
NASA SP-223 (01)

THE NASTRAN PROGRAMMER'S MANUAL

SEPTEMBER 1972

Scientific and Technical Information Office 1972

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C.

II]]1] i,

For sale from Computer Software Management and Information Center (COSMIC)

Barrows Hall, University of Georgia, Athens, Georgia 30601 -Price $27.50

PREFACE TO THE NASTRAN PROGRAMMER'S MANIIAL

The Programmer's Manual is one of four manuals that constitute the documentation for NASTRAN,

the other three being the Theoretical Manual, the User's Manual and the Demonstration Problem

Manual. The Programmer's Manual is divided into seven major sections: Section l, NASTRAN Program-

ming Fundamentals; Section 2, Data Block and Table Descriptions; Section 3, Subroutine Descriptions;

Section 4, Module Functional Descriptions; Section 5, NASTRAN - Operating System Interfaces; Section

6, Modifications and Additions to NASTRAN; and Section 7, NASTRAN Support Programs.

Section l is a general overview of the program, and as such it should be read as background

material for all sections which follow.

Section 2 contains descriptions of the data blocks, which are the principal means of data

communication between the program's functional modules (a module is defined to be a group of sub-

routines which perform a specific function) and the NASTRAN Executive System. Two indexes for the

data block descriptions, one sorted alphabetically on data block names and the other sorted alpha-

betically on the names of the modules from which the data blocks are output, are given in Sections

2.2.1 and 2.2.2 respectively. Section 2 also contains a) descriptions of tables, both core and

noncore resident, maintained by the NASTRAN Executive System and b) descriptions of miscellaneous

tables which are accessed by a class of modules. Alphabetical indexes for these tables are given

at the beginning of Sections 2.4 and 2.5 respectively.

Sections 3 and 4 contain descriptions of the (utility or general purpose) subroutines and

modules of NASTRAN respectively. The reader is directed to the alphabetical indexes, sorted on

entry point names, in Sections 3.2 and 4.1.3 respectively for these sections. An index to the

Module Functional Descriptions, sorted alphabetically on module names, is given in Section 4.1.2.

The reader is urged to read the introductory material to Sections 3 and 4 before using these

sections.

Section 5 treats computer and operating system dependent matters such as operating system

control cards and generation of the absolute (executable) NASTRAN system.

Section 6 describes the means by which modifications and additions to NASTRAN are implemented.

Section 7 describes several auxiliary programs used to maintain or interface with NASTRAN.

The learning of any new system, whether it be an operating system or a large applications

system like NASTRA_I,is made more difficult than it ought to be because of the use by the designers

of the system of new mnemonics, acronyms, phrases and "buzz" words. In order to aid the reader in

i (811172)

learning such commonly used NASTRAN terms, a single source reference, Section 7, the NASTRAN

Dictionary, of the User's Manual is provided. The programmer is adivsed to secure a copy of at

least this section of the User's Manual for his day-to-day reference.

ii (8/I/72)

TABLE OF CONTENTS

Section

I. NASTRAN PROGRAMMING FUNDAMENTALS

Page No.

l.l

1.2

PROGRAM

1.I.I

l.l.2

NASTRAN

l.2.1

l.2.2

l.2.3

OVERVIEW ... l.l-I

Objectives ... l.l-I

Program Organization .. l.l-3

EXECUTIVE SYSTEM ... 1.2-1

Introduction ... 1.2-1

Executive Operations During the Preface 1.2-4

Executive Operations During Problem Solution 1.2-9a

1.3 WORD SIZE AND COMPUTER HARDWARE CONSIDERATIONS 1.3-1

1.3.1 Introduction ... 1.3-1

1.3.2 Alphanumeric Data .. 1.3-2

1.3.3 Word Packing ... 1.3-2

1.4 SYSTEM BLOCK DATA SUBPROGRAM (SEMDBD) 1.4-1

1.5 THE OPEN CORE CONCEPT .. 1.5-1

1.5.1 Introduction ... 1.5-1

1.5.2 Definition of Open Core .. 1.5-1

1.5.3 Example of an Application of Open Core 1.5-1

1.6 NASTRAN INPUT/OUTPUT ... 1.6-1

1.6.1 Introduction ... 1.6-1

1.6.2 Use of the Operating System Input File 1.6-1

1.6.3 Use of the Operating System Output File 1.6-2

1.6.4 GIN_ ... 1.6-3

1.7 NASTRAN MATRIX ROUTINES .. 1.7-I

1.7.1 Introduction ... 1.7°l

1.7.2 Matrix Packing and Unpacking 1.7-1

1.7.3 The Nested Vector Set Concept Used to Represent Components
of Displacement .. 1.7-2

1.7.4 Processing of Matrices ... 1.7-4

1.8 GENERATION OF MATRICES ... 1.8-1

1.8.1 The ECPT Data Block .. 1.8-1

1.8.2 Structural Elements .. 1.8-2

iii (8/I/72)

,Section

1.9

1 .I0

TABLE OF CONTENTS (Continued)

2.

Page No.

TERMINATION PHILOSOPHY AND DIAGNOSTIC MESSAGES 1.9-I

RESTARTS IN NASTRAN .. I.I0-I

DATA BLOCK AND TABLE DESCRIPTIONS

2.1 INTRODUCTION .. 2.1-I

2.2 DATA BLOCK DESCRIPTIONS - GENERAL COMMENTS AND INDEXES 2.2-I

2.2.1 Index for Data Block Descriptions Sorted on Data Block Names 2.2-3

2.2.2 Index for Data Block Descriptions Sorted Alphabetically by Module .. 2.2-11

2.3 DATA BLOCK DESCRIPTIONS .. 2.3-I

2.3.1 Data Blocks Output From Module IFPI 2.3-I

2.3.2 Data Blocks

2.3.3 Data Blocks

2.3.4 Data Blocks

2.3.5 Data Blocks

2.3.6 Data Blocks

2.3.7 Data Blocks

2.3.8 Data Blocks

2.3.9 Data Blocks

2.3.10 Data Blocks

2.3.11 Data Blocks

2.3.12 Data Blocks

2.3.13 Data Blocks

2.3.14 Data Blocks

2.3.15 Data Blocks

2.3.16 Data Blocks

2.3.17 Data Blocks

2.3.18 Data Blocks

2.3.19 Data Blocks

2.3.20 Data Blocks

2.3.21 Data Blocks

2.3.22 Data Blocks

Output From Module IFP 2.3-5

Output From Module GPI 2.3-31

Output From Module GP2 2.3-36

Output From Module PLTSET 2.3-37

Output From Module PL_T 2.3-40

Output From Module GP3 2.3-41

Out)ut From Module TAI 2.3-45

Out)ut From Module SMAI 2.3-56

Out)ut From Module SMA2 2.3-58

Out)ut From Module GPWG 2.3-59

Out)ut From Module SMA3 2.3-60

Out)ut From Module GP4 2.3-61

Out)ut From Module GPSP 2.3-63

Out)ut From Module MCEI 2.3-64

Out)ut From Module MCE2 2.3-65

Out)ut From Module SCEI 2.3-67

Out)ut From Module SMPI 2.3-70

OutDut From Module RBMGI 2.3-73

Output From Module RBMG2 2.3-75

Output From Module RBMG3 2.3-77

Output From Module RBMG4 2.3-78

iv (8/I172)

Section

2.3.23

2.3.24

2.3.25

2.3.26

2.3.27

2.3.28

2.3.29

2.3.30

2.3.31

2.3.32

2.3.33

2.3.34

2.3.35

2.3.36

2.3.37

2.3.38

2.3.39

2.3.40

2.3.41

2.3.42

2.3.43

2.3.44

2.3.45

2.3.46

2.3.47

2.3.48

2.3.49

2.3.50

2.3.51

2.3.52

TABLE OF CONTENTS (Continued)

Page No.

Data Blocks Output From Module SSGI 2.3-79

Data Blocks Output From Module SSG2 2.3-80

Data Blocks Output From Module SSG3 2.3-81

Data Blocks Output From Module SSG4 2.3-83

Data Blocks Output From Module SDRI 2.3-84

Data Blocks Output From Module SDR2 2.3-88

Data Blocks Output From Module DPD 2.3-114

Data Blocks Output From Module READ 2.3-125

Data Blocks Output From Module DSMGI 2.3-128

Data Blocks Output From Module SMP2 2.3-129

Data Blocks Output From Module DSMG2 2.3-130

Data Blocks Output From Module PLAI 2.3-132

Data Blocks Output From Module ADD 2.3-137

Data Blocks Output From Module PLA2 2.3-138

Data Blocks Output From Module PLA3 2.3-139

Data Blocks Output From Module PLA4 2.3-140

Data Blocks Output From Module CASE 2.3-141

Data Blocks Output From Module MTRXIN 2.3-142

Data Blocks Output From Module GKAD 2.3-143

Data Blocks Output From Module CEAD 2.3-146

Data Blocks Output From Module VDR 2.3-149

Data Blocks Output From Module FRRD 2.3-158

Data Blocks Output From Module SDR3 2.3-160

Data Blocks Output From Module XYTRAN 2.3-175

Data Blocks Output From Module RANDOM 2.3-179

Data Blocks Output From Module TRD 2.3-181

Data Blocks Output From Module GKAM 2.3-183

Data Blocks Output From Module DDRI 2.3-184

Element Stress Output Data Description 2.3-185

Element Force Output Data Description 2.3-189

v (811172)

Secti on

2.4

TABLE OF CONTENTS (Continued)

3.

2.3.53 Data Blocks Output From Module DDR2

2.3.54 Data Blocks Output From Module BMG

2.3.55 Data Blocks Output From Module PLTTRAN

EXECUTIVE TABLE DESCRIPTIONS ...

Page No.

2.3-192

2.3-194

2.3-194

2.4-I

2.4.1 Executive Tables Which are Permanently Core Resident 2.4-2

2.4.2 Executive Tables Not Permanently Core Resident 2.4-15

2.5 MISCELLANEOUS TABLE DESCRIPTIONS ... 2.5-I

2.5.1 Miscellaneous Tables Which are Permanently Core Resident 2.5-2

2.5,2 Miscellaneous Tables Not Permanently Core Resident 2,5-6

SUBROUTINE DESCRIPTIONS

3.1 INTRODUCTION .. 3.1-I

3.2 ALPHABETICAL INDEX OF ENTRY POINTS FOR SUBROUTINE DESCRIPTIONS 3.2-I

3.3 EXECUTIVE SUBROUTINE DESCRIPTIONS ... 3.3-I

3.3.1 XSEMI (Executive Sequence Monitor, Preface) 3.3-I

3.4

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

3.3.8

3.3.9

3.3.10

3.3.11

3.3.12

3.3.13

3.3.14

3.3.15

BTSTRP

SEMINT

GNFIAT

ENDSYS

(Bootstrap Generator) 3.3-2

(Sequence Monitor Initialization) 3.3-3

(Generate FIAT) ... 3.3-5

(End-of-Link) ... 3.3-6

SEARCH (Search, Load, and Execute Link) 3.3-8

XSEMi (Link i Main Program, i = 2,3) 3.3-9

XSEMXX (Sequence Monitor - Deck Generator) 3.3-11

GNFIST (Generate FIST) ... 3.3-12

XEOT (End-of-Tape) ... 3.3-14

SSWTCH (Sense Switches) .. 3.3-15

C_NMSG (Console Message Writer) 3.3-16

TTLPGE (Title Page Writer) ... 3.3-17

SEMTRN (Transliteration) (IBH 360-370 only) 3.3-19

RETURN (Return) .. 3.3-20

3.4-I

3.4-I

UTILITY SUBROUTINE DESCRIPTIONS ..

3.4.1 MAPFNS (Machine Word Functions)

vi (8/I/72)

Section

3.4.2

3.4.3

3.4.4

3.4.5

3.4.6

3.4.7

3,4.8

3.4.9

3.4.10

3.4.11

3.4.12

3.4.13

3.4.14

3.4.15

3.4.16

3.4.17

3.4.18

3.4.19

3.4.20

3.4.21

3.4.22

3.4.23

3.4.24

3.4.25

3.4.26

3.4.27

3.4.28

3.4.29

3.4.30

3.4.31

TABLE OF CONTENTS (Continued)

Page No.

_PEN (Initiate Activity on a File) 3.4-3

WRITE (Write Data in a Logical Record) 3.4-4

CLOSE (Terminate Activity on a File) 3.4-5

READ (Read Data From a Logical Record) 3.4-6

FWDREC (Forward Space One Logical Record) 3.4-8

BCKREC (Backspace One Logical Record) 3.4-9

REWIND (Position File to the Load Point) 3.4-I0

EOF (Write an End-of-File) ... 3.4-II

SKPFIL (Skip Files Forward or Backward) 3.4-12

XGINO (GINO Utility Routine) 3.4-13

GINO (General Input/Output Routine) 3.4-15

OPNCOR (Transmit Logical Records To/From Core Storage) 3.4-20

GOPEN (Short Form for Subroutine _PEN With Header Record
Processing) .. 3.4-22

FREAD (Short Form for Subroutine READ) 3.4-23

WRTTRL (Write Trailer) ... 3.4-24

FNAME (File Name) .. 3.4-25

CLSTAB (Close a GINO File and Write a Nonzero Trailer) 3.4-26

XRCARD (Executive Free-Field Card Data Conversion Routine).......... 3.4-27

RCARD (Fixed Field Card Data Conversion Routine) 3.4-32

TAPBIT (Tape Bit Test) ... 3.4-35

PEXIT (Problem Exit).. 3.4-36

TMTOGO (Time-To-Go) .. 3.4-37

PAGE (Page Heading)_............................ 3.4-38

MESAGE (Message) ... 3.4-39

MSGWRT (Message Writer) .. 3.4-40

USRMSG (User Message Writer) 3.4-41

MATDUM (Matrix Dump (Print) Routine) 3.4-42

TABPRT (Table Printer) ... 3.4-43

PRELOC (Position Data Block to Requested Record) 3.4-44

SORT (Sort a Table) .. 3.4-46

vii (811172)

Section

3.4.32

3.4.33

3.4.34

3.4.35

3.4.36

3.4.37

3.4.38

3.4.39

3.4.40

3.4.41

3.4.42

3.4.43

3.4,44

3.4.45

3.4.46

3.4.47

3.4.48

3.4.49

3.4.50

3.4.51

3.4.52

3.4.53

3.4.54

3.4.55

3.4,56

3.4.57

3.4.58

3.4.59

3.4.60

GMMATD
Precisi

GMMATS
Precisi

INVERD

INVERS

PREMAT

PRETRD
Double

PRETRS

Single

PRETAB

TABLE OF CONTENTS (Continued)

Page No.

(General Matrix Multiply and Transpose - Double
on) ... 3.4-49

(General Matrix Multiply and Transpose - Single
on) ... 3.4-52

(Double Precision In Core Inverse Routine) 3.4-53

(Single Precision In Core Inverse Routine) 3.4-54

(Material Property Utility) 3.4-55

(Utility for Modules Which Use the CSTM Data Block -
Precision Version) .. 3.4-64

(Utility for Modules Which Use the CSTM Data Block -
Precision Version) .. 3.4-66

(Table Look-Up) ... 3.4-67

AXIS (Draw an Axis on a Plot) 3.4-70

AXISi (Axis Routine for Plotter i) 3.4-72

SKPFRM (Skip a Variable Number of Frames) 3.4-73

SELCAM (To Initiate a New Plot) 3.4-74

IDPL_T (Generate an "ID" Plot) 3.4-75

INTGPX (Search a List of Integers) 3.4-76

INTLST (Interpret a List of Integers) 3.4-77

LINE (Draw a Line on a Plotter) 3.4-78

LINEi (Draw a Line on Plotter i) 3.4-79

PRINT (Print a Title on a Plotter) 3.4-81

RDM_DX (Read a File Containing XRCARD Translations) 3.4-83

SGINO (GI_!O for Unformatted Tapes) 3.4-85

STPL_T (To Initiate a New Plot or Terminate the Current Plot) 3.4-87

SYMBOL (Type a Symbol on a Plotter) 3.4-88

TIPE (Type a Line of Characters on a Plotter) 3.4-90

TYPEi (Type a Line of Characters on Plotter i) 3.4-92

TYPFLT (Type a Floating Point Number on a Plotter) 3.4-94

TYPINT (Type an Integer Number on a Plotter) 3.4-96

WPLTI (Write a Plotter Command for Plotter I) 3.4-98

WPLT2 (Write a Plotter Command for Plotters 2 and 8) 3.4-100

WPLT3 (Write a Plotter Command for Plotter 3) 3.4-102

viii (8/I/72)

Section

TABLE OF CONTENTS (Continued)

3.4.61

3.4.62

3.4.63

3.4.64

3.4.65

3.4.66

3.4.67

3.4.68

3.4.69

3.4.70

3.4.71

3.4.72

3.4.73

3.4.74

3.4.75

3.4.76

3.4.77

3.4.78

3.4.79

Page No.

GINOIO (GINO Input/Output Routine) 3.4-I03

EJECT (Automatic Page Eject) 3.4-105

PLAMAT (Material Property Utility for Two-Dimensional Elements
in Piecewise Linear Analysis)....................................... 3.4-I06

WPLT4 (Write a Plotter Command for Plotters 4 through 7) 3.4-I08

WPLT9 (Write a Plotter Command for Plotter 9) 3.4-II0

WPLTIO (Write a Plotter Command for the NASTRAN General Purpose
Plotter) ... 3.4-III

PLTSET (Plotting Parameter Initialization) 3.4-I13

DRWCHR (To Draw a Line of Characters) 3.4-I15

FNDPLT (Determine the Internal Plotter and Model Indices) 3.4-I17

PHDMIA (DMI Punch Routine) ... 3.4-I18

HEAD (Plot Heading) .. 3.4-120

DELSET (Dummy Element Setup). 3.4-121

HMAT (Heat Transfer Material Property Utility) 3.4-122

(Binary Search) ... 3.4-123BISRCH

FORFIL (File Unit) ... 3.4-126

DADOTB (Double Precision Vector Dot Product) 3.4-127

DAXB (Double Precision Vector Cross Product) 3.4-128

SADOTB (Single Precision Vector Dot Product) 3.4-129

SAXB (Single Precision Vector Cross Product) 3.4-130

3.5 MATRIX SUBROUTINE DESCRIPTIONS ... 3.5-I

BLDPK (Build a Packed Column of a Matrix) 3.5-I

PACK (Pack a Column of a Matrix) 3.5-5

INTPK (Interpret a Packed Column of a Matrix) 3.5-7

UNPACK (Unpack a Packed Column of a Matrix)......................... 3.5-I0

CALCV

PARTN

SSG2A

SDRIB

UPART

3.5 .l

3.5.2

3.5.3

3.5.4

3.5.5

3.5.6

3.5.7

3.5.8

3.5.9

(Compute a Partitioning Vector) 3.5-12

- MERGE (Partition a Matrix - Merge Matrices Together) 3.5-13

(Driver for PARTN) ... 3.5-16

(Driver for MERGE) ... 3.5-17

(Symmetric Partition Driver) 3.5-18

ix (811172)

L

TABLE OF CONTENTS (Continued)

Section

4.

Page No.

3.5.10 ADD (Driver for SADD) .. 3.5-19

3.5.11 SSG2C (Driver for ADD) ... 3.5-20

3.5.12 MPYAD (Matrix Multiplication Routine) 3.5-22

3.5.13 SSG2B (Driver for MPYAD) ... 3.5-29

3.5.14 SDCOMP (Symmetric Decomposition) 3.5-30

3.5.15 DECOMP (Unsymmetric Matrix Decomposition) 3.5-44

3.5.16 CDCBMP (Complex Matrix Decomposition) 3.5-62

3.5.17 FBS (Forward - Backward Substitution) 3.5-64

3.5.18 SSG3A (Driver for FBS) ... 3.5-66

3.5.19 GFBS (General Forward - Backward Substitution) 3.5-67

3.5.20 SOLVER (Simultaneous Equation Solution Routine) 3.5-69

3.5.21 DMPY (Multiply a Diagonal Matrix by an Arbitrary Matrix) 3.5-71

3.5.22 ELIM (Perform a Matrix Reduction) 3.5-73

3.5.23 FACTOR (Decompose a Matrix Into Triangular Factors) 3.5-74

3.5.24 TRANPI (Driver for TRNSP) .. 3.5-75

3.5.25 TRNSP (Matrix Transpose) ... 3.5-76

3.5.26 SADD (Matrix Addition Routine) 3.5-78

3.5.27 RSPSDC (Real Single Precision Symmetric Decomposition) 3.5-80

3.5.28 CSPSDC (Complex Single Precision Symmetric Decomposition) 3.5-82

3.5.29 CXFBS (Forward - Backward Substitution) 3.5-84

MODULE FUNCTIONAL DESCRIPTIONS

4.1 GENERAL COMMENTS AND INDEXES ... 4.1-I

4.1.1 Use of Module Functional Descriptions 4.1-2

4.1.2 Alphabetical Index of Module Functional Descriptions 4.1-7

4.1.3 Alphabetical Index of Entry Points in Module Functional
Descriptions ... 4.1-8

4.2 EXECUTIVE PREFACE MODULE XCSA (EXECUTIVE CONTROL SECTION ANALYSIS) 4.2-I

4.3 EXECUTIVE PREFACE MODULE IFPI (INPUT FILE PROCESSOR, PART I) 4.3-I

4.4 EXECUTIVE PREFACE MODULE XSORT (EXECUTIVE BULK DATA CARD SORT) 4.4-I

4.5 EXECUTIVE PREFACE MODULE IFP (INPUT FILE PROCESSOR) 4.5-I

x (811172)

Section

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

TABLE OF CONTENTS (Continued)

Page No.

EXECUTIVE PREFACE MODULE IFP3 (II4PUTFILE PROCESSOR 3) 4.6-I

EXECUTIVE PREFACE MODULE XGPI (EXECUTIVE GENERAL PROBLEM INITIALIZATION..... 4.7-I

EXECUTIVE PREFACE MODULE UMFEDIT (USER MASTER FILE EDITOR) 4.8-I

EXECUTIVE MODULE XSFA (EXECUTIVE SEGMENT FILE ALLOCATOR) 4.9-I

EXECUTIVE DMAP MODULE CHKPNT (CHECKPOINT)................................... 4.10-1

EXECUTIVE DMAP INSTRUCTION REPT (REPEAT A GROUP OF DMAP INSTRUCTIONS)....... 4.11-1

EXECUTIVE DMAP INSTRUCTION JUMP (UNCONDITIONAL DMAP TRANSFER) 4.12-I

EXECUTIVE DMAP INSTRUCTION C_ND (CONDITIONAL TRANSFER) 4.13-I

EXECUTIVE DMAP INSTRUCTION EXIT (TERMINATE DMAP PROGRAM) 4.14-I

EXECUTIVE DMAP MODULE SAVE (SAVE VARIABLE PARAMETER VALUES) 4.15-I

EXECUTIVE DMAP MODULE PURGE (EXPLICIT DATA BLOCK PURGE) 4.16-I

EXECUTIVE DMAP MODULE EQUIV (DATA BLOCK NAME EQUIVALENCE) 4.17-I

EXECUTIVE DMAP INSTRUCTION END (END OF DMAP PROGRAM) 4.18-I

EXECUTIVE DMAP MODULE PARAM (PARAMETER PROCESSOR) 4.19-I

EXECUTIVE DMAP MODULE-SETVAL (SET VALUES) 4.20-I

FUNCTIONAL MODULE GPI (GEOMETRY PROCESSOR - PHASE l) 4.21-I

FUNCTIONAL MODULE GP2 (GEOMETRY PROCESSOR - PHASE 2) 4.22-I

FUNCTIONAL MODULE PLTSET (PLOT SET DEFINITION PROCESSOR) 4.23-I

FUNCTIONAL MODULE PLBT (STRUCTURAL PLOTTER) 4.24-I

FUNCTIONAL MODULE GP3 (GEOMETRY PROCESSOR - PHASE 3) 4.25-I

FUNCTIONAL MODULE TAI (TABLE ASSEMBLER) 4.26-I

FUNCTIONAL MODULE SMAI (STRUCTURAL MATRIX ASSEMBLER - PHASE l) 4.27-I

FUNCTIONAL MODULE SMA2 (STRUCTURAL MATRIX ASSEMBLER - PHASE 2) 4.28-I

FUNCTIONAL MODULE GPWG (GRID POINT WEIGHT GENERATOR) 4.29-I

FUNCTIONAL MODULE SMA3 (STRUCTURAL MATRIX ASSEMBLER - PHASE 3).............. 4.30-I

FUNCTIONAL MODULE GP4 (GEOMETRY PROCESSOR - PHASE 4)........................ 4.31-I

FUNCTIONAL MODULE GPSP (GRID POINT SINGULARITY PROCESSOR) 4.32-I

FUNCTIONAL MODULE MCEI (MULTIPOINT CONSTRAINT ELIMINATOR - PHASE l) 4.33-I

FUNCTIONAL MODULE MCE2 (MULTIPOINT CONSTRAINT ELIMINATOR - PHASE 2) 4.34-I

FUNCTIONAL MODULE SCEI (SINGLE-POINT CONSTRAINT ELIMINATOR) 4.35-I

xi (811172)

Secti on

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

4.51

4.52

4.53

4.54

4.55

4.56

4.57

4.58

4.59

4.60

4,61

4.62

4.63

4.64

TABLE OF CONTENTS (Continued)

P_Pa_geNo.

FUNCTIONAL MODULE SMPI (STRUCTURAL MATRIX PARTITIONER - PHASE I) 4.36-I

FUNCTIONAL MODULE RBMGI (RIGID BODY MATRIX GENERATOR - PHASE I) 4.37-I

FUNCTIONAL MODULE RBMG2 (RIGID BODY MATRIX GENERATOR - PHASE 2) 4.38-I

FUNCTIONAL MODULE RBMG3 (RIGID BODY MATRIX GENERATOR - PHASE 3) 4.39-I

FUNCTIONAL MODULE RBMG4 (RIGID BODY MATRIX GENERATOR - PHASE 4) 4.40-I

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE I) 4.41-I

FUNCTIONAL MODULE SSG2 (STATIC SOLUTION GENERATOR - PHASE 2) 4.42-I

FUNCTIONAL MODULE SSG3 (STATIC SOLUTION GENERATOR - PHASE 3) 4.43-I

FUNCTIONAL MODULE SSG4 (STATIC SOLUTION GENERATOR - PHASE 4) 4.44-I

FUNCTIONAL MODULE SDRI (STRESS DATA RECOVERY - PHASE I) 4.45-I

FUNCTIONAL MODULE SDR2 (STRESS DATA RECOVERY - PHASE 2) 4.46-I

FUNCTIONAL MODULE DPD (DYNAMICS POOL DISTRIBUTOR) 4.47-I

FUNCTIONAL MO[ULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT) 4.48-I

FUNCTIONAL MODULE DSMGI (DIFFERENTIAL STIFFNESS MATRIX GENERATOR -
PHASE I) .. 4.49-I

FUNCTIONAL MODULE SMP2 (STRUCTURAL MATRIX PARTITIONER - PHASE 2) 4.50-I

FUNCTIONAL MODULE DSMG2 (DIFFERENTIAL STIFFNESS MATRIX GENERATOR -
PHASE 2) .. 4.51-I

FUNCTIONAL MODULE PLAI (PIECEWISE LINEAR ANALYSIS - PHASE I) 4.52-I

FUNCTIONAL MODULE PLA2 (PIECEWISE LINEAR ANALYSIS - PHASE 2) 4.53-I

FUNCTIONAL MODULE PLA3 (PIECEWISE LINEAR ANALYSIS - PHASE 3) 4.54-I

FUNCTIONAL MODULE PLA4 (PIECEW!SE LINEAR ANALYSIS - PHASE 4) 4.55-I

FUNCTIONAL MODULE CASE (SIMPLIFY CASE CONTROL) 4.56-I

FUNCTIONAL MODULE MTRXIN (MATRIX INPUT) 4.57-I

FUNCTIONAL MODULE GKAD (GENERAL K ASSEMBLER DIRECT) 4.58-I

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT) 4.59-I

FUNCTIONAL MODULE VDR (VECTOR DATA RECOVERY) 4.60-I

FUNCTIONAL MODULE FRRD (FREQUENCY RESPONSE - DISPLACEMENT APPROACH) 4.61-I

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - S@RTI to
S_RT2 PROCESSOR) .. 4.62-I

FUNCTIONAL MODULE XYTRAN (XY - OUTPUT DATA TRANSLATOR) 4.63-I

FUNCTIONAL MODULE RANDOM (RANDOM ANALYSIS MODULE) 4.64-I

xii (8/I/72)

TABLEOFCONTENTS(Continued)

Section

4.65

4.66

4.67

4.68

4.69

4.70

4.71

4.72

4.73

4.74

4.75

4.76

4.77

4.78

4.79

4.80

4.81

4.82

4.83

4.84

4.85

4.86

4.87

Page No.

FUNCTIONAL MODULE TRD (TRANSIENT ANALYSIS - DISPLACEMENT) 4.65-I

FUNCTIONAL MODULE GKAM (GENERAL K ASSEMBLER ,MODAL) 4.66-I

FUNCTIONAL MODULE DDRI (DYNAMIC DATA RECOVERY - PART l) 4.67-I

FUNCTIONAL MODULE DDR2 (DYNAMIC DATA RECOVERY - PART 2) 4.68-I

OUTPUT MODULE XYPLOT (X-Y DATA PLOTTER) 4.69-I

OUTPUT MODULE BFP (OUTPUT FILE PROCESSOR) 4.70-I

OUTPUT MODULE MATPRN (GENERAL MATRIX PRINTER) 4.71-I

OUTPUT MODULE MATGPR (DISPLACEMENT METHOD MATRIX PRI_ITER) 4.72-I

OUTPUT MODULE MATPRT (MATRIX PRINTER) 4.73-I

OUTPUT MODULE SEEMAT (PICTORIAL MATRIX PRINTER) 4.74-I

OUTPUT MODULE TABPT (TABLE PRINTER) 4.75-I

OUTPUT MODULE PRTMSG (MESSAGE WRITER) 4.76-I

OUTPUT MODULE PRTPARM (PARAMETER AND DMAP MESSAGE PRINTER) 4.77-I

MATRIX MODULE ADD (ADD TWO MATRICES) 4.78-I

.MATRIX MODULE MPYAD (MULTIPLY ADD) .. 4.79-I

MATRIX MODULE S_LVE (SOLVES THE MATRIX EQUATION [A][X] = [B]) 4.80-I

MATRIX MODULE DECAMP (MATRIX DECOMPOSITION) 4.81-I

MATRIX MODULE FBS (FORWARD - BACKWARD SUBSTITUTION) 4.82-I

MATRIX MODULE PARTN (PARTITION A MATRIX) 4.83-I

MATRIX MODULE MERGE (MERGE MATRICES TOGETHER) 4.84-I

MATRIX MODULE TRNSP (TRANSPOSE A MATRIX) 4.85-I

MATRIX MODULE SMPYAD (STRI?IG MULTIPLY ADD) 4.86-I

STRUCTURAL ELEMENT DESCRIPTIONS .. 4.87-I

4.87.1 The R_D, C_IRBD, and TUBE Elements 4.87-7

4.87.1.1 Input Data for the R_D, TUBE, CBNR_D Elements 4.87-7

4.87.1.2 Stiffness Matrix Calculation (Subroutine KR_D
and KTUBE of Module SMAI) 4.87-8

4.87.1.3 Lumped Mass Matrix Calculation (Subroutine MR_D
and MTUBE of Module SMA2) 4.87-9

4.87.1.4 Element Load Calculations (Subroutine EDTL of
Module SSGI) .. 4.87-10

4.87.1.5 Element Stress Calculations (Subroutines SR_DI
and SR_D2 of Module SDR2) 4.87-10

xiii (8/I/72)

Secti on

4.87.2

4.87.3

TABLE OF CONTENTS (Continued)

Page No.

4.87.1.6 Differential Stiffness Matrix Calculation (Subroutine
DROD of Module DSMGI) 4.87-12

4.87.1.7 Piecewise Linear Analysis Calculations (Subroutine
PSROD of Module PLA3 and Subroutine PKROD of Module
PLA4) ... 4.87-14

4.87.1.8 Coupled Mass Matrix Calculation (Subroutine MCROD of
Module SMA2) .. 4.87-16a

4.87.1.9 Thermal Analysis Calculations for the ROD Elements
(Subroutine KROD of Module SMAI) 4.87-16b

The BAR Element .. 4.87-17

4.87.2.1 Input Data for the BAR Element 4.87-17

4.87.2.2 Stiffness Matrix Calculation (Subroutine KBAR of
Module SMAI) .. 4.87-18

4.87.2.3 Lumped Mass Matrix Calculation (Subroutine MBAR of
Module SMA2) .. 4.87-25

4.87.2.4 Element Load Calculation (Subroutine BAR of Module
SSGI) ... 4.87-26

4.87.2.5 Element Stress Calculations (Subroutines SBARI and
SBAR2 of Module SDR2) 4.87-27

4.87.2.6 Differential Stiffness Matrix Calculation (Subroutine
DBEAM of Module DSMGI) 4.87-29

4.87.2.7 Piecewise Linear Analysis Calculations (Subroutine
PSBAR of Module PLA3 and Subroutine PKBAR of Module
PLA4 .. 4.87-32

4.87.2.8 "Consistent" Mass Matrix Calculation (Subroutine
MCBAR of Module SMA2) 4.87-36

4.87.2.9 Thermal Analysis Calculations for the BAR Element
(Subroutine KBAR of Module SMAI) 4.87-37

The SHEAR Panel and TWIST Panel Elements 4.87-38

Input Data for SHEAR and TWIST Panels 4.87-38

Definition of Element Geometry 4.87-39

Coefficient Generation 4.87-41

Stiffness Matrix Formulation for a SHEAR Panel

(Subroutine KPANEL of Module SMAI) 4.87-46

TWIST Element Stiffness Matrix Generation (Subroutine
KPANEL of Module SMAI) 4.87-47

Mass Matrix Generation (Subroutine MASSTQ of Module
SMA2) ... 4.87-48

4.87.3.1

4.87.3.2

4.87.3.3

4.87.3.4

4.87.3.5

4.87.3.6

xiv (8/I/72)

Section

4.87.4

4.87.5

TABLE OF CONTENTS (Continued)

Page No.

4.87.3.7 SHEAR Element Stress and Force Calculations
(Subroutine SPANLI and SPANL2 of Module SDR2) 4.87-50

4.87.3.8 TWIST Element Stress and Force Calculations
(Subroutines SPANLI and SPANL2 of Module SDR2)......... 4.87-52'

4.87.3.9 SHEAR Panel Differential Stiffness Calculations
(Subroutine DSHEAR of Module DSMGI) 4.87-54

TRMEM and QDMEM Elements ... 4.87-58

4.87.4.1 Input Data for the TRMEM and QDMEM Elements 4.87-58

4.87.4.2 Basic Equations for TRMEM 4.87-59

4.87.4.3 Stiffness Matrix Calculation for TRMEM (Subroutine
KTRMEM of Module SMAI) 4.87-61

4.87.4.4 Mass Matrix Calculation for the TRMEM Element

(Subroutine MASSTQ of Module SMA2) 4.87-62

4.87.4.5 Element Load Calculations for the TRMEM Element

(Subroutine TRIMEM of Module SSGI) 4.87-63

4.87.4.6 Element Stress Calculations for the TRMEM Element
(Subroutines STRMEI and STQME2 of Module SDR2) 4.87-63

4.87.4.7 Differential Stiffness Matrix Calculations for the

TRMEM Element (Subroutine DTRMEM of Module DSMGI)...... 4.87-67

4.87.4.8 General Calculations for the QDMEM by the QDMEM
Driver Routines (Subroutines KQDMEM of Module SMAI,
SQDMEI of Module SDR2, DQDMEM of Module DSMGI)......... 4.87-67

4.87.4.9 Stiffness Matrix Calculations for the QDMEM 4.87-70

4.87.4.10 Element Stress Calculations for the QDMEM (Subroutine
SQDMEI and STQME2 of Module SDR2) 4.87-70

4.87.4.11 Mass Matrix Generation for the QDMEM Element
(Subroutine MASSTQ of Module SMA2) 4.87-74

4.87.4.12 Thermal Load Computation for the QDMEM 4.87-76

4.87.4.13 Differential Stiffness Computations for the QDMEM
(Subroutines DQDMEM and DTRMEM of Module DSMGI) 4.87-76

4.87.4.14 Piece_ise Linear Analysis Calculations (Subroutines
PSTRM and PSQDM of Module PLA3 and Subroutines
PKTRM and PKQDM of Module PLA4)........................ 4.87-76a

4.87.4.15 Thermal Analysis Calculations for the Membrane
Elements (Subroutine KTRMEM and KQDMEM of Module
SMAI) ... 4.87-76d

The TRBSC, TRPLT and QDPLT Elements 4.87-78

4.87.5.1 Input Data for the TRBSC and TRPLT Elements 4.87-78

4.87.5.2 General Calculation for the TRBSC Element 4.87-79

xv (811172)

TABLE OF CONTENTS (Continued)

Section

4.87.6

4.87.5.3

4.87.5.8

4.87.5.9

4.87.5.10

4.87.5.11

4.87.5.12

4.87.5.13

4.87.5.14

The TRIAl,

4.87.6.1

4.87.6.2

4.87.6.3

4.87.6.4

4.87.6.5

4.87.6.6

4.87.6.7

Pa_a_eNo.

Stiffness Matrix Calculations for the TRBSC Element

(Subroutine KTRBSC of Module SMAI) 4.87-84

Stress Calculations for the TRBSC Element 4.87-85

Stiffness Matrix Calculations for the TRPLT Element
(Subroutine KTRPLT of Module SMAI) 4.87-87

Structural Damping Matrices for the TRPLT Element 4.87-95

Stress and Element Force Calculations for the TRPLT
Element (Subroutines STRPLI and SBSPL2 of Module
SDR2) ... 4.87-95

Stiffness Matrix Calculations for the QDPLT Element
(Subroutine KQDPLT of Module SMAI) 4.87-97

Stress and Element Force Calculations for the QDPLT
Element (Subroutines SQDPLI and SBSPL2 of Module
SDR2) ... 4.87-102

Lumped Mass Matrix Generation for the TRBSC, TRPLT,
and QDPLT Elements (Subroutine MASSTQ of Module SMA2).. 4.87-104

Coupled Mass Matrix Calculations for the TRBSC Element
(Subroutine MTRBSC of Module SMA2) 4.87-I04a

Mass Matrix Calculations for the TRPLT Element
(Subroutine MTRPLT of Module SMA2) 4.87-I04g

Mass Matrix Calculations for the QDPLT Element
(Subroutine MQDPLT of Module SMA2) 4.87-I04j

Thermal Load Equations for the Bending Element
(Subroutine TRBSC, TRPLT and QDPLT of Module SSGI) 4.87-I04n

TRIA2, QUADI and QUAD2 Elements 4.87-106

Input Data for the TRIAl, TRIA2, QUADI and QUAD2
Elements .. 4.87-106

Stiffness Matrix Calculations (Subroutine KTRIQD
of Module SMAI) 4.87-107

Lumped Mass Matrix Generation (Subroutine MASSTQ
of Module SMA2) 4.87-108

Thermal Load Calculations (Subroutine EDTL of Module
SSGI) ... 4.87-108

Element Stress and Force Calculations (Subroutines
STRQDI and STRQD2 of Module SDR2) 4.87-108

Differential Stiffness Matrix Calculations

(Subroutine MTRIQD of Module SMA2) 4.87-I09

Piecewise Linear Analysis Calculations (Subroutines
PSTRII, PSTRI2, PSQADI, and PSQAD2 of Module PLA3,
and PKTRII, PKTRI2, PKQADI and PKQAD2 of Module
PLA4) ... 4.87-I09a

xvi (811/72)

Secti on

4.87.7

4.87.8

4.87.9

4.87.6.8

4.87.6.9

TABLE OF CONTENTS (Continued)

Page No.

Differential Stiffness Matrix Calculations for the

TRIAl and TRIA2 Elements (Subroutine DTRIA of

Module DSMGI) .. 4.87-I09d

Differential Stiffness Matrix Calculations for the

QUADI and QUAD2 Elements (Subroutine DQUAD of
Module DSMGI) .. 4.87-I09g

4.87.6.10 Differential Stiffness Matrix Calculations for the

Basic Bending Triangle (Subroutine DTRBSC of
Module DSMGI) .. 4.87-I09j

4.87.6.11 Thermal Calculations for the Combination Elements

(Subroutine KTRIQD of Module SMAI) 4.87-I09p

The ELASi, MASSi and DAMPi Elements 4.87-II0

4.87.7.1 Input Data for the ELASi, MASSi and DAMPi Elements 4.87-II0

4.87.7.2 ELASi Stiffness Matrix Generation (Subroutine KELAS

of Module SMAI) 4.87-II0

4.87.7.3 MASSi Mass Matrix Generation (Subroutine MASSD of

Module SMA2) ... 4.87-III

4.87.7.4 DAMPi Damping Matrix Generation (Subroutine MASSD
of Module SMA2) 4.87-III

4.87.7.5 ELASi Stress and Force Recovery (Subroutines SELASI
and SELAS2 of Module SDR2) 4.87-III

Concentrated Mass Elements C_NMI, C_NM2 4.87-113

4.87.8.1 ECPT Entries for the C_NMI Mass Element 4.87-113

4.87.8.2 Mass Matrix Calculations for the CONMI Element
(Subroutine MC_NMX of Module SMA2) 4.87-113

4.87.8.3 ECPT Entries for the COHM2 Mass Element 4.87-114

4.87.8.4 Mass Matrix Calculations for the CONM2 Element
(Subroutine MCBNMX of Module STY2) 4.87-114

The CONEAX Element ... 4.87-117

4.87.9.1 Input Data for the CONEAX Element 4.87-117

4.87.9.2 Stiffness Matrix Calculations (Subroutine KCONE of
Module SMAI) ... 4.87-117

4.87.9.3 Mass Matrix Computation (Subroutine MCONE of Module
SMA2) .. 4.87-118

4.87.9.4 Element Load Calculations (Subroutine CONE of Module
SSGI) ... 4.87-118

4.87.9.5 Element Stress Calculations (Subroutines SCONE1,

SCONE2, SC@NE3 of Module SDR2) 4.87-123

4.87.9.6 Differential Stiffness Matrix Calculations (Subroutine

DCONE of Module DSMGI) 4.87-127a

xvii (8/I/72)

Section

4.87.10

4.87.11

4.87.12

TABLE OF CONTENTS (Continued)

No.

The TRIARG Element ... 4.87-128

4.87.10.1 Input Data for the TRIARG Element 4.87-128

4.87.10.2 General Geometric Calculations 4,87-129

4.87.10.3 Integral Calculations 4.87-130

4.87.10.4 Elastic Constants Matrix Calculations 4.87-132

4.87.10.5 Stiffness Matrix Generation (Subroutine KTRIRG of
Module SMAI) ... 4.87-133

4.87.10.6 Mass Matrix Calculations (Subroutine MTRIRG of
Module SMA2) ... 4,87-135

4.87.10.7 Thermal Load Calculations (Subroutine TTRIRG of
Module SSGI) .. 4.87-136

4.87.10.8 Element Force and Stress Calculations (Subroutines
STRIRI and STRIR2 of Module SDR2) 4.87-136

4.87.10.9 Thermal Analysis Calculations for the TRIARG and
TRAPRG Elements (Subroutine HRING of Module SMAI) 4.87-138a

The TRAPRG Element .. 4.87-139

4.87.11.1 Input Data for the TRAPRG Element 4.87-139

4.87.11.2 General Calculations 4.87-140

4,87.11.3 Integral Calculations 4.87-142

4.87.11.4 Elastic Constants Matrix Calculation 4.87-144

4.87.11.5 Stiffness Matrix Generation (Subroutine KTRAPR of
Module SMAI) ... 4.87-144

4.87.11.6 Mass Matrix Calculation (Subroutine MTRAPR of
Module SMA2) ... 4.87-146

4.87.11.7 Thermal Load Calculations (Subroutine TTRAPR of
Module SSGI) ... 4.87-147

4.87.11,8 Element Force and Stress Calculations (Subroutines
STRAP1 and STRAP2 of Module SDR2) 4.87-148

4.87.11.9 Thermal Analysis Calculations for the TRAPRG Element
(Subroutine HRING of Module SMAI) 4.87-151

The T_RDRG Element .. 4.87-152

4.87.12.1

4,87.12,2

4.87.12.3

4.87.12.4

Input Data for the T@RDRG Element 4.87-152

General Calculations 4.87-153

Integral Calculations 4,87-156

Elastic Constants Matrix Calculations 4.87-160

xviii (8/I/72)

TABLE OF CONTENTS (Continued)

Section

4.87.13

4.87.14

4.87.15

Page No.

4.87.12.5 Stiffness Matrix Calculations (Subroutine KT_RDR
of Module SMAI) 4.87-160

4.87.12.6 Mass Matrix Calculations (Subroutine MT_RDR of

Module SMA2) ... 4.87-165

4.87.12.7 Thermal Load Calculations (Subroutine TT_RDR of
Module SSGI) .. 4.87-166

4.87.12.8 Element Force and Stress Calculations (Subroutines

STORDI and STORD2 of Module SDR2) 4.87-168

The VISC Element ... 4.87-175

4.87.13.1

4.87.13.2

Input Data for the VISC Element 4.87-175

Damping Matrix Calculations (Subroutine BVISC of
Module SMA2) ... 4.87-175

4.87.14.1

4.87.14.2

4.87.14.3

4.87.14.4

4.87.14.5

4.87.14.6

Integral Calculations for the TRIARG, TRAPRG Elements 4.87-177

Integral Calculation for q > 0 and any p. (Function
DKINT) ? 4.87-179

Integral Calculation for p > 0 and q < - l (Function
DK8g) _ 4.87-179

Integral Calculation for p < 0 and q < - l (Function
DKIO0) .. 4.87-180

Integral Calculations for p > - l and q = -l (Function
DKJAB) ... 4.87-181

Integral Calculations for p < - l and q = -l (Function

DK219) ... 4.87-182

Integral Calculations for p = -l and q = -l (Function
DK211) ... 4.87-182

The FLUID2, FLUID3, FLUID4, AXIF2, AXIF3, AXlF4, and MFREE
Elements .. 4.87-183

4.87.15.1

4.87.15.2

4.87.15.3

4.87.15.4

4.87.15.5

Input Data for the Fluid Elements 4.87-183

Matrix Calculations for the FLUID2 Element
(Subroutine KFLUD2 of Module SMAI and Subroutine
MFLUD2 of Module SMA2) 4.87-183

Matrix Calculations for the FLUID3 Element
(Subroutine KFLUD3 of Module SMAI and Subroutine
MFLUD3 of Module SMA2) 4.87-186

Matrix Generation for the FLUID4 Element
(Subroutine KFLUD4 in Module SMAI and Subroutine
MFLUD4 in Module SF_2) 4.87-188

Matrix Calculations for the MFREE Element (Subroutine
MFREE in Module SMA2) 4.87-189

xix (8/I/72)

Section

4.87.16

4.87.17

TABLE OF CONTENTS (Continued)

Page No.

4.87.15.6 Stress Calculations for the AXIF Elements,
Phase 1 .. 4.87-189

4.87.15.7 Stress Calculations for the AXIF Elements,
Phase 2 .. 4.87-194

The SL_T3 and SLOT4 Fluid Elements 4.87-194

4.87.16.1 Input Data for the SL_T3 and SL_T4 Elements 4.87-194

4.87.16.2 General Calculations for the SLOT Elements 4.87-195

4.87.16.3 Stiffness Matrix Generation for the SL_T3 Elements 4.87-195

4.87.16.4 Mass Matrix Generation for the SL@T3 Elements 4.87-196

4.87.16.5 Stress Matrix Calculations in the SL_T Elements
(Phase I) .. 4.87-196

4.87.16.6 CSLOTi Element, Phase 2 4.87-198

Solid Polyhedra Elements, TETRA, WEDGE, HEXAI, HEXA2 4.87-199

4.87.17.1 Input Data for the Solid Polyhedra Elements 4.87-199

4.87.17.2 Basic Equations for the TETRA Element 4.87-200

4.87.17.3 Stiffness Matrix Generations for the TETRA Element
(Subroutine KTETRA of Module SMAI) 4.87-201

4.87.17.4 Mass Matrix Generation for the TETRA Element
(Subroutine MSOLID of Module SMA2) 4.87-201

4.87.17.5 Thermal Load Generation for the TETRA Element
(Subroutine TETRA of Module SSGI) 4.87-201

4.87.17.6 Stress Calculations for the TETRA Elements
(Subroutines SSOLIDI and SSOLID2 of Module SDR2) 4.87-202

4.87.17.7 Basic Equations for the WEDGE, HEXAI, and HEXA2
Elements ... 4.87-203

4.87.17.8 Stiffness Matrix Calculations and Geometry Checks
for the WEDGE, HEXAI, and HEXA2 Elements (Subroutine
KSOLID of Module SMAI) 4.87-204

4.87.17.9 Mass Matrix Generation for the WEDGE, HEXAI, and
HEXA2 Elements (Subroutine MSOLID of Module SMA2) 4.87-205

4.87.17.10 Thermal Load Generation for the WEDGE, HEXAI, and
IIEXA2 Elements (Subroutine S_LID of Module SSG2) 4.87-206

4.87.17.11 Stress Data Recovery for the WEDGE, HEXAI, and
IIEXA2 Elements (Subroutines SSOLIDI and SS_LID2 of
Module SDR2) ... 4.87-206

4.87.17.12 Thermal Analysis Calculations for the Solid Elements

(Subroutine KTETRA of Module SMAI) 4.87-207

xx (811172)

TABLE OF CONTENTS (Continued)

Section

4.88

4.89

4.90

4.91

4.92

4.93

4.94

4.95

4.96

4.97

4.98

4.99

4.100

4.101

4.102

4.103

5.

ae_.

4.87.18 The HBDY Elements .. 4.87-208

4.87.18.1 Input Data for the HBDY Elements 4.87-208

4.87.18.2 Stiffness Matrix Calculations (Subroutine HBDY
of Module SMAI) 4.87-208

4.87.18.3 HBDY Element Thermal Loads (Subroutine HBDY of
Module SSGI) ... 4.87-210

DETERMINANT METHOD OF EIGENVALUE EXTRACTION 4.88-I

EXECUTIVE PREFACE MODULE IFP4 (INPUT FILE PROCESSOR - PHASE 4) 4.89-I

FUNCTIONAL MODULE BMG (BOUNDARY MATRIX GENERATOR FOR HYDROELASTIC
PROBLEMS) .. 4.90-I

EXECUTIVE PREFACE MODULE IFP5 (INPUT FILE PROCESSOR - PHASE 5) 4.91-I

FUNCTIONAL MODULE PLI-TRAN ... 4.92-I

MATRIX MODULE UPARTN (PARTITIONS A MATRIX BASED ON USET) 4.93-I

MATRIX MODULE UMERGE (MERGES TWO MATRICES BASED ON USET) 4.94-I

MATRIX MODULE VEC (CREATES PARTITIONING VECTOR BASED ON USET) 4.95-I

MATRIX MODULE ADD5 (ADD MATRICES) ... 4.96-I

FUNCTIONAL MODULE INPUT (INPUT GENERATOR) 4.97-I

FUNCTIONAL MODULE INPUTTI ... 4.98-I

FUNCTIONAL MODULE INPUTT2 ... 4.99-I

FUNCTIONAL MODULE BUTPUTI ... 4.100-I

FUNCTIONAL MODULE _UTPUT2 ... 4.101-I

OUTPUT MODULE _UTPUT3 ... 4.102-I

OUTPUT MODULE TABPRT (FORMATTED TABLE PRINTER) 4.103-I

NASTRAN - OPERATING SYSTEM INTERFACES

5.1 INTRODUCTION .. 5.1-I

5.2 NASTRAN On The IBM 7094/7040(44) DCS (IBSYS) D E L E T E D 5.2-I

5.3 NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEM (_S) 5.3-I

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

Introduction ... 5.3-I

Input/Output .. 5.3-I

Link Switching ... 5.3-4

Overlay Considerations and Implementation of Open Core 5.3-4

Execution Deck Setup ... 5.3-6

xxi (8/I/72)

Section

5.4

5.5

TABLE OF CONTENTS (Continued)

Page No.

5.3.6 Physical Items and Generation of NASTRAN Executable System 5.3-13

5.3.7 Machine Dependent Routines 5.3-17

5.3.8 GIN_ (Generalized Input/Output Processor for NASTRAN) 5.3-20

5.3.9 Special Error Codes from NASTRAN on the System 360 5.3-22

5.3.10 System 360 F_RTRAN Compilers used for NASTRAN 5.3-23

5.3.11 IBM 360-370 Overlay Charts 5.3-24

NASTRAN ON THE UNIVAC 1108 (EXEC 8) 5.4-I

5.4.1 Introduction ... 5.4-I

5.4.2 Input/Output ... 5.4-I

5.4.3 Link Switching ... 5.4-4

5.4.4 Overlay Considerations and Implementation of Open Core 5.4-5

5,4.5 Execution Deck Setup ... 5.4-7

5.4.6 Description of NASTRAN Physical Items and Generation of the
NASTRAN Executable System .. 5.4-10

5.4.7 Machine Dependent Routines 5.4-12

5.4.8 Procedure to Copy the Three System Tapes 5.4-15

5.4.9 NASTRAN Tapes (Files) Catalogue Procedure 5.4-17

5.4.10 NASTRAN Update Procedure ... 5.4-19

5.4,11 Regenerate the Executable Tape 5.4-20

5.4.12 The ASGCRDS Program File ... 5.4-22

5.4.13 The C_NTRL or C_NTRL42K Program File 5.4-23

5.4.14 Description of a Demonstration Problem Starter Deck 5.4-24

5.4.15 Tape and Problem Numbers for the NASTRAN Demonstration Problem
Input Data Tape .. 5.4-27

5.4.16 GIN_ (Generalized Input/Output for NASTRAN) 5.4-28

5.4.17 Matrix Packing Routines .. 5.4-32

5.4.18 1108 Time Estimation ... 5.4-38

5.4.19 Single Precision Routines 5.4-38

5.4.20 UNIVAC Overlay Diagrams .. 5.4-39

NASTRAN ON THE CDC 6400/6600 (SCOPE 3) 5.5-I

5.5.1 Introduction .. 5.5-I

5.5.2 Input/Output ... 5.5-2

xxii (8/I/72)

TABLE OF CONTENTS (Continued)

Section

5.5.3

5.5.4

5.5.5

5.5.6

6.

Page No.

Layout of Core Storage ... 5.5-4

Execution Deck Setup ... 5.5-6

Physical Deliverables and Generation of Executable System 5.5-9

Machine Dependent Routines 5.5-12

5.6 THE CDC 6400/6600 LINKAGE EDITOR .. 5.6-I

5.6.1 Introduction .. 5.6-I

5.6.2 Preparing for Linkage Editor Processing 5.6-6

5.6.3 Designing an Overlay Program 5.6-7

5.6.4 Linkage Editor Control Statements 5.6-12

5.6.5 Examples of Linkage Editor Processing 5.6-23

5.6.6 Storage Requirements for the Linkage Editor 5.6-29

5.6.7 Link-Edited Linkage Editor 5.6-30

MODIFICATIONS AND ADDITIONS TO NASTRAN

6.1 INTRODUCTION .. 6.l-I

6.2 FBRTRAN IV LANGUAGE RESTRICTIONS .. 6.2-I

6.3 THE EXECUTIVE CONTROL DECK .. 6.3-I

6.3.1 The NASTRAN Card ... 6.3-I

6.4 THE CASE CONTROL DECK ... 6.4-I

6.5 THE BULK DATA DECK .. 6 5-I

6.6 RIGID FORMATS ... 6.6-I

6.7 FUNCTIONAL MODULES .. 6 7-I

6.8 ADDING A STRUCTURAL ELEMENT ... 6 8-I

6.8.1 Introduction to the Problem 6.8-I

6.8.2 General Guidelines ... 6 8-16

6.8.3 Specific Checklists .. 6.8-27

6.8.4 Updating the NASTRAN Manuals 6.8-49

6.8.5 Dummy User Elements (DUMI through DUM9) 6.8-54

6.9 PRINTED OUTPUT .. 6.9-I

6.10 PLOTTER OUTPUT .. 6.10-1

6.10.1 Changes to the Plotter Software 6.10-1

xxiii (8/I/72)

TABLE OF CONTENTS (Continued)

Section

6.11

6.12

7,

6.10.2

6.10.3

6.10.4

6.10.5

6.10.6

ADDITION

6.11 .I

6.11.2

6.11.3

6.11.4

6.11.5

Pa_e No.

Changes to the PL_T Module, the Structural Plotter 6.10-3

Changes to the XYPLOT Module, the XY Plotter 6.10-4

Changes to the SEEMAT Module, the Matrix Plotter 6.10-4

Use of the NASTRAN Plotter Software in a New Module 6.10-6

NASTRAN General Purpose Plotter 6.10-14

OF A NEW LINK ... 6.11-I

Modules to Include .. 6.11-I

Addition of _ew Modules ... 6.11-I

Generation of a New Link Specification Table and a New Link
Driver ..

Subsys the New Link ...

Increasing the Link Limit

6.12,1

6.12.2

6.12.3

6.12.4

6.12.5

NASTRAN SUPPORT

7.1

7.2

WRITING A NEW MODULE ...

Summary of NASTRAN Coding Conventions and Terminology

Module Design ...

Implementing the New Module

Coding a Module Subroutine

Sample Module Coding ..

PROGRAMS

INTRODUCTION ...

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

7.2.1

7.2.2

7.2.3

7.2.4

7.2.5

7.2.6

7.2.7

7.2.8

7.2.9

6.11-2

6.11-4

6.11-4

6.12-I

6.12-I

6.12-3

6.12-7

6.12-8

6.12-12

7.1-I

7.2-I

Introduction .. 7.2-2

Discussion of the Major Divisions of the Linkage Editor/Loader .. 7.2-14

Flowcharts .. 7.2-79

Subroutine Descriptions ... 7.2-134

Object Deck Format .. 7.2-176

Principal Linkage Editor Variable 7.2-183

Linkage Editor Output and Diagnostic Messages 7.2-191

Recommended Improvements to the Level 2.0 Version 7.2-204

Linkage Editor Glossary ... 7.2-205

xxiv (8/I/72)

Section

7.3

TABLE OF CONTErJTS (Continued)

Page No.

THE SOURCE .. 7.3-I

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

Purpose of the Source Conversion Program 7.3-I

Conversion Performed ... 7.3-I

Major Divisions in the Program 7.3-8

Use of the SCP ... 7.3-19

SCP Flowcharts ... 7.3-20

xxv (8/I/72)

Most Recent

811172
*i 811172
*ii 811172
*iii BII172
*iv 811172
*v 8/1/72
*vi 8/1/72
*vii 8/1/72
*viii 811172
*ix 811172
*x 8/I/72
*xi 8/I/72
*xii 8/I/72
*xiii BII/72
*xiv 8/3/72
*xv 8/1/72
*xvi 811172
*xvii 8/I/72
*xviii B/1/72
*xix B/I/72
*xx 811/72
*xxi 8/I/72
*xxii 8/l/72
*xxiii 8/I/72
*xxiv Bl1172
*xxv B11172
*xxvi 8/I/72
*xxvii 8/I/72
*xxviii 8/I/72
*xxix 811/72
*XXX

l.I-I
l.I-2
1 .I-3
1 .I-4
I.2-I

l.2-2 8/I/72
*l.2-3
1.2-4
1.2-5
I.2-6

1.2-7 8/1/72
*I .2-8 811172
*l•2-9 8/l/72
**l .9-9a

1.2-10 8/I/72
*I.2-11
l.2-12 ll/I/70

1.2-13 II/1/70
1.2-14
l.3-I
I .3-2
1.3-3
1.4-I
I .5-I

I .5-2 12/I/69
1.6-I
1.6-2
1.6-3
l.6-4

PAGE sTATUS LOG

Most Recent

12/1/69

811172
811172

12/I/69

811172
1111170
1111170
1111/70
1111170

8/1/72
8/1/72
8/1/72

1111170

8/1/72
8/1/72
811172
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
811172
8/1/72
8/1/72
8/1/72
811172
8/1/72
8/1/72
8/1/72

_ eP,__ °

Most Recent

*2.3-28a
*2.3-29
-2.3-29a
**2.3-29b
*2.3-30
2.3-31
2.3-32
2.3-33
2.3-34
2.3-35
2.3-36
2.3-37
2.3-38
2.3-39
2.3-40
,2.3-41
2.3-42
2.3-43
*2.3-44
2.3-45
*2.3-46
**2.3-46a

2.3-47
2.3-48

*2.3-49
*2.3-49a
**2.3-49b
*,2.3-49c

2.3-50
2.3-51
*2.3-52
2.3-53
2.3-54
2.3-55
2.3-56
2.3-57
2.3-58
2.3-59
2.3-60
2.3-61
2.3-62
2.3-63
2.3-64
2.3-65
2.3-66
2.3-67
2.3-68
2.3-69
2.3-70
2.3-71
2.3-72
2.3-73
2.3-74
2.3-75
2.3-76
2.3-77
2.3-78
2.3-79
2.3-80

811172
8/1/72
811172
8/1/72
811172

1111170

8/1/72

811172
1211169
8/1/72
8/1/72

8/1/72
8/1/72
811172
8/1/72

8/1/72

1211169

3/1/71

xxvi (8/1/72)

f

PAGE STATUS LOG

Page No.

2.3-81
2.3-82
2.3-83
2.3-84
2.3-85
2.3-86

*2.3-87
2.3-88
2.3-89
2.3-90
2.3-91
2.3-92
2.3-93
2.3-94
2.3-95
2.3-96
2.3-97
2.3-98

*2.3-99
2.3-I00
2.3-I01
2.3-I02
2.3-I03
2.3-104
2.3-I05
2.3-I06
2.3-I07
2.3-I08
2.3-I09
2.3-II0
2.3-II
2.3-12
2.3- 13
2.3- 14
2.3- 15
2.3- 16
2.3- 17
2.3- 18
2.3-I19
2.3-120
2.3-121
2.3-122
2.3-123
2.3-124

"2.3-125
"2.3-126
"2.3-127
2.3-I27a
2.3-128
2.3-129
2.3-130
2.3-131
2.3-132
2.3-133
2.3-134
2.3-134a
2.3-135
2.3-136
2.3-136a

Most Recent

Date Changed

811172

811172

7/I/70
7/I/70

12/I/69

8/I/72
8/I/72
8/I/72
12/I/69

12/I/69
12/I/69

12/I/69
12/I/69

Page No.

2.3-137
2.3-138
2.3-139
2.3-140
2.3-141

"2.3-142
2.3-143

*2.3-I44
*2.3-I45
2.3-146
2.3-147
2.3-148
2.3-149
*2.3-I50
2.3-151
2.3-152
2.3-153
2.3-154
2.3-155
2.3-156
2.3-157
2.3-158
2.3-159
2.3-160
2.3-161
2.3-162
2.3-163
2.3-164
2.3-165
2.3-166
2.3-167
2.3-168
2.3-169
2.3-170
2.3-171
2.3-172
2.3-173
2.3-I74
2.3-175
2.3-176
2.3-177
2.3-178
2.3-179
2.3-180
2.3-181
2.3-182
2.3-183

"2.3-184
2.3-185

*2.3-I86
"2.3-187
*2.3-I88
2.3-189

"2.3-190
"2.3-191

*'2.3-191a
2.3-192
2.3-193

"2.3-194

Most Recent

Date Changed

8/I/72

8/I/72
8/I/72

8/I/72

6/I/71

8/I/72

8/I/72
8/I/72
8/I/72

8/I/72
8/I/72
8/I/72

8/I/72

Pae_.

2.4-I
2.4-2
2.4-3
2.4-4
2.4-5
2.4-6
2.4-7
2.4-8
2.4-9
2.4-I0
2.4-II
2.4-12

"2.4-13
"2.4-13a
2.4-14
2.4-15
2.4-16
2.4-17
2.4-18
2.4-19
2.4-20
2.4-21
2.4-22
2.4-23
2.4-24
2.4-25
2.4-26
2.4-27
2.4-28
2.4-29
2.4-30
2.4-31
2.4-32
2.4-33
2.4-34
2.4-35
2.4-36
2.4-37
2.4-38
2.4-39
2.4-40
2.5-I
2.5-2
2.5-3
2.5-4
2.5-5

*2.5-6
**2.5-6a

2.5-7
2.5-8
2.5-9
2.5-I0
2.5-II
2.5-12
2.5-13
3.l-I
3.1-2
3.1-3

Most Recent

Date Changed

311171

8/I/72
8/I/72

12/I/69
12/I/69

3/I/71
3/I/71
3/I/71
3/I/71
3/I/71
311171
311171
311171
311171
311171
1211169

8/I/72
8/I/72

12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69

xxvii (8/I/72)

PAGE STATUS LOG

Page No.

"3.2-I
*3.2-2
*3.2-3
*3.2-4
*3.2-5
*3.2-6

**3.2-7
3.3-I
3.3-2
3.3-3
3.3-4
3.3-5
3,3-6
3.3-7
3.3-8
3.3-9
3.3-10
3.3-11
3.3-12
3.3-13
3.3-14

"3.3-15
"3.3-15a

3.3-16
"3.3-17

*'3.3-18
*'3.3-19
**3.3-20

3.4-I
3.4-2
3.4-3
3.4-4
3.4-5
3.4-6
3.4-7
3.4-8
3.4-9
3.4-10
3.4-11
3.4-12
3.4-13
3.4-14
3.4-15
3.4-16
3.4-17

"3.4-18
3.4-19
3.4-20
3.4-21
3.4-22
3.4-23

*3.4-24
3.4-25
3.4-26
3.4-27

*3.4-28
3.4-29
3.4-30
3.4-31
3.4-32

Most Recent

Date Changed

8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

8/I/72
8/I/72

8/I/72
8/I/72
8/I/72
8/I/72

12/I/69

8/I/72

8/I/72

8/I/72

Pase No

3.4-33
3.4-34
3.4-35

*3.4-36
3.4-37
3.4-38
3.4-39
3.4-4O
3.4-41
3.4-42
3.4-43
3.4-44
3.4-45
3.4-46
3.4-47
3.4-48
3.4- 49
3.4-50
3.4-51
3.4-52
3.4-53
3.4-54
3.4-55
3.4-56
3.4-57
3.4-58
3.4-59
3.4-60
3.4-61
3.4-62
3.4-63
3.4-63a

*3.4-64
*3.4-65

3.4-66
3.4-67
3.4-68
3.4-69
3.4-70
3.4-71
3.4-72
3.4-72a
3.4-73
3.4-73a
3.4-74
3.4-74a
3.4-75
3.4-75a
3.4-76
3.4-77
3.4-78
3.4-78a
3.4-79
3.4-80
3.4-81
3.4-82
3.4-83
3.4-84
3.4-85
3.4-86

Most Recent

Date Chan_ed

3/I/71

8/I/72

12/I/69

12/I/69
3/I/71

12/I/69
12/I/69

3/I/71
3/I/71
3/I/71
3/I/71
3/I/71
3/I/71
3/I/71
3/I/71
8/I/72
8/I/72

12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69

Page No.

3.4-87
3.4-87a
3.4-88
3 ._-89
3.4-90
3.4-91
3.4-92
3.4-93
3.4-94
3.4-95
3.4-96
3.4-97
3.4-98
3.4-99
3.4-100
3.4-101
3.4-102
3.4-103
3.4-104
3.4-105
3.4-106
3.4-107
3.4-108
3.4-109
3.4-110
3.4-111

"3.4-112
3.4-113
3.4-114
3.4-115
3.4-116
3.4-117

*'3.4-118
*'3.4-119
**3.4-120
*'3.4-121
*'3.4-122
*'3.4-123
*'3.4-124
*'3.4-125
*'3.4-126
*'3.4-127
*'3.4-128
*'3.4-129
**3.4-I 30

"3.5-I
3.5-2
3.5-3

*3.5-4
3.5-5
3.5-6

*3.5-7
*3.5-8
*3.5-9

3.5-10
3.5-11
3.5-12
3.5-13
3.5-14
3.5-15

Most Recent

Date Chansed

12/I/69
12/I/69

12/I/69
12/I/69

12/I/69

12/I/69
12/I/69

12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69

12/I/69
12/I/69
7/I/70
7/I/70
12/I/69
12/I/69
8/I/72
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

8/I/72

8/I/72
8/I/72
8/I/72

xxviii

PAGE STATUS LOG

Pae_.

3.5-16
3.5-17
3.5-18
3.5-19
3.5-20
3.5-21
3.5-22

*3.5-23
3.5-24
3.5-25

*3.5- 26
*3.5-27
*3.5-28

**3.5-28a
3.5-29
3.5-30
3.5-31
3.5-32
3.5-33
3.5-34
3.5-35
3.5-36
3.5-37
3.5-38
3.5-39
3.5-40
3.5-41
3.5-42

*3.5-43
*3.5-44

3.5-45
3.5-46
3.5-47
3.5-48
3.5-49
3.5-50
3.5-51
3.5-52
3.5-53
3.5-54
3.5-55
3.5-56
3.5-57
3.5-58
3.5-59
3.5-60
3.5-61
3.5-62

*3.5-63
3.5-64

*3,5-65
**3.5-65a

3.5-66
3.5-67
3.5-68
3.5-69
3.5-70
3.5-71
3.5-72

Most Recent
Date Changed

6/I/71

8/I/72

8/I/72
8/I/72
8/I/72
8/I/72

8/I/72
8/I/72

3/I/71

12/I/69

8/I/72

8/I/72
8/I/72

Page No.

3.5-73
3.5-74
3.5-75
3.5-76
3.5-77
3.5-78
3.5-79

**3.5-80
**3.5-81
**3.5-82
**3.5-83
**3.5- 84
**3.5-85

*4. I-I
4.1-2
4.1-3
4.1-4
4.1-5
4.1-6

*4. I-7
**4.1-7a

*4.1-8
*4. I-9
"4.1-10
*4.1 -I 1
"4.1-12
"4.1-13
"4.1-14
"4.1-15
*4.1-16
"4.1-17
*4. I-I 8
*4.1-19
*4.1-20
*4.1-21

**4.1-22
**4.1-23

4.2-I
*4.2-2

4.2-3
4.2-4
4.2-5
4.2-6
4.3-I
4.3-2
4.3-3
4.3-4
4.3-5
4.3-6
4.3-7
4.3-8
4.3-9
4.3-10

"4.3-11
"4.3-12

4.4-I
4.4-2
4.4-3
4.4-4
4.4-5

Most Recent
Date Changed

12/I/69

6/I/71
6/I/71
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

3/I/70

8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
811/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

8/I/72

3/I/71

8/I/72
8/I/72

Page No.

4.4-6
4.4-7
4.4-8
4.4-9
4.4-10
4.4-11

"4.5-I
*4.5-2

4.5-3
4.5-4

*4.5-5
*4.5-6
*4.5-7
*4.5-8
*4.5-9
"4.5-10
*4.5-I 1
"4.5-12
"4.5-13

**4.5-13a
"4.5-14
"4.5-15
"4.5-16
"4.5-17
"4.5-18
"4.5-19

**4.5- 20
4.6-I
4.6-2
4.6-3
4.6-4
4.6-5
4.6-6
4.6-7
4.6-8
4.6-9
4.6-10
4.6-11
4.6-12
4.6-13
4.6-14
4.6-15
4.7-I
4.7-2
4.7-3
4.7-4
4.7-5

*4.7-6
**4.7-6a

4.7-7
4.7-8
4.7-9
4.7-10
4.8-I
4.8-2
4.9-I

*4.9-2
4.9-3
4.9 -4

Most
Date

Recent

Changed

8/I/72
8/I/72

8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

8/I/72
8/I/72

8/I/72

xxix (8/I/72)

PAGESTATUS LOG

Page No.

4.9-5
4.9-6
4.9-7
4.9-8
4.9-9
4.9-10
4.10-I
4.10-2
4.10-3
4.10-4
4,11-I
4.11-2
4.11-3
4.12-I
4.13-I
4.13-2
4.14-I
4.14-2
4.15-I
4.16-I
4.16-2
4,16-3
4.16-4
4.17-I
4.17-2
4.17-3
4.17-4
4.17-5
4.17-6
4.18-I
4.19-I
4.19-2
4.20-I
4.21 -I
4.21-2
4.21-3
4.21-4
4.21-5
4.21-6

"4.21-7
4.21-8
4.21-9
4.22-I
4.22-2

*4.22-3
4.23-I
4.23-2

*4.23-3
*4.23-4
*4.23-5

4.24-I
4.24-2
4.24-3
4.24-4
4.24-5
4.24-6
4.24-7
4.24-8
4.24-9

Most Recent

Date Changed

8/I/72
11/I/70

8/]/72

1211169
811/72
811/72
811/72

12/I/69

12/I/69
3/I/71
3/I/71

Pae_.

4.24-10
4.24-I 1
4.24-12

*4.24-I 2a
4.24-13

"4.24-14
4.24-15
4.24-16
4,24-17
4.24-18
4.25-I
4.25-2
4.25-3
4.25-4
4.25-5
4.25-6
4.25-7
4.25-8
4.25-8a
4.25-9
4.25-10
4.26-I
4.26-2
4.26-3
4.26 -4
4.26-5
4.26 -6
4.26-7
4.26-8
4.26-9
4.26-10
4.26-I 1
4.26-12
4.26-13
4.26-14

*4.26-15
4.26-16
4.26-17
4.26-18
4.27-I
4.27-2
4.27-3
4.27-4
4.27-5

*4.27-6
4.27-7

*4.27-8
4.27-9
4.27-10
4.27-11
4.27-12

"4.27-13
4.27-14
4.27-15
4.27-16
4.27-17
4.27-18
4.27-19
4.27-20

Most Recent
Date Changed

3/I/71
3/I/71
3/I/71
8/I/72

8/I/72
12/I/69
12/I/69

9/I/70

9/I/70
1111170
911170

1111170
1111170

811172

811172
311171
811172

811172

Page No.

"4.27-21
**4.27-21a
**4.27-21 b

*4.27-22
4.27-23
4.27-24
4.27-25

*4.27-26
*4.27-27

4.28-I
4.28-2
4.28-3
4.28-3a
4.28-4
4.28-5
4,28-6
4.28-7
4.28-8

"4.28-8a
"4.28-8b

4.28-9
"4.29-I
*4.29- 2
*4.29- 3
*4.29-4
*4.29 -5

4.29-6
4.29 -7
4.30-I
4.30-2
4.30-3
4.30 -4
4.30-5
4.30-6
4.30-7
4.30-8

"4.31 -I
*4.31-2
*4.31-3
"4.31-4
*4.31-5

**4.31-6
4.32-I
4.32-2
4.32-3
4.32-4
4.33-I
4.33-2
4.33-3
4.34-I
4.34-2
4.35-I
4,35-2
4.35-3

*4.36-I
*4.36-2
*4.36-3

4.37-I
4.37-2

Most Recent

Date Changed

811172
811/72
8/I/72
811172

711170
811172
811/72
311171
311171
311171
311171

1211169
8/I r72
8/I 172
7/I 170
8/I r72
8/I r72
8/I _72
8/I 172
8/I 172

8/1/72
8/1/72
8/1/72
8/1/72
8/1/72
8/1/72

8/I/72
8/I/72
8/I/72

xxx (8/I/72)

PAGESTATUSLOG

Page No_.

4.38-I
4.38-2

"4.39-I
4.39 -2
4.40-I
4.40-2
4.41 -I
4.41-2
4.41-3
"4.41-4
4.41-5
4.41-6
"4.41-7
4.41-8
4.41-9
4.41-lO
4.41-ll

*4.41-12
"4.41-13
**4.41-l3a

4.41-14
4.41-15
4.41-16
4,41-17
4.41-18
4.41-19
4.41-20
4.41-21
4.41-22
4.41-23
4.41-24
4.41-25
4.41-26
4.41 -27
"4.41-28

*'4.41-28a
**4.41-28b
**4.41-28c
*4.41-29
4.41-30
4.42-I
4.42-2
4.42-3
4.42-4
4.43-1
4.43-2
4.43-3
4.44-1
4.44-2
4.45-I
4.45-2
4.45-3
4.45 -4
4.45-5
4.45-6
4.46-I
4.46-2
4.46-3
4.46-4
4.46-5

Most Recent
Date Changed

8/I/72

8/I/72

8/I/72
12/I/69
7/I/70

911/70
8/I/72
8/I/72
8/I/72

7/1/70

3/1/71

3/1/71

8/1/72
8/1/72
8/1/72
8/1/72
8/1/72

7/1/70

3/1/71

Page No.

4.46-6
4.46-7
4.46-8
4.46-9
4.46-10
4.46-I1
4.46-12
4.46-13
4.46-14
4.46-15
4.46-16
4.46-17
4.46-18

*4.46-19
*'4.46-19a
**4.46-I9b
*4.46-20
4.47-I
4.47-2
4.47-3
4.47-4
4.47-5
4.47-6
4.47-7
4.47-8
*4.48-I
*4.48-2
4.48-3
4.48-4

*4.48-5
4.48-6
4.48-7
4.48-8
4.48-9
4.48-I0
4.48-II

*4.48-12
4.48-13
4.48-14
4.48-15
4.48-16
4.48-17
4.48-18
4.48-19
4.48-19a
4.48-19b
4.48-19c
4.48-19d
4.48-19e
4.48-19f
4.48-19g
4.48-20
4.48-21
4.48-22
4.48-23
4.48-24
4.48-25
*4.48-26
4.48-27

Most Recent
Date Changed

811172
811172
8/I/72
811172

1211/69
811172
811/72
12/I/69

8/I/72

3/I/71
7/I/70
8/I/72

12/I/69
12/I/69
12/I/69
1211/69
12/I/69
1211169
12/I/69
3/I/71

12/I/69

8/I/72

PBe_.

4.49-I
4.49-2

"4.49-3
4.49-4
4.49-5

*4.49-6
*4.49-7

**4.49-7a
4.49-8
4.49-9
4.50-I
4.50-2
4.51-I
4.51-2
4.51-3
4.51-4

"4.52-I
*4.52-2
*4.52-3
*4.52-4
4.53-I
4.53-2
4.54-I
*4.54-2
4.54-3
4.54-4
4.54-5
4.54-6
4.54-7
4.54-8
4.55-I
4.55-2
4.55-3
4.55-4
4.55-5
4.55-6
4.55-7
4.55-8
4.55-9
4.56-I
4.56-2
4.56-3
4.57-I
4.57-2
4.57-3
4.57-4
4.58-I
4.58-2
4.58-3
4.58-4
4.58-5
4.58-6
4.58-7
4.59-I

*4.59-2
4.59-3
4.59-4
4.59-5
4.59-6

Most Recent
Date Changed

12/I169
811172
1211169

811172
811172
811172

711170

8/I/72
8/I/72
8/I/72
8/I/72

8/I/72
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69

12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69

3/I/71

8/I/72

xxxi (811172)

PAGE STATUS LOG

Pa_ag_e No.

4.59-7
4.59-8
4.59-9
4.59-10

*4.59-I 1
4.59-12
4.59-13

"4.59-14
*'4.59-15

4.60-I
4.60-2
4,60-3
4.60-4
4.60-5
4.60-6
4.60-7

*4.61 -I
"4.61-2
*4.61 -3

**4.61 - 3a
4.61-4

"4.61-5
4.61-6
4.61-7
4.61-8
4.62-I
4.62-2
4.62-3
4.62-4
4.62-5
4.62-6
4.62-7
4.62-8

*4.62-9
4.63-I
4.63-2
4.63-3
4.63-4
4.63-5
4.63-6
4.63-7
4.63-8
4,64-I
4.64-2
4.64-3
4.64-4
4.64-5

*4.64-6
*4.64-7

4.64-8
4.64-9
4.64-10
4.65-I
4.65-2
4.65-3
4.65-4
4.65-5
4.65-6
4,65-7

*4.65-8

Most Recent

Date Changed

12/I/69

8/I/72

8/I/72
8/I/72

8/I/72
8/I/72
8/I/72
8/I/72

8/I/72

8/I/72

6/I/71

6/I/71
6/I/71

8/I/72
8/I/72

8/I/72

Page No.

4.65-9
4.65-10

"4.65-11
4.65-12
4.65-13
4.65-14
4.65-15
4.65-16
4.65-17

"4.65-18
"4.65-19

4.65-20
4.65-21
4.65-22
4.66-I
4.66-2
4.66-3
4.66-4
4.66-5
4.67-I
4.68-I
4.68-2
4.68-3
4.68-4
4.68-5
4.69-I
4.69-2
4.69-3
4.69-4
4.70-I
4,70-2
4.70-3
4.70-4
4.70-5
4.70-6
4.70-7
4.71-I
4.72-I
4.72-2
4.72-3
4.73-I
4.73-2
4.73-3
4.73-4
4.74-I
4.74-2
4 74-3

*z .74-4
**z. 74-4a

4 74-5
4 75-I
4 76-I
4 76-2
4 76-3
4 77-I
4 77-2
4 77-3

*z .78-I
*z .78-2

.79-I

Most Recent

Date Changed

1211169
12/I/69
8/I172

711170
711170
7/I170
3/I171
8/I/72
8/I/72
7/I/70
7/I/70
7/I/70

12/I/69
12/I/69

12/I/69
12/I/69
12/I/69
8/I/72
8/I/72
12/I/69

8/I/72
8/I/72

Page No.

4.79-2
4.79-3
4.80-I
4.80-2
4.81 -I
4.81-2
4.82-I
4.82-2

"4.83-I
4.83-2

*4.83-3
**4.83-4

"4.84-I
*4.84-2

4,85-I
4.86-I
4.86-2

"4.87-I
*4.87-2
*4.87-3
*4.87-4
*4.87-5
*4.87-6

4.87-7
4.87-8
4.87-9
4.87-10
4.87-11
4.87-12

"4.87-13
4.87-14
4.87-15
4.87-16
4.87-16a

*'4.87-16b
4.87-17
4.87-18
4.87-19
4.87-20
4.87-21
4.87-22
4.87-23
4.87-24
4.87-25
4.87-25a

*4.87-26
4.87-27
4.87-28
4.87-28a
4.87-29
4.87-30
4.87-31
4.87-32
4.87-33
4.87-34
4.87-35
4.87-36

*4.87-37
3.87-38
4.87-39

Most Recent

Date Changed

811/72
311/71
811172
811172
8/I172
811/72

811172
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

12/I/69
11/I/70
3/I/71
3/I/71
8/I/72
3/I/71

12/I/69
8/I/72

3/I/71

3/I/71

9/I/70
9/I/70
8/I/72
911170
11/1/70
9/I/70
3/I/71

3/I/71

8/I/72

xxxii (8/I/72)

4.87-40
4.87-41
4.87-42
4.87-43
4.87-44
4.87-45
4.87-46
4.87-47
4.87-48
4.87-49
4.87-50
4.87-51
4.87-52
4.87-53
4.87-54
4.87-55
4.87-56
4.87-57
4.87-58
4.87-59
4.87-60
4.87-61
4.87-62
*4.87-63
*4.87-64
4.87-65
*4.87-66
**4.87-66a

*4.87-67
4.87-6 8
4.87-69
4.87-70
4.87 -71
4.87-72
4.87-73
4.87-74
4.87-75
4.87-76
4.87-76a
4.87-76b
4.87-76c
*4.87-76d

**4.87-76e
4.87-77
4.87-78
4.87-79
4.87-80
4.87-81
4.87-82

*4.87-83
4.87-84
4.87-85
4.87-86
4.87-86a
4.87-87
4.87-88
4.87-89
4.87-90
4.87-91

Most Recent
Date Changed

311171

3/1/71
3/1/71

811/72
8/I/72
II11170
811172
811172
811172

12/]/69
12/I/69
12/I/69
8/1/72
811/72

8/I/72

9/I/70
9/I/70
9/1/70

PAGE STATUS LOG

Most Recent
Most Recent

4.87-119 12/I/69
*4.87-92 8/I/72 4.87-120

4.87-93 4.87-I21
4.87-94 4.87-I22
4.87-95 12/1/69
*4.87-96 8/I/72 4.87-123
4.87-97 9/I/70 -4.87-124 8/I/72
4.87-97a 9/I/70 ,4.87-125 8/1/72

*4.87-98 8/I/72 ,4.87-126 8/I/72**4.87-126a 8/I172
4.87-99 4.87-127
4.87-I00 4.87-127a 12/I/69
4.87-I01 4.87-127b 12/I/69
4.87-102 12/I/69
4.87-I03 ll/I/70 4.87-127c
4.87-I04 ll/I/70 4.87-127d 12/I/69
4.87-I04a 12/I169 4.87-127e 12/I/69
4.87-104b 12/I/69 4.87-127f 12/I/69

4.87-104c 12/I/69 4.87-128
4.87-104d 12/I/69 4.87-129
4.87-104e 12/I/69 4.87-130
4.87-104f 12/I/69 4.87-131
4.87-I04g 12/I/69 a.87-132
4.87-I04h 1211/69 4.87-133
4.87-I04i 12/I/69 4.87-134
4.87-I04j 12/I/69 4.87-135
4.87-I04k 12/I/69 -4.87-136 8/I/72
4.87-I04_ 12/I/69 4.87-137
4.87-I04m 12/I/69 4.87-138
4.87-I04n 11/I/70 *-4.87-138a 8/I/72
4.87-104o 1111/70 4.87-139

,4.87-105 8/I/72 4.87-140 3/I/714.87-141 3/I/71
4.87-106 4.87-142 3/I/71
4.87-107 3/I/71
4.87-108 9/I/70 4.87-143

,4.87-109 8/1172 4.87-144
,4.87-I09a 8/I/72 4.87-145

4.87-I09b 12/I/69 4.87-146
4.87-I09c 12/I/69 4.87-147

.4.87-I09d 8/I/72 4.87-148
*-4.87-I09e 8/I/72 4.87-149
*-4.87-I09f 8/I/72 4.87-150
*-4.87-I09g 8/I/72 -4.87-151 8/I/72

4.87-152
*,4.87-I09h 811/72 4.87-153
*'4.87-I09i 811/72
*'4.87-I09j 8/I/72 4.87-1544.87-155
*-4.87-I09k 8/I/72 4.87-156
*-4.87-I09_ 8/I/72
*-4.87-I09m 8/I/72 4.87-157
**4.87-I09n 8/I/72 4.87-1584.87-159
.-4.87-109o 8/I/72 4.87-160
.,4.87-I09p 8/I/72 4.87-161

4.87-110
-4.87-111 8/I/72 4.87-1624.87-163

4.87-112 4.87-164
4.87-11 3 4.87-165
4.87-114 4.87-166
4.87-115 4.87-167
4.87-116 4.87-168
4.87-117

,4.87-118 8/I/72 4.87-169

xxxiii (8/I/72)

PAGE STATUS LOG

Page No.

4.87-170
4.87-171
4.87-172
4.87-173
4.87-174
4.87-175
4.87-176
4.87-177
4.87-178
4.87-I 79
4.87-180
4.87-181
4.87-182

"4.87-183
4.87-184
4.87-185
4.87-186
4.87-187
4,87-188

"4.87-189
*'4.87-190
*'4.87-191
*'4.87-192
*'4.87-193
*'4.87-194
*'4.87-195
*'4.87-196
*'4.87-197
*'4.87-198
*'4.87-199
**4.87-200
*'4.87-201
**4.87-202
**4.87-203
**4.87-204
**4.87-205
**4.87-206
**4.87-207
**4.87-208
**4,87-209
*'4.87-210

4.88-I
4.88-2
4.88-3
4.88-4
4.88-5
4.88-6
4.88-7
4.88-8
4.88-9
4.88-10
4.89-I
4.89-2
4.89-3
4.89-4
4.89-5
4.89-6
4.89-7
4.89-8
4.89-9

Most Recent

Date Changed

811172
11/I170
11/I170
11/I/70
11/I/70
11/I/70
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

1111170

1111170
1111170

1111170
11/1170

1111170
11/I170

1111170

1I11170

Page No.

4.89-10
4.89-I 1
4.89-12
4.89-13
4.89-14
4.89-15
4.89-16
4.89-17

"4.90-I
*4.90-2
*4.90-3
*4.90-4
*4.90-5
*4.90-6
*4.90-7

**4.90-8
"4.91-I
"4.91-2

*'4.91-3
*'4.91-4
*'4.91-5
*'4.91-6
*'4.91-7

"4.92-I
*4.92-2

*'4.93-I
**4.93-2
*'4.94-I
**4.94-2
*'4.95-I
**4.95-2
*'4.96-I
**4.96-2
*'4.97-I
**4.97-2
*'4.98-I
**4.98-2
**4.98-3
*'4.99-I
**4.99-2
**4.99-3
*'4.100-I
*'4.100-2
*'4.100-3
*'4.101-I
*'4.101-2
*'4.101-3
*'4.102-I
*'4.102-2
*'4.103-I
*'4.103-2

5.1-I
"5.2-I
"5.3-I
*5,3-2
*5.3-3
*5.3-4
*5.3-5
*5.3-6
*5.3-7

Most Recent

Date Changed

1111170

1111170

1111170

1111170
1111170

11/I/70
1111170

1111170

811r72
8/Ir72
8/I172

811172

811172

811r72
811172
811172

811172
811172

811r72

811172

811t72
811172

8/1172
8/1172
8/I172
8/I172
8/I172
8/I172
8/IZ72
8/I172
8/I172
8/I172
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
12/I/69
DELETED
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

*5
*5
*5
*5

**5
**5
**5
*'5
**5

Page No.

*5 3-8
*5 3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18

**5 3-19
**5 3-20
*'5.3-21
**5.3-22
**5.3-23
**5.3-24
**5.3-25
**5.3-26
**5.3-27
**5.3-28
**5.3-29
**5.3-30
*'5.3-31
**5.3-32
**5.3-33
**5.3-34
**5.3-35
**5.3-36
**5.3-37
**5.3-38
**5.3-39
**5.3-40
*'5.3-41
**5.3-42
**5.3-43
**5.3-44
**5.3-45
**5.3-46
**5.3-47
**5.3-48
**5.3-49
**5,3-50
**5 3-51
**5 3-52
**5 3-53
**5 3-54

*5 4-I
*5 4-2
*5 4-3
*5.4-4
*5.4-5
*5,4-6
*5.4-7
*5.4-8
*5.4-9
"5,4-10
"5.4-11
"5.4-12
"5.4-13

Most Recent
Date Chan_ed

811172
811172
811172
8/1172
8/1172
8/1172
811172
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/It72
8/Ir72
8/I_72
8/1172
8/1172
8/I 172
8/I 172
8/1172
8/1172
8/I172
8/I172
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

xxxiv (8/I/72)

PAGE STATUS LOG

Page No.

"5.4-14
"5.4-15
"5.4-16
"5.4-17
"5.4-18
"5.4-19
*5.4-20
"5.4-21
*5.4-22
*5.4-23
*5.4-24
*5.4-25
*5.4-26
*5.4-27
*5.4-28
*5.4-29
*5.4- 30
*5.4-31
*5.4-32
*5.4-33
*5.4-34
*5.4-35
*5.4-36
*5,4-37
*5.4-38
*5.4-39

**5.4-40
*'5.4-41
**5.4-42
**5'.4-43
*'5.4-44
**5.4-45
**5.4-46
**5.4-47
**5.4-48
**5.4-49
**5.4-50
*'5.4-51
**5.4-52
**5.4-53
**5.4-54
**5.4-55
**5.4-56
**5.4-57
**5.4-58
**5.4-59
**5.4-60
*'5.4-61
**5.4-62
**5.4-63
**5.4-64
**5.4-65
**5.4-66
**5.4-67
**5.4-68
**5.4-69
**5.4-70
*'5.4-71
**5.4-72
**5.4-73

Most Recent

Date Changed

8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

Page No.

**5.4-74
**5.4- 75
**5.4-76
**5.4-77

"5.5-I
*5.5-2
*5.5-3

5.5-4
5.5-5

*5.5-6
*5.5-7
*5.5-8
*5.5-9
"5.5-10
"5.5-11
"5.5-12
"5.5-13

*'5.5-14
*'5.5-15
**5.5-16
*'5.5-17
*'5.5-18
*'5.5-19
**5.5-20
**5.5-21
_'5.5-22
**5.5-23
**5.5-24
**5.5-25
**5.5-26
**5.5-27
**5.5-28
**5.5-29
**5.5-30
*'5.5-31
** 5.5- 32
**5.5-33
**5.5-34
**5.5- 35
**5.5- 36
**5.5-37
**5.5- 38
**5.5-39
**5.5-40
*.5.5-41
**5.5-42
**5.5-43
**5.5-44
**5.5-45
**5.5-46
**5.5-47
**5.5-48

5.6-I
5.6-2
5.6-3
5.6-4
5.6-5
5.6-6
5.6-7
5.6-8

Most Recent

Date Changed

8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
12/I/69
12/I/69
8/I _72
8/Ir72
8/Iq2
8/1172
8/I 172
8/I 172
8/I172
8/1172
8/Ir72
8/Ir72
8/Ir72
8/1172
8/I/72
8/I172
8/1172
8/1172
8/Iq2
8/1172
8/Ir72
8/Ir72
8/1172
8/Ir72
8/Ir72
8/Ir72
8/I 172
8/Ir72
8/I/72
8/1172
8/I'72
8/I 172
8/Ir72
8/Ir72
8/1172
8/I_72
8/1172
8/1172
8/1172
8/Ir72
8/Iq2
8/Ir72
8/Iq2
8/I_72
8/I172
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69

Page No.

5.6-9
5.6-10
5.6-11
5.6-12
5.6-13
5.6-14

"5.6-15
"5.6-16

5;6-17
5.6-18
5.6-19
5.6-20
5.6-21
5.6-22

*5.6-23
*5.6-24
*5.6-25
*5.6-26
*5.6-27

*'5.6-27a
*5.6-28

5.6-29
"5.6-30

*'5.6-30a
5.6-31
6 I-I

*6 2-I
*6 2-2
*6 2-3
*6 3-I
*6 3-2

**6 3-3
6 4-I
6.5-1
6.5-2

*6.6-I
6.6-2
6.7-I
6.7-2

"6.8-I
*6.8-2
*6.8-3
*6.8-4
*6 8-5
*6 8-6
*6 8-7
*6 8-8
*6 8-9
*6 8-10
"6.8-11
*6 8-12
*6 8-13
*6 8-14
*6 8-15
*6 8-16
*6 8-17
*6 8-18
*6 8-19
*6 8-20
*6 8-21

Most Recent
Date Changed

12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
8/I/72
8/I/72
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
12/I/69
8/I/72
8/I/72
12/I/69

8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

8/I/72

311171
311171
811172
811172
811172
811/72
811172
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/1/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

xxxv (8/I/72)

PAGE STATUS LOG

Page No.

*6.8-22
*6.8-23
*6.8-24
*6.8-25
*6.8-26
*6.8-27
*6.8-28
*6.8-29
*6.8- 30
"6.8-31
*6.8-32
*6.8- 33
*6.8- 34
*6.8-35
*6.8-36
*6.8- 37
*6.8- 38
*6.8- 39
*6.8-40
"6.8-41
*6.8- 42
*6.8-43
*6.8- 44
*6.8-45
*6.8- 46
*6.8-47
*6.8-48
*6.8-49
*6.8- 50
*6.8-51
*6.8-52
*6.8-53
*6.8-54
*6.8-55

6.9-I
6.9-2
6 I0-I
6 10-2
6 10-3
6 10-4
6 10-5
6 10-6
6 10-7
6.10-8
6.10-9
6.10-10
6.10-11
6.10-12
6.10-13
6.10-14
6.10-15

"6.10-16
6.10-17
6.10-18
6.11-I
6.11-2
6.11-3
6.11-4

Most Recent

Date Changed

811172
811172
811172
811172
811172
811172
811172
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72

12/I/69
12/I/69
12/I/69
3/I/70
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
12/I/69
8/I/72
12/I/69
12/I/69

Page No.

*'6.12-I
**6.12-2
**6.12-3
**6.12-4
**6.12-5
**6.12-6
**6.12-7
**6.12- 8
**6.12-9
*'6.12-10
*'6.12-11
*'6.12-12
*'6.12-13
**6.12-14
**6.12-15
*'6.12-16
*'6.12-17
*'6.12-18

7.1-I
7.1-2
7.2-I
7.2-2
7.2-3
7.2-4
7.2-4a
7.2-5
7.2-6
7.2-7
7.2-8
7 2-9
7 2-9a
7 2-10
7 2-11
7 2-12
7 2-12a
7 2-I 2b
7 2-13
7.2-14
7.2-14a
7.2-15
7.2-16
7.2-17
7.2-18
7.2-19
7.2-20
7.2-21
7.2-22
7.2-23
7.2-24
7.2-25
7.2-26
7.2-27
7.2-28
7.2-28a
7.2-29
7.2-30
7.2-31
7.2-32

Most Recent

Date Changed

811172
811172
811172
8/I 172
8/It72
8/Ir72
8/Ir72
8/I172
8/I172
8/I172
8/I172
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
8/I/72
3/I/71
3/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71

No.

