H. using the Biot-Savart law, or H, may be
specified as coming from an ambient field, or a combination of both sources of
He may be given.

Equation (6) gives the unknown Hp, which, in standard NASTRAN terminology,
is the thermal gradient, and equations (4) and (3) yield the final result.

One unanticipated addition to NASTRAN was required when it was discovered
that the program did not compute thermal gradients for the isoparametric
solids IHEX1, IHEX2, and IHEX3, as needed by equation (6). An example of this
capability is shown in figure 1. The finite element model depicts a solid
sphere (shaded part) which has been placed into a uniform, ambient, axial
magnetic field. TRIARG elements were used and only the upper half was modeled
due to symmetry. The NASTRAN results are compared with theoretical results in
Table 1.

PIEZOELECTRICITY

The analysis of sonar transducers requires accounting for the effects of
their piezoelectric materials. The theory for these materials couples the
structural displacements to electric potentials (ref. 6). This theory was
incorporated into NASTRAN only for the TRIAAX and TRAPAX finite elements (ref.
7). These elements, trapezoidal and triangular in cross-section respectively,
are solid, axisymmetric rings whose degrees-of-freedom are expanded into

Fourier series, thus allowing nonaxisymmetric loads.

The piezoelectric constitutive relations may be written as

o} [cE] el {e}
= T S (1)
{D} [e] -1e71] \{E}

| IT
= = |0 ag g [9) g g
where {0} stress components > b 69’ - ’ 0 ’ +)
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{p} components of electric flux den31§y lprr’ Dzz’ DBGJ

{e} = mechanical strain components
{E} = electric field components
E

[e”] = elastic stiffness tensor evaluated at constant electric field

[e] = piezoelectric tensor

S . . .
[e”] = dielectric tensor evaluated at constant mechanical strain

The displacement vector of a point within an element is taken to be

{u} = (12)

S § 4 ¢

where u, v, and w are the ring displacements in the radial, tangential, and

" axial directions, respectively, and ¢ is the electric potential. The latter
degree-of-freedom is taken to be the fourth degree-~of-freedom at each ring.
Each of these quantities is expanded into a Fourier series with respect to the
azimuth position 6. The Fourier series for the electric potential ¢ has the
same form as the Fourier series for radial displacement u, as given in the
NASTRAN Theoretical Manual (ref. 4). :

The "stiffness'" matrix for the Nth harmonic is

. _ _
K™ o q f [ ™I {Le] lel | g™y 4rq, (13)
: T S
rz [el” ~[e"]
(N) . ‘ 3 " r . " 3 . ) th
where [B ] is the matrix of "strain-displacement" coefficients for the N
harmonic.

Equations (12) and (13) indicate that the matrix equation to be solved for
static analysis may be partitioned as follows:

[[KM] [qu,]] (6] ({Fy)

= (14)
[K¢6] [K¢¢] {¢} {F }

¢

where {8} = IPl’ Vis Wis sees Uy Vo, wnJT
{s} = |_¢1, cens ¢n_]T
{Fs} = vector of structural forces
and {F¢} = vector of electrical charges



In addition to the new data cards describing the piezoelectric materials,
many modifications and corrections to NASTRAN were made, including the computa-
tion of complex stresses and forces for the TRAPAX and TRIAAX elements.

An example of a piezoelectric problem is shown in figure 2. This is an
axially polarized PZT-4 piezoelectric disk, whose natural frequencies are to be
determined. Table 2 compares the NASTRAN results with experimental and MARTSAM
results (ref. 8). MARTSAM uses finite elements similar to NASTRAN's TRIAAX and
TRAPAX elements, but with quadratic displacement functions rather than the
linear displacement functions in NASTRAN. The MARTSAM results were obtained
with a much coarser mesh,

FLUID-STRUCTURE INTERACTION

Investigation of .the coupling of fluid and structural effects ‘has been an
important part of the DTNSRDC program during the past few years. Applications
include vibrations of submerged structures (refs. 9 and 10), shock response of
submerged structures (refs. 11 and 12), and the response of fluid-filled pipes.

Although these new applications did not require additions to NASTRAN, they
did involve inventive use of DMAP and unusual use of existing data cards. This
relatively new subject area shows the power of NASTRAN and its DMAP capability
to adapt to new uses without requiring modification of the source code.

ISOPARAMETRIC FINITE ELEMENTS

A number of additions and modifications have been made to NASTRAN in the
area of isoparametric finite elements.

1. A two-dimensional membrane element IS2D8, with quadratic displacement
functions, was added to the finite element library. This element has complete
NASTRAN capability with the exception of piecewise-linear analysis. The
element has been used in a number of applications where the CQDMEM1 element
would have required a much finer mesh.

2. The standard version of NASTRAN computes grid point stresses of the
isoparametric solids IHEX1, THEX2, and IHEX3 directly at the grid points.
However, it has been shown that the stresses computed at the grid points are
inferior to stresses extrapolated to the grid points from stresses calculated
at the Gauss integration points (ref. 13). This extrapolation method has been
added to the program for the IHEX1, IHEX2, THEX3, and IS2D8 elements.

3. The isoparametric solid elements are limited to isotropic materials in
the standard version of NASTRAN. We have added a capability for rectangular
anisotropy for those elements.



4. As mentioned in the Magnetostatics section, a thermal gradient
computation has been added for the isoparametric solids.

5. Although Level 17.5 allows for the choice of single precision or
double precision arithmetic for some computations, including element matrix
generation, it did not allow this choice for the isoparametric solids; only
double precision was allowed. Since DINSRDC uses CDC computers with 60-bit
single precision words, a single-double choice for these elements was added.
Generation time for the single precision stiffness matrix for one IHEX2 element
with three Gauss integration points was reduced on the CDC 6400 computer from
12 CPU seconds to 4.

SHOCK DESIGN OF SHIPBOARD EQUIPMENT

The Dynamic Design-Analysis Method (DDAM) was developed for the shock .
design of shipboard equipment (ref. 14). This method is similar in many
respects to the techniques used in earthquake analysis. In fact, an earthquake
analysis using NASTRAN has been performed (ref. 15). However, DDAM, rather ‘
than some variation of it, is required by naval shipbuilding specifications for
shipboard equipment. Therefore, we are presently developing a DMAP procedure
and a functional module to perform DDAM analyses.

Briefly, the steps in the DDAM method are as follows:

1. Compute the normal modes and natural frequencies.
2. TFor each mode, the ith, for example, compute the participation factor

P, = = {¢ } [M]{D} (15)
1 mi 1

where P, = participation factor for the ith mode

m, = modal mass term for the ith mode = {¢i}T[M]{¢i}

[M]} = mass matrix
{¢i} = ith pode shape
{D} = direction cosine vector defining desired direction (DDAM analyzes
one direction at a time)

3. Calculate the effective mass and effective weight in each -mode.

wEE — p (6. 1T [M1{D} = m P2 (16)
1 1 Al 1 1 ]
i 1

where



eff

Mi = effective mass in ith mode
eff ‘
W, = effective weight in ith pode

g = acceleration of gravity

4. Using the effective weights just computed, locate the design spectrum
value Vi for each mode in the desired direction.

- 5. Compute the effective static force for each mode.

{F.} =P,V o [M/{s } (18)
i i'ii i

" where w, is the ith natural frequency.

6. Perform a static analysis with each load to compute stresses. (There will
be one static analysis for each desired mode in each desired direction.)

7. Compute the so-called NRL sum (ref. 16) of the stresses at each desired
point (element centroids) as follows:

SN
5y~ fogm | + b O

where S.m = the maximum stress at the jth point (taken over the modes under
consideration)

Two NASTRAN runs will be required for a complete DDAM analy81s, the first
will perform steps 1-3, and the second, steps 5-7. The D and V terms will be
input through DMI cards, although some default values will be available for V.
A post-processor, possibly included in NASTRAN as a new funct10na1 module, will
perform the NRL sums in step 7.

ERROR CORRECTIONS

Numerous error corrections have been made to Level 17.5 by DINSRDC and
-reported to COSMIC, but perhaps the most important involved the stiffness
matrix computation for the six elements QDMEM1, QDMEM2, SHEAR, TWIST, TRAPAX,
and TRIAAX. The method of matrix computation for these elements was changed
from SMA-type in Level 17.0 to EMG-type in Level 17.5. ' The change introduced
an error which occurred only for certain combinations of grid point numberings
for these elements.

All the error corrections reported to COSMIC are expected to appear in the
forthcoming Level 17.6.
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Table 1. Ferromagnetic ‘Sphere Results

NASTRAN

ANALYTIC
SOLUTION

0.396 TESLA 56.3°

0.843
1.488
0.523
0.941
0.417
0.571
0.705
0.479
0.526
0.566
0.492
0.499

_0.516

527
0.0
86.9
765
79.2
74.6
83.7
86.7
85.3
88.3
89.3
88.6

81

SOLUTION

0.396 TESLA 59.0°

0.840
1.537
0.527
0.921
0.409
0.579
0.697
0.483
0.532
0.562
0.499
0.505

0.523

53.5

0.0
87.1
76.3
80.6

745

83.6
86.8
85.4
88.5
89.3
88.6

880 -

1.6

DEVIATION
00% 2.7°
03 08
3.3 0.0
0.7 0.2
21 02
1.9 1.4
15 0.1
1.1 0.1
7 0.1
1.1 0.1
0.7 0.2
15 041
1.3 0.0

1



Table 2. Natural Frequencies of Piezoelectric Disk

Natural Frequencies (cps)
MARTSAM NASTRAN
Mode Experimental Mesh Mesh
1 22042 - .23298 24323
----- : 59805 61114
3 R 103048 104689
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Figure 1 — Finite Element Mesh of Ferromagnetic Sphere!
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IMPROVEMENTS IN SPARSE MATRIX CPERATIONS OF NASTRAN

‘Shinichiro Harano
Hitachi, Ltd.

SUMMARY

This paper describes improvements in sparse matrix operations for
the NASTRAN program achieved by Hitachi, Ltd,(Japan). To solve a large
scale problem at a high speed, a great emphasis was laid on how to make
a reduction in execution time needed by matrix operations, since!the size
of the problem depends largely on speed of matrix operations as well as
on hardware and program performance. The descriptions in this paper are
presented under Introduction plus five subjects: Sparse Matrix and Matrix
Packing, Matrix Decomposition, Forward Elimination and Backward
Substitution, Eigenvalue Extraction Methods and Parallel Processing
Oriented Matrix Operations. These improvements can be applied to other
vergsions of NASTRAN with a slight modification by using several
subroutines which we have developed.

INTRODUCTION

Since the introduction of NASTRAN level 15.,5.1 in 1974, we have
improved it by a series of program enhancements., Highlights of them are
development of the IG/0G (Input Generator/Output Generator) program to
perform automatic meshing and edit the_results of. _calculation, and . __ .
addition of isoparametric elements of two - dimensions, three dimensions or
axi-symmetry. Dealt with in this paper is another highlight of them,

Recent drastic improvements in hardware performance have brought
a gradual moving from the third generation computers, typified by IBM 370
to distributed computers, also typified by IBM 3033. Being in step with
such worldwide trends, Hitachi has developed HITAC M~180 closely
comparable with IBM 370/168 and HITAC M~200H providing a throughput three
times that of IBM 370/168, Along with these hardware breakthroughs, the
parallel processing feature appearing with vector and array processors
~;wi11 be increasingly brought in, changlng a current software environment
. greatly.

Accordingly, in putting a further refined processingfsygtéﬁﬁﬁor
matrix operations into practice under such situation, one must direct his
attentions to hardware as well as software dimensions of the break-
throughs. We have confirmed that a more effective use of a vector
processor is well attainable by the Gaussian elimination of inner product
type, also called "the Skyline method", which was proposed by Prof,
Wilson (UCB), rather than by the conventional band matrix algorithm,

14



SPARSE MATRIX AND MATRIX PACKING

Generally, matrices for structural analysis are characterized by

Z‘Sparsity. To take full advantage of this characteristic in matrix opera-

CYNTD (e g

tions, NASTRAN carries out matrix data packing. The way of matrix data
packing is especially important for a problem where a large scale matrix
'is to be handled efficiently. So far, in transmission of matrix data

between a secondary storage device and a main memory via an input/output
buffer, packing routines have been used to transmit data from the input/

- output buffer to aliow matrixz data to be referenced. However, this
- method is less advantageous to handle a large volume of matrix data since

it needs much overhead time for the transmission.

New "non-transmit" packing routine has been added to our version of

NASTRAN to allow matrix data to be refered to directly from the input/

. output buffer, The matrix packing format obtained as a result is shown
. in figure 1., In this figure, the string is a set of successive non-zero
» > terms, plus the row number and length of string ahead of_ these _terms,

- Further, the number of strings in one column that'are resident at one

input/output buffer is given to control how to refer to matrix data resi-

- dent at the buffer, Padding information is also given to adjust a word

boundary for data provided in double precision. At the present, the new
packing routine to perform a direct reference to the input/output buffer

“makes only the READ option effective., This non~transmit type of routine
‘called string by string receives or sends: .

(1) the start adress of a string in a buffer

(2; the foremost row number of a string

the length of a string

(4) the instruction to show whether or not EOL (end of column detec-
tion is to be made.)

(5) type of matrix data

Use of the packing routine permits various routines for matrix hand-

'$‘ling to perform a direct reference to the input/output buffer if once

- they have received data addresses, The packing routine offers a buffer-
- by-buffer backspace feature for efficient backspacing in sequential

" - access. Unlike a conventional backspacing that needs twice back record
,x;for a single read of one record (one column), as shown in figure 2, this

feature omits overlapping of READ operation and back record, as also
shown in figure 3. This feature eliminates the necessity of writing, in
decomposition of a symmetric matrix, of a portion of the matrix to its
upper triangular matrix from the last to the first columns of the sym-

é}ametric matrix, thus saving time for generating the upper triangular
"matrix. Furthermore, the feature requires the writing of only a lower
- triangular matrix onto the secondary storage device, bringing 10 to 30%

reduction in use of the disk space of the storage device.
This new matrix packing technique is fully employed in the matrix )

decomposition described in MATRIX DECOMPOSITION, Figure 4 reveals how
the technique is superior to conventional techniques by comparisons of

15



packing routines to pack and unpack one column of the matrix in respect

to CPU time versus non-zero term densities, The CPU time for packing/

unpacking of one column is on the ordinate, while non-zero term densities

are on the abscissa. The length of one column is 2000 and the whole CPU

time has been obtained as the result of 300 iterations, Packing routines

mutually compared in this figure are:

(1) INTPK ° : Clears the area for one column to zero to perform ele-

ment-by-element unpacking., (This is a conventional
unpacking routine.)

(2) UNPACK : Unpacks a column at one time. (This is a conventional
unpacking routine.)
(3) PACK : Packs a column at one time. (This is a conventional
' packing routine,)
(4) INPNT : Clear the area for one column to zero and transmit

string data directly from the buffer to the appropriate
location of the column., (This is the new packing
routine,)

Figure 4 also shows CPU time for READ and WRITE operations in case
of GINO (General Input Output Routines) as additional information,
Although the READ and WRITE operations may be performed irrespectively of
non-zero term density of the matrix, they cannot take advantage of spar-
sity in case of low density due to unsatisfactory efficiency. Further,
all elements including non-zero ones are written out onto the secondary
storage device, making an increase in disk storage space needed.

As a result, we adopted a combination of the clearing a core space
to zero and the new routine of non-transmit type to unpack columns in
matrix decomposition, 1In short, figure 4 reveals that the new unpacking
routine permits a speedup approximately 2.1 times the conventional
unpacking routines in such a situation that densities of unpacked one
column usually fall in the range of 0.4 to 1.0, owing to the method of
matrix decomposition described: below.

MATRIX DECOMPOSITION

In solving a given system of linear equations, where the coefficient
matrix is a large scale sparse matrix, it is general to decompose the
matrix as,

A = L¥D*U ' . (1)

. where, A is the original matrix (e.g. stiffness matrix), L is a unit
- " lower matrix, U is a unit upper matrix and D is a diagonal matrix

"which is usually part of the diagonal portion of L or U . The discus-
sion below assumes that the original matrix is symmetric. To decompose
the matrix, the Skyline method was used. The name of "Skyline" is
derived from the fact that the contour line of column's all foremost
none-zero elements is similar to a skyline, This method divides a por-
tion enclosed in a skyline and a diagonal line into two groups vwhose
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siges are such that the groups are capable of being resident at a free
area of a v1rtualu§ﬁorage space, The contents of these groups may be

, read from the secondary storage device which the results of calculation

YNNG X e O

may be written out onto as needed. This is shown in figure 5.

. Unlike conventional techniques, the Skyline method employs an upper
triangular matrix, The diagonal matrix is generated on a diagonal terms

iof triangular matrix U , The original symmetrié matrix is decomposed
!in the following algorithm.
L |
u;:J = aij _z—ukiul*{.:j (1=2, ..., §-1) (2)
k=1 |
- * i = -
uij - uij/dii (1—1! o0 j 1) (3)
d.. =a.,. =)u_.u¥, '
ji . 33 kélka kj (_4>
; The method carries out (2) through (4) in succe351on for j= 2,...,n
;> 'where, n is the dimension of matrix A , d = is assumed, PFirst,

. the algorithm for the Skyline method used for an ificore routine is desc=-

. ribed with the help of the explanatory illustration of figure 6, This
~+ ;method employs the Gaussgian elimination of inner product type, as shown

‘in this figure. All column's elements from foremost non-zero ones to
diagonal ones, including zero elements, are stored on the memory. The

. ‘store address at that time is resident at array M, . The address of the

‘I~-th row.diagonal term is expressed by M(I), The value at the I-th row
,and the J-th column (position pointed by IJ) is determined by the inner

i, product of vectors P and Q . Vector P,k has a length of:
; o

‘.
Loy

;] JE = M(J) - M(F-1)" | L (5)

If JH=1, the diagonal terms are those obtained by matrix decomposition,
-and therefore, processing is skipped. Vector ', a party of inner pro-

., ‘duct with P, satisfies:

J>1>J-JH , (6)

- Let NP be a length of the intersection of vectors P and Q . Since

-the length of vector Q is,

IH = M(I) - M(I-1) (7
:3 length NT is, .
NP = Min{T - (J - JE), B} 1-° ' ' (8)

The following processing is performed only if NT is positive., Let
NS be a start address of element being involved in inner product calcu-
lation of vectors P and @ . Then, NS may be expressed as:

A1



NS = M(I) - NP . (9)

The address of the I-th row and the J=th column element to which the
inner product .value is to be added is,

I = M(J) = (J-I) g (10)

. The distance (IC) between the addresses of foremost elements of vectors
P and Q is, ' '

IC = IJ - M(I) B (11)

Thus, letting X be a vector storing elements on the memory, the foremost
elements for inner product calculation of vectors Q -and P are, .