7.2-33
7.2-34
7.2-35
7.2-36
7.2-37
7.2-38
7,2-39
7.2-40
7.2-41
7.2-42
7.2-43
7.2-44
7.2-45
7.2-46
7.2-47
7.2-48
7.2-49
7.2-50
7.2-51
7.2-52
7.2-53
7.2-54
7.2-55
7.2-56
7.2-57
7.2-58
7.2-59
7.2-60
7.2-61
7.2-62
7.2-63
7.2-64
7.2-65
7.2-66
7.2-67
7.2-68
7.2-69
7.2-70
7.2-71
7.2-72
7.2-73
7.2-74
7.2-75
7.2-76
7.2-77
7.2-78
7.2-79
7.2-80
7 2-81
7 2-82
7 2-83
7 2-84
7 2-85
7 2-86
7 2-87
7.2-88
7.2-89
7.2-90

Most Recent
Date Changed

6/I/71
6/1171
611/71
611171
611/71
6/I/71
611171
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71

xxxvi (8/I/72)

PAGE STATUS LOG

Page No.

7.2-91
7.2-92
7.2-93
7.2-94
7.2-95
7.2-96
7.2-97
7.2-98
7.2-99
7.2-I00
7.2-I01
7.2-102
7.2-I03
7.2-I04
7.2-I05
7.2-I06
7.2-I07
7.2-I08
7.2-109
7.2-II0
7.2-III
7.2-I12
7.2-I13
7.2-I14
7.2-I15
7.2-I16
7.2-I17
7.2-I18
7.2-I19
7.2-120
7.2-121
7.2-122
7.2-123
7.2-124
7.2-125
7.2-126
7.2-127
7.2-128
7.2-129
7.2-I30
7.2-131
7.2-132
7.2-133
7.2-134
7.2-135
7.2-136
7.2-137
7.2-138
7.2-139
7.2-140
7.2-141
7.2-142
7.2-143
7.2-144
7.2-145
7.2-146
7.2-147
7.2-148
7.2-149

Most Recent

Date Changed

6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
611171
611171
611171
611171
611171
611171
611171
611171
611171
611171
611171
611171
611171
6/1171
611171
611171
6/I171
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71

Page No.

7.2-150
7.2-151
7.2-152
7.2-153
7.2-154
7.2-155
7.2-156
7.2-157
7.2-158
7.2-159
7.2-160
7.2-161
7.2-162
7.2-163
7.2-164
7.2-165
7.2-166
7.2-167
7.2-168
7.2-169
7.2-170
7.2-171
7.2-172
7.2-173
7.2-174
7.2-175
7.2-176
7.2-177
7.2-178
7.2-179
7.2-180
7.2-181
7.2-182
7.2-183
7.2-184
7.2-185
7.2-186
7.2-187
7.2-188
7.2-189
7.2-190
7.2-191
7.2-192
7.2-193
7.2-194
7.2-195
7.2-196
7.2-197
7.2-198
7.2-199
7.2-200
7.2-201
7 2-202
7 2-203
7 2-204
7 2-205
7 2-206
7 3-I
7 3-2

Most Recent

Date Changed

611171
611171
611171
6/I171
6/I171
611/71
611/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I/71
6/I r71
6/I r71
6/I r71
6/I r71
6/I r71
6/I r71
6/I r71
6/I 171
6/I 171
6/I _71
3/I/71
3/I/71

Page No.

7.3-3
7 3-4
7 3-5
7 3-6
7 3-7
7 3-8
7 3-9
7 3-10
7 3-11
7 3-12
7 3-13
7 3-14
7 3-15
7 3-16
7 3-17
7 3-18
7 3-19
7 3-20
7 3-21
7 3-22
7 3-23
7 3-24
7 3-25
7 3-26
7 3-27
7 3-28
7 3-29
7 3-30
7 3-31
7 3-32
7 3-33
7 3-34

Most Recent

Date Changed

311171
311171
311171
3/I171
3/I171
3/I/71
3/I/71
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171
311171

xxxvii (8/I/72)

PROGRAMOVERVIEW

I.I PROGRAMOVERVIEW

l.l.l Objectives

The NASTRAN program has been designed according to two classes of criteria. The first class

relates to functional requirements for the solution of an extremely wide range of large and com-

plex problems in structural analysis with high accuracy and computational efficiency. These cri-

teria are achieved by developing and incorporating the most advanced mathematical models and com-

putational algorithms that have been proven in practice. In particular, they are achieved by

providing such features as the bandwidth-with-active-column technique in matrix decomposition;

packing routines to take maximum advantage of matrix sparsity so as to conserve input/output time;

highly stable and efficient algorithms for the solution of problems in eigenvalue analysis and

transient response; and an elegant approach to modeling the effects of control systems and other

nonstructural components.

The second class of criteria relates to the operational and organizational aspects of the

program. These aspects are somewhat divorced from structural analysis itself; yet they are of

equal importance in determining the usefulness and quality of the program. Chief among these

criteria are:

I. Simplicity of problem input deck preparation.

2. Minimization of chances for human error in problem preparation.

3. Minimization of need for manual intervention during program execution.

4. Ease of program modification and extension to new functional capability.

5. Ease of program extension to new computer configurations and operating systems, and

generality in ability to operate efficiently under a wide set of configuration capabilities.

6. Capability for step by step problem solution, without penalty of repeated problem set up.

7. Capability for problem restart following unplanned interruptions or problem preparation

error.

8. Minimization of system overhead, in the three vital areas:

a. Diversion of core storage from functional use in problem solution.

l.l-I

NASTRAN PROGRAMMING FUNDAMENTALS

b. Diversion of auxiliary storage units from functional to system usage.

c. System housekeeping time for performing executive functions that do not directly

further problem solution.

These criteria are achieved in NASTRAN through modular separation of functional capabilities,

organized under an efficient, problem-independent Executive System.

This approach is absolutely essential for any complex multi-operation, multi-file application

program such as NASTRAN. To see this, one must examine the implications of modularity in program

organization.

Any application computer program provides a selection of computational sequences. These are

controlled by the user through externally provided options and parameter values. Since no user

will wish to observe the result of each calculation, these options also provide for the selection

of the data to be output.

In addition to externally set options, internal switches whose setting depend upon tests

performed during the calculations will control the computation sequences. There is, therefore,

a natural separation of computations into functional blocks. The principal blocks are called

functional modules; modules themselves of course may, and usually must, be further organized on a

sub-modular basis.

Despite this separation, however, it is clear that modules cannot be completely independent,

since they are all directed toward solution of the same general problem. In particular, they

must intercommunicate data among themselves. The principal problem in organizing any application

program, large or small, is designing the data interfaces between modules.

For small programs, the standard techniques are to communicate data via subroutine calling

sequences and common data regions in core. For programs that handle larger amounts of data,

auxiliary storage is used; however, strict specifications of the device_ used and of the data

record formats are usually imposed.

The penalty paid is that of "side effects". A change in a minor subroutine initiates a

modification of the data interfaces that propagates through the entire program. When the program

is small, these effects may not be serious. For a complex program like NASTRAN, however, they

would be disastrous.

1 ,I-2

PROGRAM OVERVIEW

This problem has been solved in NASTRAN by a separation of system functions, performed by

an Executive System, from problem solution functions, accomplished by modules separated strictly

along functional lines. Each module is independent of all other modules in the sense that

modification of a module, or addition of a new module, will not in general require modification

of other modules. Even so, programming constraints on module development do exist but are minor.

The essential restrictions are:

I. Modules may interface with other modules only through auxiliary storage files, as opposed

to passing information between each other while in core.

2. Since the availability and allocation of auxiliary files for module execution interact

with the execution of other modules, no module can specify or allocate files for its input or

output data. All auxiliary storage allocation is reserved as an Executive function.

3. Modules operate as independent subprograms, and may not call, or be called by, other

modules. They may be entered only from the Executive System.

4. Modules may interface with the Executive System through a parameter table that is

maintained by the Executive System. User-specified options and parameters are communicated

to modules in this way. The major line of communication is one-way, from user to Executive

routine to module. However, in addition, an appreciable two way communication, from module

back to executive routine (and therefore to other modules) is permitted via the parameter table.

5. Intra-module parameter communication is format-free in the sense that each module

defines and orders its own local parameter set internally. Thus each module is

independent of common data formatting by any other module.

No other constraints, except those imposed by the resident compilers and operating systems,

are required for functional modules.

l.l.2 ProBram Organization

Because of the very large size of the NASTRAN program (more than 750 decks and 300 individual

overlay segments), execution as one physical program was not possible. However, to meet the

stated design objectives, it was required that NASTRA_ appear to the resident operating system as

one program.

1.1-3

NASTRAN PROGRAMMING FUNDAMENTALS

A program structure evolved which is basically computer independent, although the way in

which the code structure is supported varies across the computers.

The NASTRAN program is divided into a series of logical pieces called links. Each link con-

tains its own root segment (the set of subprograms which is always core resident for that link)

and its own complete overlay structure. Each link is capable of performing a predefined subset

of NASTRAN operations. Communication between links occurs through computer files. Control of the

sequence of execution of the links is performed entirely by the NASTRAN program and requires no

operator intervention. As a result of this approach, a NASTRAN program execution appears to the

resident operating system as a normal batch job to be processed in the batch stream. Detailed

descriptions of the way in which the link structure is implemented on each computer are given

in section 5.

1 .I-4

NASTRANEXECUTIVE SYSTEM

1.2 NASTRANEXECUTIVE SYSTEM

1.2.1 Introduction

The essential functions of the Executive System are:

I. Establish and control the sequence of module executions according to options specified

by the user.

2. Establish, protect, and communicate values of parameters for each module.

3. Allocate system files to all data blocks (a data block designates a set of data, matrix

or table, occupying a file) generated during program execution. A file is "allocated" to a

data block, and a data block is "assigned" to a file. The general data block I/_ routine

(GIN_) and the data card conversion routines (XRCARD and RCARD) are considered Input/Output

utilities and are discussed separately in section 1.6.

4. Maintain a full restart capability for restoring a program execution after either a

scheduled or unscheduled interruption.

The Executive System is open-ended in the sense that it can accommodate an essentially

unlimited number cf functional modules, files, and parameters. Modification of the Executive

System necessary for change, addition, or extension of functional modules is restricted to

changes in entries in control tables stored within the Executive routines.

Program execution is divided into two phases: l) the Preface, in which modules XCSA, IFPI,

XS_RT, IFP and XGPI are executed to: a) process the NASTRAN input data deck and b) perform

general problem initialization; and 2) the program body itself, in which the sequence of program

operations is controlled by the Operation Sequence Control Array (_SCAR) Executive table, which

was developed in the XGPI module of the Preface. A diagram of a sample NASTRAN input data deck

is shown in Figure I. Note that a NASTRAN input data deck consists of 3 separate decks: l) the

Executive Control Deck, 2) the Case Control Deck and 3) the Bulk Data Deck. A detailed descrip-

tion of the contents of the NASTRAN data deck is given in section 2 of the User's Manual. The

flow of operations during the Preface is presented in Figure 2. The numbers in the blocks in

Figure 2 refer to section numbers where more detailed explanations of the subroutines and modules

can be found.

1.2-I

NASTRANPROGRAMMINGFUNDAMENTALS

' ' I ENDDATA

C.o"_ I DISPL = ALL

,. j x) i OUTPUT
>< I L(_AD= 2

•_ _ \ I SPC : 5 '

_ _ _ I TITLE = SAMPLE PR_IBLEM
_ o_"_ ICEND

J% I SeL l,O

x IAPP DISPLACEMENTITIME 40

I CHKPNT = YES
ID JBBOOO,ABC

<

\
\

\

Figure I. Sample NASTRAN input data deck.

l.2-2

NASTRANEXECUTIVESYSTEM

C ENTRY)

1
I Generate the Initial File Allocation ITables (GNFIAT-3.3L.4)

I Read and Analyze the ExecutiveControl Deck (XCSA-4.2)

Ip_cesst_ICaseC°nt_1_c_I_Pl-,.3_

I Sort the Bulk Data Deck I(XS@RT-4.4)

Conical Shell

Process the Bulk Data Deck

(IFP-4.5)

_ H_droelastic

No

Further Process Data SDecific to theHydroelastic Problem (IFP4-4.89) or
Acoustic Problem (IFP5-4.90)

Further Process Data Specific to
the Conical Shell Problem (IFP3-4.6)

Perform General Problem

Initialization (XGPI-4.7)

Figure 2. Flow of operations during the Perface.

1.2-3 (8/I/72)

NASTRAN PROGRAMMING FUNDAMENTALS

1.2.2 Executive Operations During the Preface

The sequence of Preface operations shown in Figure 2 is controlled by the Sequence Monitor

Initialization subroutine, SEMINT (see section 3.3.3). Each routine called by SEMINT is dis-

cussed in the following sections. The numbers in the section headings refer to section numbers

where more detailed information on the subroutine or module can be found.

1.2.2.1 Generation of the Initial File Allocation Tables (GNFIAT section 3.3.4)

Two file allocation tables are maintained by the NASTRAN Executive System. One table, FIAT,

(see section 2.4) defines the files to which data blocks generated during solution of the problem

will be allocated. The second table, XFIAT, (see section 2.4) includes files to which permanent

Executive data blocks, such as the New Problem Tape, the Old Problem Tape, plot tapes, and the

User's Master File are assigned.

The New Problem Tape will contain those data blocks generated during the solution that are

necessary for restarting the problem at any point. The Old Problem Tape contains the data blocks

saved from some previous execution that may serve to bypass steps in the solution of the new

problem. The User's Master File is a permanent collection of useful information, such as material

properties, that may be used to generate input data.

The generation of the XFIAT and FIAT tables is a computer dependent operation since direct

interface with the operating system of the computer must be made. The GNFIAT routine, which

accomplishes this function, interrogates file tables in the nucleus of the operating system.

Files which are available for use by the NASTRAN program are reserved, and the unit numbers for

these files are stored in the NASTRAN file allocation tables. An indication of which units are

physical tapes is also stored. If the number of files available is insufficient to run the pro-

blem, an error message is generated, and the run is aborted.

1.2.2.2 Analysis of the Executive Control Deck (XCSA Section 4.2)

The Executive Control Deck is processed and analyzed by the XCSA Executive Preface module.

The Executive Control Deck includes cards which describe the nature and type of solution to be

performed. This includes an identification of the problem, an estimated time for solution of the

problem, the approach, a selection of the Rigid Format to be executed or an alternative sequence

of NASTRAN operations (DMAP) to control the solution, a restart deck from a previous run if the

1.2-4

NASTRAN EXECUTIVE SYSTEM

solution is to be restarted, an indication of any diagnostic printout to be made, a specification

of whether the problem is to be checkpointed or not, and, if a Rigid Format is selected, any

desired alterations to that format. Section 2 of the User's Manual should be consulted for the

formats of, and restrictions on, each of the cards in the Executive Control Deck. The approach

(APP) card, and the solution (S_L) card, which selects a particular solution (Rigid Format) to be

executed, are worthy of special note. However, firstsome introductory definitions are required.

The sequence of operations to be executed during the program body is written in a data block

oriented language called DMAP, an acronym for "Direct Matrix Abstraction Program". A DMAP instruc-

tion is a statement in the DMAP language, a DMAP sequence is a set of DMAP instructions, and a DMAP

loop is a DMAP sequence to be repeated. A DMAP module is one which is "called" by means of a

DMAP instruction.

A Rigid Format consists of: a) a fixed pre-stored DMAP sequence and b) its associated

restart tables. A Rigid Format performs a specific (structural) problem solution. Section 3 of

the User's Manual presents the DMAP sequence and the associated restart tables for each Rigid

Format.

The APP card of the Executive Control Deck defines the problem solution approach. The APP

card is required, and there are two options on the APP card: DISPLACEMENT or DMAP. The S@L card

has the form

S_L n,m

where n = Rigid Format number, and m = a subset of the Rigid Format. The S_L card is required if

the DISPLACEMENT option is chosen on the APP card. The S_L card must not be present in the deck

if the DMAP option is chosen.

In addition to using the Rigid Formats provided automatically by NASTRAN, the user may wish

either to execute a series of modules in a manner different from that provided by the Rigid

Format, or to perform a series of matrix operations which are not contained in any existing Rigid

Format. If the modifications to an existing Rigid Format are minor, the ALTER feature described

in Section 2 of the User's Manual may be employed. Otherwise, a user-written Direct Matrix

Abstraction Program (D_P) should be used, in which case the card

APP D_JAP

must be used. Chapter 5 of the User's Manual discusses DMAP.

1.2-5

NASTRAN PROGRAMMING FUNDAMENTALS

Each of the cards comprising the Executive Control Deck is read via XRCARD (3.4.19) and

analyzed. Depending on the card, information is either stored in various Executive tables main-

tained in core storage or written in the Executive Control Table (2.4.2.5) on the New Problem

Tape for further processing during the general problem initialization phase (XGPI-4.7) of the

Preface. Figure 3 presents the format of the Problem Tape. The formats of the New and the Old

Problem Tapes are identical; only chronology defines their separate functions.

1.2.2.3 Processing of the Case Control Deck (IFPI Section 4.3)

The Case Control Deck includes the following classes of cards: selection of specific sets

of data from the Bulk Data Deck, selection of printed or punched output, definition of subcases,

definition of structural plots to be made, and definition of XY plots to be made. Section 2 of

the User's Manual discusses in detail all cards of the Case Control Deck.

This deck is read via XRCARD (3.4.19) and processed. Information defining set selection,

output selection and subcase definition is written into the Case Control data block, CASECC.

Information defining plot requests is written in the Plot Control (PCDB) and XY Control (XYCDB)

data blocks.

If the problem is a restart, a comparison with the Case Control Deck from the previous run

is made. Differences are noted in an Executive restart table, which is used in the general pro-

blem initialization phase (XGPI-4.7) of the Preface.

1.2.2.4 Sorting of the Bulk Data Deck (XS_RT Section 4.4)

The function of the XS_RT routine is to prepare a file on the New Problem Tape (see section

1.2.2.1) which contains the sorted Bulk Data Deck (bulk data). Operation of the routine is

influenced by the type of run. If the run is a cold start, the bulk'data is read from the system

input file (e.g. card reader) or the User's Master File, sorted, and written on the New Problem

Tape. If the run is an unmodified restart, (restarts are discussed in section I.I0), the bulk

data is copied from the Old Problem Tape (see section 1.2.2.1) to the New Problem Tape. If the

run is a modified restart, the bulk data is read from the Old Problem Tape, and cards are deleted

and/or added in accordance with cards in the system input stream. The modified bulk data is

sorted and written on the New Problem Tape. Additionally, any changes in the data are noted in

the Executive restart table.

A printed list of the unsorted bulk data is given if requested by an ECHO card in the Case

Control Deck. Similarly, the sorted bulk data is echoed on request.

1.2-6

NASTRAN EXECUTIVE SYSTEM

All files begin with an
eight character (2 word)
BCD header record.

PROBLEM ID FILE

(always present)

ALTER FILE

(only if ALTER
cards are present)

EXECUTIVE C_NTROL TABLE FILE
(always present)

CASE C_NTR_L FILE
(always present)

BULK DATA CARD FILE
(always present)

PARAMETER VALUE FILE
(only if PARAM cards
are present) [

CHECKPBINT FILES {
(only if CHKPi4Tor
RESTART card is present)

{PROB. TAPE DICT. FILE

(only if CHECKPOINT
FILES are present)

B

M_NTH -Is___l--DAY __--LYEAR

REEL #

_ XALTER (header) _
AA

_ XCSA (header) _

BULKDATA (header) --

XPTDIC (header) _
^A

first and second fields
from ID card (BCD)

-_---problem date

_reel sequence no.

(see section 2.4.2.6)

Note: ^denotes BCD blank

(see section 2.4.2.5)

(see section 2.3.1.I)

_bulk data card images

(see section 2.4.2.4)

_all checkpointed data blocks
separated by E_F's

_always the last file
(see section 2.4.2.3)

Figure 3. Problem tape format (same format for ;_ewProblem Tape and Old Problem Tape).

1.2-7

NASTRAN PROGRAMMING FUNDAMENTALS

Since the collating sequence of alphanumeric characters varies from computer to computer, the

sort routine converts all characters to an internal code prior to sorting. Following the sort,

the characters are reconverted. In this way, the collating sequence is computer independent.

The algorithm used by the sort routine is biased toward the case where the data in sort

or nearly in sort. Consequently, Bulk Data Decks which are nearly in sort will be processed

efficiently by the routine.

1.2.2.5 Processing of the Bulk Data Deck (IFP Section 4.5)

The sorted Bulk Data Deck is read card-by-card from the New Problem Tape by the Input File

Processor (IFP) and converted to internal binary form by RCARD (3.4.20). Each of the cards is

checked for correctness of format. If any data errors are detected, a message is written, and a

switch is set to terminate the run at the conclusion of the Preface. Section 2 of the User's

Manual presents a detailed description of all cards of the Bulk Data Deck.

Processing of each bulk data card depends on the type of card. All bulk data cards of the

same type are written into the logical record to which the card type has been assigned. These

records are organized into data blocks classified according to general categories of use and

written on prescribed preallocated files.

1.2.2.6 Processing of Conical Shell Data (IFP3 Section 4.6)

If the problem is a conical shell problem, further processing of the bulk data specific to

the conical shell problem is accomplished. The nature of this processing is to convert data for

the conical shell model into formats of a conventional statics problem. The result is that the

conical shell problem can be described in a format convenient to the analyst a_d processed by

NASTRAN in a format convenient to the program.

1.2.2.7 Processing of Hydroelastic Data (IFP4 Section 4.89)

If hydroelastic analysis data exists, this data must be converted to the data block formats

and merged with existing data output from IFP. This module creates grid point, scalar point,

element connection, and constraint data as well as producing a section in the MATP_L data block.

1.2-8 (8/I/72)

NASTRAN EXECUTIVE SYSTEM

1.2.2.8 Processing of Acoustic Data (IFP5 Section 4.91)

If acoustic analysis data exists, the IFP5 module generates and merges grid points, scalar

elements, and plotting elements with the existing data blocks.

1.2.2.9 General Problem Initialization (XGPI Section 4.7)

The Executive General Problem Initialization (XGPI) module is the heart of the Preface. Its

principal function is to generate the Operation Sequence Control Array (_SCAR-2.4.2.1), which

defines the problem solution sequence. The BSCAR consists of a sequence of entries, with each

entry containing all of the information needed to execute one step of the problem solution. The

_SCAR is generated from information supplied by the user through his entries in the Executive

Control Deck. This information is supplied by the S_L card, which points to a Rigid Format, or

by a user supplied DMAP sequence.

The initial sequence of instructions was written in the Executive Control Table (2.4.2.5)

on the New Problem Tape by the XCSA Preface module. This table is read to initiate assembly of

the BSCAR.

If the problem is a restart, the restart dictionary (contained in the Executive Control

Table) and the Executive restart table are analyzed to determine which data blocks are needed to

restart the solution and which operations in the _SCAR need to be executed to complete the

solution. Entries in the BSCAR for operations not required for the current solution are flagged

for no operation.

To aid in efficient assignment of data blocks to files, two attributes are computed and

included with each data block in each entry of the BSCAR. These attributes are: a) the BSCAR

sequence nun_er when the data block is next used (NTU) and b) the _SCAR sequence nu_er when the

data block is last used (LTU). Details of the file allocation are discussed in section 1.2.3.3.

When generation of the _SCAR is complete, it is written on the Data Pool File (P_L). If

the problem is restart, data blocks needed for the current solution are copied from the Old

Problem Tape to the Data Pool File.

1.2-9 (811172)

NASTRAN EXECUTIVE SYSTEM

1.2.3 Executive Operations Durin 9 Problem Solution

1.2.3.1 Sequence Monitor (XSEMi Section 3.3.7)

When the Preface has been completed, solution of the problem is initiated. This solution

is controlled by the sequence monitor. Figure 4 shows the flow for the sequence monitor. Note

that there are i copies of XSEMi within NASTRAN, one controlling each link's operation. Section

1.1.2 defined the necessity for these divisions.

The sequence monitor reads an entry from the _SCAR (2.4.2.1) which defines one step in the

problem solution in terms of: the operation to be performed, data blocks required for input,

data blocks to be output, scratch files required and parameters used. The File Status Table

(FIST-2.4.1.3), which relates the internal data block reference numbers (see Section 1.6.4) to

the file position in the File Allocation Table (FIAT-2.4°1.2), is created by the FIST generator,

subroutine GNFIST. When the status table is complete, XSEMi moves the parameters required for

the operation into blank common and calls the requested module (if within the current link) to

begin the operation. If the requested module is not within the current link, ENDSYS (see Section

3.3.5) is called and the Sequence Monitor within the new link is executed.

With the exception of XSFA, the seven routines described in the following subsections are

Executive modules called directly by XSEMi to perform their specified functions.

1.2-9a (8/I/72)

NASTRAN PROGRAMMING FUNDAMENTALS

_d

ENTER

I Call SEMINT(Preface Only)

__ ReadnextI_"OSCAR entry

_;o

_Y_s
Generate FIST for

Input, _utput,

Scratch Data Blocks

Move Parameters I
from VPS

to Blank Common

No

I Call module I

Call EXEC Routine
(XCEI, CHKPNT, PURGE

EQUIV, SAVE)

Call 1ENDSYS

Call Message 1
Writer
MSGWRT

Figure 4. Flow diagram for the sequence monitor, XSEMi.

1.2-I0

NASTRANEXECUTIVESYSTEM

1.2.3.2 FIST Generator (GNFIST Section 3.3.9)

The FIST generator, subroutine GNFIST, creates the File Status Table (FIST), which contains

the linkage between the internal data block reference numbers and the actual system files listed

in the File Allocation Table (FIAT). Each input, output and scratch data block required by the

forthcoming module is assigned an internal reference number if found to be active in FIAT. A

data block found to be inactive, that is purged or not generated, will not be assigned a reference

number. This missing reference number will cause the accessing module to be signaled regarding

the inactive status. If, during the generation of the FIST, a data block is not found in the

FIAT, active or inactive, the Executive Segment File Allocator (XSFA) module is called by GNFIST

to make a file available to the subject data block.

1.2.3.3 Segment File Allocator (XSFA Section 4.9)

The Executive Segment File Allocator (XSFA) module, which is called exclusively by GNFIST,

is the administrative manager of data blocks for NASTRAN. Since, in general, the number of data

blocks required for solution of a problem far exceeds the number of files available, assignment

of data blocks to files is a critical operation for efficient execution of NASTRAN.

The Executive Segment File Allocator module is called whenever a data block is required for

execution of an operation but is not currently assigned to a file (i.e., does not appear in the

FIAT). When the Segment File Allocator is called, it attempts to allocate not just for the data

block initiating the call, but for as much of the remaining problem solution as possible. This

allocation depends on the type of problem, the number of files available, and the range of use of

the remaining data blocks.

1.2-11 (8/I/72)

NASTRAN PROGRAMMING FUNDAMENTALS

The Segment File Allocator reads entries from the _SCAR from the point of current operation

to the end of the problem solution. The FIAT table entries are created in which attributes of

the data blocks, including their next use (NTU) and last use (LTU), are stored. Data blocks which

are currently assigned to files but are no longer required for problem solution are released.

In certain cases, when the range of use of a data block is large, it may not be possible to

allocate a file to the data block throughout its range of use. In this case, pooling of the

data block is required so that the file to which the data block was assigned may be freed for

another allocation. The next time used (NTU) attribute for a data block is used to efficiently

pool data blocks. In general, the data block whose next use is the furthest from the current

point is pooled, that is, copied onto the Data Pool File (P_L). The format of the Data Pool

File is shown in Figure 5.

One additional check is made with regard to pooling. The operation of the Segment File

Allocator itself is less expensive than a pooling operation. Therefore, pooling occurs only

when the module for which the allocation was required cannot be allocated without pooling.

_hen the Segment File Allocator is complete, a new File Allocation Table (FIAT) has been

generated. This table is used until the solution again reaches a point where a data block is

required to execute an operation but is not assigned to a file.

1.2.3.4 Interpretation of Executive Control Entries (XCEI Sections 4.11, 4.12, 4.13, 4.14)

Executive control entries include the DMAP instructions: REPT, JUMP, C_ND and EXIT.

Executive control entries in the _SCAR are processed by the Executive Control Entry Interpretor

(XCEI). When such an entry is encountered in the _SCAR, the Control Entry Interpretor is called

by XSEMi. If the operation is a jump, cor, ditional jump or repeat, the _SCAR is repositioned

accordingly. If the operation is an exit, the NASTRAN termination routine PEXIT (3.4.22) is

called.

1.2.3.5 Checkpointing Data Blocks (CHKPNT Section 4.10)

The checkpoint module (DNLAP name: CHKPI_T; entry point name: XCHK) copies specified data

blocks required fcr problem restart onto the New Problem Tape and makes appropriate entries

in the restart dictionary. This dictionary is also punched onto cards as each new entry is made.

Thus, in the event of any unscheduled problem interruption, a restart from the last checkpoint

1.2-12 (lllll70)

NASTRA;_EXECUTIVE SYSTEM

All files begin with an
eight character (2 word)
BCD header record.

_SCAR FILE I
(always present)

FF

-- XIBSCAR^^(header) -

_data blocks from DMI'sand DTI's

(if present) separated by E_F's

i4ote: ^denotes BCD blank

(see section2.4.2.1)

-_-data blocks pooled by XSFA
(if necessary) separated by

E_F's

Figure 5. Format of the Data Pool File.

1.2-13

NASTRANPROGRAMMINGFUNDAMENTALS

can be made using the Problem Tape and the restart dictionary from the interrupted run.

1.2.3.6 Purging a Data Block (PURGE Section 4.16)

The purge routine (DMAP name: PURGE; entry point name: XPURGE) flags data blocks so that

they will not be assigned to physical files. This special status provides a means for logically

suppressing a segment of processing steps requiring the data block. Thus, if the function of a

module is to multiply two matrices and add a third matrix to the product, the addition step might

be deleted by purging the data block corresponding to the third matrix.

1.2.3.7 Equivalencing Data Blocks (EQUIV Section 4.17)

The equivalence routine (DFtAPname: EQUIV; entry point name: XEQUIV) attaches one or more

equivalent data block names to an existing data block. This special status provides a means of

logically removing a module function by making a data block input to the module equivalent to a

data block output from the module. Thus an entire module could be skipped, and an input data

block "copied" to an output data block without physically moving the data from one file to another.

1.2.3.8 Saving Parameters (SAVE Section 4.15)

The save routine (DMAP name: SAVE; entry point name: XSAVE) provides a protection feature

for the parameters communicated between, and used by, the functional modules. All variable para-

meters are stored within the VPS Executive table (see section 2.4). Prior to each module's

operation, the subset of parameters required by the module is moved to blank common. The module

may use or modify this subset of parameters as desired. When the module terminates operation,

only those parameters within the subset designated to be saved are restored to the Executive

table.

l.2-14 (ll/I/70)

WORDSIZE AND COMPUTERHARDWARECONSIDERATIONS

1.3 WORDSIZE AND COMPUTERHARDWARECONSIDERATIONS

1.3.1 Introduction

Although NASTRAN is a F@RTFCANoriented system, considerable effort was required to develop

programming and word handling techniques applicable to four separate computer configurations.

llnesecomputers exhibit wide differences in their binary word sizes and integer representation

method. The current computer configurations considered and their significant differences follow:

I. Computer - IBM 7094/7040 DCS

Word Size - 36 Bits

Character Capacity - 6 bits/character and 6 characters/word

Integer Representation - Sign and Magnitude

2. Computer - IBM System/360 series

Word Size - 32 Bits

Character Capacity - 8 bits/character and 4 characters/word (character z byte)

Integer Representation - Twos complement for negative integers

3. Computer - UNIVAC If08

Word Size - 36 Bits

Character Capacity - 6 bits/character and 6 characters/word

Integer Representation - Ones complement for negative integers

4. Computer - CDC 6600

Word Size - 60 Bits

Character Capacity - 6 bits/character and lO characters/word.

Integer Representation - Ones complement for negative integers

Various Executive routines (e.g., XSORT (4.4), XRCARD (3.4.19)) that deal directly with

character strings from the input stream require some method of obtaining the above computer

dependent information. SJithinthe NASTRAN Preface, subroutine BTSTRP (3.3.2) solves an algorithm

that determines which of the four computers is currently operating. This algorithm functions by

inspecting the word length (by means of shifting and testing) and by checking the negative integer

representation method. As a result of these tests, a word (MACH) withi_ the SYSTEM Executive

table (see section 2.4) is set to indicate the computer type. Since data within BTSTRP defines

the number of bits-per-word (NBPW), the nun_er cf characters-per-word (NCPW), and the nun_er of

1.3-I

NASTRAN PROGP_AMMINGFUNDAMENTALS

bits-per-character (NBPC) for each computer type, the correct values for these parameters are also

stored into the SYSTEM table. This table resides within the NASTRAN root segment and is thus

accessable to any module or subroutine.

1.3.2 AIphanumeric _ata

Data stored within a computer as binary-coded-decimal (BCD) characters must be represented

by the proper hardware defined bit codes. These character codes (and in the case of the IBM

System/360, the number of bits representing the code) vary among the NASTRAN computer types.

Although the number of characters-per-word could have been obtained from the SYSTEM table,

various data blocks and buffers within NASTRAN required firm entry sizes, regardless of computer

type, to facilitate indexing. For these reasons, the minimum number ef characters-per-word (4)

among the four computer types was chosen as a program design standard. Computer types with a

word capacity of greater than four characters will have the unused low order character positions

filled with BCD blanks.

1.3.3 l_ord Packing

Standard F_RTP_AN compilers do not provide the capability for storing or retrieving data that

occupies less than a full computer word. Through the Machine Word Functions (MAPFNS, 3.4.1)

routine some limited word packing (not to be confused with matrix packing) is performed within

the Executive System and a few utility subroutines. Packing provides an efficient use of memory

space at the expense of the additic.nal operating time needed to combine or separate the elements

of the packed words. The Machine Word Function _RF is generally used for combining elements,

while ANDF with a suitable mask is used for separating them.

1.3.3.1 Examples of Machine Word Functions (MAPFNS) Usage

Assume three lO-bit items of data occupy the low order I0 bits of three separate 30-bit

computer words (A, B, and C). To pack these three items into a single 30-bit word (X), perform

the following steps using the individual functions available within F_PFNS:

a) Left shift (LSHIFT) word A, twenty bits

b) Left shift (LSHIFT) word B, ten bits

c) Logically add (_RF) words A and B; store into X

1.3-2

WORD SIZE AND COMPUTER HARDWARE CONSIDERATIONS

d) Logically add (_RF) words X and C; store into X.

Assume two 8-bit items of data are packed into the left and right halves of a 16-bit word (X).

To unpack these two items into the low order 8 bits of two separate 16-bit words (A and B), per-

form the following steps using the individual functions available within MAPFNS:

a) Create)(ASKcontaining 8 low order bits equal to l and the 8 high order bits equal to 0

b) Right shift (RSHIFT) word X, eight bits; store into A

c) Logically multiply (ANDF) word X by MASK; store into B.

In the preceding example, the word X remains unchanged since the functions return the

requested modified result in a computer register.

1.3-3

SYSTEMBLOCKDATA SUBPROGRAM(SEMDBD)

1.4 SYSTEMBLOCKDATA SUBPROGRAM(SEMDBD)

NASTRAN contains a master block data program (SEMDBD) which is responsible for defining and

initializing (root segment) common blocks. The common blocks referenced in SEMDBD are either

Executive common blocks (XFIAT, XXFIAT, XFIST, etc.) which require initial values, or general

information common blocks (SYSTEM, NAMES, TYPE, etc.) which are referenced by many modules. The

source listing for SEMDBD identifies the common blocks, and it documents the data which are

initialized, via comments. In aadition, the Executive common blocks are documented in section 2.4

and the non-Executive common blocks in section 2.5. Certain parameters in these common blocks

contain machine dependent values such as word size, number of BCD characters per word, etc.

These values are set by subroutine BTSTRP (section 3.3.2) by identifying the machine on which

the NASTRAN program is currently operating and setting the values accordingly.

1.4-I

THEOPENCORECONCEPT

1.5 THEOPENCORECONCEPT

1.5.1 Introduction

The design philosophy of the NASTRAN system dictated a completely open ended design whenever

possible. NASTRAN was to have the flexibility to operate on a second generation machine with a

32K core (the IBM 7094/7040 DC$) as well as the largest of the IBM S/360 series of computers, and

take complete advantage of the additional core storage without major program changes. The use of

a fixed dimension for large arrays was outlawed since this automatically restricted the size of

a problem that could be solved. Instead, modules were to be programmed to allocate space as

required and to use spill logic to transfer data to scratch files if complete core allocation was

in,possible. In this manner, a problem might cause spill logic to be used on a computer with

limited core storage, but not on a computer with a larger core storage capacity.

1.5.2 Definition of Open Core

The definition of open core is: a contiguous block of working storage defined by a labeled

common block whose length is a variable determined by the NASTRAN Executive function C_RSZ. The

implementation of this definition by the module writer consists of the origining of a labeled

common block at the end of his overlay segment. This labeled common block contains a dimensioned

variable of length I. C_RSZ returns the number of words of core available between his open core

origin and the end of core. The module writer can now write his program as if he had dimensioned

his array by that nun_ber. In actuality, he is extending beyond the area reserved for the array

into an area reserved for the job but not currently used by the segment. When implementing this

concept, care must be taken to assure that the system does not use this area.

1.5.3 Example of an Application of Open Core

Figure l demonstrates the use of open core by two subroutines, A and B. By some means,

which are machine dependent and are discussed in section 5, an end point is established for open

core. The length of open core is then the difference between this end point and the labeled

common block. In the example shown, subroutine A will have more open core available to it than

B does.

l.5-I

NASTRANPROGRAMMINGFUNDAMENTALS

I0

SUBROUTINEA

C@MM_N// XX

COMMON/AX/ Z(1)

INTEGER C_RSZ

NZ = C_RSZ(Z(I),XX)

D_ I0 1 : I, NZ

Z(I) : I

RETURN

END

SUBROUTINEB

CBMM_N// XX

C_MMON/BX/ Z(1)

INTEGER C_RSZ

NZ : CORSZ(Z(1),XX)

D@I0 I = I,NZ

lO z(1) : I

RETURN

END

Open core for SUB. A

L

Blank common
establishes the end of
open core for some
machines (see section 5).

Figure I.

SUB. A

/AX/

//ix

SUB. B

/BX/

1
_End of open core

available for this
job.

A example of the use of open core.

Open core for SUB. B

1.5-2

NASTRANINPUT/OUTPUT

1.6 NASTRAN INPUT/OUTPUT

1.6.1 Introduction

The particular (IBM 7094, IBM S/360, Univac ll08, CDC 6600) operating system input and out-

put files provide the required data connection between NASTRAN, the input data decks and the

printed output. Utility subroutines XRCARD (section 3.4.19) and RCARD (section 3.4.20) convert

special NASTRAN input card formats to standard F_RTRAN data words easily handled by all NASTRAN

input processors. Printed output is generated through F_RTRAN formatted write statements. All

internal data block input/output is handled by GIN_, the system of NASTRAN general purpose input/

output routines. GIN_ provides the required manipulation to tailor the variable length logical

data records needed by most NASTRAN modules to fixed length records available on all direct access

mass storage hardware.

1.6.2 Use of the Operatin9 System Input File

The system input file is read only by the following routines within the NASTRAN Preface:

I. SEMINT (see section 3.3.3) reads the first card and processes it using utility

XRCARD if it is the NASTRAN card (see section 6.3.1).

2. The Executive Control Deck containing free-field cards is read and processed by XCSA

(section 4.2) using the XRCARD utility.

3. The Case Control Deck containing free-field cards is read and processed by IFPI

(section 4.3) using the XRCARD utility.

4. The Bulk Data Deck containing fixed-field cards is read by XS_RT (section 4.4). This

data is subsequently processed by IFP (section 4.5) using the RCARD utility.

These card conversion utilities (XRCARD and RCARD) provide respectively all the free-field

and fixed-field data card processing required by NASTRAN.

1.6.2.1 Use of the Subroutine XRCARD (See Section 3.4.19)

XRCARD interprets NASTRAN free-field data cards and processes the fields into a sequential

buffer that can be easily handled by subsequent modules. Free-field data consist of series of

data items separated by suitable delimiters and punched in non-specific card columns. Data

items may include alphanumeric, integer, and various types of real variables. Field delimiters

1.6-I (12-I-69)

NASTRAN PROGRAMMING FUNDAMENTALS

may include the comma, slash, parenthesis, and blanks. For details regarding data and delimiter

usage and the format of the sequential output buffer, see the XRCARD subroutine description in

section 3.4.19.

1.6.2.2 Use of the Subroutine RCARD (See Section 3.4.20)

RCARD interprets NASTRAN fixed-field data cards and processes the fields into a sequential

buffer that can be easily handled by subsequent modules. Fixed-field data consist of data items

punched within specific card fields. Each eighty-column card is divi_ed into an eight-column

ID field (for the card mnemonic) followed by either eight eight-column data fields or four

sixteen-column data fields. A special character (asterisk or plus) within the ID field determines

when the card is to be interpreted as containing sixteen-column fields. The last eight columns

of the card are for continuation mnemonics used by XSORT and are not processed by RCARD. The

data item within the ID field must be alphanumeric. The data items within all other fields may

include alphanumeric, integer, and various types of real variables. For Vetails regarding data

and the format of the sequential output buffer, see the RCARD subroutine description in

section 3.4.20.

1.6.3 Use of the Operatin_ Syster_ Output File

Although NASTRAN printed output is formed and placed onto the system output file through

use of standard FORTRAN formatted write statements, two basic NASTRAN design concepts prohibit

every operating module from generating printed output. Firstly, since the FORTRAN I/0 package for

output generation occupies a sizable block of computer memory, this package is generally positioned

by loader directives within specific output oriented segments, rather than within the root segment

of the overlay, to reduce the total memory requirement. Secondly, because many functional modules

generate the same or similar diagnostic and information messages, a NASTRAN message writer (MSGWRT)

was developed to centralize message text and thus prevent duplications within many separate modules.

For the reasons previously discussed, NASTRAN output generation is restricted to a specific

class of modules which can reside within an output oriented segment below the link root segment.

These segments will contain the output producing modules such as the Output File Prc_cessor (OFP-

section 4.70), the Message Writer (MSGWRI - section 3.4.26), and the various table and matrix

printers (TABPT - section 3.4.29, MATPRT - section 4.71, etc.) along with the output titling

(PAGE - section 3.4.24) and necessary FORTRAN I/0 packages.

1.6-2

NASTRAN INPUT/OUTPUT

1.6.4 GIN_

GIN@ is a collection of subroutines which provide for all input and output operations within

NASTRAN except reading data from the resident system input file and writing data on the resident

system output and punch files. These latter operations are accomplished through F_RTRAN formatted

read/write statements. NASTRAN programs perform input/output operations by making the following

calls to GIN_ entry points:

I. @PEN (see section 3.4.2)

OPEN initiates activity for a file (unless the data block assigned to the file is purged, in

which case an alternate return is given). A working storage area (GIN@ buffer), for use by

GIN@, is assigned (allocated) by the calling program thus providing optimum allocation of

storage by the calling program. This working storage area is reserved for use by GIN_ until

activity on the file is terminated by a call to CLOSE (see paragraph 4 below). On each of

the NASTRAN computers, the working storage area allocated by the calling program is separate

from the actual physical I/_ buffer.

2. WRITE (see section 3.4.3)

WRITE writes a specified (by the calling program) number of words on a file. The block of

words to be written may comprise an entire logical record or portion of a logical record.

3. READ (see section 3.4.5)

READ returns to the calling program a specified (by the calling program) number of words from

the logical record at which the file is currently positioned. READ may be used to trans-

mit an entire logical record or portion of a logical record.

4. CLOSE (see section 3.4.4)

CLOSE terminates activity for a file. The working storage area assigned at _PEN is released.

The file is repositioned to the load point if requested.

5. REWIND (see section 3.4.8)

REWIND repositions the requested file tc the load point. The file must be "open", i.e. a

REWIND operation is requested subsequent to a call to @PEN and prior to a call to CLOSE.

6. FWDREC (see section 3.4.6)

FWDREC repositions the requested file one logical record forward.

1.6-3

NASTRAN PROGRAMMING FUNDAMENTALS

7. BCKREC (see section 3.4.7)

BCKREC repositions the requested file one logical record backwards.

8. SKPFIL (see section 3.4.10)

SKPFIL repositions the requested file forward or backward N logical files where N is specified

by the calling program.

9. E_F (see section 3.4.9)

E_F writes a logical end-of-file on the requested file.

The basic unit of I/0 in NASTRAN is a logical record. The length of a logical record is

completely variable and may range from one word to an arbitrarily large number of words. For

NASTRAN matrix data blocks, the convention was adopted that each column of the matrix would com-

prise one logical record. For NASTRAN data blocks containing tables, no rigid convention exists.

Typically each logical record contains one table of a specific type.

Tile logical record concept provides greatest ease in prcgramming. However, since these

records must be stored on a physical device such as a drum, disk or tape, the characteristics of the

device must be taken into consideration. The bulk of NASTRAN data is stored on drums or disks.

For both these devices the common unit of organization is a track, which stores a fixed number

of words. Thus, there is a conflict between the variable length GIN_ records and the fixed

length tracks.

This conflict is resolved by blocking. G!N@ acts as the interface between tile device and

the NASTRAI_ program. Using this technique, the program itself need not be concerned with device

considerations (which would create machine dependent code). GIN_ has been parameterized so that

different devices may be easily accommodated.

Basically, blocking provides for the reading and writing of fixed-length blocks. The length

of a block is a function of the device. It may be one track, one-half track or other integral

division of a track (Lut never more than one track). Because of the relatively large time to

access a given position on a track (due to the rotational speed of the device and/or mechanical

movement of the head to the track), a block size equal to one full track is the most desirable.

However, limitations in the amount of storage available to hold the blocks in core is a second

consideration.

1.6-4

NASTRANINPUT/OUTPUT

Since logical record lengths are variable but the length of records physically read or

written is fixed, logic must be provided to accommodate this situation. This logic is provided

in the GIN_ routine, which allows for the following cases:

I. Multiple logical records per block

2. Multiple blocks per logical record

The method by which physical input and output of blocks is accomplished by GIN_ is machine

dependent. On the IBM 7094, I_EX is used. On the IBM S/360, F_RTRANbinary read/write statements

are used. On the Univac 1108, NTRAN is used. On the CDC 6600, SC_PE macros are used. These

implementation differences are transparent to the NASTRANapplications programmer (functional

module writer). The systems programmer who is interested in implementation details on the various

machines is referred to section 5.

1.6.4.1 GIN_ File Names

The names of files input as arguments to the GIN_ routines listed above may be alphabetic

(BCD, of the form 4HXXXX) or integer.

A GIN_ file name is BCD if the file contains permanent Executive tables or data blocks. A

list of these files for a particular NASTRANrun resides in the permanent portion of the FIST

Executive table. The following list presents all current Executive files with their BCD file

names:

File BCD File Name

Data Pool File Pe_L

New Problem Tape NPTP

Old Problem Tape _PTP

BCD Plot Tape PLTI

Binary Plot Tape PLT2

User's Master File UMF

New User's Master File NUMF

User Input File INPT.

1.6-5

NASTRANPROGRAMMINGFUNDAMENTALS

Functional modules should not access thesE:permanent Executive files. Functional modules

access the files on which their input, output and scratch data blocks reside by internal integer

GIN_ file names. Prior to calling a functional module, the link driver routine, XSEMi, calls

subroutine GNFIST (GNFIST is called exclusively by XSEMi) to generate the FIST Executive table.

For each input, output or scratch data block required for operation of a module (this information

being contained in the _SCAR entry), GNFIS1 searches the FIAT to find the data block. If the data

block is in the FIAT and a file has been assigned to it, an internal GIN_ file number denoting the

data block and a pointer (index) to the entry in the FIAT is placed in the FIST. The following

convention is used for internal GIN_ file numbers: input data blocks -- lO0 + position in the

_SCAR entry; output data blocks -- 200 + position in the _SCAR entry; scratch data blocks -- 301

through 300 + n where n = number of scratch data blocks as defined in the MPL. (The position in

the _SCAR entry is the position in the DMAP instruction). If the data block is in the FIAT and is

purged, no entry is placed in the FIST. For example, consider the following DMAP calling sequence

for functional module XYZ:

XYZ A,B,C/D,E,F,G/V,N,PARMI/V,N,PARM2 $

The data blocks input to the module are A, B and C; the data blocks output from tile module are

D, E, F and G; the module's parameters are PARMI and PARM2. Note that internal scratch files are

not mentioned in the DMAP calling sequence. The number of scratch files for a module is defined

in the Module Property List (MPL) Executive table (see section 2.4) and is communicated to the

Executive System via the OSCAR. Details on the syntactical rules of DMAPare given in section 5 of

the User's Manual.

In order to read the input data block B, the GINO file number internal to XYZ is 102; in

order to write data block D, the GINO file number is 201. The third of, say, five scratch data

blocks is referenced by XYZ through the GINO file number 303.

l.6-6

NASTRANMATRIXROUTINES

1.7 NASTRANt._TRIXROUTINES

1.7.1 Introduction

The requirement that NASTRAN handle large structural analysis problems implies that NASTRAN

should be able to manipulate and store large matrices efficiently and effectively. In general,

the matrices generated in the displacement approach tend to be sparse (i.e., the number of non-

zero terms in any column of a matrix is small compared to the order of the matrix). The NASTRAN

matrix routines, ADD, MPYAD, DECAMP, etc., which are described in section 3.5, are optimized as

much as possible to take advantage of matrix sparsity and thus eliminate many unnecessary operation

on zero elements. In order to aid in these operations and to make effective use of auxiliary

storage, a packing scheme was devised to store only the non-zero terms in a column.

1.7.2 Matrix Packin_ and Unpacking

The need for a matrix packing routine can be seen by computing the auxiliary storage required

to hold a lO,O00 order n_trix which is I% dense (i.e., the average nunlberof non-zero terms in

a column is I00). With no packing technique, lO8 words of storage are required to hold the

matrix. Using the NASTRAN packing routines, a maximum of 2 x lO6 words of storage are required

if the terms are scattered, and lO6 words are required if the terms occur in a band.

The subroutines BLDPK, INTPK, PACK, and UNPACK, along with their additional entry points,

provide the matrix packing/unpacking capability of NASTRAi_. The user should refer to the des-

criptions of these subroutines in sections 3.5.1 through 3.5.4 for a detailed description of the

packing logic.

14atrices are stored by columns, and subroutines PACK/UIIPACKprovide the ability to pack/

unpack a complete column. The capability is also provided to pack/unpack a column from the first

non-zero element to the last.

An added feature of the packing routines is that subroutines BLDPK and INTPK provide the

capability of packing/unpacking one element at a time. By use of INTPK, a matrix can be read

element-by-element, such that an entire matrix can be processed without any appreciable core

storage requirements. Likewise, by using BLDPK, a matrix can be built one element at a time. This

is an extremely important feature to routines that must process matrices when storage is limited.

1.7-I (12-I-69)

NASTRAN PROGRAMMING FUNDAMENTALS

1.7.3 The Nested Vector Set Concept Used to Represent Components of Displacement

In constructing the matrices used in the Displacement Approach, each row and/or column of a

matrix is associated closely with a grid point, a scalar point or an extra point. Every grid point

has 6 degrees of freedom associated with it, and hence 6 rows and/or columns of the matrix. Scalar

and extra points only have one degree of freedom. At each point (grid, scalar, extra) these degrees

of freedom can be further classified into subsets, depending on the constraints or handling

required for particular degrees of freedom. (For example in a two-dimensional problem all "z"

degrees of freedom are constrained and hence belongs to the s (single-point constraint) set).

Each degree of freedom can be considered as a "point", and the entire model is the collection of

these one-dimensional points.

Nearly all of the matrix operations in displacement analysis are concerned with partitioning,

merging, and transforming matrix arrays from one subset of displacement components to another.

All the components of displacement of a given type (such as all points constrained by single-point

constraints) form a vector set that is distinguished by a subscript from other sets. A given

component of displacement can belor_g to several vector sets. The mutually exclusive vector sets,

the sum of whose members are the set of all physical components of displacements, are as follows:

u_

um points eliminated by multipoint constraints,

us points eliminated by single-point constraints,

uo points omitted by structural matrix partitior;ing,

u r points to which determinate reactions are applied in static analysis,

the remaining structural points used in static analysis (points left over),

U e
extra degrees of freedom intFoduced in dynamic analysis to describe control systems etc.

The vector sets obtained by combining two or more of the above sets are (+ sign indicates

the union of two sets):

u a = ur + uL, the set used in real eigenvalue analysis,

u d = u a + Ue, the set used in dynamic analysis by the direct method,

uf = ua + uo, unconstrained (free) structural points,

un = uf + us , all structural points not constrained by multipoint constraints,

Ug = un + um, all structural (rgz_i_d) points including scalar points,

1.7-2

NASTRANMATRIX ROUTINES

Up = Ug + ue, all physical points.

In dynamic analysis, additional vector sets are obtained by a modal transformation derived

from real eigenvalue analysis of the set ua. These are:

_o rigid body (zero frequency) modal coordinates,

_f finite frequency modal coordinates,

_i : _o + _f' the set of all modal coordinates.

One vector set is defined that combines physical and modal coordinates. That set is

Uh = _i + Ue' the set used in dynamic analysis by the modal method.

The nesting of vector sets is depicted by the following diagram:

u
s

u o

u r

u_ ud

u e

_o
Ci

_f

u a

uh

uf

Un I Ug

Up

The data block USET (USETD in dynamics) is central to this set classification. Each word of

USET corresponds to a degree of freedom in the problem. Each set is assigned a bit in the word.

If a degree of freedom belongs to a given set, the corresponding bit is on. Every degree of free-

dom can then be classified by analysis of USET. The common block /BITP_S/ relates the sets to bit

numbers.

1.7-3

NASTRAN PROGRAMMING FUNDAMENTALS

Two types of operations occur repeatedly.

Examples are:

and

The first is the partitioning or sort operation.

Unl
(1)

.
JKnn] =_ jI_i Kssj (2)

The second is the recombining (or merge) operation:

These operations can be completely described by a "partitioning" vector whose length corresponds

to tile length of the major set (the Ug set in EQuation I) and whose elements are zeros or ones

depending on whether a degree of freedom belongs to the upper (the u n set in Equation I) subset

or the lower (the u m set in Equation I) subset. Such a partitioning vector can be constructed

by subroutine CALCV, which is described in section 3.5.5. This operation is described throughout

the documentation by the notation USET (UG,UN,UM) where UG (Ug) is the major set, UN (u n) is

the zero set, and UM (u m) is the one set. The partitioning vector generated by subroutine CALCV

is input to the matrix routine PARTN (section 3.5.6) to perform operations similar to those in

Equations 1 and 2 and is input to the matrix routine MERGE (section 3.5.6) to perform operations

similar to that in Equation 3.

1.7.4 Processing of Matrices

Matrices in NASTRAN can be divided in two general types: core held matrices such as the

;x6's generated by the element routines and data block held matrices such as those output by

functional modules. There are many routines to assist the programmer in the processing of both

types of matrices. Incore matrices can be processed by GMMATD (Section 3.4.32), GMMATS (Section

3.4.33), INVERD (Section 3.4.34) and INVERS (Section 3.4.35). Data block held matrices can be

processed at several levels. The most general is through the matrix packing and unpacking

1.7-4 (8/I/72)

NASTRANMATRIXROUTINES

routines(BLDPK,PACK,INTPKandUNPACK).Thenextlevel of generalityis providedby thematrix

subroutinessuchasADD,PARTN,MERGE,TRNSP,MPYAD,SDC_MP,DECAMP,CDC_MP,FBS,GFBS,andINVTR.

Thefunctionsprovidedbytheseroutinescanalsobeactivatedby a simplesubroutinecall through

suchroutinesasSSG2A,SDRIB,SSG2C,SSG2B,SSG3A,S_LVER,FACTORandTRANPI.This third formis

by far the mostconvenientanderror free methodfor the noviceNASTRANapplicationsprogrammer.

1.7-5 (8/I/72)

GENERATIONOF MATRICES

1.8 GENERATION OF MATRICES

The Structural Matrix Assembler (SMA) modules generate the stiffness, structural damping,

mass and damping matrices for the structural model. SMAI generates the stiffness matrix exclusive

Kx and the structural damping matrix, [K_g]; SMA2 generates the massof general elements, [gg],

matrix, [Mgg], and the damping matrix, [Bgg]; and SMA3 generates the final stiffness matrix,

[Kgg], by generating a matrix for each general element in the model, and successively adding

these matrices to FKx 1 Other matrix generation modules are: l) DS_IGI which generates the
gg-.

Kd
differential stiffness matrix, [gg], for use in the Static Analysis with Differential Stiffness

Rigid Format and in the Buckling Analysis Rigid Format; 2) PLAI, which generates the stiffness

KL
matrix for linear elements, [gg], for use in the Piecewise Linear Analysis Rigid Format; 3)

rKn_l
PLA4, which generates the stiffness matrix for nonlinear elements, L ggJ, for use in the Piecewise

Linear Analysis Rigid Format; 4) MTRXIN, which provides a two-fold capability: a) to provide

for direct input matrices such as control systems in the dynamics Rigid Formats, and b) to provide

the DMAPuser a capability of converting matrices input on DM!G bulk data cards to NASTR_N

matrix format; and 5) the IFP module which provides the user the capability of converting

matrices input on DMI bulk data cards to NASTRANmatrix format. Detailed information on each

of these modules can be found in section 4, Module Functional Descriptions. The central role

that the ECPT data block plays in the formation of the structural matrices generated in modules

SIIAI, SMA2, DSHGI, PLA! and PLA4 is explained in the following subsections.

1.8.1 The ECPT Data Block

NASTRAN embodies a lumped element approach, i.e., the distributed physical properties of a

structure are represented by a model consisting of a finite number of idealized substructures

or elements that are interconnected at a finite number of points. An element will affect terms

in the matrices only in rows and columns related to its interconnected points. Hence each

column of these matrices may be formed using only elements connected to the grid or scalar point

associated with that column.

The Table Assembler (TAI) module constructs the Element Connection and Properties Table

(ECPT) data block for use in the generation of these structural matrices. Each record of the

ECPT corresponds to a grid point or a scalar point of the model, and, conversely, every grid

point or scalar point of the model corresponds to a record of the ECPT. The point to which a

1.8-I

NASTRAN PROGRAMMING FUNDAMENTALS

record of the ECPT corresponds is called the pivot point of the record. Each record contains the

connection and properties data for all elements connected to the pivot point. Hence data for an

element will appear n times, where n is the number of points defining the element.

1.8.2 Structural Elements

The basis for the structural matrices in NASTRAN are the finit_ structural and scalar elements.

Each element generates matrix terms connecting and connected to the grid and scalar points given

on its input connection card (e.g., CR_D). A structural element generates 6 by 6 matrix parti-

tions related to the six degrees of freedom of each connecting grid point. A scalar element

generates one term for each connection.

The stiffness matrix, [K], for a structural element consists of a 6 by 6 partition for each

combination of the connected grid points. For example, a BAR or R_D element is connected to two

grid points, "a" and "b". The stiffness matrix partitions are: [Kaa], [Kab], [Kba] and [Kbb].

A triangular element (e.g., TRMEM) is connected to three points. It will generate nine partitions:

[Kaa], [Kab], [Kac], [Kba], [Kbb], [Kbc], [Kca], [Kcb] and [Kcc].

Although the actual equations for the element stiffness, mass and damping matrices are

different for each element, the solutions follow a definite pattern. The element connection,

orientation and property data are given in the ECPT data block. The coordinate system data for

orienting the global coordinates at each grid point are given in the CSTM data block. The

material properties are given in the MPT and DIT data blocks. A utility routine, PRETRD, is

available to fetch coordinate system data, and a utility routine, PREMAT, is available to fetch

material properties.

I. An element coordinate system is calculated using the locations of the grid points.

Using these data a matrix, [E], is formed, which transforms displacements from element

coordinates to basic coordinates.

2. The stiffness matrix may be formed in element coordinates using many methods. For the

simple elements (e.g., R_D) the terms are direct functions of the geometry, properties and

material coefficients of the element. For some elements the matrix is first formulated in

terms of generalized coordinates, {q}, usually the coefficients of a power series. In

general coordinates, the matrix is [Kq]. Transformation matrices, [Hi] , are generated to

1.8-2

GENERATION OF MATRICES

transform the displacements at the grid points in element coordinates {u}, to the general

coordinates {q}.

3. The global coordinate system orientation matrix, [T], for each grid point is calculated.

4. The stiffness matrix partition for the columns related to point j and the rows related to

point i is [Kij]. In general it is formed by the equation

[Kij] = [Ti]T[E][Hi]T[Kq][Hj][E]T[Tj]. (I)

In order to generate a particular partition, [Kij], it is often necessary to generate [K].

Only those partitions [Kij], where i is the pivot point and j = 1,2.....n (n being the number of

grid points associated with the element), are useful for the current ECPT record being processed.

The unused partitions are recalculated and used when j _ i appears as a pivot point in a sub-

sequent ECPT record. An alternate procedure for matrix generation, which is not used, would be

to calculate all of the elementmatrices once and store them on an auxiliary file for future use

,.,h..... _ _- alternate procedure is i_ss efficient for large problems, where efficiency

really counts, because the recalculation time is less than the time required to recover element

matrices from the auxiliary file.

1.8-3

TERMINATIONPHILOSOPHYANDDIAGNOSTICMESSAGES

1.9 TERMINATIONPHILOSOPHYANDDIAGNOSTICMESSAGES

Certainrestrictions areplaceduponthe functionalmodulewriter with regardto run

terminationanderror diagnostics. This is necessaryin orderto completecertain functions

uponterminatingandto maintainuniformitywith regardto diagnosticmessages.

A functionalmodulewriter is requiredto utilize a messagewriter (MSGWRT,section3.4.26)

to print all of his messages.In this mannersimilar message formats do not have to be dunlicated

in each module. Also, in order to avoid placing the I/0 conversion routines and the lengthy

format statements in the root segment, the message writer is restricted to its own overlay segment,

Communication between the module and the message writer is via a queued message concept.

Subroutine MESAGE (section 3.4.25) is called to store the message parameters. In the case of a

fatal message, a dump is taken if a DIAG l card is present in the Executive Control Deck, and

PEXIT (section 3.4.22) is called. For non-fatal messages, the message is queued and control

given back to the user. The message queue is printed after each module is executed.

,,,u_uer for any routine to terminate the current execution, a call to PEXIT must be made.

PEXIT handles all the functionsmecessary to wrap up the run: flushing output buffers, printing

queued messages, and punching the last card of the checkpoint dictionary.

1.9-I

P_STARTS IN NASTRAN

I.I0 RESTARTS IN NASTRAN

NASTRAN is designed to run large problems with long running times. Even with the best of

computer systems, a hardware, operator, or system failure is not uncommon for long running jobs.

At the same time, the large volumes of data and the complexity of the structures that can be

modeled and analyzed using NASTRAN make it highly likely that user input data errors will occur.

Many of these errors are of a subtle type, meaning that they cannot be immediately detected in

the NASTRAN Preface by the modules which process the data decks. To deal with these problems, and

to save machine time on runs which abort because of data or system errors, NASTRAN has a sophisti-

cated checkpoint and restart capability (see section 3 of the User's Manual for a discussion of

restarts from the user point of view). The overall design philosophy for restart is twofold. A

restart selectively executes only the modules necessary to accomplish a user-input data change.

The user is able to change any part of his problem including structural model changes, additional

cases, or more output requests. At the same time restarts are automatic as far as user interference

is concerned. The user need only checkpoint (see section 1.2.3.5) his original run and submit

changes to the original run on subsequent runs. The user does not have to analyze the effect of

his changes. In addition the selective nature of restart allows the program to proceed with

implicit errors (errors present in the data but not yet identified) until no further valid progress

can be made. The work accomplished to this point is not lost, but rather only the table or matrix

data block in error must be corrected to allow the program to proceed. Much error checking can be

deferred until the actual module using the data is in control. The remainder of this section will

explain the program mechanics by which restart is accomplished.

In NASTRAN there are four general types of restarts. Unmodified Restart (UMR), Psuedo Modified

Restart (PMR), Modified Restart (MR), and Rigid Format Switch (RFS). Note that in the User's Manual

UMR's and PMR's are described together as Unmodifed Restarts. These classifications are for des-

criptive and internal purposes. The user need not know anything about which type is which. The

basic characteristics of each type will be described below. An Unmodified Restart results when the

user simply resubmits a problem with no data changes. It is used to continue a solution from the

point of interruption. Presumably the problem aborted previously due to time expiring, machine

error, system error, etc. The restart dictionary (created while checkpointing) is processed, and

the solution is started again at the last re-entry point (after the last successful checkpoint).

A Psuedo Modified Restart occurs when the user requests additional output from the program which

simply requires the re-execution of an output module such as the Structure Plotter, the Grid Point

1.10-I

NASTRANPROGRAMMINGFUNDAMENTALS

WeightGenerator,or the StressDataRecoverymoduleetc. Thenumericalsolution is not affected

bythesemodules;only outputis generated.Notethat a PMRis the commoncasesinceprinter out-

put, plotter output,etc. is usuallyrequested.A true UMRis rare. Ona PMR,outputmodulesare

re-executedto displayrequestedoutput,andthenthe problemis continuedat the re-entry point.

A true ModifiedRestartoccurswhensomenumericallysignificant datachange.Themoduleswhich

processthis typeof datamustbe re-executed.Thesemodulesare re-executedto regeneratetheir

outputdatablocksbasedonthe newdata,andthe problemis continuedat the re-entry point. A

RigidFormatSwitchis a special formof i4odifiedRestartin whicha problemchangesfromone

solution typeto another. Oneexamplewouldbe: a userhassolvedfor the static solutionon

Rigid Format1 andnowwantsto find the normalmodesby usingRigidFormat3. This mayor may

not requiredatachanges.Thekeydifferencehereis that the re-entry point cannotbeusedto

determinethe properplaceto restart. Thetechniquebywhicha RFSis accomplishedis to re-

executethe final modulesonthe newRigidFormatandlet the File NameTablechainthe solution

backto the properrestart point.

Tounderstand,in general,howthe abovetypesof restart are implemented,it is necessaryto

considerthe ModuleExecutionDecisionTable(MEDT),whichis associatedwith eachRigidFormat.

TheModuleExecutionDecisionTableis a table whichhasoneentry for everyDMAPinstruction in the

RigidFormat.Eachentry is 5 wordslong; eachwordcontains31bits. Forconvenience,thesebits

arenumberedsequentiallyfromleft to right with the numbers1 through155. If the entry in the

MEDTfor a modulehas,say, bit 55turnedon, this modulewill beexecutedwhenevera cardor data

block changeassociatedwith bit 55occursona restart. TheCardNameTableassociatesbits of

the MEDTwith selectedbulk datacardnames,CaseControlselectionsandparameternames.TheFile

NameTableassociatesbits of the MEDTwith selecteddatablocknames.Forconsistency,bits 1

through62 for eachentry in the MEDTare reservedfor the CardNameTable,andbits 94 through

155are reservedfor the File NameTable. Thefollowing exampleillustrates the useof thesetables

in determiningtheeffects of changinga bulk datacardona ModifiedRestart. Supposethe F_RCE

bulk datacard is to bechangedwhenexecutingRigidFormatI. Thetable in section3.2.3.1of

the User'sManualassociatesbit 60with the FORCEcard. Thedecisiontable for bits 1 through62

is shownin section3.2.3.3 of the User'sManual.DMAPmodulesBEGIN,FILE,FILE,GP3,SAVE,PARAM,

PURGE,CHKPNT,SSGI,CHKPNT,EQUIV,etc., will beexecutedsincebit 60 is on for each.

Thereis onemoretable, the RigidFormatSwitchTable,whichis constantfor all Rigid

Formats,andhenceresidesin PrefacemoduleXCSA.TheRigidFormatSwitchTableassociateswith

1.10-2

RESTARTSINNASTRAN

eachRigidFormata bit for eachentry in theMEDT:bit 63 is associatedwith RigidFormatI, bit

64 is associatedwith RigidFormat2, etc. If the restart involvesa RigidFormatchange,the bit

in the decisiontable whichis set is the bit correspondingto the RigidFormatof the previous

execution.

Eachpart of the NASTRANPrefacecontributesto processingthe informationfor a restart.

XCSAextractsandstorestheCardNameTable,the File NameTable,the ModuleExecutionDecision

Table,the DMAPsequenceandthe RigidFormatSwitchbit if any. Thesearewritten in the XCSA

ExecutiveControlTable(seesection2.4.2.5) onthe NewProblemTapefor later usebymoduleXGPI.

IFPI comparesthe currentCASECCdatablockwith the onesubmittedon the previousrun (a copyof

CASECCis storedon theOldProblemTapefor this purpose). Threetypesof changesarenotedby
IFPI:

I. Changesin dataset selectionsuchasLoadset, SPCset, etc.;

2. Theoccurenceof outputrequestsfor printer, plotter, etc.;

3. Changesin the loopingstructureof theproblem.

Theresults of this analysisarestoredin commonblock /IFPXO/. Each bit in /IFPXO/ is associ-

ated with a key name. These names will appear in some Rigid Format's Card Name Table. /IFPXO/

contains one bit for every unique entry in the Card Name Table. /IFPXI/ contains these names

in order given by /IFPXO/. Thus, bit 135 in /IFPXO/ corresponds to the key word, L_AD$. If bit

135 is on (non-zero), the status of L_AD$ has changed on this restart. XS_RT analyzes the bulk

data card changes in a similar manner, setting the proper bits in /IFPXO/. IFP applies certain

logical rules to combinations of the bits. XGPI then analyzes this information in the following

manner. For each bit in /IFPXO/ the BCD equivalent is extracted from /IFPXI/. This mnemonic

is searched for a match in the Card Name Table. If a match occurs, the appropriate bit in a master

module execution mask is turned on. After all changes have been processed, the master mask is

logically multiplied (logical and) with each module execution entry. A non-zero results indicates

that this mcdule is to be executeQ.

All bits in /IFPXO/ are classified as either significant to the solution or as only reflecting

output requests. If only output request bits are on, a PMR is indicated. If the restart is a

Modified Restart, one further table look-up may be necessary: the resulting DMAP sequence deter-

mined from the execution flags of the modules may not have the required input data blocks. (All

1 .I0-3 (12-I-69)

NASTRANPROGRAMMINGFUNDAMENTALS

input data blocks must first appear as output data blocks). If this should be the case (most often

caused by switching rigid formats), the File Name Table is consulted to determine which bits are on

and hence which modules should be re-executed to generate the missing data blocks. The resulting

DMAP sequence causes the selective execution of only those modules necessary to reflect the data

changes and complete the requested solution.

1.10-4

IIITRODUCTION

2.1 INTRODUCTION

Thissectioncontainsdescriptionsof a) thoseNASTRANdatablockswhichappearin oneor

moreRigidFormats(section2.3), b) Executivetablesmaintainedby the NASTRANExecutiveSystem

(section2.4), andc) Miscellaneoustables usedbymorethanonemodule(section2.5).

Datablocksthat appear in Rigid Formats are structural problem oriented and reside on

physical files. A file is "allocated" to a data block, and a data block is "assigned" to a file.

The Executive Segment File Allocator (XSFA) Module is the "administrative manager" of files for

NASTRAN.

Executive Tables have true executive functions in the sense that they are not oriented to a

particular problem solution or even to structural analysis in general. They may be core resident

or may reside on physical files.

Miscellaneous tables ar¢_common blocks which are used by the Executive System and/or a

particular class of modules (e.g., /GPTAI/ i: used ^-_" k............... j uj modules GPi, GP2, GP3 and TAI).

Common blocks that are used for intra-module communications are documented in section 4, Module

Functional Descriptions.

Section 2.2.1 contains an index for data block descriptions sorted on data block names, and

section 2.2.2 contains an index for data block descriptions sorted on the names of modules from

which they ar_ output. Alphabetical indexes are given for Executive table descriptions and

miscellaneous table descriptions at the beginning of sections 2.4 and 2.5 respectively.

2.l-I

DATA BLOCK DESCRIPTIONS - GENERAL COMMENTS AND INDEXES

2.2 DATA BLOCK DESCRIPTIONS - GENERAL COMMENTS AND INDEXES

Data block descriptions have been organized so that all data blocks output from the same

module are grouped together. The name of each data block is given, and the data block is

classified as a matrix or a table. A data block is classified as a matrix only if it is in

NASTRAN matrix form, that is, generated by one of the NASTRAN matrix packing routines, PACK or

BLDPK, the latter having secondar)entry points BLDPKI, ZBLPKI and BLDPKN. All other data blocks

are classified as t_bles.

Following a data block's name and classification is a brief description of its contents,

followed by its format if it is a table. Since all matrices are in standard NASTRAN packed

format a repeated description of the format is unnecessary for n_atrices. Each data block has a

header record (consisting in general of two BCD words) which is the alphanumeric name of the data

block as it appears in a Rigid Format, and this header record is designated "Record 0" in table

formats. For those few data block which contain more than these two BCD words in their header

record, e.g., SLT, GPTT, DLT, the contents are described explicitly. The conventions used for

describing the types of words in records of tables are: R implies real; I implies integer; B

implies BCD, four characters per computer word left adjusted with the remaining characters, if

any, filled with BCD blanks; and L implies a "logical" -- not in the F_RTRAN sense -- word which

is a mask of bits, right adjusted.

There is associated with each data block a six word control block called a trailer. Trailer

information is "written" by the module which outputs the corresponding data block and can be

"read" by any module accessing the corresponding data block as input. If a module "writes" a

zero trailer for a data block, this implies no data was written in the data block. If a module

"writes" a non-zero trailer, this implies data was written in the data block. Non-zero trailer

information is often used by modules to allocate core storage before reading the corresponding

data block. Trailer information for each data block is stored in and retrieved from the FIAT

Executive table (see section 2.4.1.2) by the utility routines WRTTRL (write trailer) and RDTRL

(read trailer), which are described in section 3.4.16. While residing in the FIAT, a trailer

is stored in 6 half-words; each half-word consists of 16 binary digits.

Trailer information is standardized for matrix data blocks, not standardized for table data

blocks. The format of a matrix trailer is as follows:

2.2-I

DATA BLOCK AND TABLE DESCRIPTIONS

Word 3 = form = 1

2

3

4

5

6

7

8

Word 4 = type = 1

Word 1 = number of columns = N

Word 2 = number of rows = M

square matrix

rectangular matrix

N:Idiagonal matrix M = t.umber of rows

lower triangular matrix

upper triangular matrix

symmetric matrix

IN=I

row vector _M = number of rows

i denti ty matrix

elements of the matrix are real single

precision

2 elements of the matrix are real double

precision

3 elements of the matrix are complex sinc_le

precision

4 elements of the matrix are complex double

precision.

Word 5 = maximum number of non-zero words (rather than non-

zero matrix elements) in any one column (e.g., if a real

double precision matrix is diagonal and non-zero word 5 = 2)

Word 6 = not defined

Word 5 is dependent upon the structural model and the user's grid point sequencing rather than on

any intrinsic property of the matrix and is therefore not described in this report.

The lower case letters, e.g., g, n, m, s, o, L, etc., used as subscripts designate the sub-

sets of displacement to which the root symbol (e.g., [K], for a stiffness matrix) applies. The

reader is referred to section 3 of the Theoretical Manual and to section 1.7 of the Programmer's

Manual for further details.

2.2-2

2.2.1

DATA BLOCK DESCRIPTIONS - GENERAL COMMENTS AND INDEXES

Index for Data Block Descriptions Sorted on Data Block Names

Section Number Data Block Name Output From Module

2.3.40.3 ABFL MTRX IN

2.3.47.2 AUT(B RANDOM

2.3.2.11 AXIC IFP

2.3.18.9 BAA SMPI

2.3.41.2 BDD GKAD

2.3.54 BDP_JBL BMG

2.3.17.8 BFF SCEI

2.3.10. 2 BGG SFIA2

2.3.3.5 BGPDT GPI

2.3.49.2 BHH GKAM

2.3.16.4 BNr_ MCE2

2.3.27.7 BQG SDRI

2.3.41.8 B2DD GKAD

2.3.40.3 B2PP MTRXIN

2.3.1.1 CASECC IFPI

2.3.39. l CASEXX CASE

2.3.42.2 CLAMA CEAD

2.3.50. l CPHI D DDR

2.3.27.11 CPHIP SDRI

2.3.3.4 CSTM GP l

2.3.27.9 DFLTAPG SDRI

2.3.27. l0 DELTAQG SDRI

2.3.27.8 DELTAUGV SDRI

2.3.2.7 DIT IFP

2.3.29.7 DLT DPD

2.3.21. l DM RBf4G3

2.3.2.9 DYNAMICS IFP

2.3.8.3 ECPT TAI

2.3.34.4 ECPTNL PLAI

2.3.38.2 ECPTNLI PLA4

2.2-3 (8/I/72)

Page Number

2.3-142

2.3-I 80

2.3-29

2.3-72

2.3-I 43

2.3-I 94

2.3-68

2.3-58

2.3-34

2.3-183

2.3-66

2.3-85

2.3-145

2.3-142

2.3-I

2.3-141

2.3-146

2.3-184

2.3-86

2.3-33

2.3-86

2.3-86

2.3-85

2.3-2l

2.3-I19

2.3-77

2.3-25

2.3-53

2.3-135

2.3-140

DATA BLOCK AND TABLE DESCRIPTIONS

SEction Number Data Block Name Output From Module

2.3.4.1 ECT GP2

2.3.2.8 EDT IFP

2,3.29.4 EED DPD

2,3.5.4 ELSETS PLTSET

2.3.2.5 EPT IFP

2.3.29.5 EQDYN DPD

2.3.3.2 EQEXlN GPI

2.3,8.1 EST TAI

2.3.34.2 ESTL PLAI

2.3.34.3 ESTNL PLAI

2.3.37.2 ESTNLI PLA3

2.3.2.12 F_RCE IFP

2.3.29.9 FRL DPD

2.3.8.2 GEl TAI

2.3.2.1 GEOMI IFP

2.3.2.2 GERM2 IFP

2.3.2.3 GE@i43 IFP

2,3.2.4 GEOM4 IFP

2.3.15.1 GM MCEI

2.3.41.4 GMD GKAD

2.3.18.1 GO SMPI

2.3.41.5 GOD GKAD

2.3.8.4 GPCT TAI

2.3.3.3 GPDT GPI

2.3.3.1 GPL GPI

2.3.29.1 GPLD DPD

2.3.5.3 GPSETS PLTSET

2.3.9.3 GPST S_LAI

2.3.7,2 GPTT GP3

2.3.18.2 KAA SMPI

2.3.40.1 KBFL MTRXlN

2.3,33.2 KBFS DSMG2

_umber

2.3-36

2.3-24

2.3-116

2.3-38

2.3-16

2,3-I18

2.3-31

2.3-45

2.3-132

2.3-133

2.3-139

2.3-30

2.3-122

2.3-53

2.3-7

2.3-8

2.3-13

2.3-15

2.3-64

2.3-144

2.3-70

2.3-144

2.3-54

2.3-32

2.3-31

2,3-114

2.3-37

2.3-56

2.3-44

2,3-70

2.3-142

2.3-130

2.2-4 (11/I/70)

DATA BLOCK DESCRIPTIONS - GENERAL CO_,IENTSAND INDEXES

Section Number Data Block Name Output From Module

2.3.33.1 KBLL DSMG2

2.3.33.3 KBSS DSMG2

2.3.32.1 KDAA SMP2

2.3.35.3 KDAAM ADD

2.3.41.I KDD GKAD

2.3.17.5 KDFF SCEI

2.3.17.6 KDFS SCEI

2.3.31.I KDGG DSMGI

2.3.16.3 KDNN MCE2

2.3.17.7 KDSS SCEI

2.3.17.1 KFF SCEI

2.3.17.2 KFS SCEI

2.3.12.1 KGG SMA3

2.3.12.2 KGGL SMA3

2.3.38.1 KGGNL PLA4

2.3.35.1 KGGSUM ADD

2.3.9.1 KGGX SMAI

2.3.34.1 KGGXL PLAI

2.3.49.3 KHH GKAM

2.3.19.1 KLL RBMGI

2.3.19.2 KLR RBMGI

2.3.16.1 KNN MCE2

2.3.18.3 K_B SMPI

2.3.19.3 KRR RBMGI

2.3.17.3 KSS SCEI

2.3.41.6 K2DD GKAD

2.3.40.I K2PP MTRXIN

2.3.18.10 K4AA SMPI

2.3.17.9 K4FF SCEI

2.3.9.2 K4GG SMAI

2.3.16.5 K4NN MCE2

2.3.30.I LAMA READ

PaBe Number

2.3-130

2.3-130

2.3-!29

2.3-137

2.3-143

2.3-68

2.3-68

2.3-128

2.3-65

2.3-68

2.3-67

2.3-67

2.3-60

2.3-60

2.3-140

2.3-137

2.3-56

2.3-132

2.3-183

2.3-73

2.3-73

2.3-65

2.3-70

2.3-73

2.3-67

2.3-144

2.3-142

2.3-72

2.3-69

2.3-56

2.3-66

2.3-125

2.2-5 (IIII170)

DATABLOCKANDTABLEDESCRIPTIONS

Section Number Data Block Name Output From Module Pa_e Number

2.3.20.I LBLL RBMG2 2.3-75

2.3.20.I LLL RBMG2 2.3-75

2.3.18.4 L_O SMPI 2.3-70

2.3.18.6 MAA SMPI 2.3-71

2.3.2.10 MATP_L IFP 2.3-28

2.3.41.3 MDD GKAD 2.3-143

2.3.5.5 MESSAGE PLOT 2.3-39

2.3.17.4 MFF SCEI 2.3-67

2.3.10.I MGG SMA2 2.3-58

2.3.49.1 MHH GKAM 2.3-183

2.3.30.3 MI READ 2.3-126

2.3.19.4 MLL RBMGI 2.3-73

2.3.19.5 MLR RBMGI 2.3-74

2.3.16.2 MNN MCE2 2.3-65

2.3.18.8 MOAB SMPI 2.3-72

2.3.18.7 M_B SMPI 2.3-71

2.3.2.6 MPT IFP 2.3-20

2.3.22.1 MR RBMG4 2.3-78

2.3.19.6 MRR RBMGI 2.3-74

2.3.41.7 M2DD GKAD 2.3-144

2.3.40.2 M2PP MTRXIN 2.3-142

2.3.29.10 NLFT DPD 2.3-122

2.3.28.21 OBEFI SDR2 2.3-108

2.3.28.17 _BESI SDR2 2.3-104

2.3.28.10 _BQGI SDR2 2.3-97

2.3.42.3 _CEIGS CEAD 2.3-147

2.3.28.14 _CPHIP SDR2 2.3-I01

2.3.28.20 _EFBI SDR2 2.3-I07

2.3.28.22 _EFCl SDR2 2.3-109

2.3.45.13 _EFC2 SDR3 2.3-172

2.3.28.19 _EFI SDR2 2.3-I06

2.3.45.5 OEF2 SDR3 2.3-164

2.2-6 (II/I/70)

Section Nu_er

DATA BLOCK DESCRIPTIONS- GENERALCOMMENTSAND INDEXES

Data Block Names Output From Module

2.3.30.4 OEIGS READ

2.3.28.16 OESBI SDR2

2.3.28.18 OESCI SDR2

2.3.45.12 OESC2 SDR3

2.3.28.15 _ESI SDR2

2.3.45.4 OES2 SDR3

2.3.14.1 _GPST GPSP

2.3.11.I _GPWG GPWG

2.3.37.1 ONLES PLA3

2.3.28.5 _PGI SDR2

2.3.43.1 OPHID VDR

2.3.28.13 _PHIG SDR2

2.3.43.5 OPHIH VDR

2.3.43.4 OPNLI VDR

2.3.45.6 OPNL2 SDR3

2.3.28.7 OPPCI SDR2

2.3.45.9 OPPC2 SDR3

2.3.28.6 OPPI SDR2

2.3.45.1 OPP2 SDR3

2.3.28.9 OQBGI SDR2

2.3.28.8 OQGI SDR2

2.3.28.12 OQPCI SDR2

2.3.45.10 OQPC2 SDR3

2.3.28.11 OQPI SDR2

2.3.45.2 OQP2 SDR3

2.3.28.2 OUBGVl SDRI

2.3.43.2 OUDVCI VDR

2.3.45.14 OUDVC2 SDR3

2.3.43.3 OUDVI VDR

2.3.45.7 OUDV2 SDR3

2.3.28.1 OUGVI SDR2

2.3.43.6 OUHVCI VDR

Pa_e Number

2.3-126

2.3-103

2.3-105

2.3-171

2.3-102

2.3-163

2.3-63

2.3-59

2.3-139

2.3-92

2.3-149

2.3-I00

2.3-153

2.3-154

2.3-94

2.3-168

2.3-93

2.3-160

2.3-96

2.3-95

2.3-99

2.3-169

2.3-98

2.3-161

2.3-89

2.3-150

2.3-173

2.3-151

2.3-166

2.3-88

2.3-154

2.2-7 (lllll70)

DATA BLOCK AND TABLE DESCRIPTIONS

Section Number Data Block Name Output From Module

2.3.45.15 OUHVC2 SDR3

2.3.43.7 _UHVl VDR

2.3.45.8 _UHV2 SDR3

2.3.28.4 OUPVCI SDR2

2.3.45.11 _UPVC2 SDR3

2.3.28.3 OUPVl SDR2

2.3.45.3 _UPV2 SDR3

2.3.53.2 PAF DDR2

2.3.53.5 PAT DDR2

2.3.33.4 PBL DSMG2

2.3.33.5 PBS DSMG2

2.3.1.2 PCD_ IFPI

2.3.44.3 PDF FRRD

2.3.48.2 PDT TFD

2.3.23.1 , 2.3.35.2 PG SSGI , AOD

2.3.27.2 PGG SDPI

2.3.23.2 PGI SSGI

2.3.36.2 PGVl PLA2

2.3.30.2 PHIA READ

2.3.42.1 PHID CEAD

2.3.49.4 PHIDH GKAM

2.3.27.4 PHIG SDRI

2.3.42.4 PHIH CEAD

2.3.24.4 PL SSG2

2.3.26.1 PLI SSG4

2.3.6.1 PLOTXl PL_T

2.3.6.2 PL@TX2 PL_T

2.3.5.2 PLTPAR PLTSET

2.3.5.1 PLTSETX PLTSET

2.3.48.5 PNLD TRD

2.3.48.7 PNLH TND

2.3.24.2 PO SSG2

2.2-8

Page Number

2.3-174

2.3-156

2.3-167

2.3-91

2.3-170

2.3-90

2.3-162

2.3-192

2.3-!93

2.3-131

2.3-131

2.3-3

2.3-158

2.3-181

2.3-79, 2.3-137

2.3-84

2.3-79

2.3-138

2.3-125

2.3-146

2.3-183

2.3-84

2.3-148

2.3-80

2.3-83

2.3-40

2.3-40

2.3-37

2.3-37

2.3-182

2.3-182

2.3-80

DATA BLOCK DESCRIPTIONS - GENERAL COMMENTS AND INDEXES

Section Number Data Block Name Output from Module

2.3.26.2 POI SSG4

2.3.44.4 PPF FRRD

2.3.28.25 PPHIG SDR2

2.3.48.4 PPT TRD

2.3.24.3 PS SSG2

2.3.47.1 PSDF RANDOM

2.3.29.8 PSDL DPD

2.3.44.2 PSF FRRD

2.3.48.3 PST TRD

2.3.28.24 PUBGVI SDR2

2.3.28.26 PUGV SDR2

2.3.28.23 PUGVI SDR2

2.3.27.6 QBG SDRI

2.3.27.3 QG SDRI

2.3.36.3 QGI PLA2

2.3.27.15 QP SDRI

2.3.27.12 QPC SDRI

2.3.24.1 QR SSG2

2.3.13.1 RG GP4

2.3.25.6 RUBLV SSG3

2.3.25.3 RULV SSG3

2.3.25.4 RUOV SSG3

2.3.3.6 SIL GPI

2.3.29.2 SILD DPD

2.3.55.1 SIP PLTTRAN

2.3.7.1 SLT GP3

2.3.29.6 TFPOOL DPD

2.3.29.11 TRL DPD

2.3.27.5 UBGV SDRI

2.3.20.4 UBLL RBMG2

2.3.25.5 UBLV SSG3

Page Number

2.3-83

2.3-158

2.3-112

2.3-182

2.3-80

2.3-I 79

2.3-121

2.3-158

2.3-181

2.3-III

2.3-I13

2.3-II0

2.3-85

2.3-84

2.3-I 38

2.3-87

2.3-86

2.3-80

2.3-61

2.3-82

2.3-81

2.3-81

2.3-35

2.3-I14

2.3-194

2.3-41

2.3-I19

2.3-124

2.3-85

2.3-76

2.3-82

2.2-9 (8/I/72)

Secti on Number

DATA BLOCK AND TABLE DESCRIPTIONS

Data Block Name Output from Module

2.3.33.7 UB_V DSMG2

2.3.44.1 UDVF FRRD

2.3.50.2 UDVIF DDRI

2.3.53.3 UDV2F DDR2

2.3.48.1 UDVT TRD

2.3.50.3 UDVIT DDRI

2.3.53,6 UDV2T DDR2

2.3.53.1 UEVF DDR2

2.3.53.4 UEVT DDR2

2.3.27.1 UGV SDRI

2.3,36,1 UGVI PLA2

2.3.44.5 UHVF FRRD

2.3.48.6 UHVT TRD

2,3.20.2 ULL RBMG2

2.3.25.1 ULV SSG3

2.3.27.14 UPV SDRI

2.3.27.13 UPVC SDRI

2.3.18.5 U@O SMPI

2.3.25.2 UO_V SSG3

2,3.13.3 USET GP4

2.3.29.3 USETD DPD

2.3.1.3 XYCDB IFPI

2.3.46.2 XYPLTFA XYTRAN

2.3.46.3 XYPLTF XYTRAN

2.3.46.4 XYPLTR XYTRAN

2.3.46,1 XYPLTT XYTRAN

2.3.46.5 XYPLTTA XYTRAN

2.3.33.6 YBS DSMG2

2.3.13.2 YS GP4

Page Number

2.3-131

2.3-158

2.3-184

2.3-192

2.3-181

2.3-184

2,3-193

2.3-192

2.3-192

2.3-84

2.3-138

2.3-I 59

2.3-182

2.3-75

2.3-81

2.3-87

2 3-87

2 3-71

2 3-81

2 3-61

2 3-115

2 3-4

2 3-178

2.3-178

2.3-178

2.3-175

2.3-178

2.3-131

2.3-61

2.2-10 (8/I/72)

DATABLOCKDESCRIPTIONS- GENERALCOMMENTSANDINDEXES

2.2.2 Index for Data Block Descriptions Sorted Alphabetically by Module

Section Number Module Page Number Section Number Module

2.3.35 ADD 2.3-137 2.3.6 PLOT

2.3.54 BMG 2.3-194 2.3.5 PLTSET

2.3.39 CASE 2.3-141 2.3.55 PLTTRAN

2.3.42 CEAD 2.3-146 2.3.47 RANDOM

2.3.50 DDRI 2.3-184 2.3.19 RBMGI

2.3.53 DDR2 2.3-192 2.3.20 RBMG2

2.3.29 DPD 2.3-I14 2.3.21 RBMG3

2.3.31 DSMGI 2.3-128 2.3.22 RBMG4

2.3.33 DSMG2 2.3-130 2.3.30 READ

2.3.44 FRRD 2.3-158 2.3.17 SCEI

2.3.41 GKAD 2.3-143 2.3.27 SDRI

2.3.49 GKAM 2.3-183 2.3.28 SDR2

2.3.3 GPI 2.3-31 2.3.45 SDR3

2.3.4 GP2 2.3-36 2.3.9 SMAI

2.3.7 GP3 2.3-41 2.3.10 SMA2

2.3.13 GP4 2.3-61 2.3.12 SMA3

2.3.14 GPSP 2.3-63 2.3.18 SMPI

2.3.11 GPWG 2.3-59 2.3.32 SMP2

2.3.2 IFP 2.3-5 2.3.23 SSGI

2.3.1 IFPI 2.3-I 2.3.24 SSG2

2.3.15 MCEI 2.3-64 2.3.25 SSG3

2.3.16 MCE2 2.3-65 2.3.26 SSG4

2.3.40 MTRXIN 2.3-142 2.2.8 TAI

2.3.34 PLAI 2.3-132 2.3.48 TRD

2.3.36 PLA2 2.3-138 2.3.43 VDR

2.3.37 PLA3 2.3-139 2.3.46 XYTRAN

2.3.38 PLA4 2.3-140

Page Number

2.3-40

2.3-37

2.3-194

2.3-179

2.3-73

2.3-75

2.3-77

2.3-78

2.3-125

2.3-67

2.3-84

2.3-88

2.3-160

2.3-56

2.3-58

2.3-60

2.3-70

2.3-129

2.3-79

2.3-80

2.3-81

2.3-83

2.3-45

2.3-181

2.3-149

2.3-175

2.2-11 (811172)

DATABLOCKDESCRIPTIONS

DATABL_CKDESCRIPTIONS

Data Blocks Output Fr_ !1odule IFPI

2.3.1.1 CASECC (TABLE)

Description

Case Control Data Table

Table Format

Record Wor___d_d Type

l l I
2 I

3 I

4 I

5 I
6 I

7 I
8 I

9 I

lO i
!! !

12 I

13 I
14 I
15 I
16 I

17 I }
18 I
19 I

20 I }
21 I

22 I

23 I }
24 I
25 I

26 I }
27 I

28 I

29 I 1
3O I
31 I

32 I
33 I
34 I

35 I }
36 I

37 I
38 I

39 B

_0 B

I tern

lleader record

Subcase number
Multipoint constraint set
Sinele-point constraint set
External static load set
Real eigenvalue extraction set
Element deformation set
Them};al load set
Thermal material set
Transient initial conditions
Non-linear load output set
UULLUL l_Uld selec_lon] = print, 4 = punch
Fo_at of output - 1 real

2 = real/imao

3 = mag/phase
If word 12<0, SBRT2 is requested

Dynan:ic load set

Frenuency response set
Transfer function set

S_:_metrv flaq

Same as 10-12 for load output

Same as 10-12 for displacement out,nut

Same as 10-12 for stress output

Same as lO-12 for force output

San;e as 10-12 for acceleration output

Same as 10-12 for velocity output

Same as 10-12 for forces of constraint output

Time step set selection for transient problem

32 words of TITLE

2.3-I

III I

DATA BLOCK AND TABLE DESCRIPTIONS

i_ote

Record

103

135

136

B

B

I

137 I
138 I
139 B
140 B

141 B }142 B

143 B }144 B
145 I
146
147
148 I
149 I
150 I

151 I 1
152 I
153 I

154 I 1
155 I
156 I

157 I }
158 I
159 I
160 I
161 I
162
163 I
164 I
165
166 I
167 R

Itern

32 words of SUBTITLE

32 v_ords of LA3EL

Structure plotter flag

Axisymmetric set - C_SINE = 2
SINE : 1
FLUID = 2

Number of harmonics to output
Differential stiffness coefficient set

Name of K2PP matrix

t;ame of M2PP matrix

Name of b2PP matrix

OUTPUT frenuency set selection
Not defined
Not defined

Comnlex eigenvalue extraction set
Structural damping table set
Inertia relief set (Force method only)

Same as 10-12 for solution set displacements

Same as 10-12 for solution set velocities

Same as 10-12 for solution set accelerations

_on-linear load set in transient problems

Delete set (Force method only)
Not defined
Random analysis set
Piecewise linear coefficient set
Not defined

Length of symmetry sequence (LSE_)

R Coefficients for symmetry seouence
]

166+LSEH R

167+LSE'.l I Set ID

168+LSE_1 I Length of the set (LSET).
169+LSE,.I

169+LSE_i+LSET I I

Set members

The above record is repeated for each subcase and symmetry combination.

2.3-2 (IIII/70)

DATABLOCKDESCRIPTIONS

Table Trailer

Word 1 = 0
Word 2 : 7
Word 3 : 0
_Cord 4 : 7
Werd 5 = 0
Word 6 : 7

2.3.1.2 PCDB (TABLE)

Description

Plot Control Data Table

Table Femat

Record

9

l

_+I

Table Tra_ler

°,lords i through 3 are zero
_!_rd 4 = 7777
lerd 5 and ':erd 6 are zero

for the structure plotter.

Item

i;eader record

The data here is the XRCARD translation of the Structure Plotter

Packet cards in tile Case Control Deck (See Subroutine Description
for XRCARD). There is one record for each physical card.

End-of-file

2.3-3

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.1.3 XYCDB (TABLE)

Description

XY Output Control Data Block.

Record one contains the subroutine IFPIXY interpretations of the XY plot outDut request
case control data cards. Record two contains an N by 6 matrix stored by rows and sorted such that
the columns are in sort left to right. N is the total number of combinations specified by the
XY-plot-request case control data cards.

Table Format

Record Word Type Item

0 Header record

1 l-Last Mixed IFPIXY interpretations of the XY-output-requests,
translated for rapid processing by the XYTRAN
module.

1 I Subcase number (0 implies all)

2 I Vector request type #repeats

3 I Point or element ID >for all4 I Comnonent

5 I XY output type _rows
6 -I Destination code

Notes

l °

Vector request type

1 = Displacement
2 = Velocity
3 = Acceleration
4 = Single-point forces of constraint
5 = Load
6 = Stress
7 = Force

8 = Adisplacement
9 = Avelocity

I0 = Aacceleration
II = Nonlinear Force

2.

XY output type I 1 = Response
2 = PSDF
3 = AUT_

3.

Destination code =

1 = Print
2 = Plot

3 = Print, plot
4 = Punch

5 = Print, punch
6 = Plot, punch
7 = Print, plot, nunch

4. Either of records 1 and 2 may be null, however they will always exist.

Table Trailer

Words I-5 = nonzero
Word 6 = one

2.3-4

DATA BLOCK DESCRIPTIONS

2.3.2 Data Blocks Output From Module IFP.

Module IFP (Input File Processor, part of the NASTRAN Preface) processes the Bulk Data Deck

sorted by module XS_RT and writes the following data blocks that appear in one or more Rigid

Formats: GE_MI, GEOM2, GEOM3, GEOM4, EPT, MPT, DIT, EDT, DYNAMICS, MATPOOL. Each of these data

blocks has the usual 2-word BCD header record.

Each data block contains bulk data card images or modified card images of a subset of bulk

data card types. Each logical record of each of the above data blocks contains all the data of a

particular card type. If a card type is not present in the Bulk Data Deck, there is no record.

For each card type present, 3 words are written as header information for the record. Then for

every logical bulk data card of that type in the Bulk Data Deck, a card image or a modified card

image is written sequentially in the record. Following the last data record, a final three word

record is written; the data values are all 65535.

The first two words of the header information of each record are used by entry point LOCATE

of subroutine PREL_C. The third word of the header information is the card number used by the IFP

programmer to reference tables internal to the IFP module.

LBCATE is used by routines that wish to read data blocks output by the IFP. The second word

of the header information portion of each record corresponds to a bit position in a 96-bit, 6-word

data block trailer, each word containing 16 bits. If a routine requests LBCATE to locate (position)

the file to) a particular card type, LOCATE will determine if the card type is present by interro-

gating the corresponding bit in the trailer, the bit number having been supplied through the calling

sequent to LOCATE. If the bit is zero, the card type is not present and LBCATE executes a non-

standard RETURN. If the bit is one, the card type is present and L_CATE uses the first word of the

header information, also supplied through the calling sequence, to find the proper logical record

(card type).

Since the Bulk Data Deck is sorted alphabetically before IFP processes it, and since IFP

processes the deck sequentially, the order of the card types in each data block is alphabetical.

It should be noted that when two trailer bit numbers are given in the description for a card type,

this implies that: (1) the card is a "multi-entry" card type (more than one logical card on one

physical card, e.g., CELAS3, CELAS4, CROD, CTUBE); (2) these card types may or may not be sorted

with respect to the primary field, in the above examples element identification; and (3) a module

2.3-5 (8/I/72)

DATA BLOCK AND TABLE DESCRIPTIONS

accessing these card types must know whether or not they are in sort. If they are in sort, the

second bit number is set to I; if they are not in sort, the second bit number is set to O.

Card type formats correspond to a typical card entry in the logical record allocated to a

card type. A number (literal) in a card type format implied that the IFP has placed this number

in its output buffer before writing the information on the file and that this number is not on the

bulk data card itself. The mnemonics used in the card type formats correspond to the mnemonics

in the bulk data card section of the NASTRAN User's Manual. It is advised that anyone using the

information on the following pages secure a copy of this section of the User's Manual for cross

reference purposes.

IFP also generates the AXIC and F_RCE data blocks, the Parameter Value Table (PVT) and writes

Direct Matrix Input (DMI) and Direct Table Input (DTI) cards on the Data Pool File. The AXlC data

block, whose presence implies a conical shell (a unique structural element) problem solution, a

hydroelastic analysis problem, or an acoustic problem, is processed by the Preface modules IFP3,

IFP4 and IFP5. The PVT, which is an Executive Table and is documented in Section 2.4, contains

the names and values of all parameters input by means of the PARAM bulk data card. The PVT is

written on the Problem Tape. Each DMI in the Bulk Data Deck is output on the Data Pool File in

NASTRAN packed matrix format and is indistinguishable from any matrix data block pooled by the

XSFA, that is, a matrix trailer is written on the last logical record of the data block. IFP also

stores the name of each DMI on the DPL (see Section 2.4). Similarly, each DTI is output on the

Data Pool File, a table trailer is written, and the name of the DTI is stored in the QPL.

The preface modules IFP3, IFP4, and IFP5 also will generate some of the data on the data

blocks output from IFP. These modules are used to process data cards written by IFP and replace

them with equivalent data blocks. For instance, data card CFLUID2 is initially placed on data

block AXlC by the IFP module. The IFP3 module will generate CFLUID2 elements and add them to

data block GERM2.

2.3-6 (8/I/72)

DATABLOCKDESCRIPTIONS

2.3.2.1 GEOMI(TABLE)

Card Types and Header Information:

Header Word 1 Header Word 2

Card Type Card Type Trailer Bit Position

Header Word 3
Internal Card Number

blank 0 0 89
ADUMI 0 0 3
ADUM2 0 0 32
ADUM3 0 0 51
ADUM4 0 0 88
ADUM5 0 0 99
ADUM6 0 0 I00
ADUM7 0 0 I01
ADUM8 0 0 103
ADUM9 0 0 106

C_RDIC 1701 17 6
CORDIR 1801 18 5
C_RDIS 1901 19 7
C_RD2C 2001 20 9
C@RD2R 2101 21 8
CBRD2S 2201 22 I0
GRDSET 0 0 2
GRID 4501 45 1

_FQ_p _nl r_ 4

Card Type Formats:

Blank cards are not written.

ADUMi cards are not written. Rather, the contents are coded and stored in words 46-54

of /SYSTEM/ .

CORDIC (6 words) ClD 2 I
G1 G2 G3

CORDIR (6 words) ClD 1 1
G1 G2 G3

CORDIS (6 words) CID 3 1
G1 G2 G3

CORD2C (13 words) CID 2 2

RID A1 A2
A3 B1 B2

B3 C1 C2

C3

CORD2R (13 words) ClD 1 2
RID A1 A2
A3 B1 B2
B3 C1 C2
C3

CORD2S (13 words) CID 3 2
RID A1 A2
A3 B1 B2
B3 Cl C2
C3

2.3-7 (811172)

DATA BLOCK DESCRIPTIONS

2.3.2.1 GEOMI (TABLE)

Card Types and Header Information:

Header Word l Header Word 2

Card Type Card Type Trailer Bit Position

Header Word 3
Internal Card Nu_er

blank 0 0 89
ADUMI 0 0 3
ADUM2 0 0 32
ADUM3 0 0 51
ADUM4 0 0 88
ADUM5 0 0 99
ADUM6 0 0 lO0
ADUM7 0 0 lOl
ADUM8 0 0 I03
ADUM9 0 0 I06

CORDIC 1701 17 6
CORDIR 1801 18 5
CORDIS 1901 19 7
C_RD2C 2001 20 9
C_RD2R 2101 21 8
C_RD2S 2201 22 lO
GRDSET 0 0 2
GRID 4501 45 l
SEQGP 5301 53 4

Card Type Formats:

Blank cards are not written.

ADUMi cards are not written. Rather, the contents are coded and stored in words 46-54
of /SYSTEM/ .

CORDIC (6 words) CID 2 1
G1 G2 G3

CORDIR (6 words) CID 1 1
G1 G2 G3

CORDIS (6 words) CID 3 1
G1 G2 G3

CORD2C (13 words) CID 2 2
RID Al A2
A3 Bl B2
B3 Cl C2
C3

CORD2R (13 words) CID l 2
RID Al A2
A3 Bl B2
B3 Cl C2
C3

CORD2S (13 words) CID 3 2
RID Al A2
A3 Bl B2
B3 Cl C2
C3

2.3-7 (811172)

DATA BLOCK AND TABLE DESCRIPTIONS

Card Type Formats Cont'd.:

The GRDSET card is not written. Rather, the contents are stored locally for use

when processing the GRID cards.

GRID (8 words) ID CP Xl
X2 X3 CD

PS F_

If a GRDSET card is present, and if any of fields 3, 7, or 8 of any GRID card are blank,
IFP will insert corresponding data fields from the GRDSET card. Only one GRDSET card may appear
in the Bulk Data Deck.

SEQGP (2 words) ID SEQID

2.3-7a (8/I/72)

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.2.2 GERM2 (TABLE)

Card Types and Header Information:

Header Word 1

Card Type Card Type

Header Word 2
Trailer Bit Position

Header Word 3
Internal Card Number

*Generated by IFP3, IFP4 or IFP5.

2.3-8 (8/I/72)

BAR_R 0 0 179
CAXlF2 2108 21 224
CAXlF3 2208 22 225
CAXIF4 2308 23 226
CBAR 2408 24 180
CDAMPI 201 2 69
CDAMP2 301 3 70
CDAMP3 401 4,92 71
CDAMP4 501 5,89 72
CDUMI 6108 61 107
CDUM2 6208 62 108
CDUM3 6308 63 109
CDUM4 6408 64 II0
CDUM5 6508 65 111
CDUM6 6608 66 112
CDUM7 6708 67 113
CDUM8 6808 68 114
CDUM9 6908 69 115
CELASI 601 6 73
CELAS2 701 7 74
CELAS3 801 8,91 75
CELAS4 901 9,88 76
CFLUID2 8515 85 O*
CFLUID3 8615 86 O*
CFLUID4 8715 87 O*
CHBDY 4208 42 232
CHEXAI 5708 57 219
CHEXA2 5808 58 220
CMASSI I001 I0 65
CMASS2 II01 II 66

CMASS3 1201 12,93 67
CMASS4 1301 13,90 68
CMFREE 2508 25 O*
C@NMI 1401 14 63
C@NM2 1501 15 64
C@NR@D 1601 16 47
CQDMEM 2601 26 60
CQDPLT 2701 27 59
CQUADI 2801 28 57
CQUAD2 2901 29 58
CR_D 3001 30,96 48
CSHEAR 3101 31 61
CSL_T3 4408 44 227
CSL@T4 4508 45 228
CTETRA 5508 55 217
CT_RDRG 1908 19 104
CTRAPRG 1808 18 80
CTRBSC 3201 32 54
CTRIAI 3301 33 52
CTRIA2 3401 34 53
CTRIARG 1708 17 79
CTRMEM 3501 35 56
CTRPLT 3601 36 55

CTUBE 3701 37,95 49

DATABLOCKDESCRIPTIONS

CardTypesandHeaderInformationCont'd.:
Header Word 1

Card Type Card Type

Header Word 2
Trailer Bit Position

Header Word 3
Internal Card Number

CTWIST 3801 38 62

CVISC 3901 39,94 50
CWEDGE 5608 56 218

GENEL 4301 43 28

PLOTEL 5201 52,87 II

SPOINT 5551 49 I05

Card Type Formats:

The BAR_R card is not written.
processing the CBAR cards.

Rather, the contents are stored locally for use when

CAXlF2 (6 words) EID G1 G2
RHO B N

CAXIF3 (7 words) EID G1 G2
G3 RHO B
N

CAXlF4 (8 words) EID G1 G2
G3 G4 RHB

B N

_D D_A,, (16 words) EID PID GA
GB Xl X2
X3 F PA
PB ZIA Z2A
Z3A ZIB Z2B
Z3B

If a BARBR card is present in the Bulk Data Deck, any if any of the fields 3, 6, 7, 8, 9 of
any CBAR card are blank, IFP will insert the corresponding data fields from the BARBR card. Only
one BAROR card may appear in the Bulk Data Deck.

CDAMPI (6 words) EID PID G1
G2 Cl C2

CDAMP2 (6 words) EID B G1
G2 C1 C2

CDAMP3 (4 words) EID PID S1
$2

CDAMP4 (4 words) EID B S1
$2

CDUMi (variable number of words, depending on the contents of the ADUMi card)

CELASI (6 words) EID PID G1
G2 C1 C2

CELAS2 (8 words) EID K G1
G2 C1 C2
GE S

CELAS3 (4 words) EID PID S1
$2

2.3-9 (8/I/72)

CardTypeFormatsCont'd.:

CELAS4(4 words)

CFLUID2(6 words)

CFLUID3(7 words

CFLUID4(8 words

CHBDY(8 words)

CHEXAI(I0 words

CHEXA2(I0 words

CMASSl(6 words)

CMASS2(6 words)

CMASS3(4 words)

CMASS4(4 words)

CMFREE(5 words)

C_NMI(24words)

CONM2(13words)

C_NROD(8 words)

DATABLOCKANDTABLEDESCRIPTIONS

EID K S1
S2

EID S1 $2
p B N

EID S1 $2
$3 p B
N

EID S1 $2
$3 $4 p
B N

EID FLAG H
AF G1 G2
G3 G4

EID MID G1
G2 G3 G4
G5 G6 G7
G8

EID MID G1
G2 G3 G4
G5 G6 G7
G8

EID PID G1
G2 Cl C2

EID M G1
G2 Cl C2

EID PID S1
S2

EID M S1
$2

EID Sl $2
y N

EID G ClD
MII M21 M22
M31 M32 M33
M41 M42 M43
M44 M51 M52
M53 M54 M55
M61 M62 M63
M64 M65 M66

EID G ClD
M X1 X2
X3 III 121
122 131 132
133

EID G1 G2
MID A J
C NSM

2.3-10(8/I/72)

Card Type Formats Cont'd.:

CQDMEM (7 words)

CQDPLT (7 words)

CQUADI (7 words)

CQUAD2 (7 words)

DATA BLOCK DESCRIPTIONS

EID PID

G2 G3
TH

EID PID

G2 G3
TH

EID PID

G2 G3
TH

EID PID

G2 G3

TH

CR_D (4 words) EID PID
G2

CSHEAR (6 words) EID PID

G2 G3

CSL_T3 (8 words) EID Gl

G3 RH_
M N

CSLOT4 (9 words)

CTETRA (6 words)

CT_RDRG (7 words)

CTRAPRG (7 words)

Gl

G4

Gl

G4

G1

G4

G1

G4

Gl

Gl

G4

G2

B

EID G1 G2

G3 G4 RH_
B M N

EID MID Gl

G2 G3 G4

EID PID

G2 Al

0

EID Gl
G3 G4

MID

Gl

A2

G2

TH

2.3-II (811172)

CTRBSC (6 words) EID PID Gl
G2 G3 TH

CTRIAI (6 words) EID PID Gl
G2 G3 TH

CTRIA2 (6 words) EID PID Gl
G2 G3 TH

CIRIARG (6 words) EID Gl G2
G3 TH MID

CTRMEM (6 words) EID PID Gl
G2 G3 TH

CTRPLT (6 words) EID PID Gl
G2 G3 TH

CTUBE (4 words) EID PID Gl
G2

DATA BLOCK AND TABLE DESCRIPTIONS

Card Type Formats Cont'd.:

CTWIST (6 words)

CVISC (4 words)

CWEDGE (8 words)

GENEL (open ended)

PL_TEL (3 words)

SP_INT (I word)

EID PID G1
G2 G3 G4

EID PID G1
G2

EID MID G1
G2 G3 G4
G5 G6

EID UII Cll
UI2 C12 •
uIM ClM ii
M UDI CDI
UD2 CD2 •
UDN CDN ii
N ZII Z21
Z22 Z31 Z32
Z33 ZMM
, _ii s12

SIN S21
i5_ s2,
... 66i s,2
... SMN

EID Gl G2

ID

2.3-12 (8/I/72)

DATA BLOCK DESCRIPTIONS

2.3.2.3 GEOM3 (TABLE)

Card Types and Header Information:

Header Word 1 Header Word 2

Card Type Card Type Trailer Bit Position

F_RCE 4201
F_RCE] 4001
F_RCE2 4101
GRAV 4401
LOAD 4551
MOMENT 4801
M_MENTI 4601
MBMENT2 4701
PLOAD 5101
PLOADI* 6909
PLOAD2 6802
QHBDY 4309
RFORCE 5509
SLOAD 5401
TEMP 5701
TEMPD 5641
TEMPPI 8109
TEMPP2 8209
TEMPP3 8309
TEMPRB 8409

42
40
41
44
61
48
46
47
51
69
68
43
55
54
57
65
81
82
83
84

Header Word 3
Internal Card Nu_er

18
20
22
26
84
19
21
23
24

198
199
233
190
25
27
98

201
202
203
204

Card Type Forn_ts:

FORCE (7 words)

FORCE1 (5 words)

F_RCE2 (7 words)

GRAV (6 words)

LOAD (open ended)

MBMENT (7 words)

MOMENTI (5 words)

M_MENT2 (7 words)

SID
F
N3

SID
Gl

SID
Gl
G4

SID
Nl

SID
Ll

,,.

-I

SID
M
N3

SID
Gl

SID
G1
G4

G
N1

G
G2

G
G2

CID
N2

S
$2
S
n

-I

G
Nl

G
G2

G
G2

CID
N2

F

F
G3

G
N3

Sl
L2

Ln

CID
N2

M

M
G3

2.3-13 (811/72)

DATA BLOCK AND TABLE DESCRIPTIONS

Card Type Formats Cont'd.:

PLEAD (6 words) SID P G1
G2 G3 G4

PLBADI* Not available

PLEAD2 (3 words) SlD P

QHBDY (8 words) SID
AF
G3

FLAG
G1
G4

RFORCE (7 words) SID G
A N1
N3

SLBAD (3 words) SID

TEMP (3 words') SID

TEMPD (2 words) SlD T

TEMPPI (6 words) SID
T'

EID
T1

TEMPP2 (8 words) SID
MX
T1

EID
MY
T2

TEMPP3 (24 words) SID
TO
Z2
T3
Z5
T6
Z8
T9

EID
Z1
T2
Z4
T5
Z7
T8
ZIO

TEMPRB (16 words) SID
TB
T'2a
TDa
TCb
TFb

EID
T'la
T'2b
TEa
TDb

EID

QO
G2

ClD
N2

F

T

T
T2

T
MXY

ZO
T1
Z3
T4
Z6
T7
Z9
TIO

TA
T'Ib
TCa
TFa
TEb

2.3-14 (811/72)

DATABLOCKDESCRIPTIONS

2.3.2.4 GEOM4(TABLE)

Card Txpes and Header Infomation:

Header Word 1

Card Type Card Type
Header Word 2

Trailer Bit Position
Header Word 3

Internal Card Number

ASET 5561 76 215
ASETI 5571 77 216
MPC 4901 49 17
MPCADD 4891 60 83
BMIT 5001 50 15
OMIT1 4951 63 92
SPC 5501 55 16
SPCI 5481 58 12
SPCADD 5491 59 13
SUPORT 5601 56 14
UISET II0 41 167
UISETI III0 II 176
U2SET 210 2 168
U2SETI 1210 12 177
U3SET 310 3 169
U3SETI 1310 13 178
U4SET 410 4 170
U4SETI 1410 14 186
U5SET 500 5 171
U5SETI 1510 15 187
U6SET 610 6 172
U6SETI 1610 I0 188
U7SET 710 7 173
U7SETI 1710 17 192
U8SET 810 8 174
U8SETI 1810 18 193
U9SET 910 9 175
U9SETI 1910 19 194

Card Type Formats:

ASET (2 words) ID C

The note below concerning the _MIT card applies to the ASET card as well.

ASETI (open ended)

MPC (open ended)

MPCADD (open ended)

OMIT (2 words)

C G G
... G -l

SID G C
A G C
A G
C A'" -I
-I -I

SID S1 $2
... S -I

n

ID C

Components can be input in any unique combination of digits I-6.
and one digit, the digits for any one entry being in sort.

Example: ID C
12 3516

Output format will be ID

2.3-15 (811172)

CardTypeFormatsCont'd.:

Outputas:

_MITI(openended)

SPC(4 words)

SPCl(openended)

SPCADD (open ended)

DATA BLOCK AND TABLE DESCRIPTIONS

SUP_RT (2 words)

The note above concerning the _MIT card applies to the

UISET (2 words) ID C

The note above concerning the _MIT card applies to the

UISETI (open ended) C G
.. G

U2SET (2 words) ID C

The note above concerning the _M!T card applies to the

U2SETI (open ended) C G
.. G

U3SET (2 words) ID C

The note above concerning the _MIT card applies to the

U3SETI (open ended) C G
.. G

U4SET (2 words) ID C

The note above concerning the BMIT card applies to the

U4SETI (open ended) C G
.. G

U5SET (2 words) ID C

The note above concerning the _MIT card applies to the

U5SETI (open ended) C G
.. G

U6SET (2 words) ID C

The note above concerning the BMIT card applies to the

U6SETI (open ended) C G
.. G

12 1 12
3 12 5
12 6

C G G
• .. G -I

SID G C
D

SID C G1

G2 ... Gn
-I

SID S1 S2
... S -I

n

ID C

SUP_RT card as well.

UISET card as well.

G

-l

U2SET card as well.

G
-I

U3SET card as well.

G
-I

U4SET card as well.

G
-I

U5SET card as well.

G
-I

U6SET card as well.

G
-I

2.3-15a (8/I/72)

DATA BLOCK DESCRIPTIONS

Card Type Formats Cont'd.:

U7SET (2 words) ID C

The note above concerning the _MIT card applies to the UTSET card as well.

UTSETI (open ended) C G G
... G -I

U8SET (2 words) ID C

The note above concerning the _MIT card applies to the U8SET card as well.

U8SETI (open ended) C G G
... G -I

U9SET (2 words) ID C

The note above concerning the _MIT card applies to the U9SET card as well.

U9SETI (open ended) C G G
... G -I

2.3-15b (811/72)

DATABLOCKANDTABLEDESCRIPTIONS

2.3.2.5 EPT(TABLE)

Card Types and Header Information:

Header Word 1 Header Word 2

Card Type Card Type Trailer Bit Position

Header Word 3
Internal Card Number

PBAR 52 20 181

PC@NEAX 152 19 147
PDAMP 402 2 45
PDUMI 6102 61 116
PDUM2 6202 62 117
PDUM3 6302 63 118
PDUM4 6402 64 159
PDUM5 6502 65 160
PDUM6 6602 66 161
PDUM7 6702 67 163
PDUM8 6802 68 164
PDUM9 6902 69 165
PELAS 302 3 46
PMASS 402 4 44

PQDMEM 502 5 41
PQDPLT 602 6 40
PQUADI 702 7 38
PQUAD2 802 8 39
PR@D 902 9 29
PSHEAR 1002 I0 42

PT_RDRG 2102 21 121
PTRBSC 1102 II 35
PTRIAI 1202 12 33
PTRIA2 1302 13 34
PTRMEM 1402 14 37
PTRPLT 1502 15 36
PTUBE 1602 16 30
PTWIST 1702 17 43
PVISC 1802 18 31

Card Type Formats:

PBAR (19 words)

PCBNEAX (24 words)

PID
II
NSM
C2
El
F2
112

ID
MID2
T2
Z2
PHI3
PHI6
PH19
PHIl2

PID

MID
12
FE
D1
E2
K1

MID1
I
NSM
PHIl
PHI4
PHI7
PHILO
PHIl3

PDAMP (2 words)

A
J
Cl
D2
F1
K2

T1
MID3
Z1
PHI2
PHI5
PHI8
PHIl1
PHIl4

2.3-16 (8/I/72)

DATA BLOCK DESCRIPTIONS

Card Type Fomats Cont'd.:

PDUMi (variable nu_er of words, depending on the contents of the ADUMi card)

PELAS (4 words) PID K GE
S

PMASS (2 words) PID M

PQDMEM (4 words) PID MID
NSM

T

PQDPLT (8 words). PID MIDI
MID2 T
Zl Z2

I
NSM

PQUADI (lO words) PID MIDI Tl
MID2 I MID3
T3 NSM Zl
Z2

PQUAD2 (4 words) PID MID
NSM

PROD (6 words) PID MID A
J C NSM

ncurAn f_ J-_ PiD MID
NSM

PT_RDRG (4 words) PiD MID
TF

TM

PTRBSC (8 words) PID MIDI
MID2 T
Zl Z2

I
NSM

PTRIAI (lO words) PID MIDI Tl
MID2 I MID3
T3 NSM Zl
Z2

PTRIA2 (4 words) PID MID
NSM

T

PTRMEM (4 words) PID MID
NSM

PTRPLT (8 words) PID MIDI
MID2 T2
Zl Z2

I
NSM

PTUBE (5 words) PID MID
T NSM

_D

PTWIST (4 words) PID MID
NSI4

PVISC (3 words) PID C1
C2

2.3-17 (811172)

DATA BLOCK AND TABLE DESCRIPTIONS

THE INFORMATION FORMERLY ON THIS PAGE

HAS BEEN DELETED

2.3-18 (8/I/72)

DATABLOCKDESCRIPTIONS

THEINFORMATIONFORMERLYONTHISPAGE

HASBEENDELETED

2.3-19(811172)

DATABLOCKANDTABLEDESCRIPTIONS

2.3.2.6 MPT(TABLE)

Card Types and Header Information:

Header Word 1

Card Type Card Type

Header Word 2
Trailer Bit Position

Header Word 3
Internal Card Number

DSFACT 53 I0 143
MAT1 103 1 77
MAT2 2O3 2 78
MAT3 1403 14 122
MAT4 2103 21 234
MAT5 2203 22 235
MATS1 503 5 90
MATT1 703 7 91
MATT2 803 8 102
MATT3 1503 15 189
PLFACT 1103 II 185

Card Type Formats:

DSFACT (open ended)

MAT1 (II words)

If any one of E, G or NU is blank, i
otherwise, values supplied by the user wi

MAT2 (16 words)

MAT3 (16 words)

MAT4 (3 words)

MAT5 (8 words)

MATS1 (II words)

MATT1 (II words)

SID B1 B2
... B -I

n

MID E G
NU RH_ A
TREF GE ST
SC SS

t will be computed to satisfy the identity E = 2 (I+NU)G;
II be used.

MID GII GI2
GI3 G22 G23

G33 RH_ A1
A2 AI2 TO
GE ST SC
SS

MID EX EY
EZ NUXY NUYZ
NUZX RH_ GXY
GYZ GZX AX
AY AZ TREF
GE

MID K 0

MID KXX
KXZ KYY
KZZ 0

KXY
KYZ

MID R1
R3 R4
RIO

R2

MID R1
R3 R4
RIO

R2

°°°

2.3-20 (8/I/72)

DATABLOCKDESCRIPTIONS

CardTypeFormatsCont'd.:

MATT2(16words)

MATT3 (16 words)

PLFACT (open ended)

MID
R3
RI5

MID
R3
RI5

SlD

°°,

R1
R4

R1
R4

B1

Bn

R2

°o°

R2

°°°

B2

-I

2.3-20a (8/I/72)

DATA BLOCK DESCRIPTIONS

2.3.2.7 DIT (TABLE)

Card Types and Header Information:

Header Word 1 Header Word 2

Card Type Card Type Trailer Bit Position

Header Word 3
Internal Card Number

TABDMPI 15 21 162
TABLEDI ll05 ll 133
TABLED2 1205 12 134
TABLED3 1305 13 140
TABLED4 1405 14 141
TABLEMI 105 1 93
TABLEM2 205 2 94
TABLEM3 305 3 95
TABLEM4 405 4 96
TABLESI 3105 31 97
TABRNDI 55 25 191

Card Type Formats:

TABDMPI (open ended)

TABLEDI (open ended)

TABLED2 (open ended)

TABLED3 (open ended)

TABLED4 (open ended)

ID
0
0

gl
°,o

-I

ID
0
0

Yl
o..

-l

ID
0
0

Yl
.,.

-l

ID
0
0

Yl

-l

ID
X3
0

AI
A
n

0
0
0

f2

fn

-l

0
0
0

X2

X
n
-l

X1
0
0

X2

X
n

-l

Xl
0
0

X2

X
n

-l

Xl
X4
0

A2
-l

0
0
fl

g2
Q.
-fl

0
0

xl

Y2

Yn

0
0

x1

Y2

Yn

X2
0

x1

Y2

Yn

X2
0

Ao
...

2.3-21 (8/I/72)

DATA BLOCK AND TABLE DESCRIPTIONS

Card Type Formats Cont'd.:

TABLEMI (open ended)

TABLEM2 (open ended)

TABLEM3 (open ended)

TABLEM4 (open ended)

TABLESl (open ended)

TABRNDI (open ended)

ID 0
0 0
0 0
Yl ,x2
• .° X

n

-I -I

ID Xl
0 0
0 0
Yz x2

• °* X
n

-1 -1

ID Xl
0 0
0 0
Yl x2

°°, X
n

-I -I

ID X1
X3 X4
0 0
AI A2
A -I

n

ID 0
0 0
0 0
Yl x2

• °o X

n

-I -I

ID 0
0 0
0 0
gl f2
..° f

n
-I -I

0
0
Xl

Y2

Yn

0
0

Xl

Y2

Yn

X2
0

Xl

Y2

Yn

X2
0

Ao
,°,

0
0
Xl

Y2

Yn

0
0
fl

g2

gn

2.3-22 (8/I/72)

DATA BLOCK DESCRIPTIONS

THE INFORMATION FORMERLY ON THIS PAGE

HAS BEEN DELETED

2.3-23 (8/I/72)

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.2.8 EDT (TABLE)

Card Types and Header Information:

Header Word 1

Card Type Card Type

DEFORM 104 1

Header Word 2
Trailer Bit Position

Card Type Formats:

DEFORM (3 words) SID EID D

Header Word 3
Internal Card Number

81

2.3-24 (8/I/72)

DATA BLOCKDESCRIPTIONS

2.3.2.9 DYNAMICS(TABLE)

Card Types and Header Information:

Header Word 1
Card Type Card Type

Header Word 2
Trailer Bit Position

Header Word 3
Internal Card Number

DAREA 27 17 182
DELAY 37 18 183
DL_AD 57 5 123
DPHASE 77 19 184
EIGB I07 l 86
EIGC 207 2 87
EIGP 257 4 158
EIGR 307 3 85
EP_INT 707 7 124
FREQ 1307 13 126
FREQI I007 lO 125
FREQ2 ll07 II 166
NOLINI 3107 31 127
N_LIN2 3207 32 128
NBLIN3 3307 33 129
N_LIN4 3407 34 130
RANDPS 2107 21 195
RANDTI 2207 22 196
RANDT2* 2307 23 197
RL_ADI _I_,0, 51 i3l
RL_AD2 5207 52 132
SEQEP 5707 57 135
TF 6207 62 136
TIC 6607 66 137
TL_ADI 7107 71 138
TLBAD2 7207 72 139
TSTEP 8307 83 142

Card Type Formats:

DAREA (4 words)

DELAY (4 words)

DL_AD (open ended)

PHASE (4 words)

EIGB (18 words)

SID
A

SID
T

SID
L]

,o°

-l

SID
TH

SID
L2
NDN
G
O
0

P

P

S
S2
S

n

-I

P

METH{_D(2 words)
NEP
E
C
0

C

C

S1
L2
L

n

C

L1
NDP
N(_RM(2 words)
0
0

2.3-25 (8/I172)

DATA BLOCK AND TABLE DESCRIPTIONS

Card Type Formats Cont'd.:

EIGC (open ended)

EIGP (4 words)

EIGR (18 words)

EP@INT (I word)

FREQ (open ended)

FREQI (4 words)

FREQ2 (4 words)

N_LINI (8 words)

N_LIN2 (8 words)

N_LIN3 (8 words)

N_LIN4 (8 words)

RANDPS (6 words)

SlD METHOD (2 words) NORM (2 words)
G C E

mal Coal mbl

_b I _l Nel

Ndl ma2 _a 2

C_D2 Cob2 _2

Ne2 Nd2 ...

man Coan abn

Cobn Ln Nen

Ndn -I -I

-I -I -I
-I -I

SID
M

SID
F2
NZ
G
0
0

ID

SID
F
-I

SID
NDF

SID
NF

SID
S
T

SID
S
GK

SID
S
A

SID
S
A

SID
X

m co

METHOD (2 words) F1
NE ND
E NBRM (2 words)
C 0
0 0

F F
• . . F

F1

F1

GI
GJ
0

GI
GJ
CK

GI
GJ
0

GI
GJ
0

DF

F2

CI
CJ

CI
CJ

CI
CJ

CI
CJ

K
TID

2.3-26 (811172)

DATABLOCKDESCRIPTIONS

CardTypeFormatsCont'd.:

RANDTI(4 words)

RANDT2*Notavailable

RLBADI(6 words)

RL_AD2(6 words)

SEQEP(2 words)

TF(openended)

TIC(5 words)

TLBADI(5 words)

TL_AD2(I0 words)

TSTEP(openended)

SID N
TMAX

SID

N

SID

N

ID

SID

BO

G(1)
AI(1)

c(2)
A2(2)
C(N)
A2(N)
-I

SID
UO

SID
0

SID
0
F
B

SID
N_(1)

N0(2)
DT(N)
-I

L
TC

L
TB

SEQID

GD
B1

C(1)
A2(1)
AO(2)

i6iN)
-I
-I

G
VO

L
TF

L
T1
P

N(1)

N(2)

-1

TO

M
TD

M
TP

CD
B2
AO(1)

G(2)

AI(2)
G(N)

AI(N)
-l
-l

C

M

M

T2
C

DT(1)
DT(2)
N(N)
-I

2.3-27 (8/I 172)

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.2.10 MATP_BL (TABLE)

Card Types and Header Information:

Header Word 1

Card Type Card Type

Header Word 2
Trailer Bit Position

Header Word 3
Internal Card Number

DMIAX 214 2 221
DMIG 114 1 120
BNDFL 9614 96 0"*

Card Type Formats:

DMIAX (open ended)

GJ CJ

NAME (2 words) 0 IF_
0 0 0

NJ GI CI NI
GI Cl NI

-I -I -I

TIN TBUT

I Header Informa-
tion for the

matrix (9 words)

vIV*

Non-zero terms of the

_. _ first non-zero column

J End of column indicators

GJ CJ NJ GI Cl NI V*
GI CI NI V*

-I -I -I

Non-zero terms of the
second non-zero column

End of column indicators

GJ CJ NJ GI Cl NI V*
GI Cl NI V*

-l -l

-l -l -l

*V may be l, 2, or 4 words depending on TIN.

I Non-zero terms of the
last non-zero column

End of column indicators

End of matrix indicators

**Generated by IFP3, IFP4 or IFP5.

2.3-28 (8/I/72)

CardTypeFormatsCont'd.:

DMIG(openended)

DATABLOCKDESCRIPTIONS

NAME(2 words) 0 IFB
0 0 0

TIN

GJ CJ GI CI V*
GI CI V*

GJ CJ GI CI V*
GI Cl V*

T_UT HeaderInformation
for the matrix
(9 words)

Non-zerotermsof the
first non-zerocolumn
Endof columnindicators

Non-zerotermsof the
secondnon-zerocolumn

Endof columnindicators

GJ CJ GI CI V*
GI CI V*

-I -I

*V may be I, 2, or 4 words depending on TIN.

BNDFL (open ended)

CSf g p B

M S1 $2 NHARM

NBSYM

N1

Idfl r
S

z

P

G1 @I

G2 @2

G3 @3

-I -I End of data for fluid point

Idf2 r z

s p

Non-zero terms of the

last non-zero column

End of column indicators

I Header Information

•I Fluid point data

I Surface grid point
Id's and azimuth

angles.

Fluid point data

-I

etc.
-I -I End of Record

2.3-28a (8/I/72)

DATA BLOCKDESCRIPTIONS

2.3.2.11 AXIC (TABLE)

Card Types and Header Information:

Header Word l

Card Type Card Type.

Conical Shell

Header Word 2
Trailer Bit Position

Header Word 3
Internal Card Nu_er

AXIC 515 5 144

CC_NEAX 2315 23 146
F_RCEAX 2115 21 156
M_MAX 3815 38 157
MPCAX 4015 40 149
BMITAX 4315 43 150
P_INTAX 4915 49 152
PRESAX 5215 52 154
RINGAX 5615 56 145
SECTAX 6015 60 153
SPCAX 6215 62 148
SUPAX 6415 64 151
TEMPAX 6815 68 155

Hydroelastic

AXIF 8815 88 212
BDYLIST 8915 89 213
CFLUID2 85_5 _b 209
CFLU!D3 8615 86 210
CFLUID4 8715 87 211
FLSYM 9115 91 222
FREEPT 9015 90 214
FSLIST 8215 82 206
GRIDB 8115 81 205
PRESPT 8415 84 208
RINGFL 8315 83 207

II
12
13
14

Acoustic Cavity

AXSLOT 1115
GRIDF 1215
GRIDS 1315
SLBDY 1415

223
229
230
231

Card Type Fomats:

Conical Shell

AXIC (2 words)

CCONEAX(4 words)

F_RCEAX(8 words)

MBMAX(8 words)

ID
RB

SID
HID2
FP

SID
HID2
MP

0

PID

RID
S
FZ

RID
S
MZ

RA

HIDI
FR

HIDI
MR

2.3-29 (8/I/72)

• II

DATA BLOCKANDTABLE DESCRIPTIONS

Card Type Formats Cont'd.:

MPCAX (open ended) SID RID HID
C A RID
HID C A

• RID HID
C" A -l

-l -l -l

OMITAX (3 words) RID HID C

POINTAX (3 words) ID RID PHI

PRESAX (6 words) SID P RIDI
RID2 PHIl PHI2

RINGAX (4 words) ID R Z
C

SECTAX (5 words) ID RID R
PHIl PHI2

SPCAX (5 words) SID RID HID
C V

SUPAX (3 words) RID HID C

TEMPAX (4-words) SID RID PHI
TEMP

Hxdroelastic

AXIF (open ended)

BDYLIST (open ended)

CFLUID2 (5 words)

CFLUID3 (6 words)

CFLUID4 (7 words)

FLSYM (3 words)

FREEPT (3 words)

FSLIST (open ended)

GRIDB (5 words)

CSF
B
N1

RHO
IDF

ID
RH_

ID
IDF

ID
IDF
B

M

IDF

RHO
IDF

ID
PS

G
N_SYM

IDF
°°,•,

IDF
B

IDF
RHO

IDF
IDF

Sl

ID

IDF

°°,••

PHI
IDF

RHO
NHARM
-I

IDF
-I

IDF

IDF
B

IDF
RHO

$2

PHI

IDF
-l

CID

2.3-29a (8/I/72)

CardTypeFormatsCont'd.:

PRESPT(3 words)

RINGFL(4 words)

DATABLOCKDESCRIPTIONS

IDF ID PHI

IDF Xl X2
X3

Acoustic Cavity

AXSL_T (5 words)

GRIDF (3 words)

GRIDS (5 words)

SLBDY (open ended)

RH_
W

IDG

IDG
W

RH_
ID2

..°°o

B
M

R

R
IDF

M

°,°°°

-l

N

Z

Z

IDl

,°o,,

-l

2.3-29b (8/I/72)

DATA BLOCK DESCRIPTIONS

THE INFORMATION FORMERLY ON THIS PAGE

HAS BEEN DELETED

2.3-30 (8/I/72)

DATA BLOCK DESCRIPTIONS

2.3.3 Data Blocks Output From Module GPI

2.3.3.1 GPL (TABLE)

Description

Grid Point List.

First logical record contains a list of external grid and scalar numbers in internal sort.

Second logical record contains pairs of external grid and scalar numbers and sequence
numbers in internal sort.

Table Format

Record Word Item

0 Header record

l l External grid or scalar number
I repeated for each
grid or scalar point
in model

2 l External grid or scalar number _repeated for each
2 Sequence number grid or scalar pointJin model

3 End-o f-fi Ie

r:otes

I. Internal is implied by word position in record one.

2. Sequence number = lO00 * external number unless replaced by a new sequence number
on a SEQGP card.

3. All data words are integers.

Table Trailer

Word 1 = number of external grid points + number of scalar points.

Word 2-6 = zero.

2.3.3.2 EQEXIN (TABLE)

Description

Equivalence between external grid or scalar numbers and internal numbers.

First record contains pairs of external grid and scalar numbers and internal numbers in

external sort. Second logical record contains pairs of external qrid and scalar numbers
and coded SIL numbers in external sort.

2.3-31

DATA BLOCK AND TABLE DESCRIPTIONS

Table Format

Record Word Item

0 Header record

1 1
2

External grid or scalar number
Internal number i repeated for eachgrid or scalar point

in model

2 1
2

External Qrid or scalar number
IO*SIL number + code i repeated for eachgrid or scalar point

in model

3 End-of-file

Notes

I. All data words are integers.

{_ for grid point2. Code = for scalar 9oint

Table Trailer

Word 1 = number of grid points + number of scalar points.

Word 2-6 = zero.

2.3.3.3 GPDT (TABLE)

Description

Grid Point Definition Table.

One logical record contains list of all grid and scalar points with associated coordinate
system and constraint information. List is in internal sort.

Table Format

Record Word Item

0 Header record

Internal number \
Coordinate system ID that defines x, y, z

(X)z (R)/P\ depending ony or e or _ @] defining coordinate
z \ @ / system

Coordinate system ID for displacements
Constraint code

repeated for each
grid or scalar

2 End-of-file

Notes

I. Words 3-5 are single precision floating point; all other words are inteqer.

2. Scalar points are identified by coordinate system ID = -I, and words 3-7 are all zero.

3. See description of the GRID bulk data card in the User's Manual for a definition of the
constraint code.

4. If a single degree of freedom, such as a hydroelastic fluid point, is desired, the
integer -I, is used in position 6.

2.3-32 (ll/I/7O)

DATABLOCKDESCRIPTIONS

Table Trailer

Word 1

Word 2-6

= number of grid points + nu_er of scalar points.

= zero.

2.3.3.4 CSTM (TABLE)

Description

Coordinate System Transformation Matrices.

One logical record contains all coordinate system transformations. Transformation is from

global to basic by the following formulation:

(1) rectangular

Irllr12r13 (il(tl): tr21 r22 r23) + t2

z \r31 r32 r33 / t3

(2) cylindrical

(ilIr11r2r13 (c°s°l_r21r22r2q sin°
\r31 r32 r33 / z

(t)t2

t3

(3) spherical

Ill I rll rl2 r1331 IPp sin e c°s ii

= r21 r22 r2 sin e sin

z \r31 r32 r33/ p cos 0

(tl)t2

t3

Table Format

Record Word Item

0 Header record

l

2

3-5

6-14

Coordinate system ID

! = rectangular
Coordinate system type cylindrical

spherical

tI , t2, t3

rll, rl2, rl3, r21, r22, r23, r31, r32, r33

I repeated

for each

coordinate

system

End-of-file

2.3-33

DATABLOCKANDTABLEDESCRIPTIONS

Notes

I.

2.

Table Trailer

Coordinate system ID and coordinate system type are integers.

t i and rij are single precision floating point.

Word 1 = number of grid points + number of scalar points.

Word 2 = number of coordinate systems.

Word 3-6 : zero.

2.3.3.5 BGPDT (TABLE)

Description

Basic Grid Point Definition Table.

One logical record contains a list of all grid and scalar points in internal sort, with
(for grid points) their x, y, z coordinates in the basic system along with a coordinate
system ID for displacement computations.

Table Format

Record Word Item

0 Header record

1 1 Coordinate system ID _reneated for each
2-4 x, y, z in basic system fqrid or scalar point

2 End-of-file

Notes

I.

2.

Coordinate system ID is integer; x, y, z are single precision, floating point.

Scalar points are identified by coordinate system ID = -I, and x, y, z = O.

Table Trailer

Word 1 = number of grid points + number of scalar points.

Word 2-6 = zero.

2.3-34

DATA BLOCK DESCRIPTIONS

2.3.3.6 SIL (TABLE)

Description

Scalar Index List.

One logical record that contains a list of SIL numbers for each qrid or scalar point.

The list is in internal sort, therefore, internal number is implied by word position
in the record. Definition of SIL numbers is as follows:

Let i = internal number, then

SIL l = l,

_,(SIL.+ 6 if i = grid point
SILi+ l

{SILi + l if i = scalar point

Table Format

2

Notes

Record Word Item

Header record

l SIL 1

n SiL
n

End-of-file

SIL numbers are inteqers.

Table Trailer

Word 1

Word 2

Word 3-6

= number of grid points + number of scalar points.

= degrees of freedom in the g-displacement set.

= zero.

2.3-35

DATABLOCKANDTABLEDESCRIPTIONS

2.3.4 Data Blocks Output From Module GP2

2.3.4.1 ECT (TABLE)

Description

Element Connection Table.

The ECT contains one logical record for each element connection card type that has been
input. Additionally, the ECT cow,rains one logical record for GENEL elements if they have
been input.

Table Format

The ECT is identical in format to data block GERM2, output from module IFP. All
external grid or scalar numbers are replaced by internal numbers. SP_INT data is
not copied on the ECT.

Table Trailer

Identical to trailer on GERM2 data block.

2.3-36

DATA BLOCK DESCRIPTIONS

2.3.5 Data Blocks Output From Module PLTSET

2.3.5.1 PLTSETX (TABLE)

Description

User error messages related to the definition of element plot sets for the structure plotter.

Table Fommat

See the description of the T_ESSAGE table, section 2.3.5.5.

i_ote

PLTSETX is generated in subroutine SETINP.

Table Trailer

Word I-5 = 0
Word 6 : 1

2.3.5.2 PLTPAR (TABLE)

Description

Plot parameters and plot control table.

Table Format

Record Word

0 Header record

l

2

3

etc.

Last End-of-file

Note

! tern

Dunlicate of the plot control data block

(PCDB) created in the IFPI module except
that all plot set definitions have been
deleted.

PLTPAR is generated in subroutine SETINP.

Table Trailer

Word I-5 = 0
Word 6 = 1

2.3.5.3 GPSETS (TABLE)

Description

Grid pcint sets related to the element plet sets.

2.3-37

ii Ill

DATA BLOCK AND TABLE DESCRIPTIONS

Table Format

Record Word I tern

Header record

I-NSETS Element plot set ID's (integer)

2-(NSETS+I) 1

2- (NGP+ 1)

Number of grid points in an element set
Pointers to the grid points in this element set (integers)

1 If : O, the grid point is not in this set
2 If # O, this is an internal index relative to only the grid

points in this element set (if negative, this grid
point is to be excluded when used to draw defonlled
shapes and vectors)

NSETS+2 End-of-file

Notes

I. NSETS = number of element sets
2. NGP = total number of structural grid points
3. GPSETS is generated in subroutines SETINP and CNSTRC

Table Trailer

Word I-5 = 0

Word 6 = l

2.3.5.4 LLSETS (TABLE)

Description

Element plot set connection tables.

Table Format

Record Grou_ Word

Header record

I tern

I-NSETS I-NTYPS 1 ;_umber of grid points per element of a given

element type (integer) Note: If less than 3 or
negative, this element type does not define a

closed area.

Grid point indices relative to all grid points
defining each element of this type (integers)

Integer zero

GSETS+I End-of-file

Notes

I. IqSETS = number of element plot sets
2. NTYPS = numbc-r of element types represented in an element plot set
3. N = number of connection grid points for all elements of a given type in an element

plot set
= (number of grid points per elem, ent of a given type) X

(number of elements of a given type in an element set)
4. ELSETS is generated in subroutine CNSTRC

2.3-38

DATABLOCKDESCRIPTIONS

Table Trailer

'vlordI-5 = 0
iJord 6 = l

2.3.5.5 I.IESSAGE (TAGLE)

Des cri pti on

;lessages to be processed by the message writer module (P_T.._,I). Each _essage may either be a

physical or logical record. This data block is never really created as such, but is included
so as te explain other data blocks such as PL_TXI, PL_TX2, etc., and is referenced in the
Table Formats of these data blocks.

Table Format

Record Word Item

0 Header record

h given logical record in a given physical record can be of _vo alternate forms

A. Record Word Item

J

j l/-_,]_oL/

If = -l, -2, -3, -4, -5, or -6, then the next 32 words is a new
title for the Ist, 2nd, 3rd, 4th, 5th, or 6th lines on all

printed pages to foll_v fro_ this _lessaoe table (integer)
The 32 4-character DCD words for this title

B. Record Word Ite_

J
(j+l)- (.i+;,_LIST)

j+,_LIST+I

(j+IiLIST+2)-

(j+i_LIST+iIF+I)

NLIST = number of list iten_s (integer)
List items (mixed mode)
NF = size of format to be used to nrint these list items

(integer)

Format to be used to print this list (series of consecutive BCD
characters)

2.3-39

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.6 Data Blocks Output From_odule PL_T

2.3.6.1 PL_TXI (TABLE)

Description

User messages from the plot module relative to the undefom_ed structural shapes

Table Format

See the description of the '_ESSAGE table, section 2.3.5.5

Table Trailer

Werd I-5 = 0
_iord 6 : 1

2.3.6.2 PL_)TX2 (TABLE)

Description

User messages from the plot module relative to the deformed structural shapes _enerated in the
statics analysis

Table Format

See the description of the _'[SSAGE table, section 2.3.5.5

Table Trailer

_Jcrd I-5 = 0
,lord 6 = 1

2.3-40

DATA BLOCK DESCRIPTIONS

2.3.7 Data Blocks Output From Module GP3

2.3.7.1 SLT (TABLE)

Descri pti on

Static Loads Table.

The header record of the SLT contains a sorted list of all unique load set ID's contained
on static load cards except the L_AD card itself. The n logical records that follow the
header record comprise all static loads data belonging to each of the n load sets, one
logical record per load set. The (n+l)st logical record contains all L_AD cards (if any).

Table Format

Record Word Type Item

0 I-2 B Data block name

3 I Load set ID_

2+n I Load set ID
n

1 I1,2
3

2+m

Load card type, m

Lead data as function

of load card type...
repeated m times

repeated for each
different load card

type belonging to
load set number 1

n+l 1,2 I ,R

3,4 R,I
5,6 R,I

2k+3,2k+4 I

Same format as record l

Data belongs to load set number n

Combination load Id, Overall
scale factor

Scale factor, load set ID
Scale factor, load set ID

-I, -I

repeated for

each LBAD
card

n+2 End-of-file

Notes

I.

2.

The SLT is generated in subroutine GP3A.

Card type ID's and format for data for each bulk data card type are as follows:

3 = F_RCEI

Word Type

1 I
2 R
3-4 I

Item

Internal grid number
Signed magnitude of applied load
Internal grid numbers of grid points

that define direction

2.3-41 (811172)

DATABLOCKANDTABLEDESCRIPTIONS

5 = F_RCE2

1 = F@RCE

8 = GRAV

4 = M_MENTI

6 = M@MENT2

2 = MBMENT

9 = PL@AD

7 = SL_AD

Word Type Item

1 I
2 R
3-6 I

Internal grid number
Signed magnitude of applied load
Internal grid numbers of grid points

that define direction

Word

1 I
2 I
3 R
4-6 R

Item

Internal grid number
Coordinate system ID
Signed scale factor for applied force
Force components

Word Type Item

1 I
2 R
3-5 R

Coordinate system ID
Gravity vector scale factor
Gravity vector components

See F_RCEI, substitutinq "moment" for "force".

See FORCE2, substituting "moment" for "force".

See F_RCE, substituting "moment" for "force".

Word Type Item

1 R Pressure

2-5 I Internal grid numbers

Word Type Item

1 I Internal scalar number
2 R Applied load

2.3-42

DATA BLOCK DESCRIPTIONS

lO : RF@RCE

Word Type Item

l I

2 I
3 R

4-6 R

Internal grid number
Coordinate system ID
Scale factor

Components of rotation direction vector

II = PRESAX

Word Type It______

l R Pressure value

2-3 I Ring ID's
4-5 R Azimuthal angles
6 I Number of harmonics

3. With the exception of GRAV and PLEAD card types, data of a given card type within a

logical record is in sort on internal grid (or scalar) number at which the load is

applied.

4. If no L_AD cards have been input, the (n+l)st record does not exist.

Table Trailer

Word l = number of load sets.

Word 2-6 = zero.

2.3-43

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.7.2 GPTT (TABLE)

Description

Grid Point Temperature Table.

The header record of the GPTT contains sorted triples of temperature set ID, default tempera-
ture, and flag. For each temperature set for which temperature data is defined at the grid points
or structural elements, a logical record of the GPTT is present.

Table Format

Record Word Item

0 I-2
3

Data block name (BCD)
Temperature set ID, (integer)

Default temperature (floating point)
-I if no default temperature defined (integer)

0 if only default temperature for set (integer)
>0 record number of temperature data for set

(integer)

repeated
for each

temperature
set

5+count-I

0

Temperature set ID
Element type
Element type count of temperature data
(number of values for element ID)
Element ID

Repeats for
Temperature values all elements
(nonexistent if of element
element ID is neg-
ative) type in

problem.

Flag indicating end of element data for
element type.

Repeats for
all element

types in
problem.

k+l
Same format as record 1
End-of-file

Notes

I.

2.

3,

The GPTT is generated in subroutine GP3D.

A temperature set may be defined as consisting only of a default temperature that
applies to all grid points, and thus elements connecting those grid points.

A default temperature (if defined) is to apply to all grid points for which a
temperature has not been defined.

Table Trailer

Trailer contains no specific information.

2.3-44 (811172)

DATA BLOCK DESCRIPTIONS

2.3.8 Data _locks Output From r,_oduleTAI

2.3.8.1 EST (TABLE)

Description

Element Summary Table.

The EST is a collection of data for all elements of the structural model. It contains one

logical record for each element type. For each element: connection data, properties data,
basic grid point data and the element temperature are grouped. General elements and elements
that belong to super elements are not included in the EST.

Table Format

Record _.Jord Type Ite_____m

0 Header record

1 1 I
2-i+I

i+2-i+j+l

i+j+2-i+j+k+l
i+j+k+2

n+l

Element type

ECT section _ repeated

EPT section I for
BGPDT section each

Element temperature element

End-of-file

repeated
for

each
element

type

Notes

I. i = number of words in ECT section.

j = number of words in EPT section.

k = number of words in BGPDT section.

2. The number of records in the EST corresponds to the number of separate element types in

3.

Summary

the model.

The EST is generated in subroutine TAIA.

of EST Formats

ECT Section EPT Section BGPDT Section

El ement i_uiliu_r number Number

!_ne_,onic of Words of Words of Words

Tntal
Element Words

Temper- Per
ature Element

l _P _ 5 8 Yes 17
2 BEA£i 19 19 8 Yes 47
3 TLBE 3 4 8 Yes 16

4 SHEAR 5 3 16 Yes 25
5 TWIST 5 3 16 Yes 25
6 TRIAl 5 9 12 Yes 27

7 TRBSC 5 7 12 Yes 25

8 TRPLT 5 7 12 Yes 25

9 TRMEM 5 3 12 Yes 21
lO C_NR_D 8 0 8 Yes 17

II ELASI 5 3 0 No 8

12 ELAS2 8 0 0 No 8
13 ELAS3 3 3 0 No 6

14 ELAS4 4 0 0 No 4
15 ODPLT 6 7 16 Yes 30

16 QDMEM 6 3 16 Yes 26

17 TRIA2 5 3 12 Yes 21

2.3-45 (12-1-69)

DATABLOCKANDTABLEDESCRIPTIONS

ECTSection EPTSection BGPDTSection

Total
Element Words

Element Number Number Number Temper- Per
Mnemonic of Words of Words of Words ature Element

18 QUAD2 6 3 16 Yes 26
19 QUADI 6 9 16 Yes 32
20 DAMP1 5 1 0 No 6
21 DAMP2 6 0 0 No 6
22 DAMP3 3 1 0 No 4
23 DAI,IP4 4 0 0 No 4
24 VISC 3 2 8 Yes 14
25 MASS1 5 1 0 No 6
26 MASS2 6 0 0 No 6
27 MASS3 3 1 0 No 4
28 MASS4 4 0 0 No 4
29 C_NMI 24 0 4 Yes 29
30 C_NH2 13 0 4 Yes 18
31 PL_TEL 3 0 8 Yes 12
34 BAR 15 18 8 Yes 42

35 C_!_EAX 3 23 8 Yes 35
36 TRIARG 6 0 12 Yes 19
37 TRAPRG 7 0 16 Yes 24

38 T@RDRG 6 3 2 Yes 18
39 TETRA 5 0 17 Yes 23
40 WEDGE 7 0 25 Yes 33
41 IIEXAI 9 0 33 Yes 43
42 IIEXA2 9 0 33 Yes 43
43 FLUID2 6 0 8 No 14
44 FLUID3 7 0 12 _Io 19
45 FLUID4 8 0 16 No 24
46 HFREE 5 0 8 No 13
47 AXIF2 6 0 8 No 14
48 AXIF3 7 0 12 No 19
49 AXIF4 8 0 16 No 24
50 SL_T3 9 0 12 No 21
51 SL_T4 lO 0 16 No 26
52 IIBDY 7 0 17 Yes 25
53 DUMI * * * Yes *
54 DUM2 * * * Yes *
55 DUM3 * * * Yes *
56 DUM4 * * * Yes *
57 DUM5 * * * Yes *
58 DUM6 * * * Yes *
59 DUM7 * * * Yes *
60 DUM8 * * * Yes *
61 DUM9 * * * Yes *

*For the dummy elements, DUMI tllru DUM9, these values are determined
presence of the respective ADUMI thru ADUM9 bulk data cards.

We have from the ADUMi card thus;

G,q =

NC =

NP =

at execution time upon

Number of grid ooints connected by PUMi

Humber of additional connection card values found on the CDUMi card in addition
to the element ID, property or material ID, and GN = count of grid ID's.

Number of additional property card values, found on the PDUMi card in addition
to the property ID and material ID.

2.3-46 (8/I/72)

DATABLOCKANDTABLEDESCRIPTIONS

Thenumberof wordsin the BGPDTsectionis then4 timesGN.

Thenumberof wordsin the EPTsectionis then1 + NPif NPis greaterthanzero,
or is zerootherwise.

Thenumberof wordsin the ECTsectionis then1 + GNif NPis givengreaterthan
zeroor is 2 + GNif NPis zero.

Thetotal numberof wordsis thenthe total of the ECTsectionplus the EPTsection
plus the BGPDTsectionplus 1 for the temperature.

Detailed EST Formats

ECT section for element type : 2:

Word Type Item

1 I
2-3 I
4-6 R
7 I
8-9 I

Element ID

SIL numbers for grid points I, 2
x, y, z (orientation vector)

Coordinate system ID for x, y, z

Pa" Pb

10-12 R Z I Z2 3a' a' Za

13-IS R Z!b,
16-19 R

ECT Section for

g1' g2'g3'g"

element type = I, 3, 24, 31:

Word Type Item

l I Element ID

2-3 I SIL number for grid points l, 2

ECT Section for element type = 4, 5:

Word Type Item

1 I Element ID

2-5 I SIL numbers for grid points l, 2, 3, 4

2.3-46a (8/I/72)

DATA BLOCK DESCRIPTIONS

ECT section for element type = 6, 7, 8, 9, 17:

Wor_____d Type Iten_l

l I
2-4 I

5 R

Element ID

SIL numbers for grid points l, 2, 3
8 (degrees)

ECT section for element type = 15, 16, 18, 19:

Wor__.__d Type Item

1 I
2-5 I
6 R

Element ID

SIL numbers for grid points l, 2, 3, 4

@ (degrees)

ECT section for element type = lO:

Word Type Ite___m_m

l I Element ID
2-3 I SIL numbers for grid points l, 2
4 I Material ID

5 R A

6 R J

7 R C

8 R non-structural mass (nsm)

ECT section for element type = II, 20, 25:

Wor.__.dd _ Item

1 I
2-3 I

4-5 I

Element ID

SIL numbers for grid points l, 2
Component codes for grid points l, 2

ECT section for element type = 12:

_!ord Type Ite___m_m

l I Element ID
2 R Value

3-4 I SIL numbers for grid points l, 2

5-6 I Component codes for grid points l, 2

7-8 R ge, S

ECT section for element type = 13, 22, 27:

Word Type

l I

2-3 I

Item

Element ID
SIL numbers for scalar points I, 2

ECT section for element type = 14, 23, 28:

l, or___dd Type

l I
2 R

3-4 I

Item

Element ID
Value
SIL numbers for scalar points I, 2

2.3-47

DATABLOCKANDTABLEDESCRIPTIONS

ECTsectionfor elementtype = 21, 26:

Word Type

1 I
2 R

3-4 I
5-6 I

Item

Element ID
Value

SIL numbers for grid points I, 2
Component codes for grid points I, 2

ECT section for element type = 29:

Word Type

1 I
2 I
3 I
4-24 R

Item

Element ID

SIL number for grid point
Coordinate system ID

m11, m21, m22, m31, etc., (6x6 symmetric matrix)

ECT section for element type = 30:

Word Type Item

1 I Element ID

2 I SIL number for grid point
3 I Coordinate system ID
4 R m

5-7 R x I, x 2, x 3

8-13 R I11, 121, 122, 131, 132, 133

ECT section for element type = 34:

Word Type Item

1 I Element ID
2-3 I SIL values

4-6 R Xl, X2, X 3

7 I Coordinate

8-9 I Pa' Pb
I 2 3

10-12 R Za, Za, Za
1 2 3

13-15 R Zb, Zb, Zb

ECT section for element type = 35:

Word Type Item

1 I Element ID
2-3 I SIL values for rings Io 2

for qrid points I, 2

system ID for XI, X2, X 3

2.3-48

DATABLOCKDESCRIPTIONS

ECT section for element type = 36:

Word Type Item

l I Element ID

2-4 I SIL values for grid points l, 2, 3

5 R 0 (degrees)
6 I Material ID

ECT section for element type = 37:

Word Type Item

1 I Element ID

2-5 I SIL values for grid points I, 2, 3, 4
6 R 0 (degrees)
7 I Material ID

ECT section for element type = 38:

Word Type Item

l I Element ID

2-3 I SIL values for grid points l, 2

4-5 R A I , A2

6 Not defined

ECT section for element type = 39:

Word Type Item

l I
2 I

3-6 I

Element ID
Material ID

SIL values for grid points l, 2, 3, 4

ECT section for element type = 40:

Word Type Item

1 I Element ID
2 I Material ID
3-8 I SIL values for grid points I, 2, 3, 4, 5, 6

ECT section for element type : 41, 42:

Word Type Item

l I Element ID

2 I Material ID

3-I0 I SIL values for grid points l, 2, 3, 4, 5, 6, 7, 8

ECT section for element type = 43:

Word Type Item

l I

2,3 I
4 R
5 R

6 I

Element ID

SIL values for grid points I, 2

Density, p
Bulk modulus, B

Harmonic Index, N

2.3-49 (8/I/72)

DATABLOCKANDTABLEDESCRIPTIONS

ECTsectionfor elementtype = 44:

Word Type Item

1 I
2-4 I
5 R
6 R
7 I

Element ID

SIL values for grid points I, 2, 3
Density, p
Bulk modulus, B
Harmonic Index, N

ECT section for element type = 45:

Word Type Item

1 I
2-5 I
6 R
7 R
8 I

Element ID

SIL values for grid points I, 2, 3, 4
Density, p
Bulk modulus, B
Harmonic Index, N

ECT section for element type = 46:

Word Type Item

1 I
2,3 I
4 R
5 I

Element ID

SIL values for grid points 1,2
Weight density, D
Harmonic Index, N

ECT section for element ty_e = 47:

Word Item

1 I
2,3 I
4 R
5 R
6 I

Element ID

SIL values for grid points I, 2
Density, p
Bulk modulus, B
Harmonic Index, N

ECT section for element type = 48:

Word Type Item

1 I

2,3,4 I
5 R
6 R
7 I

Element ID

SIL values for grid points I, 2, 3
Density, p
Bulk modulus, B
Harmonic Index, N

ECT section for element tyDe = 49:

_'JOrd Type Item

1 I
2,3,4,5 I
6 R
7 R
8 I

Element ID

SIL values for grid points I, 2, 3, 4
Density, p
Bulk modulus, B
Harmonic Index, N

2.3-49a (8/I/72)

DATA BLOCK DESCRIPTIONS

ECT section for element type = 50:

Word Type

l I

2,3,4 I
5 R
6 R
7 I
8 I

Item

Element ID
SIL values for grid points l, 2, 3
Density, p
Bulk n_)dulus,B
Number of Slots, M
Harmonic Index, N

ECT section for element type = 51:

Word Type

l I

2,3,4,5 I
6 R
7 R
8 I
9 I

Item

Element ID
SIL values for grid points l, 2, 3, 4
Density, p
Bulk modulus, B
Number of Slots, M
Harmonic Index, N

ECT section for element type = 52:

Word Type Item

l I Element ID
2 B FLAG
3 R H
4 R AF
5-8 I SIL values for grid points l, 2, 3, 4

ECT section for element type = 53 thru 61:
(Refer to the note under the Table Summary of EST Formats above)

Word Type Item

l I
2 I
3 thru
(GN+2) I

(GN+3) thru Mixed
(GN+2+NC)

Element ID

Material ID (NP=O)
SIL values for GN grid points.

(NP=O)
Additional connection data as determined by

the user-programmer (Present only if NC is
greater than zero)

Note that if NP is given greater than zero, the material ID will appear in the EPT
section and thus words 3 thru (GN+2+NC) will be shifted up by the l word removed.

2.3-49b (811172)

DATA BLOCK ANDTABLE DESCRIPTIONS

EPT section for element type

Word

= l:

l I Material ID
2 R A
3 R J
4 R C
5 R nsm

Item

EPT section for element type = 2:

Word Type Item

l I Material ID
2 R A
3-4 R 11, 12

5 R J
6 R nsm
7 I Force Element Code (FE)

B-9 R CI, C2

I0-II R DI, D2

12-13 R El, E2

14-15 R FI, F2

16-17 P Ki, v_
• _ , •, "Z

!8 R If2

!9 Not defined

D
2.3-49c (8/I/72)

DATA BLOCK AI_D TABLE DESCRIPTIONS

EPT section for element type

Wor___dd Type

: 3:

1 I Material
2 R O,D.
3 R t
4 R nsm

I tem

ID

EPT section for element type = 4, 5, 9, 16, 17, 18:

Wor._..dd Type I tern

1 I Material ID
2 R t
3 R nsm

EPT section for element type : 6, 19:

Wor_.___d Type Item

1 I Material ID for membrane

2 R t I

3 I Material ID for bending
4 R I
5 I Material ID for transverse shear

6 R t2

7 R nsm

8-9 R ZI, Z2

EPT section for element type = 7, 8, 15:

Wo r.___d Type Item

l I Material ID for bending
2 R I

3 I Material ID for transverse shear

4 R t2

5 R nsm

6-7 R ZI , Z2

EPT section for element type =

Word Type

1 R K

2 R ge

3 R s

II, 13:

Item

EPT section for element type : 20, 22:

Word Type Item

1 R Be

2.3-50

DATABLOCKDESCRIPTIONS

EPTsectionfor elementtype :

Word Type

l R C1

2 R C2

24:

Item

EPT section for element type = 25, 27:

Word Type Item

l R Me

EPT section for element type = 33:

Word Type Item

l I Super element property ID

EPT section for element type = 34:

Word Type Item

l I Material ID

2 R A

3-4 R 11 , 12

5 R J

6 R nsm

7 I FE (Force Method only)

8-9 R C I, C2

lO-ll R DI, D2

12-13 R El, E 2

14-15 R FI, F 2

16-17 R KI , K 2

18 R I12

EPT section for element type : 35:

Wor_.__d_d Type Item

l I Material ID for membrane

2R R T l

3 I Material ID for bending
4 R I

5 I Material ID for transverse shear

6 R T2

7 R nsm

8-9 R ZI, Z2

I0-23 R @i, i = l, 14

2.3-51

DATA BLOCK AND TABLE DESCRIPTIONS

EPT section for element type = 38:

Word Type Item

1 I Material ID
2 R TM
3 R TF

EPT section for element types = 53 thru 61:
(Refer to note under the table Summary of EST Formats above)

Word _ Item

1 I Material ID

2 thru Mixed Property data determined by the user-programmer
(I+NP)

The EPT section for element types 53 thru 61 is present only if NP

is greater than zero as described above.

Table Trailer

Word 1 = number of elements in model.

Word 2-6 = are undefined.

2.3-52 (8/I/72)

DATA BLOCK DESCRIPTIONS

2.3.8.2 GEl (TABLE)

Description

General Element Input.

The GEI contains one logical record for each general element in the model.

Table Format

Record Word Type Item

l I
2 I

3 I

4 I

3+n I

4+n I

"_-t-_-_ I.ii "IH

3+n-h'n+n 2 j

f R
3+n+m+n 2)
+nm

Header record

ID for general element

n = number of elements in UI list

m = number of elements in UD list

SIL value for first UI

SIL value for nth UI

SIL value for first UD

SIL value for mth UD

not present
if m = 0

Elements of Z matrix

Elements of S matrix

Same format as record l

k

k+l

Same format as record l

End-of-file

Table Trailer

Word l = number of general elements in the model.

Words 2-6 = zero.

2.3.8.3 ECPT (TABLE)

Description

Element Connection and Properties Table.

The ECPT is essentially the EST in a different sort. The ECPT contains one logical record
for each grid or scalar point of the model. Each logical record contains Element Summary Table
data for each element connected to the grid or scalar point.

2.3-53

DATA BLOCK AND TABLE DESCRIPTIONS

Table Format

Record Word Item

Header record

2
3-i+2

i+3-i+j+2
i+j+3-i+j+k+2

i+j+k+3

SIL number for "pivot" grid
or scalar point (integer)

Element type repeated for
ECT section each element
EPT section connected
BGPDT section to the

Element temperature pivot

i repeated

for
each
grid or
scalar
in the
model

n+l End-of-file

Notes

I. Detailed formats are given in the EST writeup (see section 2.3.8.1).

2. If no elements are connected to a grid or scalar point, the record contains only
one word.

Table Trailer

Word 1 = 7

Word 2-6 = are undefined

2.3.8.4 GPCT (TABLE)

Description

Grid Point Connection Table.

The GPCT is a condensation of the ECPT. It contains one loqical record for each grid or

scalar point of the model. Each logical record contains a list of all grid or scalar
points that are connected (by means of structural elements) to the pivot grid or scalar
point.

Table Format

Record Word Item

0 Header record

1

2

3- 2 +m

+ SIL number for pivot grid
- or scalar point (integer)
m = number of connected

points (integer)
Sorted list of SIL numbers

of connected points

repeated for each
grid or scalar
in the model

n+l End-of-file

Notes

I. If the SIL number for the pivot (first word)<O, then the pivot is a scalar point.

2. If no elements are connected to the pivot (and therefore no other qrid or scalar
points), the record contains only one word.

2.3-54 (12-I-69)

DATA BLOCK DESCRIPTIONS

Table Trailer

Word l

Word 2-6

= 7

= are undefined

2.3-55

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.9

2.3.9.1

Data _locks Output From _1odule S_,_AI

KGGX (:._ATRIX)

DescriFtion

!.latrixTrailer

Partition of stiffness matrix exclusive of qeneral elements - g set.

Number of columns : q
Number of rov_s = q
Form = symmetric
Type = real double precision

2.3.9.2 K4GG (IiATRIX)

Description

K 1 -
gg-

Matrix Trailer

Partition of structural damping matrix - g set.

I;umber of columns = q
_:umber of rows = q
Form : symmetric
Type = real double precision

2.3.9.3 GPST (TABLE)

Description

Grid Point Singularity Table

Table Format

Record Word Item

Header record

Order of singularity (l, 2, or 3)
!_ = number of SIL numbers that follow

SILl
SIL_

_ote

2+N

2

All entries are inteqers.

SIL N

End-of-file

_epeated for each

singularity

2.3-56

DATA BLOCK DESCRIPTIONS

Table Trailer

Word 1 = undefined

Word 2 = 0

Word 3 = 1
Word 4 = 2

Word 5 = 1
Word 6 = 0

2.3-57

DATA BLOCK AND TABLE DESCRIPTIONS

2,3.10 Data Blocks Output. From Module SHA2

2.3.10.1

Descri pti on

[Mgg] -

Matrix Trailer

MGG (MATRI ×)

Partition of mass matrix - g set.

Number of columns : g
Number of rows : g
Form : symmetric
Type : real double precision

2.3.10.2

Descriptio n

[Bgg]

r,latrix Trailer

nGG (MATRIX)

Partition oF damping matrix - g set.

Number of columns : g
Number of rows = g
Form = syr.mletri c
Type : real double precision

2.3-58

DATA BLOCK DESCRIPTIONS

2.3.11 Data Blocks Output From Module GPWG.

2.3.11.I _GPWG (TABLE)

Description

Grid Point Weight Generator _utput Table.

Table Format

Record Word Type

l I
2 I
3 I

4-9
lO I
ll-50
51-146 B

2
1-36

37-45
46-49
50-53
54-57
58-66
67-69
70-78

Table Trailet

Word l = 0

Word 2 = nonzero.

Words 3-6 = 0

R
R
R
R
R
R
R
R

Item

Header record

_FP ID record
l
13

External ID of grid point about which moments
and interias were calculated. If External ID = 0
the basic origin was used.
Not defined.
98
Not defined.

96 words of title, subtitle, and label from
I_UTPUTI

_FP data record
[MO] 6x6 moment matrix
[S] 3x3 matrix
Mx, Xx, Yx, Zx
My, Xy, Yy, Zy
Mz, Xz, Yz, Zz
Inertia matrix (3x3)
Principal inertias
Q matrix (3x3)

End-of-file

2.3-59

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.12 Data Llocks OutF, ut From !<odule St:A3

2.3.12.1 KGG (_4ATRIX)

Description

[Kgg] Partition of stiffness matrix - g set, Contains contributions from all elements
in the model, including general elements.

Matrix Trailer

Number of columns = g
Number of rows : g
Fo_ : symmetric
Type = real double precision

2.3.12.2 KGGL (MATRIX)

Description

K_
[gg] -

Matrix Trailer

Partition of the stiffness matrix of linear elements - g set. Contains contribu-
tions from all linear elements of the model including general elements. Used only
in Piecewise Linear Analysis.

Number of columns = g
Number of rows = g
Form = symmetric
Type : real double precision

2.3-60

DATA BLOCK DESCRIPTIONS

2.3.13 Data Blocks Output From Module GP4

2.3.13.1 RG (MATRIX)

Description

[Rg] - Multipoint constraint equations matrix.

Matrix Header

Number of columns = g
Number of rows = m

Form = rectangular

Type = real single precision

2.3.13.2 YS (MATRIX)

Description

{Ys } - Constrained displacement vector - s set.

Matrix Trailer

Number of columns : 1
Number of rows = s

Form _ recLangular

Type = real single precision

2.3.13.3 USET (TABLE)

Description

Displacement set definitions table.

USET contains one logical record. Each word corresponds to each degree of freedom in the

g-displacement set (in internal order) and contains ones in specified bit positions indicat-
ing the displacement sets to which the degree of freedom belongs•

Table Format

Record Word Type Item

I-2 B Data block name
3 I SPC set ID

4 I MPC set ID

l L Mask for first degree of freedom

n L Mask for nth degree of freedom

End-of-file

2.3-61

DATA BLOCK AND TABLE DESCRIPTIONS

Notes

I. Bit positions for the various displacement sets are defined as follows:

[SblSg I JL[a[fl nI gl rl °[s I m"l

22 23 24 25 26 27 28 29 30 31 32

Table Trailer

Word 1 = zero.

Word 2 = degrees of freedom in the g-displacement set (LUSET).

Word 3 = zero,

Word 4 = logical "or" of all USET masks.

Word 5 = zero.

Word 6 = zero.

2.3-62

DATA BLOCK DESCRIPTIONS

2.3.14 Data Blocks Output From Module GPSP.

2.3.14.1 _GPST (TABLE)

Description

Unremoved Grid Point Singularities.

Table Format

Record Word Type

l I
2 I

3 I
4 I
5-9

lO I
ll-50
51-146

l
2
3
4-6
7-9

lO-12

*Note:

Item

Header record

_FP ID record
0
8

SPC set ID
MPC set ID
Not defined
12
Not defined

B 96 words of title, subtitle, and label from
/BUTPUT/

BFP data record
I External grid point ID
i Scalar point flag
! Singularity order
I Strongest singularity components
I Next strongest sinqularity comoonents
I Weakest singularity components

The above 12 words are repeated in record 2 for each grid point
with an unremoved singularity.

End-of-file

Table Trailer

Word l = 8

Word 2-6 = 0

2.3-63 (311171)

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.15 Data Blocks Output Frnm Hodule HCEI

2.3.15.1 GM (MATRIX)

Description

[Gm]

Matrix Header

Multipoint constraint transformation matrix - m set.

Number of columns : n
Number of rows = m

Form = rectangular
Type = real double precision

2.3-64

DATABLOCKDESCRIPTIONS

2.3.16 Data Blocks Output From Module MCE2

2.3.16.1 KNN (MATRIX)

Description

[Knn]

Matrix Trailer

Number of columns
Number of rows
Form

Type

- Partition of stiffness matrix - n set.

= n

= n

= symmetric
= real double precision

2.3.16.2 MNN (MATRIX)

Description

[Mnn]

Matrix Trailer

Number of columns
Number of rows
Form

Type

Partit_ion of mass matrix - n set.

= n
= n

= symmetric

= real double precision

2.3.16.3 KDNN (MATRIX)

Description

Matrix Trailer

Partition of differential stiffness matrix - n set.

Number of columns : n

Number of rows : n

Form = symmetric

Type = real double precision

2.3-65

DATABLOCKANDTABLEDESCRIPTIONS

2.3,16.4 BNN(MATRIX)

Description

[Bnn] -

Matrix Trailer

Number of columns
Number of rows
Form

Type

2.3.16.5 K4NN (MATRIX)

Description

[K_n]

Matrix Trailer

Number of columns
Number of rows
Form

Type

Partition of damping matrix - n set.

= n

= n

= symmetric
= real double precision

Partition of the structural damping matrix - n set.

-- n

-- n

= symmetric
= real double precision

2.3-66

DATA BLOCK DESCRIPTIONS

2.3.17 Cata blocks Output From J_cdule SCLI

2.3.17.1 KFF (MATRIX)

Description

[Kff]

Matrix Trailer

Partition of stiffness matrix after single-point constraints have been removed

f set.

Number of columns = f

Number of rows = f

Form = symmetric

Type = real double precision

2.3.17.2 KFS (_!ATRIX)

Description.

[Kfs] -

_latrix Trailer

Partition of stiffness matrix after single-point constraints have been removed.

Number of columns = s

Number of rows = f
Form = rectangular

Type = real double precision

2.3.17.3 KSS (_.ATRIX)

Description

[Kss] -

!_atrix Trailer

Partition of stiffness matrix after single-point constraints have been removed -

s set,

_,umber of columns = s

i_umber of rows = s

Form = symmetric

Type = real double precision

2.3.17.4 _'.:FF(I_ATRIX)

Des cri pti on.

[I.Iff] -

_atrix Trailer

Partition of mass matrix after single-point constraints have been removed - f set.

Number of columns = f

Number of rows = f

Form = symmetric

Type = real double precision

2.3-67

DATABLOCKANDTABLEDESCRIPTIONS

2.3.17,5 KDFF(r,_TRIX)

Description

[K_f] Partition of differential stiffness matrix - f set.

Matrix Trailer

Number of columns = f

Number of rows = f

Form = symmetric

Type = real double precision

2.3.17.6 KDFS (MATRIX)

Description

[K_s] - Partition of differential stiffness matrix,

Matrix Trailer

Number of columns = s

Number of rows = f

Form = rectangular

Type = real double precision

2,3.17.7 KDSS (MATRIX)

Description

[K_s] - Partition of differential stiffness matrix - s set,

Matrix Trailer

Number of columns : s
Number of rows : s

Form = symmetric
Type : real double precision

2.3.17.8 BFF (HAIRIX)

Description

[Bff] - Partition of damping matrix after single point constraints have been removed - f set.

tlatrix Irailer

l_umber of columns : f

Fiumber of rows = f

Form : svmn;etric

Type = real double precision

2.3-68

DATA BLOCK DESCRIPTIONS

2.3.17.9 K4FF (MATRIX)

DescriRtion

[K_f] -

Matrix Trailer

Partition of structural damping matrix with single-point constraints removed -
f set.

Number of columns : f
Number of rows = f

Form = symmetric
Type = real double precision

2.3-69

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.18 Data Blocks Output From Module SMPI

2.3.18.1 G@ (MATRIX)

Description

[S o]

Matrix Trailer

Number of columns
Number of rows
Form

Type

- Structural matrix partitioning transformation matrix.

= a
= o
= rectangular
= real double precision

2.3.18.2 KAA (MATRIX)

Description

[Kaa]

Matrix Trailer

Number of columns
Number of rows
Form

Type

- Partition of stiffness matrix - a set.

: a
= a

= symmetric
= real double precision

2.3.18.3 KB_B (MATRIX)

Description

[oo]

Matrix Trailer

- Partition of stiffness matrix - o set.

Number of columns : o
Number of rows = o

Form = symmetric
Type = real double precision

2.3.18.4 LO@ (MATRIX)

Description

[koo] Lower triangular factor of K_B - o set.

Matrix Trailer

Number of columns = o
Number of rows = o
Form : lower triangular
Type = real double precision

2.3-70

DATA BLOCK DESCRIPTIONS

2.3.18.5 U@0 (MATRIX)

Description

[Uoo] -

Matrix Trailer

Number of columns
Number of rows
Form

Type

",ote

Upper triangular factor of K_B - o set.

= o
= o
: upper triangular

= real double precision

This matrix is not a standard upper triangular factor.
subroutine FBS.

2.3.18.'6 MAA (MATRIX)

Description

[Maa] - Partition of mass matrix - a set.

Matrix Trailer

Number of columns = a
Number of rows = a
Form : symmetric
Type = real double precision

2.3.18.7 M_B (i_TRIX)

Partition of mass matrix - o set.

Description

[Moo] -

Matrix Trailer

Number of columns
Number of rows

Form

Type

= o

= o

= symmetric

= real double precision

Its format is acceptable only to

2.3-71

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.18.8

Description

[Moa] -

Matrix Trailer

MOAB (MATRIX)

Partition of mass matrix.

Number of columns = a
Number of rows = o
Form = rectangular
Type = real double precision

2.3.18.9 BAA (MATRIX)

Description

[Baa]

Matrix Trailer

Number of columns
Number of rows
Form

Type

2.3.18.10 K4AA (MATRIX)

Description

[K_a]

Matrix Trailer

Partition of damping matrix - a set.

= a

= a

= symmetric
= real double precision

Partition of structural dampinq matrix - a set.

Number of columns = a
Number of rows = a
Form = symmetric
Type = real double precision

2.3-72

DATA BLOCK DESCRIPTIONS

2.3.19 Data Blocks Output From Module RBMGI

2.3.19.1 KLL (MATRIX)

Description

[K_] -

Matrix Trailer

Number of cQlumns
Number of rows
Form

Type

2.3.19.2 KLR (MATRIX)

Description

[K_r] -

Matrix Trailer

Number of columns
Number of rows
Form
Type

2.3.19.3 KRR (MATRIX)

Description

[Krr] -

Matrix Trailer

Number of columns

Number of rows
Form

Type

2.3.19.4 MLL (MATRIX)

Description

[M_] -

Matrix Trailer

Number of columns
Number of rows
Form

Type

Partition of stiffness matrix

symmetric

real double precision

Partition of stiffness matrix

r

rectangular

real double preclsion

Partition of stiffness matrix

r

r

symmetric

real double preclsion

Partition of mass matrix - C set.

=

: g

= symmetric

= real double precision

- g set.

- r set.

2.3-73

DATABLOCKANDTABLEDESCRIPTIONS

2.3.19.5 MLR(MATRIX)

Description

[M_r]

Matrix Trailer

Number of columns
Number of rows
Form

Type

2.3.19.6 MRR (MATRIX)

Description

[Mrr] -

Matrix Trailer

Number of columns
Number of rows
Form

Type

Partition of mass matrix.

= r

= rectangular
= real double precision

Partition of mass matrix - r set.

= r

= r

= symmetric

= real double precision

2.3-74

DATA BLOCK DESCRIPTIONS

2.3.20 Data Blocks Output From Module RBMG2

2.3.20.I LLL (MATRIX)

Description

[Lz_] -

Matrix Trailer

Number of columns
Number of rows
Form

Type

2.3.20.2 ULL (.MATRIX)

Description

[u_] -

Matrix Trailer

Note

Lower triangular factor of KLL - _ set.

=

= lower triangular

= real double precision

Upper triangular factor of KLL - _ set.

Number of columns =
Number of rows :

Form : upper triangular

Type = real double precision

This matrix is not a standard upper triangular factor.
subroutine FBS.

2.3.20.3

Description

Matrix Trailer

LBLL (MATRIX)

Lower triangular factor of KBLL - _ set.

Number of columns =
Number of rows =

Form = lower triangular
Type = real double precision

Its format is acceptable only to

2.3-75

DATABLOCKANDTABLEDESCRIPTIONS

2.3.20.4 UBLL(MATRIX)

Description

[u_] -

Matrix Trailer

Note

Upper triangular factor of KBLL - _ set.

Number of columns =
Number of rows =

Form = upper triangular
Type = real double precision

This matrix is not a standard upper triangular factor.
subroutine FBS.

Its format is acceptable only to

2.3-76

DATA BLOCK DESCRIPTIONS

2.3.21 Data Blocks Output From Nodule REMG3

2.3.21.I DM (MATRIX)

Description

[D] - Rigid body transformation matrix.

Natrix Trailer

_umber of columns =
Number of rows = r

Form = rectangular

Type = real double precision

2.3-77

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.22 Data Blocks Output From Module RBMG4

2.3.22.1 MR (MATRIX)

Description

[mr] - Rigid body mass matrix - r set.

Matrix Trailer

Number of columns : r

Number of rows : r

Form : symmetric
Type = real double precision

2.3-78

DATA BLOCK DESCRIPTIONS

2.3.23 Data Blocks Output From Module SSGI.

2.3.23.1 PG (MATRIX)

Description

[Pg] - Static load vector matrix giving static loads - g set.

Matrix Trailer

Number of columns = number of subcases
Number of rows = g
Form = rectangular
Type = real single precision

2,3,23.2 PGI (MATRIX)

Description

i

[Pg] - Static load vector giving static loads for Piecewise Linear Analysis problem -

g set.

MAtrix Trailer

Number of columns = 1
Number of rows = g
Form = rectangular
Type = real single precision

2.3-79

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.24 Data Blocks Output From r_odule SSG2

2.3,24.1

Description

[qr] -

Matrix Trailer

QR (MATRIX)

Determinate support forces matrix - r set.

Number of columns
Number of rows
Form

Type

2.3.24.2 P0 (F_TRIX)

Description

[Po]

Matrix Trailer

= number of subcases
: r

: rectangular
= real single precision

Partition of the load vector matrix giving loads due to static force - o set.

Number of columns
Number of rows
Form

Type

2.3.24.3 PS (MATRIX)

Description

[Ps]

Matrix Trailer

: number of subcases
: o
= rectangular

: real single precision

Partition of load vector matrix giving loads in s set.

Number of columns
Number of rows
Form

Type

2.3.24.4 PL (MATRIX)

Description

[P_] -

Matrix Trailer

= number of subcases

: s
= rectangular
= real single precision

Partition of the load vector matrix giving static loads on _ set.

Number of columns
Number of rows
Form

Type

: number of subcases
:

: rectangular
= real single precision

2.3-80

DATA BLOCK DESCRIPTIONS

2.3.25 Data Blocks Output From Module SSG3

2.3.25.1 ULV (MATRIX)

Description

[u_] Partition of the displacement vector matrix giving displacements _ set.

Matrix Trailer

Number of columns

Number of rows
Form

Type

= number of subcases
=

= rectangular
= real double precision

2.3.25.2 U_V (MATRIX)

Description

[u_] Partition of the displacement vector matrix giving displacements in the o set.

Matrix Trailer

Number of columns

Number of rows
Form

Type

= number of subcases

: o

= rectangular
= real double precision

2.3.25.3 RULV (MATRIX)

Description

[6P_] Residual vector matrix for the _ set.

Matrix Trail er

Number of columns = number of subcases
Number of rows =

Form = rectangular

Type = real single precision

2.3.25.4 RU_V (MATRIX)

Description

{6P o} - Residual vector matrix for the o set.

Matrix Trailer

Number of columns = number of subcases
i_umber of rows = o

Form = rectangular

Type = real single precision

2.3-81

DATABLOCKANDTABLEDESCRIPTIONS

2.3.25.5 UBLV (MATRIX)

Description

[u_] - Partition of the differential stiffness displacement vector - _ set.

Matrix Trailer

Number of columns : 1
Number of rows :
Form : rectanaular
Type : real double precision

2.3.25.6 RUBLV (MATRIX)

Description

[6P_] Differential stiffness residual vector - L set.

Matrix Trailer

Number of columns : 1
Number of rows :

Form = rectangular
Type : real single precision

2.3-82

DATA BLOCK DESCRIPTIONS

2.3.26

2.3.26.1

Description

[P_]

Matrix Trailer

Data Blocks Output From Module SSGA.

PLI (MATRIX)

Partition of load vector for inertia relief matrix giving loads due to static +
inertial forces on _ set.

Number of columns
Number of rows
Form

Type

2.3.26.2 P_I (MATRIX)

Description

[Pio]

Matrix Trailer

= number of subcases
=

= rectangular
= real single precision

Partition of load vector for inertia relief matrix giving loads due to inertial
force + static forces on o set.

Number of columns
Number of rows
Form

Type

: number of subcases
= o
= rectangular
= real single precision

2.3-83

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.27 Data Blocks Output From Module SDRI

2.3.27,1 UGV (MATRIX)

Description

[Ug] -

Matrix Trailer

Displacement vector matrix giving displacements in the g set.

Number of columns = number of subcases in CASECC

Number of rows = g
Form : rectangular
Type = real single precision

2.3.27.2

Description

[Pg] -

Matrix Trailer

PGG (MATRIX)

Static load vector appended to include all boundary conditions - g set.

Number of columns
Number of rows
Form

Type

= number of subcases in CASECC

= g
= rectangular
= real single precision

2.3.27.3

Description

[qg] -

Matrix Trailer

QG (MATRIX)

Single-point constraint forces and determinate support forces matrix - q set.

Number of columns = number of subcases in CASECC

Number of rows = g
Form : rectanqular
Type = real single precision

2.3.27.4 PHIG (MATRIX)

Description

[@g] - Eigenvector matrix giving eigenvectors (displacements) in the g set.

Matrix Trailer

Number of columns = number of eigenvalues found in READ
Number of rows = g
Form = rectangular
Type = real single precision

2.3-84

DATA BLOCK DESCRIPTIONS

2.3.27.5 UBGV (MATRIX)

Description

h

[u_] - Displacement vector matrix for differential stiffness giving displacements
s in the g set.

Matrix Trailer

Number of columns = number of factors on a DSFACT bulk data card

Number of rows = g
Form = rectangular
Type = real single precision

2.3.27.6

Description

[qbg] _

Matrix Trailer

QBG (MATRIX)

Single-point forces of constraint matrix for differential stiffness - g set.

Number of columns = number of factors on a DSFACT bulk data card
i|.. L_.
mu_r OF rows = g

Form : rectangular
Type : real single precision

2.3.27.7 BQG (MATRIX)

Description

[q_] Single-point forces of constraint matrix for a bucklinq analysis problem - g set.

Matrix Trailer

Number of columns = number of buckling modes found in READ
Number of rows = g
Form = rectangular
Type = real single precision

2.3.27.B DELTAUGV (MATRIX)

Description

{6Ug} - Incremental displacement vector in piecewise linear analysis - g set.

Matrix Trailer

Number of columns = l

Number of rows = g
Form = rectangular
Type = real sinqle precision

2.3-85

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.27.9

Description

{6Pg}

Matrix Trailer

DELTAPG (MATRIX)

Incremental load vector in piecewise linear analysis - g set.

Number of columns = 1

Number of rows = g
Form : rectangular
Type = real single precision

2.3.27.10 DELTAQG (MATRIX)

Description

{6qg} - Incremental vector of sinqle-point forces of constraint in piecewise linear
analysis - g set.

Matrix Trailer

Number of columns = 1

Number of rows : g
Form = rectangular
Type = real single precision

2.3.27.11 CPHIP (MATRIX)

Description

[@p] - Complex eigenvectors in p set.

Matrix Trailer

_lumber of columns = number of eigenvalues found in CEAD
Number of rows = p
Form = rectangular
Type = complex single precision

2.3.27.12 QPC (MATRIX)

Description

[q_] - Complex single-point forces of constraint - p set.

Matrix Trailer

Number of columns = number of eigenvalues found in CEAD
Number of rows = p
Form = rectangular
Type = complex single precision

2,3186

DATA BLOCK DESCRIPTIONS

2.3.27.13

Description

Matrix Trailer

UPVC (MATRIX)

Frequency response solution vectors - p set.

Number of columns

Number of rows
Form

Type

= the product of the number of frequencies and number of loads

= p
= rectangular
= complex single precision

2.3.27.14 UPV (MATRIX)

Description

[Up]
Transient solution vectors - p set.

Matrix Trailer

Number of columns = the number of output times multiplied by 3"

Number of rows = p
Form = _^_. I_.

Type = real single precision

*Each triple is displacement, velocity and acceleration.

2.3.27.15 QP (_TRIX)

Des cri pti on

[qp] - Transient single-point forces of constraint - p set.

Matrix Trailer

Number of columns = the number of output times
Number of rows = p
Form = rectangular
Type = real single _recision

2.3-87 (8/I/72)

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.28 Data Blocks Output From Module SDR2.

2.3.28.1 _UGVI (TABLE)

Description

Output displacement vector requests (g set, SBRTI, real).

Table Format

Record Word Type

1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

1 I
2 I
3-8 R

Item

Header record

Device code + lO*approach code
1
0
Subcase number
Load set ID
0
0
0
Format code

Number of words per entry in next record = 8
Not defined
Title
Subtitle
LabeT

lO*point ID + device code

Point type
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)

Notes

I. Records 1 and 2 are repeated for each vector to be output

2. Device code = li =

3. Format code : I_ :

4. Approach code

5. Point type =

x y output only
print
punch
print and punch

real

real/imaginary
magnitude/phase

I, 3, 7, or I0

Ii = grid point

scalar point

extra point

modal point

Table Trailer

Words I-6 contain no significant values.

repeat
for each

point

2.3-88

DATA BLOCK DESCRIPTIONS

2.3.28.2 _UBGVI (TABLE)

Description

Output displacement vector requests (g set, S_RTI, real)

Table Format

Recor____d Wor___dd Type

0 Header record

l I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

lO I
ll-50
51-82 B
83-I14 B
I15-146 B

l I
2 I
3-8 R

Item -

Device code + lO*aoproach code
l
0
Subcase number
Load set ID
0
0
0
Format code
Nu_er of words per entry in next record = 8
Not defined
Title
Subtitle
Label

lO*point ID + device code)repeat
Point type >for each
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)_point

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code

3. Format code

li = x y output only

= = print
= punch
= print and punch

I! = real
= = real/imaginary

= magnitude/phase

4. Approach code = 4

5. Point type =
Ii = grid point

scalar point
extra point
modal point

Table Trailer

Words I-6 contain no significant values.

2.3-89

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.28.3 _UPVI (TABLE)

Description

Output displacement vector requests (p set, S_RTI, real).