X(NS) and X(NS+IC), respectively. (12)

The length of inner product, then, is NT, Assuming that the value of
inner product between vectors P and Q is S, the I-th row and the
J~th column is obtainable by:

X(13) =x(13) - s | | ‘ - (13)

: By performing the calculation for all I restricted by (6), the
entire J-th column may be obtained., Notice that the value obtained by
(13) corresponds to that by (2)., In a practical LU-decomposition, as
shown by (3), each element of the J-th column must be divided the corres-
ponding ‘diagonal:element (See (15)). The J-th row and the J-th column

diagonal term is,

X(1J) = x(IJ).-ggis X§%%;§(K) (1=J, KD=M(K)) (14)

The last result for the I-th row and the J-th column is,

- X(K) = _§§%%7.i (K=NS, ..., NE) = (15)

By carrying out the above process for 2%J€n, the upper triangular matrix
of matrix A may be generated in X,

: The above algorithm is well applicable to matrix calculation if all
" matrix elements are capable of being stored on the memory., Otherwise,
matrix grouping is needed prior to implement the Skyline method.

Agsume that the original matrix is such a matrix as shown in figure
7. First, this matrix is divided into some groups, each of which should
not have more elements than those restricted by a core space., In the
example of figure 7, the matrix is divided into four groups, each of

which has not more than 15 elements, These divided groups provide the
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information of table I 3 headings of the table are:
(1) k(1) : ther current group number
(2) k(2 minimum group number needed by calculation of group k(1)
(3) ng minimum column number in group K(I) "
(4; K(4 ‘maximum column number in group K(1)
M(J pointer array of the diagonal term in the J=-th column

With the matrix grouped abeve, the algorithm of the Skyline is pro-
ceeded as follows. Symbols used in the description are:

X : open core array
IA : start address of group A element
IB : sitart address of group B clement
IM : start address of pointer array of diagonal terms
KA(1), KB(lg : group numbers for groups A and B
KA(2), KB(2) : minimum group numbers involved in calculation of

groups A and B

KA(Bg, KB(3) : minimum column numbers of groups A and B

KA(4), KB(4) : maximum column numbers of groups A and B
Apart from the explanation of how to determine these values, we begin
our discussion with the following assumptions. The areas are already
assured for groups A and B (headings are X(IA) and X(IB)) and for the
address of diagonal terms (heading is X(IM)), The diagonal term address-
es are set in advance, Let NEQ be the number of unknowns of a given
system of linear equations, and NGP be the number of groups, All control
information for NGP groups, except those for diagonal term addresses, are
generated on a scratch file in advance,

Then, the following steps are repeated for P until NGP.
" P=1, «oo 4 NGP (P : group number in current calculation)

Mutually permutated, for P#£1, are the address of A and that of B, and
group information of A and that of B, that is,

IAT2IB, KA(k)T=KB(k) “(i=1,1..;,4) ) (16)
Let Q be the minimum group number needed to generate group P, Then,

@ = Ka(2)
For P#Q, group Q is already on B if Q = P-l otherwise the control infor-

mation about group Q is read from the scratch file to be set to ln(k),
_where: k_l,..,4.( Then, the correlation values between groups P and Q are

: added to group P. This process is carried out for Q by an increment of 1

until Q = P-1, For Q = P, the correlation between P and Q becomes that
between P and itself on A, After the completion of the above step for

.~ - group P, the elements of it are written out onto the secondary storage

device:. The implementation of these procedures for individual groups
(ISPSNGP)vallows an upper triangular matrix to be generated in the column
direétion on the secondary storage device,

The correlation between groups P and Q is obtained as follows,
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Assume that group P is on A (heading : X(IA) area), while group Q is on
B (heading : X(IB) area), Let NTA be the number of columns of group P
on A, and NTB be the number of columns of group Q on B, Then,

NTA

KA(4) - KA(3) + 1 (17)

NTB = KB(4) - KB(3) +1 : (18)

Similar to figure 6, handling of groups P and Q is shown in figure 8,
Let J=1, ... 4 NTA be column numbers of group P on A, Then, the column
number of P on the entire matrix is,

J3 = KA(3) + J -1 | (19)
The length of column J is,

JH = M(JJ) - M(JJ-1) (20)
where, if JJ=1,

JE = M(JJ) ) | (21)

Similarly, let I=1, ... , NTB be column numbers of group Q on B. Then,
the column number of Q on the entire matrix is,

II = KB(3) + I -1 _ | (22)
The length of column I is,

IH = M(II) - M(II-1) (23)
where, if 1I=1,

IH = M(II) _ (24)

Again, let NT be the length of inner product of column J in group P and
column I in group Q. Then,

NT = Min {IH, JH-(JJ-II)} -1 (25)

Also, let NS be the start address involved in the inner product of
column I in group Q and NE be the address of the last portion. Then,

NS = M(II) - NT : (26)

NE = M(II) - 1 ' (27)

The displacement (IJ), where the inner product value is added on area A,
. 1s expressed as:

17 = M(JJ) = JJ + 1T : (28)
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If NS>NE, column I in group Q has nothing to do with the calculation for
" column J in group P; otherwise, inner product must be calculated, Since
» the start addrésses of areas A and B on the open core are IA and IB,
respectively, by putting,

; IC = 1J - M(II) (29)
g?the inner product is,

o

! X(17) = x(13) = Y x(IB+K-1)*X(IA+K+IC-1) ° (30)
12 K=NS . T )

;A,

' The calculation of contributions from: group Q to group P is completed if!
the above steps are carried out for all columns in group Q.

L After calculatlons on all groups such that,
KA(2)S Q=P-1 ' (31) -

2} the autocorrelation of group P itself is obtained by the same procedure

??gas that used by previous calculation of the correlation between groups P
<7 and Q by regarding that area A is the same as area B, In this calcula=.
+~ tion, I varies within the range:

=2 1SI1I<J (32)
5
$3;f I=J, (30) must be replaced by the procedure below. For K such that,

AN

5o NS<K<NE ‘ (33)

J&ID = 1J = KJ + 1 is obtained, If KD = M(ID) is established, the column J
) is completed by (14) and (15).

; The implementation of the above procedure for the range of (32)‘*;;“'
5> 8ives the autocorrelation of group P, The results are written out onto

> an upper triangular matrix data-block for each column,
L3

g
NN

R The interchange of addresses and control information by (16) are
2 needed for handling a succeeding group. Thigjtakes the place of moving
=: group P completed on area A to area B simply by interchanging addresses

%~ and control information., This eliminates a data transmission, and fur-
4;ther allows one group to be read in the core only once if the correlation
Le between two groups affects only adjacent groups.

As already suggested, the matrix must be prepared for grouping prior.

10 the implementation of the algorithm of the Skyline method if matrix
_ data overflows the core space available, TFirst, the size of each group
“ must be determined to provide such control information as in tableI.
The size of a group depends upon how the open core is large at execution,
Figure 9 presents an open core layout, Given the open core size (NX),
the size of the memory to be allocated to one group may be obtained by
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bisectioning the area excluding a working area needed, This allows up
to MAXT elements of one group to be stored., By use of the new unpacking
routine, only start row numbers of each matrix column are picked up to-
create table I . information, Such information are stored on a scratch
file in such a way that each group is on one record. At the same tinme,
the addresses of diagonal terms of each group at a working area are also
stored on array M, Thus, the preparation is completed.,

To read group P, The unpacking method must be used in which the
input/output buffer can be directly referred to from an input matrix
data-block, This is also applied to reading Q, where the buffer is
directly referred to from an upper triangular matrix data-block., After
the completion of calculation, each group is written out following the
end of the upper triangular matrix., The diagonal elements are also
wvritten out onto another output data-block for succeeding forward elimi-
nation and backward substitution,

The following are the results obtained by applying the Skyline
method to practical examples, Table II gives matrix characteristics for
four data with a comparision of matrix characteristics in case of the
conventional band matrix method., Figure 10 compares CPU time for the
band matrix method with that for the Skyline method., The Skyline method

in these examples gives two cases in which a vector processor has been
applied and it has not been applied., The vector processor has been also
applied to the band matrix method, resulting in no improvement of CPU
time, This figure, therefore, does not that case, 'Figure 10 reveals
that the Skyline method consumes 33 to 66% of CPU time needed by the
band matrix method. If the vector processor is applied to the Skyline
method, this value.drops to as many as 16 to 28% of the CPU time., Fur-~
ther, for data of 7000 degrees of freedom, the Skyline method has needed
CPU time on the same percent basis as the band matrix method,

FORWARD ELIMINATION AND BACKWARD SUBSTITUTION

NASTRAN is designed to proceed forward elimination and backward
substitution while retaining vectors of load terms on the memory as much
as possible. As the result of matrix decomposition by the Skyline
. method, an upper triangular matrix is generated and diagonal terms are
stored on another file, This means that forward elimination is an inner
product type and that store-type calculation is to be carried out after
division of load terms by diagonal elements., The procedure for solving
a system of linear equations:

u*DUx = B (34)
is separated into the forward elimination process

oty = B : | (35)
and the backward substitution process
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The forward elimination process is shown in figure 11, In this figure,
PR N . forms a string starting with the i~th column and the
é_jiéh eiéﬂe t o% %he upper triangular matrix (string length is 3 here).
g;Eor this string, the following calculation is carried out.

p

{1

- +ST<1
bia = bia =L ¥ ¥y
k=j

5ND

(a=1,2,3) | (37)

a

';5This is performed for all i-th column strings in the upper triangular
-+ 'matrix, Then, this procedure is repeated after setting i=i+l, Since
,'(37) is an inner product type, high speed calculation is possible.

> Further, as for string's elements, the new packing routine refers to

i the input/output buffer,.saving time for data transmission and reducing
% :1time for calling the unpacking routine due to string-by-string call un-

3 like conventional element-by-element call, Thus, the forward elimination
:; process is inner-product-type operation for matrix's factors decomposed
*- by the Skyline method, while the forward elimination process of the con-
> ventional method is store-type calculation.

On the other hand, the backward substitution process begins with

- .the generation of D™Y for load term Y already generated by the forward
~/ lelimination process, The process allows calculations independent of the
'j}ffollowing process because all diagonal term elements are already genera-
> ted on a file as one vector on matrix decomposition, After the division
»> of load terms by diagonal terms, backward substitution is performed by
.~ ‘backspacing the upper triangular matrix file buffer-by-buffer, This is
.1 'shown in figure 12, In the process,

-u, ¥ x,.: (k=i i+ST-1; a=1, 2, 3) (38)

kj ja

5 is calculated for each string of each upper triangular matrix column,
;’ ‘At that time, the non-transmit unpacking routine is called for each

-~ string, and only addresses in the input/output buffer are passed to the
+ routine of forward elimination and backward substitution.

% ' = oy
{f' Yka = Yka

~ Figure 13 gives the results of forward elimination and backward sub-

; stitution by use of data shown in table I ., This figure reveals that ' !
. the new method requires omly 16 to 54% of CPU time needed by forward eli= :

. xglnation and backward substltution of the conventional method., Taking
it into account that the coding for both processes are not oriented to

P the vector processor, more satisfactory results will be expected in res<

- pect to CPU time by further improvements.

EIGENVALUE EXTRACTION METHODS

In real eigenvalue extraction methods we attempéd to develop these
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methods in two directions: that is, partly the speeding up of the Inver-
se Power method, partly the development of a simultaneous iteration me-~
thod, .

At first we describe the Inverse Power method, Eigenvalue extrac-
tion methods are generally divided into two groups: tracking methods
( the Inverse Power method and the Determinant method ) and transforma-
tion methods ( the Householder method and the Givens method ), Though
transformation methods are able to solve rapidly an eigenvalue problem
" in the range of comparatively small scale problems, large scale problems
are unfavourable to them, On the contrary, the Inverse Power method has
been employed freauently owing to less restriction than transformation
methods,

Since the Inverse Power method in NASTRAN is accompanied by move~
ments of shift points, it needs to use iteratively matrix decomposition
and FBS (forward elimination and backward substitution)., Improvements
.that were previously mentioned were applied to the Inverse Power method,
so that we could improved the CPU performance of the Inverse Power me-=
thod which is two or three times as much efficient as that of the con~
ventional Inverse Power method., Table Il shows that the CPU performance
of the new method without the vector processor amounts to 2,7 times that”
of the old one, If the vector processor is applied to the former, the
CPU performance of 1t will be equal to about 3.3 times that of the con--
ventional one,

Now we describe a simultaneous itetation method which is called the
Jennings method. There is a problem to find q eigenvalues in ascending
order from the lowest value and q eigenvectors corresponding to them
for the general eigenvalue problem:

KE=1rMX (39)

where K 1is a symmetric matrix of positive definite type and M is a
symmetric matrix of non-negative definite type. The Jennings method is
useful for calculating a set of eigenvalues from the lowest value and

has no weakpoint that some important eigenvalues are often missed in
calculation., The algorithm is shown in figure 14, This method is diffe=~
rent from the Subspace Iteration method on operatlons of orthogonaliza-
tion shown in (i), (3), (k), (1).

The Jennings method needs the following input data:
(1) ND : number of eigenvalues to be extracted (2=ND=90),
(2) LMAX: the maximum number of subspace iterations (the default
value is 16), Bp
(3) IEP : convergence parameter (if IEP<:O, then EPS=10" ;
otherwise EPS=0,0001).
The dimension "m" of subspace is decided on by

m = min(n, 2q, q+8) ' (40)

The selection of initial iteration vectors is most important for the



convergence of subspace and the convergence ratio is decided on by the
"neighborhood" between subspace spanned by eigenvectors and subspace
spanned by initial iteration vectors. Assume that

K= (kij)g s M= (mij) : kij = kji ’ mi,j = mji (41)
Then, k # 0. is always satisfied as K is pogitive definite, The
matrix Gg which is composed of m initial vectors will be generated
as follows,

(1) At first, the first column of Go is a vector D, where

D(I)= m
(2) check kiiﬁo , and
D(I) =n(1) [/ kyy =m, /Xy, (42)

(3) sort p(1) (I=1, ... , n) and select (m-1) values in decending
order from the largest:

D(1,)Zp(I)Z ... 20(1) (43)

where the i-th vector of Go (i= 1, ... , m) is the unit vector, the i-th
component of which is equal to 1.

The criterions of convergency are as follows:

(1) q eigenvalues and q eigenvectors are extracted.

(2) number of subspace iterations amounts to LMAX,

(3) there is no CPU time to execute three subspace iterations,

‘ because output of the results needs a little time.

Let the eigenvalues in the L-th iteration loop be on a vector E(I) (1= 1,
eee s M), After reordering E(I) in ascending order, the eigenvalues in
the gL-l)-th iteration loop are stored on a vector EX(I) (I=1, ... , m).

If E(I) satisfies the following relation;
E(I) - E*(I) '
l E(T) < EPS : (44)

then E(I) is already converged; otherwise E(I) is not converged. If (44)
holds true for all I (1<I<gq), the convergence will be achieved owing to
criterion (1). If (44) doesn't hold true for some I and number of sub=
space iterations is equal to LMAX, the calculation of eigenvalues will be
stopped due to criterion (2),

The orthogonalization of subspace is also important for a simultane-
. ous iteration method., If a mass matrix M 1is non-~positive definite and
~ . operations of orthogonalization isn't applied to subspace during itera-
tion loops, the orthogonality of subspace will be breaking. For a eigen-
- value problem with a non-positive definite mass matrix, the orthogonali-
zation of subspace is necessary for iteration vectors to converge to
eigenvectors, Consequently we adopted the Jennings method which ortho-
gonalizes iteration vectors just after the calculation of eigenvalues in
subspace. The generalized Jacobian method is adopted in the eigenvalue
extraction on subspace,
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Tablell shows that the CPU performance of the Jennings method with-
out a vector processor (or with it) is 4.0 (or 4.1) times as high as that
of the conventional Inverse Power method. Thus, the Jennings method
consumes about two-third of CPU time used by the new Inverse Power meth-

: od, This fact results from the following reason. While the Inverse

. Power method needs several decompositions of full size matrices in every
.movements of shift points, the Jennings method is more efficient to solve

2 large scale eigenvalue problems than the Inverse Power method, for the
{former needs only one decomposition of full size matrix and several deco-

% mpositions of small scale matrices on subspace,

PARALLEL PROCESSING ORIENTED MATRIX OPERATIONS

: Our vector processor adopts a pipeline system and uses a compiler

*;system in which a FORTRAN source program is translated into a set of
instructions specially for the vector processor with recource to the

; option active in compilation, This means that the object program gene-

> rated by the compiler depends on the skillfulness of coding.

. To discuss more.: speclfically, this section. presents the results. of

. our test. 1In this test, we measured CPU time per single term for the
length of a DO loop (string length) by carrying out three inner product

“, type operations and one store type operation, in order to determine the

7 'basic operation in matrix decomposition. The results are shown in figure
15. As for the inner product type operations, two cases were further

~.. considered: the case where the vector processor was applied and the case

"> where it was not applied. The examples of coding used in our test are:

(1) Complete inner product type

REAL*8 A(1000), B(1000), X(ITER), SS
DO 10 I = 1,ITER

55 5s = 0,0DO
= DO 20 J = 1,LL : ::l ,
o 20 SS = SS + A(J)*B(J) Inner product loop
- X(I) = X(I) - ss

10 CONTINUE

(2) 1Index explicit type

Sy REAL*8 X(1), SS
»:f--i;; ) - DO 10 I = l,ITER
e SS = 0.0D0
2L D0 20J = 1,LL Explicit index type
- 20 SS = SS + X(IA+J-1)*X(IB+J-1) — inger product loop
X(IC+I-1) = X(IC+I-1) - SS '
10 CONTINUE

26



(3) subroutine inner product type

N

10

FIND -

[

(4)

20
el 10

i
REAL*8 Xx(1), SS
D0 10 I = 1,ITER

55 = 0.,0D0
CALL DOTP

X(IC+I~1) = X(IC+I-1) - ss

CONTINUE

(x(14), x(1B), ss, LL) <€

10

SUBROUTINE DOTP! (A, B, SS, LL)
REAL*8 A(LL), B(LL), SS, S

S = 0,0D0

DO10I =1

S =S + A(If*B(I)

CONTINUE

SS =S

RETURN

END

Store type (the three terms operation)

REBAL*8 X(
DO 10 I
DO 20 J =
X(IC+J-1)
CONTINUE
CONTINUE

1) ,ss
1,ITER
1,LL

= X(IC+J=1) + X(TA+J=1)*X(IB+J-1)

}5'The above examples of coding are only for our test and there is no mean-

-~iing in operation itself,
- and ITER = 2000 in our test,

The index ITER is the number of iteration loops
Though the store type (the three terms)

:~> operation is applicable to the vector processor by changing its indices,

A
:'/~
o0

o

" ‘vector processor.