Table Format

Record Word Type

1 I

2 I

3 I
4 I

5 R
6 I

7 I

8 I
9 I

lO I

ll-50
51-82 B

83-I14 B
I15-146 B

1 I
2 I
3-8 R

Item

Header record

Device code + lO*approach code

I_ : Displacement1 Velocity
ill Acceleration
0
Subcase number
Time
0
0
Load set ID
Format code
Number of words per entry in next record = 8
Not defined
Title
Subtitle
Label

lO*point ID + device code _repeat
Point type }for each
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3))point

Notes

I. Records 1 and 2 are repeated for each vector to be output.

2. Device code =

3. Format code

li = x y output only

print
punch
print and punch

4. Approach code = 6

= real
= real/imaginary
= magnitude/phase

5. Point type =
Ii = grid point

scalar point
extra point
modal point

Table Trailer

Words I-6 contain no significant values.

2.3-90

DATA BLOCK DESCRIPTIONS

2.3.28.4 _UPVCI (TABLE).

Description

Output displacement vector requests (p set, S_RTI, complex).

Table Format

Record Word Type

0 Header record

Item

1 I

2 I

3 I
4 I
5 R
6 I
7 I
8 I
9 I

lO I
ll-50
51-82 B
83-I14 B
I15-146 B

1 I
2 I
3-8 R
9-14 R

Device code + lO*aDproach code
lO01 : Displacement
lOlO Velocity
lOll Acceleration

0
Subcase nu_er
Frequency
0
0
Load set ID
Format code
Number of words per entry in next record = 14
Not defined
Title
Subtitle
Label

lO*point ID + device code)repeat
Point type tfor
R(TI), R(T2), R(T3), R(RI) R(R2), R(R3)_each
I(TI), I(T2), I(T3), I(RI)_ I(R2), l(R3)_point

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code

3. Format code

li = x y output only
= = print

= punch
= print and punch

I! : real= = real/imaginary
= magnitude/phase

4. Approach code = 5

5. Point type =
Ii = grid point

scalar point
extra point
modal point

Table Trailer

Words I-6 contain no significant values.

2.3-91

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.28.5 OPGI (TABLE).

Description

Output load vector requests (g set, SORT1, real)

Table Format

Record Word Type

1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

1 I
2 I
3-8 R

Item

Header record

Device code + lO*approach code
2
0
Subcase number
Load set ID
0
0
0
Format code

Number of words per entry in next record : 8
Not defined
Title
Subtitle
Label

lO*point ID + device code)ReFeat
Point type _for each
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)}point

Notes

I. Records 1 and 2 are repeated for each vector to be outDut.

2. Device code
li = x y output only

= = print
= punch
= print and punch

3. Format code
I! : real= = real/imaginary

= magnitude/phase

4. Approach code = I, 3, 7, or I0

5. Point type
li = grid point

= scalar point
extra point
modal point

Table Trailer

Words I-6 contain no significant values.

2.3-92

DATA BLOCK DESCRIPTIONS

2.3.28.6 _PPI (TABLE).

Description

Output load vector requests (p set, S{_RTI,real).

Table Format

Record Word Type Item

Header record

l I
2 I
3 I
4 I
5 R
6 I
7 I
8 I
9 I

lO I
ll-50
51-82 B
83-I14 B
I15-146 B

Device code + lO*approach code
2
0
Subcase number
Time
0
0
Load set ID
Format code
Number of words per entry in next record = 8
Not defined
Title
Subtitle
Label

! I
2 I
3-8 R

lO*point ID + device code)reDeat
Point type _for each
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)}point

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code

3. Format code

li x y output only
= = print

= punch
= print and punch

I! = real
= = real/imaginary

= magnitude/phase

4. Approach code = 6

5. Point type
Ii = grid point

= = scalar point
= extra point
= modal point

Table Trailer

Words I-6 contain no significant values.

2.3-93

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.28.7 BPPCl (TABLE).

Description

Output load vector requests (p set, S_RTI, complex).

Table Format

Record Word Type

1 I
2 I
3 I
4 I
5 R
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

1 I
2 I
3-8 R
9-14 R

I tem

Header record

Device code + lO*approach code
1002
0
Subcase number

Frequency
0
0
Load set ID
Format code

Number of words per entry in next record = 14
Not defined
Title
Subtitle
Label

lO*point ID + device code _reneat
Point type _or
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)(each
I(TI), I(T2), I(T3), I(RI), i(R2), l(R3))point

Notes

I. Records 1 and 2 are repeated for each vector to be o_tput.

2. Device code =

3. Format code

li = x y output only

print
punch
print and punch

4. Approach code = 5

= real

= real/imaginary
= magnitude/phase

5. Point type
Ii = grid point

= scalar point
= = extra point

= modal point

Table Trailer

Words I-6 contain no significant values.

2.3-94

DATA BLOCK DESCRIPTIONS

2.3.28.8 CQGI (TABLE)

Description

Output forces of single-point constraint requests (g set, S_RTI, real).

Table Format

Record Wor_.__dd T_e Item

0 Header record

l I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I
lO I
ll-50
51-82 B
83-I14 B
I15-146 B

l I
2 I
3-8 R

Device code + lO*approach code
3
0
Subcase number
Load set ID
0
0
0
Format code

Number of words per entry in next record = 8
Not defined
Title
Subtitle
Label

lO*point ID + device code)reoeat
Point type _for each
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3))noint

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code

3.

li = x y output only
= = print

= punch
= print and punch

I! = real
Format code = real/imaginary

magnitude/phase

4. Approach code = I, 2, 3, 7, or lO

5. Point type
li = grid point

= = scalar point
= extra point
= modal point

Table Trailer

Words I-6 contain no significant values.

2.3-95

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.28.9 _QBGI (TABLE)

Description

Output forces of single-point constraint requests (g set, S_RTI, real).

Table Format

Record Word Type Item

1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

1 I
2 I
3-8 R

Header record

Device code + lO*aDDroach code
3

0
Subcase number

Load set ID
0

0

0
Format code

Number of words per entry in next record = 8
Not defined

Title

Subtitle
Label

lO*point ID + device code _repeat
Point type _for each
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)}point

Notes

I. Records 1 and 2 are repeated for each vector to be output.

2. Device code

3. Format code

li = x y output only
= = print

= punch
= print and punch

! = real
= = real/imaginary

= magnitude/phase

4. Approach code = 4

5. Point type =
li = grid point

scalar point
extra point
modal point

Table Trailer

Words I-6 contain no significant values.

2.3-96

DATA BLOCKDESCRIPTIONS

2.3.28.10 _BQGI (TABLE).

Description

Output forces of single-point constraint requests (g set, S_RTI, real).

Table Format

Record Word Type Item

0 Header record

1 I
2 I
3 I
4 I
5 I
6 R
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

Device code + lO*approach code
3
0
Subcase number
Mode number

Eigenvalue
O
0
Format code
Nu_er of words per entry in next record = 8
Not defined
Title
Subtitle
Label

1 I
2 I
3-8 R

lO*point ID + device code)repeat
Point type >for each
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)}ooint

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code

3. Format code

li = x y output only

= = print
= punch
= print and punch

li = real= = real/imaginary
= magnitude/phase

4. Approach code = 8

5. Point type =
Ii : grid point

scalar point
extra point
modal point

Table Trailer

Words I-6 contain no significant values.

2.3-97

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.28.11 _QPI (TABLE).

Description

Output forces of single-point constraint requests (p set, S_RTI, real).

Table Format

Record Word Type Item

1 I
2 I
3 I
4 I
5 R
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

1 I
2 I
3-8 R

Header record

Device code + lO*apDroach code
3
0
Subcase number
Time
0
O
Load set ID
Format code

Number of words per entry in next record = 8
Not defined
Title
Subtitle
Label

lO*point ID + device code)repeat
Point type >for each
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)_point

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code =

3. Format code

li = x y output only
print
punch
print and punch

4. Approach code = 6

= real

= real/imaginary
: magnitude/phase

5. Point type
Ii : grid point

= = scalar point
= extra point
= modal point

Table Trailer

Words I-6 contain no significant values.

2.3-98

DATA BLOCKDESCRIPTIONS

2.3.28.12 _QPCI (TA3LE).

Description

Output forces of single-point constraint requests (p set, S_RTI, complex).

Tab]e Format

Record Word Type Item

0 Header record

l I
2 I
3 I
4 I

5 R/I
6 I/R
7 I/R
8 I
9 I

I0 I
II-50
51-82 B
83-114 B

I I a-- I_fU B

Device code + lO*approach code
I003
0

Subcase number
Frequency or mode number
O or eigenvalue (real oart)
0 or eigenvalue (imaginary part)
Load set ID
Format code

Number of words per entry in next record = 14
Not defined
Title
Subtitle
Lauel

l I
2 I
3-8 R
9-14 R

lO*point ID + device code }reoeat
Point type (for
R(TI), R(T2), R(T3) R(RI), R(R2), R(R3)_each
I(Tl), I(T2), I(T3)_ I(RI), I(R2), I(R3)}point

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code
li x y output only

= = print
= punch
= print and punch

3. Format code
li = real= = real/imaginary

= magnitude/phase

4. Approach code = 5, or 9

5. Point type
li grid point

= = scalar point
: extra point
= modal point

Table Trailer

Words I-6 contain no significant values.

2.3-99 (8/1/72)

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.28.13 _PHIG (TABLE).

Description

Output eigenvector requests (g set, S_RTI, real).

Table Format

Record Word Type

1 I
2 I
3 I
4 I
5 I
6 R
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

1 I
2 I
3-8 R

Item

Header record

Device code + lO*approach code
7

0
Subcase number

Mode number

Eigenvalue
O

0

Format code

Number of words per entry in next record = 8
Not defined
Title

Subtitle

Label

lO*point ID + device code }repeat
Point type _for each

R(TI), R(T2), R(T3), R(RI), R(R2), R(R3))point

_iotes

I. Records I and 2 are repeated for each vector to be output.

2. Device code

3_

4.

Format code

li = x y output only

= = print
= punch

= print and hunch

I! : real
= = real/imaginary

= magnitude/phase

Approach code = 2, or 8

5. Point type =
li = grid point

scalar point
extra point
modal point

Table Trailer

Words I-6 contain no significant values.

2.3-100

DATA BLOCK DESCRIPTIONS

2.3.28.14 _CPHIP (TABLE).

Description

Output eigenvector requests (p set, S_RTI, complex).

Table Format

Record Word

1 I
2 I
3 I
4 I
5 I
6 R
7 R
8 I
9 I

I0 I
11-50
51-82 B
83-114 B
115-146 B

l I
2 I
3-8 R
9-14 R

Item

Header record

Device code + lO*approach code
I007
0
Subcase number
Mode number

Eigenvalue (real part)
Eigenvalue (imaginary part)
0
Format code
Number of words per entry in next record = 14
Not defined
Title
Subtitle
Label

lO*point ID + device code)repeat
Point type {for
R(TI), R(T2), R(T3), R(RI) R(R2!, R(R3)_each
I(TI), I(T2), I(T3), I(RI)_ I(R2}, l(R3)}point

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code

3. Format code

li x y output only
= : print

= punch
: print and punch

li : real= : real/imaginary
= magnitude/phase

4. Approach code : 9

5. Point type =
Ii grid point

scalar point
extra point
modal point

Table Trailer

Words I-6 contain no significant values.

2.3-101

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.28.15 OESl (TABLE).

Description

Output element stress requests (S_RTI, real).

Table Format

Record Word Type

1 I
2 I
3 I
4 I
5 I/R

6 R/I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

2 1 I
2-NWDS Mixed

Item

Header record

Device code + lO*approach code
5

Element type
Subcase number

Time, Load set ID, or mode number

Eigenvalue or 0
0

Load set ID or 0
Format code

Number of words per entry in next record = NWDS
Not defined
Title
Subtitle
Label

lO*element ID + device code

Element stress data

See 2.3.51 for details

reoeat
for each
element

Notes

I. Records 1 and 2 are repeated for each vector to be output.

li = x y output only
2. Device code = print

punch
print and punch

{!=real
3. Format code = real/imaginary

magnitude/phase

4. Approach code = l, 2, 3, 6, 7, or lO

Table Trailer

Words I-6 contain no significant values.

2.3-102

DATA BLOCK DESCRIPTIONS

2.3.28.16 _ESBI (TABLE).

Description

Output ele(,entstress requests (S_RTI, real).

Table Format

Record Word Type

l I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

lO I
ll-50
51-82 B
83-114 B
II5-146 B

2 l I
2-NWDS Mixed

Item

Header record

Device code + lO*approach code
5

Element type
Subcase nu_er
Load set ID
0
0
Q
FBrmat code
Number of words oer entry in next record = NWDS
Not defined
Title
Subtitle
Label

lO*element ID + device code
Element stress data
See 2.3.51 for details

repeat
for each
element

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code

3. Format code

li = x y output only

= = print
= punch
= print and punch

! = real
= = real/imaginary

= magnitude/phase

4. Approach code = 4

Table Trailer

Words I-6 contain no significant values.

2.3-I03

DATABLOCKANDTABLEDESCRIPTIONS

2.3.28.17 _BESI(TABLE).

Description

Output element stress requests (S_RTI, real).

Table Format

Record Word Type

Header record

Item

l I
2 I
3 I
4 I
5 I
6 R
7 I
8 I
9 I
lO I
ll-50
51-82 B
83-I14 B
I15-146 B

2 1 I
2- NWDS Mixed

Device code + lO*approach code
5

Element type
Subcase number
Mode number
Eigenvalue
0
0
Format code
Number of words per entry in next record = NWDS
Not defined
Title
Subtitle
Label

lO*element ID + device code }repeat

Element stress data I for eachSee 2.3.51 for details element

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code =

3, Format code

li : x y output only

print
punch
print and punch

I! = real= = real/imaginary
= magnitude/phase

4. Approach code = 8

Table Trailer

Words I-6 contain no significant values.

2.3-104

DATABLOCKDESCRIPTIONS

2.3.28.18 _ESCI(TABLE).

Description

Output element stress requests (SBRTI, complex).

Table Format

Record Word Type

Header record

Item

l I
2 I
3 I
4 I
5 RII
6 I/R
7 I/R
8 I
9 I
lO I
ll-50
51-82 B
83-I14 B

!!5-146 B

Device code + lO*approach code
I005

Element type
Subcase number

Frequency or mode nu_er
0 or eigenvalue (real part)
0 or eigenvalue (imaginary part)
Load set ID
Format code

Number of words per entry in next record = NV_S
Not defined
Title
Subtitle
Label

2 l I
2-NWDS Mixed

lO*element ID + device code
Element stress data
See 2.3.51 for details

reoeat
for each
element

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code

3.

li = x y output only

= = print
= punch
= print and punch

li : realFormat code = real/imaginary
magnitude/phase

4. Approach code = 5, or 9

Table Trailer

Words I-6 contain no significant values.

2.3-I05

DATABLOCKANDTABLEDESCRIPTIONS

2.3.28.19 _EFI(TABLE).

Description

Output element force requests (SBRTI, real).

Table Format

Record Word Type

1 I
2 I
3 I
4 I
5 I/R
6 :/R
7 I
8 I
9 I
IO I
ll-5O
51-82 B
83-I14 B
I15-146 B

2 l I
2-NWDS Mixed

Item

Header record

Device code + lO*approach code
4
Element type
Subcase number
Time, load set ID, or mode number

0 or eigenvalue
0
Load set ID or 0
Format code

Number of words per entry in next record = NWDS
Not defined
Title
Subtitle
Label

lO*element ID + device code
Element force data
See 2.3.52 for details

repeat
for each
element

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code

3. Format code

li x y output only

: = print
= punch
= print and punch

li = real
= = real/imaginary

= magnitude/phase

4. Approach code = l, 2, 3, 6, 7, or lO

Table Trailer

Words I-6 contain no significant values.

2.3-I06

DATABLOCKDESCRIPTIONS

2.3.28.20 _EFBI(TA3LE).

Description

Output element force requests (S_RTI, real).

Table Format

Record Word Type

1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I
lO I
ll-50
51-82 B
83-I14 B
I15-146 B

2 l I
2-NWDS Mixed

Item

Header record

Device code + lO*approach code
4

Element type
Subcase nu_er
Load set ID
0
0
0
Format code

Number of words per entry in next record = NWDS
Not defined
Title
Subtitle
Label

lO*element ID + device code
Element force data
See 2.3.52 for details

reneat
for each
element

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code =

3. Format code

li = x y output only

print
punch
print and punch

I! = real
= = real/imaginary

= magnitude/phase

4. Approach code = 4

Table Trailer

Words I-6 contain no significant values.

2.3-107

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.28.21 OBEFI (TABLE).

Description

Output element force requests (SORT1, real).

Table Format

Record Word Type

1 I
2 I
3 I
4 I
5 I
6 R
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

2 1 I
2- NWDS Mixed

Item

Header record

Device code + lO*annroach code
4

Element type
Subcase number
Mode number

Eigenvalue
0
0
Format code

Number of words per entry in next record = N!_DS
Not defined
Title
Subtitle
Label

lO*element ID + device code }repeat

Element force data I for eachSee 2.3.52 for details element

Notes

I. Records 1 and 2 are repeated for each vector to be output.

li = x y output only

print
2. Device code = punch

print and punch

{!=real3. Format code = = real/imaginary
= magnitude/phase

4. Approach code = 8

Table Trailer

Words I-6 contain no significant values.

2.3-108

DATABLOCKDESCRIPTIOHS

2.3.28.22 BEFCI(TABLE).

Description

Output element force requests (S_RTI, complex).

Table Format

Record Word Type

1 I
2 I
3 I
4 I
5 R/I
6 I/R
7 I/R

8 I

9 I
lO I

ll-50
51-82 B

83-I14 B
I15-146 B

2 1 I
2- NWDS Mixed

Item

Header record

Device code + lO*approach code
1004

Element type
Subcase number
Frequency or mode nu_er
0 or eigenvalue (real Dart)
0 or eigenvalue (imaginary part)
Load set ID or 0
Format code
Number of words oer entry in next record : N_,tDS
Not defined
Title
Subtitle
Label

lO*element ID + device code

Element force data
See 2.3.52 for details

I reoeat

for each
element

i'_otes

I. Records 1 and 2 are repeated for each vector to be output.

li = x y output only

print
2. Device code = punch

print and punch

! : real
3. Format code = real/imaginary

magnitude/phase

4. Approach code = 5, or 9

Table Trailer

Words I-6 contain no significant values.

2.3-109

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.28.23

Description

Note

PUGVl (matrix - see note below)

PUGVl contains the translation components of UGVI rotated to the basic coordinate system.

The first four words of each logical record (column) contain identification data for the
column. These words must be read prior to calling the appropriate unpacking routine.

Word l = subcase number

Word 2 = l

Word 3 = static load set ID

Word 4 = 0

Matrix Trailer

Trailer is same as that for UGVl except word l = O, and word 6 = 0 (see section 2.3.36.1).

2.3-II0

DATABLOCKDESCRIPTIONS

2.3.28.24

Description

Note

PUBGVI (matrix - see note below)

PUBGVI contains the translation components of UBGV rotated to the basic coordinate system.

The first four words of each logical record (column) contain identification data for the
column. These words n_st be read prior to calling the appropriate unpacking routine.

Word l = subcase number

Word 2 = l

Word 3 = static load set ID

Word 4 = 0

Matrix Trailer

Trailer is same as that for UBGV with word 1 = O, and word 6 = O.

2.3-III

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.28.25 PPHIG (matrix - see note below)

Description

PPHIG contains the translation components of PHIG rotated to the basic coordinate system.

Note

The first four words of each logical record (column) contain identification data for the

column. These words must be read prior to calling the appropriate unpacking routine.

Word l = subcase number

Word 2 = 2

Word 3 = mode number

Word 4 = eigenvalue (X)

Matrix Trailer

Trailer is same as that for PHIG with word l = O, and word 6 = O, (see section 2.3.27.4).

2.3-112

DATABLOCKDESCRIPTIOiIS

2.3.28.26 PUGV(matrix- seenotebelow)

Description

PUGV contains the translation components of UPV (excluding extra points) rotated to the basic
coordinate system.

Note

The first four words of each logical record (column) contain identification data for the

column. These words must be read prior to calling the appropriate unpacking routine.

Word l = subcase number

Word 2 = 3

Word 3 = 0

Word 4 = time

Matrix Trailer

Trailer is same as that for UGV with word 1 = O, and word 6 = O, (see section 2.3.27.1).

2.3-113

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.29 Data Blocks Output From Module DPD

2.3.29.1 GPLD (TABLE)

Description

Grid Point List Dynamics.

One logical record which contains a list of all grid points, scalar points and extra points
in the model in internal sort.

Table Format

Record Word Type

0

1 1 I

n I

2

Table Trailer

Word 1

Word 2-6

Item

Header record

ID for first point

ID for nth point

End-of-file

= number of grid points + number of scalar points + number of extra points.

= zero.

2.3.29.2 SILD (TABLE)

Description

Scalar Index List Dynamics.

Two logical records. First logical record contains scalar index values in the p-displace-
ment set for each point in the dynamics model (internal order). These values are defined
as follows:

SILD l = l

(SILD. + 6 if i corresponds to a grid point
SILDi+ l

_SILD I + l if i corresponds to a scalar or an extra point

The second logical record contains an equivalence between scalar index values in the

g-displacement set and scalar index values in the p-displacement set.

2.3-114

DATABLOCKDESCRIPTIONS

Table Format

Record

0

l

2

3

Table Trailer

Word Type Item

Header record

1 I Scalar index for first point

• _ "

n I Scalar index for n th point

I, 2 I SIL value, SILD value

2m-l,2m I SlL value, SlLD value

End-of-file

Word 1 = degrees of freedom in the p-displacement set (LUSETD).

Word 2 = number of extra points.

Word 3-6 = zero.

2.3.29.3 USETD (TABLE)

Description

Displacement set definitions table dynamics.

USETD contains one logical record. Each word corresponds to each degree of freedom in the

p-displacement set (in internal order) and contains ones in specified bit positions indicat-
ing the displacementsets to which the point belongs.

Table Format

Reco rd Word Type Item

Header record

1 L Mask for first degree of freedom

n L Mask for nth degree of freedom

End-of-file

Notes

Bit positions for the various displacement sets are defined as follows:

Ld Ifel nel Pl elsb]Sgl _I a I f] n J g I rl °l s] m I

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2.3-115

DATABLOCKANDTABLEDESCRIPTIONS

Table Trailer

Word 1 =

Word 2 =

Word 3 =

Word 4 =

Word 5 :

Word 6 =

degrees of freedom in the p-displacement set (LUSETD).

number of extra points.

zero.

logical "or" of all USETD masks.

zero.

zero.

2.3.29.4 EED (TABLE)

Description

Eigenvalue Extraction Data.

The EED contains one logical
EIGP, EIGR).

Table Format

Record Word

0

1

2

3

4

5

Detailed format for EIGB data:

Word Type

I-3 I
4 I
5-6 B
7-8 R

9-11 I

12 R
13-14 B
15 I

16-21

record for each eigenvalue extraction card type (EIGB, EIGC,
Each logical record contains data from all cards of a given type.

Item

Header record

EIGB data (if EIGB cards in bulk data)

EIGC data (if EIGC cards in bulk data)

EIGP data (if EIGP cards in bulk data)

EIGR data (if EIGR cards in bulk data)

End-of-file

I tern

107, I, 0
Set ID
Method

F,F
1 2

Ne , Nd , Nz

E
Norm
If norm = "P_INT", SIL value in

a-set of normalization point
Not defined

repeated
for each
EIGB card
in bulk data

2.3-I16 (711170)

DATA BLOCK DESCRIPTIONS

Detailed format for EIGC card:

Word Type

I-3 I
4 I
5-6 B
7-8 B
9 I

I0
II R
12-13
14-15 R

16-17 R

18 R
19-20 I

21
14+8k-21+8k I

Item

207, 2, 0
Set ID
Method
Norm

If Norm = "P_INT", SIL value in analysis
set of normalization point

Not defined
E
Not defined

_a' _a } repeated

_b' _b I for each

region

Ne, Nd definition

Not defined

-l (k = number of regions)

Detailed format for EIGP card:

Word Type

1-3 I
5 I
6-7 R
8 I

Item

257, 4, 0

Set ID _ repeated for
_, m >each EIGP card
M _ in bulk data

Detailed format for EIGR card:

Word Type Item

I-3 I
4 I
5-6 B
7-8 R

9-11 I

12 R
13-14 B
15 I

16-21

307, 3, 0
Set ID
Method
F,F

I 2

Ne, Nd , Nz
E
Norm
If nom = "P_INT", SIk value in
a-set of normalization point
Not defined

repeated
for each
EIGR card
in bulk data

Table Trailer

Word l =

bit 17 = I if EIGB record exists
18 = l if EIGC record exists
19 = l if EIGP record exists
20 = l if EIGR record exists
other bits = 0

Word 2-6 = zero.

repeated
for each
EIGC card
in bulk data

2.3-117 (7/1/70)

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.29.5 EQDYN (TABLE)

Description

Equivalence between external points and scalar index values - dynamics•

EQDYN contains two logical records. The first record contains pairs of external point
numbers and scalar index values in the p-displacement set for the points in external order.
The second record is essentially the same as the first except that the type of p_ (grid,
scalar, extra) is coded in the second word of the pair.

Tabl e Format

Record Word Type

1,2 I

2n-l,2n I

Item

Header record

ID for first point, scalar index for first point

ID for n th point, scalar index for n th point

3

Note

Type =

Table Trailer

Word 1

Word 2

Word 3-6

1,2 I

2n-I ,2n I

ID for first point, lO*scalar index + type

ID for nth point, lO*scalar index + type

End-of-file

I! for grid pointfor scalar point
for extra point

= number of grid points + number of scalar points + number of extra points
in dynamics model•

= number of extra points•

= zero.

2.3-118

DATA BLOCK DESCRIPTIONS

2.3.29.6 TFP_OL (TABLE).

Description

Transfer Function Pool.

The TFP_L data block contains one logical record for each transfer function set defined in
the bulk data on a TF bulk data card. Point and component values are converted to row and
column numbers in the p-displacement set.

Table Format

Record Word T_pe Item

O Header record

l I
2 I
3-5 R

Set ID
65536*column n_er + row nun_er
Coefficients

repeated for
eE;chset of
non-zero terms

Same format as first record

n+l End-of-file

Table Trailer

Word l

Word 2-6

= nu_U_erof transfer function sets.

= zero.

2.3.29.7 DLT (TABLE).

Description

Dynamic Loads Table.

The header record of the DLT contains a summary of all dynamic load sets defined in the
problem. The first record of the DLT contains all DLgAD cards (if DLCAD cards have been input).
Each succeeding record contains all data for one dynamic load set.

Table Format

Record Word Type Item

I-2 B
3 I
4-3+m I
4+m-3+m+n I

Data block name
m = number of DL_AD set ID's
Set ID's on DL_AD cards
Set ID's on RL_ADI, 2 and TL_ADI, 2 cards

l
2
3-4

I
R
R,I

Set ID
Scale factor
Scale factor, set ID

-!, -l

repeated
for each
DL_AD
card

2.3-I19 (12-I-69)

DATA BLOCK A;_D TABLE DESCRIPTIONS

Record Word Type Item

n+2

l I

2 I

3-8
9 I

10-12 R

Dynamic load card type
_= 0 no time delays
Ip 0 time delays
See Notes
SIL number I repeated for each
A, _, e _ dynamic load set

End-of-file

Notes

l ° If no DL_AD cards have been input, the third word of the header record is zero and the
DL@AD record does not exist. Therefore, record 1 of the DLT corresponds to the load
set defined in word 4 of the header record.

2. DL_AD-set ID's are in sort by set ID. In record I, set ID's within a DL_AD card are
in sort.

3. Within other records, data is in sort by SIL number.

4. Formats by dynamic load card type are as follows:

1 = RL@ADI

Word _ Item

3 I Table ID for C(f)
4 I Table ID for D(f)
5-8 Not defined

2 = RL@AD2

Word Type Item

3 I Table ID for B(f)

4 I Table ID for @(f)
5-8 Not defined

3 : TL_ADI

Word Type Item

3 I Table ID for F(t)
4-8 Not defined

4 = TL_AD2

Word Type Item

3-4 R TKI , TK2

5-6 R IVK' _K

7-8 R nK' _K

Table Trailer

Word I : GIN_ file name of DLT.
Word 2-6 = undefined.

2.3-120

DATA BLOC/, DESCRIPTIOHS

2.3.29.8 PSDL (TABLE)

Description

Power Spectral Density List.

The first logical record of the PSDL contains RANDPS data. Subsequent logical records
contain RANDT data, one set per logical record. Each PJ_NDT logical record contains a
sorted list of unique time lags defined in the set.

Table Format

Record Word Type Item

0 1,2 B Data block name
3 I RANDT set ID

I

2+n I RANDT set ID
n

1 I RANDPS set ID
2 I Load set ID
3 I Load set ID
4,5 R Complex number
6 I Table ID

i-m R Time lags

repeated
for each
RANDPS
card in
bulk data

n+l

n+2

Same format as record 2

Data belongs to RANDT set ID n

End-of-file

Notes

I.

2,

RANDPS cards must be present for data block to exist. Therefore, record one always
contains RANDPS data.

If no RANDTI or RANDT2 cards are present in the bulk data, the header record will
contain exactly two words and record two will be an end-of-file,

Table Trailer

_number of RANDT sets, orWord 1
65535 if no PJ_NDT sets exist.

Word 2-6 = zero.

2.3-121

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.29.9 FRL (TABLE)

Description

Frequency Response List.

The FRL contains one logical record for each different frequency set defined in the bulk
data. Each record contains a sorted list of the unique frequencies defined in the set.

Table Format

Record Word Type Item

0 1,2 B Data block name
3 I Set ID

1

2+n I

1 l-m R

n l-k R

Set ID n

Frequencies belonainq to set ID
1

Frequencies belonging to set ID n

n+l End-of-file

Table Trailer

Word 1 = number of frequency sets.

Word 2-6 = zero.

2.3.29.10 NLFT (TABLE)

Description

Non-Linear Forcing Table.

The header record of the NLFT contains a sorted list of set identification numbers for all
N_LIN sets defined in the bulk data. Each loqical record of the NLFT contains all data for
a single set. Point and component numbers on the N_LIN cards are converted to scalar index
values in both the d- and e-displacement sets.

Table Format

Record Word Type Item

0 1,2 B Data block name
3 I Set ID

1

2+n I Set ID
n

2.3-122

DATA BLOCK DESCRIPTIONS

Record Word Type

I
I

type = 1 =
type = 2 =
type = 3 =
type = 4 =
type : 1 :
type : 2 :
type = 3 =
type = 4 =

Item

Type of nonlinear load (l_type=4)
SIL value in d-set
SIL value in e-set
Scale factor
SIL value in d-set
SIL value in e-set
Table ID (inteqer)
SIL value in d-set (inteqer)
Scale factor (real)
Scale factor (real)
Not defined

SIL value in e-set (inteqer)
Not defined
Not defined

repeated for
each N_LIN
card in set

Same format as record I.

Data belongs to set IDn.

n+l End-of-file

Note

Within each record, the data is sorted on word Z of each 8-word entry in the record.

Table Trailer

Word l = number of N_LIN sets.

Word 2-6 = zero.

2.3-123

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.29.11 TRL (TABLE).

Description

Transient Response List.

The header record of the TRL contains a list of all transient initial condition set

identifications in the bulk data. Subsequent logical records contain TIC data for each
set (one set per logical record). If TSTEP cards are oresent in the bulk data, this data
follows the TIC data, one logical record for each TSTEP set.

Table Format

Record Word _ Item

0 1,2 B Data block name
3 I Number of TIC sets
4 I Set ID

I

3+n I

4+n I

1 I

2,3 R

Set ID
n

Degrees of freedom in the d-displacement set

SIL value in d-set _repeated for each initial

Uo, V° [condition in set

Same format as record 1

Data belongs to set ID n

n+l

n+m

1 I TSTEP set ID
2 I N _ repeated for

3 R At leach interval4 I NO in set

Same format as record n+l

n+m+l End-of-file

Notes

I.

2.

3.

Data within each TIC record is sorted on word 1 of each 3-word entry.

If word 3 of the header record = O, then the first logical record of the TRL contains
TSTEP data.

If TSTEP data is not present in the bulk data, and end-of-file will follow the last
TIC record.

Table Trailer

Word 1 = number of TIC sets.

Word 2 = number of TSTEP sets.

Word 3-6 = zero.

2.3-124

DATA BLOCK DESCRIPTIOAS

3.30 Data Blocks Output Froni idodule READ

Descr i r t i co

A - r!ml Ei:~envalue Tsh le
a

Table For~ ! ia t

2ecord :lord Tvne - - I tell:

0 tlcader r e c o r d

GFP I D r e c o r d
1 I 2 1
2 I 9
3 I 0
e-9 I ?

19 I 7
11-50 Not d e f i n e d
51-146 T i t l e , s u b t i tic, and l a b e l froli i /QUTnl'T/

GFP da ta r e c o r d
1 I vo& I J I~ ' >?~
* ? E x t r a c t i o n o r d e r
3 l? h - ?i jenva lu?

4 K f =m
5 K w = f / 2 n
G R Genera l i zed mass
7 R Genera l i zed s t i f f n e s s

1. The seven d a t a words i n r e c o r d 2 r e p e a t f o r each e igenva lue found i n READ.

Table T r a i l e r

Mon-zero t r a i l e r

C e s c r i p t i o n

[a] - E igenvec to rs n l a t r i x g i v i n g t h e e igenvec to rs (disp1acen:ents) i n the a s e t .
a

M a t r i x T r a i l e r

Number o f columns = number o f e igenvec to rs found i n READ
Number o f rows = a
Form = r e c t a n g u l a r
TY pe = r e a l s i n g l e p r e c i s i o n

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.30.3 MI (MATRIX)

Descriptior_

[mi] - Modal Mass Matrix

Matrix Trailer

Number of columns = number of eigenvectors found in READ
Number of rows = number of eiQenvectors found in READ
Form = gener_l
Type = real single precision

2.3.30.4 _EIGS (TABLE)

Description

Real Eigenvalue Summary Table

Table Format

Record Word Type

Header record

1 I 21
2 I 9
3 I 2

1
4

4 I 0
5 I 0
6 I 0
7 I 0
8 I 0
9 i 0

10 I 0

Words 11-17 depend on the method used.

I tern

Determinant Method:

If Inverse Power Method
If Determinant Method
if Givens Method

II I Number
12 I Number
13 I Number
14 I Number
15 I Number
16 I Number
17 I Reason

l
2

of eigenvalues extracted
of passes through starting points
of criteria changes
of starting point moves
of triangular decompositions
of failures to iterate to a root
for termination

- All requested roots formed
- Out of region predictions from every

starting point
- Insufficient time to extract another

root
- Everywhere singular matrix

2.3-126 (8/I/72)

DATA BLOCKDESCRIPTIONS

Record Word Type I tern

Inverse Power Method:

II
12
13
14
15
16
17

Number of eigenvalues extracted
Number of starting points used
NumbEr of starting points moved
Number of triangular decompositions
Number of vector iterations

Dummy
Reasons for termination

l - 2 Singularities encountered in a row
2 - 4 Shifts while tracking one root
3 - Regions completed
4 -3* Number of estimated roots were found

5 - All roots of problem found
6 - Number desired roots found
7 - _ outside maximum range
8 - Insufficient time to extract another

root

9 - 200 iterations and 1 shift point mnve
before locating a root

Givens Method:

II I Number
12 I Number
13 I Number
14. I
15 I Dummy
16 I Dummy
i7 I Reason

l

18 R

19 I
20 I
21 I

22-50
51-146 B

of eigenvalues extracted
of eigenvectors compLeted
of failures to converge to an eigenvalue
of c_to converge to an _go_"_÷_

for termination
- Normal termination

3 - Insufficient time to evaluate eigenvectors
Value of off-diagonal element of modal mass matrix
having largest magnitude (zero where not applicable)
Column of 18 in MI
Row cf 18 in MI
Number of off-diagonal elements of modal mass
matrix that fail to meet error criterion
Not used

Title, subtitle, label

Records 2 and 3 exist only when the Determinant Method is used.

1 I 21
2 I 9
3 I 3
4 I 0
5 I 0
6 Z 0
7 I 0
8 I 0
9 I 0
I0 I 6
11-50 Not used
51-146 B Title, subtitle, label

l I
2 R

3 R
4 R
5 R

Starting point ID
_,- Starting point

= _- Starting point
f = _/2_ - Starting point
Determinant at _,

Words I-6 are repeated
for each starting point

2.3-127 (8/I/72)

DATA BLOCK DESCRIPTIONS

Record Word

6

Type

R

Item

Scale factor (power of I0)
of determinant !
End-ef-file

Table Trailer

Nonzero

2.3-127a (12-I-69)

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.31 Data Blocks Output From '_odule DS_GI

2.3.31.1 KDGG {MATRIX)

DescriFtion

Kd
[gg]

Matrix Trailer

Partition of differential stiffness matrix - g set.

Number of columns = (!
_lumber of rows = g
Form = symmetric
Type = real double precision

2.3-128

DATA BLOCK DESCRIPTIONS

2.3.32

2.3.32.1

Description

[K_a]

Matrix Trailer

Data Elocks Output From Hodule SHP2

KDAA (MATRIX)

Partition of differential stiffness matrix - a set.

Number of columns = a

Number of rows = a

Form = symmetric
Type = real double precision

2.3-129

DATA BLOCK AND TA[SLE DESCRIPTIONS

2.3.33 Data Blocks Output From Modulc DSHG2

2.3.33.1

Description

[Kb_]

Matrix Trailer

KBLL (MATRIX)

Partition of the stiffness matrix of the first order annroximation to
larqe displacements - _ set.

Number of columns =
Humber of rows =
Form = symmetric
Type = real double precjsi_on

2.3.33.2 KBFS (MATRIX)

Description

[K_s] -

Matrix Trailer

Partition of the stiffness matrix of the first order approximation to

large displacements.

Number of columns = s
Number of rows = f
Form = rectanqular
Type = real double precision

2.3.33.3 KBSS (MATRIX)

Description

Matrix Trailer

Partition of the stiffness matrix of the first order approximation to

larqe displacements - s set.

Number of columns = s
Number of rows = s
Form = symmetric
Type = real double precision

2.3-130

DATABLOCKDESCRIPTIO;_S

2.3.33.4 PBL(!IATRIX)

Description

I<} - Partition of the load vector of the first order approximation to the
large displacements - _ set.

Matrix Trailer

Number of columns = 1
Number of rows =

Form = rectangular
Type = real single precision

2.3.33.5 PBS (MATRIX)

Description

Partition of the load vector of the first order annroximation to the

large displacement problem - s set.

Matrix Trailer

I_umber of columns = 1
Number of rows = s

Form = rectangular
Type = real single precision

2.3.33.o YBS (MATRIX)

Description

IY sl- Partition of the constrained displacement vector of the first order
approximation to the large displacement vector - s set.

Matrix Trailer

Number of columns = 1
Number of rows = s

Form = rectangular
Type = real single precision

2.3.33.7 UBO_V (MATRIX)

Description

Io°bl Partition of the displacement vector of the first order approximation to the
large displacement problem - o set.

Matrix Trailer

Number of columns = 1
Number of rows = o

Form = rectangular
Type = real single precision

2.3-131

DATA BLOCK AND TABLE DESCRIPTIO,_S

2.3.34

2.3.34.1 KGGXL (MATRIX).

Description

,x_
[,ggJ -

Matrix Trailer

Number of columns
Number of rows
Form
Type

2.3.34.2 ESTL (TABLE).

Description

Data Blocks Outout From Module PLAI.

Stiffness matrix of linear elements exclusive of general elements - g set.

= g
= g
= symmetric
= real double precision

Element Summary Table for Linear Elements.

The ESTL contains data copied from the EST data block.
the ESTL only if it is a linear element of the model.

TaLle Format

Same format as the EST data block output from module TAI.

Table Trailer

Word 1 = number of element entries in ESTL.

Words 2-6 = zero.

An element's EST data resides in

2.3-132

DATA BLOCK DESCRIPTIONS

2.3.34.3 ESTNL (TABLE).

Description

Element Summary Table for Non-Linear Elements.

The ESTNL, used only in the Piecewise Linear Analysis Rigid Format, is constructed from the
Element Sun,maryTable (EST). It contains one logical record for each element type for which at
least one element of that type is non-linear (an element is defined to be non-linear if its
modulus of elasticity is defined as the first derivative of a stress-strain tabular function

input on a TABLESI bulk data card) and for which a request for stress output is found. The con-
struction of the ESTNL is as follows: the EST data block is read and each element is tested for
possible non-linearity. If the element is non-linear and the user has requested element stress
data to be output, its element data is copied onto the ESTNL data block and then initial stress
data is appended. The only elements admissible to the ESTNL are: RQD, TUBE, C_NR_D, BAR, TRMEM,
TRIAl, TRIA2, QDMEM, QUADI, QUAD2.

Table Format

Record Word Item

0 Header record

l
2 to N+l

i!.(. _._ 11'4"1" I

Element type (integer) }repeated for

Element EST data _repeated for each !each admissibleE!..mme._ntstress data_non-!inear element element tyne

Notes

l •

2.

N is the number of words in the EST data section.

M is the number of stress words appended.

The number of records in the ESTNL corresponds to the nun_Derof separate admissible
element types for which at least one element is non-linear.

Table Trai Ier

Word l = total number of elements in the ESTNL.

Words 2-6 = zero.

Detailed ESTNL Formats

R_D, C@NR_D:

Word Item

1-17

18

19

20

21

EST data

E0, previobs strain value once removed, initially zero

, previous strain value, initially zero

E , the previously calculated modulus of elasticity, initially
the value of E given a MATI card.

T , the previously calculated torsional moment, initially zero

2.3-133

DATA BLOCK AND TABLE DESCRIPTIONS

TUBE:

Word

1-16

17-20

Item

EST data

Same as wor_s 18-21 for the R_D.

BAR:

Word

1-42

43

44

45

46

47

48

49

5O

Item

EST data

Go, previous strain value once removed, initially zero

E , previous strain value, initially zero

E , the previously calculated modulus of elasticity, initially
the value of E given on a MAT1 card

V1

V2

* The previous element forces, initially zero
T

HI a

_'I2a

TRMEM:

TRIAl:

Word

1-21

22

23

24

25

26

2]7

Item

EST data

co, previous strain value once removed, initially zero

c , previous strain value, initially zero

E , the previously calculated modulus of elasticity, initially the
value of E given on a HAT1 card

_X

_y The current membrane stresses, initially zero

°xy

Word

1-27
28-33

Item

EST data
Same as words 22-27 for the TRMEM

2.3-134 (12-I-69)

DATA BLOCK AND TABLE DESCRIPTIONS

Word

34

35

36

37

38

Mx

My

Mxx

Vx
=k

Vy

Item

The previous element forces, initially zero

TRIA2:

Word

1-27
28-32

Item

Same as words 1-27 for the TRMEM
Same as words 34-38 for the TRIAl

QDHEM:

Word

1-26
27-32

Item

EST data
Same as words 22-27 for the TRMEM

QUADI:

Word

1-32
33-38
39-43

Item

EST data
Same as words 22-27 for the TRMEM
Same as words 34-38 for the TRIAl

QUAD2:

Word

1-26
27-32
33-37

Item

EST data
Same as words 22-27 for the TRMEM
Same as words 34-38 for the TRIAl

2.3-134a (12-I-69)

DATA 3LOCK DESCRIPTIONS

2.3.34.4 ECPTNL (TABLE).

Description

Element Connection and Properties Table for _Ion-Linear Elements.

The ECPTNL, used only in the Piecewise Linear Analysis Rigid Format, is constructed from the
ECPT data block. The ECPTNL contains one logical record for each grid point or scalar point of
the model. Each logical record contains Element Summary Table (EST) data plus initial element
stress data appended to this data for each non-linear element connected to the pivot point. (An
element is defined to be non-linear if its nmdulus of elasticity is defined as the first derivative
of a stress-strain tabular function input on a TABLESl card). The only elements admissible to the
ECPTNL are: R_D, TUBE, C_NR_D, BAR, TRMEM, TRIAl, TRIA2, QDMEM, QUADI, QUAD2.

Table Format

Record Word Item

0 Header record

1 l

2
3 to N+2

N+3 to N+M+2

SIL number for "Divot" arid
or scalar point (integer)

Element type (integer)}reDeated for each
Element EST data _non-linear element
Element stress data)connected to the pivot

n+l End-of-file

reheated
for each orid
or scalar
noint in the
model

Notes

I. N is the number of words in the EST data section.

M is the nund_er of stress words appended. The number of stress words appended in
generating the ECPTNL data block is not the same as in generating the ESTNL data block.

2. n is the total number of grid and scalar points in the model.

3. If all elements connected to a pivot point are linear, then the record contains only
one word, the pivot point set negative.

Table Trailer

Word 1 = total number of element entries in the ECPTNL.

Words 2-6 = zero.

Detailed ECPTNL Formats

R_D, C_NR_D:

Word

1-20

Item

Same as ESTNL data. Note word 21 of the ESTNL

is not present in the ECPTNL data for the R_D, C_NR_D.

2.3-135

DATA BLOCK AND TABLE DESCRIPTIONS

TUBE:

BAR:

Word

1-19

Item

Same as ESTNL data. Note word 20 of the ESTNL is not

present in the ECPTNL data for the TUBE.

TRMEM:

Word

1-45

Item

Same as ESTNL data. Note words 46-50 of the ESTNL are not
present in the ECPTNL data for the BAR.

Word

1-27

Item

Same as ESTNL data.

TRIAl:

TRIA2:

Word

1-33

Item

Same as ESTNL data. Note words 34-38 of the ESTNL are not
present in the ECPTNL data for the TRIAl.

QDMEM:

Word

1-27

Item

Same as ESTNL data. Note words 28-32 of the ESTNL are not
present in the ECPTNL data for the TRIA2.

Word

1-32 Same as ESTNL data.

Item

QUADI:

Word

1-38

Item

Same as ESTNL data. Note words 39-43 of the ESTNL are not

present in the ECPTNL data for the QUADI.

2.3-136 (12-I-69)

DATA BLOCK AND TABLE DESCRIPTIONS

QUAD2:

Word

1-32

Item

Same as ESTNL data. Note words 33-37 of the ESTNL are not

present in the ECPTNL data for the QUAD2.

2.3-136a (12-I-69)

DATA BLOCK DESCRIPTIONS

2.3.35 Data Blocks Output From Module ADD

2.3.35.1 KGGSUM (MATRIX)

Description

Sum of [K_g] and [K_].

Used only in the Piecewise Linear Analysis Rigid Format and is equivalent to [Kgg].

Matrix Trailer

Number of columns = g
Number of rows = g
Form = symmetric
_vpe = real double precision

2.3.35.2 PG (14ATRIX)

Description

Matrix Trailer

Number of columns
Number of rows
Form

Type

Incremental load vector used in Piecewise Linear Analysis.

= l

= g
= rectangular
= real single precision

2.3.35.3 KDAAM (MATRIX)

Description

Kdml - The negative of [K_a] (see section 2.3.32).aa-

Used only in the Buckling Analysis Rigid Format.

Hatrix Trailer

Number of columns = a
Number of rows = a

Form = symmetric
Type = real double precision

2.3-137

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.36 Data Blocks Output From Module PLA2

2.3.36.1 UGVl (MATRIX)

Description

[uld Matrix of successive sums of incremental displacement vectors - g set.

Used only in the Piecewise Linear Analysis Rigid Format.

Matrix Trailer

Number of columns = number of factors on a PLFACT bulk data card

Number of rows = g
Form = rectangular
Type = real single precision

2.3.35.2 PGVI (MATRIX)

Description

1
[P_] - Matrix of successive sums of incremental load vectors - a set.

y only in the Piecewise Linear Analysis Riqid Format.

Matrix Trailer

Number of columns = number of factors on a PLFACT bulk data card

Number of rows = g
Form = rectangular
Type = real single precision

Used

2.3.36.3 QGI (MATRIX)

Description

[qld

Matrix Trailer

Matrix of successive sums of incremental vectors of single point constraint
forces - g set. Used in the Piecewise Linear Analysis Rigid Format only.

Number of columns = number of factors on a PLFACT bulk data card

humber of rows = q
Form = symmetric
Type = real sinale precision

2.3-138

DATABLOCKDESCRIPTIONS

2.3.37 Data Blocks Output From Module PLA3.

2.3.37.1 _NLES (TABLE).

Description

Output table for nonlinear element stresses.

Format

Same format as _ESI table output from module SDR2.

Note

ONLES is written in subroutine PLA32 of module PLA3.

Table Trailer

Word 1 = total number of element entries in BNLES.

Word 2-6 = zero.

2.3.37.2 ESTNLI (TABLE).

Description

Element summary table for nonlinear elements - updated.

Used only in the Piecewise Linear Analysis Rigid Format, the ESTNLI data block is the same
as the ESTNL data block except that the appended stress information is updated. See data block

description for ESTNL for further details.

Table Format

Same format as the ESTNL data block.

Table Trailer

Word l = number of element entries in ESTNLI.

Word 2-6 = zero.

2.3-139

DATA BLOCK AND TABLE DESCRIPTIO_iS

2.3.38

2.3.38.1

Description

Data Blocks Output From Hodule PLA4.

KGGNL (MATRIX).

Stiffness matrix of nonlinear elements - g set.

Used only in the Piecewise Linear Analysis Rigid Format.

Matrix Trailer

Number of columns =
Number of rows =
Form =

Type =

2.3.38.2 ECPTNLI (TABLE).

Description

g
g
symmetric
real double precision

Element Connection and Properties Table for Non-Linear Elements - undated.

Used only in the Piecewise Linear Analysis Rigid Format, the ECPTNLI data block is the
same as the ECPTNL data block except that the appended stress information is updated. See
description for ECPTNL for further details.

Table Format

Same format as the ECPTNL data block.

Table Trailer

Word 1 : total number of element entries in ECPTNLI.

Word 2-6 = zero.

2.3-140

DATA BLOCK DESCRIPTIONS

2.3.39 Data Blocks Output From Module CASE.

2.3.39.1 CASEXX (TABLE).

Description

Case Control data table for dynamics problems.

Table Format

The format of the records is exactly like CASECC, (see section 2.3.1.I) with dynamic
looping records deleted.

Table Trailer

Word I = number of records in C_EXX.

Word 2-6 : zero.

2.3-141

DATA SLOCK AND TABLE DESCRIPTIONS

2.3.40 Data Blocks Output From Module MTRXIN

2.3.40.I K2PP (MATRIX)

Description

2

[mpp] -

Matrix Trailer

Plumber of columns
Number of rows
Form

Type

Direct input stiffness matrix - p set.

= p
= p
= square
= depends on input

2.3.40.2 M2PP (MATRIX)

Description

2

[Mpp] -

Matrix Trailer

Direct input mass matrix - p set.

Number of columns : p
_lumber of rows = p
Form = square
Type = depends on input

2.3.40.3 B2PP (MATRIX)

Description

2

[Bpp]

Matrix Trailer

Number of columns
Number of rows
Form
Type

Direct input damping matrix - p set.

= p
= p
= square
= depends on input

2.3.40.4

The MTRXIN module may be used via DMAP to produce any desired p sized matrix from
DMIG input data.

2.3-142 (8/I/72)

DATA BLOCK DESCRIPTIONS

2.3.41 Data Blocks Output From Module GKAD

2.3.41.1 KDD (MATRIX)

Description

[Kdd] - Dynamic stiffness matrix - d set.

Matrix Trailer

Number of columns

Number of rows
Form

Type

= d

= d

= square
= complex double precision

- frequency response/complex eigenvalue
= real double precision

- transient

2.3.41.2 BDD (MATRIX)

Description

[Bdd] Dynamic damping matrix - d set.

I'ld bY" IX I rcII I_I"

Number of columns

Number of rows
Form

Type

= d

= d

= square
= complex double precision

frequency response/complex eignevalue
= real double precision

transient

2.3.41.3 MDD (MATRIX)

Description

[Mdd] Dynamic mass matrix - d set.

Matrix Trailer

Number of columns
Number of rows
Form

Type

= d
= d

= square
= complex double precision

- frequency response/complex eigenvalue

= real double precision
- transient

2.3-143

DATA BLOCK AND TABLE DESCRIPTIONS

2,3.41.4

Description

[G m]

Matrix Trailer

GMD (MATRIX)

Multipoint constraint transformation matrix - dynamics.

Number of columns = d
Number of ro_'s = m

Form = rectangular
Type = real double precision

2.3.41.5 GOD (MATRIX)

Description

[G_] -

Matrix Trailer

Omitted coordinate transformation matrix - dynamics.

Number of columns = d
Number of rows = o

Form : rectangular
Type = real double precision

2.3.41.6 K2DD(MATRIX)

Description

Matrix Trailer

Direct input stiffness matrix - d set.

Number of columns = d
Number of rows = d

Form : square

Type = complex double precision/real double precision

2.3.41.7 M2DD (MATRIX)

Description

[M_d]

Matrix Trailer

Number of columns
Number of rows
Form
Type

Direct input mass matrix - d set.

= d
= d

= square

= complex double precision/real double precision

2.3-144 (8/I/72)

DATA BLOCK DESCRIPTIONS

2.3.41.8

Description

Matrix Trailer

B2DD (MATRIX)

Direct input dampinQ matrix - d set.

Number of columns
Diumberof rows
Form

Type

= d
= d

= square

= complex double precision/real double precision

DATA BLOCK AilD TABLE DESCRIPTIO,_S

2.3.42 Data Blocks Output From Module CEAD

2.3.42.1 PHID (MATRIX)

Description

[_d] - Complex eigenvectors in the d set.

Matrix Trailer

Number of columns = number of eigenvalues found in CEAD
Number of rows = d
Form = rectanqular
Type = complex sinqle precision

2.3.42.2 CLAMA (TABLE)

Description

>, Complex eigenvalue table.

Table Format

Record Word Type Item

0 Header record

1 I
2 I
3-9 I

I0 I
11-50
51-146 B

OFP ID record
90
1006
0
6
Not defined
Title, subtitle, and label from /_UTPUT/

1 I
2 I
3 R
4 R
5 R
6 R

@FP data record
Mode number
Extraction order

Real part of eiqenvalue
Imaqinary part of einenvalue
IIm (X)I/21[
-2*Re (_)/llm (Z) I

Note: The 6 data words are repeated in record 2 for each
eigenvalue found in CEAD.

End-of-fil e

Table Trailer

Word 1 = 1006
Word 2 = 0
Word 3 = 0
Word 4 = 0
Word 5 = 6
Word 6 = 0

2.3-146

DATA_LOCKDESCRIPTIOI4S

2.3.42.3 _CEIGS(TABLE).

Description

Complex eigenvalue summary table.

Table Format

Record Word Type Item

0 B Header record

1 I
2 I
3 I

4-10 I
II I
12-18

0
1009
1 if determinant

2 if inverse power
0

Number of eigenvalues extracted
Depend on the method used

Determinant

12 I
13 I
14 I
15 I
16 I
17 I
18 I

Number of passes through starting points
Number of criteria changes
Number of starting point moves

Number of decompositions
Number of failures to iterate to a root

Number of predictions outside the region
Reason for termination

l - all requested roots found

2 - out of region prediction from every
starting point

3 - insufficient time to extract another root

4 - everywhere singular matrix

Inverse Power

12-18

19-50
51-146 B

Identical to words 12-18 for Inverse Power Method
section of the BEIGS data block output from the
READ module (see section 2.3.30.4).
Not defined

Title, subtitle, label

Record 1 will be repeated for each region for Inverse Power.
Records 2 + 3 exist only when METHOD = DETM.

1 I 0
2 I 1009
3 I 3
4-9 I 0

I0 I 6
II-50 Not defined

51-146 B Title, subtitle, label

2.3-147

DATA BLOCK AIID TASLE DZSCRIPTIO,_S

Record

4

Table Trailer

Non-zero.

Word Type. Item

l I
2 R
3 R
4 R
5 R
6 I

Startinn point number in region
Real part of startina point
Imaainary part of startina point
Maqnitude of startinn point
Phase of startinn point
Scale factor (power of I0) of maanitude

Words I-6 are repeated for each startina point in each reaion.

End-of-file

2.3.42.4 PHIH (MATRIX)

Description

[#h] - Complex eigenvectors in the h set.

Matrix Trailer

Number of columns = number of eigenvalues found in CEAD
Number of rows = h

Form = rectangular
Type = complex sinqle precision

2.3-148

DATA BLOCK DESCRIPTIONS

2.3.43 Data Blocks Output From Module VDR

2.3.43.1 _PHID (TABLE)

Description

Output complex eigenvectors requests (solution set, S_RTI, complex).

Table Format

Record Word Type Item

Notes

I-2 B Data block name

3-5 I Month, day, year
6 I Time

7 I l

l I

2 I

3 I
4 I

5 I

6-7 R
8 I

g I

lO I
11-50

51-82 B

83-I14 B

I15-146 B

l I

2 I

3-8 R
9-14 R

Device code + lO * approach code
lOl4
0

Subcase number

Mode number

Complex eigenvalue
0

Format code

Nun_er of words per entry in record 2 = 14.
Not defined

Title

Subtitle
Label

lO * point ID + device code _repeated
Point type {for
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)_each

I(Tl), I(T2), I(T3), I(Rl), I(R2), I(R3)}Doint

I. Records l and 2 are repeated for each vector to be output.

2. Device code

3. Format code

I! = x y output only

= = print
= punch

= print and punch

I! = real= = real/imaginary
= magnitude/phase

4. Approach code = 9

5. Point type

6°

Ii = grid point

= = scalar point
= extra point

= modal point

Components (words 3-14 of even numbered records) which are not in the solution set are

replaced by an integer I.

2.3-149

DATA BLOCK AND TABLE DESCRIPTIONS

Table Trailer

Word 1

Word 2

Word 3-6

= (sum of all words in even numbered records)/65536

= remainder from division above

= zero.

2.3.43.2 @UDVCl (TABLE)

Description

Output displacement requests (solution set, S_RTI, complex)

Table Format

Record Word _ Item

I-2 B Data block name
3-5 I Month, day, year
6 I Time
7 I 1

1 I

2 I

3 I
4 I
5 R
6 I
7 I
8 I
9 I

I0 I
11-50

51-82 B
83-114 B

115-146 B

1 I
2 I
3-8 R
9-14 R

Device code + I0 * approach code

I015 = displacement
1016 = velocity
1017 = acceleration

0
Subcase number

Frequency
0
0
Dynamic load set ID
Format code
Number of words per entry in record 2 = 14
Not defined
Title
Subtitle
Label

I0 * point ID + device code _repeated
Point type {for
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)Ceach
I(TI), I(T2), I(T3), I(RI), I(R2), l(R3)}point

Notes

I. Records 1 and 2 are repeated for each vector to be output.

2. Device code :

3. Format code

li = x y output only

print
punch
print and punch

1 = real

2 = real/imaginery
3 = magnitude/phase

4. Approach code = 6

2.3-150 (811/72)

DATA BLOCK DESCRIPTIONS

!_otes cont'd.

5. Point type
Ii qrid point

= = scalar point
= extra point
= modal point

6. Components (words 3-14 of even numbered records) which are not in the solution set

are replaced by an integer I.

Table Trailer

Word l = (sum of all words in even numbered records)/65536.

Word 2 = remainder from division above.

Word 3-6 = zero.

2.3.43.3 OUDVl (TABLE)

Description

Output displacement requests (solution set, S_RTI, Feal).

Table Format

Record Word Type Item

I-2 B Data block name

3-5 I Month, day, year
6 I Time
7 I l

1 I

2 I

3 I

4 I
5 R

6 I

7 I
8 I

9 I

lO I
ll-50

51-82 B
83-I14 B

I15-146 B

1 I
2 I
3-8 R

Device code + I0 * approach code

I15 = displacement

16 = velocity17 = acceleration
0

Subcase number

Time
0

O

Dynamic load set ID
Format code = l

Number of words per entry in record 2 = 8
Not defined

Title
Subtitle

Label

lO * point ID + device code

Point type

Tl, T2, T3, Rl, R2, R3

i repeated
for each
Point

2.3-151

DATA BLOCK AND TABLE DESCRIPTIONS

Notes

I. Records 1 and 2 are repeated for each vector to be output.

2. Device code =
li = x y output only

print
punch
print and punch

3. Format code
= real

= real/imaginary
= magnitude/phase

4. Approach code = 7

5. Point type =
li = qrid point

scalar point
extra point
modal point

6. Components (words 3-8 of even numbered records) which are not in the solution set
are replaced by an integer I.

Table Trailer

Word 1 = (sum of all words in even numbered records)/65536.

Word 2 = remainder from division above.

Word 3-6 = zero.

2.3.43.4 @PNLI (TABLE)

Description

Output nonlinear load requests (solution set, S_RTI, real)

Table Format

Record Word _ Item

I-2 B Data block name
3-5 I Month, day, year
6 I Time
7 I 1

1 I
2 I
3 I
4 I
5 R
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

Device code + I0 * approach code
12
0
Subcase number
Time
0
0

Dynamic load set ID
Format code

Number of words per entry in record 2 : 8
Not defined
Title
Subtitle
Label

2.3-152

DATABLOCKDESCRIPTIONS

Record Word Type Item+

l I

2 I
3-8 R

lO * point ID + device code} repeated

Point type I for eachTl, T2, T3, Rl, R2, R3 point

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code
li = x y output only

= = print
= punch

= print and punch

3. Format code
I! = real= = real/imaginary

= magnitude/phase

4. Approach code = 7

5. Point type
Ii = Qrid point

= = scalar point
= extra point

= modal point

6. Components (words 3-8 in even numbered records) which are not in the solution set

are replaced by an integer I.

Table Trailer

Word l = (sum of all words in even numbered records)/65536.

Word 2 = remainder from division above.

Word 3-6 = zero.

2.3.43.5 _PHIH (TABLE)

Description

Output complex eigenvector requests (solution set, S_RTI, complex).

Table Format

Record Word Type Item

I-2 B Data block name

3-5 I Month, day, year
6 I Time

7 I l

l I Device code + lO * approach code
2 i lOl4

3 I 0
4 I Subcase number

5 I Mode number

6-7 R Complex ei genval ue
8 I 0

9 I Format code

lO I Number of words per entry in record 2 = 14

2.3-153

DATA BLOCK AND TABLE DESCRIPTIONS

Record

Notes

I.

Word _ Item

11-50 Not defined
51-82 B Title
83-114 B Subtitle

115-146 B Label

1 I I0 * point ID + device code irep eated

2 I Point type _for
3-8 R R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)_each

9-14 R l(ml), I(T2), l(T3), l(ml), l(m2), I(R3)_point

Records 1 and 2 are repeated for each vector to be output

li = x y output only
2. Device code = print

punch
print and punch

! = real3. Format code = real/imaginary
magnitude/phase

4. Approach code = 9

li = grid point
5. Point type = scalar point

extra point
modal point

6. Components (words 3-14 of even numbered records) which are not in the solution set
are replaced by an inteqer I.

Table Trailer

Word 1

Word 2

Word 3-6

= (sum of all words in even numbered records)/65536.

= remainder from division above.

: zero.

2.3.43.6 @UHVCl (TABLE)

Description

Output displacement requests (solution set, S_RTI, complex).

2.3-154

DATA BLOCK DESCRIPTIONS

Table Format

Record Word Type Item

I-2

3-5

6
7

B Data block name
I Month, day, year
I Time
I 1

l

2

3

4
5

6

7
8

9
lO

ll-50

51-82
83-I14

I15-146

I Device code + lO * approach code

lO15 = displacement
I 1016 = velocity

lOl7 = acceleration
I 0

I Subcase number

R Frequency
I 0

I 0

I Dynamic load set ID
I Format code

I Number of words per entry in record 2 = 14
Not defined

B Title
B Subtitle

B Label

1 I
2 i
3-8 R
9-14 R

I0 * point ID + device code _repeated
Point type {for

R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)Ceach

I(TI), I(T2), I(T3), I(RI), I(R2), l(R3)_point

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code =

3.

I! = x y output only

print
punch

print and punch

I! = real
Format code = real/imaginary

magnitude/phase

4. Approach code = 6

5. Point type =

6,

I = grid point

2 = scalar point

3 = extra point

4 = modal point

Components (words 3-14 of even numbered records) which are not in the solution set

are replaced by an integer I.

Table Trailer

Word l

Word 2

= (sum of all words in even numbered records)/65536.

= remainder from division above.

Word 3-6 = zero.

2.3-155

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.43.7 _UHVI (TABLE)

Description

Output displacement requests (solution set, S_RTI, real).

Table Format

Record Word _ Item

I-2 B Data block name

3-5 I Month, day, year
6 I Time
7 I 1

1 I

2 I

3 I
4 I
5 R
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

1 I
2 I
3-8 R

Device code + I0 * approach code

15 = displacement16 = velocity
17 = acceleration

0
Subcase number
Time
0
0

Dynamic load set ID
Format code = 1
Number of words per entry in record 2 = 8
Not defined
Title
Subtitle
Label

I0 * point ID + device code
point type
TI, T2, T3, RI, R2, R3

I repeated
for each
point

Notes

I. Records 1 and 2 are repeated for each vector to be output.

li = x y output only

2. Device code = print
punch
print and punch

! = real3. Format code = real/imaginary
magnitude/phase

4. = 7Approach code

Ii = grid point
5. Point type = scalar point

extra point
modal point

6. Components (words 3-8 of even numbered records) which are not in the solution set
are replaced by an integer I.

2.3-156

DATA BLOCK DESCRIPTIONS

Table Trailer

Word l

Word 2

Word 3-6

= (sum of all words in even numbered records)/65536.

= remainder from division above.

: zero.

2.3-157

DATA _LOCK AI_D TABLE DESCRIPTIONS

2.3.44

2.3.44.1

Description

Matrix Trailer

Data Blocks Output From Module FRRD

UDVF (ilATRIX)

Displacement vector matrix in a frequency response problem - d set.

,Number of columns
[,_umber of rows
Form

Type

2.3.44.2 PSF (MATRIX)

Description

Matrix Trailer

= number of frequencies multiplied by the number of loads
= d

= rectangular
= complex single precision

Load vector for frequency response - s set.

Number of columns
Number of rows
Form
Type

2.3.44.3 PDF (MATRIX)

Description

Matrix Trailer

= number of frequencies multiplied by the number of loads
= s

= rectangular
= complex single precision

Dynamic load matrix for frequency analysis - d set.

Number of columns
_umber of rows
Form
Type

2.3.44.4 PPF (r,IATRIX)

Description

[Pif)]

,.'latrix Trailer

= number of frequencies multiplied by the number o_ loads
= d
= rectangular
= complex sinqle precision

Dynamic loads for frequency response - p set.

Number of columns
i'_umber of rows
Form

Type

= number of frequencies multiplied by the number of loads
= p
= rectangular
= complex single precision

2.3-158

DATA BLOCK DESCRIPTIONS

Note

The header record contains the list of frequencies.

2.3.44.5 UHVF (MATRIX)

Description

Matrix Trailer

Modal frequency response solution vectors - h set.

Number of columns = number of frequencies multiplied by the number of loads
Number of rows = h

Form = rectangular
Type = complex single precision

2.3-159

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.45 Data Blocks Output From Module SDR3.

2.3.45.1 @PP2 (TABLE)

Description

Output load vector requests (p set, S_RT2, real).

Table Format

Record Word Type

0

1 1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

2 1 R
2 I
3-8 R

Item

Header record

Device code + lO*approach code
2002

0
Subcase number

lO*point ID + device code
0
0

Dynamic load set ID
Format code = l

Number of words per entry in next record = 8
Not defined

Title

Subtitle

Label

Time)repeat
Point type _for each
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)_time step

Notes

I. Records 1 and 2 are repeated for each vector to be output.

2. Device code =

3. Format code

li = x y output only

print
punch

5 print and punch

4. Approach code = 6

= real

= real/imaginary
= magnitude/phase

5. Point type =
Ii = grid point

scalar point
extra point

modal point

Table Trailer

Words I-6 contain no significant values.

2.3-160

DATA BLOCKDESCRIPTIONS

2.3.45.2 _QP2 (TABLE).

Description

Output forces of single-point constraint (p set, S_RT2, real).

Table Format

Record Wor__d Type Item

0 Header record

l I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

lO I
ll-50
51-82 B
83-I14 B
I15-146 B

Device code + lO*approach code
2003
0
Subcase nu_er

lO*point ID + device code
0
0

Dynamic load set ID
Format code = l
Nu_er of words per entry in next record = 8
Not defined
Title
Subtitle
Label

1 R
2 I
3-8 R

Time }repeat
Point type _for each
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)_timestep

Notes

I. Records 1 and 2 are repeated for each vector to be output.

2. Device code

3.

li = x y output only

= = print
= punch
= print and punch

I! : realFormat code = real/imaginary
magnitude/phase

4. Approach code = 6

5. Point type :
i grid point

scalar point
extra point
modal point

Table Trailer

Words I-6 contain no significant values.

2.3-161

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.45.3 OUPV2 (TA3LE).

Description

Outout displacement vector requests (p set, S_RT2, real).

Table Format

Record Word Type Item

0 Header record

1 I

2 I

3 I
4 I
5 I

6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-145 B

Device code + lO*approach code
2001 = Displacement
2010 Velocity
2011 Acceleration

0
Subcase number

lO*point ID + device code
0
0

Dynamic load set ID
Format code = 1

Number of words per entry in next record = 8
Not defined
Title
Subtitle
Label

1 R
2 I
3-8 R

Time)reoeat
Point tyne >_or each
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3))time sten

Notes

I. Records 1 and 2 are reheated for each vector to be output.

2. Device code
li = x y output only

print
punch
print and punch

I! = real
3. Format code = real/imaginary

magnitude/phase

4. Approach code = 6

5. Point type =
I_ = grid point= scalar point

3 = extra point4 modal point

Table Trailer

Words I-6 contain no significant values.

2.3-162

DATA BLOCK DESCRIPTIONS

2.3.45.4 _ES2 (TABLE).

Description

Output element stress requests (S_RT2, real).

Table Format

Record Word Type

l I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

ID I
ll-50
51-82 B
83-I14 B
I15-146 B

2 l R
2-NWDS Mixed

Item

Header record

Device code + lO*apDroach code
2005
Element type
Subcase number
lO*element ID + device code
0
O

Dynamic load set ID
Format code = l
Number of words _er entry in next record = M'JDS
Not defined
Title
Subtitle
Label

Time _repeat
Element stress data _for each
See section 2.3.51 for details)time step

l_otes

I. Records l and 2 are repeated for each vector to be output.

2. Device code =

3. Format code

i_ = x y output only• print

14 = punch= print and punch

I! = real= = real/imaainary
= magnitude/ghase

4. Approach code = 6

Table Trailer

Words l-G contain no significant values.

2.3-163

DATA BLOCK ANG TABLE DESCRIPTIONS

2.3.45.5 _EF2 (TABLE).

Description

Output element force requests (S_RT2, eal).

Table Format

Record Word Type

1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

2 1 R
2- NWDS Mixed

Item

Header record

Device code + lO*approach code
2004

Element type
Subcase number
lO*element ID + device code
0
0
Dynamic load set ID
Format code = 1

Number of words per entry in next record = NWDS
Not defined
Title
Subtitle
Label

Time)reoeat
Element force data _for each
See section 2.3.52 for details}time step

Notes

I. Records 1 and 2 are repeated for each vector to be output.

I_ = xY output only
2. Device code = print

i_ punch
print and punch

! = real
3. Format code = real/imaginary

magnitude/phase

4. Approach code = 6

Table Trailer

Words I-6 contain no significant values.

2.3-164

DATA BLOCK DESCRIPTIONS

2.3.45.6 _PNL2 (TABLE).

Descri pti on

Output nonlinear load requests (solution set, S_RT2, real).

Table Format

Record Word Type Item

O Header record

l I
2 I

3 I

4 I
5 I
6 I

7 I

8 I
9 I

lO I
ll-50

51-82 B

83-I14 B
I15-146 B

i R
2 I

3-8 R

Device code + lO*apnroach code
2012

0

Subcase number

lO*point ID + device code
0

0

Dynamic load set ID
Format code = l

Number of words per entry in next record = 8
Not defined

Title
Subtitle

Label

Ti_ _reDeat

Point type _for each

R(TI), R(T2), R(T3), R(RI), R(R2), R(R3))timestep

Notes

I. Records l and 2 are repeated for each vector to be output.

2. Device code =

3. Format code

li = x y output only

print
punch

print and punch

4. Approach code = 6

5. Point type

= real

= real/imaginary
= magnitude/phase

6.

Ii = grid point

= = scalar point
= extra ooint

= modal point

Components (words 3-8 in even numbered records) which are not in the solution set are

replaced by integer I.

Table Trailer

Words I-6 contain no significant values.

2.3-165

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.45.7 _UDV2 (TABLE).

Description

Output displacement vector requests (solution set, S_RT2, real).

Table Format

Record Word Type Item

0 Header record

1 I

2 I

3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

Device code + lO*approach code
2015 = Displacement
2016 Velocity
2017 Acceleration

0
Subcase number

lO*point ID + device code
0
0

Dynamic load set ID
Format code = 1
Number of words per entry in next record = 8
Not defined
Title
Subtitle
Label

1 R
2 I
3-8 R

Time)reDeat
Point type >for each

R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)}timesten

Notes

I. Records 1 and 2 are repeated for each vector to be output.

2. Device code =

3. Format code =

li = x y output only

print
punch
print and punch

! = realreal/imaginary
magnitude/phase

4. Approach code = 6

5. Point type

6.

#_ = grid point= = scalar point

I_ = extra _oint= modal point

Components (words 3-8 of even numbered records) which are not in the solution set are
replaced by integer I.

Table Trailer

Words I-5 contain no significant values.

2.3-166

DATA BLOCK DESCRIPTIONS

2.3.45.8 OUHV2 (TABLE).

Descri pti on

Output displacement vector requests (solution set, S_RT2, real).

Table Format

Record Word Type Item

0 Header record

1 I

2 I

3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B
115-145 B

Device code + lO*aDDroach code

2015 = Displacement

2016 Velocity
2017 Acceleration

0
Subcase number

lO*point ID + device code
0
0

Dynamic load set ID
Format code = 1
Number of words per entry in next record = 8
Not defined
Title
Subtitle
Label

1 R

2 I

3-8 R

Time _reoeat
Point type >for each

R(TI), R(T2), R(T3), R(RI), R(R2), R(R3))time stem

Notes

I. Records 1 and 2 are repeated for each vector to be output.

2. Device code

3°

li = x y output only

= = print
: ounch

= print and punch

I! = real
Format code = real/imaginary

magnitude/phase

4. Approach code = 6

5. Point type

_.

li = grid point

= = scalar point
= extra point
= modal point

Components (words 3-8 of even numbered records) which are not in the solution set are
replaced by an integer I.

Table Trailer

Words I-6 contain no significant values.

2.3-167

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.45.9 OPPC2 (TABLE).

Description

Output load vector requests (p set, S_RT2, complex).

Table Format

Record Word Type Item

0 Header record

1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-145 B

Device code + lO*approach code
3002
0
Subcase number

lO*point ID + device code
0
0
0
Format code

Number of words per entry in next record = 14
Not defined
Title
Subtitle
Label

1 R
2 I
3-8 R
9-14 R

Frequency _re_eat
Point type _for
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)_each
I(TI), I(T2), I(T3), I(RI), I(R2), l(R3))frequency

Notes

I. Records 1 and 2 are repeated for each vector to be output.

2. Device code =
li = x y output only

print
punch
print and punch

3. Format code
li = real

= = real/imaginary

= magnitude/phase

4. Approach code = 5

li = grid point
5. Point type = scalar point

extra point
modal point

Table Trailer

Words I-G contain no significant values.

2.3-168

DATA BLOCK DESCRIPTIONS

2.3.45.10 _QPC2 (TABLE).

Description

Output forces of single-point constraint requests (p set, S_RT2, complex).

Table Format

Record Word Type Item

l I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I
lO I
ll-50
51-82 B
83-I14 B
I15-146 B

1 R
2 I
3-8 R
9-14 R

Header record

Device code + lO*approach code
3003
0
Subcase number

lO*point ID + device code
0
0
Load set ID
Format code

Number of words per entry in next record = 14
Not defined
Title
Subtitle
Label

Frequency _repeat
Point type {for
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)_each
I(TI), I(T2), I(T3), l(Rl), I(R2), l(R3))frenuency

Notes

I. Records l and 2 are repeated for each vector to be output.

li = x y output only

print
2. Device code = punch

print and punch

i = real3. Format code = : real/imaginary
= magnitude/phase

4. Approach code : 5

li : grid point

scalar point
5. Point type = extra point

modal point

Table Trailer

Words I-6 contain no significant values.

2.3-169

DATA _LOCK AND TABLE DESCRIPTIONS

2.3.45.11 _UPVC2 (TABLE).

Description

Output displacement vector requests (p set, S_RT2, complex).

Table Format

Record Word Type Item

Header record

1 I

2 I

3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

Device code + lO*aDproach code
3001 = Displacement
3010 Velocity
3011 Acceleration

0
Subcase number
lO*point ID + device code
0
0
Load set ID
Format code

Number of words per entry in next record = 14
Not defined
Title
Subtitle
Label

1 R
2 I
3-8 R
9-14 R

Frequency
Point type
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)
I(TI), I(T2), I(T3), I(RI), I(R2), I(R3)

repeat
for

each
frequency

i_otes

I. Records 1 and 2 are repeated for each vector to be output.

O = x y output only
2. Device code = 1 print

4 = punch
5 print and punch

I! = real3. Format code = real/imaginary
magni tude/phase

4. Approach code = 5

5. Point type
l = grid point= 2 scalar point
3 = extra point

14 modal point

Table Trailer

£Jords I-6 contain no significant values.

2.3-170

DATABLOCKDESCRIPTIONS

2.3.45.12 _ESC2 (TABLE).

Description

Output element stress requests (S_RT2, complex).

Table Format

Record Word Type

1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

Item

Header record

Device code + lO*approach code
3005
Element type
Subcase number
lO*Element ID + device code
0
0
Load set ID
Format code
Number of words per entry in next record = NWDS
Not defined
Title
Subtitle
Label

2 i R Frequency
2-NWDS Mixed Element stress data

See 2.3.51 for details

repea t
for ach
frequency

Notes

I. Records 1 and 2 are repeated for each vector to be outout.

li = x y output only

print
2. Device code = punch

print and punch

! = real3. Format code = real/imaginary
magnitude/phase

4. = 5Approach code

Table Trailer

Words I-6 contain no significant values.

2.3-171

DATA 3LOCK AND TABLE DESCRIPTIONS

2.3.45.13 @EFC2 (TA3LE).

Description

Output element force requests (S_RT2, complex).

Table Format

Record Word _ Item

0 Header record

1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

Device code + lO*aDnroach code
3004

Element type
Subcase number
IO*element ID + device code
0
0
Load set ID
Format code

Number of words per entry in next record = NWDS
Not defined
Title
Subtitle
Label

2 1 R Frequency
2-NNDS Mixed Element force data

See 2.3.52 for details

repeat
for each
frequency

Notes

Records 1 and 2 are repeated for each vector to be output.

2. Device code =
O = x y output only1 print

4 = punch
5 print and punch

3. Format code
I! = real= = real/imaginary

= magnitude/phase

4. Approach code = 5

Table Trailer

Words I-6 contain no significant values.

2.3-172

DATA BLOCK DESCRIPTIONS

2.3.45.14 _UDVC2 (TABLE).

Description

Output displacement vector requests (solution set, S_RT2, cowlex).

Table Format

Record Wor___dd Type Item

0 Header record

l l

3
4
5
6
7
8
9

lO
ll-50
51-82
83-I14
I15-146

l
2
3-8
9-14

B
B
B

R
I
R
R

Device code + lO*approach code
3015 = Displacement
3016 Velocity
3017 Acceleration

0

Subcase Number
IO*point ID + device code
0
0

Dynamic load set ID
Format code

Number of words per entry in next record = 14
Not defined
Title
Subtitle
Label

Frequency)repeat
Point type (for
R(TI), R(T2), R(T3) R(RI), R(R2)_, R(R3)_each
I(TI), I(T2), I(T3): I(RI), I(R2), l(R3))frequency

ilotes

I. Records l and 2 are repeated for each vector to be output.

2. Device code =

3. Format code =

li : x y output only
print
punch
print and punch

I! = real= real/imaoinary
= magnitude/phase

4. Approach code = 5

Ii = grid point
5. Point type = scalar point

extra point
modal point

6. Components (words 3-14 of even numbered records) which are not in the solution set are
replaced by integer I.

Table Trailer

Words I-6 contain no significant values.

2.3-173

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.45.15 OUHVC2 (TABLE).

Description

Output displacement vector requests (solution set, S_RT2, complex).

Table Format

Record Word Type Item

0 Header record

1 I

2 I

3 I
4 I
5 I
6 I
7 I
8 I
9 I

I0 I
11-50
51-82 B
83-114 B

115-146 B

Device code + lO*aDDroach code
3015 = Disnlacement
3016 Velocity
3017 Acceleration

0
Subcase number
lO*point ID + device code
0
0

Dynamic load set ID
Format code

Number of words per entry in next record = 14
Not defined
Title
Subtitle
Label

1 R
2 I
3-8 R
9-14 R

Frequency
Point type
R(TI), R(T2), R(T3), R(RI), R(R2), R(R3)
I(TI), I(T2), I(T3), I(RI), I(R2), I(R3)

repeat
for
each
frequency

Notes

I. Records 1 and 2 are repeated for each vector to be output.

2.

3.

0 = x y output only
1 print

Device code = 4 punch
5 print and hunch

I! = realFormat code = real/imaginary
magnitude/phase

4. Approach code = 5

5. Point type
I = grid point= 2 scalar point

3 = extra point
4 modal point

Components (words 3-14 of even numbered records) which are not in the solution set are
replaced by an integer I.

Table Trailer

Words I-6 contain no significant values.

2.3-174

DATABLOCKDESCRIPTIONS

2.3.46 Data Blocks Output From Module XYTRAN.

2.3.46.1 XYPLTT (TABLE).

Description

Output plot request data in form for direct plotting of S_RT2 Transient Response output.

Table Format

Record Word Type Item

0 Header record

1 1 I-R

2 I
3 I
4 I
5 I
6 I
7 I

8 I

9 I

I0
II R
12 R
13 R
14 R

15 R
16 R

17 I

18 I

19 I
20 I

21 I
22 I

23 R
24 R
25 I
26 I
27 I
28 I
29 I
30 I

Subcase ID or if a Random Response problem,
the Mean Response
Frame number
Curve number
Point ID or element ID

Component number
Vector number (I, 2 II)

l--Graph uses top half of frame
O--Graph uses full frame

-l--Graph uses lower half of frame
O--Axis, tics, labels, values, etc. have been

drawn and this curve is to be scaled and
plotted identically as last except for curve
symbols.

l--Axis, tics, labels, scaling, etc. are to be
performed or computed and if word 7 of this
record = 0 or I, a skid to new frame is to be
made.

Number of blank frames between frames (frame-

skip)
Not used

XMIN !

X[_AN Define exact corners o_ this
YMIN upper, lower, or full frame graph
YMAX

Actual value of first tic
Actual increment _o succ_ss=w
tics
Integer value to be printed on
first tic

Maximum number of digits in
any print-value x-direction
+ or - power for print values tics
Total number of tics to nrint

this edge
Value print skid 0,1,2,3---
Delta integer print value to
successive tics"

Same as 15 through 22
But for y-direction tics

2.3-175

DATABLOCKDESCRIPTIONS

Record Word

31
32
33
34
35

36

37

38
39

40
41

42

5O
51

243

2B_
283

284

285
286

287

288

289

29O

291
292

293
294

295
296

297

298
299

300

B
B
B
B
B
B

I
I
R
R
I

I
I

I
R
R
R
R
R
R
R
R
R
R

Item

Top edge tics leach of 31-34 may be less
Bottom edge tics[than O--tics without values
Left edge tics (equal to O--no tics here
Right edge tics)greater O--tics with values
O--x-direction is linear
Greater than O--number o _ cycles and x-direction
is logarithmic
O--y-direction is linear
Greater than O--number of cycles and y-direction

is logarithmic
O--no x-axis
l--draw x-axis
x-axis y-intercept
O--no y-axis
l--draw y-axis
y-axis x-intercept
Less than 0 -- plot symbol for each curve point.

Select symbol corresponding to
curve number in word 3 of this
record.

Equal to 0 -- connect points by lines where
points are continuous i.e., (no
integer 1 pairs).

Greater than 0 -- do both of above.

Not used

Title (32 words)
Subtitle (32 words)
Label (32 words)
Curve Title (32 words)
x-axis Title (32 words)
y-axis Title (32 words)

Not used

Pensize
Plotter 1 : SC4020, 2 : EAI3500
Inches paper x-direction
Inches paper y-direction
Camera for SC4020 less than 0 = 35mm, 0 : F80,
Greater 0 = Both

Print flag 0 : no, 1 = yes
Plot flag 0 : no, 1 = plotter,

-I : paper, 2 = plotter and paper
Punch flag 0 : no, 1 = yes
x-min of all data

x-max of all data

y-min within x-limits of graph
x-value at this y-min

y-max within x-limits of graph
x-value at this y-max
y-min for all data
x-value at this y-min
y-max for all data
x-value at this y-max

2.3-176 (6/I/71)

DATA BLOCK DESCRIPTIONS

Record Word Type Item

1 I
2 I
3 R
4 R

l
Always is presentl

x-value_ coordinate pair
y-value # reoeats for all pairs plotted

Notes

I. Records l and 2 repeat for each curve plotted.

2. Even numbered records will contain integer 1 pairs to indicate where curve has moved
outside of graph limits.

Table Trailer

Words I-6 contain no significant values.

2.3-177

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.45.2 XYPLTFA (TA3LE).

Description

Identical to XYPLTT, for Frequency Response plots (solution set).

2.3.4G.3 XYPLTF (TABLE).

Description

Identical to XYPLTT, for Frequency Response plots.

2.3.46.4 XYPLTR (TABLE).

Description

Identical to XYPLTT, for Random Response Dlots.

2.3.4G.5 XYPLTTA (TABLE).

Description

Identical to XYPLTT, for Transient Response plots (solution set).

2.3-178

DATA BLOCK DESCRIPTIONS

2.3.47 Data Blocks Output From Module P_AND_M

2.3.47.1 PSDF (TABLE)

Description

Power Spectral Density Table.

Table Format

Record Word Type Item

0 Header record

1 I 50

2 I Code for data type
DISP = 2001
VEL_ = 2010
ACCE = 2011
L_AD = 2002
SPCF = 2003

ELF_ = 2004
STRE = 2005

3 ! 4001
4 I 0
5 I Point or element ID times I0

6 I Component ID + 2
7 I 0

8 R Mean response
9 I 0

I0 I 2
11-50 I 0
51-145 B Title, subtitle, label

2 1 R Frequency
2 R Power spectral densitv

i_otes

I. Words 1 and 2 of record 2 are repeated for each frequency.

2. Records 1 and 2 are repeated for each power spectral density request.

Tabl r, Trailer

L!ords I-5 = zero.

,_ord 6 = number of requests.

2.3-179

DATABLOCKANDTABLEDESCRIPTIONS

2.3.47.2 AUT_(TABLE).

Description

Autocorrelation function table.

Table Format

Record Word Type Item

Header record

1 I
2 I

3 I
4 I
5 I
6 I
7 I
8 R
9 I

I0 I
11-50 I
51-146 B

5O

Code for data type
DISP = 2001
VELO = 2010
ACCE = 2011
LOAD = 2002
SPCF = 2003

ELFO = 2004
STRE = 2005

4002
0
Point or element ID times I0

Component ID + 2
0

Mean response
0
2
0

Title, subtitle, label

2 1 R
2 R

TAU
Auto correlation function

Notes

I. Words 1 and 2 of record 2 are repeated for each TAU.

2. Records 1 and 2 are repeated for each autocorrelation request.

Table Trailer

Words I-5 = zero.

Word _ = number of requests.

2.3-180

DATA BLOCK DESCRIPTIONS

2.3.48 Data Blocks Output From Module TRD.

2.3.48.1 UDVT (MATRIX)

Description

ut
[d] - Displacement, velocity, and acceleration vector matrix in a transient analysis

problem - d set.

r_trix Trailer

Number of columns = three times the number of output time steps
Number of rows = d

Form = rectangular

Type = real single precision

2.3.48.2

Description

Matrix Trailer

PDT (MATRIX)

Linear dynamic load matrix for transient analysis - d set.

Number of columns = number of output times
Number of rows = d

Form = rectangular

Type : real single precision

2.3.48.3 PST (MATRIX)

Description

[P_] - Linear load vector for transient analysis - s set.

Matrix Trailer

Number of columns = number of output times
Number of rows : s

Form : rectanqular
Type = real single precision

2.3-181

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.48.4 PPT (MATRIX)

Description

[P_] Linear dynamic loads for transient analysis - p set.

Matrix Trailer

Number of columns = number of output times
Number of rows = p
Form = rectangular
Type = real single precision

*Note: The header record contains the list of output times.

2.3.48.5 PNLD (MATRIX)

Description

[p_] Nonlinear loads in transient problem - d set.

Matrix Trailer

Number of columns = number of output times
Number of rows = d

Form = rectangular
Type = real single precision

2.3.48.6 UHVT (MATRIX)

Description

[u_] Modal transient solution vectors - h set.

Matrix Trailer

Number of columns = three times the number of output times
Number of rows = h
Form = rectangular
Type = real single precision

2.3.48.7 PNLH (MATRIX)

Descrigtion

n_
[Ph] Nonlinear loads in modal transient problem - h set.

Matrix Trailer

Number of columns : number of output times
Number of rows = h
Form = rectangular

Type = real sinqle precision

2.3-182

DATABLOCKDESCRIPTIONS

2.3.49

2.3.49.1

Description

[mhh]

Matrix Trailer

Data Blocks Output From i|odule GKAH

MHH (MATRIX)

Modal mass matrix - h set.

Number of columns = h
Number of rows = h

Form = symmetric
Type = real double precision

2.3.49.2 BHH (MATRIX)

Description

[bhh]

Matrix Trailer

Modal damping matrix - h set.

Number of columns = h
Number of rows = h
Form = symmetric
Type = real double precision

2.3.49.3 KHH (MATRIX)

Description

[khh]

Matrix Trailer

Modal stiffness matrix - h set.

Number of columns = h
Number of rows = h

Form = symmetric
Type = real double precision

2.3.49.4 PHIDH (MATRIX)

Description

[_dh]

Matrix Trailer

Number of columns
Number of rows
Form

Type

Transformation matrix from d set to modal coordinates.

= h
= d

= rectanqular
= real single precision

2.3-183

DATABLOCKANDTABLEDESCRIPTIONS

2.3.50 Data Blocks Output From Module DDRI

2.3.50.1 CPHID (MATRIX)

Description

[_d] Complex eigenvector matrix transformed from modal to physical coordinates.

Matrix Trailer

Number of columns
Number of rows
Form

Type

= number of eigenvectors
= d
= rectangular
= complex single precision

2.3.50.2 UDVIF (MATRIX)

Description

[u_] Displacement vectors matrix in a frequency response problem - d set.

Matrix Trailer

Number of columns
Number of rows
Form
Type

= number of frequencies times number of loads
= d

= rectangular
= complex single precision

2.3.30.3 UDVIT (MATRIX)

Description

[m_] - Displacement vectors matrix in a transient response problem - d set.

Matrix Trailer

Number of columns = number of output times multiplied by 3
Number of rows = d
Form = rectangular
Type = real single precision

2.3-184 (811172)

DATA BLOCK DESCRIPTIONS

2.3.51 Element Stress Output Data Description.

Note particular data block d_scription (e.g., _ESl, _ESBI) for contents of word l for each element.

Element

Txpe

l

Name

CR_D

CBE_M

CTUBE

CSHEAR

CTWIST

CTRIAI

Real Element Stresses
Word or

Component Item

2 Axial

3 Axial Safety Margin *
4 Torsional

5 Torsional Safety Margin*

2 SAI
3 SA2
4 SA3
5 Axial
6 SA-maximum
7 SA-minimum

8 Safety Margin in Tension*
9 SBI
lO SB2
II SB3
12 SB-maximum
13 SB-minimum

14 Safety Margin in Comp*

Same as CR_D

2 Maximum Shear

3 Average Shear
4 Safety Margin*

2 Maximum
3 Average
4 Safety Margin*

2 Z1 = Fibre Distance 1
3 Normal-x at Z1

4 Normal-y at Zl
5 Shear-xy at Zl
6 O-Shear Angle at Zl
7 Major-Principal at Zl
8 Minor-Principal at Zl
9 Max-Shear at Zl

lO Z2 = Fibre Distance 2
II Normal-x at Z2

12 Normal-y at Z2
13 Shear-xy at Z2
14 O-Shear Angle at Z2
15 Major-Principal at Z2
16 Minor-Principal at Z2
17 Maximum-Shear at Z2

Complex Element Stresses
Word or Real

Component Item Imag.

2 Axial R
3 Axial I
4 Torsional R
5 Torsional I

Undefined

Same as CR_D

2 Maximum Shear R
3 Maximum Shear I

4 Average Shear R
5 Average Shear I

2 Maximum R
3 Maximum I

4 Average R
5 Average I

2 Z1 = Fibre Distance 1
3 Normal-x at 1 R
4 Normal-x at 1 I
5 Normal-y at l R
6 Normal-y at l I
7 Shear-xy at l R
8 Shear-xy at l I
9 Z2 = Fibre Distance 2

lO Normal-x at 2 R
II Normal-x at 2 I

12 Normal-y at 2 R
13 Normal-y at 2 I
14 Shear-xy at 2 R
15 Shear-xy at 2 I

2.3-185

DATA BLOCK AND TABLE DESCRIPTIONS

Element

Type Name

7 CTRBSC

8 CTRPLT

9 CTRMEM

I0 CONRAD

II CELASl

12 CELAS2

13 CELAS3

14 CELAS4

15 CQDPLT

16 CQDMEM

17 CTRIA2

18 CQUAD2

19 CQUADI

2O CDAMPI

21 CDAMP2

22 CDAMP3

23 CDAMP4

24 CVISC

25 CMASSI

26 CMASS2

27 CMASS3

28 CMASS4

29 C@NMI

30 C_NM2

31 CPL_TEL

I Word or Real Element Stresses

Component ItemNote CTRIAI

Note CTRIAI

2 Normal-x
3 Normal-y
4 Shear-xy
5 O-Shear Angle
6 Major-Principal
7 Minor-Principal
8 Maximum Shear

Note CR_D

2 Stress

2 Stress

2 Stress

Undefined

Note CTRIAI

Note CTRMEM

Note CTRIAI

Note CTRIAI

Note CTRIAI

Undefined

Undefi ned

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Complex Element Stresses
Word or
Component Item

Note CTRIAI

Note CTRIAI

2 Normal -x
3 Normal-x

4 Normal -y
5 Normal -y

6 Shear-xy

7 Shear-xy

Note CR_D

Stress
Stress

Stress
Stress

Stress
Stress

Undefined

Note CTRIAI

Note CTRMEM

Note CTRIAI

Note CTRIAI

Note CTRIAI

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Real

Imag.

R
I
R
I
R
I

2.3-186 (8/I/72)

Element

Type Name

34 CBAR

35 CC_NEAX

36 CTRIARG

37 CTRAPRG

DATA BLOCK DESCRIPTIONS

I Real Element Stresses
Word or

Component Item

2 SAI
3 SA2
4 ,SA3
5 SA4
6 Axial
7 SA-maximum
8 SA-minimum

9 Safety Margin in Tension*
lO SBI
II SB2
12 SB3
13 SB4
14 SB-maximum
15 SB-minimum
16 Safety Margin in Comp*

2 Harmonic or point angle
3 Zl = Fibre Distance l
4 Normal-u at l
5 Normal-v at l
6 Shear-uv at l

7 O-Shear Angle at i
8 Major-Principal at l
9 Minor-Principal at l

lO Maximum Shear at l
II Z2 = Fibre Distance 2
12 Normal-u at 2
13 Normal-v at 2
14 Shear-uv at 2
15 O-Shear Angle at 2
16 Major-Principal at 2
17 Minor-Principal at 2
18 Maximum-Shear at 2

2 Radial (x)
3 Circum (Theta)
4 Axial (z)
5 Shear (zx)

2 Radial (x) at l
3 Circum (Theta) at l
4 Axial (z) at l
5 Shear (zx) at l
6 Radial (x) at 2
7 Circum (Theta) at 2
8 Axial (z) at 2
9 Shear (zx) at 2
lO Radial (x) at 3
II Circum (Theta) at 3
12 Axial (z) at 3
13 Shear (zx) at 3
14 Radial (x) at 4
15 Circum (Theta) at 4
16 Axial (z) at 4
17 Shear (zx) at 4
18 Radial (x) at 5

Complex Element Stresses
Word or Real

Component Item Imag.

2 SAI R
3 SA2 R
4 SA3 R
5 SA4 R
6 Axial R
7 SAI I
8 SA2 I
9 SA3 I
lO SA4 I
II Axial I
12 SBI R
13 SB2 R
14 SB3 R
15 SB4 R
16 SBI I
17 SB2 I
18 SB3 I
19 SB4 I

Undefined

Undefined

Undefined

2.3-187 (8/I/72)

DATA BLOCK AND TABLE DESCRIPTIONS

Element

Type Name

37 cont'd.

38 CT_RDRG

53 - CDUMI
61 thru

CDUM9

Real Element Stresses
Word or

Component Item

19 Circum(Theta) at 5
20 Axial (z) at 5
21 Shear (zx) at 5

2 Mem.-Tagen. at 1
3 Mem.-Circum. at 1

4 Flex.-Tangen. at 1
5 Flex.-Circum. at 1
6 Shear-Force at 1

7 Mem.-Tangen. at 2
8 Mem.-Circum. at 2

9 Flex.-Tangen. at 2
I0 Flex.-Circum. at 2
II Shear-Force at 2

12 Mem.-Tangen. at 3
13 Mem.-Circum. at 3

14 Flex.-Tangen. at 3
15 Flex.-Circum. at 3
16 Shear-Force at 3

2 S1
3 $2
4 S3
5 $4
6 $5
7 $6
8 $7
9 $8

I0 $9

Complex Element Stresses
Word or Real

Component Item Imag. _

Undefi ned

2 S1 R
3 $2 R
4 $3 R
5 S4 R
6 S5 R
7 $6 R
8 $7 R
9 $8 R

I0 $9 R
II S1 I
12 $2 I
13 $3 I
14 $4 I
15 $5 I
16 $6 I
17 $7 I
18 $8 I
19 $9 I

*If not equal to integer I.

Note:

If output is magnitude/phase the magnitude replaces the real part and the phase replaces
the imaginary part.

2.3-188 (8/I/72)

DATA BLOCK DESCRIPTIONS

2.3.52 Element Force Output Data Description.

Note particular data block description (e.g., OEFI, OEFBI) for contents word l for each element.

Element

Type Name

l CROD

2 CBEAM

3 CTUBE

4 CSHEAR

5 CTWIST

6 CTRIAI

7 CTRBSC

8 CTRPLT

9 CTRMEM

I0 C_NR_D

II CELASI

12 CELAS2

13 CELAS3

Real Element Forces
Word or

Component Item

2 Axial Force

3 Torque

2 Bend-Mom
3 Bend-Morn
4 Bend-Morn
5 Bend-Morn
6 Shear-I
7 Shear-2
8 Axial Force
9 Torque

Same as CR(_D

2 Force Pts 1,3
3 Force Pts 2,4

Al
A2
Bl
B2

2 Moment Pts 1,3
3 Moment Pts 2,4

2 Bend-Mom-x

3 Bend-Mom-y
4 Twist-Moment
5 Shear-x

6 Shear-y

Same as CTRIAI

Same as CTRIAI

Undefined

Same as CR_D

Force

2 Force

2 Force

Complex Element Forces
Word or Real

Component Item Imaq.

2 Axial Force R
3 Axial Force I

4 Torque R
5 Torque I

Undefined

Same as CROD

2 Force Pts 1,3 R
3 Force Pts 1,3 I
4 Force Pts _ _ R
5 Force Pts 2,4 I

2 Moment Pts 1,3 R
3 Moment Pts 1,3 I
4 Moment Pts 2,4 R
5 Moment Pts 2,4 I

2 Bend-Mom-x R

3 Bend-Mom-y R
4 Twist-Moment R
5 Shear-x R

6 Shear-y R
7 Bend-Mom-x I

8 Bend-Mom-y I
9 Twist-Moment I
lO Shear-x I
II Shear-y I

Same as CTRIAI

Same as CTRIAI

Undefined

Same as CROD

2 Force R
3 Force I

2 Force R
3 Force I

2 Force R
3 Force I

2.3-189

Element

Type Name

14 CELAS4

15 CQDPLT

16 CQDMEM

17 CTRIA2

18 CQUAD2

19 CQUADI

20 CDAMPI

21 CDAMP2

22 CDAMP3

23 CDAMP4

24 CVlSC

25 CMASSI

26 CFtASS2

27 CFtASS3

28 CFtASS4

29 C_NMI

30 C_NM2

31 CPL_TEL

34 CBAR

DATA BLOCK AND TABLE DESCRIPTIONS

Real Element Forces

Word or

Co_iponent Item

2 Force

Note CTRIAI

Undefined

Note CTRIAI

Note CTRIAI

Note CTRIAI

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Bend-Mom Al
Bend-Mom A2
Bend-Mom Bl
Bend-Mom B2
Shear-l
Shear-2
Axial Force
Torque

Complex Element Forces

Itern
Word or

Component

Force
Force

Note CTRIAI

Undefined

Note CTRIAI

Note CTRIAI

Note CTRIAI

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Bend-Mom
Bend-Mom
Bend-Mom
Bend-Mom
Shear-l
Shear-2
Axial Force

Torque
Bend-Mom
Bend-Mom
Bend-Mom
Bend-Mom
Shear-l
Shear-2
Axial Force

Torque

2
3

2
3
4
5
6
7
8
9
lO
II
12
13
14
15
16
17

Al
A2
Bl
B2

Al
A2
Bl
B2

Real

Imag.

2.3-190 (8/I/72)

DATABLOCKDESCRIPTIONS

Element

Type Name

35 CC@NEAX

36 CTRIARG

37 CTPJ_PRG

38 CT_RDRG

53-61 CDUMI
thru

CDUM9

Word or

Component

2
3
4
5
6
7
8
9
I0

2
3
4
S
6
7
8
9

I0
II
12
13

2
3
4
S
6
7
8
9
I0
II
12
13

2
3
4
5
6
7
8
9
lO

Real Element Forces

Item

Harmonic or point angle
Bend-Mornu
Bend-Mornv
Twist-Moment
Shear u
Shear v

Radial (x)
Circum (Theta)
Axial (z)

Radial Ix)Circum Theta)
Axial (z)
Radial (x)
Circum (Theta)
Axial (z)

Radial (x)
Circum (Theta)
Axial (z)
Radial (x)
Circum (Theta)
Axial (z)
Radial (x)
Circum (Theta)
Axial (z)
Radial (x)
Circum (Theta)
Axial (z)

Radial (x)
Circum (Theta)
Axial (z)
Moment (zx)
Direct Strain
Curvature

x)
Radial ITheta)Circum

Axial (z)
Moment (zx)
Direct Strain
Curvature

F/
F2
F3
F4
F5
F6
F7
F8
F9

at l
at 1
at l
at 2
at 2
at 2
at 3
at 3
at 3

at l
at 1
at l
at 2
at 2
at 2
at 3
at 3
at 3
at 4
at 4
at 4

at 1
at l
at l
at l
at l
at l
at 2
at 2
at 2
at 2
at 2
at 2

2
3
4
5
6
7
8
9
lO
II
12
13
14

Complex Element Forces

Word or

Component Item

Undefined

Undefined

Undefined

Undefined

F1
F2
F3
F4
F5
F6
F7
F8
F9
F1
F2
F3
F4

Real
Imag.

2.3-191 (8/I/72)

DATA BLOCK AND TABLE DESCRIPTIONS

Element

Type Name

53-61 cont'd.

Real Element Forces
Word or

Component Item
Word or

Component

15

16
17

18
19

Complex Element Forces

Item

F5
F6

F7
F8

F9

Real

Imag.

2.3-191a (811/72)

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.53 Data Blocks Output From Module DDR2

2.3.53.1 UEVF (MATRIX)

Description

[uf] - Displacements at the extra points for a frequency response problem.
e

Matrix Trailer

Number of columns = number of frequencies times number of loads
Number of rows = e

Form = rectangular
Type = single precision

2.3.53.2 PAF (MATRIX)

Description

[P_] - Equivalent load vector for mode acceleration computations in a frequency response
problem - a set.

Matrix Trailer

Number of columns : number of frequencies times number of loads
Number of rows : d
Form : rectangular
Type = single precision

2.3.53.3

Description

[u_a]

Matrix Trailer

UDV2F (MATRIX)

Mode accelerated displacement vectors for a frequency response problem.

Number of columns = number of frequencies times number of loads
Number of rows = d
Form = rectangular
Type = complex single precision

2.3.53.4 UEVT (MATRIX)

Description

[u_] - Displacement at the extra points for a transient analysis problem.

2.3-192

DATABLOCKDESCRIPTIONS

Matrix Trailer

Number of columns = number of output times multiplied by 3
Number of rows = e
Form = rectangular
Type = real single precision

2.3.53.5 PAT (MATRIX)

Description

[P_] - Equivalent load vector for mode acceleration in a transient analysis problem.

Matrix Trailer

Number of columns
Number of rows
Form

Type

number of output times multiplied by 3
d

rectangular
real sing!p precision

2.3.53.6 UDV2T (MATRIX)

Description

[u_a] - Mode accelerated displacement vectors for a transient analysis problem.

Matrix Trailer

Number of columns = number of output times multiplied by 3
Number of rows = d

Form = rectangular
Type = real single precision

2.3-193

DATA BLOCK AND TABLE DESCRIPTIONS

2.3.54 Data Blocks Output from Module BMG

2.3.54.1 BDP_L (TABLE)

Description

Hydroelastic boundary matrix tables.

fable Format

Same format as the MATPBOLdata block DMIG card images.

Notes: The names of the matrices are KBFL and ABFL

Table Trailer

IFP format, 6 words containing 96 pointer bits for use by subroutines PRELOC and LOCATE.

2.3.55 Data Blocks Output from Module PLTTRAN

2.3.55.1 SIP (TABLE)

Description

Same format as data block SIL.

the next SIL value to have a value:

The SIP data will be:

If fluid points are present each fluid point, i, will cause

SIL(i+I) = SIL(i) + 1

SIP(i+l) = SIP(i) + 6

where i is a fluid point.

2.3.55.2 BGPDP(TABLE)

Description

Same format as data block BGPDT except fluid points have the value -2 in the fields

corresponding to coordinate system identification numbers.

2.3-194 (811172)

2.4

EXECUTIVETABLEDESCRIPTIONS

EXECUTIVETABLEDESCRIPTIONS

Thefollowingis analphabeticalindexof Executivetable descriptions.

Section Number Executive Table Name Where Stored

2.4.1.5 CEITBL /XCEITB/

2.4.1.4 DPL /XDPL/

2.4.1.2 FIAT /XFIAT/

2.4.1.3 FIST /XFIST/ and /XPFIST/

2.4.2.8 IFPXO /IFPXO/

2.4.2.9 IFPXI /IFPXl/

2.4.2.7 LNKSPC /XLKSPC/

2.4.2.2 MPL /XGPI2/

2.4.2.1 _SCAR Data Pool File

2.4.2.4 PVT /XPVT/

2.4.i.B" /_WT_M/

2.4.1.7 TAPID /STAPID/

2.4.1.6 VPS /XVPS/

2.4.2.6 XALTER Problem Tape

2.4.2.5 XCSA Problem Tape

2.4.1.I XFIAT /XXFIAT/

2.4.1.9 XLINK /XLINK/

2.4.2.3 XPTDIC Problem Tape

Page Number

2.4-9

2.4-7

2.4-3

2.4-5

2.4-31

2.4-32

:.4-29

2.4-21

2.4-15

2.4-26

2o4-13

2.4-12

2.4-10

2.4-28

2.4-27

2.4-2

2.4-14

2,4-24

2.4-I (311171)

DATA BLOCK AND TABLE DESCRIPTIONS

2.4.1 Executive Tables Which are Permanently Core Resident

2.4.1.1 XFIAT (Permanent File Allocation Table)

Description

A NASTRAN resident memory table containing the physical file identification for the
permanent files (P_L, OPTP, etc.).

Created in Module

The physical file identifications are output by GNFIAT (generate FIAT).

Table Format

Word 1

s

2

s

3

N

NOT IT I

USEDi;I_o11_FILE

NOT I!1 FILE

NJT ITI
USED 171_6115FILE

NOT IT I

USED _71_61Is FILE

Word Item Description

I-N TP

Notes

FILE

Tape Flag (I bit) - set if physical file (FILE) is a
magnetic tape.

File ID (15 bits) - unique integer identification for

a physical file.

1 • The number of entries (N) is dictated by the integer value in PFIST (see FIST
Executive Table Description - 2.4.1.3)

2. The XFIAT table is located in the named common block /XXFIAT/.

2.4-2

EXECUTIVE TAJ3LEDESCRIPTIONS

2.4.1.2 FIAT (File Allocation Table).

Description

A NASTRAN resident memory table containing the data block name vs. physical file ID. for

a segment of DMAP modules.

Created in Module

The physical files available for the system/computer confiquration are outout by _NFIAT
(generate FIAT). The data block names and other data block information are outnut by XSFA,

Executive Segment File Allocator.

Table Format

Word l

2

3

4

5

6

7

8

9

lO

N

UFA

MXE

CAE

I.A_ ' ITII

j P _ LTU IP I

_ _ _3_1_o _',_',_ _ _
FILE

J

DATA BLOCK
NAME

DATA BLOCK
TRAILER

I ! I

' : L_m _ m _

FIAT Header

Entry #I (sample)

Entry #2 through C/E

2.4-3

DATA BLOCK AND TABLE DESCRIPTIONS

Wor_d_d Item Description

1 UFA Unique files available - this integer indicates the number of
unique file entries in the FIAT.

2 MXE Maximum entries - this integer shows the total entry size of
the dimensioned FIAT table; the amount of memory reserved

(N) = 6 x MXE + 3.

3 CAE Current active entries - this integer designates the portion of
FIAT currently containing valid data; UFA_CAE_HXE.

Words 4 through 9 describe a sample 6-word entry:

4 EQ Equivalence flag (I bit) - 0 bit, file not equivalenced.
1 bit, file equivalenced.

AP Append flag (I bit) - set if append is sDecified for data

block in DMAP sequence by a FILE DMAP instruction.

LTU Last time used (14 bit integer) - record number of @SCAR
entry for last use of data block.

TP Tape flag (I bit) - set if physical file (FILE) is a magnetic
tape.

FILE File ID (15 bits) - unique identification for a physical file.

5,6 NAME Data block name - 8 characters (4 characters/word).

7,8,9 TRAILER Data block trailer - storage for 6-16 bit data block trailer
words.

Words I0 through N contain repeated 6-word entries.

Trailer Information

Trailer information for each data block is stored in and received from the FIAT by WRTTRL
(write trailer) and RDTRL (read trailer).

Note

The FIAT table is located in the named common block /XFIAT/.

2.4-4

EXECUTIVE TABLE DESCRIPTIONS

2.4.1.3 FIST (File Status Table)

Description

A NASTRAN resident memory table containing the internal data block reference (IDBR)
numbers vs. FIAT table pointers for a particular module; also, the permanent file reference
names vs. XFIAT table pointers.

Created in Module

The module entries are generated prior to each module execution by subroutines GNFIST
(Generate FIST). The permanent entries are initialized at system assembly.

Table Format

PFIST I I I

MXE

CAE

Word l

2I+2+I

+2

+3

+4

N

Perm NameI

I

i XF Point
l

I

Perm Name2

II
l XF Point
I

IDBRl

0 i F Point
I

sl

IDBR2

I
I

ol
sl F Point

I FIST Header

Sample Permanent Entry

Sample Module Entry

2.4-5

DATA BLOCK AND TABLE DESCRIPTIONS

Word Item Description.

PFIST I Integer number of permanent FIST entries.

1 MXE Maximum entries - this integer shows the total entry size of the
dimensioned FIST table; the amount of memory reserved
(N) = 2 * MXE + 2.

2 CAE Current active entries - this integer designates the portion of
FIST currently containing valid data; I c CAE _ MXE.

Words 3 and 4 describe a sample 2-word permanent entry:

3 Perm Name A permanent file reference name - 4 characters BCD (e.g., P_L,
OPTP, PLTI, etc.).

4 XF Point Points to the XFIAT position containing the file ID for this
permanent file.

Words 21+2+I and +2 describe a sample 2-word module entry.

+I IDBR An internal data block reference number (GINO file number) -
integer (e.g., 104, 206, 301, etc.).

+2 F Point Points to the FIAT position containing the file ID for this
module entry.

Notes

I.

2,

3.

°

XFIAT pointer values contain an S bit equal to I, while FIAT pointer values contain an
S bit equal to O.

Permanent entries remain static throughout a run, while module entries are changed by

GNFIST prior to each module call.

FIAT and XFIAT position pointers are indexes into the respective tables considering
the first word of the table as position O.

The FIST table is located in the named common block /XFIST/.
The PFIST entry is located in the named common block /XPFIST/.

2.4-6

EXECUTIVE TABLE DESCRIPTIONS

2.4.l.4 DPL (Data Pool Dictionary)

Description

A NASTRAN resident memory table describing the current contents and status of the Data Pool.

Created in Module

Data Pool, and therefore Dictionary entries, are created by pooling from SFA (Segment File
Allocator), housekeeping operations by DPH (Data Pool Housekeeper) and restart initialization by
GPI (General Problem Initialization), and IFP (Input File Processor) when writing D_I and DTI
information (see section 2.3.2).

Table Format

Word 1
NFA

MXE

CAE

DATA BLOCK
NAME

B

ET r
I

Q: SIZE I
m I

S!31 17116

FILE #

! I
I
j I

I I

DPL Header

Entry #I (samole)

Entry #2

2.4-7

DATA BLOCK AND TABLE DESCRIPTIONS

Note

Word Item

1 NFA

Description

Next file avallable- the next Data Pool File number (integer)
available for output.

2 MXE Maximum entries - this integer shows the total entry size of
the dimensioned DPL table; the amount of memory reserved
(N) : 3 * MXE + 3.

3 CAE Current active entries - this integer designates the portion of
the DPL currently containing valid data; 0 < CAE_ MXE.

Words 4 through 6 describe a sample 3-word entry.

4,5 N_tE Data block name - 8 characters (4 characters/word).

6 EQ Equivalence flag (I bit) - 0 bit, file not equivalenced.
1 bit, file equivalenced.

SIZE Size of the pooled data block - number of words/lO.

FILE# The file number (integer) showing the relative position of the
data block file of the pool.

The DPL table is located in the labeled common block /XDPL/.

2.4-8

EXECUTIVE TABLE DESCRIPTIONS

2.4.1.5 CEITBL (Control Entry Information Table)

Description

CEITBL controls the REPT and EXIT DI_APmodule execution.

Created In Module

XGPI.

Table Format

Word l

2

3

4

5
6
7

8

9

lO

Mt_

MN

BL EL !31...... _1_16 I
ML CL

3! 1_7 16 1. ("

--- LN ---

,otus 1_
1,:_
L Not used

Not used

Sample entry for REPT control
(4 words)

Sample entry for EXIT control
(4 words)

Word

l

2

3

4

5,6

7

8

9,10

Item

MN

CN

BL
EL

ML
CL

LN

ERN

MC
CC

Description

Maximum nu_er of words in table (integer).

Current number of words being used (integer).

9SCAR record number where loop begins (integer).
_SCAR record number where loop ends (integer).

Maximum loop count as specified in REPT instruction (integer).
Current loop count, that is, the number of times loop has been
repeated (integer).

Location name specified in REPT instruction (BCD).

EXIT 9SCAR record number (integer).

Maximum count specified in EXIT instruction.
Current count of number of times EXIT instruction not executed.

These two words are zeroed.

Notes

CEITBL is located in named common block /XCEITB/.

2.4-9

DATA BLOCK AND TABLE DESCRIPTIONS

2.4.1.6 VPS (Variable Parameter Set Table)

Description

The VPS table contains the values of all variable parameters referenced by DMAPmodules in a
DMAPprogram. It is the means for transferring variable parameter values from one module to
another.

Created in Module

XGPI.

Table Format

Word

4

5

6
5+L

Mfi

Word

1

2

3,4

5

6 thru 5+L

MN

CN

Parameter

Name

[AM T L

0 2 0 17 16 1

Sample entry
(variable length)

Item

MN

CN

Name

A

DescriDtion

Maximum number of words in VPS (integer).

Current number of words being used (integer).

BCD name of variable parameter.

Assigned flag. A = 1 indicates value from DFtAP instruction
has been entered in VPS.

Modified flag. M = 1 indicates parameter was modified by bulk
data PARAMcard on restart.

Type code for parameter (integer).

Length in words of item V (integer).

Value of parameter.

2.4-10

EXECUTIVE TABLE DESCRIPTIONS

Notes

I.

2.

Items A, M and T (word 5 of sample entry) are used only by the XGPI module and are
cleared prior to exiting XGPI.

Type code and corresponding word length.

T L

l = integer l
2 = real, S.P. l
3 = BCD 2
4 = real, D.P. 2
5 = complex, S.P. 2
6 = complex, D.P. 4

3. The VPS table is located in the named common block /XVPS/.

2.4-11

DATA BLOCK AND TABLE EESCRIPTIONS

2.4.1.7 TAPID (Problem Tape Identification Table)

Description

TAPID contains Problem Tape identification information.

Created in Module

XCSA.

Table Format

Word

ID 1

_ _ ID 2

31

M

i

R

D
514 98

Word

1,2

3,4

5

G

Notes

,

2,

Item

ID 1

ID 2

M,D,Y

R

Description

First BCD field on I[Executive Control card.

Second BCD field on ID Executive Control card.

The date - integers - month, day, year.

Reel number of Problem Tape (integer).

TAPID is written on Problem Tape as single record field. It is always the first file
on the Problem Tape.

OTAPID has same format as TAPID. @TAPID is the ID information from an Old Problem Tape
being used for restarting problem.

3. TAPID and @TAPID are located in named common block /STAPID/.

2.4-12

EXECUTIVETABLEDESCRIPTIONS

2.4.1.8 SYSTEM(NASTRANSystemParameters).

Description

A NASTRAr! resident memory table containing various machine dependent, operating system and
NASTRA_I parameters. The length of the table is defined by one of the table items.

Created in _odule

I,lost items are initialized by the NASTRAN block data program, SE_DBD. Several machine
dependent items are set by subroutine BTSTRP.

Table Format

The sequential table description follows:

Word S_bol Description

Initially
Set b_

1 SYSBUF
2 _UTTAP
3 N@G_
4 INTP
5 _PC
6 SPC
7 METHOD
8 LBAD
9 NLPP

i0 MTEMP
II NPAGES
12 NLINES
13 TLINES
14 MXLINS

15 DATE(1)
16 DATE(2)
17 DATE(3)
18 TIMEZ
19 ECH_F
20 PL_TF
21 APPRCH

22 MACH

23 LSYSTM
24 EDTUMF
25 SWITCH

26 CPPGCT

27 MN

28 IC_NFG

29 MAXFIL
30 MAXOPN
31 K_N360

32 TIMEW

33 _FPFLG

Number of words in a _INB buffer BTSTRP
F@RTRAN looical unit for output BTSTRP
Flag defining status during Preface SEMDBD

FORTRAN logical unit for input BTSTRP
Multipoint constraint set ID SEMDBD

Single-point constraint set ID SE_IDBD
.................... _ _._^_ gF_DR DL _ valu_

First record pointer in Case Control data block SEMDBD

Number of lines per Da_e of printed output BTSTRP
Material temperature set ID SEMDBD
Current page count SEMDBD
Number of lines on current page SEMDBD
Total number of lines printed for problem SEMDBD
Maximum number of printed lines permitted SEMDBD
Today's date - integer month 1-12 SEMDBD
Today's date - inteoer day 1-31 SEMDBD
Today's date - integer year (XX) SEMDBD
Time of problem start - seconds after midnite SEMDBD
Bulk data output reouest type SEMDBD
Structural plot request flag SEMDBD
Approach type flag (2 = DISDL, 3 = DMAP) SEMDBD
Computing machine code number (2 = 360, 3 : 1108,

4 = 6600) BTSTRP
Length of this table SEMDBD
User master file edit flag SEMDBD
Logical sense switch bits set by a DIA_

Executive Control Deck card SE_DBD

XCHKmodule page count SEMDBD
Used only in a conical shell problem. The lower

order 16 bits contain N, the number of
harmonics; the next higher order 16 bits
contain M, the number of rings. SEMDBD

Machine configuration - subset of MACH code
number SEMDBD

Maximum number of files to be added to FIAT SEr_DBD

Maximum number of files to be opened simultaneously SEMDBD

Number of memory words to be released for _S
(360 only) SEMDBD

Initial problem start time (integer seconds after
midnite) SEMDBD

_FP operate flag - set nonzero when OFP operates SEMDBD

2.4-13 (811172)

EXECUTIVETABLEDESCRIPTIONS

Word

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
5O
51
52
53
54
55
56
57
58
59
6O
61
62
63
64
65

Symbol

NBRCBU
NBRMST
NBRSUB
KSEMTR

QO
NBPC
NBPW
NCPW
SYSDAT(1)
SYSDAT(2)
SYSDAT(3)
TAPFLG

ADUMEL(1)
ADUMEL(2)
ADUMEL(3)
ADUMEL(4)
ADUMEL(5)
ADUMEL(6)
ADUMEL(7)
ADUMEL(8)
ADUMEL(9)
IPREC
!THRML
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Description

Length of FET + circular buffer (CDC 6600 only)
Length of master index (CDC 6600 only)
Length of subindex (CDC 6600 only)
Input Data Transliteration Flag (IBI_ 36_ only)
Hydroelastic Problem Flag
Number of bits per character
Number of bits per word
Number of characters per word
System Generation Date - Month
System Generation Date -Dav
System Generation Date - Year
Permanent File Tape Flag
Dummy Element Flag - DUMI
Dummy Element Flag - DUM2
Dummy Element Flag - DUM3
Dummy Element Flag - DUM4
Dummy Element Flag - DUM5
Dummy Element Flag - DUM6
Dummy Element Flag - DUM7
Dummy Element Flag - DUM8
Dummy Element Flag - DUM9
Precision Flag
Heat Transfer Flag

Initially

Set by

SE_IDBD
SEMDBD
SEr_DBD
SEMDBD
SEMDBD
BTSTRP
BTSTRP
BTSTRP
TTLPGE
TTLPGE
TTLPGE
SEMDBD
SEMDBD
SEMDBD
SEMDBD
SEMDBD
SEMDBD
SE_DBD
SEr_DBD
SEMDBD
SEMDBD
SEMDBD
SEMDBD

2.4-13a (8/I/72)

DATA BLOCKAND T_,BLE DESCRIPTIONS

2.4.1.9 XLINK (Link Specification Tab]e- Non-resident Edit)

Descri pti on

This Link Specification Table (see also 2.4.2.7) contains an entry corresponding to each
DI_P module within the MPL (2.4.2.2) table. These entries are indexed by MPL position and
are thus ordered the same as the MPL entries. Each entry contains a key indicating the
links in which the module resides.

Created in Module

XLINK data is created from the LNKSPC (2.4.2.7) and MPL (2.4.2.2) tables by the XGPIBS
subroutine within the XGPI (4.7) module.

Table Format

Word 1

Word Item

1 LXLINK

2 MAXLNK

3,N Key

LXLINK

MAXLNK

Key

Key

Key

Entry #I (sample)

Entry #2

Entry #3

Description

Length of table (number of entries)

Maximum permissable link number

Link residence key for the corresponding MPL entry

The content of this Key word is identical to the Key word within LNKSPC (2.4.2.7) for the
machine type currently operating. See section 2.4.2.7 for an explanation of the content.

Notes

I. The XLINK table must contain an entry in the same order for each module that is
in the MPL (2.4.2.2) table.

2. XLINK table is located in /XLINK/.

2.4-14

EXECUTIVETABLEDESCRIPTIONS

2.4.2 Executive Tables Not Permanentl_ Core Resident

2.4.2.1 _SCAR (Operation Sequence Control Array)

Description

The Operation Sequence Control Array (_SCAR) controls the sequence of modules executed and
aids in communicating data between modules.

The _SCAR is generated from a DMAP instruction sequence supplied by the user or selected
from the Rigid Format library. In general, an _SCAR entry is a DMAP statement which has been
translated to a more readily usable form for internal use.

The four _SCAR entry format types are:

I. Type l or F (functional) format is used for all functional modules exceot outout
processors.

2. Type 2 or _ (output) format is used for output processors.

3. Type 3 or C (control) format is used for REPT, JUMP, C_ND and END DMAP instructions.

4. Type 4 or E (executive) format is used for SAVE, CHKPNT, PURGE and EQUIV DMAP
instructions.

Created in Module

XGPI.

Table Format

Word l

2

3

4

5

6

7

N

RN

MI L Ti__7 L__ _.i

Module

Name

-El DIN
S 31

Format of this

section is dependent

on value of T

Entry Header Section

Entry Data Section

2.4-15

DATA BLOCK AND TABLE DESCRIPTIONS

Word

1

2

3

4,5

6

Item

N

RN

MI

Name

EX
DIN

Description

Integer - number of words in entry.

Integer - record number of entry in _SCAR table.

Integer - module index number assigned according to module's
position in MPL and used to access the module's link specifica-
tions in /XLINK/.
Integer - format type code (l, 2, 3, or 4) for data section
of entry.

BCD - module name is same as DMAP instruction name except when
T = 4.

Execute flag. EX = 1 indicates module is to be executed.
Integer - DMAP instruction number which generated this entry.

Data Section Format for Type I or F Format:

Word

I0

8+NIP*3

9+NIP*3

IO+NIP*3

II+NIP*3

9+NIP*3+NOP*3

IO+NIP*3+NOP*3

II+NIP*3+NOP*3

NIP

DATA BLOCK

NAME

NTU
i

N_P

DATA BLOCK

NAME

___ L1_s_

NS

NP

-C IL

(Not used)

Sample entry

Sample entry

Sample entry
(variable length)

Input
Data Block
Subsection

Output
Data Block
Subsection

Parameter

Subsection

2.4-!6

EXECUTIVE TABLE DESCRIPTIONS

Word

7

8,9

lO

8 + NIP*3

9 + NIP*3,
lO + NIP*3

II + NIP*3

9 + NIP*3 +
_fP*3

lO + NIP*3 +
N@P*3

II + NIP*3 +
N_P*3

Item

NIP

{tAME

AP

LTU

TP

NTU

N_P

NAME

AP,LTU,
TP,NTU

NS

NP

CV

IL

Description

Integer - number of data blocks input to module as specified
in MPL.

BCD - name of first input data block specified in DMAP instruc-
tion or zero if none specified.

Append flag used by subroutine XSFA and set by X_SGEN if APPEND
is specified for data block in a FILE DMAP instruction.
Integer - last time used. _SCAR record n_ber of entry a_ter
which data block will no longer be saved.
Tape flag used by subroutine XSFA and set by X@SGEN if tape is
specified for data block in a FILE DMAP instruction.
Integer - next time used. _SCAR record number of entry where
data block is next referenced.

Integer - number of data blocks output from module as specified
in MPL.

BCD - name of first output data block specified in DMAP instruc-
tion or zero if none specified.

Same descriptions as word lO.

Integer - number of scratch data blocks used by module as
specified in MPL.

Integer - number of parameters used by module as specified in
MPL.

Constant/variable flag. Flag indicates meaning of IL.

Integer - VPS index/length of constant. If CV = 0 the parameter
is a constant whose value is stored in the next IL words (i.e.,
words 12 + NIP*3 + NQIP*3through II + NIP*3 + N_P*3 + IL).
If CV = l the parameter is a variable whose value is stored in
the VPS table. IL points to the value in VPS.

2.4-17

DATA BLOCK AND TABLE DESCRIPTIONS

Data Section Format for Type 2 or 0 Format:

Word

I0

8+NIP*3

9+NIP*3

IO+NIP*3

8

9

NIP

DATA BLOCK

NAME

LTU NTU

I 15

I

NS

NP

-- 31

Sample entry

ISampl e entry

I (variable length)

Input Data Block
Subsection

IParameter

Subsection

Type 1 format description is applicable to type 2 format above.

Data Section Format for Type 3 or C Format:

Word 7 = N I 131 RRN 17 16 I 11

Word Item Description

N RRN Integer - re-entry record number. Indicates OSCAR record to
jump to for JUMP, REPT and C_ND DMAP instructions. Not
applicable for EXIT so RRN : O.

Integer - index into XCEITBL for REPT or EXIT DMAP instruction.
Pointer to parameter value in XVPS table if C@ND DMAP
instruction. Not applicable for JUMP so I : O.

2.4-18

EXECUTIVE TABLE DESCRIPTIONS

Data Section Formats for Type 4 or E Formats:

Word 7

8

9

N

NP

IV

IB Sample entry

Format for
SAVE DMAP
instruction

Word

7

Item

NP

IV

IB

Description

Integer - number of parameter values to be saved (i.e. number
of entries).

Integer - pointer to parameter value in VPS.

Integer - pointer to parameter value in blank common.

Word 7

8

9

N-l

N

NDB

FIRST DATA

BLOCK NAME

LAST DATA

BLOCK NAME

Format for CHKPNT
DMAP instruction

Word

7

8 thru N

Item

NDB

NAMES

Description

Integer - number of data blocks names in list.

BCD - list of data blocks to be checkpointed.

2.4-19

DATA BLOCK AND TABLE _ESCRIPTIONS

Word 7

8

9

NDB

DATA BLOCK
J _-

NAME

:

IV

Format for PURGE or EQUIV
DMAP instruction

Word

7

8,9

N

Notes

I.

2.

Item

NDB

N_4E

IV

Description

Integer - number of data block names in first qroun.
may be one or more groups.

BCD - name of first data block in first group.

Integer - pointer to parameter value in VPS table.

There

_SCAR is located in named common block /XGPII/ while module XGPI is generating it.

After generating _SCAR and prior to exiting XGPI the _SCAR is written on the Data Pool
File. The _SCAR file header ID is X_SCAR.

2.4-20

EXECUTIVETABLEDESCRIPTIONS

2.4.2.2 MPL(ModulePropertyList)

Description

The Module Properties List contains information needed by the module XGPI to correctly
generate OSCAR table entries for executable DMAP instructions and/or to determine whether or
not the DMAP instructions adhere to the calling sequence described in section 4, Module
Functional Descriptions.

Created in Module

XGPI (Block Data Program XMPLBD).

Table Format

There are two formats used in the MPL, one for Declarative (FILE, BEGIN, LABEL), Executive
(CHKPNT, EQUIV, PURGE, SAVE) and Control (REPT, JUMP, C_ND, EXIT, END) DMAP modules and the other
for functional modules. All entries in the MPL are integer except for module names which are
BCD and BCD parameter values.

Format for Declarative, Executive and Control Modules:

WordiiN4i2 Module

3 Name

4 F

Word

l

2,3

4

Item

N

Name

F

Description

Nu_er of words in entry.

Name of DMAP module.

_SCAR format type code
3 = Control module (C format)
4 = Executive module (E format)
5 = Declarative module (D format)

2.4-21

DATABLOCKANDTABLEDESCRIPTIONS

Format for Functional Modules:

Word l ,

2

3

4

5

6

7

8

N

N

Module

Name

F

IP

@P

S

Parameter List
I Variable Length

Word

I-3

4

5 IP

6 @P

7 S

8-N

Item

F

Description

Same as format for Declarative, Executive and Control modules.

F : 1 implies module has input and output data blocks

F : 2 implies module has no output data blocks, e.g.,
_FP, SETVAL etc.

Number of input data blocks.

Number of output data blocks.

Number of scratch data blocks.

Parameter List (omit if no parameters).

The parameter list for a module contains the types of all parameters residing in blank
common that are referenced by the module. The order of the parameters in the MPL entry must
coincide with the order of the parameters in blank common. Space must be allowed for a default
value if the parameter type code is positive. The space following a positive type code will
contain the default value if the type code is integer or BCD, otherwise the space will contain
an index into another table which contains the default value.

Type Code

1 = integer
2 : real, single precision
3 = BCD
4 = real, double precision
5 = complex, single precision
6 = complex, double precision

Space Needed for Default Values

1 word
1 word
2 words
2 words
2 words
4 words

2.4-22 (12-I-69)

EXECUTIVETABLEDESCRIPTIONS

Anexampleof all possible entries in a parameter list follbws. Note that for each parameter

only the first index word will appear in the XMPLBD Block Data subprogram.

m

l

-3
-___]I
2

__L_
-2
3

ABCD
EFGH

-__3_3
4
l

__I__
-4

5
2

___L2
-__E_s
6
3
3
4
4

-6

Word

8 = Integer type code.
9 = Integer default value.

lO = Integer type code (no default value).
II = Real, S.P. type code.
12 = Index into table containing a real S.P. default value.
13 = Real, S.P. type code (no default value).
14 = BCD type code.

is {16 = BCD default value (2 words).

17 = BCD type code (no default value).
18 = Real, D.P. type code.
19 = _Index into table containing a real D.P. default value.
20 {Note index is in both words.

21 = Real, D.P. type code (no default value).
22 = Complex, S.P. type code.

23 {24 = Index into table containing a complex S.P. default value.

25 = Complex, S.P. type code (no default value).
26 = Complex, D.P. type code.

27 {28 = Index into table containing the real part of the complex D.P. default value.

29 = _inaex in_o caole containing the imaginary part of the complex D.P.
30 tdefault value.

31 = Complex, D.P. type code (no default value).

Notes

I. MPL table is located in named common block /XGPI2/.

2. The default value table is located in named common block /XGPI2X/.

2.4-23 (12-1-69)

DATA BLOCK AND TABLE DESCRIPTIONS

2.4.2.3 XPTDIC (Problem Tape Dictionary)

Description

XPTDIC is the Problem Tape Dictionary of data blocks checkpointed plus other information
needed to restart a problem.

Created in Modules

XGPI, CHKPNT and XCEI.

Table Format

Record Word

1

2

1

2

1

2

3

4

5

6

7

8

9

K

K+I

K+2

31 I"AFI1716 !,

S

XVPS -- --

BCD BLANKS

BCD BLANKS

__T3 1 DIN 17116 (_RN

m DBN -- -

-EQTET_R] R l F [

XVPS

EQ
R F

s 1311 3Ol29 17 _ 1

End-of-file

First entry in a
group is a special
entry

Repeat this entry
for all data blocks
referenced explicitly
or implicitly in
CHKPNT instruction

This

group
of
entries
is

repeated
for each
CHKPNT
module
executed

2.4-24

EXECUTIVETABLEDESCRIPTIONS

Record Word Item

0 1,2 ID

l l PR

NAF

Description

Header record containing name XPTDIC (BCD).

Present reel number of Problem Tape. Reels are
numbered sequentially beginning with Reel I.
Next available file number on present reel.
Files are numbered sequentially beginning with
file I.

2 S

2 1,2 XVPS

Sequence number of last restart dictionary card
punched out.

BCD name XVPS. The file corresponding to this
entry contains named common blocks /XVPS/ and
/XCEITB/.

3 R,F

4,5 (blanks)

6 DIN

9RN

Reel number and file number where the file

corresponding to this entry is located. For this
entry the reel number must be one.

BCD blanks indicate special entry.

DMAP instruction number of DMAP instruction
following CHKPNT module (i.e., re-entry point).
_SCAR record number of CHKPNT module being
executed.

/,_

9

UUI,

EQ

ET

ER

R,F

K, K+l XVPS

K+2 EQ,ET,
ER,R,F

n_+ k1,,v (RED) of data hlock beingu_ua u,_ name __

checkpointed.

Equivalence flag. EQ = l indicates data block is
equivalenced to another data block.
End of tape flag. ET = l indicates that data
block is split across two reels of problem tape.
End of logical record flag. ER = l indicates
that the complete logical record was written out
prior to changing reels when ET = I.

Reel number and file number where the file
corresponding to this entry is located. For
purged or not-generated data blocks, R = 0 and
F = O.

BCD name XVPS. The file corresnondina to this

entry contains named common blocks /XVPS/,
/XCEITB/ and /SYSTEM/.

See word 9 for descriptions.

Notes

I.

2.

3.

°

All entries are integer unless otherwise noted.

The XPTDIC table is always the last file on the Problem Tape.

XGPI generates records O, l and the first entry of record 2. CHKPNT modules add
entries to record 3. XCEI drops entries from record 2 when a REPT DMAP instruction
transfers control to the top of a DMAP loon.

XCSA also creates a XPTDIC table when problem is being restarted. This soecial XPTDIC
table is created from the restart dictionary and its format is essentially the same as
described above except that there are no special entries.

2.4-25

DATABLOCKANDTABLEDESCRIPTIONS

2.4.2.4 PVT(ParameterValueTable)

Description

The Parameter Value Table contains the parameter names and values of all parameters input

by means of the PARAM bulk data card.

Created in Module

IFP.

Table Format

Record Word Item

0 1,2 Header record contains name PVT (BCD).

1,2
3
4

3+L

Name of parameter (BCD)
Type code for parameter value
Value of parameter. Type codes
and corresponding lengths, L, of
values are given in table below.

repeat
for all

parameters
on PAP_AM
cards.

Notes
Type Code Meaning of Code

Integer
Real, single precision
BCD
Real, double precision
Complex, single precision
Complex, double precision

Corresnonding
Length in Words

l
l
2
2
2
4

I. IFP does not create PVT if no PARAM cards exist in the Bulk Data Deck.

2. PVT is written on the Problem Tape as 2 or more records (a header record and l record for
each PARAM card).

3. The PVT table is located in named common block /XPVT/.

2.4-26

EXECLFTIVETABLEDESCRIPTIONS

2.4.2.5 XCSA(ExecutiveControlTable)

Description

Executive control table derived from the Executive Control Deck.

Created in Module

XCSA.

Table Format

Record Word

0 l
2,3
4,5
6,7

l l
2

3,4
5
6

2 1

N

1
2
3

L
L+I

M
M+I

Item

BCD word XCSA - header ID.

BCD word S_L _Dictionary of contents of records
BCD word DMAP _to follow. Does not need to be in
BCD word MED)this order, nor is MED always present.

Approach code iStart code

Alter parameters S_L record

Solution number _Subset number

nn _kl^ f-_P_A nM_D _n_m_

or user _enerated DMAP
program (18 words per card
image).)

DMAP record
(BCD information)

Number of DMAP instructions

Number of words per ISl table entry.

IS1 table (Module Execution Decision Table).

Number of entries in JNM table.

JNM table (File Name Table)

Number of entries in INM table

INM table (Card Name Table)

4 End-of-file

MED record
included

only if
aooroach
calls for
a Rigid
Format

Notes

I. Data block XCSA is written on the Problem Tape.

2. A more detailed description of tables ISl, JNMand INM is given in the Module
Functional Description for module XCSA, section 4.2.

2.4-27

DATABLOCKANDTABLEDESCRIPTIONS

2.4.2.6 XALTER(ExecutiveAlter Table)

Description

XALTER is generated from the ALTER data in the Executive Control Deck.

Created in Module

XCSA.

Table Format

Record Word

0 1,2

l 1,2

l

18

Item

BCD word XALTER - header record

Numbers of DMAP instructions

to be altered. (Integers).

Card image (BCD)

N End-of-file

Notes

XALTER data block is written on the Problem Tape.

Zero or more of these
records. Repeat until
next 2 word record
encountered.

Repeat 1 or
more times

until E_F
encountered.

2.4-28

EXECUTIVETABLEDESCRIPTIONS

2.4.2.7 LNKSPC(Link SpecificationTable- ResidentBase)

Description

This Link Specification Table (see also 2.4.1.9) contains an entry for each executable
DMAP module available within the NASTRAN system. Each entry contains: a) the DMAP module
name, b) the module's subroutine entry point name and c) a key indicating the links in which
the module resides for each of four machine types.

Created in Module

LNKSPC data is stored by the XBSBD Block Data subprogram in module XGPI (4.7).

Table Format

Word l

2

3

4

5

6

7

8

9

LLINK

DMAP Module

Name

Entry Point

Name

Key #1

Key #2

Key #3

Key #4

Entry #I (Sample)

Word

1

2,3

4,5

6

7

8

9

Item

LLINK

DMAP Module Name

Entry Point Name

Key #1

Key #2

Key #3

Key #4

Description

Length of table in words (excluding word l)

DMAP name-8 characters (4 characters/word)

Entry name-8 characters (4 characters/word)

Link residence key for machine type #1

Link residence key for machine type #2

Link residence key for machine type #3

Link residence key for machine type #4

2.4-29

DATABLOCKANDTABLEDESCRIPTIONS

Themachinetypecodenumberis the sameasthat definedin the MACHwordof the SYSTEM
(2.4.1.8) table. Eachbit within the Keywordspecifies a link numberthat is to containthat
module.Bits arenumberedfromright to left; the right most(least significant) bit
specifies that themoduleis to residein link l, etc. Forexample,if a particular Key
contained26 (binaryOllOlO),only links 2, 4 and5 wouldcontainthe specifiedmodule.

Notes

I. TheL_!KSPCtable mustcontainanentry for eachexecutablemodulethat is in the
MPL(2.4.2.2) table.

2. TheLNKSPCtable is locatedin /XLKSPC/.

2.4-30

EXECUTIVETABLEDESCRIPTIONS

2.4.2.8 IFPXO(ModifiedRestartTable)

Description

IFPXO records the types of changes to the input data which were made during a restart. In

addition, it classifies each type of change as to substantive (solution affecting) or nonsub-

stantive (output only affecting). The basic data is stored in packed format, 31 bits to the word.

The use of this array in restart and its companion /IFPXI/ is described in section l.lO,

Created in Module(s)

IFPI, XS@RT and IFP and read by XGPI.

Table Format

Word Item

l N

2 Il

3 Ll

4 I2

5 L2

6 I3

7 L3

8 through 18 IB

19 through 29

Number of pairs (I,L) to follow.

Pointer to first word in /IFPXO/ that is used

to flag modified bulk data.

Nu_er of words reserved for modified bulk data

flags.

Pointer to first word in /IFPXO/ that is used

to flag modified Case Control data.

Number of words reserved for modified Case

Control data flags.

Not used.

Array containing flags which specify what input

has been modified for restart (the meaning of

each bit can be determined from /IFPXI/. (See

section 2.4.2.9).

Array which specifies which bits in the IB array

can initiate a modified restart.

2.4-31 (311171)

UA[ABLOCKANDTABLEDESCRIPTIONS

2.4.2.9 IFPXI(MasterCardNameTable)

Description

IFPXl contains mnemonics for the various card types (and data types) which can be significant

for restart. It is actually a key into common block IFPXO (see section 2.4.2.8).

array is described in section l.lO.

Created in Module

Modules IFPI, XSORT, IFP and XGPI read this array.

Table Format

Word No. Bit No.
In IFPXl In IFPXO Contents

l 31O

2 l GRID

4 2 GRDSET

6 3 BEAMOR

8 4 SEQGP

l0 5 CORDIR

12 6 CORDIC

14 7 CORDIS

16 8 CORD2R

18 9 CORD2C

20 lO CORD2S

22 II PLOTEL

24 12 SPCI

26 13 SPCADD

28 14 SUPORT

30 15 OMIT

32 16 SPC

34 17 MPC

36 18 FORCE

The use of this

Output
Only (PMR)

Number of
Card Types

Yes

Supported

NO

2.4-32 (3111;I)

EXECUTIVETABLEDESCRIPTIONS

WordNo. Bit No. Output
In IFPXI In IFPXO Contents Only (PMR)

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

19

20

21

22

23

24

25

26

27

28

29

30

31

32(word 2)

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

M_MENT

FIERCE1

M@MENTI

F_RCE2

M@MENT2

PL_)AD

SL_AD

GRAV

TEMP

GENEL

PROD

PTUBE

PVISC

PBEAM

PTRIAI

PTRIA2

PTRBSC

PTRPLT

PTRMEM

PQUADI

PQUAD2

PQDPLT

PQDMEM

PSHEAR

PTWIST

PMASS

PDAMP

PELAS

C_NR_D

CR_D

Supported

No

2.4-33 (311171)

DATABLOCKANDTABLEDESCRIPTIONS

WordNo. Bit No. Output
In IFPXI In IFPXO Contents Only (PMR)

49

5O

51

52

53

54

55

56

57

58

59

60

61

62

63(word 3)

64

65

66

64

68

69

7O

71

72

73

74

75

76

77

98

I00

102

104

106

108

II0

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

150

152

154

CTUBE

CVISC

CBEAM

CTRIAI

CTRIA2

CTRBSC

CTRPLT

CTRMEM

CQUADI

CQUAD2

CQDPLT

CQDMEM

CSHEAR

CTWIST

CONMI

CONM2

CMASSI

CMASS2

CMASS3

CMASS4

CDAMPI

CDAMP2

CDAMP3

CDAMP4

CELASI

CELAS2

CELAS3

CELAS4

MAT1

Supported

No

2,4-34 (3/I/71)

EXECUTIVE TABLE DESCRIPTIONS

Word No. Bit No. Output
In IFPXI In IFPXO Contents Only (PMR)

156

158

160

162

164

166

168

170

172

174

176

178

18O

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94(word 4)

95

96

97

98

99

lO0

lOl

I02

I03

I04

I05

I06

I07

MAT2

CTRIARG

CTRAPRG

DEFORM

PARAM

MPCADD

LOAD

EIGR

EIGB

EIGC

REACT

MATSI

MATTI

OMITI

TABLEMI

TABLEM2

TABLEM3

TABLEM4

TABLESI

TEMPD

TABLES2

TABLES3

TABLES4

MATT2

MATS2

CTORDRG

SPOINT

SEQD

SEQDBFE

Yes

Yes

Supported

No

No

No

FORCE

FORCE

2.4-35 (311171)

DATA BLOCK AND TABLE DESCRIPTIONS

Word No. Bit No. Output
In IFPXI In IFPXO Contents Only (PMR)

216

218

220

222

224

226

228

230

232

234

236

238

240

242

244

246

248

25O

252

254

256

258

260

262

264

266

268

27O

272

274

I08

109

II0

III

112

113

114

115

116

117

118

119

120

121

122

123

124

125(word 5)

126

127

128

129

130

131

132

133

134

135

136

137

QDSEP

SPQUADI

SPQUAD2

SPQDMEM

SPQDPLT

ZI

CTRIA3

PTRIA3

SETRBFE

VECDN

VECGP

DMI

DMIG

PTORDRG

MAT3

DLOAD

EPOINT

FREQI

FREQ

N_LINI

NOLIN2

NOLIN3

NOLIN4

RLOADI

RLOAD2

TABLED1

TABLED2

SEQEP

TF

TIC

Supported

FORCE

FORCE

FORCE

F_RCE

F_RCE

F_RCE

FORCE

FORCE

FORCE

FORCE

FORCE

2.4-36 (3/I/71)

EXECUTIVE TABLE DESCRIPTIONS

Word No. Bit No. Output

In IFPXI In IFPXO Contents Only (PMR)

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156(word 6)

157

158

159

160

161

162

163

164

165

166

167

276

278

280

282

284

286

288

290

292

294

296

298

300

302

304

306

308

310

312

314

316

318

320

322

324

326

328

330

332

334

TLBADI

TL_AD2

TABLED3

TABLED4

TSTEP

DSFACT

AXIC

RINGAX

CC_NEAX

PCBNEAX

SPCAX

MPCAX

_MITAX

SUPAX

P_INTAX

SECTAX

PRESAX

TEMPAX

F_RCEAX

M_MAX

EIGP

MASSC

EDFIR

DF_RM

TABDMPI

TABDMP2

TABDMP3

TABDMP4

FREQ2

CQUAD3

Supported

F_RCE

FQRCE

F_RCE

2.4-37 {311171)

DATA BLOCKAND TABLE DESCRIPTIONS

Word No. Bit No. Output
In IFPXl In IFPXO Contents Only (PMR)

336

338

340

342

344

346

348

35O

352

354

356

358

360

362

364

366

368

37O

372

374

376

378

38O

382

384

386

388

390

392

394

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

PQUAD3

SPQUAD3

SETR

SPTRIAI

SPTRIA2

SPTRMEM

SPTRBSC

SPTRPLT

SECL

SECP

SEPTRIA3

BAROR

CBAR

PBAR

DAREA

DELAY

DPHASE

PLFACT

CGENEL

PGENEL

ELDELE

MATT3

RFORCE

TABRNDI

TABRND2

TABRND3

TABRND4

RANDPS

RANDTI

RANDT2

Supported

F_RCE

FORCE

FORCE

FORCE

FORCE

FORCE

FORCE

FORCE

F_RCE

FORCE

FORCE

FORCE

FORCE

F_RCE

2.4-38 (3/I/71)

EXECUTIVE TABLE DESCRIPTIONS

Word No. Bit No. Output
In IFPXl In IFPXO Contents Only (PMR)"

396

398

400

402-598

600

602

604

606

608

610

612

614

616

618

620

622

624

626

628

630

632

634

636

638

640

642

644

646

648

19B

199

200

201-299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

PLBAD1

PLEAD2

DTI

Not used

C_UPMASS

GRDPNT

WTMASS

IRES

LFREQ

HFREQ

LM_DES

G

W3

W4

M_DACC

MPC$

sPc$

L_AD$

METHODS

DEF(BRM$

TEMPLD$

TEMPMT$

IC$

ACUT$

LB_P$

LB_PI$

DLIBAD$

FREQ$

TF$

Yes

Yes

Yes

Yes

Supported

2.4-39 (311171)

DATA BLOCK AND TABLE DESCRIPTIONS

Word No. Bit No. Output
In IFPXl In IFPXO Contents Only (PMR)

650

652

654

656

658

660

662

664

666

668

670

672

674

676

678

680

682

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

346

341

PLOTS Yes

TSTEP$

POUTS Yes

TEMPMX$

DSC_$

K2PP$

M2PP$

B2PP$

CMETH_D$

SDAMP$

INERTIA$

NLFORCE$

XYOUT$ Yes

DELETES

RANDOM$

AXYOUT$ Yes

NOLOOP$
Not Used

Supported

F_RCE

F_RCE

2.4-40 (3/I/71)

MISCELLANEOUS TABLE DESCRIPTIONS

2.5 MISCELLANEOUS TABLE DESCRIPTIONS.

The following is an alphabetical index of miscellaneous table descriptions.

Section Nu_er Table Name Where Stored Pa_e Number

2.5.2.2 BITPi_S /BITP_S/ 2.5-7

2.5.2.4 CHAR94 /CHAR94/ 2.5-l0

2.5.2.7 CHRDRW /CHRDRW/ 2.5-13

2.5.1.6 DESCRP /DESCRP/ 2.5-3

2.5.2.1 GPTAI /GPTAI/ 2.5-6

2.5.1.5 MSGX /MSGX/ 2.5-3

2.5.l.8 NJ_MES /NAMES/ 2.5-4

2.5.l.l _SCENT /_SCENT/ 2.5-2

2.5.I.2 i_UTPUT /_,UTPUT/ 2.5-2

2.5.2.3 PLTDAT /PLTDAT/ 2.5-8

.5.i. _TTME /STIME/ 2.5-2

2.5.2.6 SYMBLS /SYMBLS/ 2.5-12

2.5.I.7 TW_ /TWO/ 2.5-4

2.5.1.9 TYPE /TYPE/ 2.5-4

2.5.l,4 XMDMSK /XMDMSK/ 2.5-3

2.5.2.5 XXPARM /XXPARM/ 2.5-Il

2.5-1 (12-1-69)

DATABLOCKANDTABLEDESCRIPTIONS

2.5.1 Miscellaneous Tables Which Are Permanently Core Resident.

2.5.1.1 OSCENT(_SCAR Entry)

Description

A 200 word storage array containing the _SCAR entry (record) currently being processed.

Created in Module

The entry is read from the _SCAR and stored in OSCENTby the XSEMi (section 3,3.7) sub-
routine. Other executive routines that require details of the current entry will search _SCENT.

Table Format

The OSCENTformat is identical to the _SCAR (section 2.4.2.1) entry it currently contains.

2.5.1.2 _UTPUT (Output headings)

Description

A storage array containing problem title, subtitle, label and various headings required by
the PAGE (section 3.4.24) routine to properly annotate the NASTRAN output.

Created in Module

The title, subtitle and label are taken from Case Control Deck cards and stored in _UTPUI
by IFPI (section 4.3). Other heading lines may be stored by output modules prior to calling
PAGE.

Table Format

_UTPUT contains sufficient space for seven 128 character lines. The first three lines con-
tain the title, subtitle, and label. The subsequent three lines contain local headings, and the
final line contains the plotter ID. Since 4 characters occupy each computer word, the OUTPUT
array requires 224 words of storage.

2.5.1.3 STIME (Solution Time)

Description

A storage cell containg the user's estimated solution time.

Created in Module

The estimated solution time is taken from a Executive Control Deck card and stored into
STIME by XCSA (section 4.2)

Table Format

STIME consists of a single cell containing the estimated time in integer seconds.

2.5-2

MISCELLANEOUS TABLE DESCRIPTIOr_S

2.5.1.4 XMDMSK (Executive Module Decision Mask)

Description

Contains the 155 bit master module execution mask (see section l.lO) and a cell indicating
oheckpoint status.

Created in Module

The 155 bit master module execution mask is generated and used by XGPI (section 4.7). The
checkpoint status set on (YES) by XCSA (section 4.2) by the presence of a CHKPNT = YES card in
the Executive Control Deck.

Table Format

The 155 bit mask occupies the low order _l bits of the first five words of XMDMSK.
sixth word is the checkpoint status (flag).

The

2.5.1.5 MSGX (Message Queue)

Description

A queue table to hold four word NASTRAN information and error messages between the time
they are generated by a module and printed by the message writer, MSG_IRT(section 3.4.26).

Created in Module

Messages may be generated by any NASTRAN module through a call to MESAGE (section 3.4.25).

Table Format

Word l
Word 2
Word 3-6
Word 6-end

Nun_er of messages queued.
Maximum nu_er of messages queue can hold
Four word message entry (typical)
Additional four word message entries

2.5.1.6 DESCRP (Matrix Description)

Description

A storage block used by subroutine INTPK (section 3.5.3) to buffer the matrix unpacking
procedure. This buffering reduces the number of I/_ accesses to the particular matrix data
block.

Created in Module

DESCRP is filled and used exclusively by INTPK

Table Format

An array with the first word defining the length of the array.

2.5-3

DATABLOCKANDTABLEDESCRIPTIONS

2.5.1.7 TWO (Powers of Two)

D_escription

A 32 word array with each word (starting with l in the 32nd word) containing the next power
of two.

Created in Module

The 32 integer values are defined within the NASTRAN system block data program (SEMDBD).

Table Format

Word 32 - l
Word 31 - 2
Word 30 - 4
Word 29 - 8
etc.

2.5.1.8 NAMES (Symbolic Names)

Description

A series of symbolic names identified with their NASTRAN numeric equivalents.
for GINO file options, arithmetic types and matrix forms.

Defines values

Created in Module

The values are defined within the NASTP_N system block data program (SEMDBD).

Table Format

Word SYMBOL VALUE Word SYMBOL VALUE Word SYMBOL VALUE

1 RD : 2 7 EOFNRW = 3 13 RECT : 2
2 RDREW = 0 8 RSP = 1 14 DIAG : 3
3 WRT = 3 9 RDP = 2 15 UPPER = 4
4 WRTREW = l lO CSP = 3 16 LOWER = 5
5 REW = l II CDP = 4 17 SYM = 6

6 N_REW = 2 12 SQUARE : 1 18 R_W : 7
19 IDENT = 8

2.5.1.9 TYPE (Number Types)

Description

A series of properties are defined as a function of a number type. The type may be Real
Single Precision (RSP-I), Real Double Precision (RDP-2), Complex Single Precision (CSP-3), or
Complex Double Precision (CDP-4). The properties that may be returned include precision (single,
double), number of words, and real or complex.

Created in Module

The properties are defined within the NASTRAN system block data program (SEMDBD).

2.5-4

MISCELLANEOUSTABLEDESCRIPTIONS

Table Format

Word Property (Values)

l l
2 2
3 l
4 2
5 2
6 4
7 l
8 l
9 2
lO 2

Type

Precision (RSP)
Precision IRDP)
Precision (CSP)
Frecision (CDP)

Words (RSP)
Words (ROP)

Words ICSP)
Words (CDP)

Real/Complex (RSP)
(RDP)
(CSP)
(CDP)

Example

Assun_ the nu_er of words required to contain a Complex Single Precision (CSP-3) is desired.
The third item in the Words array is indexed and found to contain a 2 (words).

2.5-5

DATA BLOCK AND TABLE DESCRIPTIONS

2.5.2 Miscellaneous Tables Not Permanently Core Resident

2.5.2.1 /GPTAI/

Purpose

To describe connection and property characteristics of each element. /GPTAI/ is used in
modules GPI, GP2, GP3, TAI, SMAI, SMA2, DSMGI, SDR2, PL_T, and SSGI, and is initialized by the
block data program GPTABD and subroutine DELSET.

Descri pti on

Word Type

1 I

2 I

3 I

4-5 B

6 I

7-8 I

9 I

I0-II I

12 I

13 I

14 I

15 I

16 I

17 I

18 I

19 I

20 I

21 I

22 I

23 I

24 I

Item

Number of entries (i.e., elements) in table

Pointer to first word of last entry in table

Number of words per entry in table

Name of element (e.g., R_D)

Internal element identification number

ECT record ID and trailer bit for LOCATE

Number of words per entry on ECT

EPT record ID and trailer bit for LOCATE

Number of words per entry on EPT

Number of grid points per element

+I : Scalar element with grid point and
component code

0 : Not a scalar element

-I : Scalar element with scalar points onl

Number of words per entry on EST

Position of first grid point in ECT entry

Temperature data

Temperature data count

2 Hollerith symbols if element is plottable

Number of words SDR2 passes from Phase 1
element routines to Phase 2 element routines

Count of words SDR2 outputs for real stresses

Count of words SDR2 outputs for real forces

Pointer into an SDR2D table for combining of
real stresses to form complex stress outputs

Pointer into an SDR2D table for combining of

real forces to form complex force outputs

repeated

for

each

element

2.5-6 (8/I/72)

DATABLOCKANDTABLEDESCRIPTIONS

Word

25

26

27

Type

I

I

I

Item

SMAI element overlay limb

SMA2 element overlay limb

SMA3 element overlay limb

2.5-6a (8/I/72)

MISCELLANEOUS TABLE DESCRIPTIONS

2.5.2.2 BITP_S.

Purpose

To provide pointers into USET and USETD words for interpreting the nested vector sets in NASTRAN.

Description

Word Item

l UM Bit number

2 UO Bit number

3 UR Bit number

4 USG Bit number

5 USB Bit number

6 UL Bit number

7 UA Bit number

8 UF Bit number

9 US Bit number

lO UN Bit number

II UG Bit number

12 UE Bit number

13 UP Bit number

14 UNE Bit number

15 UFE Bit number

16 UD Bit number

Note

All words are integer.

2.5-7

DATA BLOCKAND TABLE DESCRIPTIONS

2.5.2.3 PLTDAT

Purpose

To define plotter-dependent parameters.

Description

This table is defined in the PL_TBD block data subprogram. The table is divided into N+2

2D-word sections, where N = number of plotters acceptable by the NASTRAN plotting software.
Sections 3 to N+2 are the only sections initialized, because each contains values which are depen-
dent upon the plotter hardware. Section l contains values which may vary within the limits of the
hardware, and Section 2 is simply a duplicate of one of the last N sections corresponding to the

plotter of interest.

Section 2 must be filled in by the module writer. The format of Sections 2 to N+2 is as
follows:

Word Type Name Description

I-2 R XYMAX Maximum x and y coordinate values acceptable by
the plotter.

3 R CNTSIN Number of plotter counts/inch on paper.

4-5 R CNTCHR Number of plotter counts per character in the x
and y directions.

6 R _XLEN Maximum length of a line segment.

7 I NPENS Maximum number of pens or line density available
on the plotter.

8-9 R _RIGIN For incremental plotters, the current pen position
relative to the lower left corner of the plot.
Otherwise, the location of the lower left corner of
the plotter relative to its true physical origin.

I0 I PLTYPE

/+l, +2, or +3 if the plotter is a microfilm, table
'_or drum plotter, respectively, with typing
)capability.
_-l, -2, or -3 if the plotter is a microfilm, table
#or drum plotter, respectively, with no typing
_capability (i.e., all characters must be drawn).

II B PLTAPE
I PLTI if an even parity plot tape is to be generated

for this plotter.
PLT2 if an odd parity plot tape is to be generated
for this plo--tt'er.

12 I PBFSIZ Plot tape physical record size (number of characters)

13 I E_F
I O if an end-of-file is to be written after every

plot.
l if no end-of-file is to be written on the plot

tape.

14-20 Undefined

2.5-8 (12-I-69)

MISCELLANEOUSTABLEDESCRIPTIONS

Sectionl mustalso befilled in by the modulewriter. However,unlike Section2, someof
the parametersmayvaryfromplot to plot, as longasthey remainwithin the limitations imposed
by the plotter hardware.Theformatof Sectionl is asfollows.

Word Type Name

I I F_DEL

2 I PL_TER

3-6 R REG

7-8 R AXYMAX

9-I0 R XYEDGE

II I CAMNUM

12-20

Description

Plotter model index

Plotter index

Plotter region (Xmin, Ymin' Xmax' Ymax) in which

the current picture is being drawn. These values
must be some fraction (between 0 and l) of words
7 and 8 (AXYF4AX).

Size of the paper used (x,y), less the borders, in
plotter units.

Size of the borders (x,y) in plotter units.

Current selected camera. This word need not be
filled in, because it is set and used as a con_nuni-
cation between the SELC#J_and SKPFRM subroutines.

Undefined

usage

Sections l and 2 are normally setup by the FNDPLT subroutine, except for the plotter region
values (REG). These values must be setup by the module writer himself. It is essential that both
these sections be correctly setup, because they are referenced by the entire NASTRAN plotter soft-
ware package.

If Sections l and 2 are correctly setup by the module writer, he need not subsequently worry
about such things as compensating for paper margins or different physical plotter origins. He
need only assume that the plotter origin is located at the lower left corner of the paper where
the left and bottom borders intersect. The NASTItANplotter software will automatically compensate
for the borders and the physical origin.

2.5-9 (12-I-69)

DATA BLOCK AND TABLE DESCRIPTIONS

2.5.2.4 CHAR94

Purpose

To provide a table of characters used to generate plot tapes as if tF,e computer were always
an IBM 7094. This table however is independent of the actual computer used.

Description

This is a 240 word table defined in the PLOTBD block data subprogram. It is divided into four
equal sections of 60 words each. Each entry in each section has a parallel entry in the other
three sections.

Section I is a string of all the Hollerith characters acceptable by the plot modules of the
form IHx, where x is a Hollerith character.

Section II contains the integer equivalents of the IBM 7094 internal binary characters in the
same order as Section I. However, near the end of this section are integers representing various
additional characters not in Section I. These additional characters cannot be expressed in the
form IHx and are used for special plotter commands. Each entry in this table is a right-adjusted
two-digit integer with leading zeroes.

Section Ill contains the integer equivalents of the IBM 7094 BCD characters as they would
appear on an even parity tape written on an IBM 7094, in the same order and form as in Section II.

Section IV contains the integer equivalents of the CDC display character codes so as to pro-
duce an even parity BCD plot tape as if written on an IBM 7094, in the same order and form as in
Section II.

The sequence of characters in each section is as follows:

0 l 2 3 4 5 6 7 8 9
A B C D E F G H I j

K L M N _ P Q R S T
u v w x Y z () +-
*/= ,$'b

character 49 = end of record mark

character 50 = end of file mark

characters 51-53 = special characters.

characters 54-60 = 0

Note

In Section I, characters 49-60 = O.

usage

Section I is basically used for calculating an index into the other two sections by comparing
an arbitra_ Hollerith character with each character in Section I until a match is found. Once

this is done, the index is used to extract the corresponding entry from either Section II or Ill,
depending on whether an odd or even parity plot tape is being generated. If the computer is an
IBM 7094, only Section II is used, and if the computer is a CDC 6600 and an even parity plot tape
is being generated, Section IV is used instead of Section Ill.

2.5-10 (12-I-69)

M!SCELLANEOUS TABLE DESCRIPTIONS

2.5.2.5 XXPAR_I

Purpose

To define the plot tape buffer size, the camera to be used, the nun,berof blank frames of
film to be inserted between plots, the plotter model name, and the paper size to be used on table
_ters.

Description

This table is defined as follows in the PL_TBD block data subprogram.

Word Type Name

l I BUFSIZ

2 I CAMERA

3 I BFP_a_.IS

4-5 I, or B PLTMDL

8-9 R PAPSiZ

Description

Plot tape buffer size

Plotter camera to be used (appropriate only on a
microfilm plotter).

Number of blank frames of film to be inserted

between plots (appropriate only on a microfilm
plotter).

Plotter model identification.

,,=_+_--_ _^<.h+ _ _ho pape_rtn he used (appropri-
ate only on table plotters).

usage

The initial values of these variables are as follows:

BUFSIZ = must be set by the module writer

CAMERA = 2 (paper output only)

BFRAMS = l

PLTMDL = 4020, 0 (integer)

PAPSIZ = 8.5, ll.O

This table's actual size is 152 words. The remainder of the table is initialized for the structur-
al plotter module, PL_T, but may be used by the programmer for anything he desires in other plot-
ting modules.

2.5-11 (12-1-69)

DATA BLOCK AND TABLE DESCRIPTIONS

2.5.2.6 SYMBLS

Purpose

To provide a table of iFdices into the CHAR94 and CHRDRW tables used to type or draw pre-

defined plotter symbols.

Description

The table is defined in the PLOTBD block data subprogram. There is room for up to 20 indices

for each plotter. However, the same number of indices must be defined for each plotter. The
format of the table is as follows:

Word Type

0 I

1-20 I

21-40 I

41-60 I

Description

Number of symbols defined for each plotter (currently = 9).

Symbol indices for plotter I.

Symbol indices for plotter 2.

Symbol indices for plotter 3.

There are as many groups of symbol indices as there are available plotters. The symbols
defined for each plotter are as follows:

Symbol l = x

Symbol 2 = *
Symbol 3 = +

Symbol 4 = -

Symbol 5 = . (dot, not a period).
Symbol 6 = circle

Symbol 7 = square

Symbol 8 = diamond
Symbol 9 = triangle

Should any of these symbols not be available on a plotter, a substitution of another symbol must
be made.

Usage

This table is used by the SYMBOL subroutine.

2.5-12 (12-I-69)

MISCELLANEOUS TABLE DESCRIPTIONS

2.5.2.7 CHRDRW

Purpose

To define the co_ination of lines needed to draw alphanumeric characters and symbols.

Description

This table is defined in the PL_TBD block data subprogram. The table is divided into two
sections. Section I is a list of indices into Section If, used to locate the data needed to draw
characters. The first 48 indices in Section I correspond to the 48 characters listed in Section I
of the CHAR94 table. The last 7 indices are used for drawing the special characters listed in the
SYMBLS table. If an index is negative, it is an index into Section I instead of Section If. This
occurs when a duplicate character exists (e.g., a zero, the letter "_", and the symbol for a
circle).

Section II of this table defines the (integer) coordinates of the starting and ending points
of the straight lines to be drawn in order to draw a character or symbol. In general, the neces-
sary straight lines are contiguous, so that the end point of one line is the starting point of the
next, etc. In some cases, this is either impractical or impossible (e.g., *, +, =, etc.). In
such a situation, the starting point of aline is negative, meaning that it is not to be connected
to the end point of the preceding line.

The characters defined in Section II are based upon 6x6 square characters. The values in this
section are simply integer coordinates within a 6x6 square.

The format of this table is as follows:

Wor____dd Type Name

0 I LSTCHR

1-60 I CHRIND

61-760 I CHR

Description

Name of characters and syn_ols referenced in
Section I (=52).

Section I - "LSTCHR" indices into Section II.

Section II : (x,y) pairs defining the lineal
representation of 6x6 square characters.

usage

This table is used by the DRWCHR subroutine.

2.5-13 (I2-I-69)

INTRODUCTION

3.1 INTRODUCTION

Section3 contains descriptions of subroutines not an integral part of a module. Those sub-

routines which are an integral part of a module are discussed in section 4, Module Functional

Descriptions. Section 3.2 contains an alphabetical index of entry points of routines documented

in section 3. A similar index of entry points documented in section 4 can be found in section

4.1.3.

Subroutine descriptions have been partitioned into 3 classifications: executive, utility and

matrix subroutine descriptions, documented in sections 3.3, 3.4, and 3.5 respectively.

Descriptions of the plotting utility routines (e.g., AXIS, section 3.4.40; AXISi, section

3.4.41) refer to plotters by number or the letter "i", and to plotter models by number only. The

correspondence of these numbers to plotter hardware is given in Table I. Further details can be

found in section 4 of the User's Manual.

3.l-I (12-I-69)

SUBROUTINE DESCRIPTIONS

Table I. Correspondence Between External and Internal Plotter and Model Names and Numbers.

where:

External External Internal Internal

plotter name model name plotter number model number

BL

EAI

SC

CALC_MP

DD

NASTRAN

BL
EAI
SC

STE,30 1 1LTE,30

3500,30 2 13500,45 8 1

4020,0 3 1

/ 765,2O5 5 4

765,210 4 4

765,105 5 5

765,110 4 5

763,205 7 4

763,210 6 4

763,105 7 5

763,110 6 5

565,205 5 2

565,210 4 2

565,105 5 3

565,110 4 3

565,305 5 1

565,310 4 1

563,205 7 2

563,210 6 2

563,105 7 3

563,110 6 3

563,305 7 l

_563,310 6 l

80,B 9 l

M,O I0 +I

T,O II +2

D,O II +3

Pi,l I0 -I

T,l II -2

D,l II -3

= Benson Lehner
= Electronic Associates Inc.
= Stromberg Carlson

3.1-2 (12-I-69)

INTRODUCTION

Table I. Correspondence Between External and Internal Plotter and Model Names and Numbers (Cont'd),

CALC@MP
DD
NASTRAN

= California Computing
= Data Display
= NASTRAN General Purpose Plotter

3.1-3 (12-I-69)

ALPHABETICALINDEXOFENTRYPOINTSFORSUBROUTINEDESCRIPTIONS

3.2 ALPHABETICALINDEXOFENTRYPOINTSFORSUBROUTINEDESCRIPTIONS.

Section Number

3.5.10

3.4.1

3.4.40

3.4.41

3.4.41

3.4.7

3.3.5

3.4.74

3.5.1

35.1

35.1

3 3.2

35.5

3 5.16

3 5.16

3.4.4

3.4.18

3.4.1

3.5.16

3.3.12

3.4.1

3.4.1

3.5.28

3.5.28

3.5.16

3.5.29

3.5.16

3.4.76

3.4.77

Entry Point Subroutine Description

ADD ADD

ANDF MAPFNS

AXIS AXIS

AXIS3 AXISi

AXISIO AXISi

BCKREC BCKREC

BGNSYS ENDSYS

BISRCH BISRCH

BLDPK BLDPK

BLDPKI BLDPK

BLDPKN BLDPK

BTSTRP BTSTRP

CALCV CALCV

CDC@MP CDC_MP

CL_P CDC@MP

CLOSE CLOSE

CLSTAB CLSTAB

COMPLF MAPFNS

COMI2 CDC_MP

CONMSG C_NMSG

CORSZ MAPFNS

CORWDS MAPFNS

CSPL_O CSPSDC

CSPSDC CSPSDC

CTRNSP CDC_MP

CXFBS C×FBS

CXL_P CDC_MP

DAD_TB DAD_TB

DAXB DAXB

Page Number

3.5-19

3.4-I

3.4-70

3.4-72

3.4-72

3.4-9

3.3-6

3.4-123

3.5-I

3.5-I

3.5-I

3.3-2

3.5-12

3.5-62

3.5-63

3.4-5

3.4-26

3.4-I

3.5-63

3.3-16

3.4-I

3.4-I

3.5-82

3.5-82

3.5-63

3.5-84

3.5-63

3.4-126

3.4-127

3.2-I (8/I/72)

SUBROUTINE DESCRIPTIONS

Section Number

3.5.15

3,4.72

3.5.15

3.5.15

3.5.21

3.4.68

3.4.62

3.5.22

3.3.5

3,4.9

3.5.23

3.5.17

3.5.17

3.5.17

3.5.12

3.5.15

3.5.15

3.4.17

3.4.69

3.4.75

3.4.15

3.4.6

3.5.15

3.5.19

3.4.12

3.4.61

3.4.32

3.4.33

3.3.4

3.3.9

Entry Point

DEC@MP

DELSET

DDL@@P

DL_@P

DMPY

DRWCHR

EJECT

ELIM

ENDSYS

E@F

FACT@R

FBS

FBSDP

FBSSP

FILSWI

FINDC

FINWRT

FNAME

FNDPLT

F@RFIL

FREAD

FWDREC

GENVEC

GFBS

GIN@

GIN@I@

GMMATD

GMMATS

GNFIAT

GNFIST

Subroutine Description

DEC@MP

DELSET

DECAMP

DEC@MP

DMPY

DRWCHR

EJECT

ELIM

ENDSYS

E@F

FACTOR

FBS

FBS

FBS

MPYQ

DEC@MP

DECAMP

FNAME

FNDPLT

F@RFIL

FREAD

FWDREC

DEC@MP

GFBS

GIN@

GIN@I@

GMMATD

GMMATS

GNFIAT

GNFIST

Page Number

3.5-44

3.4-121

3.5-60

3.5-60

3,5-71

3.4-115

3.4-105

3.5-73

3.3-6

3.4-11

3.5-74

3.5-64

3.5-65

3.5-65

3.5-28

3.5-57

3.5-54

3.4-25

3.4-117

3.4-125

3.4-23

3,4-8

3.5-54

3.5-67

3.4-15

3.4-103

3.4-49

3.4-52

3.3-5

3.3-12

3.2-2 (8/I/72)

ALPHABETICALINDEXOFENTRYPOINTSFORSUBROUTINEDESCRIPTIONS

Section Number Entry Point Subroutine Description Page Number

3.4.14 GOPEN G_PEN 3.4-22

3.4.71 HEAD HEAD 3.4-120

3.4.73 HMAT HMAT 3.4-122

3.4.44 IDPL_T IDPLBT 3.4-75

3.4.45 INTGPT INTGPX 3.4-76

3.4.45 INTGPX INTGPX 3.4-76

3.4.46 INTLST INTLST 3.4-77

3.5.3 INTPK INTPK 3.5-7

3.5.3 INTPKI INTPK 3.5-7

3.4.34 INVERD INVERD 3.4-53

3.4.35 INVERS INVERS 3.4-54

3.4.47 LINE LINE 3.4-78

3.4.48 LINE1 LINEi 3.4-79

3.4.48 LINE2 LINEi 3.4-79

3.4.48 LINE3 LINEi 3,4-79

3.4.48 LINE4 LINEi 3.4-79

3.4.48 LINE9 LINEi 3.4-79

3.4.48 LINEIO LINEi 3,4-79

3.4.30 LOCATE PREL_C 3.4-44

3.5.14 L_BP SDCBMP 3.5-42

3.4.1 LSHIFT MAPFNS 3.4-I

3.4.36 MAT PREMAT 3.4-55

3.4.28 MATDUM MATDUM 3.4-42

3.5.6 MERGE PARTN - MERGE 3.5-13

3.4.25 MESAGE MESAGE 3.4-39

3.5.9 MPART UPART 3.5-18

3.5.12 MPYAD MPYAD 3.5-22

3.5.12 MPYI MPYQ 3.5-28

3.5.12 MPY2NT MPYQ 3.5-28

3.5.12 MPY2T MPYQ 3.5-28

3.2-3 (811172)

SUBROUTINEDESCRIPTIONS

Section Number

3.4.26

3.5.15

3.4.2

3.4.13

3.4.1

3.5.2

3.4.24

3.4.24

3,4.24

3.5.6

3.4.22

3.4.70

3.4.70

3.4.70

3,4.70

3,4.63

3.4,67

3.4.30

3.4,36

3.4.39

3.4.37

3.4.38

3,4.49

3.4.20

3.5.15

3.4.13

3.4.50

3.4.50

3.4.50

3.4.16

Entry Point

MSGWRT

NETW

_PEN

_PNC_R

_RF

PACK

PAGE

PAGEI

PAGE2

PARTN

PEXIT

PHDMIA

PHDMIB

PHDMIC

PHDMID

PLAMAT

PLTSET

PREL_C

PREMAT

PRETAB

PRETRD

PRETRS

PRINT

RCARD

RC_RE

RDC@R

RDMODE

RDM_DX

RDM_DY

RDTRL

Subroutine Description

MSGWRT

DEC@MP

@PEN

@PNC@R

MAPFNS

PACK

PAGE

PAGE

PAGE

PARTN - MERGE

PEXIT

PHDMIA

PHDMIA

PHDMIA

PHDMIA

PLAMAT

PLTSET

PREL_C

PREMAT

PRETAB

PRETRD

PRETRS

PRINT

RCARD

DECAMP

_PNC_R

RDM_DX

RDM_DX

RDM_DX

WRTTRL

Page Number

3.4-40

3.5-54

3.4-3

3.4-20

3.4-I

3.5-5

3.4-38

3.4-38

3.4-38

3.5-13

3.4-36

3.4-118

3.4-118

3,4-118

3.4-118

3.4-106

3.4-113

3.4-44

3.4-55

3.4-67

3.4-64

3.4-66

3.4-81

3.4-32

3.5-58

3.4-20

3.4-83

3.4-83

3.4-83

3.4-24

3.2-4 (8/I/72)

ALPHABETICAL INDEX OF ENTRY POINTS FOR SUBROUTINE DESCRIPTIONS

Section Number Entry Point Subroutine Description

3.4.50 RDW_RD RDM@DX

3.4.5 READ READ

3.3.15 RETURN RETURN

3.4.8 REWIND REWIND

3.4.1 RSHIFT MAPFNS

3.5.27 RSPL(_I RSPSDC

3.5.27 RSPSDC RSPSDC

3.5.6 RULER PARTN - MERGE

3.5.26 SADD SADD

3.4.78 SAD_TB SADOTB

3.4.79 SAXB SAXB

3.4.51 SCL@SE SGIN_

3o5o!4 SDC_MP SDC_MP

3.5.8 SDRIB SDRIB

3.3.6 SEARCH SEARCH

3.4.43 SELCAM SELCAM

3.3.3 SEMINT SEMINT

3.3.14 SEMTRN SEMTRN

3.4.51 SE_F SGIN_

3.4.10 SKPFIL SKPFIL

3.4.42 SKPFRM SKPFRM

3.5.20 S_LVER S_LVER

3.4.51 S_PEN SGIN_

3.4.31 S_RT S_RT

3.5.7 SSG2A SSG2A

3.5.13 SSG2B SSG2B

3.5.11 SSG2C SSG2C

3.5.18 SSG3A SSG3A

3.3.11 SSWTCH SSWTCH

3.4.52 STPL_T STPL_T

Page Number

3.4-83

3.4-6

3.3-20

3.4-I0

3.4-I

3.5-80

3.5-80

3.5-14

3.5-78

3.4-128

3.4-129

3.4-85

3.5-30

3.5-17

3.3-8

3.4-74

3.3-3

3.3-19

3.4-85

3.4-12

3.4-73

3.5-69

3.4-85

3.4-46

3.5-16

3.5-29

3.5-20

3.5-66

3.3-15

3.4-87

3.2-5 (811172)

Section Number

3.4.51

3.4.53

3.5.15

3.4.39

3.4.29

3.4,21

3.5.15

3.4.54

3.4,23

3.5.24

3 4.37

3 5.15

3 4,38

3 5.25

3 3.13

3 4,55

3.4.55

3.4.55

3.4.55

3.4.55

3.4.56

3.4.57

3.5.4

3.5.9

3.4.27

3,4.58

3.4.59

3.4.60

3.4.64

3.4.65

3.4.66

SUBROUTINE DESCRIPTIONS

Entry Point

SWRITE

SYMBBL

T

TAB

TABPRT

TAPBIT

TFIN

TIPE

TMTOGO

TRANPI

TRANSD

TRANSP

TRANSS

TRNSP

TTLPGE

TYPE1

TYPE2

TYPE3

TYPE9

TYPEIO

TYPFLT

TYPINT

UNPACK

UPART

USRMSG

WPLTI

WPLT2

WPLT3

WPLT4

WPLT9

WPLTIO

Subroutine Description

SGINO

SYMBOL

DECAMP

PRETAB

TABPRT

TAPBIT

DECAMP

TIPE

TMT_G@

TRANPI

PRETRD

DEC@MP

PRETRS

TRNSP

TTLPGE

TYPEi

TYPEi

TYPEi

TYPEi

TYPEi

TYPFLT

TYPINT

UNPACK

UPART

USRMSG

WPLTI

WPLT2

WPLT3

WPLT4

WPLT9

WPLTIO

Page Number

3.4-85

3.4-88

3.5-58

3.4-67

3.4-43

3.4-35

3.5-58

3.4-90

3.4-37

3.5-75

3.4-64

3.5-53

3.4-66

3.5-76

3.3-17

3.4-92

3.4-92

3.4-92

3.4-92

3.4-92

3.4-94

3.4-96

3.5-10

3.5-18

3.4-41

3.4-98

3.4-100

3.4-102

3.4-108

3,4-110

3.4-111

3.2-6 (8/I/72)

ALPHABETICAL INDEX OF ENTRY POINTS FOR SUBROUTINEDESCRIPTIONS

Section Nu_er Entry Point Subroutine Description Page Nu_er

3.4.3 WRITE WRITE 3.4-4

3.4.13 WRTC{_R (_PNC{_R 3.4-20

3.4.16 WRTTRL WRTTRL 3.4-24

3.3.lO XE_T XE_T 3.3-I4

3.4.Il XGIN{_ XGIN_ 3.4-I3

3.5.15 XL(_OP DEC(_MP 3.5-60

3.4.l X(_RF MAPFNS 3.4-I

3.4.19 XRCARD XRCARD 3.4-27

3.3.8 XSEMXX XSEMXX 3.3-Il

3.3.l XSEMI XSEMI 3.3-I

3.3.7 XSEM2 XSEMi 3.3-9

3.3.7 XSEM3 XSEMi 3.3-9

3._ _ X_FM4 XSEMi 3 3-9
J.l "

3.3.7 XSEM5 XSEMi 3.3-9

3.3.7 XSEM6 XSEMi 3.3-9

3.3.7 XSEM7 XSEMi 3.3-9

3o3.7 XSEM9 XSEMi 3.3-9

3.3.7 XSEMI0 XSEMi 3.3-9

3.3.7 XSEMIl XSEMi 3.3-9

3.3.7 XSEMI2 XSEMi 3.3-9

3.3.7 XSEMI3 XSEMi 3.3-9

3.3.7 XSEMI4 XSEMi 3.3-9

3.5.1 ZBLPKI BLDPK 3.5-I

3.5.3 ZNTPKI INTPK 3.5-7

3.2-7 (8/I/72)

EXECUTIVESUBROUTINEDESCRIPTIONS

3.3

3.3.1

3.3.1.1

3.3.1.2

EXECUTIVESUBROUTINEDESCRIPTIONS.

XSEMI (Executive Sequence Monitor, Preface).

Entry Point: XSEMI.

Purpose

To initiate the execution of the NASTRAN Preface.

3.3.1.3 Calling Sequence

CALL XSEMI

3.3.1.4 Method

Subroutine BTSTRP is called to initialize machine dependent data, and then subroutine SEMINT

is called to execute the program Preface (i.e. input file processors and DMAP Drogram compiler).

After initiating the problem, modules are called as directed by the _SCAR until,a module is

encountered in the @SCAR that does not reside in link l at which time XSEMI calls subroutine

ENDSYS to load a new l....I I1_ •

3.3.1.5 Design Requirements

XSEMI must reside in the core resident portion of link I. Link l is not re-entrant which

means that once the program leaves link l it can never transfer control back to link I. Functional

DMAP modules can not reside in link I. Open core is used for a GINB buffer with named common block

/ESFA/ defining the beginning of open core. See the second paragraph of the design requirements

section of the subroutine description XSEMi (see section 3.3.7) for details on files, data blocks,

and common blocks necessary for operation.

3.3-1

SUBROUTINE DESCRIPTIONS

3.3.2 BTSTRP (Bootstrap Generator I.

3.3.2.1 Entry Point: BTSTRP.

3.3.2.2 Purpose

Determines the machine type and initializes the machine dependent constants and masks

within the NASTRAN system block data program (SEMDBD).

3.3.2.3 Calling Sequence

CALL BTSTRP

3.3.2.4 Method

The machine type (IBM 7094, IBM S/360, Univac 1108, CDC 6600) is determined by inspection of

the machine binary word length and the known methods of representing negative integers (sign

and magnitude or ones/twos complement) using the following algorithm:

I. If the ones complement (COMPLF see section 3.4.1) of -I is greater than 2, the machine

is the IBM 7094. If not, the machine is an IBM S/360, Univac 1108 or CDC 6600. (i.e., only

the sign and magnitude representation of -I on the 7094 will yield a large (> 2) positive

value when complemented.)

2. Shift (RSHIFT see section 3.4.1) a binary machine word of all l's to the right thirty-

two binary places. Compare the resulting value to 15. If the value is less than fifteen,

the machine is the 32 bit IBM S/360; equal to fifteen, the 36 bit Univac 1108; and greater

than fifteen, the 60 bit CDC 6600.

Once the machine type is known, the proper constants and masks are selected from assembled tables.

3.3.2.5 Design Requirements

This subroutine must be modified if it is to operate with other than the four machine types

listed above.

3.3-2

EXECUTIVE SUBROUTINE DESCRIPIIONS

3.3.3 SEMINT (Sequence Monitor Initialization).

3.3.3.1 Entry Point: SEMINT.

3.3.3.2 Purpose

To execute the Preface of a NASTRAN problem solution.

3.3.3.3 Calling Sequence

CALL SEMINT

3.3.3.4 Method

The first card Of the NASTRAN data deck is read from the system input file and its imaqe

stored in blank C@MMBN. XRCARD is called to convert the card. If the name of the card is

NASTRAN, _e card is echoed and keywords are identified and appropriate words of /SYSTEM/ are

reset to the input values. If an unidentified keyword is detected, or the card has a format error,

a message is printed and the N_GO flag is turned on. The first word of blank C_MM_N is set to c;b -_

if the card was a NASTRAN card, to zero otherwise. Then GNFIAT is called to generate the initial

FIAT. XCSA is called to read and process the Executive Control Deck. IFPI is called to read and

process the Case Control Deck. XSORT is called to read and sort the Bulk Data Deck. If bulk

data is present, IFP is called to process it. If the problem is a conical shell problem, IFP3 is

called to further process zhe bulk data. If the current run is to prepare a User's Master File,

UMFEDT is called and cont_i is returned to XS_RT for each new problem to be written on the UMF.

Otherwise, XGPI is called to perform General Problem Initialization and then return is made to

XSEMI signifying completion of the Preface.

3.3.3.5 Design Requirements

If the NASTRAN card is present, it must be the first card of the data deck.

3.3.3.6 Diagnostic Messages

UNIDENTIFIED NASTRAN KEYW_RD

BUFFSIZE

C_NFIG

MAXFILES

IvIAXOPEN

SYSTEM

ACCEPTABLE KEYW_RDS F{_LL{_W--

3.3-3

SUBROUTINE DESCRIPTIONS

Self-explanatory.

NASTRAN CARD D_ES NOT HAVE C_RRECT F_RMAT.

Typical errors include non-integer values or continuation of the card followinq an = sign.

See section 6.3.1 for further details on the NASTRAN card.

3.3-4

EXECUTIVE SUBROUTINE DESCRIPTIONS

3.3.4 GNFIAT (Generate FIAT).

3.3.4.1 Entry Point: GNFIAT.

3.3.4.2 Purpose

Determines the number of logical files available within the computer hardware and software

configuration and places an entry for each into FIAT or XFIAT.

3.3.4.3 Calling Sequence

CALL GNFIAT

GNFIAT must be called once and only once as the first call from the preface.

3.3.4.4 Method

Each computer configuration has its own independent subroutine to accomplish the necessary

functions of GNFIAT. The subroutine interrogates unit blocks, data definition cards, file tables,

etco to d_termine the number of logical files available within the configuration. As each

logical file is sensed, it is determined whether the file has been assigned to a ohysical magnetic

tape or some bulk storage device such as disk or drum. Each file has a logical name and/or

number for identification. These file ID's are stored in FIAT, XFIAT or both depending on

several factors. As the file ID is stored, a physical tape flag is set where appropriate. The

factors that determine FIAT vs. XFIAT storage are as follows: l) the first PFIST (see section

2.4 for a description of the FIST) files sensed are always entered into XFIAT, 2) except for the

first file (always the P_L), all of the first PFIST files without tape flags are also entered

into FIAT, and 3) all other files are entered into FIAT only.

3.3.4.5 Design Requirements

Since GNFIAT routines are computer hardware/software dependent, operational requirements

may differ at various times. See appropriate commented assembly listing if difficulties or

error codes are encountered.

3.3-5

SUBROUTINE DESCRIPTIONS

3.3.5 ENDSYS (End-of-Link).

3.3.5,1 Entry Points: ENDSYS, BGNSYS.

3.3.5.2 Purpose

For ENDSYS, to save various NASTRAN core-resident Executive Tables on a scratch file for use

in communicating with the next link requested.

For BGNSYS, to restore the NASTRAN Executive Tables saved by ENDSYS and to position the

_SCAR at the correct entry to be executed in the resident link.

3.3.5.3 Calling Sequences

CALL ENDSYS(LINK,X,REWFLG)

LINK - BCD name of the link. The naming convention is: NSOI = link l, NS02 = link 2,

etc.

- Dependent on machine type. For the IBM 7094 only, X (6 BCD characters) specifies

the unit where the links are stored. Not used on other machines.

REWFLG : 0 indicates LINK is ahead of current link (i.e. we are going from link N to

link N + K, K TM 0). IBM 7094 only; not used on other machines.

REWFLG : 1 indicates LINK is behind current link (i.e. we are going from link N to

link N + K, K < 0). IBM 7094 only; not used on other machines.

CALL BGNSYS.

3.3.5.4 Method

For ENDSYS, a search is made for an empty file and when found the Executive Tables are

written (saved) on it. A pointer to the save file is saved in blank common or written on a

system file for use by BGNSYS when the new link is loaded. Subroutine SEARCH is then called to

load the requested link.

BGNSYS is called after a new link is loaded. The pointer to the save file containing the

Executive Tables is obtained from either blank common or a system file, and the Executive Tables

are reloaded into core. The @SCAR is positioned at the correct entry to be executed, and a

RETURN is made to the calling routine.

3.3-6

EXECUTIVE SUBROUTINE DESCRIPTIONS

3.3.5.5 Design Requirements

Program links are usually considered to be physically separate Drograms, essentially

independent of one another except for the fact that the operating system executive (not the NASTRAN

executive) provides a means by which control can be transferred from one link to another when

requested by the user. The means by which the operating system executive transfers control from

one link to another is dependent upon the machine and the system being used. For some future

machir,es there may be no means for building physically separate links so the links become

logical subsets of one huge program.

No matter how the links are formed it is necessary, when transferring from one link to

another, that all file assignments be preserved as well as their status (i.e. don't rewind the tapes).

Open core is used for GIN_ buffer area and the beninning of open core is defined by named

common block /ESFA/.

If no save file is available or if any of the Executive Tables to be written exceeds 900

words, the job is terminated.

3.3-7

SUBROUTINE DESCRIPTIONS

3.3.6 SEARCH (Search_ Load, and Execute Link).

3.3.6.1 Entry Point: SEARCH.

3.3.6.2 Purpose

SEARCH locates (searches for) a particular link of the NASTRAN system on the Link StoraQe

File, loads the link into the computer memory and transfers execution control to the link entry

point XSEMi, i = 2,3,

3.3.6.3 Calling Sequence

CALL SEARCH(LKNAM,LKFIL,REW)

LKNAM = 4 character symbolic name of link, i.e., NSOI, NS02 for link I, link 2, etc.

LKFIL = symbolic name of the Link Storage File (IBM 7094 only)

REW = set non-zero to position a sequential Link Storage File to its beginning

(IBM 7094 only)

3.3.6.4 Method

SEARCH is machine dependent. It interfaces with the machine operatin_ system to provide a

multi-link capability. Each link is a somewhat arbitrary part o # the complete NASTRAN system.

The division into links was necessary only because of the size limitation for program complexes

imposed by the various operating systems. The linking technique for each machine is discussed

in section 5 of the Programmer's Manual.

3.3.6.5 Design Requirements

Only the IBil 7094 system requires the Link Storage File to be named (LKFIL) and, since it is

sequential, provides the capability of rewinding it following a SEARCH call. All other systems

provide random access (disk, drum) Link Storage Files.

3.3.6.6 Diagnostic Messages

Individual SEARCH subroutines may abnormally terminate due to hardware malfunction. See

appropriate commented assembly listing if difficulties or error codes are encountered.