.. iat that time we left it as it was, and then it was not applicable to the

A close observation of figure 15 first exhibits that, as for the
. complete inner product type operation, use of the vector processor brings

"1 about an improvement in ‘speed as much-as 5.5 times that obtained by the

. same type of opeéeration without the vector processor.

Unfortunately,

f}'however, NASTRAN is not oriented to the way of coding for the complete
.. inner product type, since it uses an open core as a working area, Thus,
-~ two possible ways for coding are explicit index and subroutine inner

5, ,product- types.

i latter,

I3 Without a vector processor, the subroutine inner product
Lgftype is more advantageous than the exp11c1t index type. On the other
éh.hand, with the processor, the former is less advantageous than the T

Farther, figure 15 reveals that, with the vector processor, the
explicit index type almost keeps in step with the complete inner product

type in respect to CPU time,

However, without the processor, the former

has consumed CPU time as much as 2,2 times that the latter has consumed.
For a longer inner product loop, the subroutine inner product type
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without the vector processor is more advantageous than the explicit index
type without it, This is attributable to that there is a difference in
optimization level between the operation with the vector processor and
that without it, The subroutine inner product type is advantageous if

the subroutine's overhead time can be overridden due to a long DO loop;

- otherwise, it is less advantageous than other types in speed., The result °
~ of the store type operation is also exhibited in this figure; this type

" .does not enjoy the maximum benefits of optimization.

An observation of figure 15 also shows that the extent of optimiza-
tion in various types of operations depends largely on program coding,
- 0f course, it is ideal that the maximum optimization is always possible
for any type of operation; however, the extent of optimization varies
depending upon type of FORTRAN, Accordingly, in coding the algorithm for
the Skyline method of matrix decomposition, we adopted the explicit index
type if use of a vector processor was possible; otherwise, we used the
- subroutine inner product type. In the future we intend to use the expli-
" cit index type as long as the optimization feature of FORTRAN is satis-
factorily refined.

So far, the inner product type has been more advantageous than the
store type in respect to speed thanks to use of registers, However, the
advent of a vector or array processor is changing this situation,
Actually, in case of HITAC M-200H, the latter has displayed almost the
same performance as the former. Further improvements of the parallel
- processing systems may reverse the superiority of the inner product type
" to the store type.

As already described, CPU time needed for the store type, inner
product type operations accompanied with or without data transmission
depends largely on how to make a program, Use of a higher speed computer
- and parallel processing system is greatly expected to change a current
. software environment to a large extent., Technological breakthroughs of

.- software and of hardware would interact more closely in improving sparse

matrix operations,
CONCLUDING REMARKS

In this paper we discussed about improvements in sparse matrix
operations of NASTRAN, Recent advance of parallel processing systems has
been changing surroundings in software, Especially, a vector processor
‘attached to a general-purpose computer is favorable to a long DO loop
. operation, For example, the Skyline method which we have developed this
time in the field of matrix triangular decomposition conforms to the S—
pipeline control feature observed in the vector processor, On the cont=
rary, the conventional band matrix method or the wavefront method which”
adopt ‘store type operations don't addpt themselves to the pipeline .
control system, for they need complicated indices operations and are

difficult to deal-with a set of arithmetic data as vectors.
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What is more, the way of packing/unpacking and the method of forward

elimination and backward substitution were conformed themselves to the
- Skyline method, so that the CPU time for solving a problem was reduced by
half., Further, in real eigenvalue extraction we have improved the CPU
- performance of the Inverse Power method and added the Jennings method to
-~ NASTRAN, The Jennings method is more effective in many cases than the

7 new

H

ARA N ¢

12,

Inverse Power method, :
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DIND (R Gy

TABLE I;~ GROUP CONTROL

INFORMATION

Growp | k(1) | k(2) | K(3) | k(4) M(J)
Group 1 1 1 1 6 1 6 12 15
Group 2 2 1 7 9 4 14
Group 3 3 2 10 11 4
Group 4 | 4 1 12 | 12 11
K(1) : Current group number
K(2) : Minimum group number needed by calculation
of group K(1)
K(B) ¢ Minimum column number in group K(1)
K(4) ¢ Maximum column number in group K(1)
M(J) : Pointer array of the diagonal term in the

J=th column
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MATRIX CHARACTERISTICS

- TABLE II.
OF EXAMPLE PROMBLEMS

Data name | Nodes| Elements| Total degree | Band matrix method Skyline method Memory
of freedom size(kB)

Divisions | Group Group | Total Average d

use

B C R 1of group| operation | read | columns | length
counts counts| read of column

DATAI 394 352 2082 84} 253 83 9 38 36 8328 i76 1024
D»ATA2 489 | 477. 2127 | 151 471150 7 13 7 2127 128 1024
DATA3 | 611 | 2435 2769 93 (288 92| 13 66 63 13419 20| 1024
DATA4 | 799| 892 4474 (156 0|155] I8 35 |8 4474 147 1024
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TABLE IIT. CI\DU TIME: OLD, NEW INVERSE POWER METHODS
AND JENNINGS METHOD
Data nomé Total degree | Extraction method Vector processor [Number of eigenvalues CPU time (sec)
of freedom to be extracted
' Total Eigenvalue
' extraction

Data | 2082 |Old Inverse Power method| Can not be applied 10 | 864 1813
Data | 2082  |Newlnverse Power method Yes 10 344 293
Datal 2082 Jennings method Yes 10 241 .|9 I
Data 2 2127 Old Inverse Power method |Can not be applied e 1105 1062
Data 2 2127  |NewInverse Power method No 10 398 345
Data 2 2127 New Inverse Power method Yes 10 332 278
Data 2 | 2127 Jennings method No o) 276 232
Data 2 2127 Jennings method _ Yes | O 266 222
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FIGURE I. MATRIX PACKING FORMAT
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FIGURE 5 MATRIX DECOMPO §%|TION
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FIGURE 8. SKYLINE METHOD WITH GROUPING
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FIGURE 9. OPEN CORE LAYOUT
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SOLUTION SENSITIVITY AND ACCURACY STUDY OF
NASTRAN FOR LARGE DYNAMIC PROBLEMS
INVOLVING STRUCTURAL DAMPING

- A, J. KALINOWSKI
NAVAL UNDERWATER SYSTEMS CENTER

SUMMARY

" This paper is concerned with both the solution sensitivity and solution
-accuracy of large dynamic problems involving NASTRAN SOLUTION 8 (i.e., the
steady state dynamic response option wherein all response quantities vary as
elwt, where w is the driving frequency and t is time). Using a submerged
steel plate with a viscoelastic layer as the bench mark sample, the solu-
tion sensitivity and solution accuracy is checked. The solution sensitivity
is examined by running the same finite element model on different computers,
different versions of NASTRAN, and different prec1s1on levels. The solution
accuracy is evaluated for these same runs by comparing the NASTRAN results
with the exact solution of the same problem.

SYMBOLS
[B] Damping Matrix '
<1 Dilational Wave Speed in Fluid
{F} Applied Force Vector
(K] Stiffness Matrix
(K1 Modified Complex Stiffness Matrix
[Mj Mass Matrix

Wave Number (w/c;)
Incident Fluid Pressure
Plane Wave Amplitude

P; Back Side Fluid Pressure

Ps Front Side Fluid.Pressure (Scattered Component)
t Time

{Uu} Solution Displacement.Vector
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SYMBOLS (Cont'd)

X Spatial Coordinate
w _ Driving Frequency
{a} Residual Solution Vector .
AT’“T Real Elastic Lame' Constants
A1,u1 - Corresponding Viscoelastic Constants
p Material Mass Density
INTRODUCTION

This paper is concerned with the solution accuracy of 1, 2, or 3-dimen-
sional steady state (time harmonic) structural and/or continuum problems whose
response quantities all vary in time in proportion to elwt, The linear equa-
tions of motion for such problems usually reduce to an expression of the form

[-w2[M] + ju[B] + [KI1]{U} = {F} _ (1)
K]

where [M], [B], and [K] denote the mass, damping and stiffness matrices (MDD,
BDD and KDD using usual NASTRAN DMAP notation), w is the driving frequency and
{F} are the applied forces. The results presented in this paper focus on con-
tinuum type (e.g., figure 1) applications with structural damping, however,
once the form of equation (1) has been constructed, the solution becomes a
matter of solving large banded symmetrical systems of complex linear algebraic
simultaneous equations. Clearly, such equations can also be the end point
resulting from many other NASTRAN steady state formulations, either from direct
structural formulations or from related fields through analogies. Thus compari-
sons of solution accuracy, run time, etc. can be viewed and interpreted in a

more general vein than simply applying only to problems of the type depicted in
figure 1.

, The motivation for this comparative study resulted as a consequence of
- obtaining some unexpected results on some solution 8 (steady state time har-
monic rigid format) problems similar to the one shown in figure 2, except for

. the fact that the initial model had inclusions throughout the rubber thus mak-

ing analytical solutions to the problem unwieldy.



PARAMETRIC STUDY MODEL

In order to better understand the .accuracy limitations of the results of
the initially.more complicated. inclusion filled model, a simpler homogeneous
layered modé% (figure 2) was constructed and physically corresponds to a
totally submerged 2.0" steel plate with a 3.05" viscoelastic rubber layer
glued to the steel surface. The input corresponds to an incident pressure
wave
i(kx + ot)

Pi = P0 e

s k =w/C1 A (2)
where x is the horizontal coordinate along the 1line of propagation, c; is

the dilatational wave speed in the fluid, and Py is the plane wave amplitude.
The exact analytical solution to this problem is known (ref. 1), consequently
an accuracy check on the finite element solutions is available. Clearly, the
figure 1 model is a spatially one-dimensional problem, consequently the cor-
responding finite element model.need only be one element wide as was done,
for example in ref. 1. However, the finite model was made up-to eight ele-
ments wide for the following reasons: (1) the model simulates the more com-
plex model except for the fact that the inclusions are removed by filling
their space are with uniform elements having the same material property as
the surrounding rubber material; (2) the problem is artificially made mathe-
matically larger so.that more meaningful comparisons of CPU run times could
be made; (3) larger problem sizes tend to draw out any potential problems
with equation solvers. It is not our intent to discuss or explain the setup
of wave propagation problems of the type represented by the figures 1 - 2
example model; the reader is referred to refs., 1 and 2 for supplementary
details. In fact, the demonstration problem used here is very similar to

the one used in the ref. 1 sample problem except that the plate and visco-
elastic thicknesses are different, the damping coefficient in the visco-
elastic layer is different and that the steel plate is represented here
approximately with CBAR elements rather than with solid elements as in ref. 1.
Specifically, the material constants employed arelisted below

DEMONSTRATION PROBLEM PHYSICAL CONSTANTS

r r ‘ i i
A u A u P
MATERIAL psi psi psi psi 1b-sec2/in%.
Water 3455600, 0.0 0.0 0.0 .000096
Steel 17,307,000. | 11,538,000. | 0.0 | 0.0 | .000735
Viscoelastic
Material 86,703, 115.9 8670.3 11.59 |..0003599

where the meaning of the elastic and viscoelastic constants are defined in
detail in ref, 1.
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Since the topic of interest here is related to the class of problem
treated by ref. 1, it appears appropriate to print an errata to the ref. 1
paper

e in equation (15) of ref, 1, replace G22 = A" with 622 = A" + 2,"
e in equation (16) of ref. 1, replace G22 = ¢ with G22 = (1 + 2u'/2")
e in equation (2) of ref. 1, replace w? with -u? '

e 1in equation (17) of ref. 1, replace +ny_ with +ind in the k, defi-
“nition 2 2

PARAMETER VARIATIONS

The basic finite element model, figure 2, was exercised for a frequency’
sweep of 7 different incident frequencies (3.0 kHz, 4.0 kHz, 6.0 kHz, 8.0
“kHz, 17.5 kHz, 22.5 kHz, 35.0 kHz). Running the figure 1 model on NASTRAN
for the above frequency sweep is designated as a typical run and correspond-
ingly assign it a "run number", which runs from the number 2 through 9. Run
number 1 is the exact solution and therefore is the only nan NASTRAN designa-

%j'onj(it is called a run since even the analytical solution involves a computer evalua-
ion).

Next, the same frequency sweep input data was rérun while varying the
following parameters:
e solution precision (S.P. or D.P. on the same computer)
type of computer (UNIVAC 1108; DEC-VAX; CDC Cyber 175)
e level of NASTRAN (both NASA and MSC versions are considered)
e date (i.e., the same input is resubmitted on the same computer,
using the same version of NASTRAN but on different days)

The last parameter (i.e., the date) seems a waste of computer time, however
as is shown later, some unexpected results are encountered.

DMAP INSTRUCTIONS FOR PRINTING SOLUTION ERROR RESIDUAL

It is of interest to know the accuracy of the solution solving capa-
bility of the equation solver used by the particular version.of NASTRAN
employed by the user. Specifically, if the solution {U} is found by NASTRAN,
how well does it satisfy the linear simultaneous equations (1)? Consider
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’ éubstituting the solution {U} into equation (1) and then transposing the
applied force vector to the left hand side of equation (1) to obtain

[KI{U} - {F} = {a} - , (3)

If the equations have been solved exactly, then the residual vector {a} will
be identically zero. The appearance of large nonzero entries in {a} would
imply potent1a1 inaccuracies in the solution vector {U}. The question of
"how large is large?" should be viewed by comparing the size of a particular
entry in the {a} vector to the size of the applied loads (for this reason,

the load vector {F} is also printed). For example, a residual of .2 would

be a big residual if the applied forces are on the order of 1.0 1bs,; however,
if applied forces are say 100,000 1bs., the .2 residual is acceptable.

In order to print out the residual vector {A} for the 3,000 Hz driving
frequency case, the following DMAP instructions were used (note the {A}
vector is pr1nted with the heading DELSQL).

e For UNIVAC 1108, SOL 8, LEVEL 17.0 (Runs 3a, 4a)

ALTER 159

ADD5 KDD,BDD,MDD, ,/KBARX/C,Y,ALPHA=(1.0,0.0)/C,Y,BETA=(0.0,18849.5592)/
C,Y,GAMA=(-355305758.44,0.0) $

MPYAD KBARX,UDVF. PDF/DELSQL/C N,0/C,N,1/C,N,-1/ $

MATPRN DELSﬂL PDF,,,// $ :

ENDALTER

CEND

the user and are simply defined as:

BETA
GAMA

0.0 + iw
-w2 +1i 0.0

where w = the driving frequency in radians/sec

e For UNIVAC 1108, SOL 8, NASA LEVEL 15.5 (Run 2) replace ALTER 159
with ALTER 139

e For VAX, SOL 8 NASA LEVEL 17.5 (Run 5b) same as 1108, NASA LEVEL
17.0

e For CDC CYBER, SOL 8, MSC LEVEL 48B (Run 6) replace ALTER 159 with
ALTER 139

e For VAX, SOL 8, MSC LEVEL 52 (Run 7) replace ALTER 159 with ALTER
139

e For VAX, SOL 8, MSC LEVEL 60 (Run.8) replace ALTER 159 with ALTER
139

e For VAX, SOL 26, MSC LEVEL 60 (Runs 9b, 9c, 9d)
replace ALTER 159 with ALTER 409
replace UDVF with UHV (3rd line)
replace PDF with PD (3rd and 4th line)
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When a large residual is encountered, it is desirable to know the node
and component number where a large residual appears (i.e., knowing the run
number of the questionable residual, what node-component number does this
correspond to?). By inserting a DIAG 22 card, the desired correspondence
between run number of {A} and the node-component number can be made,

It is important to note that the simple DMAP sequence as presented will
apply to onl% a single frequency; thus, if a frequency sweep is employed,
only the nth column of the DELSOL vector (i.e., {A}) will be correct; the
remaining columns of DELSOL should be ignored, where n = the nth yaiue in the
frequency sweep appsaring on the NASTRAN FREQ card. -ard.

DISCUSSION OF RESULTS

The primary variables of interest to us in this study are: (1) the
transmitted pressure in the fluid on the back side of the steel plate, Pg,
(e.g., in element number 100352 as shown in figure 2) and (2) the scattered
pressure in the fluid on the front side of the plate, Pg (e.g., in element
number 100378 as shown in figure 2). The transmitted pressure is read
directly from the NASTRAN printout, whereas the scattered pressure is obtained
indirectly from the NASTRAN printout by simply subtracting the incident
pressure (equation (2)) from the total pressure printed by NASTRAN, The
scattered pressure is of prime importance with regard to establishing the
energy absorbing properties of the viscoelastic configuration. As discussed
in ref. 2, it has been our experience that for steady state wave propagation
problems of the type considered here, at least 10 elements per wave length
are needed to adequately compute the pressure response for elements of the
type employed in this study. In order to demonstrate this accuracy Timita-
tion, the model has been purposely exercised in a driving frequency range
that is too high for the mesh to properly produce sufficiently accurate
results (i.e., the mesh is too coarse for some of the higher frequencies).
For a rubber wave speed of C, = 15540. in/sec, and the coarsest element in
the rubber mesh (.1" x .1" elements), the following frequency vs. element/
(wave Tength) chart is constructed:
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elements/wave length

freq. (kHz) (rubber in figure 2)
3.0 51.8
4.0 38.8
6.0 25.9
8.0 19.4
17.5 8.8
22.5 6.9
35.0 4.4

‘Based on the above chart, it is expected that the accuracy of the finite
element solution in relation to the exact solution should start to drift at
frequencies of 17.5 kHz and higher.

A total of 14 computer runs were made (designated as runs number 2, 3a,
3b, ¢+ o o o 9d) and are tabulated in Table 1 (for the transmitted back side
pressure Pg) and in Table 2 (for the scattered front side pressure, Pg).

The pressure results are normalized by the magnitude of the incident pressure
wave, Pg. In addition to the pressure result, Table 1 has two additional
pieces of information, namely the magnitude of the largest complex residual,
Ial, appearing in the residual vector {A} as computed by equation (3), (the
|a] value is obtained by scanning the DMAP printed DELSPL printout and seek-
ing out the largest absolute value of all the rows of the {a} vector corre=
sponding to the 3,000 Hz frequency case. Note that the residual for onl

the 3,000 Hz case is reported. Also lTisted is the total CPU time required

to execute the full frequency sweep solution for the run in question.

Word Length (Precision) Sensitivity

The earlier Level 15.5 version of NASA NASTRAN for a UNIVAC 1108 com-
puter, does not efficiently solve complex systems of equations of the type
given by equation (1), (i.e., steady state time harmonic rigid format 8)
when the double precision option is used. Experience on large problems
(e.g., the size of the one in ref. 2, pg 435) has demonstrated that in the
solving of the equation (1), NASTRAN has spent Titerally hours in the decom-
position operation. In order to obtain reasonable run times, a PARAM )
DECOMOPT4 card is added to the bulk data in order to force the decomposition
to work in single precision. In comparing the NASTRAN Run 2 (Table 1)
(1108-S.P,) results to the exact solution over the frequency range
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(3. - 8. kHz) where the mesh is sufficiently fine,* it is noted that at 6.0
kHz, a 154.0% error in the transmitted pressure is experienced. The corre-
sponding error on the scattered pressure (Run 2, Table 2) is not as severe,
namely 16.5%., It is noted that the 154% error is the situation that moti-
vated this entire comparative study. The percent errors at 3. kHz, 4.0 kHz
and 8 kHz are also much larger than should be expected for the mesh size
employed. The largest residual, |A], in the residual vector {A}, is .272 at
3.0 kHz; this is in comparison to a load vector component of the size (.20)
(the largest residual was not at a loaded node however). This is a further
indication that the solution resulting from decomposition in single precision
is not accurate enough. Upon running the same problem on a Level 17.0 version
of NASA-NASTRAN on an 1108 computer ?sing]e precision must be invoked with
DMAP) in single precision, Run 3a still results in a similar bad solution with
a similar worse residual |A|. The fact that Level 17.0 uses a different
decomposition algorithm did not improve the bad results. However, again run-
ning the same problem on Level 17.0 on the UNIVAC 1108 in double precision

(the default situation) resulted in excellent results in comparison to the
exact solution. For example, at the 6.0 kHz, the percent error reduced from
154.0% down to 0.4% error. Similarly good results were obtained in the entire
(3.0 - 8.0 kHz range) for both the transmitted and scattered pressure. The
double precision gave a very small worse residual at 3,000 Hz, |A| = 2.099x10-8,
which suggests that equation (1) has been solved accurately. In comparing CPU
times between Run 3a and Run 4a in Table 1, it appears there is little penalty
in CPU time between single and double precision runs for Level 17.0. Conse-
quently, there is really no incentive (from a time saving point of view) to
make Sol. 8 type runs in single precision, as there was for Level 15.5 NASTRAN.

Again running the same problem on Level 48B, MSC version of NASTRAN on a
CDC CYBER 175 computer (Run 6), very good results were obtained in relation
to the exact solution over the (3.0 - 8.0 kHz range); further, excellent con-
sistency with the UNIVAC 1108 double precision runs is demonstrated at all fre-
quencies by comparing Run 4a with Run 6. The worst residual, |A|, on the CDC
computer is not as good as the 1108 double precision run, but this is expected
since the CDC single precision word length is slightly smaller than the 1108
double precision word length; however, it should be noted that differences in
the decomposition algorithms could also account for differences in the worse
residual, even if the word lengths were the same.

The Level 52, MSC version of NASTRAN on a DEC-VAX computer (Run 7) gave
comparible results to the Level 17.0 NASA NASTRAN double precision 1108, and to
Level 48B, MSC NASTRAN on a CDC-CYBER 175. The word length in double precision
on the VAX is slightly more than the single precision CDC and slightly less
thandthe double precision 1108. It is noted the Run 7 gave the smallest worse
residual.

* It should be emphasized that in comparing any NASTRAN result to the exact
solution, for the purpose of measuring the formulation quality, it should be.
done only 1in the frequency range of 3.0 - 8.0 kHz where the mesh satisfies the
10 element/wave length criterion.
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Computer Type/Level of NASTRAN Sensitivity

It is inconvenient to run the same exact version of NASTRAN on different
computers due to leasing restrictions, consequently this combination was not
done. Thus running NASTRAN on different computers always involved running a
different NASTRAN version as well. 1In scanning the results of Table 1 and
Table 2, all the runs performed with decomposition precision using word lengths
between 60 - 72 bits (i.e., Runs 3a, 4a, 6, 7) gave both accurate results in
comparison to the exact solution (3.0 - 8.0 kHz range) and consistent results
from machine-to-machine and version-to-version. We have purposely not commented
on the accuracy of Runs 5, 8 and 9. involving the DEC-VAX computer due to some
reservations we have regarding the operating conditions of the particular VAX
on which these runs were made, and will be.discussed next.

Solution Repeatability

During the process of preparing this collection of comparative runs, an
unexplained phenomenom (which is still unexplained as of this writing) occurred,
namely the fact that Level 60 MSC-NASTRAN run on a DEC-VAX computer gave dif-
ferent results to the same problem upon rerunning the same data. The Run 9
series of runs were made on rigid format 26 which is comparable (there are dif-
ferences in the decomposition routine) to NASA-NASTRAN rigid format 8. For '
example the input producing Run 9a was resubmitted over again (producing Run
9b) so that the residual vector {A} could be printed (employing the DMAP
instructions given earlier). In comparing the solutions, the results were
slightly different (e.g., 5.2% at 3.0 kHz). -The same input data was again
rerun on successive days producing Runs 9c and 9d. Run 9c is the closest to
the more stable results made on the 1108 and CDC computers.

Using the same DEC-VAX computer facility, the base case input was resub-
mitted again employing the Level 17.5 NASA/GODDARD NASTRAN and thus producing
Runs 5a and 5b. Again the nonrepeatability of the solution on the VAX was
experienced, this time with an entirely different version of NASTRAN.

An MSC Level 60 DEC-VAX computer run was made similar to Run 9a through
Run 9d, except that the older rigid format 8 instead of the newer MSC rigid
format 26 was employed. The results were poor in comparison to the exact solu-
tion, further, the worse residual of |A]| = .2127 was unacceptably high. No
reruns of the same input were made on this version and level of NASTRAN.

In order to demonstrate that repeatable results are possible (a notion we
usually assume is true on most modern computers), the base case data was rerun
on the UNIVAC 1108 computer; single precision Runs 3a and 3b were totally
repeatable as well as double precision Runs 4a and 4b.

The facts that (1) the VAX computer resulted in nonrepeatable results
employing two separate versions of NASTRAN and (2) the Level 60 MSC NASTRAN for
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the VAX computer, Sol. 8 (Run 8) gave poor results, strongly suggests a prob-
Tem with the particular VAX computer on which the runs were made. The follow-
ing 1ist provides some possible reasons for nonrepeatability:

e computer central processing drops a bit in the main memory or
operating register ’

e main memory itself drops a bit between storing and retrieving data
e floating point accelerator drops a bit during calculations
e disk subsystem (drive or interface drops a bit)

e computer temperature rises due to air conditioning not keeping
up with thermal load during the summer months when the runs were
made; this could result in dropping a bit by one of the four
above mentioned possibilities.

Finally it is noted that as of this writing, non NASTRAN users of the same VAX
computer that made the runs reported here, did not report an% reggatabi]ity
problems .with computer program results totally unrelated to ASTRAN.

CONCLUSIONS

The paper is concerned with both the accuracy of equation solvers and
with the accuracy of the problem formulation for large dynamic steady state
problems (e.g., rigid format 8). Based on a series of computer runs on dif-
ferent versions of NASTRAN on different computers, the following set of con-
clusions are drawn:

e NASTRAN solution decomposition algorithms employing less than a 60
bit word could lead to serious errors in the results (e.g., employ-
ing 36 bit single precision words on an 1108 computer gave up to
154% error in the solution with both Level 15.5 and Level 17.0 ver-
sions of NASA NASTRAN.

e Correlation between results run on the 1108 double precision Level
17.0 NASA NASTRAN; CDC-CYBER 175 single precision Level 488 MSC-
NASTRAN; and DEC-VAX double precision Level 52 MSC-NASTRAN were
excellent.

e Unexplained unrepeatability of results were experienced on the DEC-
VAX computer for both MSC-Level 60 NASTRAN and NASA-GODDARD Level
17.5 NASTRAN; Level 17.0 of NASA NASTRAN had no repeatability prob-
Tems on an 1108 computer.

e A minimum of 10 elements per wave length should be used to model
traveling wave propagation problems of the type treated in this
paper; coarser meshes lead to increasingly bad results when comparing
NASTRAN results to the exact continuum solution to the same problem.
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As a final comment regarding repeatability, it is noted that it is not being
suggested that this problem is one to be found in all VAX computers employing
NASTRAN. The spirit of the NASTRAN Colloquium is to share USER's experiences,
thus it was felt that our problem should be brought to the attention of the
NASTRAN USER's community in the event that similar problems are encountered by
others,
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e

S.P. (Single Precision)
D.P. (Double Precision)

TABLE 1 - NASTRAN COMPARATIVE SOLUTIONS
(BACK SIDE PRESSURE, element 100352)

FREQUENCY BACK SIDE PRESSURE, Pp/Pg (amplitude) Res%g;gﬁésm ToTAL cPu | RUN

SOLUTION SOURCE 35, kHz [22.5 kHz | 17.5 kHz | 8. kHz | 6. kHz 4, kHz | 3. kHz at 3. kHz (min) NUMBER

%XACT A?ALYTICAL .00809 .01776 .02796 ,09550 | .13893 | .22863 | .31324 not apply |not apply 1
Ref. 1 .

Level 15.5 NASA- .00284 .01343 .02573 .16978 | .35292 | .34048 | .27799 272 21.12 2
NASTRAN, UNIVAC 1108
Computer, 36 Bit S.P.
Decomposition (So1.8

Level 17.0 NASA- .00282 .01318 .02454 .13781 | .30044 | .38303 | .33906 247 19,15 3a

NASTRAN, UNIVAC 1108 ;
Computer, 36 Bit S,P<°00282 .01318 .02454 .13781 | .30044 | .38303 | .33906 not avail, 19.07 3b

Decomposition (So1.8

Level 17.0 NASA- .00277 .01268 .02307 ,09247 | .13638 | .22677 | .31191 2.099x1078 20.01 4a

NASTRAN, UNIVAC 1108 3
Computer, 72 Bit D;P.'00277 .01268 02307 ,09247 | .13638 | .22677 | .31191 | not avail. 19.29 4b

Decomposition {So1.8

tevel 17.5 NASA/ .00285 .01289 .02278 .08913 | .13305 | .21937 | .30407 not avail. 52,18 5a
GODDARD NASTRAN,

DEC-VAX Computer, .00279 .01139 .02248 .08145 | .12512 | .22887 .27257 .07426 59.45 5b
64 Bit D.P. Decom-
position (So1.8)

19,

Level 48B MSC- .00277 .01268 .02307 ,09247 | .13638 | .22678 | .31192 1,24x1075 3.03 6
NASTRAN CDC CYBER
175 Computers 60 Bit

- S.P. Decomposition
(501.8)

Level 52 MSC-NASTRAN,l.00277 .01268 ,02307 .09247 | .13638 | .22677 | .31191 7.422x107° 22,33 7
DEC-VAX Computer,
64 Bit D.P. Decom-
position (So1.8)

Level 60 MSC-NASTRAN,.00259 .01268 .02304 ,09266 | .13659 | .22602 | .45052 .2127 54,28 8
DEC-VAX Computer,
64 Bit D.P. Decom-
position (Sol.8)

.Leve1 60 MSC-NASTRAN{.00272 .01263 ,02261 ,08125 {.13343 | .22745 ,27247 | not avail. not avail. 9a

DEC-VAX Computer : -5 1.56 9b
64 Bit D.P. Decom- .00277 .01265 .02314 ,09278 | .13627 | .21877 | .28690 5.65x10 5

position (So1.26) .00276 .01268 02325 09360 | 13633 | .22709 |.31192 |20.6 x1073 51,81 9

(4 runs on same .00277 .01268 .02159 .09246 | .13912 | .22467 ,31191 | 9.82x1073 23.44 9d
data) .




.29 .

S.P.
P

oF o

(Single Precision)
(Double Precision)

TABLE 2 - NASTRAN COMPARATIVE SOLUTIONS
(FRONT SIDE PRESSURE, element 100378)

FREQUENCY

FRONT SIDE SCATTERED PRESSURE, Pg/Pq (amplitude)

RUN
SOLUTION SOURCE 35.kHz | 22.5 kHz | 17.5 kHz | 8. kHz | 6. kHz | 4. kHz | 3. kHz| NUMBER
EXACT ANALYTICAL (Ref. 1) ,04253 | .08580 13310 | .34059 | .44266 | .59075 | .59907 | 1
Level 15.5 NASA-NASTRAN, UNIVAC 1008 15093 | .05609 | .11772 | .32372 | .36949 | .59695 | .62678| 2
Computer, 36 Bit S.P. Decomposition (S01.8)
Level 17.0 NASA-NASTRAN, UNIVAC 1108 15093 | .05603 | .11759 | .32875 | .39233 | .58218 | .60932|  3a
Computer, 36 Bit S.P. Decomposition (S01.8) | 15093 | .05603 | .11759 | .32875 | .39233 | .58218 | .60932|  3b
Level 17.0 NASA-NASTRAN, UNIVAC 1108 15093 | .05592 | .11744 | .33419 | .44176 | .59134 | .59943| 4a
Computer, 72 Bit D.P. Decomposition (So1.8) | 45093 | ,05592 .11744 33419 | .44176 | .59134 | .59943|  4b
Level 17.5 NASA/GODDARD NASTRAN, DEC-VAX 14389 | .06016 | .12378 | .29474 | .40715 | .58416 | .59813|  5a
Computer, 64 Bit D.P. Decomposition (Sol.8) | 14385 | 06717 11805 | .24716 | .32194 | .50502 | .56985|  5b
Level 48B MSC-NASTRAN CDC CYBER 175 15093 | .05591 | .11744 | .33419 | .44176 | .59134 | .59942| 6
Computer, 60 Bit S.P. Decomposition (S01.8)
Level 52 MSC-NASTRAN, DEC-VAX Computer, 15003 | .05592 | .11744 | .33419 | .44176 | .59134 | .59942| 7
64 Bit D.P. Decomposition (So1.8)
Level 60 MSC-NASTRAN, DEC-VAX Computer, .16173 | .05591 11745 | .33203 | .43973 | .59726 | .59972| 8
64 Bit D.P. Decomposition (Sol1.8)
Level 60 MSC-NASTRAN, DEC-VAX Computer, .15304 | .05422 11353 | .28611 | .44209 | .55800 | .50161|  9a
64 Bit D.P. Decomposition (Sol.26) 15100 | .05838 | .11587 | .33320 | .44178 | .59291 | .60261]  9b
(4 runs on same data) .15095 | .05592 .11822 33563 | .44131 | .59211 | .59944 9¢
.15093 | .05592 12031 | .33385 | .45400 | .59269 | .59942|  9d




RING ELEMENT DYNAMIC STRESSES

NANCY LAMBERT
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ABSTRACT

The stresses in the CTRAPRG and CTRIARG ring elements are not calculated
for any of the dynamic solutions in the current COSMIC version of NASTRAN.
This paper presents a DMAP alter sequence for Solution 8 and post-processing
program, NASTPOST, to calculate these stresses. Test cases are presented
which describe the method. The stiffness and the consistent versus concen-
trated mass problems which have been ascribed to this element are reviewed.

The DMAP alter sequence introduces Solution 8 displacements to a Solution
1 module to calculate Real and Imaginary stress components during the execu-
tion of Solution 8. The post-processor, NASTPOST, calculates the magnitude/
phase stress results.

The DMAP sequence has been written specifically for Level 52 MSC/NASTRAN,
but can certainly be used for any COSMIC version with slight modification,

INTRODUCTION

None of the currently documented versions of NASTRAN calculate the
dynamic stresses in the CTRAPRG and CTRIARG solid of revolution elements. The
stresses for these elements are calculated in NASTRAN for static solutions
(e.g., Solution 1) but not in the dynamic solutions (e.g., Solution 8). Com-
ments have been made by others which express the reasons for not including the
s%ress calculations are related to the formulation of the mass matrix for the
element.

Sample problems are given to show that the difference between the consist-
ent and concentrated mass approach is greater than one might expect from argu-
ments solely between the merits of consistent or concentrated mass.

This paper describes a DMAP alter sequence for Solution 8 and a post-
processing program, NASTPOST, to calculate these dynamic stresses. The DMAP
alter sequence introduces the displacements computed in Solution 8 to a Solu-
tion 1 module to calculate the complex stresses in the form of real and
imaginary components. The post-processor, NASTPOST, calculates the stresses
in the form of magnitude/phase.
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DISCUSSION

It is not spelled out in the NASTRAN Users Manual that stresses for the
solid of revolution elements are not calculated for dynamic solutions. There-
fore, if one asks for stresses in a Solution 8 case control, the run is not
aborted, but no stresses are obtained.

In order to perform noise path studies of an axisymmetric structure it
became necessary to obtain these stresses. At first, the displacements for
the entire structure, obtained from a Solution 8 forced vibration analysis
were written into an output file; then these displacements, less one, were
written into SPC format as enforced displacements for a Solution static analy-
sis (this was done for the real and imaginary components separately). This
technique was later modified, utilizing the DMAP alter sequence A0S8$CS and a
post-processor, NASTPOST.

The DMAP alter sequence is given in Figure 1. The major points are:

» The user can specify output requests as usual for SPCFORCES
and DISPLACEMENTS.