3.3-8

EXECUTIVE SUBROUTINE DESCRIPTIONS

3.3.7 XSEF!i(Link i Main Program, i : 2_3

3.3.7.1 Entry Point: XSEMi.

3.3.7.2 Purpose

To get the next n_)duleto be executed from the _SCAR, initialize the module and call it

if it is in link i, or transfer to the link in which module resides if it is not in link i.

3.3.7.3 Calling Sequence

Example: CALL XSEM2, wi_ereXSEM2 is the entry point of link 2

3.3.7.4 Method

Subroutine BTSTRP is called to initialize machine dependent data, and then subroutine BGNSYS

is called to reload Executive Tables saved from the previous link.

The next _SCAR entry is read into core and processed. If the entry is for a functional

module, subroutine GNFIST is called to link files with inout, outnut and scratch data blocks

needed by the module. Variable parameter values needed by the module are transferred to blank

common from table VPS which resides in named con_nonblock /XVPS/. Constant values in the _SCAR

entry parameter section are transferred to blank common.

The link specification table in named common block /XLINK/ is examined to see if the module

resides in this link. If it does, the module is called. Upon returning from the module, the

diagnostic message queue is checked and message writer MSGWRT is called if there are messages

queued. Begin and end execution times are printed out for functional modules.

The next _SCAR entry is read and the process is repeated until a module is encountered which

does not reside in this link, at which time subroutine ENL'SYSis called to initiate loading of the

link containing the module.

3.3.7.5 Design Requirements

XSEMi must reside in the core resident portion of link i. L$nk i is re-entrant which means

program control can be transferred to this link as often as needed. Onen core is used for a

GINO buffer with named common block /ESFA/ defining the beainninp o_ open core. An _SCAR entry

cannot be greater than 200 words.

3.3-9

SUBROUTINE DESCRIPTIONS

Files, data blocks and named common blocks needed by XSEMi are listed below, along with type

of access required (i.e. fetch and/or store data) and reasons for use.

Data Pool File - fetch. Contains X_SCAR data block.

X_SCAR - fetch. Contains _SCAR entry to be processed.

1 •

2.

3.

4.

5.

6.

7.

8.

9.

I0.

3.3.7.6

Common /XLINK/ - fetch.

Common /XFIST/ - store.

Common /XPFIST/ - fetch.

Common /_SCENT/ - fetch.

Common /ESFA/ - store.

Common /XVPS/ - fetch.

to be executed.

Common /MSGX/ - fetch.

Common /SEM/ - fetch.

Diagnostic Messages

Contains link specification table.

Initialized prior to callino GNFIST.

Contains parameter needed to initialize FIST table.

Contains _SCAR entry to be nrocessed.

Defines beginning of open core area used by GIN_ buffer.

Contains variable parameter values needed to initialize module

Contains diagnostic message queue,

Contains BCD names of links NSOI, NS02,

A message is written if the module to be executed required more files than are available.

The job is then terminated.

3.3-10

EXECUTIVESUBROUTINEDESCRIPTIONS

3.3.8 XSEIIXX (Sequence Monitor - Deck Generator).

3.3.8.1 Entry Point: XSEMXX.

3.3.8.2 Purpose

To provide a model from which all other XSEMi (i = link number) subroutines except XSEMI

can be made.

See section 6.11, which discusses how to generate a link driver subroutine.

3.3-II

SUBROUTINE DESCRIPTIONS

3.3.9 GNFIST (Generate FIST)

3.3.9.1 Entry Point: GNFIST.

3.3.9.2 Purpose

To set up the proper linkage between data blocks and the files they reside on in preparation

for executing the functional module requiring the data blocks.

3.3.9.3 Calling Sequence

CALL GNFIST(DDN,FISTNM,M_DN_)

DBN - Data block name (Two word BCD array - 8 characters total)

FISTNM - Data block identification (GIN_ file number) used by functional module

(integer).

M_DN_ _SCAR record number of functional module to be executed (integer). M_DN_

indicates to the calling routine what action was taken by GNFIST.

M_DNO > O, data block assigned a file or it was purged.

M_DN_ = O, fatal error detected.

M_DN_ - O, data block not assigned a file, GNFIST called Executive Segment

File Allocator (XSFA)

3.3.9.4 Method

If the data block is purged, GNFIST returns to the calling routine with MODNO > O. A

data block is purged if it is an input which has not been generated or its status is purged or

DBN = O.

If an input data block resides on the Data Pool File and needs to be unpooled, GNFIST calls

the file allocator (XSFA) to unpoGl all inputs to the module which reside on the Data Pool File

that need to be unpooled. GI_FIST then returns to the calling routine with M_DN_ < O. The other

condition under which XSFA is called is if a file has not been allocated to a non-purged output

data block or scratch data block needed by the module.

A file is allocated to a data block when the data block name appears in the FIAT table,

located in named common block /XFIAT/, as unpurged. Input, output and scratch data blocks which

have been assigned to a file and are required by the functional module, have their FISTNM's entered

3.3-12

EXECUTIVE SUBROUTINE DESCRIPTIONS

in the FIST table which is located in named common block /XFIST/. FIST entries are linked to

the DBN's in the FIAT table which in turn links the data block to a file. This completes the

linking of functional module data blocks to their files.

Output data blocks cannot reside on the Data Pool File, so GNFIST checks for this and if

found, the DBN and all DBN's equivalenced to it are deleted from the DPL table located in named

common /XDPL/.

3.3.9.5 Design Requirements

GNFIST resides in the core resident portion of a link. It does not use onen core and the

only restriction is that the FIST table be large enough to hold all FISTNM's for a module.

The named common blocks needed by GNFIST are listed below, along with type of access

required (i.e. fetch and/or store data) and reasons for use.

I. C_MM_N/XFIST/ - Store.

Used to store FISTNM's and link FISTNM's with their corresponding DBN's in FIAT.

2. C_MM_N/XFIAT/ - Fetch and store.

Used to determine status of DBN's. The FIAT table is altered if unpooling of input

data blocks is necessary.

3. C_MM_N/XDPL/ - Fetch and store.

Used to determine status of input DBN's and is altered if outnut DBN's appear in it.

4. C_MM_N/_SCENT/ - Fetch.

Contains BSCAR entry for functional module to be executed. Used to alter FIAT when

input DBN's need to be unpooled.

3.3.9.6 Diagnostic Messages

GNFIST detects overflow in FIST table and sends message to terminate job.

3.3-13

SUBROUTINE DESCRIPTIONS

3.3.10 XEOT (End-of-Tape).

3.3.10.1 Entry Point: XE_T.

3.3.10.2 Purpose

To prepare and send to the computer operator, messages instructing him what to do when

end-of-tape has been encountered on the Old Problem Tape (_PTP) or the New Problem Tape (NPTP).

3.3.10.3 Calling Sequence

CALL XE_T(ID,_REEL,NREEL,BUF)

ID - BCD name NPTP or _PTP

_REEL - Number of reel to be dismounted - integer.

NREEL - Number of new reel to be mounted - integer.

BUF - GIN_ buffer used by NPTP or OPTP.

3.3.10.4 Method

A check is made to see if tape has multi-reel capability. If not, a fatal message is issued

and job is terminated. The operator messages are generated and issued and the old reel is re-

wound and unloaded. A check is made to see if correct new reel has been mounted and then a

return is made to callinp program.

3.3.10.5 Design Requirements

XE_T must be accessible to routines XGPI and XCHK.

3.3.10.6 Diagnostic Messages

A message is issued if tape does not have multi-reel capability.

3.3-14

EXECUTIVE SUBROUTINE DESCRIPTIONS

3.3.11 SSWTCH (Sense Switches)

3.3.11.I Entry Point: SSWTCH.

3.3.11.2 Purpose

To indicate to the calling routine whether or not a specified sense switch is set.

3.3.11.3 Calling Sequence

CALL SSWTCH(SS,F)

SS - Sense switch number - integer, l<SS<31.

F - Flag indicating status of SS

F = 0 if SS not on

F = l if SS is on

3.3.11.4 Method

Named common block /SYSTEM/ contains the word which contains the sense switch settings.

Bit l of the word corresponds to sense switch l, bit 2 corresponds to sense switch 2, etc. If

the bit corresponding to SS is on then F = l, if not then F = O.

Note that sense switches are set by the user via the DIAG card in the Executive Control Deck

and not through physical sense switches set by the computer operator.

The following sense switches are currently in use:

Switch

l Dump core when subroutine DUMP or PDUIIP is called. This

will cause a core dump on any nonpreface fatal error.

2 Print the FIAT after each call to XSFA.

3 Print the Data Pool Dictionary after each call to XSFA.

4 Print the _SCAR at the end of XGPI.

5 Type a messaQe to signify the beginning of each module

on the operator's console.

Type a message to signify the ending of each r_odule on

the operator's console.

Print eigenvalue extraction diagnostics for real inverse

power and real and complex determinant methods.

3.3-15 (8/I/72)

EXECUTIVE SUBROUTINE DESCRIPTIONS

Switch

8

9

I0

II

12

13

14

15

16

17

i8

19

20

21

22

23-26

27

28

29

30

31

Print matrix trailers as the matrices are generated.

Not used.

Use alternate nonlinear loading in TRD. (Replace

{Nn+ I} by _{Nn+ 1 + Nn + Nn_l})

Print all active row and column possibilities for the
decomposition algorithm.

Print eigenvalue extraction diagnostics for complex
inverse power.

Print open core length.

Print the Rigid Format (!_ASTRAN SOURCE PROGRAM COHPILATION)
for all non-Restart runs.

Trace GIN9 9PEN/CL9SE operations on CDC 6000 series.

Trace real inverse power eigenvalue extraction operations.

Punch the DMAP sequence that is compiled.

NoL used.

Print data for MPYAD method selection.

Generate de-bug printout (For NASTRAN programmers who
include CALL BUG in their subroutines).

Print GP4 set definition.

Print GP4 degree of freedom definition.

Not used.

Input File Processor (IFP) table dump.

Punch out the link specification table - deck XBSBD.

Process link specification table update deck.

Punch out alters to XSEMi decks.

Print link specification table.

For a further explanation of switches 28-31 see Section 6.11 in the Progran_er's Manual.

3.3.11.5 Design Requirements

SSWTQI resides in the core resident portion of a link.

3.3-15a (8/I/72)

SUBROUTINE DESCRIPTIONS

3.3.12 C_NMSG (Console Message Writer).

3.3.12.1 Entry Point: C_NMSG

3.3.12.2 Purpose

Writes the current time and a NASTRAN system message onto the system output device and

(if the computer configuration permits) onto the on-line operator's console device.

3.3.12.3 Calling Sequence

CALL C_NMSG(MSG,CNT,YN)

MSG - Array name containing message.

CNT - Number of 4-character words in message (integer).

YN - 1 = yes, 0 = no. Print on-line device if yes and available.

3.3.12.4 Method

A computer real-time and/or job clock is interrogated. The number of message words

indicated is sent to the system output device (usually printer) along with the clock reading(s).

If the computer configuration permits and the yes/no switch is set yes, the same clock reading(s)

and message is sent to the operator's console device (usually typewriter).

3.3.12.5 Design Requirements

Only the left-most four characters from each computer word are extracted and sent to the

output device(s).

3.3-16

EXECUTIVE SUBROUTINE DESCRIPTIONS

3.3.13 TTLPGE (Title Page Writer).

3.3.13.l Entry Point: TTLPGE

3.3.13.2 Purpose

To print on the system output file title page information as follows:

• the NASTRAN symbol

• the machine type and model

• the system generation date

• the level identification

• major level nun_er (corresponds to the basic archive Source Library)
• minor level nunl)er(corresponds to the object library for a machine type)
• local level nunV_er
• variations of a local level

• the Rigid Format series identification, including modifications, if any

3.3.13.3 Calling Sequence

CALL TTLPGE (K)

3.3.13.4 Method

TTLPGE is called as the first executable statement in the Preface driver SEMINT following

transliteration (IBM 360, 370 only) and reading of the NASTRAN card (if any).

The variable K is stored as a local variable in subroutine SEMINT and may be set at execution

time by the user on the NASTRAN data card by

NASTRANTITLE_PT = k

where the default value for k is 1 as defined by a DATA statement in subroutine SEMINT. The

action taken by TTLPGE depends on the integer option parameter K (whose value is k) as shown

below.

k TTLPGE action

<0

=0

l

2

3

>3

Print one (I) copy of an abbreviated title page

Supress any title page printout

Print one (1) copy of the full title page

Print two (2) copies of the full title page

Print a single copy of a locally annotated title page

Supress any title page printout

3.3-17 (8/1/72)

SUBROUTINE DESCRIPTIONS

Whenever changes are incorporated into NASTRAN, the TTLPGE routine should be updated to

reflect these changes. This is particularly important when official updates are made since runs

may only be identifiable by the information contained in this printout. The basic identification

of a given version of NASTRAN is called the Level number, a code of the form

i.j .k

where i is the current major level number, j is the minor level number and k is local level

number.

The major level corresponds to a complete recompilation of the entire system on each machine

from a single archive source library maintained for all machines. It is through this mechanism

that the machine-independent nature of the NASTRAN code is guaranteed. Major levels of NASTRAN

will probably only be issued at intervals of once a year or longer due to the expense involved.

Minor levels correspond to changes that are made on one given type of machine, say the

CDC 6000 machines. These changes are reflected in the object library for the given machine

class, and may be reflected in the source by either alters to the basic source library or by an

updated source library. Minor levels will probably be issued every few months for each machine

class as alters to the basic or previous source library.

Local levels are reserved for locally made changes and provides a mechanism for the local

NASTRAN system programmer to keep track of several versions of NASTRAN that may exist at his

installation. This would probably consist of a digit or a digit and a typed letter (e.g., Level

15.I .2A).

The Rigid Format series is designated by a letter. Minor modifications will be identified

by a digit (e.g., Rigid Format Series M.2). It is anticipated that new series of Rigid Formats

will only be available concurrently with major levels of the program.

3.3-18 (8/I/72)

EXECUTIVESUBROUTIrIEDESCRIPTIONS

3.3.14 SEr_TR_I (Transliterator) (IBM 36_-370 only)

3.3.14.1 Entry Point: SE_TRN

3.3.14.2 Purpose

To read the system input stream and convert EBCDIC characters to BCD.

3.3.14.3 Calling Sequence

CALL SEr._RN (KIN, K_UT)

3.3.14.4 Method

An I/_ activity is done using F_RTRAN. One eighty (80) column card image at a time is read

from F_RTRAN unit KIN, transliterated, and written out on F_RTRAN unit K_UT. F_RTRAN unit K_UT

is rewound before writing and before returning. F_RTRAN unit KIN is not rewound before reading and

is not manipulated further once an end-of-file condition is detected. Any EBCDIC characters other

than the standard NASTRAN set defined on page 2.1-2 (6/I/72) of the User's Manual are transliterated

to the blank character. BCD punched characters are transliterated into themselves. Thus, for the

standard character set, either BCD, EBCDIC or mixed BCD and EBCDIC may be used on the IBM 360-370

computer systems. It should be emphasized that decks containing EBCDIC characters will not run on

the other NASTRAN computers.

3.3.14.5 Design Requirements

The F_RTRAN unit KBUT must be defined in the JCL and sufficient space must be allocated to hold

the transliterated input stream. The actual unit numbers used are defined by the calling program

(SEMINT) and are currently set to KIN = 5 and K_UT = I. If the 2314 disk facility is used for KBUT,

the space can be estimated by

No. Cards
No. Tracks =

91

if full track blocking is used. This is accomplished by specifying the DCB as

DCB = (RECFM=FB, LRECL=80, BLKSIZE=7280)

The transliteration is effected by using the character read in as an index into a 256 byte

table containing the desired BCD representations. In this way, no look-up expense is involved.

3.3-1g (8/I/72)

3.3.15 RETURN (Return)

3.3.15.1 Entry Point: RETURN

3.3.15.2 Purpose:

SUBROUTINE DESCRIPTIONS

To allow inclusion of calls to non-existing decks.

required to use this capability.

3.3.15.3 Calling Sequence

CALL RETURN

3.3.15.4 Method

The only executable statement is a RETURN to the calling program.

3.3.15.5 Design Requirements

RETURN should be located in LINK 0 or in the root segment.

3.3.15.6 Diagnostic Messages

None.

Linkage Editor data changes are

3.3-20 (8/I172)

3.4

3.4 .I

3.4.1 .I

3.4.1.2

UTILITY SUBROUTINE DESCRIPTIONS

UTILITY SUBROUTINE DESCRIPTIONS.

MAPFNS (Machine Word Functlons).

Entry Points: LSHIFT, RSHIFT, ANDF, _RF, X_RF, C_MPLF, C_RSZ, C_RWDS.

Purpose

To perform basic computer word manipulations by standard binary digit (bit) operations.

The manipulations are performed over the complete memory word length for the particular hardware.

Also, to determine the size of open core (C_RSZ) and the absolute difference between locations in

core (C_R_DS).

3.4.1.3 Calling Sequence

All machine word functions are executed as F_RTRAN integer function subroutines with

integer arguments.

3.4.1.4 Method

The method employed within each function wiii be described following the separate _unction

examples.

3.4.1.5 Entries

K : LSHIFT (I,N)

The entire bit structure of word I is shifted left N places and the resulting word replaces

word K. Word I is unchanged. High-order bits shifted out are lost. Zeros are supplied to

vacated low-order positions. The shift is logical; no special provision is made for the sign

position.

K = RSNIFT (I,N)

The entire bit structure of word I is shifted right N places and the resulting word reolaces

word K. Word I is unchanged. Low-order bits shifted out are lost. Zeros are supplied to

vacated high-order positions. The shift is logical; no snecial orovision is made for the sign

position.

K = ANDF (I,J)

A logical product of the bits within word I and word J is formed and stored into word K.

Words I and J are unchanged.

3.4-1

SUBROUTINE DESCRIPTIONS

K = _RF (I,J)

A logical sum of the bits within word I and word J is formed and stored into word K.

Words I and J are unchanged.

K = X_RF (I,J)

The modulo-two sum (exclusive or) of the bits within word I and word J is formed and

stored into word K. Words I and J are unchanged.

K = COMPLF (1)

The ones complement of the bits within word I is formed and stored into word K. Word I

is unchanged.

K : C_RSZ (l,J)

The size of open core is computed and stored in location K through this function. Location

I is normally the address of a labeled common cell defining the beginning of a particular open

core area. Location J is normally the address of blank common (usually thought to be the end of

a particular open core area). On computer memory configurations where blank common does not

define the end of open core, C_RSZ ignores location J and substitutes a correct end value. The

arguments I and J may be interchanged without affecting results.

K = C_RWDS (l,J)

The absolute difference plus 1 between the addresses of locations I and J is comnuted and

stored into word K. Words I and J are unchanged.

3.4.1.6 Design Requirements

I_APFNS is written in assembly language.

3.4-2

3.4.2

3.4.2.1

3.4.2.2

UTILITY SUBROUTINE DESCRIPTIONS

_PEN (Initiate Activit X on a File).

Entry Point: BPEN.

Purpose

To initiate activity on the requested file.

3.4.2.3 Calling Sequence

CALL _PEN($n,NAME,BUFF,_P)

n - F_RTRAN statement

in the FIST (i.e. the data

NAME - GIN_ file name

BUFF - An array whose

will be used by GIN_ while

D, open file to
I. open file to

_P = _i_ open file to

t3• open file to

3.4.2.4 Method

number defining the return to be taken in the event NAME is not

block is purged).

of the data block which is to be read or written(see section 1.6.4.1).

dimension equals the contents of the first word of /SYSTFM/ which

the file is oben.

read with rewind

write with rewind
read without rewind

write without rewind

_PEN stores parameters in /GIN_X/ and then calls XGINB which searches the FIST for a name

match and picks up from the FIAT the unit to which the data block is assigned. The position of

the buffer is determined relative to /XNSTRN/.

This index is saved in the BUFADD array in /GIN_X/. BUFADD is searched to determine if any

other buffer overlaps the buffer currently assigned. GINO is called to initiate activity for the

file.

3.4.2.5 Design Requirements

The address of the buffer assigned must be greater than the address of /XNSTRN/.

3.4.2.6 Diagnostic Messages

The following system fatal errors may be issued by _PEN:

3006

3012

3O4O

3.4-3

SUBROUTINE DESCRIPTIONS

3.4.3 WRITE (Write Data in a Logical Record).

3.4.3.1 Entry Point: WRITE.

3.4.3.2 Purpose

To write a logical record, or portion of a logical record, on the requested file.

3.4.3.3 Calling Sequence

CALL WRITE(NAME,BL_CK,N,E_R)

NAME - GINB file name of the data block which is to be written (see section 1.6.4.1).

BL_CK- An array of dimension _ N containing the data words to be written.

N - The number of words to be written - integer - input.

O, the N words to be written by this call do not end the logical record, i.e.

_subsequent WRITE calls will provide additional data to be written in the

E_R = _Icurrent logical record.

\I, the N words to be written by this call end the logical record.

3.4.3.4 Method

_JRITE stores parameters in /GIN_X/ and then calls XGIN_ which in turn calls GINO to nerform

the actual processina of the call.

3.4-4

UTILITY SUBROUTINE DESCRIPTIONS

3.4.4 CLOSE (Terminate Activity on a File).

3.4.4.1 Entry Point: CLOSE.

3.4.4.2 Purpose

To terminate activity on the requested file.

3.4.4.3 Calling Sequence

CALL CL_SE(NAME,_P)

NAME - GIN_ file name of the data block to be closed (see section 1.6.4.1).

l, if file was opened to write, write end-of-file and rewind.

If file was opened to read, rewind only.

2, close file at current file position (no end-of-file, no rewind).

_P
3, if file was opened to write, write end-of-file and position file in front of

end-of-file mark.

\ If file was opened to read, same as _P = 2.

If the requested file is not in the FIST or is not currently open, a normal return is given

and no operation takes place.

If the file was opened for output and the last logical record has not been written, it is

written prior to honoring the _P request.

The buffer assigned when the file was opened is released and is available to the user on

return.

3.4.4.4 Method

CLOSE stores parameters in /GIN_X/ and then calls XGIN_. If XGIN_ returns indicating the

file is not in the FIST or not open, an immediate return is given to the user. Otherwise XGIN_

calls GIN_ to process the call.

3.4-5

SUBROUTINE DESCRIPTIONS

3.4.5 READ (Read Data From a Logical Record).

3.4.5.1 Entry Point: READ.

3.4.5.2 Purpose

To read the contents of a logical record, or portion of a looical record, from the requested

file.

3.4.5.3 Calling

CALL READ($n_

n_

Sequence

,$n2,NAME,BLBCK,N,EBR,M)

F_RTRAN statement number defining the return to be taken in the event an end-of-

file is encountered by this READ operation.

n2 F_RTRAN statement number defining the return to be taken at the end of the READ

operation whenever the end-of-logical-record is encountered prior to transmittinq

the requested number of data words.

NAME - GIN_ file name of the data block which is to be read (see section 1.6.4.1).

BL_CK - An array of dimension _ N, where the words read will be stored.

N > O: The number of words to be read and stored at BL@CK - integer - input.

N - _N (O: The number of words to be skipped, i.e., read but not stored at _L_CK.
!
_Integer - inout.

O, subsequent calls to READ for the current logical record are exDected.

EOR _I, the current call is the last call for the current logical record. The file
l
_will be positioned to the beginning of the next loqical record before returning.

M - If return to n2 is given, the number of words actually read is stored in M.

In no other case are the contents of M changed.

_Jhenever return to n2 is given, the file is positioned to the beginning of the next logical

record regardless of the setting of E_R.

A return to n_ is possible only when a call to READ is given when the file is positioned at

the beginning of a logical record.

3.4-6

UTILITY SUBROUTINE DESCRIPTIONS

3.4.5.4 Method

READ stores parameters in /GIN@X/ and then calls XGIN_ which in turn calls GIN@ to perform

the actual processing of the call.

3.4-7

SUBROUTINE DESCRIPTIONS

3.4.6 F_JDREC IForward Space One Logical Record).

3.4.6.1 Entry Point: FWDREC.

3.4.6.2 Purpose

To position the requested file forward one logical record.

3.4.6.3 Calling Sequence

CALL FWDREC($n,NAME)

n - F_RTRAN statement number defining the return to be taken in the event an end-of-file

is encountered.

NAME - GIN_ file name of data block to be positioned forward (see section 1.6.4.1).

This call will always position the file to the beginning of the next logical record unless

an end-of-file is encountered.

3.4.6.4 Method

FWDREC stores parameters in /GINBX/ and then calls XGIN_ which in turn calls GIN_ to process

the call.

3.4-8

UTILITY SUBROUTINE DESCRIPTIONS

3.4.7 BCKREC (Backspace One Logical Record).

3.4.7.1 Entry Point: BCKREC.

3.4.7.2 Purpose

To position the requested file backward one logical record.

3.4.7.3 Calling Sequence

CALL BCKREC (NAME)

NAME - GIN_ file name of data block to be positioned backward (see section 1.6.4.1).

If the file is positioned in the middle of a logical record, the file is repositioned to

the beginning of that record. Otherwise, the file is positioned to the beginning of the previous

logical record.

If the file is positioned at the beginning of file, no operation occurs and a normal return

is given.

3.4.7.4 Method

BCKREC stores parameters in /GIN_X/ and then calls XGINB which in turn calls _I_ to

process the call.

3.4-9

3.4.8

SUBROUTINEDESCRIPTIONS

REWIND (Position File to the Load Point).

3.4.8.1 Entry Point: REWIND

3.4.8.2 Purpose

To rewind the requested file.

3.4.8.3 Calling Sequence

CALL REWIND(NAME)

NAME - GIN_ file name of the data block to be rewound (see section 1.6.4.1).

Rewind given for an output file has the effect of erasing any data which has been written

on the file.

3.4.8.4 Method

REWIND stores parameters in /GIN_X/ and then calls XGIN_ which in turn calls GIN_ to

process the call.

3.4-I0

UTILITYSUBROUTINEDESCRIPTIONS

3.4.9 E_F (Write an End-of-File).

3.4.9.1 Entry Point: E_F.

3.4.9.2 Purpose

To write an end-of-file on the requested file.

3.4.9.3 Calling Sequence

CALL E_F(NAME)

NAME - GIN_ file name of data block on which end-of-file is to be written(see section 1.6.4.1.)

The file must be open to write at the time of this cal'l.

3.4.9.4 Method

E_F stores parameters in /GINBX/ and then calls XGIN_ which in turn calls GIN_ to process

the call.

3.4-II

SUBROUTINE DESCRIPTIONS

3.4.10 SKPFIL (Skip Files Forward or Backward).

3.4.10.1 Entry Point: SKPFIL.

3.4.10.2 Purpose

To position the requested file forward or backward a stated number of files.

3.4.13.3 Calling Sequence

CALL SKPFIL(NAME,N)

NAME - GINO file name of the data block to be repositioned (see section 1.6.4.1).

N - The number of files to be skipped. N > 0 means forward skiD, N _ 0 means

backward skip, N = 0 means no operation - inteaer - innut.

Notes:

I. Following a forward skip, the file is positioned at the beqinning of the first

logical record (i.e. immediately after the end-of-file mark).

2. Following a backward skip, the file is positioned immediately in front of the

end-of-file mark (or at the beginning-of-unit).

3. Request to skip backward from the beginning-of-unit is ignored and the file

remains positioned at the beginning-of-unit.

4. SKPFIL backward on a file opened to write has the effect of "erasing" file(s)

written.

3.4.13.4 Method

SKPFIL stores parameters in /GIN_X/ and calls XGINO which in turn calls GIN_ to nrocess the

call.

3.4-12 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.11 XGINIB(GIN_ Utility Routine).

3.4.11.1 Entry Point: XGIN(B.

3.4.11.2 Purpose

To convert the GINB file name to a unit number, retrieve the buffer assigned to the file

and call GIN_.

3.4.11.3 Calling Sequence

CALL XGIN_($nI,$n2,A,M)

C_MM_N/GIN_X/LGIN0X,FILEX,E_R,_P,ENTRY,LSTNAM,N,NAME,NTAPE,XYZ(2),UNITAB(75),BUFADD(75)

l, call from subroutine _PEN

E_;TRY =

NAME -

FILEX -

LSTI_M -

NTAPE =

nl

2, call from subroutine WRITE

3, call from subroutine READ

4, call from subroutine CLOSE

S, call from subroutine BCKREC

6, call from subroutine FWDREC

7, call from subroutine SKPFIL

8, call from subroutine E_F

n 2

integer - inout

9, call from subroutine REWIND

GIN_ file name of data block for which activity is requested - integer - input.

Unit number to which NAME is assigned - integer - output.

On entry to XGIN_, GIN_ name from previous call. On exit from XGINB,

LSTNAM = NAME - integer - input and output.

O, file does not reside on tape integer outDut.

l, file resides on tape

if ENTRY = l or 4, F_RTRAN statement number defining return in the event

N_ME is not in FIST.

if ENTRY = 3 or 6, F_RTRAN statement number defining return in the event an
end-of-file is encountered.

If ENTRY = 3, F_RTRAN statement number defining end-of-logical-record prior to

completion of requested read.

3.4-13

SUBROUTINE DESCRIPTIONS

A If ENTRY = 2 or 3, A is the user block (from/to) which data words are written/read.

M If ENTRY = 3 and return to n2 is given, M = number of words read - integer - output.

3.4.11.4 Method

The FIST is searched for a name match. If found, the pointer to FIAT is used to nick un the

unit number and tape flag. If not found, a non-standard return is given (ENTRY = l or 4) or a

fatal message is generated. The address of the buffer assigned to the file is nicked uD and GINB

is called to execute the requested operation.

3.4.11.5 Design Requirements

XGINO is designed as an integral part of the GIN_ collection of routines for use only by

_PEN, READ, WRITE, etc.

The BUFADD table must be initialized to zero prior to the first call in a NASTRAN execution.

3.4.11.6 Diagnostic Messages

The following system fatal errors may be issued by XGINO:

3010

3021

3.4-14

UTILITY SUBROUTINE DESCRIPTIONS

3.4.12 GIN_ (General Input/Output Routine).

3.4.12.1 Entry Point: GIN_.

3.4.12.2 Purpose

To provide general purpose Input/Output services to higher level routines (READ, WRITE, etc.)
in the t_STRAN program.

3.4.12.3 Calling Sequence

CALL GIN_($nI,$n2,BUFF,A,M)

c_MM_N/GIN_/LGIN_x,FILEx,E_R,_P,ENTRY,LSTNAM,N,NAME,NTAPE,xYZ(2),UNITAB(75),BUFADD(75)

I,

2,

3,

4,

ENTRY = 5,

6,

7,

8,

9,

FILEX - Unit

EOR

BP

BUFF

nl

n2

A

M

_PEN Operation

WRITE Operation

READ Operation

CLBSE Operation

BCKREC Operation

FWNRFC _nprm_inn
......... r

SKPFIL Operation

E_F Operation

REWIND Operation

Input, integer

nu_er of file - integer- input.

- End-of-record flag (see READ, WRITE) - integer - input.

- Operation code (see _PEN, CLOSE) - integer - input.

- Number of words to write/read or number of files to skip (see WRITE, READ,

SKPFIL) - integer - input.

- Address of buffer assigned to FILEX.

- F@RTRAN statement number defining return in the event an end-of-file is encoun-

tered (READ and _DREC operations only).

- F_RTRAN statement number defining return in the event an end-of-record is encoun-

tered prior to transmitting the requested number of words (READ operations only).

- User block (see WRITE, READ).

- Number of words actually read if end-of-record encountered and return to n2 is

given (see READ) - integer - outDut.

3.4-15

SUBROUTINE DESCRIPTIONS

3.4.12.4 Method

GIN_ blocks all logical records into fixed length physical records (blocks) for writing

and reading. A description of the GIN_ buffer follows:

.=j _-

4-
q-

Buffer Control Word (BCW) = 'READ' or 'WRIT'

Current Buffer Pointer (CBP)

Current Logical Record Pointer (CLR)

Current Block Number (NBL@CK)

Number of data words in logical record or record segment

Data Words

Control Word

u
0

Number of data words in logical record or record segment

Data Words

Control Word

Pointer to last logical record (LLR)

Loaical
record

Logical record
and

control words

Control word = 4*K + 2"F2 + F1 where

F1 = 1 indicates continued record

F2 = 0 indicates last segment of continued record

if F1 = O, K = number of _1ords in logical record

if F2 = I, K = 65536*(Block No.) + CLR of Ist segment of logical record

Processing of each operation takes place as follows:

I. _PEN. If a rewind is requested, the file is rewound and the first three words of the

buffer are initialized followed by a return. Otherwise, the current file position is retrieved

from UNITAB. If the file is logically between blocks, action occurs as above. Otherwise, the

next block is read and the pointer to the current logical record is restored. If the block read

is not the expected block, a recovery attempt is made.

3.4-16

UTILITY SUBROUTINE DESCRIPTIONS

2. WRITE. For the first call to write in a logical record, NBL_CK and CLR are saved in

UNITAB. User data is transferred to the buffer. If the buffer is filled, a control word indicat-

ing continuation is placed, the block is written and the logical record is continued in the next

block. After data transfer to the buffer, E_R is tested. If on, a control word is nlaced in

the buffer and pointers are moved to the beginning of a new logical record.

3. READ. If the buffer is empty, the next block on the file is read. If positioned at the

beginning of a logical record, a test for logical end-of-file is made. If on, return to nl is

given. Otherwise data is transferred from the buffer to the user area. If the logical end-of-

record is encountered before the requested number of words have been transmitted, M is set with

the number of words read, and return to n2 is given. If the logical record is continued to the

next block, the next block is read. After the transfer of data is complete, E_R is tested. If

on, pointers are moved to the beginning of the next logical record.

4. CLOSE. If the file was opened to read, _P is tested. If _P = l, the file is rewound.

If OP # l, the file is backspaced one block unless the file is logically between blocks. In

either case, the logical position of the file (NBL_CK and CLR) is saved in UNITAB, BCW is set to

zeroand return is made. If the file was opened to write and CBP # CLR, control words for the

last logical record are stored in the buffer. If _P = l or 3, a logical end-of-file is placed.

The current block is written on the file. If _P = I, the file is rewound, otherwise the file is

backspaced one block. The logical position of the file is saved in UNITAB, BCW is set to zero

and return is made.

5. BCKREC. If the buffer in core is empty, the file is backspaced one block, the block is

read and LLR is used to set the pointers to the last logical record in the block. If the file is

logically positioned in the middle of a logical record, pointers are reset to the beginning of a

logical record. If the file is positioned at the beginning of a logical record, pointers are

reset to the beginning of the previous logical record.

6. FWDREC. N is set to zero and E_R to l and the code in the READ portion of GIN_ is used

to position the file at the beginning of the next logical record.

3.4-17

SUBROUTINE DESCRIPTIONS

7. SKPFIL. If a forward skip is requested, logical records are skipped until a loaical

end-of-file is encountered. This is repeated until the number of requested files has been

skipped.

If a backward skip is requested, the code in the BCKREC portion of GIN_ is used to position

backwards one logical record. A test for load point is made. If yes, return is made. Otherwise,

a logical end-of-file test is made. If no, the BCKREC is repeated. If yes, a test for number

of requested files is made. If yes, return is given. Otherwise, the process is repeated.

8. E_F. If the file was not opened to write, an error message is generated. If CBP _ CLR,

control words are placed to "close" the last logical record. A logical end-of-file is placed in

the buffer. Return is made.

9. REWIND. The file is rewound, pointers are reset and return is given.

3.4.i2.5 Design Requirements

I. GIN_ is designed as an integral part of the GINO collection of routines and is to be

called only by XGIN@.

2. Since GIN@ "remembers" the position of files when they are closed, any activity on a

file outside of GINO will likely be fatal.

3. Because of the packing used in the control word, the following maximums apply:

Max. number of blocks written on one file = 2 k - 1 where k = number of bits in

the computer word - 18.

Max. buffer size = 65535 words.

4. The actual contents of the GINO buffer are machine dependent. See Section 5 for details.

3.4.12.6 Diagnostic Messages

The following system fatal messages may be issued by GINB:

3009

3029

3048

3049

3.4-18 (811172)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.12.7 Information Message

GIN_ RECOVERYATTEMPT_N DATA BL_CK EXPECTEDBL_CK NB. =

N_o =

This message is issued prior to Message 3049. GIN_ attempts to reposition the file.

If the attempt fails, Message 3049 is issued, otherwise the problem proceeds.

ACTUAL BL_CK

3.4-19

SUBROUTINE DESCRIPTIONS

3.4.13

3.4.13.1

3.4.13.2

OPNCOR (Transmit Logical Records To/From Core Storage).

Entry Points: OPNCOR, WRTCOR, RDCOR.

Purpose

To simulate the GINO WRITE and READ calls providing the capabilit_ to write logical records

of data in core storage and read logical records from core storage.

3.4.13.3 Calling Sequence

CALL OPNC_R(BLOCK)

BLOCK - An array whose dimension is sufficient to hold a logical record to be written

or read.

CALL HRTCOR(BLOCK,A,N,EOR)

BLOCK- The array where the logical record is to be written.

A - An array containing the data words to be written.

N - The number of data words to be written from A.

Ii O, additional data will be written in the logical record via subsequent
EOR - calls to WRTCOR.

O, the current call is that last call for the current logical record.

CALL RDCOR($n_,$n2,BLOCK,A,N,EOR,M)

n_ - FORTRAN statement number defining the return taken in the event an end-of-file

is encountered. This return is no__.t_tpossible from RDCOR but is provided in the

calling sequence for compatibility with READ.

n2 FORTP_ANstatement number defining the return taken in the event that the

number of words requested to be read is not available in the record. In this

case, M words are read and transmitted and the value M is returned to the user.

BLOCK- The array where the logical record is stored.

A - An array where the requested data words from the record will be stored.

N - The number of data words to be read.

3.4-20

UTILITY SUBROUTINE DESCRIPTIONS

__= O, more data is to be read from the record via subsequent calls to RDC_R.
E{_R

O, the current call is the last call for the current logical record. Any
remaining words in the logical record are to be skipped.

M - The number of words actually read in the event return to n2 is taken.

The nun_er of words available at BL_CK must be equal to (or greater than) the number of

words in the logical record]_lustwo.

_PNC_R initializes a word pointer stored at BL_CK(1) to l and has no other function. The

user may desire to perform this function himself with the statement BL_CK(1) = I. This function

must be accomplished prior to the first call to WRTC[_Ror RDC_R for each logical record.

3.4.13.4 Method

_PNC_R. BL_CK(1) is set to one and return is made.

WRTC{_R. The current pointer stored at BL_CK(1) is picked up. N words are transmitted from

A to BLOCK beginning at the current pointer plus one. If E_R = O, the new pointer is stored and

return made. Otherwise, an end-of-record flag is stored _f_BL_CK following the _'_*,__ord

written. The pointer (pointing to the flag) is stored and return made.

RDC{_R. The current pointer is picked up from BL_CK(1). Words are transmitted from BLiBCK

beginning at the current pointer plus one to A until (1) the end-of-record flag is encountered

in which case the actual nund_erof words transmitted is stored in M and RETURN 2 is given, or (2)

N words have been transmitted. If E_R = O, the new pointer is stored and return is made. If

E_R # O, BL_CK is searched until the flag is found, the pointer (pointing immediately prior

to the flag) is saved and return is made.

3.4.13.5 Design Requirements

The flag value must be unique. Its value = (-16777215) must not be one of the data words

written.

3.4-21

SUBROUTINE DESCRIPTIONS

3.4.14

3.4.14.1 Entry Point: G_PEN.

3.4.14.2 Purpose

G_PEN (Short Form for Subroutine _PEN With Header Record Processing_.

To provide a short form (without the non-standard return of subroutine _PEN)for opening a

GINO file, and to write a two-word header record if the data block is opened as output with

rewind or to skip the header record if the data block is opened as input with rewind.

3.4.14.3 Calling Sequence

CALL G_PEN(FILE,BUFFER,_PT)

where:

FILE = GINO file name (see section 1.6.4.1).

BUFFER = GINB buffer location.

_PT = any of the open options permitted by subroutine _PEN (see section 3.4.2).

3.4.14.4 Method

Open the file (subroutine @PEN). If @PT = input with rewind (0), skip the first record of

the data block. If @PT = output with rewind (I), write the two word BCD name of the data block

as returned by subroutine FNAME.

3.4.14.5 Design Requirements

The data block must exist (must not be purged). If _PT = innut with rewind (0), the first

record of the data block must be at least two words long. Subroutines used: _PEN, READ, WRITE,

FNAME, MESAGE.

3.4.14.6 Diagnostic Messages

If the data block is purged or if an end-of-file or end-of-record condition is encountered

when reading the data block, subroutine MESAGE will be called with internal messaae numbers I, 2,

or 3, respectively (external message numbers are 3001, 3002 and 3003).

3.4-22

UTILITY SUBROUTINE DESCRIPTIONS

3.4.15

3.4.15.1 Entry Point: FREAD.

3.4.15.2 Purpose

FREAD (Short Form for Subroutine READ).

To provide a short form (without the non-standard returns of subroutine READ) of reading a

GIN_ file.

3.4.15.3 Calling Sequence

CALL FREAD(FILE,BL_CK,N,EBR)

where:

FILE = GINB file name (see section 1.6.4.1).

BL_CK= array into which N items are to be read.

N = number of items to be read.

EOR = any end of record option permitted by subroutine READ (see section 3.4.5).

3.4.15.4 Method

Read the N items from FILE into BL_CK. If subroutine READ returns an end-of-file or

end-of-record condition, subroutine MESAGE is called with a fatal error condition.

3.4.15.5 Design Requirements

In addition to those imposed by READ, there must be N items remaining in the record to be

read. Subroutines used: READ, MESAGE.

3.4.15.6 Diagnostic Messages

Subroutine MESAGE may be called with internal message number 2 or 3 (external message

numbers 3002,3003).

3.4-23

SUBROUTINE DESCRIPTIONS

3.4.16 WRTTRL IWrite Trailer).

3.4.16.1 Entry Points: WRTTRL, RDTRL.

3.4.16.2 Purpose

WRTTRL will pack six words of trailer information into three words and store them in the FIAT.

RDTRL will retrieve and unpack the trailer information.

3.4.1G.3 Calling Sequence

CALL WRTTRL(FILBLK)

FILBLK(1) - GINO file name (see section 1.6.4.1).

FILBLK(2-7) - Trailer information to be stored.

CALL RDTRL(FILBLK)

FILBLK(1) - GINO file name.

FILBLK(2-7) - Storage space for trailer information.

3.4.16.4 Method

The index into the FIAT for the specified file is located in the FIST. The three packed

words are stored in or retrieved from the FIAT. The information is also stored for all files

equivalenced to the GIN_ file name. For RDTRL, if the file is purged, FILBLK(1) is set

negative. If the file is a matrix, word 7 is converted to a density (lO000 = I00% dense).

Matrix trailers can be displayed as they are written by activating DIAG 8.

3.4.16.5 Design Requirements

Each word of trailer information is assumed to be a positive integer less than 216-I.

Trailers may not be written on GINO files I01-199.

3.4.16.6 Diagnostic Messages

If the file did not exist in the FIST when WRTTRL was called, fatal error 3011 occurs.

3.4-24 (811172)

UTILITY SUBROUTII_EDESCRIPTIONS

3.4.17 FI&_J_E(File Name).

3.4.17.1 Entry Point: FNAME.

3.4.17.2 Purpose

Given a GINB file name, FNAME returns the two BCD words which describe the data block.

3.4.17.3 Calling Sequence

CALL FNAME(FILE,NAME)

FILE - GINB file name (see secticn 1.6.4.1).

NAME(2) - Storage for the two BCD words.

3.4.17.4 Method

The GINB file name is first located in the FIST. The index in the FIST is used to find

the BCD descriptors in the FIAT. If the file does not exist in the FIST, '_(I_NE)_' is returned

as the two words, ^ indicating a BCD blank.

3.4-25

SUBROUTINEDESCRIPTIONS

3.4.18

3.4.18.1 EntryPoint: CLSTAB.

3.4.18.2 Purpose

CLSTAB (Close a GIN_ File and Write a Non-zero Trailer).

To close a GINB file and generate a table trailer by callinn WRTTRL.

3.4.18.3 Calling Sequence

CALL CLSTAB(FILE,_PT)

where:

3.4.18.4

CALL CL_SE(FILE,OPT)

Generate the table control block, ITABCB:

ITABCB(1) = FILE

ITABCB(7) = 1

D_ I0 1 = 2,6

I0 ITABCB(1) : 0

CALL _4RTTRL(ITABC3).

3.4.18.5 Design Requirements

Same as those for subroutines CLOSE and WRTTRL.

FILE = GIN_ file number - integer - input.

OPT = any close option permitted by subroutineCL_SE (see section 3.4.4) - integer - input.

Method

Subroutines used: CLOSE, WRTTRL.

3.4-26

3.4.19

UTILITY SUBROUTINE DESCRIPTIONS

XRCARD (Executive Free-Field CardData ConversionRoutine)

3.4.19.1 Entry Point: XRCARD.

3.4.19.2 Purpose

To interpret NASTRAN free-field card input data as follows:

I. Identify BCD alpha and numeric data fields as they are converted and placed in

the user's buffer;

2. Flag and output special data field delimiters;

3. Convert BCD numeric fields to binary integer or binary floating point;

4. Indicate when the data extends beyond one 72 column card.

3.4.19.3 Calling Sequence

""" XRCARD_U,BU,,L,IN)_L_ r l_ T = BUF

Where:

@UTBUF

L

INBUF

= The buffer which is to contain the converted card image.

= The length of _UTBUF available to XRCARD.

= The buffer containing the card image to be converted.

3.4.19.4 Method

XRCARD's design is based on the necessity of having to function on a variety of computing

machines having a variety of computer word structures, and a variety of differences in hollerith

handling imposed by differing FgRTRAN compilers.

XRCARD analyzes the twenty hollerith words input through INBUF as follows:

Data Field Delimiters

Type A:

The following syn_ois signify the end of an alpha field or numeric field on the card. As

these syni_olsare encountered, they will be flagged and placed in the output buffer to aid the

user in identifying the data.
(LEFT PAREN

/ SLASH

= EQUAL

3.4-27

SUBROUTINE DESCRIPTIONS

Type B :

The following symbols are identical to those listed above except that the symbol is not

flagged or placed in the output buffer:

, COMHA

) RIGHT PAREN

When successive type A or tyne B delimiters are encountered, a null field indication (two BCD

blank words) is output. A null field is generated for each successive delimiter. A null field

is also generated when a type A or type B delimiter is followed by a $ indicating the end of data

condition.

Type C :

The following symbol is identical to U1e COMrIA except that no null field indication is output

when they are encountered in succession.

A BLAIIK

End of Data Indication

There are three means by which end-of-data may be specified on the card:

- The last data field ends in column 72, or is followed by blanks out through

column 72 ;

- $ is encountered, after which conments may be included out to column 80; or

- Continuation cards ending in (, /, = or , will result in a continuation flag

(0 mode word).

Format of Output Data

A mode word, N, is placed in the output buffer to distinguish between BCD data and

numeric data.

Numeric Mode Word: A new mode word is output each time a numeric field is converted

and output. (All numeric mode words are negative).

I/ = -I integer data (I data word)

= -2 floating point sinnle precision (I data word)

= -4 floating point double precision (2 data words)

N indicates the type of numeric data and where to look for the next mode word.

3.4-28 (8/1/72)

UTILITY SUBROUTINE DESCRIPTIONS

Aloha Mode Word: When processing alpha data, only one mode word is output for successive

alpha fields, i.e., an alpha mode word will never follow another aloha mode word.

N = The number of successive alpha fields encountered on the card. Each alnha #ield

consists of two 4-character computer words (left adiusted). Thus N can be used

to compute the location of the next mode word.

The type A delimiters are output as alpha data and are 'covered' by the aloha mode _ord.

Since data output in the alpha mode must consists of two words a type A delimiter will appear as:

Word l = Delimiter flag, all bits of the word are on.

Word 2 = BCD delimiter, left adjusted, followed by BCD blanks.

End-of-Data: The end-of-data flag is placed last in the output buffer and appears in place

of an expected mode word. There are two end-of-data flags:

- A word with all bits off, indicating that more data is to follow on a continuation card.

- A word with all bits on except for the sign, indicating that no more data is to _ollow

for this card type.

Sample Input Card

CARDA A=I,B=I.O,ABC/CDEFGH GOOD DATA

OOOO0000
IZ34S57L

1 11 111

22222222

3333333

444 4444

55555555

6_665G_6

77777777

)_S;888

_9 9;9_S
tZ_a:j_

OOg 0000 OOC 000;;;00000000 O00000DOOOC_OOOOOCOOO_OG
9 lg _i i_ 13 14 1S li i/ I@ _5 _ 2! ;Z 23 _4 25 _ _ _ Z_ _ 31 _ 33 _ _3 3S 373_ _ ;J _1 42 43 44 45 _ 4? +_ '_ _ _1 52 _3 _ _ _ _l _: _? £3 _

1 111 111 11 111111111111i 1 11111111111111111111111

2222 222222 222222222

3 3 3"3 3 33 3 333333

444444444444444 44444

5555555555555555 55_5

666B_666B668BBBGS _6

777777777777777771 77

B 8 8 8 8 BBBBBB888

2222222222222222

3333333 33333333

444 4 4444444444

5555553555555555

B 6_BB666_BB666

777177777771777

_888888888BBBBB8

2222222222222222

3333333333323133

4444444444444444

5555555555555_55

6B6GBBB6GBBBB_8

7777777777777777

BBBB889888B88888

£,999S99999.m99999_3_$9999999999999S99,_3999993999993998
3)_ 11 12 13 14 15 1_ I) 1 [, 1@ ,)_, Z] 22 23 _4 _5 26 Y.7 Z5. + 3C Jl _.2 3) 34 J5 __ :+ Z] 35 40 41 4) i} 14 (,: 46 4l 4B 4D 5_ S' _._ % 54 -"5 _'_ 57 _ -J F,_ 6_

O00D;D;O_ODO0000000

1111111111i111i1111

2222222222222222222

3333333333333333333

4444444444444_44444

55555555S5555555555

86_6666666BB6B_6G_

1771711111177711771

8888888888BB_B_B_

9999999999_9_S?_9

3.4-29

SUBROUTINE DESCRIPTIONS

Resulting Outpu t Buffer for IBM 7094 or Univac 1108

BCD Field I

BCD Field I

Output Delimiter I

Output Delimiter I

NOTE: For the IBM S/360 the

output buffer shown here looks
the same except that the right
two blanks shown in the BCD
fields here do not exist. For
the CDC 6600 there are an
additional four trailing blanks
in each word of a BCD field than
shown here.

+ (alpha mode word) 3

C A R D _ A

a _ A A A A

A A A A A A

A A A A A A

al I bits on

= A A A A A

-(numeric mode word) 1

integer 1

+ (alpha mode word) 2

B A A A A A

A A A A _

all bits on

= A A A A A

-(_umeric mode word) 2

single-precision 1.0

+ (alpha mode word) 5

A B C A A

A A A A A A

all bits on

/ A A A A /_,

C D E F A A

G H A A A

G _ _ D A A

A A A A A A

D A T A /_ A

A A A A A A

all bits on sign bit off

A Indicates blank.

Number of successive alpha fields

(including Type A delimiters)

End of data for this card

3.4-30

UTILITY SUBROUTINE DESCRIPTIONS

3.4.19.5 Design Requirements

An alpha field must be eight characters or less. Long alpha fields will be truncated to

eight characters.

All data must be placed in card columns 1-72.

A data field may not be split between two cards.

The specification of all numeric data fields must conform to F_RTRAN IV standards.

If an error condition is encountered, e.g., data bad, XRCARD will write a message, turn on

the N_G_ flag in /SYSTEM/, set the first word of @UTBUF = O, and make a normal return to the

calling program.

3.4-31

SUBROUTINE DESCRIPTIONS

3.4.2_

3.4.20.1 Entry Point: RCARD.

3.4.20.2 Purpose

RCARD (Fixed Field Card Data Conversion Routine).

To interpret NASTRAN fixed-field (bulk data) card input as follows:

- Identify BCD alpha and numeric data fields as they are converted and placed

in the users buffer; and

- Convert BCD numeric fields to binary integer or binary floating point.

3.4.2g.3 Calling Sequence

CALL RCARD(_UTBUF,FR_BF,NFLAG,INBUF)

Where :

_UTBUF

FRMTBF

NFLAG

INBUF

= The buffer which is to contain the converted card image.

= A buffer which contains identification flags for the converted data in _UTBUF.

= Contains number of words returned in _UTBUF.

= The buffer containing the card image to be converted.

Definition of Data Identification Flaas Placed in FRMTBF

0 = output for a blank data field.

l = output for an integer field.

2 = output for a floating ooint field.

3 = output for a BCD field.

4 = output for a double precision floating point field.

-l = error.

3.4.20.4 Method

RCARD's design is based on the necessity of having to function on a variety of computing

machines having a variety of computer word structures, and a variety of differences in Hollerith

handling imposed by differing F_RTRAN compilers.

Twenty 4-Hollerith words are received by RCARD on any particular call to RCARD. RCARD first

determines from field 1 (words 1 and 2) if the data card is a continuation card, and whether the

3.4-32

UTILITY SUBROUTINE DESCRIPTIONS

fields are single (2 words each) or double (4 words each) in length. Fields 2 through 9 (for

single field cards) or 2 through 5 (for double field cards) are then considered one at a time.

No consideration is made for the last field of any card (words 19 and 20).

3.4.20.5 Design Requirements

I. All BCD fields must begin with an alphabetic character.

2. All BCD fields are defined to be eight characters in length. Names with less than einht

characters will be filled with BCD blanks.

3. When placed in the user output buffer, each BCD field will be divided into two four-

character words (left adjusted) and stored in two successive locations of the output bu#fer.

The remainder of the words is filled with BCD blanks.

4. Special characters are not to be used as part of a BCD field except for * and + in field

1 (column I) which indicate a double field or single field (respectively) continuation card.

5. The data fields will be stored successively in the users output buffer as they are

encountered in scanning the card image from left to right. The number of output core loca-

tions required per field type varies:

a. Integer field = 1 core word (right adjusted).

b. BCD field = 2 core words.

c. Real single precision = 1 core word,

d. Real double precision = 2 core words.

e. Blank field = 1 core word (integer 0).

6. The card type field (field I) of a continuation card will not be passed alonn to the user.

Two zero words will replace the ID field in the output buffer. Thus the user can easily dis-

tinguish the difference between a continuation card and a new card type.

7. A check for bulk data card types SEQGP and SEQEP is made by RCARD. Fields 3, 5, 7, and 9 oi

these card types are processed by a special conversion.

The input within these special fields will be similar to the Dewey decimal notation and

consists of a multiple digit integer and up to three single digit sub-integers; e.g., (354.1.2)

and (267.5). The special fields will be converted to a single integer by dropping any decimal

points and appending a number of zeros equal to three minus the number of decimal points in

the original number; e.g., (354120) and (267500).

3.4-33 (311171)

SUBROUTINE DESCRIPTIONS

8. RCARD does not know the length of the users output buffer, therefore, no check is made

for exceeding the length of the buffer. However, the number of data words placed in the

output buffer will be specified in NFLAG.

9. Field I0 will not be passed along to the user.

3.4.20.6 Diagnostic Messages

Fields appearing to be incorrect to RCARD will cause a diagnostic to be written on the

system output file followed by a card format heading, a card image echo, and an underlining of

the field in question. Also, the /SYSTEM/ N_G_ flag is set .TRUE., a zero is placed in the output

buffer for the field, and a -I is placed in the format buffer for the field. RCARD wil3 print

diagnostics for all fields appearing incorrect and make a normal return.

3.4-34

UTILITY SUBROUTINE DESCRIPTIONS

3.4.21 TAPBIT (Tape Bit Test).

3.4.21.I Entry Point: TAPBIT.

3.4.21.2 Purpose

To examine the tape bit for a permanent GIN_ file to determine the existence of a physical

tape for that file.

3.4.21.3 Calling Sequence

IF (TAPBIT(FILE)) GO T_ ...

FILE is the GIN@ file name (one of 'P_L', 'BPTP, 'NPTP', 'UMF ', 'NUMF', 'PLTI',

'PLT2', 'INPT').

3.4.21.4 Method

The permanent FIST is searched and the tape bit in the corresponding FIAT entry is

examined. If the bit is on (indicating the presence of a physical tape), TAPBIT will be set

.TRUE.. Otherwise it will be set .FALSE..

3.4.21.5 Design Requirements

The type of TAPBIT must be declared L_GICAL.

3.4.21.6 Diagnostic Messages

A fatal call to MESAGE occurs if a GIN@ file name other than those listed is used.

3.4-35

SUBROUTINE DESCRIPTIONS

3.4.22 PEXIT (Problem Exit).

3.4.22.1 Entry Point: PEXIT.

3,4.22.2 Purpose

To terminate the program.

3.4.22.3 Calling Sequence

CALL PEXIT.

3.4.22.4 Method

The diagnostic message queue is checked and if not empty the message writer MSGWRT is

called. If the checkpoint flag is set a card is punched indicating the end of the restart

checkpoint dictionary. The system output buffers are flushed and then the iob is terminated.

3.4.22.5 Design Requirements

PEXIT must have access to the F_RTRAN 1/9 routines.

PEXIT should not be called by module writers. Termination should be via a call to

MESAGE (i.e., CALL MESAGE(-61,O, NAME)).

3.4-36 (8/I/72)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.23 TMT_G_ (Time-To-Go).

3.4.23.1 Entry Point: TMT_G_.

3.4.23.2 Purpose

Computes the running time remaining for this NASTRAN problem.

3.4.23.3 Calling Sequence

CALL TMT_G_ (TIME)

TIME = Remaining time in integer seconds.

3.4.23.4 Method

During NASTRAN problem initialization, one system cell is set to the problem starting time

(PSTART) while another is set to the maximum running time (I_TIME) contained on the Executive

Control Deck TIME card. TIME-T_-G_ is then found by reading the clock (N_W) and solving the

following:

TIME-T_-G_ = MXTIME - (N@W - PSTART).

The CPU clock is utilized on all machines except the iBM 7094 where none is available.

3.4-37

SUBROUTINEDESCRIPTIONS

3.4.24 PAGE (Page Headinq).

3.4.24.1 Entry Points: PAGE, PAGEI, PAGE2

3.4.24.2 Purpose

To provide a standard page heading for NASTRAN output.

3.4.24.3 Calling Sequence

CALL PAGE

CALL PAGEI

CALL PAGE2(N)

C_I_MON/SYSTEM/XXX,_TPE,SPACE(6),IPAGE,LINE,ITLINE,MAXLIN,DATE(3)

OTPE - System output unit- inteqer.

IPAGE - Current page number - increased by 1 on each call to PAGE.

LINE - Number of data lines on previous page - LINE is set to zero by PAGE.

ITLINE - Total number of lines of printout in run - ITLINE = ITLINE + LINE.

MAXLIN - Maximum number of data lines allowed - if ITLINE > MAXLIN, PEXIT will be called.

DATE(3)- Today's date: month, day, year - integer.

N - Number of lines to be written - integer - input.

C_MM_N/_UTPUT/TITLE(32),SUBTIT(32),LABEL(32),NEADI(32),HEAD2(32),HEAD3(32)

3.4.24.4 Method

PAGEwrites a standard 6 line heading from TITLE, SUBTIT, LABEL, HEAD1, HEAD2, HEAD3.

PAGE1 writes only the first 3 lines of a standard header.

PAGE2 restores the page if N lines will not fit on the current page.

3.4.24.5 Design Requirements

ITLINE must be less than MAXLIN. PAGEmust have access to the F_RTRANI/_ routines.

3.4-38

UTILITYSUBROUTINEDESCRIPTIONS

3.4.25 MESAGE(Message).

3.4.25.1 Entry Point: MESAGE.

3.4.25.2 Purpose

To queue nonfatal messages during the execution of a module; and for fatal messages give

core dump (CALL PDUMP), print the message queue (CALL MSGWRT), and call PEXIT.

3.4.25.3 Calling Sequence

CALL MESAGE(N_,PARM,N_E)

Where

N_ = Internal message nun_er. N_ positive defines the message as nonfatal;

N_ negative defines the message as fatal.

PARM = Parameter used in the printed message (usually the GIN_ file number)

NAME(2) = Two words used in the printed message (usually two BCD words containing the

name of the subroutine calling MESAGE).

3.4.25.4 Method

Non-fatal messages are queued in common block /MSGX/ until the maximum number is reached.

All non-fatal messages after this are lost. When a fatal message is encountered, it is queued

and appropriate action taken to terminate the run.

3.4.25.5 Design Requirements

The size of common block /MSGX/ limits the number of messages stored.

3.4-39 (12-I-69)

SUBROUTINE DESCRIPTIONS

3.4.2G MSGVIRT (Message Writer).

3.4.26.1 Entry Point: MSGiVRT.

3.4.26.2 Purpose

To print NASTRAN error messages on the system output file.

3.4.26.3 Calling Sequence

CALL MSG_RT

COHMON/MSGX/N,M,MSG(4,10)

where:

N - is the total number of messages to be printed.

M - maximum number of messages that can be queued by subroutine MESAGE in the array MSG.

MSG - array where message parameters are queued.

MSG(I,I) - the internal message number of the I th message.

MSG(2,1) - if IMSG(I,I)I _ 30, MSG(2,1) is a GIN_ file number.

If IMSG(I,I)I = 30, then MSG(2,1) is an internal message number and
USRMSG is called.

MSG(3,1), MSG(4,1) = parameters for the I th message.

3.4.26.4 Method

The internal message number, M(I,I), if not equal to 30 in absolute value, is used by MSGWRT to

print out the error message along with external message number, which is 3000 plus the internal

message number. If the internal message number, M(I,I), is 30, subroutine USRMSG is called.

3.4.26.5 Design Requirements

External message numbers output by MSGtVRT at present are 3001 through 3057.

MSGWRT is called only by NESAGE.

3.4-40 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIOI_S

3.4.27 USRMSG (User Message Writer).

3.4.27.1 Entry Point: USRMSG.

3.4.27.2 Purpose

To print most NASTP,AN user error messsges on the system output file.

3.4.27.3 Calling Sequence

CALL USRMSG(I)

C_MM_N/MSGX/N,M,,MSG(4,10)

where:

I - Pointer into the MSG array.

N - Not used in USRMSG.

M - Not used in USRMSG.

MSG(!,!) - If !MSG(I,I)! = 30, MSGNRT will call USRMSG.

MSG(2,I) - Used by USRMSG as the internal message number.

MSG(3,I), MSG(4,I) - Parameters for the Ith message.

3.4.27.4 Method

USRMSG will print appropriate error message along with external message number, which is

2000 plus internal message nu_er.

3.4.27.5 Design Requirements

External message numbers output by USRMSG at p,-esentare: 2001--2140.

USRMSG is called only by MSGWRT.

3.4-41 (3/I/71)

SUBROUTINEDESCRIPTIONS

3.4.28 MATDUM (Matrix Dump (Print) Routine).

3.4.28.1 Entry Point: MATDUM.

3.4.28.2 Purpose

To print a general NASTRAN matrix.

3.4.28.3 Calling Sequence

CALL MATDUM(FILEA)

FILEA - Seven-word array (matrix control block)- integer

Word

1

2

3

4

5

6

7

3.4.28.4 Method

GIN_ name

Number of columns

Number of rows

Form of matrix

Type of matrix

Maximum number of non-zero terms in any column

Undefined

The non-zero terms of each column are unpacked and printed.

If the matrix control block does not contain legal values the table printer (see section

3.4.29) is called.

3.4.28.5 Design Requirements

Open core at /TABPRX/.

MATDUM must hold the non-zero band of the matrix in this area.

Subroutine TABPRT and the FORTRAN I/_ routines must be available to MATDUM.

3.4-42

UTILITYSUBROUTINEDESCRIPTIONS

3.4.29 TABPRT (Table Printer).

3.4.29.1 Entry Point: TABPRT.

3.4.29.2 Purpose

To print any NASTRAN Data Block (especially tables).

3.4.29.3 Calling Sequence

CALL TABPRT(FILEN)

FILEN - GIN_ name of data block - integer - input.

3.4.29.4 Method

Each word is read, identified as to type -- integer, BCD, or real number and printed lO

characters per word, lO numbers per line. Note that the identification method varies from

machine to machine and is not I00% certain, i.e., certain words may be misidentified.

3.4.29.5 Design Requirements

Open core at /TABPRX/.

Double precision numbers will not be correctly interpreted on the Univac llO8.

3.4-43

SUBROUTINE DESCRIPTIONS

3.4.30

3.4.30.I Entry Points: PREL_C, LBCATE.

3.4.30.2 Purpose

PREL(_C (Position Data Block to Requested Record).

To provide a convenient means of locating data records in data blocks output by the

Input File Processor (IFP).

3.4.30.3 Calling Sequence

CALL PREL_C($n,BUFF,NAME)

n - F_RTRAN statement number defining return taken in the event NAME is not in the

FIST (i.e., data block is purged).

BUFF - An array whose dimension equals the contents of the first word of /SYSTEM/

plus one. Used as a GIN_ buffer by PREL_C and L_CATE.

NAME - GIN_ file name of data block to be read (integer).

CALL L_CATE($n,BUFF,ID,IDX)

n - F_RTRAN statement number defining return taken in the event that the requested

record (defined by ID) is not present in the data block.

BUFF - The same BUFF assigned when PRELOC was called.

ID - The address of a two-word array. The first word is the integer record identifi-

cation and the second word is the bit position in the trailer for the data block

where the presence or absence of the record is defined.

IDX - The contents of the third word of the record found will be stored in IDX

(internal card number generated by IFP).

If the data block is not purged, PREL_C will open the file and skip the header record.

2. If the requested record is not present (as determined by the appropriate trailer bit), no

I/_ activity will occur. Otherwise, LOCATE will position the file to read the first data entry of

the requested record (i.e., after the 3-word header for the record). See 2.3.2 for format of

records and trailer.

Notes:

I.

3.4-44

UTILITY SUBROUTINE DESCRIPTIONS

3. If the user does not read all data in a record and he wishes to use LOCATE to find

another record, he should use FWDREC to skip the remainder of the current record prior to calling

L_CATE.

4. For optimum efficiency in processing a data block, the user should call L_CATE in

the order in which the records appear on the data block, i.e. NASTRAN collating order.

3.4.30.4 Method

PRELOC stores NAME in BUFF(1) and then calls _PEN using BUFF(2) as the buffer address. If

the data block is purged, the non-standard return is qiven to the user. Otherwise, FWDREC is

called to skip the header record and return is made to the user. L@CATE calls RDTRL to read the

data block trailer. The bit position identified by ID(2) is tested using ANDF. If zero, the

non-standard return is given. Otherwise, three words from the file are read. If the first word

equals ID(1), IDX is set to the third word and return is made. Otherwise, the first word is saved

and the remainder of the record is skipped. The first three words of each successive record are

read and the test for iietchon first word is made until (!) an end-of-file occurs in which case

the file is rewound, the header record skipped and the process is continued, (2) a match is found

in which case IDX is set and return is given or (3) a match with the first record read is found

in which case the record is skipped, a warning message is queued and the non-standard return is

given.

3.4.30.5 Diagnostic Messages

The following messages may be issued by PREL_C:

2072

3002

3003

3.4-45

SUBROUTINE DESCRIPTIONS

3.4.31 S_RT ISort a Table).

3.4.31.1 Entry Point: S_RT.

3.4.31.2 Purpose

To sort a core contained table, or to sort a logical record from a specified input file,

on a specified keyword in each entry.

3.4.31.3 Calling Sequences

To sort a core contained table:

CALL S_RT(O,O,NWDS,KEYWD,TA3LE,NTABLE)

NWDS

KEYWD

TABLE

NTABLE - Total

NWDS).

To sort a logical record:

C_MM_N/SETUP/NFILE(6),BUF

CALL S_RT(INPFL,_UTFL,NWDS,KEYWD,BL_CK,NBL_CK)

NFILE - The first three words must be set by the user prior to CALL S@RT with the

GINB file names of three scratch files for use by S_RT. Upon return to

the user, NFILE(6) will contain the GIN_ file name of the file containing

the sorted record.

BUF If INPFL = BUTFL, then BUF points to an area in BL@CK where a GINO buffer

is available for S_RT, i.e., BL_CK(BUF) is the buffer address.

Restriction: BUF > NBL_CK.

INPFL - GINO file name of data block containing the loaical record to he sorted.

_UTFL - GINO file name of data block where the sorted record is to be written.

If OUTFL = O, the sorted record will remain on NFILE(6).

- The number of words in each entry of the table. Restriction: NWDS_ 20.

- The word positior_ within each entry on which the sort is to take nlace.

- Address where the table is stored.

number of words in the table (NTABLE must be an integral multiple of

3.4-46

UTILITY SUBROUTINE DESCRIPTIONS

NWDS

KEYWD

BL_CK

- The number of words in each entry of the record. Restriction: NWDS _ 20.

- Defined as above.

- An area in core to be used by S_RT to perform the sort phase.

NBL_CK - The number of computer words available at BL_CK.

Notes:

I. INPFL must be opened and positioned to the logical record by the user prior to

entry to S_RT. The file is not closed by S_RT.

2. If _UTFL _ O, this file must be opened and positioned by the user prior to entry to

S_RT. The file is not closed by S_RT.

3. If INPFL = _UTFL, the file is closed by SBRT, opened to write with rewind, and

the sorted logical record is written as the first logical record on the file. The file is

no___t_tclosedby S_RT.

A NPTI_(A_ _c mlwmyc rlnc_H wifh rpwinH

3.4.31.4

I.

Method

CpRE SpRT. The method used is a shuttle exchange or bubble sort which is optimum for

data which is nearly in sort. The method is as follows:

a. The key words of two successive entries are compared. If currently in sort, the

process is repeated. If not,

b. A search toward the beginning of the table is made to determine the position of the

out-of-sort entry.

c. From this position, the table is shifted one entry and the out-of-sort entry is

inserted at its proper position.

d. If the last pair of entries have not been analyzed, the process returns to step (a).

Otherwise the sort is complete.

2. FILE S_RT. One GIN_ buffer is allocated at the end of BLBCK and a scratch file is

opened to write. As many entries as can be held in the remaining core in BL_CK are read and

sorted using the algorithm above. The sorted data is written as a logical record on the scratch

file. This process is repeated until all data in the input record has been read and the sorted

3.4-47

SUBROUTINE DESCRIPTIONS

strings written on the scratch file. If only one such sort was required, the sort is complete

except for copying onto OUTFL if requested. Otherwise, an optimum distribution of sorted recores

on two scratch files is computed using a Fibonacci sequence. The sorted strings are redistributed

between two scratch files and the merge phase is entered. The two scratch files are read one

entry at a time, merged, and new sorted entries written on a third scratch file. Note that, usina

the Fibonacci sequence, one of the files containing sorted strings will have a greater number of

strings (records) than the other. On each pass in the merge nhase, the merae occurs until the

file with fewer strings is exhausted. At this point, the merged file becomes the file with the

larger number of sorted strings, the previous larger file becomes the file with the fewer strinns,

and the previous file with fewer strings (which was exhausted) becomes the file onto which the

merged strings are written. The process continues until the sort is complete. The resulting

sorted record is copied onto _UTFL if requested.

3.4.31.5 Design Requirements

The number of words per entry may not exceed 20. (A change in the dimension of the local

variable TEMP may be made to relax this restriction.)

The amount of core available at BL_CK must be at least one GIN_ buffer Dlus 2*NWDS during

the core sort phase and three GIN_ buffers plus 2*NWDS durin_ the merge nhase.

The core table or logical record to be sorted must contain an integral number of entries.

3.4.31.6 Diagnostic Messages

The following messages may be issued by S_RT:

3001

3002

3008

3.4-48

UTILITY SUBROUTINE DESCRIPTIONS

3.4.32 _MMATD(General Matrix Multiply and Transpose - Double Precision).

3.4.32.1 Entry Point: GMMATD.

3.4.32.2 Purpose

To perform any one of the following matrix operations:

[A] [B] : [C] (1)

[A]T [B] = [C] (2)

[A] [B]T = [C] (3)

[A]T [B]T = [C] (4)

[A] [B] + [D] : [C] (5)

[A]T [B] + [D] = [C] (6)

[A] [B]T + [D] = [C] (7)

[A]T [B]T+ [D] = [C] (8)

where [A], [B], [C], and [D] are real double precision matrices Tk_.....*_ "• ,,,,_,uu_,ne Is used for

small in-core matrices, in non-NASTRAN packed format, in such nmdules as SMAI, SMA2, SMA3 and

DSMGI.

3.4.32.3 Calling Sequence

CALL GMMATD(A,IR_WA,IC_LA,MTA,B,IR_WB,IC_LB,MTB,C)

A - A real double precision matrix of IR_WA rows and IC_LA columns stored in the

singly dimensioned double precision variable A.

N.B. A must be stored by rows. For example, if

1.0 4.0

[A] : 2.0 5.0 ,

.0 6.

then the matrix must be stored in the F_RTRAN double precision array A as follows:

A(1) = l.O

A(2) = 4.0

A(3) = 2.0

A(4) = 5.0

A(5) = 3.0

3.4-49

SUBROUTINE DESCRIPTIONS

A(6) = 6.0

(A is input only).

IROWA - number or rows of [A] - input.

IC_LA - number of columns of [A] - input.

MTA - Flag used to determine if [A] is to be transposed and to determine if the output

matrix, [C], is to be zeroed out; that is, to determine if a matrix product only, of the form

[A] [B] = [C], will be performed or if a product and (in effect) a sum, of the form

[A] [B] + [D] = [C], will be performed.

I. If MTA = O, then [A] is not transposed and hence either Equation (I) or (3) will

be performed, depending upon MTB.

If MTA = +I then [A] is transposed and hence either Equation (2) or (4) will be

performed, depending upon MTB.

MTA is input only.

2. If MTA is less than zero, [C] is not zeroed out. Hence the routine, in this

case, computes

[a] [B] + [D] = [C] if MTA = -2 and MTB = O.

[a] [B] T + [D] = [C] if MTA = -2 and MTB : I.

[A] T [E] + [D] = [C] if MTA = -I and MTB = Oo

[a] T [L] T + [D] = [C] if MTA : -I and MTB = I.

(see MTB definition below)

where D is a real double precision matrix of IR_WA rows and IC_LB columns if

MTA = -2 and D is IC_LA x IC_LB if MTA = -!. D must be stored row-wise at the

location of C by the calling program.

B - real double precision matrix, stored row-wise.

IR_WB - the number or rows of [B] - input.

IC_LB - the number of columns of [B] - input.

MIB - Transpose flag for [B]. If MTB = O, [B] is not transposed.

transposed.

See comments for A above - input.

If MTB = I, [B] is

Note that MTA and MTB are independent and that only MTA controls whether or not

3.4-50 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

[C] will be zeroed out. MTB is input only.

C - real double precision matrix. Input (if MTA < O) and output.

Examples on the use of the routine:

I. If [A] is 3x3 and [B] is 3xl and [C] = [A] [B] is desired then:

CALL GI_TD(A,3,3,0,B,3,1,O,C). [C] is 3xl.

2. If [A] is nxl and [B] is nxl and the dot product is desired ([A]T [B]) then:

CALL G_4ATD(A,N,I,I,B,N,I,O,C). [C] is Ixl, a scalar.

3. Compute [C] = ([X] [y])T where [X] is 5x4 and [Y] is 4x7:

CALL GMMATD(Y,4,7,I,X,5,4,I,C). C is 7x5.

4. Compute D : [A] [B]T + [C] where [A], [B] and [C] are 3x3:

DO iO I = l, 9

in niT)= r(_)

CALL G_TD(A,3,3,-2,B,3,3,I,D).

3.4.32.4 Method

The first phase of the subroutine sets up integer loop limits which are functions of the two

transpose flags. If MTA is not less than zero, the C array is zeroed out. Then the classical

mathematical definitions of the above matrix products are carried out.

3.4.32.5 Design Requirements

The orders of the [A] and the [B] matrices in combination with the transpose flags must define

a conformable matrix product.

3.4.32.6 Diagnostic Messages

The subroutine examines the tranpose flags in combination with the orders of the matrices to

make sure that a conformable matrix product is defined by this input data. This test clearly is

made for purposes of calling routine checkout only. No tests are made, nor can they be made, to

insure that the calling routine has provided sufficient storage for arrays. If a conformable

matrix product is not defined by the input arguments, fatal error message 2021 is printed.

3.4-51 (12-I-69)

SUBROUTINE DESCRIPTIONS

3.4.33

3.4.33.1

3.4.33.2 Purpose

To perform any

where [A], [B], [D]

in-core matrices in

routine PREMAT.

GMMATS (General Matrix Multiply and Transpose - Sinqle Precision).

Entry Point: GMMATS.

one of the following matrix operations:

[a] [B] : [C] (I)

[A] T [B] = [C] (2)

[a] [B] T : [C] ($)

[A] T [B] T = [C] (4)

[A] [B] + [D] : [C] (5)

[a] T [B] + [D] = [C] (6)

[A] [B] T + [O] = [C] (7)

[a] T [B] T + [D] = [C] (8)

and [C] are real single precision matrices. This routine is used for small

non-NASTP_AN packed format in such modules as SDR2 and PLA3 and in the utility

3.4.33.3 Calling Sequence

CALL GMMATS(A,IR@WA,IC_LA,MTA,B,IR@WB,ICOLB,MTB,C)

This routine is exactly the same as subroutine GMMATD except that GMMATD operates on real

double precision matrices, while GMMATS operates on real single precision matrices. See sub-

routine description for GI,_ATD (see section 3.4.32) for details on subroutine arguments, method,

design requirements and diagnostic messages.

3.4-52

UTILITY SUBROUTINE DESCRIPTIONS

3.4.34

3.4.34.1 Entry Point:

3.4.34.2 Purpose

INVERD (Double Precision In Core Inverse Routine).

INVERD.

To compute the inverse of a real double precision matrix [A] and on option to solve the

matrix equation [A] [X] = [B]. This routine is used to invert small in-core double precision

matrices in non-NASTRAN packed format and is used as a utility routine in such mndules as SMAI,

SMA3 and DS_IGI.

3.4.34.3 Calling Sequence

CALL INVERD (NDIM,A,N,B,M,DETERM,ISING,INDEX)

NDIM - The actual row dimension of the doubly subscripted arrays A and B in the

calling program - integer - input.

A - The square matrix to be inverted. [A] -I upon return from INVERD is stored at

A. Double precision - input and output

N - The order of the matrix being inverted (the size of the upper left hand corner

actually being inverted). N(NDIM - integer - input.

B - The column(s) of constants in the above equation. If [A] is to be inverted,

then B is a dummy argument. The solution matrix [X] is returned at B. Double

precision - input and output.

- The number of columns of constants. If M _ O, [A] -l is computed - integer -M

input.

DETERM - The determinant of [A].

ISING - Singularity indicator.

INDEX

Double precision - output.

If [A] is non-singular, ISlNG is set to I; if [A] is

singular, ISING is set to 2 - integer - output.

Doubly subscripted array of row dimension N and column dimension 3 used for the

row and column interchanges - integer - internal working storage.

3.4.34.4 Method

The classical Gauss-Jordan method with full row and column interchanges is used.

arithmetic operations are double precision.

All

3.4-53

SUBROUTINE DESCRIPTIONS

3.4.35

3.4.35.1

3.4.35.2

INVERS (Single Precision In Core Inverse Routine).

Entry Point: INVERS.

Purpose

To compute the inverse of a real single precision matrix [A] and on option to solve the

matrix equation [A] [X] = [B]. This routine is used to invert small in-core single precision

matrices in non-NASTRAN packed format and is used as a utility routine in such modules as SDR2.

3.4.35.3 Calling Sequence

CALL INVERS (NDIM,A,N,B,M,DETERM, ISlNG,INDEX)

This routine is exactly the same as subroutine INVERD except that INVERD operates on real

double precision matrices, while INVERS operates on real single precision matrices. All arith-

metic operations are single precision. DETERM is real single precision. See subroutine descrip-

tion for INVERD (see section 3.4.34) for details on subroutine arguments and method.

3.4-54

UTILITY SUBROUTINE DESCRIPTIONS

3.4.36

3.4.36.1

3.4.36.2

PREt4AT(14aterialProperty Utility).

Entry Points: PRE_,IAT,I_AT.

Purpose

To provide a utility routine for obtaininn material properties used by structural element

subroutines. The first entry point, PRESET, is called once by a module for initialization purposes,

and then 14ATcan be called by tke module's element subroutines repeatedly to fetch required

material properties.

3.4.36.3 Calling Sequence

CALL PREMAT (Z,ZZ,BFR,NIMAT,N_AT,MPTF,DITF)

Z - Integer array of open core given to the subroutine to store the material proper-

ties and the direct input tables - input and output.

ZZ Sa_address as Z. Used as real in this routine - input and output.

BFR - A GINO buffer (plus one ceil) used by subroutine PRELOC as a buffer - input only.

NIMAT - The length of open core, the Z array, given to PREMAT and MAT - integer -

input only.

N2MAT - The length of open core used by PREMAT and MAT - integer - output only.

MPTF - GINB file number of the Material Properties Table (ilPT)data block - input only.

DITF - GINO file number of the Direct Input Tables data block. If DITF is negative,

the routine assumes that the calling module is a Piecewise Linear Analysis

module which implies material properties cannot be temperature dependent and

that MATSI cards are to be read.

PREMAT uses the lOth word of /SYSTEM/ which is the temperature set identification number for

material properties chosen by the user in his Case Control Deck. PREMAT also uses /NA_ES/ for

various GIN_ options.

3.4-55

SUBROUTINE DESCRIPTIONS

CALL MAT (ELE;41D)

ELZMID - Integer element identification number; used only for diagnostic messages

(see below) - input and output.

C@HMON/HATIN/_TID,INFLAG,TEMP,PLAARG,SINTH,C_STH

MATID - Material property identification number - integer - input.

INFLAG - Integer input flag which determines which sets of input data cards, MAT1, MAT2,

or MAT3, the routine will search in order to find rIATID. Also INFLAG deter-

mines in what format the output _ill be placed in the MAT_UT common block.

Currently INFLAG may assume the values 1 through 7 defined as follows:

INFLAG = 1 -- The material properties corresnonding to the MATID are outnut in

"MAT1" or isotropic material format (see /F!AT_UT/ below). One dimensional

elements such as R@D, BAR, SHEAR etc. require isotropic materials. If the

MATID is not found among all the MAT1 material cards read by PREMAT, a fatal

error occurs.

INFLAG = 2 -- If INFLAG = 2, the material properties corresponding to the

MATID are output in "MAT2" or anisotropic material format. Two-dimensional

elements such as TRMEM, TRIAl, QDPLT, QUADI etc. may use isotropic or

anisotropic materials. First, the routine will try to find the MATID among

the MAT1 cards. If it is found among the MAT1 cards, the variables E (modulus

of elasticity), v (Poisson's ratio) and G (shear modulus) are used to construct

the 3x3 symmetric matrix [Gel needed by two-dimensional elements, and the

matrix is stored in /MATOUT/:

[G el

T_ vE 01-v 2

_E E
l-v 2 1 -v 2 0

0 0 G

3.4-56

UTILITY SUBROUTINE DESCRIPTIONS

If the MATID is not found among the MAT1 cards, the _AT2 cards are searched.

If the MATID is not found among the MAT2 cards a fatal error occurs. If it is

found, [Gm], the 3x3 symmetric matrix input on the MAT2 card, is transformed

by the matrix equation [Ge] = [u]T[Gm] [U] and {_} : [V] {_m }, where {_m } is

the temperature expansion coefficient vector innut on a MAT2 card. [U] and [V]

are functions of sin 8 and cos e (see SINTH and C_STH below).

[u]

OS O sin 2 o cos O sin 0 7Jin2 O cos2 O -cos e sin e

2 cos o sin o 2 cos O sin O (cos2 O-sin2 O

Iv]

cos2e sin2e -cose sine

sin2e cos2e cose sine

2 cosO sine -2 cose sine (cos20 - sin2e)

INFLAG = 3 -- If INFLAG = 3, it implies the inverse of the symmetric 2x2

transverse shear matrix J will be stored in locations 16, 17 and 18 of

/MATeUT/. There are two cases: (I) the current MATID is not equal to the

most recent MATID, MATIDe, and (2) the current MATID is equal to the most

recent MATID.

I. If the current MATID is not equal to the most recent material identi#i •

cation number (MATIDe), the MAT1 cards are searched. If the MATID is

found among the MAT1 cards, then locations 16,17 and 18 of /MATOUT/ are

set to G, 0.0 and G respectively, where G is the shear modulus. If the

MATID is not found among the MAT1 cards, the MAT2 cards are searched.

If the MATID is not found among the MAT2 cards, a fatal error occurs. If

it is found among the MAT2 cards, locations 16, 17 and 18 are set to zero.

2. The current MATID is equal to the most recent MATID. If INFLG_, the

most recent INFLAG is not 2, this is the same as case (I). If it is 2,

then (a) if the MATID was found on a MAT1 card, locations 16, 17 and 18

3.4-57 (3/I/71)

SUBROUTINE DESCRIPTIONS

are set to G, 0.0 and G respectively; or (b) if the MATID was found on a

MAT2 card, locations 16, 17 and 18 are set to 0.0.

INFLAG = 4 -- If INFLAG is 4, this implies that only the density of the

material, RH_, will be returned in /MAT_UT/ and this in the first location.

The MATID can be either on a MAT1 or MAT2 card. If the MATID cannot be _ound

among all MAT1 and MAT2 cards, a fatal error occurs.

INFLAG = 5 -- INFLAG = 5 is reserved for use only by module PLAI. This option

determines if the MATID is such that E, the modulus of elasticity, is defined

as stress dependent by MATSl and TABLESl cards. If it is stress dependent,

INDSTR, equivalenced to the first word of /MAT_UT/, is set to +I. If not stress

dependent, INDSTR is set to O. Only MAT1 cards are admissible for INFLAG = 5.

INFLAG = 6 -- INFLAG = 6 is reserved for use by modules PLA3 and PLA4. The

fourth word of /MATIN/, PLAARG (see below), is strain and is used as the inde-

pendent variable in a table look-up for stress, which is stored in the first

word of /MAT_UT/. Only MAT1 cards are searched to match the input MATID.

INFLAG = 7 -- INFLAG 7 implies that the material properties corresponding to

the MATID will be output in MAT3 or orthotropic material format. Currently

only the axisymmetric elements TRIARG, TRAPRG and TORDRG use this option. If

the r_TID is found in the MAT1 set, the data are stored in MAT3 format. If not

found in the MAT1 set, the MAT3 set is searched. If not found here, a fatal

error exists.

INFLAG = 8 -- INFLAG = 8 is used only by two-dimensional element subroutines

in modules PLA3 and PLA4. The fourth word of /MATIN/, PLAARG (see below), is

stress (_) and is used as the ordinate in an inverse interpolation table look-

up to obtain the abscissa which is strain (_).

If either: a) the ordinate is in the range of the piecewise linear function

defined by the table on a TABLES1 bulk data card, or b) the ordinate is

greater than the maximum (which is also the last) ordinate in the table but

the slope of the line segment joining the last two points of the table is

nonzero, then the second word of /MAT_UT/ is set to zero and the abscissa,

3.4-58 (311171)

UTILITY SUBROUTINE DESCRIPTIONS

obtained by inverse linear interpolation or extrapolation, is stored in the

first word of /MAT_UT/. If either: a) the ordinate is less than the minimum

(which is also the first) ordinate i_ the table, or b) the ordinate is

greater than the maximum ordinate in the table and the slope of the line

segment joining the last two points of the table is zero, then the integer

"l" is stored in the second word of /MAT_UT/ (and the first word of /MAT_UT/

is set to zero). Only MATI cards are searched to match the input MATID.

TEMP - Average element temperature. Used as the independent variable in a table look-

up when it is determined that a material property is temperature dependent.

Not used when INFLAG = 5 or 6.

PLAARG - Element strain. Used as the independent variable in a table look-up when E,

the modulus of elasticity, is defined as the first derivative of a strain-stress

curve. Used only in the Piecewise Linear Analysis Rigid Format and only by

modules PLA3 and PLA4.

SINTH - Sine of the material property orientation angle. Used only when INFLAG = 2

and the MATID is found among the MAT2 cards. Used to construct the [U] matrix

referenced above.

C_STH - Cosine of the material property orientation angle. The comments on SINTH,

above, also apply here.

C_MM_N/MAT_UT/ - (Output Common Block). Length 20 words. Depending upon the values of INFLAG,

the output common block is defined variously as follows:

3.4-59 (311171)

SUBROUTINEDESCRIPTIONS

I. FIAT1Fomlat (INFLAG : I)

21

Word

l E

2 G

3

4 p

5

6 T O

7 ge

8 at

9 oc

I0 a
s

ll-20

_T2 Format (INFLAG = 2)

Word Symbol

l Gil

2 Gl2

3 Gl3

4 G22

5 G23 1
6 G33

7 RH_Y

8 ALPHI

9 ALPH2

lO ALPHI2

II TOY

12 GEY

13 SIGTY

14 SIGCY

15 SIGSY

16-20

Definition

Young's modulus (modulus of elasticity)

Shear Modulus

Poisson's ratio

Density

Thermal expansion coefficient

Thermal expansion reference temperature

Structural element damping coefficient

Stress limit for tension

Stress limit for compression

Stress limit for shear

Undefined

Definition

The 3x3 symmetric material

property matYix

Density

Thermal expansion coefficient vector

Thermal expansion reference temperature

Structural element damping coefficient

Stress limit for tension

Stress limit for compression

Stress limit for shear

Undefined

3.4-60 (3/I/71)

UTILITYSUBROUTINEDESCRIPTIONS

3. Transverse Shear Inverse Matrix (INFLAG = 3)

Word

1-15

16

17

18

19-20

S__ Definition

Jll

Jl2

J22

4. RH@ Only Format (INFLAG = 4)

Word S_jnnbol

1 RHO

2-20

5. PLAI Use Onl_ (INFLAG = 5)

6t

Word Symbol

1 INDSTR

2-20

Stress Functional Value (INFLAG = 6)

Word Sy_ol

l PLAANS

2-20

Unchanged

The 2x2 symmetric inverse of the

transverse shear matrix

Undefined

Definition

Density

Undefined

Definition

Stress dependent flag

Undefined

Definition

Value of stress (_) as a function of
(strain)

Undefined

3.4-61 (3/I/71)

SUBROUTINEDESCRIPTIONS

7. MAT3 Format (INFLAG = 7)

Word Symbol

1 EX3

2 EY3

3 EZ3

4 NUXY3

5 NUYZ3i

6 NUZX3

7 RH_3

8 GXY3

9 GYZ3

I0 GZX3

II AX3

12 AY3

13 AZ3

14 TREF3

15 GE3

16-20

8,

Definition

Young's Moduli x, y and z

directions

Poisson's ratios. Coupled strain

ratios in the xy, yz, and zx

directions

Density

Shear moduli

Thermal expansion coefficients

Thermal expansion reference temperature

Structural element damping coefficient

Undefined

Strain Functional Value (INFLAG : 8)

Word Symbol

1 PLANS

2 ICELL2

Definition

Value of strain (_) as an inverse
function of stress (0)

I_ 0 if the input stress is in the

range of the function
l if the input stress is outside

the range of the function

3-20 Undefined

3.4.36.4 Method

I. PREMAT: All the NLATI,_T2 and MAT3 cards are read from the MPT data block into open

core so that each card is assigned l + 3*N words of core where N, a function of the card type, is

the number of material property data items on that card type. The first word is the material iden-

3.4-62 (311171)

UTILITYSUBROUTINEDESCRIPTIONS

tification numberandeachmaterialpropertyis allocated3 words: the first the input material

property;theseconda table (function) numberwhichgivesthis materialpropertyasa functionof

temperature;the third a table nu_erwhichgivesthis materialpropertyas a function of stress.

Initially words2 and3 areset to zero. Althoughthe third wordis currently usedonly for MATI

cardsandfor E, the modulusof elasticity, onthat card, future developmentmaymakeuseof a

moregeneralapplicationof stress dependentmaterialproperties. If thereare notemperature

dependentmaterialpropertiesfor a non-PiecewiseLinearAnalysisproblem,PREMATis wrappedup

anda RETURNto the calling routine is executed.

Fora non-PiecewiseLinearAnalysisproblemfor whicha temperatureset for materialproper-

ties wasselectedin the user'sCaseControlDeck,all MAI-FI,MATT2andMATT3cardsare readinto

opencorefromthe MPTdatablock. Fora PiecewiseLinearAnalysisproblemMATSIcardsare read

into opencore fromthe HPT. A sorted list, with duplicates discarded, of the table numbers refer-

enced on these cards is constructed in open core. This table nun_er list is constructed so that

every referenced table has eleven locations allocated to it. These e]even]ocations are used as a

dictionary for the tables. The contents are: the table number (word l); the table type 1,2,3, or

4 (word 2); pointers to the first and last entries in the table (words 3 and 4); parameters from

the TABLE card (words 5 through ll). The DIT data block is then read. For each table read, it is

determined by scanning the table number list whether or not the table is required for problem

solution. If it is required, the table is read into open core and the dictionary entry for the

table is completed. For a required table which is a type 4 (polynomial) table, the functional

values of the polynomial at the end points of the interval of the real line over which the

polynomial is defined are calculated by an "internal subroutine" and stored in the table

dictionary. If the table is not required, it is read until an end-of-table indicator is sensed.

This process continues until all tables of the set TABLEMI, TABLEM2, TABLEM3 and TABLEM4 or of

the set TABLESI, are exhausted. When all referenced tables have been read into core, PREMAT is

wrapped up and a return is generated.

2. MAT: The basic logic of the MAT routine is straightforward. Eight types of table look-

ups, described above for INFLAG = l, 2, 3, 4, 5, 6, 7 and 8 are supported. A computed-go-to on

INFLAG is executed and each option is carried out as described above. "Internal subroutines"

which are entered via F_RTRAN ASSIGN and G_ T@ statements and return to their correct "calling"

locations via ASSIGNED G_ T_'s are used liberally by MAT. It should be noted that each time MAT

3.4-63 (3/1/71)

UTILITY SUBROUTINE DESCRIPTIONS

is called, MATID, INFLAG and other applicable input items, are saved. On the next call if the

input is identical with the input of the previous call, nothing is stored in /MAT_UT/. Hence,

the calling routine should use /MAT_UT/ as a "read-only data set".

3.4.36.5 Design Requirements

Subroutine GMMATS is the only non-root segment subroutine used by this routine. There are no

other special requirements.

3.4.36.6 Diagnostic Messages

The following messages can be output via PREMAT and/or MAT: 3008, 2017, 2018, 201g, 2041,

2042, 2103, 2112, 2113, 2114, 2115, 2116, and 2117.

3.4-63a (3/1/71)

SUBROUTINE DESCRIPTIONS

3.4.37

3.4.37.1 Entry Points: PRETRD, TP_ANSD

3.4.37.2 Purpose

PRETRD (Utility for Modules Which Use the CSTM Data Block - Double Precision Version).

A utility routine for modules which use the CSTM (Coordinate System Transformation _atrices)

data block, TRANSD generates a real double precision 3x3 direction cosine matrix which mans a

vector from a local coordinate system to basic coordinates. PRETRD sets UD eventual calls to

TP_ANSD. For a module to use TRANSD a call to PRETRD is made once and only once.

3.4.37.3 Calling Sequence

CALL PRETRD(CSTM,NCSTM)

CSTM = array of coordinate system transformation matrices (see data block descrintion

for CSTM, section 2.3) - mixed - input.

NCSTM = length of the CSTM array. NCSTM = 14*the number of coordinate systems in the

CSTM data block - integer - input.

CALL TRANSD(ECPT,TA)

ECPT = array of length 4. The first word is an inteaer coordinate system identification

number and the next 3 words are the components of a vector in basic coordinates -

input only.

TA = real double precision 3x3 direction cosine matrix which maps a vector _rom the

local coordinate system designated by ECPT(1) to basic coordinates - output.

3.4.37.4 Method

The CSTM array is searched to find a coordinate system transformation identification number

that matches ECPT(1). If the coordinate system is rectangular, the 3x3 matrix, call it T, which

is in words 6 through 14 of the CSTM blocks, is stored in TA and a RETURN is generated. If the

coordinate system is basic, the identity matrix is returned. If the coordinate system is spherical

or cylindrical, the [T] matrix defines the rectangular system from which the angles are defined.