« The user should specify STRESS (PUNCH) = ALL or a particular
set ID if he wishes to subsequently use NASTPOST to calculate
the magnitude/phase. This punched file will be sent to the
users S{stem space. (FOR 013.DAT for the MSC/NASTRAN VAX 11/780
VERSION).

« AOS8$CS should be placed on the user's RFALTER library and
executed then by calling RFAI = A0S8$CS.

The program NASTPOST is given in the appendix and is used to calculate
magnitude/phase stress components from real/imaginary stress components. The
major points are: ‘

» The components from FOR013.DAT above, are used as input to
calculate the magnitude/phase stress components,

» This program can be run immediately after the execution of
MSC/NASTRAN or at some Tater time.

The test problem for AQS8$CS and NASTPOST is a circular plate fixed at
the edges and driven by a single force, 100 dynes, at the center, normal to
the plane of the plate. The finite element control model is the CQUAD2 and
CTRIAGZ bending element model shown in Figure 2. The CTRAPRG model, shown in
Figure 3, is formulated as a concentrated or consistent mass for each of the
runs. The NASTRAN default value is the consistent mass matrix. The concen-
trated mass matrix is entered as CONM2 data. The three cases are compared in
Table 1 for static, 2000 Hz and 8000 Hz at a position near the concentrated
load and at the fixed edge.
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The concentrated mass formulation gives good results, as compared to the
control model. The consistent mass, or default formulation, gives results
which do not agree with the control model at either the low, 2 kHz, or high,
8 kHz, forcing frequencies. o

The static solution agrees very well with the control model which indi-=
cates that the stiffness of the model is represented correctly by solid of
revolution elements. The error therefore is associated with the mass matrix
formulation. The degree of error is obviously greater than one would expect
from the normal arguments of consistent versus concentrated mass differences.!

It can be argued that the use of cyclic symmetry with 3D elements rather
than solid of revolution elements would have been a possible solution. This
is certainly an avenue that deserves added investigation for comparison of
cost and accuracy of solution compared to the solid of revolution elements with
concentrated mass matrix.

CONCLUDING REMARKS

A DMAP alter sequence for Solution 8 and a post-processing program
NASTPOST has been presented to calculate the dynamic stresses in CTRAPRG and
CTRIARG. solid of revolution ring finite elements. Users of this technique are
cautioned to use the concentrated or lumped mass matrix rather than the con-
sistent mass (default value) matrix.

The DMAP sequence has been written specifically for Level 52 MSC/NASTRAN,
but can certainly be used for any COSMIC version with slight modification.
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TABLE 1

COMPARISON OF STRESSES, 3/8 cm from CONCENTRATED LOAD

FREQUENCY 01l 2 kHz 8 kHz

QUAD2 134.4 75.5 66.4

TRAPRG (CONS.) 132.3 17.2 63.1

TRARG (CONC.,) 132.3 96, 60.5
TABLE 2

COMPARISON OF STRESSES, 3/8 cm from FIXED EDGE

FREQUENCY 0l 2  kHz 8 KHz
QUADZ 44 .4 34.2 38.2
TRAPRG (CONS.) 45.6 27.0 10.0
TRAPRG (CONC.) 45,6 33.0 36.0

! OBTAINED FROM SOLUTION 1
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FIGURE 1 - ALTER A0S8$CS -

$ BEGINNING OF ALTER A0S8$CS
THIS ALTER PACKAGE IS USED TO CALCULATE

XDISPLACEMENTS (REAL/IMAGINARY) OR

(MAGNITUDE/PHASE)
XSPCFORCES (REAL/IMAGINARY) OR

(MAGNITUDE/PHASE)
XSTRESSES (REAL/IMAGINARY)

FOR THE CTRAPRG AND CTRIARG RING ELEMENTS

CASE CONTROL INPUT
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FIGURE 1 - (Cont'd)

THE USER SHOULD SELECT THE DESIRED
OUTPUT AS USUAL FOR DISPLACEMENTS
AND SPCFORCES.

THE USER SHOULD SELECT THE PUNCH
OPTION FOR STRESS IF IT IS DESIRED TO
SUBSEQUENTLY CALCULATE (MAGNITUDE/
PHASE) USING A POST-PROCESSING PROGRAM

ALTER 166

OFP OPPC1,0QPC1,0UPVC1,,,”//V,N,CARDNO §
ALTER 185,186

PARAM //STSR/13/-64 §

GP3 GEOM3, EQEXIN,GEOM2/ ,ETT/0/V,N,NOGRAV/@ $
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FIGURE 1 ~ (Cont'd)

PARAML UPUC//C,N,TRRILER/E/U.N.ROUS $
MATGEN ,/UNIT/1/ROUS $

MODTRL UPUC////3 §

MPYAD UNIT,UPUC,/ASGR/ §

DIAGONAL ASGR/ATRM// $

ADD UPVUC,/BSGR/(0.0,-1.0) $

DIAGONAL BSQR/BTRM// $

SDRe CRSECC.CSTH,MPT,DIT,EOEXIN,SIL,ETT,EDT,BGPDT,,,RTRM,EST,\

XYCDB/,,,OESCR,,/STRTICS/S,N.NOSORTB $

SDR2 CﬁSECC,CSTM.NPT,DIT,EQEXIN.SIL,ETT,EDT,BGPDT,,.BTRN,EST,
XYCDB/,.,OESCI,,/STATICS/S,N,NOSORTB $

OFP ,,,OESCR,,//S,N,CARDNO $

oFP ,,,0ESCI,,’/S,N,CARDNO $

PARAM //STSR/7/-64 $

ENDALTER $
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FIGURE 2 - CQUAD2, CTRIAG FINITE ELEMENT MODEL OF 10.00 CM DIA., 1 CM THK PLATE

P SIN wt
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FIGURE 3 - CTRAPRG SOLID OF REVOLUTION FINITE ELEMENT MODEL
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APPENDIX A

THE NASTPOST PROGRAM
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DATA SET NASTPOST AT LEVEL 317 AS OF 11/05/79
COMMON /HDRCOM/TITLE(16), SUBT(16),LABEL(16)
DATA DTIT/'$TIT’/, CASE/’CQSE'/ DSJB/’SSUl‘/.
z DELE I"ELE’/.ISTR/' STR’/,DLAB/’SLAB’/
DATA '1326. 103772%0/

CenDe? U 00, END=999) TEMP, TITLE
mmﬁ EQ.DTIT) GO TO 6

C - GET SIDTITLE CARD

6 ConTINE
m.sm-m) TENP, SUBT
mmﬁ £0.DSUB) GO TO 7

C-GTMLM

7 CONTINUE
READ(7 m.znn-mm TEWP, LABEL
xr(mﬁ ) 60 TO 10

C-C?STIESSM

10 CONTINUE
READ(7,910,END-999) TERP
IF(M £0.8STR) €O TO 20

- GET suocas: IDENTIFICATION

“20 CONTINUE
READ(?7 m.snn-mx TEw, 151D
mtaé £0.CASE 10 30
¢ - GET :u:utm TVPE
CONTINUE
READ(7,930,END=999) TEWP, IELTVP
IF(TENP . NE.DELE) GO TO §
- CHECK TYPE:
IFCIELTYP.£0.36) GO TO 368
IFCIELTYP.£0.37) G0 TO 370
@ T0S
C - ELEMENT TYPE - 38
360 CONTIMUE
1F(1038 .ES. ©) OALL RUIG(ISID, IELTYP,IEOF)
IFC1036 .£6. 1) CML musn.xnm.x:on
1F(1038 .EQ. § .AND, 1EOF .EQ. 1) GO TO 999
1038 » MOD(103841,2)
T8
C - ELENENT TYPE o 7
370 CONTINMUE
IF(1007 .£0. §) CALL umusxn.xnm.xson
1F(1037 -EQ. 1) CALL ncs'msxn. TV, L€0F)
1F (1037 .EO. t .AND. 1EOF .EQ. 1 %
1037 = MOD(1037+1,2)
@ Y06
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FORMAT (R4, 12X,111}
END

[

10

DATA SET NASTRU36 AT LEUVEL 994 RS OF 11/92/79
SUBROUTINE RU3IG(ISID, IELTYP, IEOF)
DIMENSION TEMP(2),DATA(4)
DATA TITLE/’ST °/,CONT/’-CON’/,BLANK/’ ‘s
DATA INN,IOQUT/?7,9/
REWIND IOUT
PRINT 10
FORMAT( *SUBROUTINE RW36’)
READ(INN,908,END=999) IELNO,DATA(1),DATA(2),DATA(3I)
CONTINUE
READ(INN,910,END=990) CARDN,DATA(4)
IF(CARDN .NE. CONT) GO TO 990
WRITE(IOUT) ISID, IELTYP, IELNO,DATA
READCINN, 920 ,END=999) TEMWP
BACKSPACE INN
CALL BACKSP(TENP, INN,L999)
IFCTEMP (1) .EQ. BLANK)
s READ(!..Q...END'999)IELNO.DGTR(1) DATA(2),DATA(I)
IF(TEMNP(1) .EG. BLANK) GO TO 601
IF(TEMP(L) .NE. TITLE) GO TO 990

8
2
-

[ g
m
f
.
-

o
-
®

.
N

10

o0

GO TO 800
FORMAT(110,8X,3E18.6)
FORMAT (A4, 14X,3€18.6)
FORMAT (2A2)

END
DATA SET NASTRU3I? AT LEVEL 004 AS OF 11/02/79

SUBROUTINE RU3I7(ISID,IELTYP,1EOF)

FORMAT( *SUBROUTINE RUI?’)
DIMENSION TEMP(2),DATA(20),KKREAD(33)
DATA TITLE/’ST ’/,CONT/’-CON’/,BLANK/’ ‘v
DATA INM,I0UT/7,8/
REVIND I0UT

PRINT 10
READCINN,900,END-999) IELNO,DATA(1),DATA(2),DATA(I)
CONTINUE

READ(INN, 910, END-090) CARDN,DATA(4), DATA(S), DATA(S)
READCINN, 910, END-990) CARDN, DATA(?),DATA(S), DATA(9)
1F (CARDM . ) GO TO 990

mum.ou.m-m) CARDN, DATA(10),DATAC11),DATA(12)
IF(CARDN’ .NE. ) GO TO 990
gtr:?gum,o'xto.m-m) CARDN, DATAC13),DATAC14), DATA(15)
mggm.ixoism-m) CARDH. DATAC16 ), DATA(17), DATA(18)

?EAD( tm.oxo.sm-m&ocm DATAC19),DATA(20)

URITECIOUT) 1SID,IELTVP, IELNO, DATA
READ(INN,920,END-998) TEWP
m'“n:('x‘n.y.m.sun-m)m

URLTE (10, 520 JKKREAD

i*!‘!‘
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39959

39901
339ee
309903
20004
33005

239907

38998
00009
39010
00011
39012

29013
00014
98015
0016
20017
23018
00019
00029
0021
20022
90623
00024
20025
00026

00001



READ(18,920)TENP
REVIND 168
IF(TEMP(1) .EQ. BLA

$ READ(10,900, END-QQQ)I»'NO DATA(1),DATA(2),DATALI)

IFCTEMP(1).EQ.BLANK) GOTO 201
IFCTEMP(1) .NE. TITLE: w0 TO 990

809 CONTINUE
ENDFILE I0UT
REUIND I
RET
990 CONTINUE
STOP 3700
999 IEOF - 1
GO TO 800
900 OO aTeT10, BX, 3E18.6)
916 FORMAT(A4,14X,3E18.6)
920 FORMAT(2A2)
930 E%"“"”“”
¢ DATA SET NASTRCI6 AT LEVEL @25 AS OF 11/05/79
SUBRQUTINE RC36(ISID, TELTVe, IEOF)
10 FORMAT ( * SUBROUTINE RC36’
DINENSTON TERP(2), mmxm DATAR(A),RMAG(4), PHASE(4)
DATA TITLE/'ST '7,CONT/’ “SoN*7, BLANK/® '/
DATA IPRT, INN, 1I0UT/6,7,9/
PRINT 10
IELCNT = 99
RADDEG » 57.29578
R TN, 008 END-099) IELNO,DATAI(1),DATAI(2),DATAI(3)
o1 CONTINUE
READUINN, 910, END=090) CARDH, DATAI(4)
1F (CAR CONT) GO TO 990
READ(10UT) xsxm.xeum,muon.nmm
1FCISIDR .MNE. ISID) GO TO 998
IFCIELTPR . NE. IELTYP) %0 7o 990
IFCIELNOR (NE. IELNO) GO TO 990
D0699 I * 1
RMAG(I) = soanmrmxnnarmn + DATAICI)SDATAI(I))
IF(DATARCI) .NE. 0.8) GO TO 690
IF(DATAI(I) .EQ. 0.9) PHASE(I) = 0.0
IF(DATAICI) .GT. 9.8) PHASE(I) = 9.0
IF(DATAI(I) .LT. 0.9) PHASE(I) = 270.0
G0 TO 699
690  CONTINUE
RATIO = ABS(DATAI(I)/DATAR(I))
PHASECT) = ATAN(RATIO)SRADDEG
IF (DATAL(1).GE, $.0 .AND. DATAR(I).LT.0.9)
X  PHASE(I) = PHASE(I) + 90.0
IF (DATA(T) . "L7.0.6 .AND. DATAR(I).LT.0.0)
X PHASE(I) = PHASE(I) + 180.0
1F (DATALCT). “17.0.8 .AND. DATAR(I).GT.0.0)
PHASECT) = PHASE(T) + 270.0
CONTINUE
URITE(IPRT, 930) 1S1D, 1ELTYP 1ELNO, DATAR, DATAT
P CIELONT .LT. 58) GO TO 709
CALL HB38(I 1519
TELCNT = @
700 CONTIMUE

IELCNT = IELCNT + 1

75



o0

20937
WRITE (IPRT,940) IELNO, ((RMAG(I),PHASE(1)),11,4)
READCINN, 920,5ND‘999) TEMP
BACKSPACE INN
CALL BACKSP(TEMP, INN,8999)
IF (TEMP(1).EQ.BLANK)

$ READ(12,990, END-999)IELN06DGT?I(1) ,DATAI(2),DATAI(3)

996
999

IFCTEMP(L) .EQ. BLANK) GO T
IFCTEMP(1) .NE. TITLE) GO T0 996

RETURN
900 FORMAT(I110,8X,3€18.6)

910
920 F
930
940

10

2

FORMAT (A4, 14X%,3E18.6)

FORMAT (2A2)
FORMT(1X,3110.2(/.4(5X.1PEIB .5)))
FORMAT(1X, IS, 8X, 4(1PEL2.5.’ 7’ ,0PF10.5,5%X)}

DATA SET NASTRC3? AT LEVEL 022 AS OF 11,/05/79
SUBROUTINE RC37(1S1D, IELTYP. 1ECF)
FORMAT ( *SUBROUTINE RC
DIMENSION TEWP(2), DﬁThI(P..) DATAR(29), RHAG(EO) PHASE(20)
DATA TITLE/’ST ‘/,CONT/ 77 -CON’ 7, BLANK7*
DATA Im XM.!OUT/G.'I 8/

29578
READ(INN, 900 ,END=-999) IELNO, DATAI(1),DATAI(2),DATAI(3)

CONTINUE

READ(IM.Q!..END-SQ.) CMDN DATAI(4),DATAL(S),DATAI(6E)

1F (CARDN .NE. CONT) GO TO 990

READ(XM.S!O END=990) CMDN,DM’AI(?) DATAI(8),DATAI(I)
ARDN .NE. CONT) GO TO 990

READ(IM 910.END=999) CARDN,DATAI(10), DATAI(11),DATAI(12)

IF(CARDN . CONT) GO TO 990

mnum.su,enn-m) CMDN,DA‘MI(’J) DATAI(14),DATAI(1S)

IF(CARDN . CONT) GO TO 990

READ( IM.QIO.EP‘;&-‘%’.&OCMM. DATA1(16),DATAI(17),DATALL 18)

IF (CARDN 0 990
READ( !lﬂ,9t.,£ﬂb-”’) CARDN,DATAI(19),DATAI (20)

F(CARDN .NE. 990
as»( 10UT) IS!N,!ELTPR.IELNOR.MTﬂ
IF(ISID .MNE. I 0 990
IFCIELTYP "o IELTP!) GO _TO 990
!F(IELM IELNO) GO TO 990

D0 699 1 »

at

RMAG(L) = MT(MTM(I):DM’M(!) + DATAI(I)ISDATAI(I))
IF(DATARCI) .NE. .-. ) GO TO 690

IF(DATAI(]) .EQ. 0.0) M(t) - 0.0

IF(DATAICI) .QT. ..) PHASE(1) « 90.0

oomm:

RATIO » ADS(DATAI(I)/DATAR(I))

PHASE(L) = ATAN(RATIO)ISRADDEQ

IF (DATAI(1).GE.0.0 .m DATAR(I).LT.0.0)

X PHASE(I) » PHASE(1

-0
IF(DATAI(I).LT.0.9 -W DATAR(I).LT.0.0)

32638
80039
23040

23941
23042
30043
32044
239045

299047
22048
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X PHASE(I) = PHASE(1) + 180.0
IF(DATAI(I).LT.0.0 .AND. DATAR(I).GT.0.9)
X PHASE(I) « PHASE(1) + 270.0

699 CONTINUE

URITECIPRT,930) 1SID,IELTYP, [ELNO, DATAR,DATAI
IFCIELCNT .LE. 7) GO TO 7@

CALL HD37C(ISID)

IELCNT = @

J'4t(ll)+1

K=J+3

IF(I .EQ. 1) URITECIPRT,940) IELNO,I,
((RMAG(IX1), PHASE (IX1)),IX12J,K)

IF(I .NE. 1) URITECIPRT,950) I,
((M(le).PHﬂSE(IXl)) IXI'J.K)

716 CONTIN.!

URITECIPRT,960)
READ(INN, 920 ,END-999) TEWP
BACKSPACE INM
CALL BACKSP(TEIP,IM,IS”)
IF(TEMP(1).EQ. BLANK)
8 READ(16,990, END-Q”)IELNO,DM’QI(I) DATAI(2),
IF(TEMP(1) .EQ. BLANK) GO 001
IF(TEMP(L) .NE. TITLE) GO TO 99¢
RETURN

CONTINUE
STOP 3701

999 IEOF - 1
TURN

RE
900 FORMAT(119,8%,3E18.6)
916 FORMAT (A4, 14X,3€18.6)
920 FORMAT (2A2)
930 FORMAT(1X,3110,10(/,4(5X,1PE13.6)))
940 FORMT(!X.IS.1X,13.4X.4(1P512 5, 77 OPFIO.S 5X))
950 FORMAT(7X,13,4X,4(1PEL2.5,"’ /‘.OPFi..S 5X)
960 E%HT( )

1

DATAL (I )

SET NASTHDIE AT LEVEL 007 AS OF 10/24/79

FORMAT ( *SUBROUTINE HD36')
w ;O.CDRCOH/?IYLEHG).SU.TUS) +LABEL(16)

sunT
URITECIPRT,128) LADEL,ISID
URITE(IPRT, 140)
URITE(IPRT,150)
URITE(IPRT, 160)
URITECIPRT,170)

RETURM
100 FORMAT(’1°,3X, 15A4,A8)
110 FORMAT(’ /,3%,15A4,A2)
120 an 'o'.ax.tsm.na SOX, 'SUBCASE’, 13)
130 FORMAT(
140 FORMAT(Z™,’S TRESSES FOR THE
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'‘CULAR RINGS (CTRIARG)
15. FORMAT (61X, ’ (HGGNITUDE/PHASE)‘
160 FORMT(4X. ’EL'.I?X, ‘RADIAL’, 19X, ‘CIRCUMFERENTIAL,
X 19X, ’AXIAL’, 24X, ‘SHEAR’ )
170 FORMT(4X.‘ID‘,198.’(X)',aﬂ(,'(ﬂﬁ‘l‘ﬁ)‘,aﬂ(,‘(Z)’
Eﬁgx,'(zx)

DATA SET NASTHD3? AT LEVEL 906 AS OF 18/24/79

SUBROUTINE HDI?(IS1D)

FORRBAT ( ’ SUBROUTINE HD37’)
COMMON /HDRCOM/TITLE(16),SUBT(16),LABEL(16)
PRINT 10
IPRT = 6
URITECIPRT,100) TITLE
URITECIPRT,110) SUBT
URITECIPRT,120) LABEL,ISID
URITE(IPRT, 140)
URITECIPRT, 1S0)
URITE(IPRT, 160)
URITE(IPRT,170)
RETURN

100 FORMAT(” 1’.33‘.15&4.03)

110 FORMAT(’ ‘,3X,15A4,A2)

120 FORMAT( ’.',3)(,15&4.02,5.)(. SUBCASE’, 1)

130 FORMAT(’ ’)

l“xFORM‘I’(BW.’S?RESSE FOR THE TRAPE"’

0IDAL RINGS (CTRAPRG )

150 FORMT(G!X.'(HAGNITUK/PHASE }’)

160 FORMAT(4X,’EL’,2X,’ ST’.!SX, RﬁDIM.'.lQX. ’CIRCUMFERENTIAL’,
X 19X, ‘AXIAL’, 24X, ‘' SHEAR

i70 FORMT(QX.‘ID’.EX,'PT'ASX,'(X)’ 24X, (THETA)’ , 24X, (2)’,
xaa‘gx.'tzm

SUBROUTINE BACKSP(TENP,INN,2)
DIMEMSION KKREAD(33),TEMP(2)
READCINN, 930,END =999 )KKREAD
REUIND 10

URITE (10,930 IXKREAD

REVIND 1

*§ 8
g
-2
g
-
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AN ENHANCEMENT OF NASTRAN FOR THE SEISMIC ANALYSIS OF STRUCTURES

John W. Burroughs
Civil Design Department, Ontario Hydro

SUMMARY

New modules, bulk data cards and DMAP sequence have been added to
NASTRAN to aid in the seismic analysis of structures. These allow input
consisting of acceleration time histories and result in the generation of
acceleration floor response spectra. The resulting system contains. numerous
user convenience features, as well as being reasonably efficient.

INTRODUCTION

At ONTARIO HYDRO, the primary analysis tool is NASTRAN. This use began
with the purchase of level 15.1 and continued with 15.5 and SPERRY/NASTRAN.
Currently MSC/NASTRAN is being implemented as levels 16 and above are not
available in CANADA. To perform a seismic analysis of nuclear power plant
structures, the NASTRAN normal modes analysis has been utilized in
conjunction with two post processors written at ONTARIO HYDRO. The one
performs a time history method analysis to generate the desired floor
response spectra, the other performs a response spectrum method analysis by
utilizing these floor response spectra. While the response spectrum
processor has stood the test of time, the time history method processor has
not.

The time history analysis post processc:s was initially conceived to be
used with simple stick type lumped mass models. However, as the complexity
of the analyses increased, this processor was unable to satisfy all
requirements. In addition, the cost of analysis for the more complex
structures became excessive. About this time, the need to treat problems
which were subjected to multiple-support excitations became a requirement.

Considering the shortcomings of the existing post processor, as well as
future requirements, it was decided to develop an entirely new capability and
to include it within NASTRAN. This project was then divided into two main
development stages. The first, which is described in this paper, is a
replacement for the existing post processor and provides the ability to
handle any size problem, efficiency, improved output and user convenience
features. The second stage, development of which is underway, extends the
first stage to allow for the consideration of multiple-support excitation
problems.
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a(t)

Fi(t)

SYMBOLS

acceleration time history at the ground (g).

structural damping ratio associated with a particular mode
AR

generated force time history acting at a specific¢ degree
of freedom.

structural damping ratio associated with the 1th element.
stiffness matrix associated with a specific mode j.
stiffness matrix associated with a particular element 1.
modal- mass matrix‘associated with the jth mode.

total structural mass associated with grid point i.

absolute acceleratioh time history used as a load for the
response spectra generation.

equipment damping ratio for which spectra are required.
displacement components in modal co-ordinates.

mode shape associated with the jth mode.

input and modal frequencies at which the response spectra

will be computed.

THEORY

Since the input for seismic activity is usually available as

acceleration time histories, and force time histories are required, a
conversion must be performed. Several techniques are available, the one
chosen here replaces the acceleration time history by a set of force time
histories according to the equation

Fi(t) = my a(t) : (1)

This results in a force time history at each free degree of freedom
corresponding in direction to the input acceleration.

Once the force time histories have been created, a modal transient

analysis is performed. The resulting relative acceleration time histories
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are then converted to absolute accelerations prior to the generation of the
floor response spectra. This is done by adding the input acceleration to
each of the computed acceleration time hlStOPleS in the corresponding
direction.

Floor response spectra are computed by performing a transient analysis
for each of a set of one degree of freedom oscillators. The transient
analysis performed utilizes the solution of separate second order
differential equations of the following form.

Ei+ 2Bw, Ei + wd Ei = 4 Pilt) (2)
woﬁ :—zb—,'im (3)

Ki
wgt = T (4)

The frequencies W utilized are a combination of user input frequencies
and the frequencies determined for the structure. As results are required

only in modal coordinates, the value of mj is arbltrarlly sef to 1.0. This
requires then only the solution of the equation

£ + 2Bwy £; + wli = Pilt) , (5)

The equation of motion, therefore, corresponds to that of -a single degree of
freedom system having the prescribed damping and frequency properties and
subjected to the prescribed degree of freedom acceleration. The relative
acceleration is obtained at each time step as follows:

ghmJ =l%%LL -2Bwofi,n+l - wot £i, n+l (6)

To obtain the desired absolute accelerations, the computed acceleration is
added to the above relative acceleration. The maximum acceleration is then
retained over all time steps. This procedure is repeated for each of the
designated frequencies and equipment damping input’. The resulting table of
maximum acceleration versus frequency is the desgred floor response spectra.

Damping must be included in the analysis. Here, the user may specify
modal damping, uniform structural damping or element structural damping. The
preferred technique is to use element structural damping. In this case, the
composite modal damping values will be computed. These values are based upon
the fraction of the strain energy sustained by each element in the model.

The modal damping for the jth mode is computed as follows:
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This facility has been implemented in NASTRAN by means of a DMAP
program. This program is a modification of that used for Modal Transient
Analysis (Rigid Format 12). The general problem flow is as shown in
Figure 1.

To implement this facility, four new modules were written. Two of which
precede the transient analysis module (TRD) and two follow. In addition,
extensive use is made of existing NASTRAN modules in the solution.

The standard NASTRAN approach is followed for the matrix generation and
eigenvalue extraction phase. Following this, the equivalent force time
histories are created. The input acceleration time histories may come either
from TABLEDl cards, or from a user file where the tables have been
prestored. A modal transient analysis is then performed. The output from
this stage consists of relative acceleration time histories. An added module
will convert these into absolute accelerations. This matrix is subsequently
transposed and from it the floor response spectra are generated. Finally, XY
plots of the spectra may be produced. All normal NASTRAN output is
available, in addition to the output produced by these new modules.

NASTRAN IMPLEMENTATION

To implement this capability in NASTRAN, two bulk data cards, four
modules and a complete DMAP sequence have been developed. The new bulk data
cards are SDATA and SETL. '

The SDATA card, used to define the input loading and optionally to
select the data required to generate the floor response spectra, is
illustrated in the appendix. The SDATA card is selected by the DLOAD case
control card. If the acceleration is to be combined with other acceleration
or force time histories, then the DLOAD bulk data card may be used to combine
them. Each SDATA card may select acceleration time histories for up to six
degrees of freedom at any one grid point. In addition, data may be provided
for the generation of floor response spectra. This data includes the
‘equipment damping set and the set of grid points at which spectra are
desired. Miscellaneous data for the control of the analysis may also be
provided.

The SET1 card is used to define the grid points at which spectra are
computed. It is selected by the SDATA card and is required only if floor
response spectra are to be generated. The card format is shown in the
appendix.
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The acceleration time histories required may be supplied either as
TABLEDl cards or from prestored tables on a user file. The latter technique
is preferred when a standard set of time histories is available.

Four modules were created for thls enhancement They are SCNTL, SAPF,
STHGNMX, and SFRG.
SCNTL This module verifies all data input on SDATA cards and ensures
that the required sets and data tables are available before
proceeding with the analysis.

SAPF - This module accepts the input acceleration time hiétory and
generates the required force tlme histories. This is done by
creating new forms of the DLT and DIT tables.

STHGNMX

This module accepts the relative time histories output from TRD
and creates the absolute acceleration time histories. 1In )
addition, this module can, at user request, reduce the size of
the output matrices prior to subsequent output requests.

SFRG This module accepts the transposed absolute acceleration matrix
and creates the required floor response spectra. This includes
the generation of data for XY plots as well as printed output.
This information is then passed to the XY PLOT and OFP

modules.

In addition to these bulk data cards and modules, the DMAP sequence
contains a number of parameters which may be used by the engineer to select
optional processing paths. In general, the engineer need not use any of
these parameters as the default values will select the most appropriate
options.

All the normal output from a Modal Transient analysis may be requested.
This includes btoth relative and absolute accalerations. The primary output,
and all which is normally required, is the floor response spectra which may
be printed or plotted as desired. ’

SAMPLE PROBLEM

To illustrate the ease with which this enhancement may be used, the
structure shown in Figure 3 is analyzed and floor response spectra generated
at grid point 6. As a point of comparison, the floor response spectra
generated by the previous post processor is shown in Figure 4. That portion
of the NASTRAN input data required for this enhancement is shown in
Figures 5, 6 and 7 for the Executive control, Case control and Bulk data
decks respectively. The plot of the resulting floor response spectra is
shown in Figure 8 and a portion of the printed output in Figure 9. A review
of this data and the resulting output demonstrates the ease with which floor
response spectra may be generated.
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EXTENSIONS

Several extensions to.this enhancement are either planned or in
progress. One will be to implement this facility in the other NASTRAN
versions available at ONTARIO HYDRO. Another is the extension to solve
multiple-support excitation problems. Upon completion of this last item, the
original reason for. developing these features will be satisfied. All future
work will then add more user convenience features or efficiency
improvements.

CONCLUSIONS *

As a result of this enhancement of NASTRAN, an easy to use capability
for the generation of floor response spectra has been made available. ' This
is an extension of the existing Modal Transient analysis which retains all
the original capabilities. In addition, the approach used is relatively
efficient in terms of computer resources and user interaction required. It
is a vast improvement over the original post processor and removes all of the
restrictions inherent in it.

84



REFERENCES

The NASTRAN User's Manual NASA. SP-222 (01),
May 1973

The NASTRAN Theoretical Manual NASA SP-221 (01),
December 1972

85



APPENDIX

Input data card SDATA
Description: Defines an input acceleration time dependent loading and
various parameters for the generation of floor response

spectra.

Format and example

1 2 3 4 5 6 7 8 9 10
SDATA SiD RUN XQT DTM SAVE SOURCE THN1 DIR1 +abc
SDATA 101 -1 3 2 ‘ BRTEQH 2 +SD1
+abc IDFSP IDEQ NSKO IDUMP THN2 DIR2 THN3 DIR3 +def]
+3SD1 10 20
wdef . THNY DIRY THN5 DIR5 THN6 DIR6
Field Contents
SID Set identification number (integer > 0)

RUN Run type control parameter < 0 - simple structure
. > 0 - multi excitation

XQT ’ Erection phase control

1 generate time histories only

2 generate floor response spectra only
3 both 1 and 2

nouu

DTM : Identification number of the grid point at which the
acceleration time history is applied (integer = 0)
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SAVE
SOURCE
THNi
DIRi
IDFSP'
IDEQ
NSKO

IDUMP

Remarks:

A flag indicating that the output time histories are to be
saved for subsequent use (integer > 0 or blank)

Identifier of the file on which the input time history is
stored (integer > 0, default = 0)

Name of the acceleration time history if on a file, or the
id of a TABLED1 card.

Direction associated with this time history
(1 < integer < 6)

Set id of a SET1 card on which the points at which floor
spectra as desired are listed (integer > 0 or blank)

Set id of FREQ, FREQL or FREQ2 cards on which the
equipment dampings are defined (integer > 0 or blank)

Alternate skip factor to reduce the output time hlstorles
by (integer > 0 or blank)

Intermediate output flag (integer > 0 or blank)
= 1 print input tables
= 2 print generated tables

1. The SDATA card must be selected by the DLOAD Case Control card.

2. This loading may be combined with other loadings by means of the DLOAD
bulk data card.

3. The items SAVE and SOURCE refer fo the NASTRAN GINO file INPT, INP1l thru

INP9.

INPT is denoted by zero, INP1 - INP9 by the integers 1 to 9.

y, If SAVE is blank, the ocutput time histories will not be saved.

" 5. If any DIRi or THNi is left blank, then the scan of these items is

terminated.

6. Up to 6 acceleration time histories at a single grid point may be
defined on one logical card.
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Input data card SET1
Description: Defines a set of grid points at which output is desired.

Format and examplé

1 2 3 y 5 6 7 8 9 10
SET1 SID Gl G2 G3 GU G5 G6 G7 +abe
SET1 10 6
+abe G8 -ete-
Field Contents
SID ' Set identification number (integer > 0)
Gl, G2 etec List of structural grid points (integer > 0 or "THRU")
Remarks:

1. These caris are referenced by the SDATA card:

2. If "THRU" is used if must appear in field 4. Fields 6 to 10 will then
’ be blank.

3. All points referenced within a THRU list must exist.
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EXTRACTION

.
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L
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STHGNMX: Generate
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Figure 1: - Generation of Flocor Spectra
- Problem Flow
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ID A,B

APP DMAP
TIME 10

BEGIN §

$INSERT DMAP SEQUENCE HERE
END $

CEND

Figure 5: Sample Executive Control Deck

TITLE = GENERATE FLOOR RESPONSE SPECTRA
TSTEP = 50
METHOD = 10
SPC = 100
~ DLOAD = 200
.~ FREQ = 201

OUTPUT (XYPLOT)
PLOTTER = NASTPLT MODEL D,O

Figure 6: Sample Case Control Deck
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BEGIN BULK

1 2 y 10
FREQ 2 .01 .05
FREQ 201 .1 .5 .9 1.2 1.7 2.5 +F1
+F1 3.0 3.5 .0 4.5 5.0 6.0 8. +F2
+F2 10.0 12.0 .0 0.0 28.0 0.0
SDATA 200 1 2 1 2 +SD1
+SD1 1 2
SET1 1 6
TSTEP 50 .005
3
$ ALL OTHER GEOMETRIC DATA
$ .
ENDDATA

Figure T:

Sample Bulk Data Deck
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GENERATIGN OF FLODR RESPONSE SPECTRA SAMPLE PROBLEM
SINGLE POINT EXCITATION PROBLEM

DUTPUT
POINT-ID

FREQUENCY

3.200000+00

3.600000+00

3.800000+00
4.000000+00
9.200000+00
4.800000+00
5.200000+00
5.600000+00
€-200000+00
6-600000+00

6-680149+00
6-800000+00
6-971636+00
7.000000+00

7-600000+00

FOR COLLUOEIUM PAPER

" TYPE

3.499337-01
-0

3.340839-01
-0

3.436410-01
-0

3.850916-01
-0

4.236383-01
-0

0

6.550089-01 °

-0

5.732045-01
-0

1.1040017+00
.0

1.287366+00
.0

8.027770-01
-0

86883788'01
8.5495293-01
-0

86189829-01

8.235375-01

3.487423-01 -

2.088033-01
)

1.794977-01
.0

2-215128-01
-0

2.188926~01
.0

2.059928-01
-0

2.203638-01
.0 .

2.713436-01
-0

2-750139-01
-0

4.595057-01
)

5.287637-01
-0

5.140153-01
-0

46894127'01
4.633133-01

46544786-01

3.937230-01
.0

RES

- e mE e e e wE me o e e W wm e =

-0
-0

.0
-0

-0
-0

.o .

. e

.« .
00 O oo oo oo

e

JUuLy 14» 1980

PONSE SPECTRA
EQUIPMENT DAMPINGS— = — = — = = = = = = = = = = =

-0
-0

. . .. . . . . .« .
SO Oo 00 oo oo

{
i

DY ¢ .