In these cases calculate:

X

y = [T] T E - V

z

where E is the input vector stured at ECPT(2) arid V is the transl_tion offset vector in basic

UTILITY SUBROUTINE DESCRIPTIONS

coordinates found in the CSTM block in words 3, 4 and 5; and

r = V_z+ y2

If the coordinate system is cylindrical define:

x/r -y/r !IITs1 = L_/r x/ro

If the coordinate system is spherical define:

Then [TA]

3.4.37.5

= _/x2 + y2 + Z2'

FXI% X__{Z _yl_
r_

[T_] = Jy/;L y.__zr_ x/rI

Lz/_ -r_ o.oJ

= [T][T_] is computed and the subroutine returns to the calling program.

Design Requirements

The routine is designed so that a module which uses the CSTM data block can have a utility

routine to fetch a coordinate system transformation matrix. Typically, a module driver will

attempt to open the file which contains the CSDI data block. If the data block is not Purged,

the module will read the entire data block into open core, close the file and call PRETRD to

transmit the address of the array and the length of the array. Once this initialization call

has been made, TRANSD may be called in the module as many times as necessary. The routine does

not perform any I/_ operations. The routine assumes the format of the CSTM data block, as outlined

in the Data Block Description for the CST)I(section 2.3 of the Programmer's Manual) is correct, and

no numerical checks are made.

3.4.37.6 Diagnostic messages

If the coordinate system identification number transmitted via ECPT(1) can not be found in

the CSTM array user fatal message 2025 occurs. The user should check coordinate system numbers

on GRID bulk data cards against those defined on C_RDIC, C_RDIR, etc., bulk data cards to insure

that there are no undefined coordinate systems.

3.4-65 (8/I/72)

SUBROUTINE DESCRIPTIONS

3.4.38

3.4.38.1

3.4.38.2

PRETRS IUtility for Modules Which Use the CSTM Data Block - Single Precision Version).

Entry Points: PRETRS, TRANSS.

Purpose

A utility routine for modules which use the CSTM (Coordinate System Transformation Matrices)

data block, TRANSS generates a real single precision 3x3 direction cosine matrix which maps a

vector from a local coordinate system to basic coordinates. PRETRS sets up eventual calls to

TP_ANSS. For a module to use TRANSS a call to PRETRS is made once and only once.

3.4.38.3 Calling Sequence

CALL PRETRS(CSTM,NCSTM)

CALL T_NSS(ECPT,TA)

This routine is exactly the same as subroutine PRETRD (see section 3.4.37) and TRANSD

except that TRANSD, an entry point, returns a real double precision matrix TA and uses double

precision arithmetic, while TRANSS returns a real sinqle precision matrix TA and uses sinnle

precision arithmetic. See subroutine description for PRETRD for details on subroutine arguments,

method, design requirements and diagnostic messaoes.

3.4-66

UTILITYSUBROUTINEDESCRIPTIONS

3.4.39 PRETAB (Table Look-Up).

3.4.39.1 Entry Points: PRETAB, TAB.

3.4.39.2 Purpose

To read tables (functions) from the data block DIT, Direct Input Tables, into core and to

set up table dictionaries which are subsequently used when the calling routine requests a

functional value from a table via a call to the entry point TAB. The routine is designed so

that PRETAB is called once and only once by a module and so that TAB may be called many times as

a table look-up routine.

3.4.39.3 Calling Sequence

CALL PRETAB(DITF,Z,IZ,BUF,LCRGVN,LCUSED,TABN_L,LIST)

DITF - GINB file number of the Direct Input Tables data block - integer - input.

Z - Array of core given to the subroutine as working storage - real - input and

output.

!Z - Same address as Z. Used as integer in this routine.

BUF - A GINB buffer (plus one cell) used by subroutine PREL_C - input.

LCRGVN - The length of Z array, given to PRETAB and TAB - integer - input.

LCUSED - The number of cells of core used by PRETAB - integer - output.

TABN_L - List of table numbers that the calling routine will be referencing via TAB

calls. TABN_L(1) = N is the number of tables to be referenced. TABN_L(2),

.... TABN_L(N +l) contain the table numbers. Note that 0 is an admissible

table number. Table 0 defines a function which is identically zero for

all values of the independent variable - integer - input.

LIST - Array of control words for subroutine L_CATE and table types. LIST(1) = M

is the number of triples which follow in the list. The first two words of

each triple are the subroutine L_CATE control words for the particular table

being referenced and the third word is the table type: l, 2, 3 or 4 - integer -

input.

3.4-67

SUBROUTINEDESCRIPTIONS

CALLTAB(TABID,X,Y)

TABIL- Tablenumber- integer- input.

X - Abscissafor table numberTABIDat whichthe functional valueis desired- real -

input.

Y - Functionalvalue(ordinate)of abscissaXfor table numberTABID- real - output.

3.4.39.4 Method

PRETAB:Foreachtable in the TABNOLlist an II wordtable dictionary entry is definedin

opencore. Thefirst wordin eachentry is the table numberobtainedfromthe TABNOLlist. Then

the DITdatablockis read. Foreachentryof the DIT, it is determinedwhetheror not this table

numberis in the TABN_Llist. If it is not, thenthe table is readserially until anend-of-table

indicator is sensed. If it is a table called for in the TABN_Llist, the programsetswords2 and

3 of the table dictionary, the table type (1,2,3 or 4) andthe pointer to the Ist entry in the

table respectively. Thetable is thenreadinto core,andthe 4th wordof the table dictionary,

the pointer to the last entry in the table, is set. Words5 throughII of the dictionary, the

table parameters,areset. If the table type is 4, indicating a polynomial,the functional values

of the polynomialat the endpointsof the interval of the real line overwhichthe polynomialis

definedarecalculated. After the tables for anentry in the LISTarrayhavebeenexhausted,a

checkis madeto determineif all tablesin the TABN_Llist havebeenfound(after eachtable is

foundthe table numberis set negative). If all tableshavebeenfound,the table numbersin

TABN_Lareset to their original positive status andthe routine is wrappedup. If all tables

havenot beenfound,the nextclassof table cards,definedby the next triple in the LISTarray,

are locatedin the DITdatablockandthe processis repeated.

TAB: lhe table dictionary is searcheduntil a matchis foundwith the input argumentTABID.

Thetable type (l, 2, 3 or 4) is determined,the (functional) argumentis computedafter a 4-way

branchon table type, anda transfer is madeto either the "internal subroutire"whichperforms

linear interpolation--if the table typeis l, 2 or 3--or the "internal subroutine"whichperforms

polynomialevaluation--if the table typeis 4.

3.4-68

UTILITY SUBROUTINE DESCRIPTIONS

3.4.39.5 Design Requirements

DIT must not be purged. Enough open core must be made available to construct the table

dictionaries and to contain all referenced tables in core. All table numbers must be unique.

All table numbers input via the TABNBL array must be found in the DIT data block. A table

number referenced by the TABID argument of TAB must have been referenced previously in the TABN_L

array.

3.4.39.6 Diagnostic Messages

The following diagnostic messages may appear:

3008

2088

2089

2090

3.4-69

3.4.40 AXIS IDraw an Axis on a Plot).

3.4.40.1 Entry Point: AXIS.

3.4.40.2 Purpose

SUBROUTINE DESCRIPTIONS

To draw an x or y axis on a plotter.

3.4.40.3 Calling Sequence

CALL AXIS(XI,YI,X2,Y2,PEN,_PT)

C_MM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

where:

XI,YL : starting point of the axis line - real - input.

X2,Y2 = terminal point of the axis line - real - input.

PEN = pen number or line density to be used (its meaning depends on the plotter)

- integer - input.

-! to initiate the line mode.

_PT = + to terminate a series of plot oommands. - integer - input

to draw an axis.

/PLTDAT/

M_DEL = plotter model number - integer - input.

PL_TER = plotter number (i) - integer - input.

NPENS : largest number of pens or maximum density for plotter i - integer - input.

3.4.40.4 Method

This subroutine calls LINE or AXISi, depending on whether the plotter has available a single

command used for drawing an axis. At this writing, only plotter 3 has a special axis command.

If _PT _ O, all other arguments are ignored, and LINE or AXISi is called. Otherwise,

alternate pen number (PENX) is calculated modulo NPENS and is used as the pen number passed to

3.4-70 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

LINE or AXISi, as follows:

PENX = PEN - NPENS * ((PEN-I)/NPENS)

3.4.40.5 Design Requirements

Generally, AXIS or LINE should be called with _PT = -l before axes are generated, even though

it is not necessary to specifically put all plotters in the line mode (e.g., plotter 3). Once

this is done, it need not be repeated unless the plotter has been put into some other mode (e.g.,

the typing mode).

Subroutines used: LINE, AXISi.

3.4-71 (12-I-69)

SUBROUTINEDESCRIPTIONS

3.4.41 AXlSi (Axis Routine for Plotter i).

3.4.41.I Entry Point: AXISi.

3.4.41.2 Purpose

To set up a plot command to draw an x or y axis on plotter i.

3.4.41.3 Calling Sequence

CALL AXISi(XI,YI,X2,Y2,PEN,_PT)

C_MM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

where:

Xl,Yl = starting point of the axis line - real - input.

X2,Y2 = terminal point of the axis line - real - input.

PEN = pen number or line density to be used (meaning depends on plotter)- integer -

input.

-i to initiate the line mode
_PT = +, to terminate a series of plot commands -integer - input.

oto draw an axis

/PLTDAT/

XYMIN - minimum x and y values of the region permitted on plotter i - real - input.

XYMAX = maximum x and y values of the region permitted on plotter i - real - input.

ORIGIN = location of the lower left corner of the plotter relative to its true physical

origin - real - input.

3.4.41.4 Method

Taking into account the true origin of the plotter, the plot command is generated.

3.4-72 (12-I-69)

SUBROUTINEDESCRIPTIONS

3.4.41.5 DesignRequirements

Subroutineused: WPLTi.

3.4-72a(12-I-69)

UTILITYSUBROUTINEDESCRIPTIONS

3.4.42 SKPFRM (Skip a Variable Number of Frames).

3.4.42.1 Entry Point: SKPFRM.

3.4.42.2 Purpose

Tc skip a variable number of frames, if appropriate to the plotter.

3.4.42.3 Calling Sequence

CALL SKPFRM (BFRAMS)

C_MM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

where:

BFRAMS = number of frames to be skipped - integer - input.

/PLTDAT/

M_DEL = plotter model number - integer - input.

PL_TER = plotter number - integer - input.

REG = plot region parameters - real - input.

AXYMAX = size of the paper (x,y) used, less the borders, in plotter units - real - input.

EDGE = size of the borders (x,y) in plotter units - real - input.

CAMERA = currently active camera - integer - input.

_RIGIN = location (x,y) of the lower left corner of the plotter relative to its true

physical origin - real - input.

3.4.42.4 Method

For plotters 3 and 9, the specified number of frames (BFRAMS) are skipped. For plotters 4

to 7, the remainder of the current plot is skipped, and another half plot is also skipped. For

plotters l, 2 and 4, nothing is done due to the absence of any automatic method of skipping blank

paper.

3.4-73(12-1-69)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.42.5 Design Requirements

Subroutines used: LINE, WPLTi.

3.4-73a (12-I-69)

3.4.43

3.4.43.1

3.4.43.2

SUBROUTINEDESCRIPTIONS

SELCAM ITo Initiate a New Plot).

Entry Point: SELCAM.

Purpose

To select a camera and/or to generate a setup record for a new plot.

3.4.43.3 Calling Sequence

CALL SELCAM (CAMERA,PLTNUM,_PT)

C_MM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

where:

CAMERA = camera number to be selected (if appropriate) - integer - input.

PLTNUM = plot number - integer - input.

OPT _ 0 = if the camera is to be selected when appropriate, and nothing is to be done

when not appropriate - integer - input.

/PLTDAT/

M_DEL

PL_TER

XYMAX

EDGE

CAMNUM

_RIGIN

3.4.43.4 Method

= plotter model number - integer - input.

= plotter number - integer - input.

= size of the paper (x,y) used, less the borders, in plotter units - real

- input.

= size of the borders (x,y) in plotter units - real - input.

= last selected camera - integer - output.

= location (x,y) of the lower left corner of the plotter relative to its true

physical origin - real - input and output.

If _PT # 0 and a camera is not appropriate to the plotter, nothing is done by this subroutine.

3.4-74 (12-I-69)

SUBROUTINEDESCRIPTIONS

Otherwise,whatis doneis dependentuponthe plotter hardwarerequirements.

Forplotters l, 2 and8, the plotter is stoppedwith the plot numberdisplayedin the console

lights. For plotters 2 and9 thespecifiedcamerais selected. Andfor plotters 4 to 7, a block

addressrecordwith th_ plot numberis generated.

3.4.43.5 DesignRequirements

Subroutinesused: WPLTi,LINE.

3.4-74a(12-I-69)

3.4.44

UTILITY SUBROUTINEDESCRIPTIONS

IDPL_T (Generate an "ID" Plot).

3.4.44.1 Entry Point: IDPL_T.

3.4.44.2 Purpose

To identify the owner of all the plots by printing the information contained on the PL_TID

card in the user's Case Control Deck prior to generating the first plot.

3.4.44.3 Calling Sequence

CALL IDPL_T (IDX)

C_MM_N/OUTPUT/SKIP(32,6),ID(32)

C_MMON/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

where:

IDX : i 0 if a plot id was not generated

(1 if a plot id was generated

/_UTPUT/

- integer - output.

ID = user supplied PL_TID, in the Case Control Deck - BCD - input.

/PLTDAT/

XYMIN

XYMAX

AXYMAX

EDGE

= Iplot region parameters - real - input.

= size of the paper (x,y) used, less the borders, in plotter units - real

- input.

= size of the borders (x,y) in plotter units - real - input.

number of counts per printed character in the x and y directions respectively

real - input.

CNTX,CNTY=

PLTYPE : plotter type - integer - input.

3.4-75 (12-I-69)

UTILITYSUBROUTINEDESCRIPTIONS

3.4.44.4 Method

If there is noPL_TID(ID = blanks), IDXis set to zeroandno identification is generated.

Otherwise,IDXis set to one and an identification is generated. The current region parameters

are saved (they will be restored at the end of the subroutine) and are set to include the entire

paper area. The identification generated varies, depending upon the plotter type.

If the plotter is a microfilm plotter (IPLTYPEI = l), an entire frame is generated as identi-

fication. The top and botto_ of the frame are a series of closely spaced horizontal lines. The

PLgTID is then printed three times in the center of the frame.

If the plotter is a drum or table plotter (IPLTYPEI f l), the identification is printed once

at the very bottom of the paper within the bottom border.

After the identification is generated, the PLgTID is set to blanks. This insures that the

identification will be generated prior to the first plot only.

3.4.44.5 Design Requirements

Subroutines used: AXIS, PRINT.

3.4-75a (12-I-69)

SUBROUTINEDESCRIPTIONS

3.4.45

3.4.45.1

3.4.45.2

INTGPX ISearch a List of 19te_ers).

Entry Points: INTGPX, INTGPT.

Purpose

Given a list of N integers, to find the index of the list item equal to ITEM (primarily used

to search a list of external grid point id's).

3.4.45.3 Calling Sequence

CALL INTGPX(LIST,N)

K = INTGPT (ITEM)

where:

LIST = list of N integers, in arbitrary order - input.

N : number of entries in LIST - integer - input.

ITEM : integer for which a match is to be found in LIST - input.

3.4.45.4 Method

Search LIST using a linear search until a match for ITEM is found. Then the result (INTGPT)

is set equal to the index of LIST where the match occurs. If no match is found, the result is

set = O.

3.4.45.5 Design Requirements

INTGPX must be called before INTGPT is used. As long as LIST does not change location and

the value of N does not change, INTGPX need not be called again.

3.4-76 (12-I-69)

UTILITYSUBROUTINEDESCRIPTIONS

3.4.46 INTLST (Interpret a List of Integers).

3.4.46.1 Entry Point: INTLST.

3.4.46.2 Purpose

To interpret a list of integers and/or pairs of integers separated by the word T_ or THRU.

3.4.46.3 Calling Sequence

CALL INTLST(LIST,N,SIGN,NI,N2)

where:

LIST - the list to be interpreted - integer - input.

N - index location of the next list item(s) to be interpreted - integer - input.

SIGN - sign (_l) of the interpreted integer or the first of a pair of integers -

output.

Ni - absolute value uf the interpreted integer or the first of a pair of integers -

output.

N2 - absolute value of the second irltegerof pair of integers (= Nl if not a pair) -

output.

3.4.46.4 Method

SIGN = +_lif LIST(N) is positive or negative.

Nl = absolute value of LIST(N).

If LIST(N+I) _ T_ or THRU, then N2 = Nl and N is incremented by I.

If LIST(N+I) = TO or THRU, then N2 = absolute value of LIST(N+2) and N is incremented

by 3.

3.4.46.5 Design Requirements

Initially, N must be set to the index of the first integer or integer pair to be interpreted

in LIST. If the list is consecutive, N need not subsequently be altered until a new list is to

be interpreted. It is advisable that the value following the last item in LIST be set = 0 to

avoid the chance that it may equal T_ or THRU.

3.4-77 (12-I-69)

SUBROUTINEDESCRIPTIONS

3.4.47 LINE (Draw a Line on a Plotter).

3.4.47.1 Entry Point: LINE.

3.4.47.2 Purpose

To draw a line on a plotter.

3.4.47.3 Calling Sequence

CALL LINE(X1 ,YI ,X2,Y2,PEN,_PT)

C{_MMON/PLTDAT/- see PLTDAT Miscellaneous Table description, section 2.5.

where:

XI,YI = starting point of the line - real - input.

X2,Y2 = terminal point of the line - real - input.

PEN : pen number or line density to be used - integer - input.

I_! tO initiate the line mode"
_PT = to terminate a series of plot commands, integer - input.

to draw a line.

/PLTDAT/

M_DEL = plotter model number - integer - input.

PL_TER = plotter number (i) - integer - input.

REG = x and y values defining the region in which the line is to be drawn - real -

input.

NPENS = maximum number of pens or line density possible for plotter i - integer - input.

3.4.47.4 Method

If the line to be drawn is en%irely outside the specified region, the subroutine immediately

returns without drawing anything. If only part of the line is outside the region, only that

portion of the line within the region is drawn. The actual pen number or line density used will

be modulo the maximum number of pens or line density as follows:

PENX = 2EN - NPENS* ((PEN-I)/NPENS)

Then LINEi is called.

3.4-78 (12-I-69)

SUBROUTINEDESCRIPTIONS

3.4.47.5 DesignRequirements

Generally,LINEshouldbecalledwith _PT= -l beforeanylines aredrawn,eventhoughit is

not necessaryto specifically put all plotters in the line mode(e.g., plotter 3). Oncethis is

done,it neednot be repeatedunlessthe plotter hasbeenput into someothermode(e.g., the

typingmode). If _PT_ O, all otherargumentsare ignored. Subroutineused: LINEi.

3.4-78a(12-I-69)

UTILITYSUBROUTINEDESCRIPTIONS

3.4.48 LINEi (Draw a Line on Plotter i).

3.4.48.1 Entry Point: LINEi.

3.4.48.2 Purpose

To draw a line on plotter i.

3.4.48.3 Calling Sequence

CALL LINEi(XI,YI,X2,Y2,PEN,_PT)

C_MM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description section 2.5.

where:

XI,Yl = starting point of the line - real - input.

X2,Y2 = terminal point of the line - real - input.

PEN = pen number or line density to be used - integer - input.

(-I to initiate the line mode.
l

_PT = I+l to terminate a series of plot commands. -integer - input.

Coto draw a line.

/PLTDAT/

M_DEL = plotter model number - integer - input.

PL_TER = plotter number - integer - input.

MAXLEN = maximum length of a line segment - real - input.

_RIGIN = x and y values of the current position of the pen (applicable only to incre-

mental plotters) - real - input and output.

3.4.48.4 14ethod

If _FT _ O, all other arguments are ignored. If _PT = -l and if applicable for plotter i, a

flag is set so that when LINEi is subsequently called with _PT = O, the plotter will be put into

the line mode before drawing the requested line. If _PT = +l and if applicable for plotter i, the

pen is raised. Then, no matter which plotter is being used the current sequence of plotter

commands is terminated. If _PT = O, the line is drawn as a series of line segments, each of

maximum length MAXLEN.

3.4-79 (12-I-69)

SUBROUTINEDESCRIPTIONS

3.4.48.6 Design Requirements

Subroutines used: WPLTi.

3.4-80 (12-I-69)

3.4.49

3.4.49.1

3.4.49.2

UTILITY SUBROUTINE DESCRIPTIONS

PRINT (Print a Title on a Plotter).

Entry Point: PRINT.

Purpose

To type a title on a plotter horizontally or vertically.

3.4.49.3 Calling Sequence

CALL PRINT(X,Y,XYD,CHR,N,(_PT)

C_MM{_N/PLTDAT/- see PLTDAT Miscellaneous Table description, section 2.5.

where:

X,Y - starting or ending point of the title to be typed (always left-to-right or

top-to-bottom) - real - input.

XYD __+_lif X = starting or ending point of the title - integer - input.

(+2if Y starting or ending point of the title integer input.

CHR - title to be typed (four characters/word - left adjusted followed by blanks) -

BCD - input.

N - number of words in the title - integer - input.

I_! tO initiate the typing mode"
(_PT- to terminate a series of plot commands. - integer - input.

to type a title.

/PLTDATI

CNTCHR = number of plotter counts per character in the x and y directions - real - input.

3.4.49.4 Method

If _PT _ O, all other arguments are ignored and TIPE is called. Otherwise, each character

in the title (CHR) is separated and put into another array (C). This is done for each 20 words

of the title (80 characters), and TIPE is then called to type these characters.

3.4.49.5 Design Requirements

Generally, one of the typing subroutines (PRINT, TIPE, TYPFLT, TYPINT, SYMBOL) should be

3.4-81 (12-I-69)

SUBROUTINE DESCRIPTIONS

called with _PT = -I before any typing is attempted, even though it is not necessary to specifi-

cally put all plotters in the typing mode (e.g., plotter 3). Once this is done, it need not be

repeated unless the plotter has been put into some other mode (e.g., the line mode).

Subroutines used: TIPE.

3.4-82 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.50

3.4.50.I

3.4.50.2

RDM_DX (Read a File Containing XRCARD Translations).

Entry Points: RDM_DX, RDM_DY, RDM_DE, RDW_RD.

Purpose

Tc_read from a file or storage a record containing the subroutine XRCARD interpretation of

free field data cards (e.g., the PCDB data block).

3.4.50.3 Calling Sequence

CALL RD_DX(FILE,14_DE_W_RD)

CALL RDr4_DY(A,M@DE,W_RD)

CALL RDM_DE($nI,$n2,$n3)

CALL RDW_RD

where:

FILE = G!N_ file name which is to be read - integer - input.

M_DE = storage location into which the XRCARD mode value is to be read - integer - output.

W_RD = 2 locations into which XRCARD card items are to be read - integer - output.

A = array which is tc be "read" (instead of FILE) - integer - input.

nl = the F_RTRAN statement number defining the return at which numeric data are

interpreted (M_DE < 0).

n2 = the F_RTRAN statement number defining the return at which alphabetic data are

interpreted (0 < M_DE < l,O00,O00).

n3 = the F_RTRAN statement nu_er defining the return when the end of a logical card

is encountered (M_DE > l,O00,O00).

3.4.50.4 Method

RDMODX and RDM_DY are initialization calls for the file and core oriented options respectively.

For RDMQDE:

I. An XRCARD mode value is read into M_DE. If M_DE = O, the end of a physical card

has been encountered, but not the end of a logical card. In this case, the record is ter-

minated (if FILE is being read). Then the first word of the next record or location is read

into M_DE.

3.4-83 (l2-I-69)

SUBROUTINE DESCRIPTIONS

2. If M_DE < O, the next word is read into W_RD(1). If M_DE = -4, another word is

read into W_RD(2).

3. If 0 < M_DE < 1,000,000, BCD information follows as pairs of 4-character words. The

first two of these words are read into NEXT(1) and NEXT(2). If NEXT(1) is a blank or NEXT(2)

is a delimiter, the value of M_DE is decremented by one, and if MODE is still greater than

zero, the next two words are read into NEXT(1) and NEXT(2). This continues until either

M_DE : O, or NEXT(1) is not a blank and NEXT(2) is not a delimiter. If MODE does become

zero, step 1 is then re-executed.

4. If M_DE > 1,000,000, the end of a logical card has been encountered. If FILE is

being read, the current record is terminated.

For RDW_RD:

I. The two words now in NEXT(1) and NEXT(2) are stored in W_RD(1) and W_RD(2).

2. M_DE is decremented by one. If MODE is still gerater than zero, the next two

words are read into NEXT(1) and NEXT(2). If NEXT(1) is a blank or NEXT(2) is a delimiter,

this step is repeated until either M_DE = O, or NEXT(1) is not a blank and NEXT(2) is not a

delimiter.

3.4.50.5 Design Requirements

RDM_DX or RDM_DY must be called before RDM_DE and RDW_RD. As long as FILE does not change

in value, and M_DE, W_RD, and A do not change locations, RDM_DX and RDM_DY need not be called

again. If RDM_DX is called, FILE must be opened and properly positioned by the calling program.

In addition, RDM_DE and RDWORDcannot be called when FILE is closed. If an end-of-file or-record

condition is encountered, a fatal error occurs (see subroutine FREAD).

3.4-84 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.51 SGIN_ (GIN_ for Unformatted Tapes).

3.4.51.I Entry Points: S_PEN, SWRITE, SEOF, SCL_SE.

3.4.51.2 Purpose

To write unformatted BCD and binary tapes to drive NASTRAN plotters.

3.4.51.3 Calling Sequences

CALL S_PEN($n,PLTTP,BUFFER,LBUFF)

n -- FORTRAN statement number defining the return if PLl-[Pis not available

for writing.

PLTTP - GIN_ file name of the plot tape. This may have two values: PLTI - BCD plot

tape; PLT2 - binary plot tape - BCD - input.

BUFFER - Array in which the plot data transmitted during SWRITE calls are stored.

LBUFF - Length of the buffer array - integer - input.

CALL SWRITE(PLTTP,DATA,LDATA,I_PT)

PLTTP - GIN_ file name of the plot tape - BCD - input.

DATA - Array of plot data (l character/word, right justified, leading zeros).

LDATA - Length of the DATA array in words - integer - input.

O, potentially more data to be transmitted in this record.)I_PT - iinteger - input.l, end of record with this data transmission.

CALL SE_F(PLTTP)

PLTTP - GIN_ file name of the plot tape on which a physical E_F will be written.

CALL SCL_SE(PLTTP)

PLTTP - GIN_ file name of the plot tape.

3.4.51.4 Method

SGIN_ stores data in BUFFER until I_PT = l or BUFFER is filled. It then transmits the data

to a physical tape without any control words. The data are transmitted to SGIN_ l character (right

3.4-85 (12-I-69)

SUBROUTINEDESCRIPTIONS

justified, leading zeros) per word. SGIN_ packs these characters into full words. SGIN_ is in

F_RTRAN on all machines. On the IBM 7094 it interfaces with GIN_; the Univac i108 version uses

NTRAN; the IBM S/360 uses F_RTRAN I/9; and the CDC6600 use XI_RTNS. See section 5 for details.

3.4.51.5 Design Requirements

Only one of PLTI or PLT2 may be open at one time.

SOPENmust be called before SWRITE, SE_F, or SCL_SE.

PLTI or PLT2 must be physical tapes if they are written on.

3.4-86 (12-I-69)

UTILITYSUBROUTINEDESCRIPTIONS

3.4.52 STPL_T (To Initiate a New Plot or Terminate the Current Plot).

3.4.52.1 Entry Point: STPL_T.

3.4.52.2 Purpose

To initiate a new plot or terminate the current plot.

3.4.52.3 Calling Sequence

CALL STPL_T(PLTNUM)

C_MM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

C_MM_N/XXPARM/ - see XXPARM Miscellaneous Table description, section 2.5.

where:

jif nonnegative, the plot number
PLTNUM

if negative, terminate the current plot

/PLTDAT/

M_DEL =

PL@TER =

REG =

XYMAX =

PLTYPE =

PLTAPE =

E(_F :

/XXPARM/

CAMERA =

BFRAMS =

I - integer - input.

plotter model index - integer - input.

plotter number - integer - input.

plot region parameters - real - input.

size of the paper (x,y) used, less the borders, in plotter units - real - input.

plotter type - integer - input.

plot tape - BCD - input.

0 if an end-of-file mark is to be written on the plot

tape after each plot
- integer - input.

l if no end-of-file mark is to be written on the plot

tape after each plot

camera number (if applicable) to be used - integer - input.

number of blank frames between plots - integer - input.

3.4-87 (12-I-69)

UTILITYSUBROUTINEDESCRIPTIONS

3.4.52.4 Method

3.4.52.5

Subroutinesusedinclude:

A. If PLTNUMis nonnegative:

I. Selectthe specifiedcameraor createa setuprecordappropriateto the plotter

(CALLSELCAM).

2. Skipto a newframe(if applicable)andcreatethe owneridentification. If the

owneridentification is generatedby subroutineIDPL_T,re-executestepl andskip to a

newframe.

3. If appropriateto this plotter, insert the desirednumberof blankframesonfilm

only. If the cameraspecifiedis camera2 (paperonly), noblankframesare inserted.

4. If the plot numberis nonzero,typethis numberin the upperleft andright corners

of the picture.

B. If PLTNUMis negative:

i. TenJ_inatethe _^_ reco_A_,_ tape

2. Closethe currentplot tapefile (CALLSCL_SE).

3. If eachplot is to beseparatedbyanend-of-file mark(EOF= O), write anend-of-

file onthe plot tape (CALLSE@F).

DesignRequirements

IDPL_T,SELCAM,SKPFRM,TYPINT,SCL_SE,SE@F.

3.4-87a(12-I-69)

SUBROUTINE DESCRIPTIONS

3.4.53 SYMB@L (Type a Symbol on a Plotter I.

3.4.53.1 Entry Point: SYMBOL.

3.4.53.2 Purpose

To type a symbol on a plotter.

3.4.53.3 Calling Sequence

CALL SYMB_L(X,Y,SYM,OPT)

C@MMON/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

C_MM_N/SYMBLS/ - see SYMBLS Miscellaneous Table description, section 2.5.

where :

X,Y - point at which the symbol is to be typed - real - input.

SYM - two consecutive storage locations each containing an index into the SYMBLS

table - integer - input.

I-! t° initiate the typing m°de" 1
OPT - + to terminate a series of plot commands. -integer - input.

to type the symbol.

/PLTDAT/

MODEL - plotter model number - integer - input.

PLOTER - plotter number (i) - integer - input.

/SYMBLS/

NSYM - number of symbols defined in the SYMBLS table - integer - input.

SYMBL(20,i) - character indices defining the symbols of plotter i - integer - input.

3.4.53.4 Method

If OPT _ O, all other arguments are ignored and TYPEi or DRWCHR is called. Otherwise, an

alternate symbol index (SYMX) is calculated modulo NSYM for each index in SYM and is used as the

actual symbol index, as follows:

3.4-88 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIOr!S

SYMX : SYMj - NSYM*((SYMj_I)/NSYM) , j : l, 2.

Then TYPEi or DR_CHR is called for each symbol.

The reason for SYM being two indices is to enable the user to create any additional symbol

by combining any two of the valid symbols in the SYMBLS table. Note: any of the indices in SYM

may = O. This would imply that a new s_n_bolis not being created.

3.4.53.5 Design Requirements

Generally, one of the typing subroutines (PRINT, TIPE, TYPFLT, TYPINT, SYMB@L) should be

called with _PT # -l before any typing is attempted, even though it is not necessary to put all

plotters in the typing mode (e.g., plotter 3). Once this is done, it need not be repeated unless

the plotter has been put into some other mode (e.g., the line mode).

Subroutines used: TYPEi, DRWCHR.

3.4-89 (12-I-69)

SUBROUTINE DESCRIPTIONS

3.4.54

3.4.54.1

3.4.54._

TIPE (Type a Line of Characters on a Plotter).

Entry Point: TIPE.

Purpose

To type a line of characters on a plotter horizontally or vertically.

3.4.54.3 Calling Sequences

CALL TIPE (X,Y,XYD,CHR,N,(_PT)

COMMON/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

COMMON/CHAR94/ - see CHAR94 Miscellaneous Table description, section 2.5.

whe re:

X,Y - starting or ending point of the line to be typed (always left-to-right or top-to-

bottom) - real - input.

I++___12ifX = starting or ending point of the line. 1
XYD - - integer- input.

if Y starting or ending point of the line.

CHR - line of characters to be typed (one character/word - left adjusted followed by

blanks) - BCD - iF.put.

N number of characters to be typed - integer - input.

I_ ! to initiate typing mode. "I
OPT - to terminate a series of plot commands. - integer - input.

to type a line of characters.

/PLTDAT/

MODEL -plotter model number- integer - input.

PLOTER - plotter number (i) - integer - input.

CNTCHR - number of plotter counts per character in the x and y directions - real - input.

/CHAR94/

CHAR - Section I of the CHAR94 table - BCD - input.

3.4-90 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.54.4 Method

If _PT I O, all other argunmnts are ignored and TYPEi or DRWCHR is called. Otherwise, for

each character to be typed, an index into the CHAR character set is found. This is done 80

characters at a tim_. If a character cannot be located, it is treated as a blank. For each set

of 80 character indices set up, TYPEi or DRWCHR is called.

3.4.54.5 Design Requirenmnts

Generally, one of the typing subroutines (PRINT, TIPE, TYPFLT, TYPINT, SYMBOL) should be

called with _PT # -l before any typing is attempted, even though it is not necessary to put all

plotters in the typing mode (e.g., plotter 3). Once this is done, it need not be repeated unless

the plotter has been put into some other mode (e.g., the line mode).

Subroutines used: TYPEi, DRWCHR.

3.4-91 (12-I-69)

SUBROUTINE DESCRIPTIONS

3.4.55

3.4.55.1

3.4.55.2

TYPEi IType a Line of Characters on Plotter i).

Entry Point: TYPEi.

Purpose

To type a line of characters on plotter i horiziontally or vertically.

3.4.55.3 Calling Sequence

CALL TYPEi(X,Y,XYD,CHR,N,_PT)

C_MM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

C_MM_N/CHARg4/ - see CHAR94 Miscellaneous Table description, section 2.5.

where:

X,Y = starting or ending point of the line to be typed (always right-to-left or top-to

bottom) - real - input.

i+__12if x : starting or ending point of the line. 1
XYD = - integer - input.

if y starting or ending point of the line.

CHR = indices of the line of characters to be typed (see description for TIPE: section

3.4.54) - integer- input.

N = number of characters to be typed - integer - input.

l to initiate the typing mode.
PT : 1 to terminate a series of plot conT_ands - integer - input.

0 to type a line of characters.

/PLTDAT/

X_MIN = minimum x and y values of the region in which the line is to be typed - real

input.

XYMAX : maximum x and y values of the region in which the line is to be typed - real -

input.

CNTCHR = number of plotter counts per character in the x and y directions - real - input.

3.4-92 (12-I-69)

UTILITYSUBROUTINEDESCRIPTIONS

/CHAR94/

CHRC_D = Section If, III, or IV of the CHAR94 table - integer - input.

3.4.55.4 Method

If _PT # O, all other arguments are ignored. If _PT = -l and if applicable for plotter i, a

Flag is set so that when TYPEi is subsequently called with _PT = O, the plotter will be put into

the typing mode before typing the first character. If _PT = +l, the current sequence of plotter

commands is terminated.

Define:

LSTCHR = last legitmate character index for plotter i.

NCHR = nu_er of character indices which must be changed for plotter i.

CHAR = NCHR pairs of character indices. The first index of each pair is the index

which must be changed, and the second index is the replacement index.

If N < O, it is assumed that one character is to be typed.

Each character index in CHR is checked against LSTCHR.

a blank is inserted at the corresponding point on the plot.

need be from CHAR and the character is typed.

No characters will be typed outside the region as defined by XYMIN and XYMAX.

If the index is greater than LSTCHR,

Otherwise, indices are altered if

3.4.55.5 Design Requirements

Subroutines used: WPLTi.

3.4-93 (12-I-69)

SUBROUTINEDESCRIPTIONS

3.4.56 TYPFLT (Type a Floating Point Number on a Plotter).

3.4.56.1 Entry Point: TYPFLT.

3.4.56.2 Purpose

To type a floating point number on a plotter, horizontally or vertically.

3.4.56.3 Calling Sequence

CALL TYPFLT (X,Y,XYD,V,FIELD,OPT)

COMM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

where:

X,Y

XYD

V

FIELD

_PT

/PLTDAT/

MODEL

- point at which the number is to be typed (always left-to-right or top-to-bottom)

- real - input.

+l if X = starting or ending point of the typed number.I_ integer input.
+_2if Y starting or ending point of the typed number.

- number to be typed - real - input.

- field width of the typed number. If FIELD > O, the number will be centered at

(X,Y). If FIELD < O, the number will be typed starting or ending at (X,Y). If

IXYDI = l or 2, the number will be typed horizontally or _ertically

respectively- integer- input.

I+! t° initiate the typing m°cle' 1
- to terminate a series of plot commands. - integer - input.

to type the number.

3.4.56.4

- plotter model number - integer - input.

PLOTER - plotter number (i) - integer - input.

CNTCHR - number of plotter counts per character in the x and y directions - real - input.

Method

If OPT _ O, all other arguments are ignored and TYPEi or DRWCHR is called. Otherwise, the

3.4-94 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

number of significant digits (NSIG) to be typed is determined.

If V _0, the typed nun_er will be unsigned. If FIELD > 4, the number of significant digits

typed will be at least = FIELD - 4. If FIELD _4, NSIG = FIELD - I.

If V < O, the typed nu_er will be signed. If FIELD > 5, the nun_Derof significant digits

typed will be at least FIELD - 5. If FIELD _ 5, NSIG = FIELD - 2.

The number (V) is multiplied by some power of ten such that the product is between lO7 and

lO8. It can then be expressed as an 8-significant digit integer. If the number is such that NSIG

digits cannot be typed without an exponent, a standard form is used: -X.XXXX ... _XX. Otherwise

the decimal point is adjusted and the exponent will not be printed.

3.4.56.5 Design Requirements

Generally, one of the typing subroutines (PRINT, TIPE, TYPFLT, TYPINT, SYMBOL) should be

called with _PT = -l before any typing is attempted, even though it is not necessary to put all the

plotters in the typing mode (e.g., plotter _I._ Once this is done, it need not be repeated unless

the plotter has been put into some other mode (e.g., the line mode).

Subroutines used: TYPEi, DRWCHR.

3.4.56.6 Diagnostic Messages

If NSIG significant digits cannot possibly be typed in the field width (FIELD) specified,

the entire field will be filled with asterisks (**...*).

3.4-95 (12-I-69)

SUBROUTINEDESCRIPTIONS

3.4.57

3.4.57.1

3.4.57.2

TYPINT (Txpe an Integer Number on a Plotter_.

Entry Point: TYPINT.

Purpose

To type an integer number on a plotter, horizontally or vertically.

3.4.57.3 Calling Sequence

CALL TYPINT (X,Y,XYD,NUM,FIELD,OPT)

C@MM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

where:

X,Y

XYD

NUM

FIELD

_PT

- point at which the number is to be typed (always left-to-right or top-to-bottom)

- real - input.

(+l if X = starting or ending point of the typed number.)

"i_-2 i - integer - input.if Y starting or ending point of the typed number.

- number to be typed - integer - input.

+l if the typed number is to be centered at (X,Y). If IXYDI = l or 2, the number

will be typed horizontally or vertically, respectively.

-l or O, the number will be typed starting or ending at (X,Y). If FIELD = -l,

FIELD will be set to the number of digits typed by the subroutine; in this

case, FIELD must be a symbol in the call statement. - integer - input and

output.

{+! to initiate the typing mode. 1
- to terminate a series of plot commands. -integer - input.

to type the number.

/PLTDAT/

MQDEL - plotter model number - integer - input.

PLQTER - plotter number (i) - integer - input.

CNTCHR - number of plotter counts per character in the x and y directions - real - input.

3.4-96 (12-I-69)

UTILITYSUBROUTINEDESCRIPTIONS

3.4.57.4 I_ethod

If _PT_ O, all other arguments are ignored and TYPEi or DRWCHR is called. Otherwise, each

digit of the number is separated and used as character indices for the TYPEi or DRWCHR subroutines.

In addition, if FIELD < O, FIELD is set = the number of digits printed.

3.4.57.5 Design Requirements

Generally, one of the typing subroutines (PRINT, TIPE, TYPFLT, TYPINT, SYMB@L) should be

called with OPT = -l before any typing is attempted, even though it is not necessary to

specifically put all plotters in the typing mode (e.g., plotter 3). Once this is done, it need

not be repeated unless the plotter has been put into some other mode (e.g., the line mode).

Subroutines used: TYPEi, DRWCHR.

3.4-97 (12-I-69)

SUBROUTINE DESCRIPTIONS

3.4.58 WPLTI (Write a Plotter Command for Plotter I).

3.4.58.1 Entry Point: WPLTI.

3.4.58.2 Purpose

To write a plotter command for plotter I.

3.4.58.3 Calling Sequence

CALL WPLTI (A,_PT)

C_MM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

C_MMON/CHAR94/ - see CHAR94 Miscellaneous Table description, section 2.5.

where:

A(1) - x-coordinate (integer).

A(2) - y-coordinate (integer).

A(3) - annotation character index (a).

A(4) - control character index (ci).

A(5) - control character index (c2).

A(6) - control character index (c3).

O, if A is a plot command_PT - (
I, if a series of plot commands is to be terminated

/PLTDAT/

integer - input.

EDGE -size of the x and y borders of the paper - real - input.

PL_T - GINO file name of the plot tape to be written - BCD - input.

/CHAR94/

CHAR(60,3) - sections II, III, and IV of the CHAR94 character table - integer - input.

3.4.58.4 Method

If computer 1 (IBM 7094) is the computer being used, section II of the CHAR94 table is used

as the characters written on the plot tape; if computer 4 (CDC 6600) section IV is used; if any

3.4-98 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

other computer, section III is used.

The lower left corner of the paper is assumed to be at (0,0). Taking into account the x and

y borders, the true x and y coordinates are calculated. These coordinates are then separated into

four integer digits. The plot command is then set up and written as follows:

rbx4x3x2XlbbY4Y3Y2YlbClC2bbc3babbbbb

preceeded by 35 blanks. The resulting plot command is 60 characters long.

r = record mark (character 49 in the CHAR94 table)

b = blank (character 48 in the CHAR94 table)

xi = x-coordinate digit

Yi = y-coordinate digit

ci = control character

a = annotation character.

3.4.58.5 Design Requirements

Subroutine used: SWRITE.

3.4-99 (12-I-69)

SUBROUTINE DESCRIPTIONS

3.4.59 WPLT2 (Write a Plotter Command for Plotters 2 and 8)

3.4.59.1 Entry Point: WPLT2.

3.4.59.2 Purpose

To write a plot command for plotters 2 and 8.

3.4.59.3 Calling Sequence

CALL WPLT2 (A,_PT)

C_MM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

C_MM_N/CHAR94/ - see CHAR94 Miscellaneous Table description, section 2.5.

where:

A(1) = x-coordinate (integer).

A(2) = y-coordinate (integer).

A(3) = annotation character index (a).

A(4) = control character index (ci).

A(5) = control character index (c2).

A(6) = control character index (c3).

0, if A = plot command 1_PT = -integer - input.
I, if a series of plot commands is to be terminated

/PLTDAT/

AXYMAX - size of the paper (in plotter units) being used, less the border - real - input.

PL_T - GINO file name of the plot tape to be written - BCD - input.

/CHAR94/

CHAR(60,3) - sections II, III and IV of the CHAR94 table - integer - input.

3.4.59.4 Method

If computer 1 (IBM 7094) is the computer being used, section II of the CHAR94 table is used

for the characters written on the plot tape; if computer 4 (CDC 6600), section IV is used; if any

3.4-I00 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

other computer, section III is used.

Assuming the true physical origin of the plotter to be at the center of the paper, the true

x and y coordinates are calculated. These coordinates are then separated into four integer digits.

A plot command is then set up and written as follows:

XSxX4X3X2XlYSyY4Y3Y2Ylbbbbbbbbclc2ac3

preceeded by 96 blanks.

X

Y

sx

Sy

xi

Yi

b

ci

a

The resulting plot command is 120 characters long.

= character X (character 34 in the CHAR94 table)

= character Y (character 35 in the CHAR94 table)

= + or - character depending upon the sign of the x-coordinate.

= + or - character depending upon the sign of the y-coordinate.

= x-coordinate digit.

= y-coordinate digit.

= blank (character 48 in the CH.AR94table).

= control character.

= annotation character.

3.4.59.5 Design Requirements

Subroutine used: SWRITE.

3.4-101 (12-1-69)

SUBROUTINE DESCRIPTIONS

3.4.60 WPLT3 IWrite a Plotter Command for Plotter 3).

3.4.60.1 Entry Point: WPLT3.

3.4.60.2 Purpose

To write a plot command for plotter 3.

3.4.60.3 Calling Sequence

CALL WPLT3 (A,_PT)

C@MMON/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

where:

A(1) and A(2) = 36 bit plot command set up by AXIS3, LINE3, or TYPE3, as 2 18-bit words

(right justified, leading zeros) - input.

0, if A = plot command 1
_PT = - integer - input.

I, if a series of plot commands is to be terminated

/PLTDAT/

PL_T - GINO file name of the plot tape to be written - BCD - input.

MAXCHR - plot tape buffer size (number of characters) - integer - input.

3.4.60.4 Method

Each plotter command is 36 bits long (6 six-bit characters). Six of the 36 bits in A(1) and

A(2) are written on the plot tape until all 36 bits have been written. In addition, the number

of six-bit characters written in a record is calculated. When WPLT3 is called with OPT = I, a

check is made to determine if the number of 6 bit characters written in the current record is

an integer multiple of the number of characters per word on the computer. If such is not the case,

an additional 36 bit command is written as many times as necessary until this condition does

exist before terminating the plot tape record. The command used will do nothing to affect the

generated plot.

3.4.60.5 Design Requirements

Subroutine used: SWRITE.

3.4-I02 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.61 GIN_IO (GINO Input/Output Routine).

3.4.61.I Entry Point: GIN_IO.

3.4.61.2 Purpose

GINOIO executes the physical input/output operations for subroutine GINO.

3.4.61.3 Calling Sequence

CALL GINOI_($n,OPC_DE,BUFF)

C_MM_N/GIN0X/LGIN_,FILEX,E_R_P,ENTRY,LSTNAM,N_NAME_NTAPE,XYZ(2),UNITAB(75),BUFADD(75),

NBUFF3,ERR_R,NOSECT.

n - F_RTRAN statement number defining return in the event of an I/_ error.

l, Rewind

2, Write one block

OPC_DE - 3, Read one block input - integer.

4, Backspace one block

5, Forward space one block

BUFF - Address of the block to be read or written.

FILEX - Unit number of file - integer - input.

NBUFF3 - Length of block to be read or written - integer - input.

7, Abnormal completion of I/0 operation
ERROR - 8, Physical end-of-file encountered integer - output.

9, Data transmission error

NOSECT - Number of sectors per block on FASTRAND drum (Univac If08 only) - integer - input.

3.4.61.4 Method

The machine cell in /SYSTEM/ is tested. For the IBM 7094 or IBM S/360 computers, FORTRAN REWIND,

WRITE, READ and BACKSPACE operations are used. For the Univac ll08, the NTRAN routine is used.

3.4.61.5 Design Requirements

GINOI_ is designed as an integral part of the GIN_ collection of routines and is to be

called only by GINO.

3.4-I03

SUBROUTINE DESCRIPTIONS

Since all input/output operations by GINO are made by GINOI_, a charlge to interface with a

new or different operating system can easily be made by modifying GiNOIO.

3.4-I04

3.4.62

3.4.62.1

3.4.62.2

UTILITY SUBROUTINE DESCRIPTIONS

EJECT (Automatic Page Eject)

Entry Point: EJECT

Purpose

Automatic line counting for printed output and new page initiation when pages are filled.

3.4.62.3 Calling Sequence

K = EJECT (LINES)

C_P_40N /SYSTEM/ - see SYSTEM table description, section 2.4.1.8.

where:

LINES - Number of lines to be printed.

/SYSTEM/

_AXL!N - Maximum number of lines permitted per page.

LINCNT - Number of lines thus far printed on this page.

3.4.62.4 Method

If the number of lines already printed on this page (LINCNT) added to the number of lines

about to be printed (LINES) would be greater than the number of lines permitted per page

(MAXLINI, a new page is started (CALL PAGE1), the current line counter is set to the number

of lines to be printed (LINCNT = LINES), and the result of this function is set to 1 (EJECT = I).

If the number of lines about to be printed (LINES) will fit on this page (LINCNT + LINES <

MAXLIN), the result of this function is set to 0 (EJECT : 0).

3.4.62.5 Design Requirements

If it is desired to force a new page to be started, simply set LINCNT = MAXLIN before

calling this function.

3.4-I05

SUBROUTINEDESCRIPTIONS

3.4.63 PLAMAT (Material Property Utillty for Two-Dimensional Elements in Piecewise Linear

Analysis).

3.4.63.1 Entry Point: PLAMAT.

3.4.63.2 Purpose

To perform the following matrix operation:

[C] = [A] T [B] [A] ,

where [A] is equal to [U] (see the subroutine descriptior_ for PREMAT and MAT, section 3.4.36.3,

for a definition of [U] with INFLAG = 2), and [B] is equal to a previously calculated material

properties matrix which is in common block /PLAGP/. The result [C], which is symmetric, is stored

in common block /MATOUT/.

3.4.63.3 Calling Sequence

CALL PLAMAT

COMMON/PLAGP/GP(9),MIDGP,ELID

COMM_N/MATIN/MATID,INFLAG,ELTEMP,PLAARG,SINTH,C_STH

C_MMON/MATOUT/GII,GI2,GI3,G22,G23,G33,DUMMY(14)

where:

/PLAGP/

GP(9)

MIDGP

ELID

/MATIN/

MATID

INFLAG 1

= 3x3 material properties matrix calculated in a PLA element driver - real - input.

= the material identification number associated with GP - integer - input.

= the element identification number associated with GP - integer - input.

= the incoming material identification number - integer - input.

not used by PLAMAT.

3.4-106 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

SINTH

C@STH

/HAT@UT/

Same as /MAT(_UT/with INFLAG = 2 as described in section 3.4.36.3

six cells are used.

= Sine of the material property orientation angle - real - input.

= Cosine of the material property orientation angle - real - input.

except only the first

3.4.63.4 Method

This routine checks to see if the incoming material identification number (HATID) is equal to

the material identification number (MIDGP) which was used to calculate the material properties

matrix stored in /PLAGP/. If they are not equal, this routine calls HAT with INFLAG = 2 and

returns to the calling program. This will only happen in combination elements (TRIAl, TRIA2,

QUADI, QUAD2) where there is a different material identification number used for the membrane and

plate properties. If they are equal, then the matrix operation described above is performed.

3.4-I07 (12-I-69)

SUBROUTINE DESCRIPTIONS

3.4.64 WPLT4 (Write a Plotter Command for Plotters 4 Through 7).

3.4.64.1 Entry Point: WPLT4.

3.4.64.2 Purpose

To write plot commands for plotters 4 through 7.

3.4.64.3 Calling Sequence

CALL WPLT4 (A,_PT)

C_MMON/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

where:

A(1) :

A(Z-N) :

\

command type (0 = control, 2 = line, 4 = position) #_

additional data used to generate the plot commands (contents and

length, N, vary with command type)

_PT = I O' if a plot command is to be generated

(I, if the current command buffer is to be terminated)

/PLTDAT/

PLTMDL = plotter model number - integer - input.

PLOTER = plotter number - integer - input.

PL_T = GINO file name of the plot tape to be written - BCD - input.

3.4.64.4 _4ethod

integer,

input.

integer, input.

The resulting plot command varies in length, depending both on the command type and the amount

of necessary drum movement. If A(1) = 0 (control command), A(2) = number of control characters

in the resulting command (one character expressed as a right adjusted integer in each word of the

A array, starting in A(3)).

If A(1) = 2 or 4 (line or positioning command), the resulting plot command will begin with the

characters necessary to lower or raise the pen, respectively, unless the pen is already down or up,

respectively. A(2) and A(3) contain the number of X and Y half steps necessary to draw the line

3.4-I 08 (7/I/70)

UTILITY SUBROUTINE DESCRIPTIONS

(with the pen down or up), while A(4) and A(5) contain pointers to two character strings needed to

draw the entire line except for the final half step. A(6) and A(7) contain the pointers needed to

draw the last half step of the line only. The pointers in A(4 - 7) will cause drum movements as

follows:

l = +Y 9 = +Y/2 17 = +X/2, +Y

2 = +X, +Y lO = +X/2, +Y/2 18 = -X, +Y/2

3 = +X II = +X/2 19 = +X, -Y/2

4 = +X, -Y 12 = +X/2, -Y/2 20 = +X/2, -Y

5 = -Y 13 = -Y/2 21 = -X/2, -Y

6 = -X, -Y 14 = -X/2, -Y/2 22 = -X, -Y/2

7 = -X 15 = -X/2 23 = -X, +Y/2

8 = -X, +Y 16 = -X/2, +Y/2 24 = -X/2o +Y

The number of characters in a string is a function of the internal plotter model number, PLTMDL.

If PLT,_IDL= I, each string is three characters; iF PL_4DL _ 2 or 4, each string is two characters;

and if PLTMDL = 3 or 5, each string is only one character.

As required, this subroutine will automatically initiate each plot tape record with the

necessary "conditioning, synchronizing, and start plot" characters, and terminate each plot tape

record with tilenecessary "stop plot" characters.

3.4.64.5 Design Requirements

The only incremental drum movements available for the CALCOMP drum plotter indicated as

PLTMDL = l are the first eight (8) as listed above. Therefore, when A(1) = 2 or 4, the values in

A(4 - 7) must be less than nine (g).

Subroutine used: SWRITE.

3.4-I09 (711170)

SUBROUTINE DESCRIPTIONS

3.4.65 WPLT9 IWrite a Plotter Command for Plotter 9).

3.4.65.1 Entry Point: WPLTg.

3.4.65.2 Purpose

To write a plot command for plotter 9.

3.4.65.3 Calling Sequence

CALL WPLT9 (A,OPT)

C_MMON/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

OPT

where:

A

/PLTDAT/

= lO-character plot command (I character per word, right justified, leading

integer - input.

zeros) - integer- input.

=_0 if A = plot command

if a series of plot commands is to be terminated

PL_T = GIN_ file name of the plot tape to be written - BCD - input.

3.4.65.4 Method

If _PT = O, the I0 characters are written on the plot tape without any changes.

two characters are appended to the current record:

628 (EXIT code) and 618 (NOP code).

3.4.65.5 Design Requirements

If @PT = I,

Subroutine used: SWRITE.

3.4-110 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.66 WPLTIO (Write a Plotter Command for the NASTRAN General Purpose Plotter).

3.4.66.1 Entry Point: WPLTIO.

3.4.66.2 Purpose

To write the plotter comands for the NASTRAN general purpose plotter.

3.4.66.3 Calling Sequence

CALL WPLTIO (A,_PT)

C_MM_N/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

where:

A(1) = plet mode index

A(2) = control index

_uj = X1 ^=_vv,_lna_e

- integer - input.

A(4) = Yl = y-coordinate

A(5) = x2 = x-coordinate

A(6) = Y2 = y-coordinate

{i if A= pl°t c°mmand _ integer input.OPT = - -
if a series of plot commands is to be terminated

/PLTDAT/

EDGE = size of the borders (x,y) in plotter units - real - input.

PL_T = GIN_ file name of the plot tape to be written - BCD - input.

MAXCHR = plot tape buffer size (number of characters) - integer - input.

3.4.66.4 Method

Each plot command written is composed of 30 six-bit unsigned integers. The plot mode index,

%(I), and the control index, A(2), are the first two integers. The next 20 integers represent

the values in A(3-6). Each value is represented by five 6-bit integers, each integer being a

decimal digit of the decimal representation of the value as follows:

3.4-111 (12-I-69)

SUBROUTINE DESCRIPTIONS

d4d3d2dld 0

where the original integer value is given by

do.lO 0 + dl.lOl + d2.102 + d 3. 103+ d4.104

This representation is used so as to make it easy to recover the original integer values on any

binary computer. The last 8 characters are always zeros.

The end result is a plot command of the following format:

MCP4P3P2PIPoQ4Q3Q2QIQoR4R3R2RIRoS4S3S2SlSo00000000

where:

M

C

Pi

= plot mode index

= control index

= decimal digit of the I st integer value

Qi = decimal digit of the 2 nd integer value

Ri = decimal digit of the 3 rd integer value

Si = decimal digit of the 4 th integer value

0 = zero

When WPLTIO is called with _PT = I, the current plot tape record is filled with as many dummy

plot commands as is necessary to generate a fixed length record. The dummy plot command is made

of 30 zeros. This is done so that the plot tape can be read in F_RTRAN without having to worry

about variable length records as long as the plot tape buffer size (MAXCHR) is an integer multiple

of the number of characters per word on the computer on which the plot tape is being read (see

section 6.10.6 for further details).

3.4.66.5 Design Requirements

Subroutine used: SWRITE.

3.4-112 (8/I/72)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.67

3.4.67.1

3.4.67.2

PLTSET (PlottinB Parameter Initialization).

Entry Point: PLTSET.

Purpose

Given the internal plotter and model numbers, to initialize the /XXPARM/ and /PLTDAT/ tables

as needed by the NASTRAN plotter software package.

3.4.67.3 Calling Sequence

CALL PLTSET

C@MMON/XXPARM/ - see XXPARM Miscellaneous Table description, section 2.5.

C_4MON/PLTDAT/ - see PLTDAT Miscellaneous Table description, section 2.5.

where:

/XXPARM/

PBUFSZ = plot tape buffer size (number of words) - integer - output.

PAPSIZ = size of the paper to be used (inches) - real - input.

/PLTDAT/

M_DEL = internal plotter model number - integer - input.

PL_TER = internal plotter number - integer - input.

REG = plotting region parameters - real - output.

AXYMAX = size of the paper (x,y) used, less the borders, in plotter units - real - output.

XYEDGE = size of the borders (x,y) in plotter units - real - output.

XYMAX = maximum useable x and y coordinate values on the plotter - real - output.

CNTSIN = number of plotter counts per inch of paper - real - output.

CNTCHR = number of plotter counts per character in the x and y directions - real - output.

PLTYPE = plotter type - integer - output.

PBFSIZ = plot tape buffer size (number of characters) - integer - output.

3.4-113 (12-I-69)

SUBROUTINE DESCRIPTIONS

3.4.67.4 Method

Using the internal plotter (PL_TER) and model (M_DEL) numbers, the initialization needed to

properly use the NASTRAN plotting software is performed as follows:

I. Section 2 of /PLTDAT/, of which XYI_X, CNTSIN, CNTCHR, PLTYPE and PBFSIZ are a part, is

set to a duplicate of section PLOTER+2.

2. PBUFSZ of /XXPARM/ is then set to PBFSlZ/CHRWRD where CHRWRD = number of characters per

word on the subject computer.

3. AXYMAX and XYEDGE are calculated based upon the plotter type and/or paper size. If the

plotter is a table plotter (PLTYPE = +2 or -2), the borders are set up as I/2 inch borders.

If the plotter is not a table plotter and has no typing capability (PLTYPE = -I or -3),

the borders are set up as half the horizontal and vertical character sizes (CNTCHR/2).

Otherwise, the borders are set to zero.

4. The plotting region is then set to (O,O,AXYMAX(1),AXYFt_X(2)). This region can be sub-

sequently altered by the module writer.

3.4-114 (12-I-69)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.68 DRWCHR (To Draw a Line of Characters).

3.4.68.1 Entry Point: DRWCHR.

3.4.68.2 Purpose

To draw a line of characters on a plotter, horizontally or vertically.

3.4.68.3 Calling Sequence

CALL DRWCHR (X,Y,XYD,CHR,NN,(_PT)

C(_I(_N/PLTDAT/- see PLTDAT Miscellaneous Table description, section 2.5.

C(_MM(_N/CHRDRW/- see CHRDRW Miscellaneous Table description, section 2.5.

where:

X,Y = starting or ending coordinate of the line of characters to be drawn (always left-to-

right or top-to-bottom) - real - input.

(+_lif X = starting or ending point of the line_

XYD =I+2 I - integer- input._ if Y starting or ending point of the line

CHR = indices of the line of characters to be drawn (see subroutine TiPE) - integer -

input.

NN = nu_er of the characters to be drawn - integer - input.

-! to initiate the line mode.
(_PT= + to terminate a series of plot commands. - integer - input.

to draw a line of characters.

/PLTDAT/

REG = plot region parameters - real - input.

XYI.V_X= size of the paper (x,y) used, less the borders, in plotter units - real - input.

E['GE = size of the border (x,y) in plotter units - real - input.

CNTCHR = number of plotter counts per character in the x and y directions - real - input.

/CHRDRW/

LSTIND = index of the last character which can be drawn - integer - input.

3.4-I15 (12-I-69)

SUBROUTINEDESCRIPTIONS

CHRIND = indices into XYCHRused to locate the data needed to draw characters - integer

- input.

XYCHR : lines which must be drawn to produce alphanumeric characters - integer - input.

3.4.68.4 Method

If _PT = O, all other arguments are ignored and LINE is called. Otherwise, the characters

are drawn. The width and height of each character position are assumed to be integer multiples

of 8 and 16, respectively. The size of the drawn character will be this integer multiple of 6.

The remaining space in each character position is used as the horizontal and vertical spacing.

No character will be drawn outside the region specified in REG.

3.4.68.5 Design Requirements

Subroutine used: LINE.

3.4-I16 (12-I-69)

UTILITYSUBROUTINEDESCRIPTIONS

3.4.69 FNDPLT (Determine the Internal Plotter and Model Indices).

3.4.69.1 Entry Point: FNDPLT.

3.4.69.2 Purpose

Given the external name and model of a plotter, to determine the corresponding internal

plotter and model numbers used by the NASTRAN plotting software package.

3.4.69.3 Calling Sequence

CALL FNDPLT (PL@TER,M_DEL,PLTNAM,PM@DEL)

where:

PL_TER = internal plotter number - integer - output.

M_DEL = internal model number - integer - output.

PLTN/_,I(2)= external plotter name - BCD - input.

PM_DEL(2) = external model name - integer or BCD - input and output.

3.4.69.4 Method

PLTNAM and PM_DEL are compared with an internal table of plotter names and models. When a

match is found, PL_TER and M_DEL are set to the corresponding internal plotter and model numbers.

If a match is found only for the plotter name (PLTNAM), the model name for the first model appro-

priate to the matched model name will be used to determine PL_TER and M_DEL, and the model name

used will be stored in PM_DEL. If no match is found, PL_TER and M_DEL will be set to zero. See

section 3.1 for further details.

3.4-I17 (12-I-69)

3.4.70 PHDMIA (DMI punch routine)

3.4.70.1 Entry Points:

3.4.70.2 Purpose

SUBROUTINE DESCRIPTIONS

PHDMIA, PHDMIB, PHDMIC, PHDMID

Writes DMI bulk data card images on a F_RTRAN unit for small real matrices.

3.4.70.3 Calling Sequence

CALL PHDMIA - Initializes matrix

CALL PHDMIB Initializes each non-null column

CALL PHDMIC Collect each non-zero term of column

CALL PHDMID Wrap up column

C_MMON /PHDMIX / N(2),C,IFO,TIN,TOUT,IR,IC,N_,KPP,NLP,ERN_,IC_L,IRO,XX

Communication area as follows:

N - Alphanumeric name of matrix, 2A4.

C - Alphanumeric string for continuation chaining, A3.

IF_ - 1 for a square, non-symmetric matrix;
2 for a rectangular matrix;
6 for a symmetric matrix.

TIN - 1 (input to IFP will be single precision).

T_UT - 1 if IFP is to generate single-precision terms.
2 if IFP is to generate double-precision terms.

IR -

IC -

N_ -

Number of rows in matrix, Integer > O.

Number of columns in matrix, Integer > O.

F_RTRAN printer output unit number (if N_ _ O, no printing will be done;
if N_ > O, the card images will be listed on FORTRAN unit NO as well as
"punched").

I, single-field DMI card images will be generated;
2, double-field DMI card images will be generated.

Number of data lines per page.

O, no errors were detected;

I, more than 9999 card images for a single matrix were requested.

Current column number.

Current row number.

Current value of matrix term as a single-precision floating point number.

KPP

NLP

ERNO
(output)

IC@L

IR_

XX

3.4-118 (8/I/72)

UTILITYSUBROUTINEDESCRIPTIONS

3.4.70.4 Method

Tousethis routine, carryout the stepsbelowafter loadingthe commonblock.

I. Foreachmatrix, CALLPHDMIA.All dataitemsin /PHDMIX/ must be loaded except

ERN_ (output), IC_L, IR_ and XX.

2. For each non-null column, do the following:

a. Load IC_L, IR_ and XX with data corresponding to the first non-zero term
in the column.

b. CALL PHDMIB

c. For any other non-zero terms in the column, load IR_ and XX and

d. CALL PHDMIC

e. After all non-zero terms have been processed, CALL PHDMID to wrap up the
column.

Matrices will be punched on single-field DMI cards using a F8.1 format for the element

values if KPP = I; double-field cards wi!! be punched using a !PE!6.8 field if KPP = 2.

3.4.70.5 Design Requirements

A PUNCH file is assumed to exist on FBRTRAN unit 7.

3.4.70.6 Diagnostic Messages

None.

3.4-119 (BII172)

SUBROUTINE DESCRIPTIONS

3.4.71 HEAD (Plot Heading)

3.4.71.1 Entry Point: HEAD

3.4.71.2 Purpose

Creates heading blocks for plot frames.

3.4.71.3 Calling Sequence

CALL HEAD (T,N,L,V)

T Type - 1
2
3

= STATIC

= MODAL
= TRANSIENT

N Deformation Number (0 = undeformed shape)

L - Load Case Identification Number

V - Value of eigenvalue or time.

3.4.71.4 Method

The TITLE, SUBTITLE and LABEL are picked up from /_UTPUT/ and plotted in the lower left hand

corner of the plot frame, followed by the plot identification line.

3.4.71.5 Design Requirements

The plotter software package must be available to this routine.

3.4.71.6 Diagnostic Messages

None.

3.4-120 (8/I/72)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.72 DELSET (Dummy Element Setup)

3.4.72.1 Entry Point: DELSET

3.4.72.2 Purpose

Modifies /GPTAI/ to accommodate any dummy elements present.

3.4.72.3 Calling Sequence

CALL DELSET

3.4.72.4 T_ethod

The ADUMi bulk data card information is picked up from the 46 th thru 54 th words of /SYSTEM/

where it was placed by IFS5P. The desired entries in /GPTAI/ are generated and inserted into the

53 rd thru 61 st positions as required.

3.4.72.5 Design Requirements

All modules using /GPTAI/ should call this routine to insure that the dummy elements are

properly recognized.

3.4.72.6 Diagnostic Messages

None.

3.4-121 (8/I/72)

3.4.73

3.4.73.1

3.4.73.2

SUBROUTINE DESCRIPTIONS

HMAT (Heat Transfer Material Property Utility)

Entry Point: HMAT

Purpose

To obtain material property data for Heat Transfer element routines.

3.4.73.3 Calling Sequence

CALL HMAT (ID,Z)

ID - = O, set up call made by SMAIA;
> O, element identification number on calls made by element routines.

Z - Working core.

3.4.73.4 Method

I. Initialization call (ID = O)

Read into core all MAT4 and MAT5 cards and check for any duplicate identification
numbers.

2. Element Routine calls (ID > O)

If previous call had the same request data, return to the calling routine.
Otherwise, look up the desired material data in core, extract the desired
information, and return to the calling routine.

3.4.73.5 Design Requirements

Working core must be sufficient to hold all of the MAT4 and MAT5 data. Utility routines

PREL_C and BISRCH are used.

3.4.73.6 Diagnostic Messages

Messages 3002, 3008, 2157, 3062 and 2156 may be issued.

3.4-122 (8/I/72)

UTILITYSUBROUTINEDESCRIPTIONS

3.4.74 BISRCH (Binary Search)

3.4.74.1 Entry Point: BISRCH

3.4.74.2 Purpose

To perform a binary search on a list of sorted data.

3.4.74.3 Calling Sequence

CALL BISRCH ($n ID,BUF,L,KN,JP)

n - F_RTRAN statement nun_ber defining the return to be taken in the event
a match is not found.

ID - Word to match with first word of entry.

BUF - Array to be searched.

L Length of each entry of array.

KN Number of entries in BUF.

JP Pointer returned to calling program. This pointer gives Lhe First

word of the matching entry in the array.

3.4-123 (811172)

SUBROUTINE DESCRIPTIONS

3.4.74.4 Method

A standard binary search algorithm is used as shown below:

KHI=K

JP=j

RETURN 1

<0

I JJ=L-I
KLO=I

KHI =KN

J=K*L-JJ

t

i jp=jRETURN

>0

KLB=K

<0 >0

N_ YES I,_

K=KHI

3.4-124 (8/I/72)

3.4.74.5

None.

3.4.74.6

None.

Design Requirements

Diagnostic Messages

UTILITY SUBROUTINE DESCRIPTIONS

3.4-125 (8/I/72)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.75 F_RFIL (File Unit)

3.4.75.1 Entry Point: FORFIL

3.4.75.2 Purpose

To extract the logical unit to which a given GIN@ file name belongs.

3.4.75.3 Calling Sequence

INTEGER F_RFIL

NUNIT = FORFIL(NAME)

NAME GINO file name

3.4.75.4 Method

F_RFIL searches the FIST for the GIN0 file name. When a match is found, the internal unit

number is either /XXFIAT/ or /XFIAT/ and is extracted and returned through the function name

as in integer.

3.4.75.5

None.

3.4.75.6

Design Requirements

Diagnostic Messages

Message 2179 may be issued in the event that the requested GINB file name cannot be

found.

3.4-126 (8/I/72)

SUBROUTINE DESCRIPTIONS

3.4.76 DAD_TB (Double Precision Vector Dot Product)

3.4.76.1 Entry Point: DAD_TB

3.4.76.2 Purpose

To compute the scalar inner product of two vectors in double precision.

3.4.76.3 Calling Sequence

D_UBLE PRECISION DAD_TB, A(3),B(3),C

C = DAD_TB(A,B)

3.4.76.4 Method

C =

3.4.76.5

None.

3.4.76.6

None.

3
AiBi

2=I

Design Requirements

Diagnostic Messages

3.4-127 (8/I/72)

UTILITY SUBROUTINE DESCRIPTIONS

3.4.77 DAXB (Double Precision Vector Cross Product)

3.4.77.1 Entry Point: DAXB

3.4.77.2 Purpose

To compute the vector product of two vectors in double precision.

3.4.77.3 Calling Sequence

DOUBLE PRECISION A(3),B(3),C(3)

CALL DAXB (A,B,C)

3.4.77.4 Method

D :

3.4.77.5 Design Requirements

may overlay A or B in core.

3.4.77.6 Diagnostic Messages

None.

3.4-128 (8/I/72)

SUBROUTINE DESCRIPTIONS

3.4.78 SAD_TB (Single Precision Vector Dot Product)

3.4.78.1 Entry Point: SAD_TB

3.4.78.2 Purpose

To compute the scalar inner product of two vectors in single precision.

3.4.78.3 Calling Sequence

DIMENSION A(3),B(3)

C = SADOTB (A,B)

3.4.78.4

C =

Method

3

AiB i
i=l

Design Requirements

Diagnostic Messages

3.4-129 (8/I/72)

3.4.79

3.4.79.1

3.4.79.2

UTILITY SUBROUTINE DESCRIPTIONS

SAXB (Single Precision Vector Cross Product)

Entry Point: SAXB

Purpose

To compute the vector product of two vectors in single precision.

3.4.79.3 Calling Sequence

DIMENSION A(3),B(3),C(3)

CALL SAXB (A,B,C)

3.4.79.4 Method

3.4.79.5 Design Requirements

may overlap A or B in core.

3.4.79.6 Diagnostic Messages

None.

3.4-130 (8/I/72)

MATRIX SUBROUTINE DESCRIPTIONS

3.5

3.5.1

3.5.1.I

3.5.1.2

MATRIX SUBROUTINE DESCRIPTIONS.

BLDPK (Build a Packed Column of a Matrix).

Entry Points: BLDPK, BLDPKI, ZBLPKI, BLDPKN.

Purpose

To write a column of a matrix in NASTRAN packed format.

3.5.1.3 Calling Sequence

If several different matrices are to be packed concurrently, the multi-column version is

used:

CALL BLDPK(TYPIN,TYP_UT,NAME,BL_CK,_PT,I)

CALL BLDPKI(A,I,NAME,BL@CK,@PT)

CALL BLDPKN(NAME,BL_CK,_PT,MCB)

where:

BLDPK is an initialization call and is made once for each column to be packed.

BLDPKI is the call made to supply a single element of the column to be packed.

BLDPKN is a call to terminate processing of the column.

TYPIN - Arithmetic type of the elements to be packed (l = real single precision, 2 = real

double precision, 3 = complex single precision, 4 = complex double precision)- integer - input.

TYP_UT - Arithmetic type of the elements in the packed column - integer - input.

PT = 'WRITE': GIN file name of data block where packed column will be written.NAME

(_PT 'WRTC_R': An array in core where packed column will be written.

BL_CK - An array of dimension _ 20 for use by BLDPK and BLDPKI.

{'WRITE': The packed column will bewritten by GIN_. IinDut
_PT -

'WRTC_R': The packed column will be written in core. Subroutine name

A - An array of dimension I, 2 or 4 (depending on TYPIN) where the element to be packed is

stored - real - input.

I - Row position of element to be packed - integer - input.

MCB - An array of dimension 7 where the trailer information about the matrix is accumulated.

If only one matrix is being packed, the single column version should be used as it is more

efficient.

C_MM(_N/ZBLPKX/A(4),I

3.5-1 (8/1/72)

SUBROUTINE DESCRIPTIONS

CALL BLDPK(TYPIN,TYPOUT,NAME,O, OPT,O)

CALL ZBLPKI

CALL BLDPKN(NAME,O,BPT,MCB)

where:

BLDPK and its arguments are as defined above.

ZBLPKI is the call made to provide an element of the column to be packed. The element (A),

and its row position (I), are stored in /ZBLPKX/ by the user prior to each CALL ZBLPKI.

BLDPKN and its parameters are defined as above.

Note:

BLDPKN accumulates the following two words of MCB:

MCB(2) = column number

MCB(6) = number of words in the densest column

In the multi-column version, BL@CK must be different for each matrix being packed.

3.5.1.4 Method

Format of a packed column (one logical record):

Row position of first non-zero element

Type of elements = TYPOUT

Not used .Column header

Not used

Not used

First non-zero element

Row position of second non-zero element

or second non-zero element

Last non-zero element

16777215 (integer) = 24 "I" bits

Col umn body

I Column trailer

3.5-2

MATRIX SUBROUTINE DESCRIPTIONS

Example:

Assume a colu_m of a real single precision 19xN matrix is to be packed in real single

precision form:

Row Position Value Packed Format

l 0.0 4

2 0.0 l

3 0.0 Not used

4 l.0 Not used

5 2.0 Not used

6 0.0 l.0

7 3.0 2.0

8 4.0 7

9 5.0 3.0

lO 6.0 4.0

II 7.0 5.0

12 8.0 6.0

13 0.0 7.0

14 0.0 8.0

15 0.0 16777215

16 0.0

17 0.0

18 0.0

19 0.0

For each of the 16 possible combinations of TYPIN and TYPBI_, BLDPK sets switches for the

type of conversion to be used in packing. For the multi-column version, these switches and

other pointers are saved in BL_CK. BLDPKI restores the switches and pointers and moves the

element and its row position to /ZBLPKX/ then enters code common with ZBLPKI. If the element

is zero, an immediate return is given. If the element is the first non-zero element for the

column, the 5-word header is written followed by the element. Otherwise, the row position of

the current element is compared to the row position of the last element. If the difference is

unequal to one, the current row position is written. In either case, the non-zero element is

written and return is made.

3.5-3

SUBROUTINE DESCRIPTIONS

3.5.1.5 Design Requirements

Let lj and lj+ 1 be the rows positions of two elements supplied in successive calls to

BLDPKI or ZBLPKI. Then lj+ 1 > l i for all i of a column.

If BPT : 'WRTCOR', then the block NAME must be initialized prior to each call to BLDPK

(see _PNC_R).

If the single column version is used, subroutine PACK may not be called between calls to

BLDPK and BLDPKN.

MCB(2), MCB(6) and MCB(7) must be set to zero by the user prior to the first call of

BLDPKN for a matrix.

The exact format of a packed column is machine dependent. See Section 5 for details.

3.5-4 (8/I/72)

MATRIX SUBROUTINE DESCRIPTIONS

3.5.2

3.5.2.1 Entry Point: PACK.

3.5.2.2 Purpose

PACK (Pack a Column of a Matrix).

To pack and write a column of a matrix.

3.5.2.3 Calling Sequence

C_N/PACKX/TYPIN,TYP_UT,I,N,INCR

CALL PACK(A,NAME,_PT,MCB)

A - An array where the elements of the column are stored in unpacked form.

(_PT = 'WRITE', GIN_ name of the packeddata block where the column will be

NAME - jwritten.
_PT = 'WRTC_R', an array in core where the packed column will be stored.

IWRITE: Packed c°lumnwill bewritten byGIN_- } Input
OPT tWRTC_R: Packed column will be stored in core at NAME. Subroutine name

MCB - An array of dimension = 7 where the matrix trailer information will be

accumulated.

TYPIN - Arithmetic type of the elements of the column stored at A (l = real single

precision, 2 = real double precision, 3 = complex single precision, 4 = com-

plex double precision).

TYP_UT - Arithmetic type in which the elements are to be in packed form. Same conven-

tion as TYPIN.

I Row position of the element stored at A(1).

N - Row position of the last element in the column stored at A.

INCR - Spacing of the elements in column stored at A in units of elements, e.g., if

real double precision elements are stored consecutively, INCR = I.

3.5.2.4 Method

BLDPK is called to initiate activity for the column. For each element in the column, ZBLPKI

is called to perform packing and writing. BLDPKN is called to terminate activity for the column

and update the matrix trailer.

3.5-5

SUBROUTINEDESCRIPTIONS

3.5.2.5 Design Requirements

See subroutine description for BLDPK, section 3.5.1.

3.5-6

MATRIX SUBROUTINE DESCRIPTIONS

3.5.3 IHTPK (Interpret a Packed Column of a IIatrix).

3.5.3.1 Entry Points: INTPK, INTPKI, ZNTPKI.

3.5.3.2 Purpose

To read and interpret a column of a matrix in NASTRAN packed format.

3.5.3.3 Calling Sequence

If several different matrices are to be read and interpreted concurrently, the multi-column

version is used.

CALL INTPK($n,NAME,BLOCK,OPT,TYP_UT,I)

CALL INTPKI(A,I,NAME,BLBCK,_PT,EOL)

where I_PK is the initialization call and is made once for each column to be read and

interpreted.

INTPKI is the call made to read successive non-zero elements of the column. Each call to

INTPKI returns one non-zero element.

n - FORTRAN statement number defining return to be taken in the event the column is null.

_PT = 'READ', GINO file name of data block where the matrix is stored.
NAME

tOPT 'RDC_R', as array of core storage where the matrix is stored.

BL_CK - An array of dimension _ 20 for use by INTPK and INTPKI.

OPT I'READ' - The c°lumn will be read byGIN_" } Input,
_'RDC_R' - The column will be read from core storage. Subroutine name

TYP_UT - Arithmetic type into which the elements are to be unpacked (+_l= real single

precision, +--2= real double precision, +_3 = complex single precision, +_4 = complex

double precision). If TYP_UT < O, the sign of each non-zero element is to be

changed - integer - input.

A - An array of dimension l, 2 or 4, depending on TYP_UT, where the non-zero element is to be

stored - real - output.

I - Row position of the non-zero element - integer - output.

EOL = l indicates last non-zero element in the column was read on the current call to

INTPKI, =0 otherwise - integer- output.

3.5-7 (8/I/72)

SUBROUTINE DESCRIPTIONS

If only one matrix is to be read and interpreted, the single-column version should be used

as it is more efficient.

C_MM_N/ZNTPKX/A(4),I,E_L,E_R

CALL INTPK($n,NAME,O,OPT,TYP_UT,O)

CALL ZNTPKI

where INTPK and its arguments are defined as above.

Z[ITPKI is the call made to read successive non-zero elements of the column. One element (A),

its row position (I), end-of-column indicator (E_L), and end-of-record indicator (E@R) are stored

in /ZNTPKX/ for each call to ZNTPKI.

E_L is defined as above.

EOR = 1 indicates the end-of-record has been read by ZNTPKI, = 0 otherwise (ZNTPKI buffers

ahead so that E_R will usually be one before EOL is one. E_R is always one when E_L = I).

3.5.3.4 Method

INTPK reads the line header for the column. If @PT exits via RETURN 2, a null column exists

and RETURN 1 is made to the user. Otherwise, for each of the 32 combinations of TYP_UT and the

type of the elements in the cclumn, a switch for pickup and conversion of the elements is set.

For the multi-column version, this switch and other pointers are stored in BL_CK. For the single

column version, one buffer is read. INTPKI restores the switch and pointers and then enters code

common with ZNTPKI. A test is made to determine if a read is necessary (this is almost always

required in the multi-column version since only one element at a time is read). The non-zero

element is picked up, converted if necessary, and stored in /ZNTPKX/. Its row position is stored

in /ZNTPKX/. The next word in the column is now tested (a read being given first if necessary).

If the (integer) absolute value of this number is less than 16777215, the number is the row

position of the next non-zero element. If = 16777215, it is the trailer word and the last non-zero

element has been read. In this case E_L is set to I. If > 16777215, the number is a real number

and the row position of the next non-zero element equals the current row position plus one. For

the multi-column version, A, I and E_L are moved from /ZNTPKX/ to the user, and the parameters are

saved in BL@CK.

3.5-8 (8/I/72)

MATRIX SUBROUTINE DESCRIPTIONS

3.5.3.5 Design Requirements

I. If _PT = RDC_R, the calling module must initialize NAME nrior to each call to INTPK see

_PNC_R (section 3.4.13).

2. If the single column version is used, subroutine UNPACK must not be called during

interpretation of a column, i.e., subsequent to a call to INTPK and prior to a return from ZNTPKI

with EOL = I.

3. The format of floating point words on computers which execute this program must be such

that any non-zero floating point word is larger in absolute value than the integer 16777215.

4. When using the single column version, if the user does not complete interpretation of

the column, he must insure that the remainder of the column is skipped. This may be accomplished

by

IF (E_R.E_.O) CALL FWDREC($n,NAME).

3.5.3.6 Diagnostic Messages

The following messages may be issued by INTPK:

3002

3003

3.5-9 (8/I/72)

SUBROUTINE DESCRIPTIONS

3.5.4 UNPACK (Unpack a Packed Column of a Matrix).

3.5.4.1 Entry Point: UNPACK.

3.5.4.2 Purpose

To read and unpack a column of a matrix stored in NASTRAN packed format.

3.5.4.3 Calling Sequence

CALL UNPACK($n,NAME,A,_PT)

C_N_I_N/UNPAKX/TYP@UT,I,N,INCR

n F_RTRAN statement number defining return to be taken if the column is null.

PT = 'READ', GIN name of data block containing the column to be unnacked.
NAME I

t@PT 'RDC@R', an array where the packed column is stored.

I READ' - c°lumn will be read by GIN_" }
@PT = Subroutine name

RDC@R' - column will be read from core at NAME.

A An array where the unpacked column will be stored.

TYP@UT - Arithmetic type in which the elements are to be stored at A (I = real single

precision, 2 = real double precision, 3 = complex single precision, 4 = complex

double precision). TYP_UT _ 0 means that each of the elements will be stored

with a change of sign.

I - Row position of the element to be stored at A(1).

N - Row position of the last element to be stored at A.

INCR - Spacing of the elements to be stored at A in units of elements, i.e., if

complex single precision elements are to be stored at A(1), A(5), A(7), etc.,

INCR = 2.

Notes:

I. Zeros are stored for zero elements.

2. If I (0 or N _ O, the column is unpacked from the first non-zero element throuqh

the last non-zero element and I and N are set to these row positions.

3. If return to statement n is given, zeros are no__ttstored at A.

3.5-10

n

r,_TRIXSUBROUTINE DESCRIPTIONS

3.5.4.4 Method

Activity for the column is initiated by a call to INTPK. A non-standard return from INTPK

results in an immediate RETURN l to the user. ZNTPKI is called to obtain the first non-zero

element. If its row position is less than I, ZNTPKI is repeatedly called until a row position m I

or end-of-column is found. If the row position of the first non-zero element is greater than I,

zeros are stored for the missing elements. Each non-zero element whose row Dosition is less than

or equal to N is stored and zeros are stored for missina elements. Non-zero elements whose row

positions are greater than N are skipped until the end-of-column is reached.

3.5.4.5 Design Requirements

See subroutine INTPK (see section 3.5.3).

3.5.4.6 Diagnostic Messages

In a coding sense messages 3002 and 3003 are possible. However, they violate the design of

GINB or _PNC_R and therefcre,if obtained, should indicate an obscure program design error or

machine error.

3.5-11

SUBROUTINE DESCRIPTIONS

3.5.5 CALCV (Compute a Partitioning Vector).

3.5.5.1 Entry Point: CALCV.

3.5.5.2 Purpose

To build a partitioning vector of zeros, ones and twos to be used by subrGutines MERGE

and PARTN.

3.5.5.3 Calling Sequence

CALL CALCV(FILEP,SETI,SUBO,SUBI,C@RE)

FILEP - GIN_ file number of partitioning vector - integer - input.

SET1 - Bit position of major set - integer - input.

SUBO - Bit position of zero subset - integer - input.

SUB1 - Bit position of one subset - integer - input.

C@RE - Open core.

C_MM_N/PATX/LCORE,NSUBO,NSUBI,NSUB2,FUSET

LC@RE - Length of open core - integer - input.

NSUBO - Number of rows in zero subset - integer - output.

NSUBI - Number of rows in one subset - integer - output.

NSUB2 - Number of rows in two subset (not in one or zero subset) - integer - output.

FUSET - File name of USET - integer - input.

3.5.5.4 Method

Each element of USET is examined and classified. If it belongs to SET1 it is further

classified into SUBO, SU31, and SUB2.

A vector is constructed which has zeros, ones and twos in order as elements of USET are so

classified.

3.5.5.5 Design Requirements

LC@RE must be _ twice length of GIN_ buffer.

3.5.5.6 Diagnostic Messages

System messages if USET or FILEP are not correct GIN_ files.

3.5-12

MATRIXSUBROUTINEDESCRIPTIONS

3.5.6 PARTN - MERGE (Partition a Matrix - Merge Matricies Together).

3.5.6.1 Entry Point: PARTN, F,_RGE. PARTN and MERGE are two distinct routines but are so

closely related that they are described together here.

3.5.6.2 Purpose

PARTN will break up a matrix into four submatrices.

MERGE is the inverse of PARTN in that given the four buildina blocks AII,...,A22 MERGE

will reconstruct [A].

3.5.6.3 Calling Sequence

CALL PARTN (RP,CP,Z)

CALL MERGE (RP,CP,Z)

RP - Matrix control block of the row partitioning vector - integer - input.

CP - Matrix control block of the column partitioning vector -integer - input.

Z - Array of open core.

If RP(1) _ O, or CP(1) _ O, the core locations from RP(8) or CP(8) will contain this

vector in packed form.

If RP(1) = CP(I) < 0 the arrays RP and CP coincide in core.

C_MM_N/PARMEG/MCBA(7),MCBAII(7),MCBA21(7),MCBAI2(7),MCBA22(7),LC_RE,RULE

MCBA - Matrix control block for [A] - input.

MCBAII - Matrix control block for [All] - input.

MCBA21 - Matrix control block for [A21] - input.

MCBAI2 - Matrix control block for [AI2] - input.

MCBA22 - Matrix control block for [A22] - input.

If any submatrix is not desired or does not exist set MCBAij(1) = O.

LC_RE - Length of Z array - integer - input.

RULE - Rule to be applied to the row and column partitioning vectors - integer - input.

3,5-13

SUBROUTINEDESCRIPTIONS

3.5.6.4 Method

Eachelementof [A] is assignedto the appropriatesubmatrixby the following schemes.

RULE> 0 N: IRULEI

aij _ [All] if RP(1)= CP(J)= N

aij E [A21]if RP(1)= N, CP(J)P N

aij c [AI2] if RP(1)_ N, CP(J)= N

aij c [A22]if RP(1)_ N, CP(J)_ N

RULE_ 0 N= IRULEI

aij _ [All] if RP(1)mN, CP(J)_ N

aij _ [A21]if RP(1)_ N, CP(J)_ N

aij E [AI2] if RP(1)_ N, CP(J)_N

aij _ [A22]if RP(1)_ N, CP(J)< N

SubroutineRULER(RULE,IP,ZCONT,@NCNT,LIST,NR_WP,BUFF,I_PT)is called twice to accomnlish

this assignmentwhere

RULE- Ruletc bcapplied

IP - Either RPor CP

ZC_NT- Numberof elements(rowor column)assignedto the oneclass.

_NCNT- Numberef elements(rowor column)assignedto the twoclass.

Forexample,if RULERis analyzingRPandRP(1)= Nthis elementof RPis said to belongto

the 1 class in that it will goeither to [All] or [A21].

LIST A list of zerosandones. Zero,if the elementbelongsto the oneclass.

One,if the elementbelongsto the twoclass.

NR_WP- Numberof rowsin IP

BUFF OneGIN_buffer space

I@PT If I_PT= I, LISTwill bestored1 numberperword. If I_PT= O, LISTwill be

packed32bits/word.

Non-zero_lementsare read, classified andoutput.

3.5-14

I_TRIX SUBROUTINE DESCRIPTIONS

3.5.6.5 Design Requirements

Open core must contain n GIN_ buffers + l column (single precision) of [A] and l row/32 of

[A], where n = the number of submatrices present plus one.

3.5.6.6 Diagnostic Messages

If insufficient core is available as described above, fatal message 3008 is given.

3.5-15

SUBROUTINE DESCRIPTIONS

3.5.7 SSG2A (Driver for PARTN).

3.5.7.1 Entry Point: SSG2A.

3.3.7.2 Purpose

To partition a vector into two subsets (i.e., to be a driver for PARTN).

3.5.7.3 Calling Sequence

CALL SSG2A(VECT@R,PARTI,PART2,PVECT)

VECTOR - GI_ file number of vector to be partitioned - integer - input.

PART1 - GIN_ file number of major partition - integer - input.

PART2 - GIN_ file number of minor partition - integer - input.

PVECT - GIN_ file number of partitioning vector - inteaer - input.

C_MM_/PATX/XX X, NR_I, NR_!_2

Number of rows in PART1 - integer - input.

Number of rows in PART2 - integer - input.

NR@WI

,_RG)W2

3.5.7.4 Method

3.5.7.5

The PARTN common block is filled.

Based on the trailer of VECTOR and I;ROWI, NR_VI2:

{VECTOR} -->#PARTI_{

Design Requirements

Open core is needed at /SSGA2/.

3.5-16

3.5.8

3.5.8.1

3.5.8.2

SDRIB IDriver for MERGE).

Entry Point: SDRIB

Purpose

To drive MERGE forming VECTOR

MATRIX SUBROUTINE DESCRIPTIONS

PART1 1I"ECT_RI = IPART2 ,

3.5.8.3 Calling Sequence

CALL SDRIB(FVECT,PARTI,PART2,VECT_R,MAJ_R,SUBO,SUBI,USET,I_PT,IYS)

PVECT - GINB name of partition vector - integer - input.

PARTI - GINB name of vector which corresponds to SUBO set - integer - input.

PART2 - GINB name of vector which corresponds to SUBI set - integer - input

VECTOR - GIN_ name of merged vector - integer - input.

MAJOR - Bit position of set of VECT@R - integer - input.

SUBO - Bit position of set of PARTI - integer - input.

SUBI - Bit position of set of PART2 - integer - input.

USET GINB name of USET - integer - input.

I@PT '0'
These are used in a module specific call to
handle the YS data block in a special manner.

IYS - 'O'

3.5.8.4 Method

CALCV is called to obtain partitioning vector.

PARMEG common block is filled.

MERGE is called.

3.5.8.5 Design Requirements

Open core at /SDRBI/.

3.5-17

SUBROUTINE DESCRIPTIONS

3.5.9 UPART ISymmetric Partition Driver).

3.5.9.1 Entry Points: UPART, MPART

3.5.9.2 Purpose

To compute a partitioning vector and then perform a series of symmetric partitions. A

symmetric partition is such that the row partitioning vector equals the column partitioning vector.

For exampl e: FKff Kfs_

[Knn] = _s f Kss]

3.5.9.3 Calling Sequence

CALL UPART(USET,SCRI ,MAJ_R,SUBO,SUBI)

USET GINB File number of USET - integer - input.

SCRI Scratch file on which the partitioning vector will be written - integer - input.

MAJOR - Bit position within a USET word of the super set (e.g., n set in the above

example) - integer - input.

SUBO - Bit position of the first subset (e.g., f set in the above example) - integer -

input.

SUB1 - Bit position of the second subset (e.g., s set in the above example) - integer -

input.

CALL MPART(KNN,KFF,KSF,KFS,KSS)

KNN - GINO name of the matrix to partitioned - inteQer - input.

KFF,KSF,KFS,KSS - GIN_ names of the partition outputs. A zero will cause the respective

matrix not to be written.

3.5.9.4 Method

A call to UPART causes CALCV to compute a partitioning vector.

MPART drives PARTN and is called repeatedly to partition several matrices (i.e. KNN, MNN,

BNN, K4NN) in a similar symmetric manner using the same partitioning vector.

3.5.9.5 Design Requirements

Open core at /UPARTX/.

3.5-18

MATRIX SUBROUTINE DESCRIPTIONS

3.5.10 ADD (Driver for SADD)

3.5.10.I Entry Point: ADD.

3.5.10.2 Purpose

To drive SADD to compute [X] = _[A] + 8[B] or on option [X] = _[A].

3.5.10.3 Calling Sequence

CALL ADD (Z)

Z -- Array of core

C_N/ADDX/MCBA(7),MCBB(7),MCBC(7),TYPA,ALPHA(4),LC_RE,TYPB,BETA(4)

MCBA - Matrix Control Block for [A] - input.

MCBB - Matrix Control Block for [B] - input.

MCBC - Matrix Control Block for [X] - input.

TYPA - Type of Alpha - integer - input.

| - rea| single precision

2 - real double precision

3 - complex single precision

4 - complex double precision

ALPHA - _ - input - type depends on TYPA.

LC_RE - Length of Z array.

TYPB - Type of BETA - integer - input.

BETA - B - input - type depends on TYPB.

3.5.10.4 Method

ADD rearranges and moves /ADDX/ to /SADDX/, and calls SADD

to compute [X] in above equation.

3.5.10.5 Design Requirements

Matrix add routine ADD is replaced by SADD. The revised ADD routine is kept

in the system to accommodate the existing calls to the ADD routine.

However, all future calls to matrix addition should be made directly to SADD.

3.5-19 (611171)

SUBROUTINE DESCRIPTIONS

3.5.11

3.5.11 .I

3.5.11.2

SSG2C IDriver for ADD).

Entry Point: SSG2C.

Purpose

To drive ADD to compute [C] = _[A] + B[B].

3.5.11.3 Calling Sequence

CALL SSG2C (FILEA,FILEB,FILEC,I_P,BLOCK)

FILEA - GIN_ file number of [A] - integer - input.

FILEB - GIN_ file number of [B] - integer - input.

FILEC - GIN_ file number of [C] - integer - input.

I_P - Option flag - integer - input.

IF I_P < 0 the first column of [A] will be added to each column of [B] to

give [C].

BLOCK - ll-word array containing coefficients - input.

Word Type Meanin_

1 Integer Type of

2 Real

3

4

5

6 Not used

7 Integer Type of B

8 Real

9 B

I0

II

3.5-20

MATRIX SUBROUTINE DESCRIPTIONS

3.5.11.4 Method

The trailers of FILEA and FILEB and BL_CK are used to fill the ADDX common block.

The type of FILEC is the minimum type compatible with _[A] and BIB].

3.5.11.5 Design Requirements

Open core at /SSGC2/.

3.5-21

SUBROUTINE DESCRIPTIONS

3.5.12

3.5.12.1 Entry Point: MPYAD.

3.5.12.2 Purpose

To evaluate the matrix equation

D = _ [A] [B] _ [C]

3.5.12.3 Calling Sequence

CALL MPYAD(Z,Z,Z)

MPYAD (Matrix Multiplication Routine).

or D = _ [A] T [B] _ [C].