. . .
o0 oo oo oo oo

NASTRAN 19/12/73

o0 oo oo ao oo

PAGE

SUBCASE 1

8



SdLUTION OF ENFORCED BOUNDARY
MOTION IN DIRECT TRANSIENT AND |
HARMONIC PROBLEMS |
Prepared By
Gary L. Fox
Director
Engineering Mechanics Division

NKF ENGINEERING ASSOCIATES, INC.
8150 Leesburg Pike
Vienna, Virginia 22180
(703) 442-8900

" INTRODUCTION

The current versions of NASTRAN, i.e., NASA, MSC, and MAC support non-zero
boundary displacements only in the static analysis. Forcing functions in the
dynamic analysis formats allow only forces and pressures to exercise the
mathematical model. This limitation can be circumvented by the application
of a DMAP alter sequence. For the direct harmonic problem, a simple change to
module FRRD can be easily incorporated to effect a more efficient use of the
code.

Let the equation of motion be written with the dynamic set of coordinates
in partition form with subscript b as the boundary set and subscript ¢ as the
complimentary boundary set, i.e., . '

mcc mcb Xc dcc dcb Xc cc kcb Xc

L ] + . +

| e bl [ %) e  obf [ B} [Mbe Fop | | % @

where

m, d, k = mass, damping, and stiffness matrix coefficients

P, Pnl = linear and non-linear load vectors"
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Equation (1) is not solved by the direct transient ox frequency formats when p R
X ., and therefore X and X, are known and P,, X , and therefore XC and Xc
ate unknown. However, equatlon (1) can be rewritten in the form needed for
solution by the standard NASTRAN modules., The first of these are:

[mcc] (X} + [dcc] [X}f'[kcc] (xc} - [pc}i'[Pnl} )
where

P = P+ Iny] X3 + [4,) [0+ [ky] X}

By the use of the partitioning modules, the submatrices in Equations (1) or (2)
are easily formed. By letting the boundary displacement vector be input
through the FORCE or DLOAD cards, the force vector is actually identified as
[Pb} = [Xb} (or the first or second derivatives).

The formation of the load vector is different for the transient and har-
" monic cases. These issues will be discussed below. Somewhat independent of
the problem is the requirement that the solution vector to be processed by the
remaining modules must be of the dimensions of the "d" set. By using once
more partitioning vectors and the MERGE module, the solution vector [X }, and
in the transient case [ X} and [X }, is merged with the boundary vectof [Xb}
to form the dynamic vectSr [X.}. CWlth the "d" set solution vectors formed,-
the remaining DMAP sequence can be executed without NASTRAN knowing the
difference. ‘

In the case of harmonic analysis the non-linear force is zero and equation
(2) becomes

@ [m ] o+ dw A1 o+ [k 1) [X) =[P} ' (3)

cC ccC

where

w = circular frequency, 2 w f.
HARMONIC ANALYSIS

The DMAP alter that was written to partition the matrix equatiom (1) ;
into the form of equation (2) and then solve the lower order equation (3)
is shown in Figure A-1. The following paragraphs discuss the steps involved.

1. FRRD calculates the load vector.  PDF and exits the module. The
parameter ISKP is changed from -1 to a positive number to be
transferred -to FRRD the second time the module is executed.

If the value of ISKP was set to zero, the default value,
the module would have been executed normally. A normal
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ALTER
FRRD

execution would give a solution to equation (1). The FORTRAN
listing of module FRRD is shown in Figure A-2. The added code
is underlined. Only the subroutines FRRD1A and FRRD1B are
executed in this step.

. The parameter ISKIP is saved for later use.

The partition vector DPAR is used to partition the stiffness
matrix KDD. The submatrix identification is related to equa-
tion (2) by the following:

Figure A-1. DMAP Alter for Harmonic Response

159.159

CASEXX,USETD,DLT, FRL,GMD, GOD ,KDD , BDD , MDD, DIT/ UDVF, PSF,PDF , PPF/

C,N,DISP/C,N,DIRECT/V,N,LUSETD/V,N,MPCF1/V, ,N,SINGLE/V,N,OMIT/
V,N,NONCUP/V,N,FRQSET/V,N,ISKIP=-1/ $

SAVE 1ISKIP $

PARTN KDD,DPAR,/KD11,KD21,KD12,KD22/ $

PARTN MDD,DPAR,/MD11,MD21,MD12,MD22/ $

PARTN PDF,,DPAR/PD11,PD21,PD12,PD22/C,N,1 $

MPYAD KD11,PD21,PD11/P1DF/C,N,0/C,N,-1/ §

FRRD CASEXX,USETD,DLT,FRL,GMD,GOD,GOD,KD11, ,MD11,DIT/UIDVF,PSF,P1DF,
PPF/C,N,DISP/C,N,DIRECT/V,N,LUSETD/V,N,MPCF1/V ,N,MPCF1/V,N,SINGLE/
V,N,OMIT/V,N,NONCUP/V,N,FROSET/V,N,ISKIP/ $

MERGE KD11,KD21,KD12,KD22,DPAR,/KDD/ $

MERGE MD11,MD21,MD12,MD22,DPAR,/MOD/ $

MERGE U1DVF,PD21,PD22,,0PAR/UDVF/C,N,1 $

ENDALTER

CEND

Figure A~2., Listing of Module FRRD
LEVEL 2.2.1 (DFC 77)
ISN 0002 SUBROUTINE FRRD 00000010 -
C 00000020
C FREQUENCY AND RANDOM RESPONSE MODULE 00000030
c ‘ 00000040
c INPUTS CASECC,USETD,VULT,FRL,GMD,GOD,KDD,
BCD,MDD,PHIDH,DIT ' 00000050
c 00000060
C OUTPUTS UDV,PS,PD,MP : 00000070
C 00000080
C 8 SCRATCHES 000006090
C 00000100
ISN 0003 INTEGER SINGLE,ONIT,CASECC,USETD,DLT,FRL,
GMD,GOD,BDD,PHIDH,DIT, 1 SCR1,SCR2,SCR3,
SCRS, SCR6,UDV, PS,PD, FP,PDD,OPTION - 00000120
.ISN 0004 INTEGER SCP7,SCRB,NAME&2<,MCB&7> 00000130
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ISN
ISN

ISN

ISN
ISN
ISN
ISN

ISN
ISN
ISN
" ISN
ISN
ISN

ISN

ISN

ISN
ISN
ISN

ISN

ISN

0006
0006

0007

0008

0009
0010

0011
0012
0013
0014

0015

0017
0018
0019
0020
0021

0022

0024

0025
0027
0028

0030

0032

INTEGER FOL
COMMON/APP&2< ,MODAL&2< , LUSETD ,MULTT , SINGLE,
OMIT, NONCUP,FRQSET,

1 IsKiP

COMMON/ FRRDST/OVF&150< , ICNT, IFRST, ITL&3< IDIT,
IFRD,K4DD ‘

DATA CASECC,USETD,DLT, FRL,GMD,GOD,KDD,HDD,
MOD,PHIDH,DIT/

1 101,102,103,104,105,106,107,108,109,110,111/
DATA UDV,PS,PD,PP,PDD/201,202,203,204,203/
DATA SCR1,SCH2,SCR3,SCR4,SCR5,SCR6 /301,302,
303,304,305,306/

DATA SCR7,SSCR8/307.308 /

'DATA MODA /4HMODA/

DATA POL/205/
DATA NAME /4HFRRD,4H /

BUILD LOADS ON P SET ORDER IS ALL FREQ.
FOR LOAD TOGETHER

IF ( ISKIP .,GE. 0 ) GO TO 5

NLOAD = YSKIP / 2%*16

NFREQ = ISKIP - NLOAD/*2%**16

GO TO 15

CONTINUE

CALL FRPDIA&DIT,FRL,CASECC,DIT,PF,LUSETD,
NFREQ, NLOAD, FRQSET, FOL,

1 NOTRD<
1F&MULTI.LT.O.AND.SINGLE,LT.0.AND.OMIT.L.T.O
AND ,MODAL '
1 & 1< .NF. MODA< GO TO 60

REDUCE LOADS TO D OR H SET

CALL FPRU14$PP.USETD,GMD,MULTI,SINGLE,OMIT,
MODAL&1< , PH1DH, PD,

1 PS,SCR5,SCR1,SCR2, SCR3, SCR4<

IF ( ISKIP .LT. 0 ) GO TO 40

15 CONTINUE

IF ( MULTI .LT. O .AND.SINGLE.LT.O .AND.

OMIT .LT. O
. .AND. MODAL(1) .NE. MODA ) POD = PD

SCR5 HAS PH IF MODAL FORMULATION
IF &MODAL&1< .EQ.MODA< PDD #SCRS
SOLVE PROBLEM FOR EACH FREQUENCY

IF&NONCUP .LT. O .AND. MODAL&l< ,EQ. MODA<
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00000140

00000150
00000155
00000160

00000170

00000180
00000190
00000200

00000210
00000220
00000230
00000240
00000250
00000260

00000270
00000280
00000281
00000282
00000283
00000284
00000285

00000290
00000300
00000310

00000320
00000330
00000340
00000350
00000360

00000370
00000375
00000377

00000378
00000379
00000380
00000390
00000400
00000410
00000420
00000430
00000440
00000450



ISN
ISN
ISN

ISN

ISN

- ISN

ISN
ISN

ISN
: ISN
ISN
ISN

ISN
ISN
ISN

ISN

ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

0034
0036
0037

0038

0039 -
0040
0041 .
0042 .

0044 .

0045
0046
0047

0049
0050
0051

0052

0053
0054
0055

0056
0057
0058
0059
0060
0061
0062
0063

GO TO 50

10 IF&FREQ .EQ. 1 .OR. NLOAD .EQ 1< SCR6 # UDV

DO 20 1#1,NFPEQ
CALL KLOCK&LOCK&ITIMEl<

o
" C  FORM AND DECOMPOSE MATRICES
. ‘
' CALL FRRD1C&FRL,FROSET,MDD,RDD,KDD.1,SCRL,
SCR2,SCR3, SCR4 , SCRS,
1 SCP7.1GOO0D<
n
C ULL IS ON SCRL —- LLL IS IN SCR2
C
C SOLVE FOR PD LOADS STACK ON SCR6
C
C
CALL FRRD1D&PDD,SCR1,SCR2,SCR3,SCR4,SCR6,
NLOAD,1GOOD , NFREQ<
CALL KLOCK&ITIME2<
CALL IMTOGO&ITLEF1<
IF&2*&ITIME2-ITIMEl<.GT. ITLEFT .AND. I .NE.
NFREQ< GO TO 70
20 CONTINUE
1 # NFREQ
30 CONTINUE
 IF&NFREQ .EQ. 1 .OR. NLOAD .EQ 1< GO TO 40
Cc
C RESORT SOLUTION VECTORS INTO SAME ORDER AS LOADS
C
CALL FRRD1E&SCR6,UDV,NLOAD,I<
40 ISKIP = NFREQ +NLOAD*2%*16
RETURN
C
C  UNCOUPLED MODAL
C
50 CALL FRRD1F&MDD,HDD,KDD,FRL,FRQSET,NLOAD,
NFREQ, PDD , UDV<
GO TO 40
60 PDD # PP
GO TO 10
C
C  INSUFFICIENT TIME TO COMPLETE ANOTHER LOOP

70 CALL MESAGE&.5.NFREQ-I,NAME<
MCA&1< # SCR6

CALL RDTFL&MCA*1<<

MDONE # MCD&2<

MCR&1< # PP

CALL ROTR1&MCH&1<<

MCR&2< NOONF '

CALL WRTIFL&MCB&L
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00000680
00000690
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ISN
ISN
ISN

IF&SINGLE .LT. O< GO TO 80 00000900

0064
0066 MCA&l< # PS 00000910
0067 CALL PUTRL&MCA&L<< 00000920
K., = Kb11
k2~ xp12
Kbc = KD21
Kbb = KD22
4, The partition of the mass matrik, MDD, is similar to the stiffness
matrix. '
5. Because the load vector is calculated for all frequencies and
1dading conditions at once, PDF is a load matrix, a load vector
in each column. The partition vector DPAR is used again to
separate the enforced displacements from the forces. The rela-
tionship to equation (2) is
PC = PD11
| Pb = PD21 |
6. The module MPYAD performs the matrix multiplication and additions
required by equation (2). Here
P = P1DF
c
7. Module FRRD is executed again, but this time the parameter ISKIP is
positive, A jump to statement 15, underlined in Figure A-2, causes
only the subroutines FRRD1C, FRRDIE and FRRD1F to be executed. The
solution to equation (3) is obtained in this step. The code uses
the following names related to equation (3).
MCC = MD1l
Kc = KD11
P = P1DF
x¢ = ULDF
c
8. The stiffness matrices are merged to form the system stiffness matrix.
This is the inverse of operation 3.
9. Similar to the stiffness matrix, this operation is the inverse of
operation 4,
10. Merges the solution vector Xc of equation (6-7) with Xb to form the

system solution vector‘Xd.

The three merges, operations 8, 9, and 10, are made necessary because
NASTRAN uses the displacement approach to the problem solution. In
order to calculate stress and forces in the members, the solution
vector must contain all grid points.
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TRANSIENT ANALYSIS

The DMAP Alter required for the Rigid Format 9, Direct Transient Response,
is shown in Figure A-3. The discussions below relates to the circled numbers
in the DMAP listing. ’

1. The Stiffness matrix is partitioned in accordance with
Equation (2) where

KD11l = ch
Kpl2 = ch
KD21 = Kbc
KD22 = Kbb

2. The Mass matrix is partitioned similar to the Stiffness matrix

MD11 | MD12
'E%Dﬁ] = -
|
t

MD21 MD22

Figure A-3. DMAP Alter to Rigid Format 9

ALTER 163
PARTN KDD,OPAR,/KD11,KD21,KD12,KD22/ $ @)
PARTN MDD,OPAR,/MDLL,MD21,MD12,MD22/ $ ' (2)
PARTN PD,OPAR/PD11,PA21,PD12,PD22/C,N,1 $ : 3
MPYAD PA21,MV1,/PBT21/C,N,0/C,N,1/C,N,0/C,N,2 S ~ 4). (5)
ADD PBT21,PA21/PB21/C,Y,ALPHA=(0,.550E~2.0)./C,Y,BETA=(0.550E~2.0)$ (6)
MPYAD PB21,MAIT,/PV21/C,N,0/C,N,1/C,N.0/C,N,2 $ ¢))
MPYAD PV21,MV1,/PCT21/C,N,0/C,N,1/C,N,0/C,N,2 $ ' (8)
ADD PCT21, PV21/PCZl/C Y. ALPHAr(O 550E~2.0.)/C,Y,BETA=(0.550E-2. 0)$ (9)
MPYAD PC21,MAIT,/PU21/C,N,0/C,N,1/C,N,0/C,N,2 $ (10)
MPYAD KD12,PU21 PDll/PlD/C N, 0/c N,1 /$ 1y
ALTER 165, 165 o
TRD CASEXX,TRL,NLFT,DIT,KD11, MDll PID/UIDVT, PlLD/C N,DIRECT/

V,N, NOUE/V N NONCUP/V N,NCOL $ (12).
ALTER 166
MERGE KD11,KD21,KD12,KD22,0PAR/KDD/ $ (13)
MERGE MD11,MD21,MD12,MD22,0PAR,/MDD/ $ (14)
MERGE PD11,PILD,PD12,PD22,,0PAR/PNLD/C,N,1 $ (15)
PARTN PA21,PVA,/A21,,PDA12,/C,N,1 $ (16)
PARTN PV21,PVA,/V21,,PDA12,/C,N,1 $ a7
PARTN PU21,PVA,/U21,,PDA12,/C,N,1 $ (18)
MERGE A21,,V21,,PVVA,/PVA21/C,N,1 § (19)
MERGE PVA21,,U21,,PVUVA,/PUVA21/C,N,1 $ (20)
MERGE UlDVT,PUVA21,,,,DPAR/UDVI/C,N ,1 $ (21)
ENDALTER
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MA1T

The load vector, PD, which is output from module TRLG, is partitioned
according to Equation (2), where

PD = {P(ti)}, {P(t)}, . . .
PD11 = {Pc(tl)}, {Pc(tz)}, .- . .
PA2] = {Pb(tl)}, {Pb(tz)}, . . .

Note that PD is a matrix formed by columns- of load vectors, one
column for each time step. The matrices PD22 and PD12 are not
generated, i.e.

Direct input matrices, MVl and MALT, are used subsequently to calcu-
late the velocity and displacement matrices from the acceleration
matrix. The forms of MVl AND MAIT are

cf 0.. "
o 0. ..
1

—N+2—o

The dimensions of both matrices are M X N + 2 where M is the number
of coordinates in the b-set and N is the number of time steps.

Produces the matrix product

[PBT21] = [PA21]*[MV1] ,
00. ..

10. ..

- 01...

[{PB (tl)}, {PB.(tz)}, . o o]

. . OOO‘
O O =

[0o, {%) (tl)}, {%) (tz)}, ..

It is seen that this operation moves the columns of the acceleration
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8.,

11.

12,

vectors from time ti to tifl.

Produces the matrix sum

[PB21] = o[PBT21] + B[PAZ1]

The coefficients o and B are set equal to one-half of the
integration time step, At?

[PB21] = 25 [{P, + B}, (P, + P}, - - 1]

=[{AV1}, {sz}, e o o

where[P} = {P (t,)};i =1 to N + 2
-1 Cc 1

The matrix PB21 represents the change in velocity, AV,, between
time steps, ti and ti The calculation is based on the trapesoidal
rule for numerical int&gration.

The final step in producing the matrix of velocity vectors, PV21
from the matrix of acceleration vectors, PA21, this module produces
the matrix product

9.

[PV21] = [PB21] [MALT] )
1111. .]
0111..
0011..
= 0001. .

[AVl} , {sz}, . o o]

r

= [favy ¥, (V) + 8V}, {8) +8) +8V5), oL ]

A repeat of operations e, f, g. The matrix of displacement
and 10. PU21, is calculated from the matrix of velocity vectors, PV21.’

The load

The

KD12
PU21
PD11

P1D

vector is calculated in accordance with Equation (2).

B ch

= (X}, (Xdpen o o
f {Pb}l, {Pb}é’ .« o .
{Pc}l, {Pc}Z’ . . e

module :TRD calculates the solution to Equation (2).

KD11
MD11

P1D =

= [Kec]
= [Mcc]

Pl’ P2,‘o ¢ o
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13.

14,

15.

U1DVT =

et

X o Xgs ov

[P1LD] = {Pnz} .

The solution vector, UlDVT, is a matrix of displacements, velocity
and acceleration vectors for each grid point; a column for each
time step.

The system stiffness matrix is formed

KD11  KD12 .
= [XDD]

KD21  KD22
The systeﬁ mass matrix is formed similar to the operation (13.)
The system load vector is formed

PD11

-——- = [PNLD]
P1LD

16., 17, Partition the acceleration, PA21, velocity, PV21l, and dis-
and 18. placement, PU21, matrices to the correct size to be merged

with U1DVT.

19., 20. These operations merge the solution matrix, UD1VT, with the
and 21, excitation matrix, PUVA21l, to form the final system solution

matrix, UDVT,

From this point on, the solution is calculated according
to the Standard Rigid Format 9 procedure.
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* APPLICATION OF NASTRAN TO THERMAL TRANSIENT ANALYSIS
WITH SURFACE ABLATION*

Karl Meyer
Planning Research Corporation
John F. Kennedy Space Center, Florida

SUMMARY

This paper presents a computer modeling technique for solving thermai
transient analysis (Solution 9, Approach Heat) with surface ablation problems
using the NASTRAN Computer Program.

The mathematical model used in this analysis is one dimensional, which
corresponds to the direction of heat flow. All dimensions perpendicular to
that of the heat flow direction are assumed to be in thermal equilibrium,
i.e., the net heat flow in and out is assumed to be zero. A special modeling
technique that would simulate the effects of surface ablation corresponding to
the direction of heat flow was developed and incorporated into this mathemat-
ical model.

A1l computer analyses were done using Level 16.0 NASTRAN on a UNIVAC Sys-
tem. This analysis technique was developed to predict the thermal response
and the amount of surface ablation that would occur on the deck of the Mobile
Launcher Platform (MLP) during a launch of the Space Shuttle at John F.
Kennedy Space Center, Florida.

INTRODUCTION

The similarities between heat transfer and structural ana]ysié have been
exploited to include heat transfer as a part of NASTRAN analysis capabilities.

In heat transfer, just as in structural mechanics, the analysis of a
solid continuum can be modeled using the finite element method. Finite ele-
ment analysis reduces the problem to the solution of a set of simultaneous
equations in which the unknown variables to be calculated are defined at a
discrete or finite set of grid points. This set of simultaneous equations may
then be expressed in the matrix form:

(K] u} + [B] (i} = {P} + {N} (ref. 1)

*This work was done under NASA contract No. NASlO-8525.
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) Table I shows the analogies between heat transfer and structural mechan-
ics. The major difference between heat transfer and structural mechanics
analysis is that temperature is a scalar function of position, whereas dis-
placement is a vector with as many as six component degrees of freedom. Thus,
in heat transfer analysis, -NASTRAN provides one degree of freedom at each grid
point (temperature).

The heat conduction matrix [K], and the heat capacity matrix [B], are
derived from element and material properties assigned by the programmer. An
additional advantage of NASTRAN is that part of the heat conduction matrix may
be associated with surface heat convection or radiation. The applied heat
flux vectors {P}, are associated with heat flux in or out and are time-
dependent loads. The nonlinear heat flux vectors {N} are temperature depend-
ent or rate-of-change-of-temperature dependent -heat flux in or out of the sys-
tem,

Typical output from a NASTRAN thermal transient analysis includes:
a. Temperature vs time or grid points

b. Rate of change of temperature vs time at grid points

c. Thermal flux vs time at grid points

d. Finite element temperature gradient vs time

SYMBOLS
[B] Matrix of constant heat capacitance coefficients
(K] Matrix of constant heat conducfance coefficients
{N} Matrix of nonlinear thermal flux which are functions of tempera-
' ture of the rate of change of temperature
{P} ~ Matrix of thermal f]uxpgre funct1ons of time.
{u} Matrix of temperature at grid points
{u} Matrix of the rate of change of temperatures with respect to time
at grid points
A ~ Unit cross-sectional area
F Radiation factor '
S " Arbitrary scale factor
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b Thermal capacity

c . Specific heat

h Convective film coefficient

k Thermal conductivity

AX Length of element x = .0529 cm (1/48 -inch)
P Density

© '. Stefan-Boltzmann constant

f() Function of a variable

c Second component CELASf element or point
i The ith grid point or element

in“ _ Therma].flux in

out Thermai flux out

TS Thermal switch

1,2, etc. Grid point or finite element number
NASTRAN MODELING PROBLEM

When analyzing a thermal transient heat transfer problem using a finite
element program such as NASTRAN in which surface ablation 1is present, a
modeling problem occurs. The problem is that when an element is ablated from
the material being analyzed it must be eliminated from the analysis. In the
present configuration of NASTRAN, it is not possible to eliminate an element
or elements in the middle of the computations and continue on to the
completion of the computations for a complete thermal transient analysis.

To solve this problem, a NASTRAN computer model was developed consisting
of a one-dimensional isotropic material or materials in which transient
transport of thermal energy occurs, with ablation from the front surface. Al1l
dimensions perpendicular to that of heat flow direction consist of isotropic
material(s) which is assumed to be in thermal equilibrium, i.e., the net heat
flow in and out is assumed to be zero.

This NASTRAN model uses a special modeling "technique to simulate “the
removal of elements -caused by surface ablation. The modeling technique
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involves the use of NASTRAN nonlinear load bulk data cards. These nonlinear
Toads essentially cancel an element from the analysis when it is ablated and
relocate the thermal flux into the model- to the next prescribed grid point.

NASTRAN THERMAL - MODEL
Refer to figure 1 (NASTRAN Thermal Model) in the following discussion.

To model the thermal properties of the material being analyzed, NASTRAN
CROD_elements connected in series were used. This series connection of CROD.
elements describes the one-dimensional thermal properties of the material or
materials being analyzed with respect to depth. For most heat conduction
problems, 20 elements per centimeter (48 elements per inch) of thickness are
needed to represent accurately the component being analyzed (ref. 2). Refer-
ing to figure 1, the thermal conductors Kj to K(i-l) and thermal capacitors

- By to Bj are modeled using CROD elements 1 to (i - 1). The CROD elements ref-
erence PROD property cards in which a unit area (Aj) of one was used. The
PROD property card references MAT4 material property card. The MAT4 material
property card requires the thermal conductivity (ki) and the thermal capacity
(bj) of the material(s) being analyzed. NASTRAN calculates the thermal con-
ductance and thermal capacitance for each element using the following rela-
tionships: ' ' ' '

"

ki'Aj/ax

%

~and Bj bjAjax/2 (lumped method)

#

where by = picj

The backface grid point ; has a CHBDY element (convective film coeffi-
cient h) which references a temperature at grid point r. The CHBDY element
references "a PHBDY property card where an area factor of one is specified.
The PHBDY card references a MAT4 material where the convective film coeffi-
cient is specified. ,

To model the ablation of elements from the model, a concept was developed

which I will call a thermal switch. The thermal switch is an element that has
an output response of zero or one, depending upon some predefined ablation
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" temperature at a reference grid point in the material model. The thermal
switch was modeled using grounded CELAS3 elements. There is one thermal
switch for each point in material model. These thermal switches are not
physically connected to the grid points in the material model. The response
temperature of each thermal switch is made a function of the temperature at a
reference grid point using NOLIN1 nonlinear loads. The NOLIN1 nonlinear load
applies a thermal load N at the ungrounded point of the CELAS3 element, which
is a function of a temperature at the reference grid point and a table
(TABLEDi) bulk data card. The response temperature at the ungrounded point of
the CELAS3 is given by the following relationship:

_N
u=x

It is evident from this equation that if a thermal load N of zero is
applied when the temperature at the reference grid point is below the ablation
temperature, the temperature response u will be zero. When the temperature of

the reference grid point is equal to or greater than the ablation temperature,
- a thermal load of N = K is applied. The resulting response temperature u at
the ungrounded point of the CELAS3 element will be equal to one. Essentially,
this modeling technique makes the CELAS3 element an on/off switch which is a
function of temperature at a reference grid point in the material being
analyzed.

When the response temperature of the CELAS3 element ungrounded point is
used in conjunction with NOLIN2 nonlinear loads and other CELASi elements, all
effects of ablation can be modeled. The response of the other CELASi
ungrounded points are used as the second components, either temperature
dependent or rate-of-change-of-temperature dependent, in the NOLIN2 nonlinear
load cards. The first component response for NOLIN2 nonlinear Toad card is
the response temperature of the ungrounded point of the respective thermal
switch. The general equation for the NOLIN2 nonlinear load card is:

Ny = Si°f(UTS1-)-f(“c1') (ref. 3)

where: S; is an arbitrary scale factor for the jth point,f(uTsi)
- is the response of the jth thermal switch,f(u.;) is the second
component response of the jth CELASi element ungrounded point.
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The second component response of the unground point of the CELASi element
can be used to generate thermal loads such as:

Nei .
fluen) - et

where, N.j = :fcu4 for radiation thermal loads in or out

Nei = thu for convective thermal loads in or out
Nci = #Ku for conduction thermal loads in or out
= :ﬁﬁ for capacitance thermal loads in or out

When the second component response 1is used in conjunction with the
thermal switch response along with the NOLIN2 nonlinear load card, the
resulting loads can be turned on or off based on some predefined ablation
temperature.

The ablation effects that can be modeled using this modeling technique
include:

a. Cancelling of the original thermal flux in and relocating the thermal
flux to the next prescribed grid point

b. Cancelling the thermal conductance effects of the ablated element by

applying an equal and opposite thermal load at the next grid point
of:

Nout; = -Kj-(ujoy - uj).flurs;)

c. Cancelling the thermal capacitance effects of the ablated element by
applying an equal and opposite thermal load at the next grid point
of: _

Nout; = -Bpij-1-Flurs;_;)



NOTE

This effect is negligible and can be assumed to be
zero, because the value of u1 -1 approximately equals
zero when the -other ablation effects are taken into
consideration. Also, this type of nonlinear load can-
not be wused in NASTRAN's present configuration.
(Refer to NASTRAN. PROGRAM RECOMMENDATIONS section of
this report.)

Again, all these ablation effects can be modeled with thermal switches in
combination with NOLIN1 through NOLIN4 nonlinear Toads and other grounded
CELASi elements. One should note that when CELASi elements are used to pro-
vide non-zero temperature responses, a large thermal conductive to ground is
required. For the relationship N = Ku, u must be adjusted to the desired tem-
perature by defining the thermal conductance, K, of the CELASi element, which
is connected to ground, and a load N, which is applied to the grid or scalar
point in question. The: numerical value of K should be several orders of mag-
nitude greater than the numerical value of the thermal conductance specified
in the rest of the model.

Figure 2 shows a schematic diagram of all thermal load equations applied .
in a typical ablation program. The equations on the right of figure 2 are
used for applying and cancelling thermal flux in after the ablation process
occurs. Initially, Nj,7 is applied at grid point 1. When grid point 1 reaches

ablation temperature, Nout1 is turned on by thermal switch 1 (CELAS3 element)
and this thermal load is applied to grid point 1. The value of Ny,¢7 is equal
and opposite to that of Nj,1, essentially cancelling the thermal flux into
grid point 1. At the same time Ngyty1 is turned on N2, which is equal to
Nin1» is turned on, thus moving the input thermal flux from grid point 1 to
grid point 2. This process is repeated for grid point 2 to grid point i, when
and if each respective grid point reaches ablation temperature.

The equation on the left of figure 2 are used for cancellation of element
thermal effects after ablation of the respective element(s) occurs. Initi-
ally, none of these thermal loads are applied until the ablation process
occurs. When grid point 1 reaches ablation temperature, Ngyt2 is turned on by
thermal switch 1 and this thermal load is applied to grid point 2. The Nyyt2
thermal flux cancels the thermal flux of Bj and Ky. This process is repeated
for grid points 3 to grid point i, when and if each respective grid point
reaches ablation temperature.
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Multilayer surfaces are modeled in the same manner and are composed of
layers of materials having different thicknesses and thermal properties.

NASTRAN PROGRAM EXECUTION

It was found during program execution that using a value of B = 1 for the
Newmark Beta integration algorithm (ref. 1) proved to be the most efficient
with respect to computer processing time. The value of .8 is specified on a
NASTRAN PARAM bulk data card. It should also be noted that the DIAG 10 option
can be used in the executive control deck, which will result in the use of the
alternate nonlinear load technique. This option may allow the user to use
larger integration steps depending upon the particular problem.

NASTRAN RESULTS

Figures 3 and 4 show the theoretical thermal response plots of the
NASTRAN thermal program using this modeling technique. These curves show the
thermal response of the surface (Tsurface) exposed to the thermal flux in, at
25% (To59), at 50% (Tsgy), at 75% (T7se) and at the backface (Tgackpacp) of a

"1-inch-thick steel plate. The flat portion at the top of the curves shows
when ablation occurred at each point. The plots were generated using the
NASTRAN X-Y plot capability.

These two thermal response plots were used to verify the NASTRAN program
against the actual physical results of two test situations. The tests con-
sisted of the impingement of the plume of a Tomahawk missile normal to a
2.54-centimeter (1-inch) thick steel plate for 9 seconds at two different
relative positions. For the first test, the nozzle exit plane of the Tomahawk
missile was located 5.182 meters (17 feet) from the steel plate. The results
of this test showed 75% ablation occurred. This test corresponds to figure 3,
which shows the same results.

In the second test, the nozzle exit plane of the Tomahawk missile was
lTocated 3.658 meters (12 feet) from the steel plate. The results of this test
shows a burn-through (100% ablation). This test corresponds to figure 4,
which shows the same results.

Figure 5 is included to show a thermal response comparison between run-

ning NASTRAN without this modeling technique and with the modeling technique
(figure 4). Large differences between figures 4 and 5 are quite apparent.
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CONCLUSIONS

The inclusion of nonlinear loads in the NASTRAN computer program allows
the user a tremendous versatility in the solution of dynamic problems. When
using these nonlinear loads in conjunction with NASTRAN, the user has a fast
and- comparatively easy tool in solv1ng problems of thermal transient analysis
with surface ablation.

It should also be noted that this type of modeling technique could be
applied to other types of dynamic problems when using NASTRAN.

NASTRAN PROGRAM RECOMMENDATIONS

For the solution of thermal transient response problems, as well as for
other types of dynamic response problems, the following NASTRAN program recom-
mendations are made:

a. Acceleration-dependent nonlinear 1loads should be included in the
NASTRAN NOLINi bulk data cards.

b. A1l combinations of the three different dependencies, displacement,
velocity, and acceleration, should be included in the NASTRAN NOLIN2
nonlinear load bulk data card.

The implementation of these recommendations into NASTRAN in conjunction
with the on/off switch and existing NOLINi nonlinear load dependencies, would
allow the user to simulate disconnections (uncoupling of the equations) and/or
alter a section or sections of a problem during program computations and con-
tinue on to the completion of computations for a comp]ete transient or moda]
transient analysis.
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TABLE I. NASTRAN ANALOGIES

Heater Transfer

Structural Mechanics

Variable Representation Representation
u Temperature Displacement
u Rate of change of :
temperature (du/dt) Velocity
P,N Heat F1lux | Forces, Moments
K Thermal conductance Stiffness
B Thermal capacitance DampingA
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_FIGURE 1. NASTRAN THERMAL MODEL
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| FIGURE 3. NASTRAN X-Y PI.O'I' (TOMAHAWK TEST #1 SIMULATION) |
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FIGURE 4 NASTRAN X-Y PI.OT (TOMAHAWK TEST #2 SIMUI.ATION)
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ON THE APPLICATION OF NONLINEAR LOAD ELEMENTS
TO THERMAL ANALYSES USING THE NASTRAN THERMAL ANALYZER

Hwa-Ping Lee
NASA/Goddard Space Flight Center

SUMMARY

Using the nonlinear load elements in thermal analysis to simulate an
undocumented nonlinear thermal boundary condition is presented. The treatment
of the nonlinearity arising from the temperature-dependent convective film
coefficients is shown in detail. As an illustration, emphasis is placed on
the modeling techniques and their interrelationships with the solution accu-
racy as affected by a specific integration algorithm of the transient thermal
analysis used in the NASTRAN Thermal Analyzer. Briefly shown is the under-
lying theory on which the maneuvering of terms pertinent to the modeling ‘
depends. This demonstration provides some insight into the intricacies of the
method that would be general to all applications. A recommendation .is also
made to modify a nonlinear load element that will enhance the solution capa-
bility and broaden the scope of application. '

INTRODUCTION

The known solution capabilities of the NASTRAN Thermal Analyzer (NTA)
have been well documented (ref. 1 and 2), and a large part of them have been
demonstrated in detail (ref. 3). Despite their frequent encounterment in
engineering applications, certain nonlinear solution capabilities have not
been provided by the NTA in the transient-state thermal analysis (APP HEAT,
SOL 9). Those excluded are, for instance, the temperature-dependent thermo-
physical properties, temperature-dependent convective film coefficients, etc.
Their absence from the original NTA's capability list was solely attributed to
the fact that the required computer processing time (CPU and I-0 times) would
be excessive. Computations involving the reassemblages of the thermal conduct-
ance matrix, together with the decompositions of the relevant matrices that
contain the nonlinear thermophysical properties, would have to be repeated for
all steps of the time increment in integration. The program shortcomings,
however, may be compensated by an appropriate application of the available
nonlinear load elements (NLLEs) in NASTRAN, although some elements were origi-
nally developed for structural analyses. The intrinsic modular structure of
NASTRAN permits them to be accessible to the NTA. Those NLLEs, obviously, can
function as nonlinear thermal loads, and they can be employed to simulate other
complex physical phenomena as well. Otherwise, new modules would have to be
developed and implemented, even though an excessive computer processing time
was tolerable. Such an alternative would be an expensive and time-consuming

121



proposition. The user would be deprived of immediate solution meanwhile.

Six NLLEs are currently available in NASTRAN, namely NOLIN1*, NOLINZ,
NOLIN3, NOLIN4, NOLINS5 and NFTUBE. The last two were developed specifically
for thermal analyses: NOLIN5 is capable of simulating temperature sensitive
thermal radiation surface properties, such as a louver (ref. 4), and NFTUBE is
capable of dealing with thermal energy transfer between the wall and the fluid
flowing inside a tube (ref. 5). The remainders are four nonlinear elements of
general type capable of accommodating four different functions with a temper-
ature or heat flux being the argument. NOLIN1 allows to specify a table through
TABLEDL (i = 1,2