C_MMON/MPYADX/A(7),B(7),C(7),D(7),NZ,T,SIGNAB,SIGNC,PREC,SCR

Z - An area of working storage.

NZ - The number of computer words at Z.

A,B,C - Matrix control blocks for the matrices A, B, C.

If C(1) = O, C is not used, i.e. [D] = _ [A] [B] or _ [A T] [B].

D - Matrix control block for the product matrix.

D(1) must contain the GIN_ file name prior to entry.

D(5) must contain the arithmetic type of the elements of D. MPYAD will accumulate

D(2), D(6) and set D(7) = O.

T _= O, _ [A] [B] _ [C] is computed.

O, + [A] T [B] _ [C] is computed. J

=I+l, compute +[A] [B] or +[A] T [B]
SlGNAB

, compute -[A] [B] or -[A] T [B]

_+I, use + C
SIGNC

t-l, use - C

Note: If C(1) : O, SIGNC is ignored.

PREC

SCR

, perform arithmetic in single precision

, perform arithmetic in double precision

: GIN_ file name of a scratch file for use by MPYAD.

3.5-22

MATRIXSUBROUTINEDESCRIPTIONS

3.5.12.4 Method

I. GeneralComments.Twoalternative methodsof performingthe matrixmultiplication are

available in MPYAD.MethodOneholdsas manyunpackedcolumnsof the B andDmatricesascore

storagewill allow. TheAmatrix is readinterpretively by INTPK.Foreachnon-zeroelementin

A, all combinatorialtermsfor columnsof B currentlyin corearecomputedandaccumulatedin the

storagefor D. At the completionof onepassof the Amatrix, the matrixproductis completeto

the extentof the numberof columnsof B currentlyin core. (If the Cmatrix is present,columns

are initially unpackedinto the storagefor D.) Theprocessis repeateduntil the B matrixis

exhausted.OneGINObuffer only is requiredfor MethodOne. Thenumberof passesof the A

matrix for MethodOneequalsthe numberof columnsof B dividedby the numberof columnsof B and

Dwhichcanbeheld in coreat onetime. In MethodTwoeither oneelementof B (T = O)or one

columnof B in unpackedform(T = I) is held in coreat onetime, andeither onecolumnof Din

unpackedform(T = O)or oneelementof D(T = I). Theremainingstorageis allocatedto storage

of columnsof A in packedfor,-_(i.e., nonzero_^_ms_:,andr_ p_s_+_onsv._. _nly)v... FOr.....all the columns

of A in storageat onetimethe B andEmatricesarepassed,columnby column,formingpartial

answersoneachpass. TheEmatrix is initially the Cmatrix (if present)andthereafter is the

partial productmatrixfromthe previouspass. ThreeGINObuffers are requiredfor MethodTwo.

It maybeseenthat the Amatrix is passedonceandthe numberof passesof the B andEmatrices

equalsthe numberof columnsof Adividedbynumberof columnsof A that maybeheld in coreat

onetime.

2. Initialization Phase.Thearithmetictypeof the elementsof Dis determinedas a

functionof the typesof A, B andCandthe precisionrequestedby the user. Variouspointers

for bothMethodsOneandTwoarecomputed.A determinationof sufficient corestorageis made

(oneunpackedcolumnof B plus oneunpackedcolumnof Dplus oneGINBbuffer). Theexecution

timesfor MethodsOneandTwoareestimated. Themethodgiving theminimumexecutiontimeis

selectedfor use.

3.5-23 (811172)

SUBROUTINEDESCRIPTIONS

3. Method One. The allocation of core storage for Method One is shown below:

JZB or JZDB------,-

NZZ

NZ

1 dll

d21

d12

d22

d.2

dlr

d2r

d"
nr

bll

b21

bml

b12

b22

bm2

blr

b2r

b'
mr

GINB buffer

Ist column of D (ND words)

2nd column of D

'rth column of D

Ist column of B (NR words)

2nd column of B

r th column of B

3.5-24

MATRIX SUBROUTINE DESCRIPTIONS

Columns of B and C are read and unpacked by UNPACK. INTPK is called to initiate reading and

interpreting the _th column of A (_ = l initially). For each non-zero term in A, ai_ or aci

depending on T, the following arithmetic computations are made:

T = O: dij : ai_ b_j + dij

T _ O: d_j = a_i bij + d_j

where j runs across the columns of B and D currently in core. At the conclusion of a pass of the

A matrix, the columns of D in core are packed and written by PACK. The mrocess is remeated until

the multiplication is complete.

4. Method Two. The allocation of core storage for Method Two is shown on the next page.

3.5-25

SUBROUTINE DESCRIPTIONS

AC_RE

FIRSTL

BUF3

BUF2

BUFI

D-

p.

L
v

v

NZ-----_

Storage for one column of
D or B

No. n.z. termslRow pos. of

in string i Ist n.z. term
I

Non-zero terms

i
No. n.z. termsiRow pos. of
in string i Ist n.z, term

I

Non-zero terms

No. strings in Ist col. of A
Pointer to Ist col. of A

GIN_ buffer

GINB buffer

GINO buffer

I ND or NB

First string

Last string

Column definition
words - backward
stored

D Matrix

A & B Matrices

C Matrix

3.5-26 (8/I/72)

MATRIX SUBROUTINE DESCRIPTIONS

To begin each pass of Method Two, as many columns of A that can be held in core are read using

INTPK and stored in core in strings. Each string consists of a string definition word followed by

consecutive terms of a column such that no two consecutive terms are zero. For each column there

exists a pair of column definition words -- one points to the first string in the column and the

other defines the number of strings in the column. The number of passes is determined by the size

and density of the A matrix.

The following operations are performed for the nontranspose case:

I. UNPACK is called to unpack the next column of C into the D matrix area.

2. INTPK is called to read the non-zero terms of the corresponding column of B.

3. MPY2NT is called to perform the operation dik = aij bjk + Cik . Each non-zero element

of B (bjk) will confine with all non-zero elements in the jth column of A and add to the

corresponding elements in the kth column of D in core.

4. When all columns of A in core are complete, the column of D is packed and written by

PACK.

5. When all columns of B and C are complete, a test for completion of the multiplication

is made.

6. If incomplete, the C and D files are switched and the process described above is

repeated.

The following operations are performed for the transpose case:

I. UNPACK is called to unpack the next column of B into core.

2. INTPK is called to read the non-zero terms for the corresponding column of C.

3. BLDPK is called to initiate the packing of a column of D.

4. MPY2T is called to perform the operation dik = _aij bjk

core.

+ Cik for each row of A in

5. Th? elements of D are packed using ZBLPKI.

6. When all columns of B and C are complete, a test for completion of the multiplication

is made.

7. If incomplete, the C apd D files are switched and the process described above is re-

peated.

3.5-27 (8/I/72)

SUBROUTINE DESCRIPTIONS

If, after completion of Method Two, there has been an even number of passes of the B matrix,

FILSWI is called to switch the D matrix from a scratch file to its assigned unit.

3.5.12.5 Auxiliary Subroutine MPYQ

l •

2.

Entry Points: MPYI, MPY2NT, MPY2T.

Purpose: MPYQ is called once per execution of MPYAD. It performs general

initialization for each of the other entry points.

MPYI, MPY2NT, and MPY2T perform the inner loops for Method One, Method Two

(non-transpose), and Method Two (transpose) respectively. For efficiency these

routines are written in assembly language for each of the machines.

3.5.12.6 Auxiliary Subroutine FILSWI

I •

2.

Entry Point: FILSWI

Purpose: Auxiliary subroutine to switch unit reference numbers in /XFIAT/ in the

event that the product matrix in Method Two ends up on a scratch file (even number

of passes of B matrix).

3.5.12.7 Design Requirements

Core storage must be sufficient to hold one unpacked column of B plus one unpacked column of

D plus one GIN_ buffer.

The matrices to be multiplied (and added) must have compatible dimensions. MPYAD does not

check this.

3.5.12.8 Information Messages

CONMSG is called at entry and at exit from MPYAD. Consequently, the line xxxxx MPYAD will

appear twice for each call to MPYAD (where xxxxx = time in seconds). The difference is the

execution time for MPYAD.

MPYAD method selection data is printed under control of DIAG 19.

2102 LEFT-HAND MATRIX ROW P_SITION OUT _F RANGE - IGNORED.

A term in the A matrix whose row position is larger than the stated dimension was detected

and ignored.

3.5-28 (8/I/72)

MATRIXSUBROUTINEDESCRIPTIONS

3.5.12.9 Diagnostic Messages

The following messages may be issued by MPYAD:

3001

3002

3008

3.5-28a (8/I/72)

3.5.13

3.3.13.1

3.5.13.2

or

I,_TRIXSUBROUTINE DESCRIPTIONS

SSG2B (Driver for MPYAD).

Entry Point: SSGZB.

Purpose

To drive MPYAD to compute

[D] = L [A] [B] L [C]

[D] = _[A] T [B] _ [C]

3.5.13.3 Calling Sequence

CALL SSG2B(FILEA,FILEB,FILEC,FILED,T,PREC,ISIGN,SCRI)

FILEA - GINB name of [A] - integer - input.

FILEB - GIN_ name of [B] - integer - input.

FILEC - GINB name of [C] - integer - input.

FILED - GINB name of [D] - integer - input.

T - Transpose flag - integer - input.

T - O implies use [A]

T = l implies use [A]T

PREC - Precision of computation - integer - input, l = real single precision,

2 = real double precision, 3 = complex single precision, 4 = complex double

precision.

ISIGN - Sign of products - integer - input.

Isign [AB] = sign (ISIGN)

ISIGN = _ 1 :>(sign [C] sign (ISIGN)

IISIGNi_l =>+ [AB] - [C]

IISIGN I < 1 =>- [AB] + [C]

SCRI - GIN_ scratch file - integer - input.

3.5.13.4 Method

SSG2B fills /MPYADX/ and calls MPYADto compute [D] in above equation.

3.5.13.5 Design Requirements

Open core at /SSGB2/.

3.5-29

SUBROUTINE DESCRIPTIONS

3.5.14 SDC_rlP (Symmetric Decomposition).

3.5.14.1 Entry Point: SDCOMP.

3.5.14.2 Purpose

To decompose a real symmetric matrix [A] into the form [A] = [L] [D] [L] Twhere [L] is a

unit lower triangular matrix and [D] a diagonal matrix stored in place of the unit elements on

the diagonal of [L]. On option, the Cholesky decomposition [A] = [C] [C] T is done for a real,

positive definite matrix, with only the lower triangle [C] bein9 output.

the determinant of [A].

3.5.14.3 Callin? Sequence

CALL SDC_MP($n_,Z,Z,Z)

COMM_N/SFACT/A(7),L(I),C(7),SCRI,SCR2,NZ,DET,P_WER,CNLSKY

A(7) Matrix control block for [A].

L(7) Matrix control block for [L].

C(7) - Matrix control block for [L] T or [C].

SCRI, SCR2 - Two scratch files.

NZ

DET

SDC_MP will also compute

- The number of computer words at Z.

- Double precision cell where the scaled value of the determinant of [A] will

be stored.

P_VER - Scale factor to be applied to DET (Determinant = DET*IO**P_!,fER).

CHLSKY - When CHLSKY = I, form [C]

An area of working storage.

Statement number to which control is transferred if the decomposition fails.

Z

nl

3.5.14.4 Method

I. _lathematical Considerations. Any non-singular real symmetric matrix [A] can be uniquely

decomposed into the factors [A] = [L] [D] [L] T. The elemer:ts of [D] and [L] are given by:

i-I

d i = aii - r. _'ik dk
k=l

3.5-30

_TRIX SUBROUTINE DESCRIPTIONS

j-l

Cij = [aij - kZ=l Lik dk "tjk]/dj

2. General Comments. Interpretation of the above equations identifies that element _ij is

composed of products of the elements in the ith row of [L] times the _lements in the jth row of

[L] times the diagonal elements of [D] (Figure l). Also, element Cij affects only the elements in

the ith row or the ith column of [L], (Figure 2).

The above considerations indicate the means of optimizing the decomposition process to her-

form only the necessary operations and to keep elements in core only as long as needed. As an

example, if [A] was strictly banded, with a bandwidth of B, then the inner product calculation of

Cij extends only to the band as all other terms are zero (Figure 3). Also in this example, all

terms of [L] in column 5 affect only the elements inside the triangle. As soon as these terms

are computed, column 5 need not be held in core. The optimum algorithm for banded matrices would

be to hold the triangular portion of the band in core, compute terms corresponding to the first

column, output the first column, and move the triangular area down the band (Figure 4).

In practice, however, structural matrices are not strictly banded, but semi-banded with c

few scattered terms existing outside the band. The basic algorithm remains the same excent that

the terms outside the band (active elements) must be handled in an analogous manner to those

inside the band (band elements). This creates a rectangular storage area for the _ctive rows

(rows of [L] which co_tain at least one active element) plus a second traingular area for terms

arising out of interactions between active rows. The storage requirements are shown in Figure 5.

Given a matrix [A], SDCOMP will determine the optimum combination of B (bandwidth), and

C (number of active rows) by estimating the time required to decompose [A] for all combinations

of B and C and choosing the pair corresponding to the minimum time.

Figures 6, 7, and 8 show how storage is allocated to various operations.

3.5-31

SUBROUTINEDESCRIPTIONS

lO

I

,..,..,

___ 0
:::

\
\

\
\

0,_ I_

\

\
Figure I. Computation of element _ij:

,_o.o:[a_o._-'IO.__'0,_-'_o,_._....',o._°,'_,,J/_

F
\
\

":':'.'.'.';":'::'":i:i:!iiii:i [iii!i!iiiil i!i_ili!:!

_i,i

.%

li:i:li:i:i

Figure 2. Affect of element _ijo

3.5-32

MATRIX SUBROUTINEDESCRIPTIONS

I0

)iii)iii)i_iiiiii!)iiiiiiiiiii)i)liiiii)iii_)i!iiiii
)i)iii!iiii)iiii!iiiiil)iiiiiiiiiiilili!iiiil)lliii!!)ii

',',',Jiiii'_ii'_:',',i',',',',iii{_',i',ii!i'_',_!_,','_i'_!'_!'_iii!',ii':l

ii!_!i!_i',ii',',ii',i',lii',',',',i)ii_'_iii'?_ii_

i_i::iiiiiilii',iiiili!_i',',ii',!!',li',',.',...J_...._
iliiiiiii!liliiii!iiiliiii_ilililliiii|i,#_

Figure 3. Computation of element _ij (banded matrix):

o,:[°_o.o-_,o._._o.q/_

B

!i!iiiii!ili_ii!iiiiii!iiiiiiiii!ii!iiiiii)

_ii)i)iiiii'i!iiiiiililiiiiii!!

ii!',iiiii_i

Figure 4. Core storage require_nts for a banded r_atrix.

3.5-33

SUBROUTINE DESCRIPTIONS

,,,,_,_,,,,,_,_,_,_,_iiiiiiii!ii_iiiiiiiiii_iiiiiiiiii
•:':':':':_'_'_'_!i :::::::i:i:!

o o o o o _i_i|_i_i_i_i_I_i_i_i_i_i_i1_i_._

i_i!i_!!iii!i!i!!:i_i!ii_!ii!ii_!ii!_ii_I_ii_i!iii!i:i!i_iii:iiIi!ii_!ii_!iiiiii_!_!_iii!!_i!_ii!_ii!_

Figure 5. Core storage requirements for a matrix v,it, _, active rows.

3.5-34

MATRIX SUBROUTINEDESCRIPTIONS

I Storage for the partially computed elements of [L] that are within the band.

II Storage for a completed column of [L].

III Storage for the next column of [A] to be read in.

IV Storage for the partially computed elements of [L] that are outside the band.

V Storage for intermediate results computed from interactions between active rows.

_--12

B
II

i

r-123

I I ! Z",,
,llr! !\

B-1 I
I

I SPILL C

r I\

; If\

½
14SP-_ _ 14

A___' V

C

V--

,qm

B

I
IV
I

I
B+I

pLU_I;IS

-t

L
v I--- c----I

Figure 6. Definition of storage areas.

3.5-35

SUBROUTINE DESCRIPTIONS

B iiiiiii
!iii_}
i:i:!:!

ii!!i!i

iiiiiii

i_!_}iiiiiiii
!iiiiiiiiiiiii_
:::::::i!iiiii
:!i?}ii!i!!i!i
::::::::}:i:i:}
::::;::

iiiiiii

X 0

X

_iiiiiii_iiiiii!l_
iiiiiiiliiiiiiiil__'_'_....... !ii:!:!

iiii!iii_i_i_ii_iiiiiiii_

,,-<

0 0 X

0 0 0

X 0

:::::::

:::::::

}}!_i
i:i:i:i

/

D

0

0

0

.:.:.:.

>:.:.: ,......

•:.:.: >:.:.:

[I J

V --°'

0 0

0 0

0 0

!_!_!!i::_::i::ii_il
i_#i;i_iil}ili_i)

>:,:.>>: >:.x.

..... .>:.>:
i!i_iiiiii::::::::

:::::::::
........

0 0 0

0 0 0

oio o

I

11

i!i!iiiii!!iii!i!i!!iiiiiiii
:.:.:.:.: :.:.:.:.:..:.:.:.:.

............ ,:.:.:.:.
::::::::: :::::::::: :.:.:.:.:

o }_}iiii_i;i
::;:;::;:

0 0 0

0 0 0

.:.:.:.:.:, .:.:.:.:

:.:.:.:.:. :.:.:.:.

:::::::::::i:i:i:i
.;.:.>:.:

:i:i:!:i:i:!:!:!:!

.....

...... •

i!iiiiiiii!iiiiiiii|_

}:!:!:!:::!}:!:}:1::!:1i1::::::.:.:.:.:.

;:;:::::::: ::::::::::!:::: :::::::::: ::::::::: ::::::::::

::::. i,i.11i}iii

.......iliii?ili',ii',iil
i'i'i'i'i

__ __ ____ :}:i:i:i:i

i_i!ili_i_!ililiiiiii_

!!i!i!i!i!
ili_iiiiili_i_ili_iiI_i_i_i_iiiiliiiiiiiiiiiliiiiiiiiiifiiiiiit_

Figure 7, Location of storage areas within the matrix,

3.5-36

MATRIX SUBROUTINE DESCRIPTIONS

11

I3

14

15

12

NZ

Ill

IV

II

UNUSEDCORE

I/O BUFFERS

Figure 8. Location of storage areas within core.

3.5-37

SUBROUTINE DESCRIPTIONS

(1)

(2)

(3)

(4)

(5)

ENTER

Initialize
Parameters

I
Make I/0 Pass on [A]
to Generate the B vs. C
Vector and Copy [A]
onto an Alternate File

Obtain the Optimum
B and C. Compute R

Allocate Core

I
Fill the Initial Tri-
angle (Area I). Use a
Scratch File for Columns
ifR>B-1

J

YES

Read Band Portion
of the Next Column
of [A] into Area Ill

Process the

Final Triangle
(ll)

NO

Generate the CHOLESKY
Matrix [C] (13)

Figure 9.(a) SDCO_iP prograr,l flow

(1 2)

REWRITE [L]

3.5-38

MATRIX SUBROUTINE DESCRIPTIONS

C = O? YES C=O?

(6) Active Row

YES

Add Column of

Interaction Elements

(Area V) into Area IV

I
Merce Active Row

(Area IV) into
Area III

I

Reduce the Size of |

the Interaction

Triangle

Read Active Element

Portion of the Next

Column of [A]

NO

C7)

I Add Element into I
Existing Row (Area IV)

Create New Row

in Area IV

l
Expand Interaction

Triangle for New Row

Figure 9.(b) SDC_iIP program flow

3.5-39

SUBROUTINE DESCRIPTIONS

(8)

(9)

Y
Move the First Column of

Area I into Area II and

Divide by the Diagonal

I

Move First Column of J

Active Elements (Area IV) Iinto Area II

Compute Interactions
Between Active Elements

and Add them into

Area V

Add Contributions of the J

Current Pivitol Column J

into Area I,Moving it Up

as You Proceed

Add Terms to the Active
Rows (Area IV) and

Move It Up

(I0) Write Out Completed
Column of [L] (Area II)

Bump Column Counter

Figure 9.(c) SDCOilP program flow

3.5-40

MATRIX SUBROUTINE DESCRIPTIONS

3. Program Flow. The flowchart in Figure 9 gives the logical flow of SDC_MP. The following

are comments expanding on certain areas of the flowchart:

(1) Allocate buffers, initialize determinant, and write header records.

(2) A vector is generated containing the nu_er of active rows for varying bandwidths.

The matrix [A] is copied onto an alternate file for use during the decomposition.

(3) The estimated time for decomposition is computed for each combination of B and C.

The B and C corresponding to the minimum time is picked. R, the number of columns

which can be held in core, is also co_uted at this time.

(4) Pointers to the various areas of core shown in Figure 6 are computed as a function

of B, C and R.

(5) The banded portion of the first B-l columns of [A] are read into Area I. If R _ B-l,

columns are written on a scratch file.

(6) As the decomposition proceeds, active rows gradually merge into the band. This

means a column from Area V will merge into Area IV and a row from Area IV will

merge into Area III. When this occurs, the current nu_er of active rows decreases

by one and the size of the interaction triangle is reduced.

(7) As active elements corresponding to the next column of [A] are read in, they are

either added to an already existing active row, or a new active row must be created.

Whenever a new row is created, indices are stored identifying the row, the active

element is stored in Area IV, and the interaction triangle is expanded to accomodate

the added row.

(8) As a column emerges from the triangle in Area I, it is a completed column of [L].

(9) Before the column can be output, all terms involving this column must be computed

and stored. These intermediate terms are stored in either Areas I, IV, or V, denend-

ing where the elements are located.

(lO) A column of [L] can be output. All areas of temporary storage have been updated.

Areas I, IV, and Ill have all moved over one column relative to their previous

position in the matrix.

3.5-41

SUBROUTINEDESCRIPTIONS

(ll) Whenall columnsof [A] havebeenreadin, all active rowshavemergedandonlyArea

I exists. This final triangle is processedto completethe computationof [L]. If

spill exists, as morecoreis madeavailablebycolumnsof [L] beingoutput,addi-

tional columnsof the spill file are readin.

(12) Thefile containing[L] is nowcomplete.Anadditional file is createdwith the

columnsof [L] written in the reverseorder. This generatesa pseudoupnertri-

angularmatrix that is usedby FBSfor the solution of a set of equations.

(13) If CHLSKYwasset, [L] is read, the diagonaltermpickedup, eachcolumnis

multiplied bythe squareroot of the diagonal,andthe resulting [C] matrix is

output.

Auxiliary Subroutines

SubroutineName:L_P

Purpose:Tocomputethe inner arithmeticloopof SDCOMP.

3.5.14.6 DesignRequirements

Theinput matrix [A] shouldbewell conditionedor positive definite as the decomnositionis

donewithoutpivoting.

CorestoragerequirementsdeDendon the parametersBandC. Fora givenB andC, AreasII,

Ill, IV, andVmustreside in corealongwith a minimumof twocolumnsof AreaI and5 GINBbuffers.

3.5.14.5

Files containing [L] and [L] T

standard NASTRANformat.

3.5.14.7

l •

should be used as input only to FBS as they are not in

Information Messages

C@NMSGis called at entry and exit from SDCBMP. The line

xxxx SDC_MP

will appear twice per decomposition. The execution time of SDC_MPwill be the difference in the

times (where xxxxx = time in seconds).

3.5-42

MATRIXSUBROUTINEDESCRIPTIONS

2. Message3023givesthe valuesof the parameters,B, C, andRchosenfor the decomposition.

3. Message3027givesthe estimatedtimein secondsto do the decomposition.

4. Message3024indicatesthat a matrixhasscatteredtermswayoff the diagonal(i.e., a

largebandwidth). Insteadof searchingall combinationsof BandC, the searchis started

at the maximumbandwidth.

3.5.14.8 DiagnosticMessages

I. If SDC_MPwasunableto find a combinationof B andCwhichwouldmeetcore restrictions,

fatal message3008occurs.

2. In a codingsense,message3025is possible. However,it violates the designof SDC_MP

andtherefore, if obtained,shouldindicateanobscureprogramdesignerror, or machineerror.

3. Message3026indicatesthat sufficient spacewasnot reservedfor the generationof the

B vs. Cvector. SDC_MPshouldbe recompiledto increaseBMAXandCMAX.

3.5-43(8/I/72)

SUBROUTINE DESCRIPTIONS

3.5.15 DECAMP (Unsymmetric Matrix Decomposition)

3.5.15.1 Entry Point: DECAMP

3.5.15.2 Purpose

To decompose a real square matrix [A] into the form

[a] = [L][U]

(where [L] is a unit lower triangular matrix, and [U] is an upper trianaular matrix), using

partial pivoting within the lower band.

3.5.15.3 Calling Sequence

CALL DECAMP ($n,X,X,X)

C_MM_N /DC_MPX/ A(I),L(7),U(I),SCR(3),DET,P_WER,NX,MINDIA,B,BBAR,C,CBAR,R

n

X

A

L,U

SCR(3) -

DET -

P_WER -

NX

MINDIA -

Statement number to which control is transferred if [A] is singular.

An area of core available to DECAMP.

Matrix control block for the input matrix [A] (if A(1) < O, avoid

re-writing [U] in reverse order).

Matrix control blocks for the output matrices [L] and [U].

GINO file names for three scratch files - integer.

Double precision cell where the scaled value of the determinant of [A]

will be stored.

B,BAR, 1

C,CBAR,

R

(i)

Scale factor to be applied to DET (det([A]) = DET * IO**P@WER).

Number of computer words available at X.

Double precision word where the value of the minimum diagonal of [U] is

stored.

Integer values describing the upper and lower semi-bandwidths, number of active

rows and columns and number of columns of [L] held in core, used to decompose

[A]. (If B, BBAR = O, GENVEC is called to compute the parameters before de-

composing [A]. If B, BBAR # O, the given parameters are used for decomposition).

3.5-44 (8/I/72)

MATRIX SUBROUTINE DESCRIPTIONS

3.5.15.4 Method

l. Mathematical Considerations: By expanding Equation l, introducing element notation,

and forming the multiplication, we can solve for the elements of [L] and [U]. These

equations are given by:

j-l

_ij = [ai.i- k_l _ik Ukj]/uij' i > j (2)

i-l

uij = aij - Z _ik Ukj , i < j (3)
k=l

2. General Comments: The implementation of the abov_ ecuations is accomplished with

several constraints in mind. The decomposition proce Jre is optimized such that the

minimum number of operations is performed, with the minimum amount of core used. To

accomplish this, the elements of the input matrix [A] are separated into two groups:

terms inside the band (band elements), and terms outside the band (active elements).

Also, pivoting is used only within the lower band to avoid unnecessarily filling the

matrix with non-zero terms.

Since, in practice, structural matrices tend to be semi-banded with scattered terms

existing outside the band, this division of the matrix should optimize the decomposition

process. Several parameters are generated to describe this division. B is defined as

the upper bandwidth, n as the lower bandwidth, C is defined as the number of active

columns, and C as the number of active rows, where an active column is defined as a column con-

taining one or more active elements above the diagonal, and an active row contains one or more

active elements below the diagonal. Corresponding to these parameters, several storage areas

are defined to hold the various parts of the matrix. The description and location of these

areas are given in Figures l, 2 and 3. A flow chart for DECAMP is given in Figure 4.

The storage areas in

I Storage for

II Storage for

III Storage for

IV Storage for

V Storage for

VI Storage for

VII Storage for

Figures I, 2, and 3 are defined as follows:

the completed columns of [L] still required for computation.

the current column being computed.

active column elements.

active row elements.

elements created by interactions between active row and column elements.

indexes identifying active columns.

indexes identifying activ) rows.

3.5-45

SUBROUTINEDESCRIPTIONS

lISP

11

l

I

+ 1

R

\

II

IPAK

V

13SP----

-_+1

2
2-ff+B

C _J,

I,I

IIIIIIII

i

I

Vl VII

C/2 C/2

Figure I. Definition of storage areas for DECO;IP.

3.5-46

MATRIX SUBROUTINE DESCRIPTIONS

B

iilili -i_iiiiiiii

,-°°.°.,

,'.:.:.:
,.-.-.:.

i::iii::o o o
iiii!iii--iiio o o
ii_iiiiiiiiiii::i_iiiiio o o
ii:i-i_iiiiilii!iiiiiiii..-..:i,:o o o
iii!iiii:__:_:::.:.:._iiiiii::_i-iii:jo o
!iiiiiii-ii!i!i*!:i:_.o:.:..,!i!iiiiiii_iiiiiiiiiiio
!iii!!ii_iiilii!ili_ili:,iiiiiii::i-_i!iiiiiii-!_i!
•:-:-:..;-:.;< r.:.'.',ll;i;i:i_-:i:!_.i.i!iil:i?iiiliii_iiii:::_::::?_:_:_

li!!::ii_!_iill_ iii-::i_i::ii::i._ii_i_

i_!_iii-_iil_ i!iiiii

I-- _i_C. :;;

\

X

0 II 0

0 0 I 0 X

0 0 0 _ 0 0

.::..:::::_::-':::-'n_ 0 0 0 1 0

i::':"::;:::::.'.,i'.".."_o o o olo
,.._.:._-,,---.;::i:::i:-ii!ii-,!!.:.-"_io o _ o!o
®iii"i_ii_io o o o
'-'.'-'-.....,::-::- {_i :':_ 0 0

......i_iioo o
;__:-'_:::_:_:!Ii-_i::iiiii::_ii_!iio o.....:.,, ;_-:-_:.:_-'_.....

_i :o°o';'I ,-°-°-°-,

'_o _i ":':':'__il i:i:i:i:i!;_.i_! :.:.:.:,:!::::::_i_!.!!iiii::x o o o o ooo o _i_i _...Jl
x o o o o o o o oFi!::iii_iiiiiiK';i_.--:_',-_.__"-'.-----.':"

,.-..... _......_ .:-.:.'

x o o o o o o o o o :i!!iiiii_ii!i_iiiiii_ii

III

Figure 2. Location of storage areas within the matrix

3.5-47 (311171)

SUBROUTINEDESCRIPTIONS

12

13

14

15

16SP

17SP

NZ

II

III

IV

Vl

Vll

UNUSED CORE

I/0 BUFFERS

Figure 3. Allocation of core for DECAMP

3.5-48

MATRIX SUBROUTINE DESCRIPTIONS

(1)

(3)

(4)

(B)

ENTER

Initlallze IParameters

. YES

@NO
Pick the Optimum
B,B,C,C,R (GENVEC)

Initialize Pointers
to Various Core
Areas

Transpose the
Active Column
Terms (TRANSP)

(2)

Solve a Matrix of
Order 1 or 2

(_NETW_)

RETURi_

YES

(6)

Generate Active Columns I
Corresponding to Active l.__
Elements in the First |
B + 1 Rows of [A] |

Figure 4.(a) DECgMP program flow

3.5-49

SUBROUTINE DESCRIPTIONS

(7)

(8)

(9)

(I0)

(ll)

ES

Read Band Portion of
A into Area Ill

Read Active Row
Terms into Area IV

NO

Add Active Column

(Area III) into Area I!
Acld Interaction Terms

(Area V) to Area IV.

!

Operate on the Current)

IColumn of [A]by All lPrevious Columns of [L]

Compute the Elements
for Active Rows

(22)

Finish Outputing

Columns of [L],
Re-write [U]
(FINWRT)

RETURN

(12)

ISearch the Lower Band of 1

_Area II for the Maximun _ _a_

"IElementand Interchange i
IRows to Move it to the I
JDlagor_1 .

Figure4.(b) DECAMP Program flow

3.5-50

MATRIX SUBROUTINE DESCRIPTIONS

(13)]

(14)

(15)

(16)

(17)

(18)

?
Interchange Active
Column Elements and
Add in Terms from
Last Column of[L]

Output Column of [U]
Plus Active Column
Terms

Compute Active Row-
Column Interaction
Elements

Move Elements in

Area Ill One Row Up

Output Column of [L]

'4oveElements of Area
Over One Column. Add
Lower Band of Area II
to Area I

Move Elements of
Area IV Over One
Column

Read Next Row of
Active Column
Elements

(19)

(2o)

Zero Area II

Merge Interaction
Elements into Area III
if Necessary

(21)

Figure 4.(c) DECAMP program flow

3.5-51

SUBROUTINE DESCRIPTIONS

3. Program Flow: The flow chart in Figure 4 gives the logical program flow of DECOMP.

The following comments expand on certain portions of the flow chart:

(1) Allocate buffers, initialize the determinant, and write header records.

(2) If the order of [A] is l or 2, subroutine _NETW_ is called to handle the

decomposition.

(3) If B and B are input as zero, GENVEC is called to pick the optimum parameters

for decon_position.

(4) The pointers into the various areas of core shown in Figure l are computed.

(5) If there exist active elements in the upper triangle, TRANSP is called to

transpose these elements.

(6) Active columns are initialized for all columns having an active element

within the first B + l rows of [A].

(7) The band portion of the next column of [A] is read into Area II.

(8) Any active elements occurring below the diagonal in the current column are

added into existing active rows, or new active rows are created.

(9) When an active column merges into the band, a column from Area III is added

into corresponding positions in Area II, and a column of interaction elements

in Area V is added to the active row terms in Area IV.

(lO) The current column of [A] in Area II is operated on by the columns of [L]

stored in Area I.

(ll) Terms corresponding to active rows not yet merged into the band are added into

Area II.

(12) The lower band portion of Area II is searched for the maximum element. Rows

are interchanged to bring it to the diagonal position, and the interchange

index is stored in Area I.

(13) Active columns elements are interchanged corresponding to the interchange

within the band. If a column of [L] is about to be output (i.e., B +

columns of [L] are stored in Area I_ terms arising from that column are added

into the active columns.

3.5-52

_TRIX SUBROUTINE DESCRIPTIONS

3.5.15.5

(14) The column of [U] from Area II plus a row of active column terms in Area III

are output.

(15) If active rows and columns exist, terms arising from their interaction are

computed and added into Area V.

(16) Elements in the active columns are moved up one row position in Area Ill to

replace the output elements, and make room for a new row.

(17) The first column of [L] in Area I is written out if Area I is full. The

active row elements belonging to that column are also output.

(18) The columns of [L] in Area I are moved over one column and the lower band

portion of Area II is stored in Area I.

(19) Active rows in Area IV are moved over one column.

(20) The next row of active elements in the upper triangle of [A] is read.

Elements are added to existing active columns, or new columns are created.

(21) When possible, a row of interaction elements in Area V is merged into the

bottom row of active column elements (Area III).

(22) After processing all columns of [A], FINWRT is called to complete the

outputting of [L] and to re-write [U].

Auxiliary Subroutine TRANSP

I. Entry Point: TRANSP

2. Purpose: To do an in-core transpose of the active elements occurring outside the band

and in the upper half of the matrix (i.e., transpose all elements aij such that j - i >_B).

3. Calling Sequence: CALL TRANSP (X,X,NX,A,B,SCRFIL)

X

NX

A

B

SCRFIL -

An area of core available to TRANSP.

Number of words available at X.

GIN_ file containing the input matrix [A] - integer.

Upper bandwidth of matrix [A].

GIN% file where transposed elements are stored.

3.5-53

SUBROUTINE DESCRIPTIONS

4,

the upper triangle are stored in core, along with their row and column position.

is then searched and elements output in transposed order.

Method: The input matrix [A] is read, and all elements occurring outside the band in

This list

3.5.15.6 Auxiliary Routine _NETW_

Entry Points: @NETW_,FINWRT

Purpose: @NETW@is a separate routine whose sole responsibility is to solve matrices

I °

2.

of order one or two.

FINWRT is a section of code separated from DECAMP due to compiler overflow. Its

function is to finish outputting the remaining columns of [L] and to re-write the columns

of [u].

Auxiliary Subroutine GENVEC

Entry Point: GENVEC

Purpose: To pick the optimum B, B, C, C, and R for a given matrix [A].

Calling Sequence: CALL GENVEC ($nI,BUF,A,NX,X,N,B,BBAR,C,CBAR,R,IENTRY)

Statement to which control is transferred if a null column is discovered

in [A].

- Location of a GINB buffer.

- GIN_ file containing the input matrix [A].

- An area of core available to GENVEC.

- Number of words of core available at X.

The order of the matrix [A].

lnteger output parameters giving the optimum values for the upper and lower

-_bandwidths, the number of active rows and columns, and the number of columns
I
_of [L] held in core.

I_ 1 implies DECAMP called GENVEC.- 2 implies CDC_MP called GENVEC

The following logic flow gives the means by which the optimum bandwidths are

3.5.15.7

I.

2.

3.

n I

BUF

A

X

NX

N

B,BBAR,

C,CBAR,

R

IENTRY

4. Method:

chosen.

3.5-54

I.tATRIXSUBROUTINE DESCRIPTIONS

A. Locate extreme non-zero terms

I. Initialize active column list to zero. The length of the list is equal to the

maximum value of the upper bandwidth (B) that is of interest.

_ lO5

(Bmax NM B , or the order of the problem, whichever is less, where N is the order of

the matrix and MB is the arithmetic time in _ seconds for performing one multiply and

one add.

2. Initialize the column list to zero. The length of the list is the order of

the problem.

3. Locate the non-zero elements in the next column of the matrix.

4. Insert the column number of all non-zero elements in the correct row oosition

of the column number list with the following constraints:

a. Consider only elements in the lower triangle.

b. Do not insert column numbers in row positions already occupied.

5. Insert the row number of the non-zero element located in the lowest numbered

row into the column position of the row number list for the current column under

consideration.

6. Return to step 4 until all columns of the matrix have been processed.

B. Determine active columns

I. Zero counter E

Set Counter F to N-l

Set Counter G to N-l

Set Counter H to 2

2. Beginning with the last entry in the row number list, subtract the current

value of counter H, and test for a negative sign. If negative, increment counter

E by one.

3. The current value of counter E is the number of active columns when the upper

bandwidth is equal to the current value of counter F. Compare counter E with the

existing entry in the active column list for the bandwidth indicated by counter F.

Update the active column list if counter E is greater than the existing entry.

4. Decrement counter F by one. Return to step 2 unless counter F is zero.

3.5-55

C.

D°

SUBROUTINE DESCRIPTIONS

3.

4.

5.

6.

7.

8.

5. Decrement counter G by one. Increment counter H by one. Set counter F to the

value of counter G. Zero counter E. Return to step 2 unless counter G is zero.

6. The final active column list contains the maximum number of active columns for

bandwidths of unity through the maximum upper bandwidth investigated.

7. Prepare reduced active column list by extracting pairs - minimum B and

associated C for unique values of C.

Determine active rows for given B and

I. Extract pairs (row number, L, and column number, K) from the column number

list for which

L-K>_

2. Consider a new list of pairs consisting of K and L + B. For each pair

(K, L + B) determine the number of remaining pairs (Ki, (L + B) i) for which

Ki < L + B and (L + B) i >__K

3. The maximum number of pairs satisfying the relation in step 2 for any single

pair is C for the given B and B.

Select B, B, C and _ for Minimum Decomposition Time

I. Select the next value of B and associated C from the reduced active column

list (begin with maximum B of interest).

2. Assume B = _ and C = C.

Calculate R and T with preliminary timing equations.

Save the minimum T and the associated B and C.

Return to step 1 unless all entries in reduced active column list have been used.

If the matrix is unsymmetric use B and C from step 4 and set _= B.

Determine C for a given B and B.

Calculate R and T with the preliminary timing equations.

9. Compare with the previous minimum T.

3.5-56

3.5.15.9

I.

2.

3.

4.

MATRIX SUBROUTINE DESCRIPTIONS

lO. If the new T exceeds the previous minimum by more than 20% or B = maximum B

of interest go to 12.

II. Save the minimum T along with associated B, _, C and _. Increment _ by 2% of

the B associated with minimum T and go to 7.

12. Return to B = B.

13. Decrement B by 2% of the B associated with minimum T and determine the

associated C.

14. Calculate R and T with the preliminary timing equations.

15. Compare with the previous minimum T while decrementing _.

16. If the new T exceeds the previous minimum by more than 20% or B = 2 go to 18.

17. Save the minimum T along with associated B, B, C and _ and go to 13.

18. Save values of B, B, C and _ associated with the minimum value of T from

upsearch and downsearch on B: for use in decomposition.

Auxiliary Function FINDC

Entry Point: FINDC

Purpose: To find the number of active rows (_) for a given B and _.

Calling Sequence: CALL FINDC (B,BBAR,N,X,Y,CBAR)

B

BBAR -

N

X

Y

CBAR -

Method:

Upper bandwidth - integer.

Lower bandwidth - integer.

Order of the problem.

Column number list.

Scratch vector.

The number of active rows, C.

See step C in the GENVECmethod.

3.5-57

SUBROUTINE DESCRIPTIONS

3.5.15.10 Auxiliary Routine TIMEEQ

I. Entry Points: T,TFIN,RC_RE

2. Purpose: To compute the preliminary and final timing equations for decomposition,

and to compute the core allocation function.

3. Calling Sequences: CALL T (B,BBAR,C,CBAR,R,IENTRY,N,TIM)

CALL TFIN (B,BBAR,C,CBAR,R,IENTRY,N,TIMEX)

CALL RC@RE (B,BBAR,C,CBAR,N,IENTRY,NX,R)

B,BBAR Upper and lower bandwidths, number of active rows and columns.
C,CBAR, -

I_ _ implies entry was from DECAMP.IENTRY - implies entry was from CDC_MP.

N The order of the problem.

TIM Floating point value for the preliminary time.

TIMEX Floating point value for the final timing equation.

NX Number of core words available to DECAMP or CDC_MP.

R The number of columns of [L] that can be held in core (output by RC_RE,

input to T and TFIN).

4. Method: The following equations are evaluated to give'the desired output.

A. Core Function

R = (NX - ((B + B + I) + 2*IENTRY*MINO(N,B + B + B) +

2*IENTRY*C*(B + 2) + 2*C*IENTRY*(MINO(B + B,N) + I) +

2*IENTRY*C*C + C + C*IENTRY + C) - 6*SYSBUF)/(2*IENTRY*B)

B. Preliminary Timing Equation

TIM - N [MBBR + Mc(BC + BC + BC + 2CC) + IB(B + B - R - I)]
106

where

MB = Arithmetic time in _ seconds for one term inside the band.

Mc = Arithmetic time in _ seconds for one term in the active row or
active column.

(4)

(5)

3.5-58 (12-I-69)

MATRIX SUBROUTINE DESCRIPTIONS

where

I = I/_ time in _ seconds for one term.

C. Final Timing Equations

TIMEX is a function of Tl, T2, T3 and T4 as defined below (P = matrix

packing time in _ seconds for one term),

Tl is given by:

Tl = K1 [MBBR + IB(B + B - R) + P(B + 2_)] , (6)

where

Kl = I_ - B- 2_ ' if N- B- 2_ > 0
, ifN B 2_<0 .

T2 is given by:

K2
t2 = _- [BK2MB + (K3 - R)(I - MB)_ + 2PB + PK2] ,

(7)

(8)

if N _ B + 2B; otherwise,

K2 = K3 = B + (9)

and

K2 = N-B , (I0)

where

K
3

T3 is given by:

T
3

Ii + B if N_B +BifN<B+B

: _-M8+ I+P_K 5

(ll)

(12)

D
K4 = B +B - R , ifB - R <_0

,ifB R>O
(13)

3.5-59

3.5.15.11

and

ifN>B+2B.

and

l °

2.

i n DECAMP.

Otherwise,

T4 is given by:

Finally,

SUBROUTINE DESCRIPTIONS

T =

4

K5 = B +{B ,

Ii - R , if N - R<BK4 =
,IfN R>B

K5 : N

(N - B)[Mc(BC + BC + BC + C_) + P(C + _)] .

TIMEX = (T 1 + T2 + T3 + T4)I0-6

where TIMEX is the total estimated time for decomposition.

Auxiliary Subroutine DL_@P

Entry Points: DL@OP,DDL@@P,XL@_P

Purpose: To improve efficiency of F_RTRAN generated code for several loops

3.5.15.12 Design Requirements

Core storage requirements depend on the parameters B, B, C and C.

(14)

(15)

(16)

(17)

(18)

Areas II, III, IV, and V

must reside in core at all times, along with a minimum of two columns of Area I, and five GINO

buffers. GENVEC is designed to pick the combination of B, B, C, and _ such that the nroblem

will allocate if at all possible.

The file containing [U] is not in standard format, as the active column terms are stored

out of place. For this reason [L] and [U] should be used as input only to GFBS or an associated

routine.

3.5-60

MATRIX SUBROUTINE DESCRIPTIONS

3.5.15.13 Information Messages

I. C_NMSG is called at entry and exit from DECOMP., The line

XXXX DECOMP

will appear twice per decomposition. The actual execution time of DECQMP will be the

difference in the times (where XXXX = time in seconds).

2. 3023 B = XXX C = XXX R = XXX

3028 BBAR = XXX CBAR = XXX R = XXX

These messages give the parameters chosen for the decomposition.

3. 3027 DECQMP_SITIQN TIME ESTIMATE = XXX

Gives the estimated time for the decomposition in seconds.

3.5.15.14 Diagnostic Messages

Fatal error massages 3008 and 3025 may occur.

3.5-61

SUBROUTINE DESCRIPTIONS

3.5.16 CDC_MP (Complex Matrix Decomposition)

3.5.16.i Entry Point: CDC_MP

3.5.16.2 Purpose

To decompose a complex square matrix [A] into the form [A] = [L][U] where [L] is a

unit lower triangular matrix and [U] is an upper triangular matrix.

3.5.16.3 Calling Sequence

CALL CDCOMP ($nI,X,X,X)

C_MM_N /CDCMPX/ A(I),L(7),U(I),SCR(3),DET(2),P@WER,NX,MINDIA,B,BBAR,C,CBAR,R

n 1

X

A

L,U

SCR(3)

BET(2)

P_WER -

NX

MINDIA -

B,BBAR,

C,CBAR, -

R

Location in calling program where control is transferred if [A] is sinqular.

An area of working storage.

Input matrix control block for [A].

Output matrix control blocks for [L] and [U].

Three scratch files available for use.

Two double precision words where the real and imaginary values of the

determinant are stored.

Scale factor to be applied to the determinant (det ([A]) = DET*IO**P_WER).

Number of computer words at X.

Double precision word where the modulus of the minimum diagonal element

of [U] is stored.

lf B : BBAR = O, compute and store B,BBAR,C,CBAR,R before decomposing [A].If B or BBAR # O, use previously stored values of B,BBAR,C,CBAR and R for

decomposing.

3.5-62

MATRIXSUBROUTINEDESCRIPTIONS

3.5.16.4 Method

CDCOMPis simplya copyof DECOMPwith the arithmeticstatementsreplacedbycomplex

arithmetic. Pointersto storageareasweremodifiedto accommodatethe extra wordsneeded.

3.5.16.5 Auxiliary SubroutineCTRNSP

Purpose:Complexversionof TRANSP(seeSection3.5.15.5).

3.5.16.6 Auxiliary SubroutineCOM12

Purpose:Complexversionof BNETW_(seeSection3.5.15.6)

3.5.16.7 Auxiliary RoutineCLOOP

Inner looproutine.

3.5.16.8 Auxiliary RoutineCXLOOP

Inner looproutine.

3.5.16.9 DesignRequirements

Seesubroutinedescriptionsfor DECAMP,Section3.5.15.

3.5.16.10 DiagnosticMessages

Seesubroutinedescriptionsfor DECOMP,Section3.5.15.

3.5-63 (811172)

SUBROUTINE DESCRIPTIONS

3.5.17

3.5.17.1 Entry Point: FBS.

3.5.17.2 Purpose

FBS (Forward - Backward Substitution).

Given the decomposition of a real symmetric matrix [A] = [L] [D] [L] T FBS will perform the

forward-backward pass necessary to solve the system of linear equations [A] [X] = [B].

3.5.17.3 Calling Sequence

CALL FBS(Z,Z)

C(_MMON/FBSX/L(7) ,U(7) ,B(7) ,X(7) ,NZ,PREC,SIGN

L,U Matrix control blocks for the lower and upper triangular factors output #rom

SDC(_MP.

B,X - Matrix control blocks for the matrices [B] and [X].

NZ - Number of computer words at Z.

_I, perform arithmetic in single precision.
PREC

2, perform arithmetic in double precision

s° ve=
, solve [A] [X] -[B].

Z - An area of working storage.

3.5.17.4 Method

Mathematical Considerations. Given the unit upper and lower triangular matrices [L] and

[L] T, with the diagonal matrix [D] stored over their diagonals, FBS solves the two systems of

equations given by

[L] [Y] = +[B]

and

[L]T [X] : [D]-I[Y]

3.5-64

MATRIX SUBROUTINE DESCRIPTIONS

Elements [Y] and [X] are given by

i-I

Yij = bij -kZ=l£ik Ykj

n

xij = Yij/di -kZ=i+l£kixij

Program Flow. Overall program flow is identical to that of GFBS (see Section 3.5.19). The

only difference in the two routines is that FBS uses the decomposed matrices output from SDC_MP,

while GFBS uses those output by DECAMP. Likewise, the computed equations differ slightly.

3.5.17.5 Auxiliary Subroutine FBSDP

l °

2.

3.

4°

3.5.17.6

I.

2.

3.

.

Entry Point: FBSDP

Purpose: Inner loop routine for double precision forward and backward substitution.

Calling Sequence: CALL FBSDP (X,Y,N,M)

D_UBLE PRECISION X(1),Y(1),A

COMM_N /ZNTPKX/ A

X - Input vector/output vector
Y - Input vector
N - Loop limit
M Skip Index

Method: Xi = Xi - AYi, i = I(M)N

Auxiliary Subroutine FBSSP

Entry Point: FBSSP

Purpose: Inner loop routine for single precision forward and backward substitution.

Calling Sequence: CALL FBSSP (X,Y,N,M)

DIMENSION X(1),Y(1)

COMM_N IZNTPKXI A

X Input vector/output vector
Y Input vector
N Loop limit
M Skip Index

Method:

xi = Xi- AYi, i = l('1)N

3.5-65 (8/I/72)

MATRIX SUBROUTINE DESCRIPTIONS

3.5.17.7 Design Requirements

One column of [B] and one GIN_ buffer must fit in core.

3.5.17.8 Diagnostic Messages

See GFBS (Section 3.5.19).

3.5-65a (8/I/72)

SUBROUTINEDESCRIPTIONS

3.5.18 SSG3A IDriver for FBS).

3.5.18.1 Entry Point: SSG3A.

3.5.18.2 Purpose

To solve [A] [X] = [B] using [A] = [L] [L] T. On option to compute the residual matrix

[RES] = [A] [X] - [B].

3.5.18.3 Calling Sequence

CALL SSG3A(FILEA,FILEL,FILELT,FILEB,FILEX,SCRI,SCR2,1RES,FILER)

FILEA - GIN_ file name of [A] - integer - input.

FILEL - GIN_ file name of [L] - integer - input.

FILELT - GIN_ file name of [L] T - integer - input.

FILEB GIN_ file name of [B] - integer - input.

FILEX GIN_ file name of IX] - integer - input.

SCRI GINB name of scratch file - integer - input.

SCR2 GIN_ name of scratch file - integer - input.

IRES - Option for residual vector - integer - input. IRES = 0 suppresses calculation

of residual vector.

FILER - GIN_ file name of residual vector - integer - input.

3.5.18.4 Method

/FBSX/ is set to compute [A] [X] = [B].

SSG2B is called to compute [RES] : [A] [X] - [B] (see section 3.5.17.3).

For each column of [X], {Xi}, c i is computed.

_i = {xi}T{RESi}/{Bi}T{xi }

3.5.18.5 Design Requirements

Open core at /SSGA3/.

3.5-66

MATRIX SUBROUTINE DESCRIPTIONS

3.5.19

3.5.19.1 Entry Point: GFBS.

3.5.19.2 Purpose

GFBS (General Fo_vard - Backward Substitution).

Given the decomposition of a general square matrix [A] = [L] [U], GFBS will solve the system

of equations [A] IX] = [L] [U] IX] = _ [B]

3.5.19.3 Calling Sequence

CALL GFBS (Z,Z)

COMMON/GFBSX/L(7),U(7),B(7),X(7),NZ,PREC,ISIGN

L,U,B,X - Matrix control blocks for the matrices [L], [U], [B], and [X].

X(5)

NZ

PREC

ISIGN

Z

3.5.19.4 Method

- Desired output type for [X].

- Number of computer words available at Z.

O, use single precision arithmetic
J

_2, use double precision arithmetic

_ {I_:solve [A] IX] =+_[B].
, solve [A] [X] : -[B].

- An area of working storage.

I. Mathematical Considerations. Given [L], [U] (n by n lower and upper triangular

matrices) and [B] (an by m matrix) GFBS solves the two systems of equations

ELI EY] = _ [B]

and

[U] IX] = [Y]

3.5-67

SUBROUTINE DESCRIPTIONS

Elements of [Y] and [X] are given by

i-I

= _ hik Ykj (I)Yij bij k=l

n

xij = [Yij - Z (2)b=i+l uik Xkj]/uii

2. Initialization Phase. The type of arithmetic to be performed is computed as a function

of the type of [L], [B], and the precision requested by the calling routine. Corresponding

transfer vectors are set up to transfer control to the proper arithmetic computation. Core

storage is filled with as many columns of [B] as possible.

3. Forward Pass. The intermediate values of [Y] are computed directly over the columns of

[B] currently in core. This is a forward pass on [L] since it is read sequentially forward.

Interpretation of Equation l shows that Ylj is complete after the first column of [L] has been

read, Y2j after column 2, etc. Elements of [L] are read one at a time via INTPK and the

appropriate term subtracted off.

4. Backward Pass. Elements of [X] are computed by processing [U] in the reverse order.

Reading the last column of [U] completes Xn, j, the n-l column of [U] gives Xn_l, j, etc. In order

to facilitate tile reading ef [U], it was written in the reverse order by DECAMP, allowing a

forward pass to be made in actuality.

5. Output Phase. The finished columns of [X] are packed and output via PACK. If more

columns of [B] still exist, core is once again filled with vectors of [B] and the process

repeated until all columns of [X] have been computed.

3.5.19.5 Design Requirements

At least one column of [B] must be unpacked in core, along with one GINB buffer.

3.5.19.6 Diagnostic Messages

If insufficient core is available for GFBS, fatal message 3008 occurs.

If a diagonal term does not exist for a column of [U], fatal message 3005 occurs. This is

noramlly detected in DECAMP implying care was not taken in processing singular matrices in the

calling routine calling DECOMP.

3.5-68

MATRIX SUBROUTINE DESCRIPTICNS

3.5.20

3.5.20.1

3.5.20.2

S_LVER (Simultaneous Equation Solution Routine).

Entry Point: S_LVER.

Purpose

To perform the following three functions:

I. Solve [A] [X] = -[B] for X where A is a real symmetric matrix which has been

decomposed by SDC_MP.

2. Evaluate the matrix equation [E] = [D] + [B]T [X]

3. On option, compute

c : E]_L[_LL

]tED]II

3.5.20.3 Calling Sequence

CALL S_LVER(L,U,X,B,D,E,EPS,FLAG,SCR)

where:

L,U are the GINB file names of the data blocks containinq the lower and umDer trianaular

factors of A, respectively.

X is the GIN_ file name of the data block where the solution matrix will be written.

B is the GINB file name of the data block containing the right hand matrix in [A] [X] = -[B]

D,E are the GIN(_file names of the data blocks in Equation (2) above.

EPS is the real single precision result of the division in Equation (3).

SCR is the GINB file name of a scratch file for use by S(_.LVER.

FLAG_ O, compute _ from Equation (3)above and store in EPS

O, do not compute E

/S(_LVRX/is open core for S_LVER

Note:

I.

2.

L must be output from subroutine SDC_MP.

If D = A, then E is the error residual matrix.

3.5-69

SUBROUTINE DESCRIPTIONS

3.5.20.4 Method

/FBSX/ is initialized and FBS is called to solve [A] [X] = -[B].

/MPYADX/ is initialized and MPYAD is called to compute [E] = [D] + [B] T [A]. FLAG is

tested. If FLAG = O, return is made. Otherwise, INTPK is called to unpack and interpret each

non-zero term of E. The cumulative sum of the absolute value of all non-zero terms of E is

formed in double precision. This operation is then performed on D. Finally E is the division

of these two quantities and is stored in EPS in sinQle precision.

3.5.20.5 Design Requirements

/S_LVRX/ must be inserted at the end of the overlay segment containing S@LVFR.

3.5.20.6 Diagnostic Messages

The following system fatal message may be issued by S_LVER:

3001

3.5-70

MATRIX SUBROUTINE DESCRIPTIONS

3.5.21

3.5.21.I

3.5.21.2

DMPY {MultiplX a Diagonal Matrix bX an Arbitrary Hatrix).

Entry Point: DMPY.

Purpose

To pre or post multiply an abritrary matrix [B] by a diagonal matrix, i.e. [C] = [D][B] or

[C] = [B][D].

3.5.21.3 Calling Sequence

CALL DMPY(Z,Z)

C_I_ON/DMPYX/D(7),B(7),C(7),NZ,FLAG,SIGN

Z - An area of working storage.

)_ - The number of computer words at Z.

D - Matrix control block for the diagonal matrix.

B - Matrix control block for the general matrix.

C - Matrix control block for the product matrix.

C(1) must contain the GIN_ file name prior to entry.

C(5) must contain the arithmetic type of the elements of C.

DMPY will accumulate C(2) and C(6) and set C(7) = O.

C(3) and C(4) may be set by the user before or after the call.

_= O, pre-multiply B by D.
FLAG m

O, post-multiply B by D.

_+l, form positive product.
SIGN

t-l, form negative product.

3.5.21.4 Method

The type of arithmetic is determined (real or complex). The elements of the diagonal

matrix, D, are unpacked at Z. INTPK is used to read and interpret the non-zero elements of B,

column by column. The following equations are used:

Pre-multiplication: cij = dibij

Post-multiplication: cij = bijdj

3.5-71

SUBROUTINE DESCRIPTIONS

3.5.21.5 Design Requirements

Double precision arithmetic is used throughout.

The amount of core at Z must be sufficient to hold the unpacked diagonal terms of D and

two GIN_ buffers.

The dimensions of D and B must be compatible although this is not checked.

3.5.21.6 Diagnostic Messages

The following system fatal messages may be issued by DMPY:

3001

3002

3.5-72

MATRIX SUBROUTINE DESCRIPTIONS

3.5.22

3.5.22.1 Entry Point: ELIM.

3.5.22.2 Purpose

ELIM (Perform a Matrix Reduction).

To perform a matrix reduction on the structural model by computing the matrix equation:

[Kii] = [-Kii] + [_i]T[Gj] + [Gj]T[Kji] + [Gj]T[_Kjj][Gj]

3.5.22.3 Calling Sequence

CALL ELIM(KIIB,KJIB,KJJB,GJ,KII,SCRI,SCR2,SCR3)

where KIIB, KJIB, KJJB, GJ and KII are the GINB file names of each of the matrices in the

above equation. SCRI, SCR2 and SCR3 are GINO file names of three scratch files used by ELIM.

Open core for ELIM is defined by /ELIMX/.

3.5.22.4 Method

FIIM computes the above matrix eq,,ationby three successive calls to MPYAD: These are as

follows:

[SCRI] = [_j] [Gj] + g[ji]

[SCR2] = [_i]T [Gj] + [_i]

= [Gj]T [SCRI] +[Kii] [SCR2]

3.5.22.5 Design Requirements

/ELIMX/ must be included at the end of the segment in which ELIM resides.

3.5-73

SUBROUTINE DESCRIPTIONS

3.5.23

3.5.23.1

3.5.23.2

FACTOR (Decompose a Matrix Into Trianqular Factors).

Entry Point: FACTOR.

Purpose

To decompose a symmetric matrix into its two triangular factors.

3.5.23.3 Calling Sequence

CALL FACTOR (A,L,U,SCRI,SCR2)

where A, L, U are the GINO file names of the data blocks for the symmetric matrix to be

decomposed, its lower triangular factor and its upper triangular factor, respectively. If U is

negative, FACTOR will decompose the symmetric matrix [A] on file A such that

[A] = [C][C] T ,

where the Cholesky decomposition is used. [C] will be written on U as a lower triangular matrix.

L will contain the lower triangular factor of a standard non-Cholesky decomposition. SCRI and

SCR2 are GIN_ file names of two scratch files for use by FACTOR. The common block /FACTRX/ is

open core for FACTOR.

3.5.23.4 Method

FACTOR initializes /SFACT/ and calls SDC_MP to accomplish the decomposition.

3.5.23.5 Design Requirements

/FACTRX/ must be included at the end of the segment which contains FACTOR.

3.5.23.6 Diagnostic Messages

The following system fatal message may be issued by FACTOR:

3005

3.5-74 (12-I-69)

MATRIX SUBROUTINE DESCRIPTIONS

3.5.24 TRANPI (Driver for TRNSP).

3.5.24.1 Entry Point: TRANPI.

3.5.24.2 Purpose

To drive TRNSP to compute [B] = [A]T.

3.5.24.3 Calling Sequence

CALL TRANPI(FILEA,FILAT,NSCRTH,SCRI,SCR2,SCR3,SCR4,SCR5,SCR6,SCR7,SCRS).

FILEA - GIN_ name of [A] - integer - inDut.

FILAT - GIN_ name of [A]T integer - input.

NSCRTH- Number of scratch files - integer - input.

SCRI, ... , SCR8 - GIN_ names of scratch files - integer - inoJt.

3.5.24.4 Method

/TRNSPX/ i_ _t ha_d on the trailer of F!LEA=

3.5.24.5 Design Requirements

Open core at /DTRANX/.

3.5-75

SUBROUTINE DESCRIPTIONS

3.5.25 TRNSP (flatrix Transpose).

3.5.25.1 Entry Point: TRNSP.

3.5.25.2 Purpose

To compute [A] T given [A].

3.5.25.3 Calling Sequence

CALL TRNSP(Z)

Z - Array of core.

C_MM@N/TRNSPX/MCBA(7),MCBAT(7),LC_RE,NSCRTH,SCR(8)

MCBA - Matrix control block for [A] - input.

MC3AT Matrix control block for [A] T - input.

LC_RE - Length of Z array - integer - input.

NSCRTH - Number of scratch files available - integer - innut.

SCR - List of GIN_ names of scratch files - integer - input.

3.5.25.4 Method

Three methods are possible:

1 _- NSCRTH _-8.

Method 1 - In-core matrices.

If the full matrix can be held in core, [A] is unpacked into core, and packed

out onto [A] T.

Method 2 - Simple sub-matrices.

The matrix [A] is broken up one column at a time into submatrices. The submatrices

are written on scratch files, read in and transposed one at a time. The break-un of

[A] can be pictured as follows:

[A] :

SCRATCH 1

SCRATCH 2

SCRATCH 3

etc.

3.5-76

MATRIX SUBROUTINE DESCRIPTIONS

If insufficient scratch files are available to hold [A], multiple passes may be n;ade

Method 3 - Multiple passes on submatrices.

If multiple passes on [A] are necessary in Method 2, it may be more efficient to

create larger submatrices and pass each submatrix several times rather than several

passes on [A]. The break-up of [A] can be pictured as follows:

[A] =

C_RE L@AD l

_ _C_RE £eAD_2

CeRE LBAD 3

u

I

> C_RA!C] _

i.......

ISCRATCH 2

C_RE L_AD 4

etc.

TRNSP will choose between the methods to minimize running time.

3.5.25.5 Design Requirements

rlethods 2 and 3 require at least one scratch file.

Neither [A] nor [A]T may be purged.

One unpacked column of [A] and NSCRTH+I GIN_ buffers must fit into core.

3.5.25.6 Diagnostic Hessages

A message indicating insufficient core is produced if the third of the above requirements

is not satisfied. Either reduce the number of scratch files or increase the open core

available to TRNSP.

3.5-77

SUBROUTINEDESCRIPTIONS

3.5.26 SADD (Matrix Addition Routine)

3.5.26.1 Entry Point: SADD

3.5.26.2 Purpose

To compute [X] = _[A] + B[B] + y[C] + 6[D] + _[E]

3.5.26.3 Calling Sequence

CALL SADD (Z,Z)

Z -- Array of core

COMMON/SADDX/NOMAT,LCORE,MCBA(7),TYPA,ALPHA(4),MCBB(7),TYPB,

BETA(n),MCBC(7),TYPC,GAMMA(4),MCBD(7),TYPD,DELTA(4),

MCBE(7),FYPE,EPSLN(5),MC(7)

NOMAT - Number of matrices to be added - integer - input.

LCORE - Length of Z array - integer - input.

MCBA - Matrix Control Block for [A] - input

TYPA - Type of ALPHA - integer - input

l - real single precision

2 - real double precision

3 - complex single precision

4 - complex double precision

ALPHA - _ - input - type depends on TYPA

MCBB - Matrix Control Block for [B] - input

TYPB - Type of BETA - integer - input

BETA - B - input - type depends on TYPB

MCBC - Matrix Control Block for [C] - input

TYPC - Type of GAMMA - integer - input

GAMMA - y - input - type depends on TYPC

MCBD - Matrix Control Block for [D] - input

TYPD - Type of DELTA - integer - input

DELTA - 6 - input - type depends on TYPD

3.5-78 (611/71)

MATRIX SUBROUTINE DESCRIPTIONS

MCBE - Matrix Control Block for [E] - input

TYPE - Type of EPSLN - integer - input

EPSLN - c - input - type depends on TYPE

MC - Matrix Control Block for [X] - input

3.5.26.4 Method

The type of arithmetic is determined to be the maximum type of [A], [B], [C],

[D], [E], _, B, y, 6, e.

Initially a column of [X] is zeroed out. Each non zero element of [A] is obtained

by ZNTPKI, multiplied by _, and added into a corresponding position of [X]. After

processing a complete column of [A], columns from matrices [B], [C], etc., are treated

in a similar manner. When the contribution from the last matrix has been added in,

a complete column of [X] is output via PACK. This procedure is repeated until all

columns of IX] are output.

3.5.26.5 Design Requirements

Z must be sufficient to hold one unpacked column of [X] plus n GIN_ buffers

(where n = N_MAT+I).

3.5-79 (6/I171)

SUBROUTINE DESCRIPTIONS

3.5.27

3.5.27.1

RSPSDC (Real Single Precision Symmetric Decomposition)

Entry Point: RSPSDC

3.5.27.2 Purpose

To decompose a real symmetric matrix [A] into the form [A] = [L] [D] [L] T where [L] is a

unit lower triangular matrix and [D] is a diagonal matrix stored in place of the unit elements on

the diagonal of [L]. On option, the Cholesky decomposition [A] = [C] [C] T is done for a real,

positive definite matrix, with only the lower triangle [C] being output. RSPSDC will also compute

the determinant of [A].

3.5.27.3 Calling Sequence

CALL RSPSDC ($nI,Z,Z,Z)

C_MM_N/SFACT/A(7),L(7),C(7),SCRI,SCR2,NZ,DET,P_WER,CHLSKY

A(7) Matrix control block for [A].

L(7) Matrix control block for [L].

C(7) Matrix control block for [L] T or [C].

SCRI, SCR2 Two scratch files.

NZ The number of computer words at Z.

DET Double precision cell where the scaled value of the determinant of [A] will
be stored.

P_WER - Scale factor to be applied to DET (Determinant = DET*IO**POWER).

CHLSKY - When CHLSKY = I, form [C]

Z An area of working storage.

nz Statement number to which control is transferred if the decomposition fails.

3.5.27.4 Method

The method used by RSPSDC is identical to that used by SDC_MP (Section 3.5.14) except that

all computations are done in single precision.

3.5.27.5 Auxiliary Subroutines

Subroutine Name: RSPL_

Purpose: To compute the inner arithmetic loop of RSPSDC.

3.5-80 (8/I/72)

MATRIXSUBROUTINEDESCRIPTIONS

3.5.27.6 DesignRequirements

Theinput matrix [A] shouldbewell conditionedor positive definite as the decompositionis

donewithoutpivoting.

Corestoragerequirementsdependon the parametersB andC. Fora givenB andC, AreasII,

III, IV, andVmustreside in corealongwith a minimumof twocolumnsof AreaI and5 GIN_buffers.

Files containing[L] and[L]T shouldbeusedas input only to FBSastheyare not in standard

NASTRANformat.

InformationMessages

C_NMSGis calledat entryandexit fromRSPSDC.Theline

xxxxRSPSDC

will appeartwiceperdecomposition.Theexecutiontimeof RSPSDCwill be the differencein

the times(wherexxxxx= timein seconds).

2. Message3023givesthe valuesof the parameters,B, C, andRchosenfor the decomposition.

3. Message3027givesthe estimatedtimein secondsto do the decomposition.

4. Message3024indicatesthat a matrixhasscatteredtermswayoff the diagonal(i.e., a

largebandwidth). Insteadof searchingall combinationsof B andC, thesearchis started

at the maxi_lumbandwidth.

3.5.27.8 DiagnosticMessages

I. If RSPSDCwasunabieto find a combinationof B andCwhichwouldmeetcore restrictions,

fatal message3008occurs.

2. In a codingsense,message3025is possible. However,it violates the designof RSPSDC

andtherefore, if obtained,shouldindicateanobscureprogramdesignerror, or machine

error.

3. Message3026indicatesthat sufficient spacewasnot reservedfor the generationof the

B vs. Cvector. RSPSDCshouldbe recompiledto increaseBMAXandCMAX.

3.5-81 (8/i/72)

SUBROUTINE DESCRIPTIONS

3.5.28 CSPSDC (Complex Single Precision Symmetric Decomposition)

3.5.28.1 Entry Point: CSPSDC

3.5.28.2 Purpose

To decompose a complex symmetric matrix [A] into the form [A] = [L] [D] [L] T where [L] is a

unit lower triangular matrix and [D] a diagonal matrix stored in place of the unit elements on

the diagonal of [L]. CSPSDC will also compute the determinant of [A].

3.5.28.3 Calling Sequence:

CALL CSPSDC

CALL SDC@MP($nl,Z,Z,Z)

C_MM_N/SDCCSP/A(7),L(7),C(7),SCRI,SCR2,NZ,DET,POWER,CHLSKY

A(7) Matrix control block for [A].

L(7) Matrix control block for [L].

C(7) Matrix control block for [L] T or [C].

SCRI, SCR2 - Two scratch files.

NZ The number of computer words at Z.

DET Double precision cell where the scaled value of the determinant of [A] will
be stored.

POWER Scale factor to be applied to DET (Determinant = DET*IO**P_WER).

CHLSKY When CHLSKY = I, form [C]

Z An area of working storage.

nl Statement number to which control is transferred if the decomposition fails.

3.5.28.4 Method

The method used by CSPSDC is identical to that used by RSPSDC (Section 3.5.27).

3.5.28.5 Auxiliary Subroutines

Subroutine Name: CSPL_O

Purpose: To compute the inner arithmetic loop of CSPSDC.

3.5-82 (811172)

MATRIXSUBROUTINEDESCRIPTIONS

3.5.28.6 DesignRequirements

Theinput matrix [A] shouldbewell conditionedor positive definite as the decompositionis

donewithoutpivoting.

Corestoragerequirementsdependon the parametersB andC. For a givenBandC, AreasII,

III, IV, andVmustreside in corealongwith a minimumof twocolumnsof AreaI and5 GIN_

buffers.

Files containing[L] and[L]T shouldbeusedas input only to CXFBSasthey arenot in

standardNASTRANformat.

Information Messages

C_NMSG is called at entry and exit from CSPSDC. The line

xxxx CSPSDC

will appear twice per decomposition. The execution time of CSPSDC will be the difference

in the times (where xxxxx = time in seconds).

2. Message 3023 gives the values of the parameters, B, C, and R chosen for the decomposi-
tion.

3. Message 3027 gives the estimated time in seconds to do the decomposition.

4. Message 3024 indicates that a matrix has scattered terms way off the diagonal (i.e., a

large bandwidth). Instead of searching all combinations of B and C, the search is started

at the maximum bandwidth.

3.5.28.8 Diagnostic Messages

I. If CSPSDC was unable to find a combination of B and C which would meet core restrictions,

fatal message 3008 occurs.

2. In a coding sense, message 3025 is possible. However, it violates the design of CSPSDC

and therefore, if obtained, should indicate an obscure program design error, or machine error.

3. Message 3026 indicates that sufficient space was not reserved for the generation of the

B vs. C vector. CSPSDC should be recompiled to increase BMAX and CMAX.

3.5-83 (811/72)

SUBROUTINE DESCRIPTIONS

3.5.29 CXFBS (Forward - Backward Substitution).

3.5.29.1 Entry Point: CXFBS

3.5.29.2 Purpose

Given the decomposition of a complex symmetric matrix [A] = [L] [D] [L] T CXFBS will perform

the fom_ard-backward pass necessary to solve the system of linear equations [A] [X] = [B].

3.5.29.3 Calling Sequence

CALL CXFBS

C_MM_N/FBSXCX/L(7),U(7),B(7),X(7),NZ,PREC,SIGN

L,U Matrix control blocks for the lower and upper triangular factors output from
SDCOMP.

B,X Matrix control blocks for the matrices [B] and [X].

NZ Number of computer words at Z.

PREC - I, solve [A] IX] = [B].

2, perform arithmetic in double precision.

SIGN -
+I, solve [A] IX] = [B].

-l, solve [_] Iv] : -[_],

An area of working storage.

3.5.29.4 Method

Mathematical considerations. Given the unit upper and lower triangular matrices [L] and

[L] T, with the diagonal matrix [D] stored over their diagonals, CXFBS solves the two systems of

equations given by

and

[L] [Y] : + [B]

[L] T [X] = [D]-I[Y]

Elements of [Y] and [X] are given by

Yij =

i-I

bij - _ _ki Ykj
k=l

3.5-84 (8/I/72)

MATRIXSUBROUTINEDESCRIPTIONS

n
xij = Yij/di - k=i+lZ_ki x..lj

ProgramFlow. Overallprogramflow is identical to that of GFBS(seeSection3.5.19). The

only differencein the tworoutinesis that CXFBSusesthe decomposedmatricesoutputfrom

SCDC_MP,whileGFBSusesthoseoutputby CDC_MP.Likewise,the computedequationsdiffer slightly.

3.5.29.5 DesignRequirements

Onecolumnof [B] andoneGIN_buffer mustfit in core.

3.5.29.6 DiagnosticMessages

SeeGFBS(Section3.5.19).

3.5-85(811172)

GENERAL COMMENTS AND INDEXES

4.1 GENERAL COMMENTS AND INDEXES

The I_ASTRANmodules (a module is a logical group of subroutines) documented in this

section have been classified into 7 categories: l) Executive Preface modules, 2) Executive

modules, 3) Executive DMAP instructions, 4) Executive DMAP modules, 5) functional modules,

6) output modules, and 7) matrix modules.

Executive Preface modules are those which are executed prior to the execution of the

first module in a D_P sequence. They consist of:

which processes the NASTRAN Executive Control Deck;

which processes the NASTRAN Case Control Deck; 3)

l) XCSA (Executive Control Section Analysis),

2) IFPI (Input File Processor, Part l),

XS_RT (Executive Bulk Data Card Sort),

which sorts the NASTRAN Bulk Data Deck; 4) IFP (Input File Processor), which processes the

sorted Bulk Data Deck; 5) IFP3, IFP4 and IFP5 (Input File Processor 3, 4 and 5), which process

bulk data cards unique to an axisymmetric conical shell, hydroelastic, or acoustic problem;

6) XGPI (Executive General Problem Initialization), the heart of the Preface, which a) translates

(compiles) a DMAP sequence into an internal form, the BSCAR, - see Section 2.4.2.1, and b) for

problem restarts, initializes data blocks and labeled common blocks; and 7) UMFEDIT (User Master

File Editor), which creates and manipulates User Master Files.

The only module classified as an Executive module, per se, is XSFA (Executive Segment

File Allocator), which is the "administrative manager" of files for NASTRAN.

Executive DMAP instructions documented in this section are REPT, JUMP, C_ND, EXIT and

END. The DMAP instructions BEGIN, LABEL and FILE are not allocated a separate section, and

therefore brief explanations follow.

I. The BEGIN DMAP instruction is a declarative DMAP instruction which denotes the

beginning of a DMAP sequence. It is analogous to a computer operating system control

card which calls a compiler of the system.

2. The FILE DMAP instruction is a declarative DMAP instruction which alters the normal

attributes of a data block in an _SCAR entry (see an explanation of the attributes

AP, LTU, TP, NTU of a data block in the Data Section Format for functional modules

section in the description of the _SCAR, section 2.4.2.1). These attributes of a data

block are used by the Executive Segment File Allocator (XSFA) module in performing its

task.

4.l-I (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

3. The LABEL DMAP instruction is used to label a location in a DMAP sequence so

that the location may be referenced by the DMAP instructions JUMP, COND and REPT.

A more detailed description of these three Executive DMAP instructions can be found

in section 5 of the User's Manual.

Executive DMAP modules consist of CHKFNT, SAVE, PURGE, EQUIV, PARAM and SETVAL. In

addition to the descriptions in this section, the reader is referred to section 5 of the

User's Manual, where further explanations of the uses of EQUIV, PURGE and CHKPNT can be

found.

Functional modules comprise the bulk of the descriptions in this section. Functional

modules perform the actu_l structural problem solution. The r_aaer is referred to section 5

of the User's Manual for a) general co_nents on DMAP rules and b) the syntactical rules of

the DMAP calling sequences referring to functional modules.

Output modules are those whose entire output is directed a) to the system output

file and/or b) to a tape which will drive a plotting device.

Matrix modules are those which, although no different operationally from functional

modules, are most likely to be used by the program user who wishes to take advantage of the

Direct Matrix Abstraction capabilities of NASTRAN; therefore, they are separately categorized.

4.1.1 Use of Module Functional Descriptions

Each module documented by means of a Hodule Functional Description (MFD) has been

assigned an integer i, and its MFD is documented in section 4.i. For functional modules,

a consistent numbering scheme has been followed, wherever possible, in the MFD's. For a

functional module whose assigned integer is i, then,

4.i Title

4.i.I Entry Point

4.i.2 Purpose

4.i.3 DMAP Calling Sequence

4.i.4 Input Data Blocks

4.i.5 Output Data Blocks

4.i.6 Parameters

4.1-2

GENERAL COMMENTS AND INDEXES

4.i.7 Method

4.i.8 Subroutines

4.i.9 Design Requirements

4.i.lO Diagnostic Messages

comprises this numbering scheme. The title: a) classifies the module into one of the seven

categories defined in the first paragraph of section 4.1; b) defines the module name, which,

if it is a DMAP module (one which is called by a DMAP instruction), is the name by which it

must be called in the DMAP calling sequence; and c) defines, parenthetically, the phrase

from which the name was derived. Comments on the remaining sections follow.

I. Entry Point

This section defines the entry point of the module. A module's entry point usually

agrees with the module name, but there are exceptions. For example, the READ (Real

Eigenvalue Analysis Displacement) module has the entry point REIG (the entry point READ

is a subroutine in the GIN_ collection of routines).

2. Purpose

A brief description of the purpose of the module is given. The casual or first-time

reader will perhaps go no further than read the purpose.

3. DMAP Calling Sequence

The DMAP calling sequence as it appears in a Rigid Format is given (see section 3 of

the User's Manual for a detailed description of the Rigid Formats in NASTRAN).

DMAP calling sequences for Executive DMAP instructions and for Executive DMAP modules follow

no fixed format. Refer to the individual Module Functional Descriptions for details on their

DMAP calling sequences. Functional modules, which are always "called" via a DMAP calling

sequence, do have a fixed format. Consider the following DMAP calling sequence for functional

module SMA2, which generates the mass matrix, [Mgg], and the damping matrix, [Bgg]:

Sr_2 CSTM,MPT,ECPT,GPCT,DIT/MGG,BGG/V,Y,WTIvLASS= I.O/V,N,N_MGG/V,N,NOBGG/V,Y,

C_UPBAR= -I $

SMA2 is the module name. The name of a module must begin with an alphabetic character

4.1-3 (311170)

MODULE FUNCTIONAL DESCRIPTIONS

followed by up to seven additional alphanumeric characters. Following the name is a blank

field. Following this blank field is the list {CSTM,MPT,ECPT,GPCT,DIT} of data blocks input

to the module. The list is terminated by a slash (/). Each item in this list is separated

by a comma. Note that the number of commas for this list is one less than the number of input

data blocks. The second slash terminates the list {MGG,BGG} of data blocks output from the

module. The rule for naming input and output data blocks is the same as for module names.

Each subsequent slash terminates a parameter field. Each parameter field contains three parts

separated by commas. The first part is either the letter "V" or the letter "C", defining the

parameter as a variable or as a constant respectively. The second part is either the letter

"Y" or the letter "N". "Y" implies "yes" the value of the parameter may be specified on a

PAP_AMbulk data card, and "N" implies "no" the value of the parameter may not be specified on a

PAP_AMbulk data card. The third part may be either: (a) the name of the parameter, (b) the

value of the parameter, or (c) the name and the value of the parameter. A variable parameter

must have a name, hence a variable parameter may not be specified only by its value. The rule

governing the names of parameters is the same as that for module names. The value of a

parameter may be complex double precision, complex single precision, double precision, real,

integer or BCD. In the example given, the name of the first parameter is WT_SS, and its

initial value (which can be overridden by a value on a PARAM card because of "Y" prior to the

name) is 1.0. Note that the slash terminating the last parameter field is omitted. Although

one can terminate the last parameter field with a slash, this final slash is usually omitted.

A dollar sign, "$", terminates a DMAP statement.

4. Input Data Blocks

A short description of each of the module's input data blocks is given along with

notes explaining what the module's design requires about the status (purged or not

purged) of the data blocks. Detailed aata block descriptions are found in section 2

of the Programmer's Manual.

5. Output Data Blocks

A short description of each of the module's output data blocks and an explanation of

the action taken when an output data block has been pre-purged are given in this

section. An output data block is said to be pre-purged if the data block has been

4.1-4

GENEP4_LCOMMENTS A_D INDEXES

explicitly purged in a previous PURGE DMAP instruction, or if the data block does not

appear in the DMAP calling sequence for the module.

6. Parameters

The order of DMAP parameters in a DMAP calling sequence is the same as the order of the

F_RTRAN variables corresponding to the parameters in blank common at module execution time.

Each variable DI_P parameter is defined as whether a) it is input data into, or output

data from, the module, or both (e.g., a DMAP loop counter which is incremented within the

module); b) the type of the parameter: integer, real, double precision, complex single

precision, complex double precision, or BCD; and c) the default value of the parameter

as defined either i) in the Module Properties List (MPL) Executive table, ii) by means

of a PARAM or SETVAL DMAP instruction, or iii) by means of the DMAP statement itself. An

example of the third type of default value is

M_DULEA A,B,C/D,E/V,N,UVW/V,Y,XYZ=-I $.

The parameter XYZ is set to -l by the above statement. For further information on DMAP

parameters see paragraph 3 above, section 2.4.2.2 in the Programmer's Manual and section

5 of the User's Manual.

7. Method

A discussion of the method used by the module writer to achieve the purpose of the

module is given in this section.

8. Subroutines

The subroutines which comprise the module are described in this section. However,

not all subroutines capable of being called by a module are listed here. Utility

routines and matrix routines that are in the root segment are not listed in this

section. These inlcude: MAPFNS, all the GIN_ routines (_PEN, WRITE, CLOSE, READ, FWDREC,

BCKREC, REWIND, E_F, SKPFIL, XGIN_, GIN_, _PNC_R), FREAD, G_PEN, WRTTRL, FNAME, CLSTAB,

PREL_C, PEXIT, TMT_G_, MESAGE, and the matrix packing and unpacking routines (BLDPK, PACK,

INTPK, UNPACK). Descriptions for these routines are found in section 3.

4.1-5

MODULE FUNCTIONAL DESCRIPTIONS

9. Design Requirements

Design requirements peculiar to the module are presented.

I0. Diagnostic Messages

Diagnostic messages unique to the module are given in this section. A detailed list

of NASTRAN diagnostic messages can be found in section 6 of the User's Manual.

4.1-6

GENERALCOMMENTSANDINDEXES

4,1.2 AIphabetical Index of Module Functional Descriptions

Section Number Module Name Section Number

4.78 ADD ***
4.96 ADD5

4.72
*** BEGIN 4.71
4.90 BMG 4.73

4.33
4.56 CASE 4.34
4.59 CEAD 4.84
4.10 CHKPNT **
4.13 C_ND **

** DDR 4.79
4.67 DDRI 4.57
4.68 DDR2

4.81 DECAMP 4.70
4.47 DPD **
4.49 DSMGI 4.100
4.51 DSMG2 4.101

** DUMM_DI 4.102
** DUMMOD2 **
** DUMM_D3

4.83

4 52
4 53
4 54
4 55
4 24
4 23
4.92
4.76
4,77
4.16

4.64
4.37
4.38
4.39
4.40
4.48
4.11

4.15
4.35
4.45
4.46
4.62
4.74
4.20

4.18 END
4.!7 EQUIV
4.14 EXIT

4.82 FBS
*** FILE
4.61 FRRD

4.58 GKAD
4.66 GKAM
4.32 GPSP
4.29 GPWG
4.21 GPI
4.22 GP2
4.25 GP3
4.31 GP4

4.5 IFP*
4.3 IFPI*
4.6 IFP3*
4.89 IFP4*
4,91 IFP5*
4.97 INPUT
4.98 INPUTTI
4.99 INPUTT2
** INPUTT3
** INPUTT4

4.12 JUMP

Module Name

LABEL

MATGPR
MATPRN
MATPRT
MCEI
MCE2
MERGE

M_DA
M_DB
M_DC
MPYAD
MTRXlN

BFP
BUTPUT
_UTPUTI
BUTPUT2

_UTPUT3

BUTPUT4

PARAM
PARTN
PARTVEC
PLAI
PLA2
PLA3
PLA4
PL_T
PLTSET
PLTTRAN
PRTMSG
PRTPARM
PURGE

RANDOM
RBMGI
RBMG2
RBMG3
RBMG4
READ
REPT

SAVE
SCEI
SDRI
SDR2
SDR3
SEEMAT
SETVAL

* Executive System Internal Module
** Dummy Module

*** Executive System Instruction (No Module Functional Description)

4.1-7 (8/I/72)

GENERAL COMMENTS AND INDEXES

AIphabetical Index of Module Functional Descriptions (Continued)

Section Number _1odule Name Section Number Modul e Name

4.27 SMAI 4.94 UMERGE
4.28 SMA2 4.8 UMFEDIT*
4.30 SMA3 4.93 UPARTN
4.86 SMPYAD
4.36 SMPI 4.60 VDR
4.50 SMP2 4.95 VEC
4.80 S_LVE
4.41 SSGI 4.2 XCSA*
4.42 SSG2 4.7 XGPI*
4.43 SSG3 4.9 XSFA*

4.44 SSG4 4.4 XSBRT*
4.69 XYPL_T

4.103 TABPRT ** XYPRNPLT
4.75 TABPT 4.63 XYTRAN
4.26 TAI
4.65 TRD
4.85 TRNSP

* Executive System Internal Module
** Dummy Module

*** Executive System Instruction (No Module Functional Description)

4.1-7a (811172)

MODHLE FLIHCTIO_AL DESCRIDTIQrlS

4.1.3 Alnhabetical Index of Entry Points in t_odule Functional Bescrimtions

Names listed under entry point which end in the characters "BD" are block

Section Number Entry Point ;1odule Hame

4.46.8

4.46.8

4.46.8

4.46.8

4.46.8

4.48.8.25

4.41.11.37

4.41 .II.22

4,46.8

4.90.1

4.90.8

4 28.8.16

4 56.1

4 59.8.14

4 59.8.15

4 59.8.19

4 59.8.9

4.59,8.20

4.59,8,18

4,59.1

4.59.8.1

4.59.8.8

4.59.8.2

4.59.8.3

4.59,8.4

4.59.8.5

4.59.8.10

4.59.8.6

4.59 8.7

4.23 8.3

4.46 8

4.41 11.7

4.23 8.2

4.41 11.34

4.4.5.7

data suborograms.

Paae Number

AI SDR2 4.46-7

A,I SDR2 4.46-7

AK SDR2 4.46-7

At4 SDR2 4.46-7

AMATRX SDR2 4,46-7

ARRM READ 4.48-18

BAR SSCl 4,41-27

BASGLB SSGI 4.41-22

BINT S_R2 4.46-7

BM_ B_!C 4.90-1

BMGT_JS B!_G 4.90-7

BVISC SMA2 4.28-8

CASE CASE 4.56-I

CDETF! CE#D 4.59-12

CDETr_2 CEAD 4.59-12

CDETM3 CEAD 4.59-14

CDIFBS CEAD 4.59-8

CDIVID CE_D 4.59-14

CDTFBS CEAD 4.59-14

CEAD CEAD 4.59-I

CEADI_ CE#D 4.59-3

CINFBS CEAD 4.59-8

CINVPR CEAD 4.59-3

CINVPI CEAD 4.59-4

CINVP2 CEAP 4.59-4

CINVP3 CEAD 4.59-6

CMTIMH CEAD 4.59-9

CN@Rr'! CEAD 4.59-7

CN_R_I CE&D 4.59-7

CNSTRC PLTSET 4.23-3

C_EF SDR2 4.46-7

C_BIH SSGI 4.41-17

C_HECT PLTSET 4.23-3

C_NE SSCl 4.41-26

CRDFLC XS_RT 4.4-5

4.1-8 (8/I/72)

GENEP_LCO_MENTSANDINDEXES

Section Number Entry Point _bdule _lame PaQe _umber

4.41.11.19 CRBSS SSCl 4.41-21

4.59.8.17 CSnRT CEAD 4.59-13

4.59,8.12 CSUB CEAD 4.59-10

4.59.8.16 CSUMM CEAD 4.59-13

4.59.8.11 CXTRNY CEAD 4.59-9

4.78.1 DADD ADD 4.78-I

4.96.1 DADD5 ADD5 4.96-I

4.49.8.6 DBAR DSM_I 4.49-6

4.49.8.10 DC_NE DSr_G1 4.49-7

4.81.1 DDC_m DECO!_P 4.81 - 1

4.67.1 DDRI DDRI 4.67-I

4.68.1 DDR2 DDR2 4.68-I

4.68.8.1 DDRIA DDR2 4.68-4

4.68.8.2 DDRIB DDR2 4.68-5

4.27.8.5 DETCK SMAI 4.27-9

4.48.8.24 DETDET READ 4.48-17

4.4_._.Z8 LqE_FBS READ 4.48-i9

4,48.8.15 DET_ READ 4.48-13

4.48.8.16 DETMI READ 4.48-15

4.48.8.17 DETM2 READ 4.48- l 6

4.48.8.18 DETM3 READ 4.48-16

4.48.8.19 DETer4 READ 4.48-16

4.48.8.20 DETM5 READ 4.48-16

4.48.8.21 DETM6 READ 4.48-16

4.82.1 DFBS FBS 4.82-I

4.41.11.9 DIRECT SSGI 4.41-18

4.27.8.27 DKEF SMAI 4.27-16

4,27.8.22 DKI S_!AI 4.27-13

4.27.8.25 DKINT SMAI 4.27-14

4.27.8.26 DKJ SMAI 4.27-15

4.27.8.31 DKJAB S_IAI 4.27-17

4.27.8.23 DKK SMAI 4.27-14

4.27.8.24 DKM SMAI 4.27-14

4.27.8.29 DKIO0 SMAI 4.27-16

4.27.8.33 DK211 SMAI 4.27-18

4.27.8.32 DK219 SMAI 4.27-18

4.27.8.28 DK89 SMAI 4.27-16

4.27.8.38 DMATRX SMAI 4.27-21

4.28.8 DMEF SrIA2 4.28-3

4.1-9 (811172)

MODULEFUNCTIONALDESCRIPTIONS

Section Number Entry Point Module Name Paqe Number

4.28.8 DMI SMA2 4.28-3

4.28.8 DMINT SMA2 4.28-3

4.28.8 DMJ St"A2 4.28- 3

4.28.8 DMJAB SMA2 4.28-3

4.28.8 DMK SMA2 4.28- 3

4.28.8 DMM SMA2 4.28-3

4.79.1 DMPYAD MPYAD 4.79-I

4.28.8 DMIO0 SMA2 4.28-3

4.28.8 DM211 SMA2 4.28-3

4.28.8 DM219 SMA2 4.28-3

4.28.8 DM89 SMA2 4.28-3

4.47.1 DPD DPD 4.47-I

4.47.8.1 DPDAA DPD 4.47-7

4.47.9.2 DPDCBD DPD 4.47-8

4.47.7.1 DPDI DPD 4.47-3

4.47.7.1 DPD2 DPD 4.47-3

4.47.7.1 DPD3 DPD 4.47-3

4.47.7.1 DPD4 DPD 4.47-3

4.47.7.1 DPD5 DPD 4.47-3

4.24.1 DPL_T PL@T 4.24-I

4.23.1 DPLTST PLTSET 4.23-I

4.49.8.9 DnDHE_ DS_Cl 4.49-7

4.49.8.12 DOUAD DS,GI 4.49-7a

4.24.8.6 DRAW PL@T 4.24-7

4.49.8.5 DR_D DSMGI 4.49-6

4.49.8.7 DSHEAR DSMnl 4.49-6

4.49.1 DSMGI DSMGI 4.49-I

4.51.1 DS_C2 DSMG2 4.51-I

4.49.8.1 DSI DS_IGI 4.49-5

4.49.8.2 DSIA DS_IGI 4.49-5

4.49.8.4 DSIABD DSMCl 4.49-6

4.49.8.3 DSIB DS_I 4.49-5

4.85.1 DTRANP TRNSP 4.85-I

4.49.8.13 DTRBSC DS_GI 4.49-7a

4.49.8.11 DTRIA DSMGI 4.49-7

4.49.8.8 DTRMEM DSMql 4.49-7

4.94.1 DUMERQ UMERGE 4.94-I

4.93.1 DUPART IIP_RTN 4.93-I

4.24.9.11 DVECTR PL_T 4.24-10

4.1-I0 (8/I/72)

GENERALCOMMENTSANDINDEXES

Section _lumber Entry Point Module Name Page Number

4.27.8.35

4.27.8,36

4.27.8.37

4.48.8.23

4.41.11.4

4.24.8.16

4.48.8.36

4.41.11.2

4.4.5.8

4.41.11.33

4.41.11.26

4.48.8.22

4.41.11.28

4.41.11.39

4.41.11.38

4.46.8

4.48.8.3/

4.24.8.2

4.46.8

4.41.11.18

4.24.8.12

4.41.11.21

4.73.8.4

4.65.8.5

4.65 8.11

4.41 II.II

4.61 1

4.61 8.1

4.61 8.2

4.61 8.3

4.61.8.4

4.61.8.5

4.61.8.6

4.46.8

4.46.8

4.46.8

4.46.8

4.46.8

4.46.8

4.41 .II.51

D4K SMAI

D5K SMAI

D6K SMAI

EADD READ

EDTL SSGI

ELELBL PLOT

EMPC_R READ

EXTERN SSGI

EXTINT XSORT

FCURL SSGI

FDCSTM SSGI

FDVECT READ

FEDT SSGI

FEDTED SSGI

FEDTST SSGI

FFIO0 SDR2

FiLC_R RLAD

FIND PLOT

FJAB SDR2

FNDPNT SSGI

FNDSET PL_T

FNDSIL SSGI

FORMAT MATPRT

F_RHI TRD

F_RH2 TRD

FP_NT SSGI

FRRD FRRD

FRRDIA FRRD

FRRDIB FRRD

FRRDIC FRRD

FRRDID FRRD

FRRDIE FRRD

FRRDIF FRRD

F4 SDR2

F5 SDR2

F6 SDR2

F6211 SDR2

F6219 SDR2

F89 SDR2

GBTRAN SSGI

4.27-19

4.27- 20

4.27-20

4.48-17

4.41-16

4.24-12a

4.48-19c

4.41-14

4.4-5

4.41-26

4.41-23

4.48-17

4.41-24

4.41-28

4.41-28

4.46-7

4.48-i9d

4.24-4

4.46-7

4.41-21

4.24-10

4.41-22

4.73-4

4.65-14

4.65-17

4.41-19

4.61-I

4.61-5

4.61-6

4.61-6

4.61-6

4.61-7

4.61-7

4.46-7

4.46-7

4.46-7

4.46-7

4.46-7

4.46-7

4.41-28c

4.1-11 (8/1/72)

MODULEFUNCTIONALDESCRIPTIONS

SectionMumber Entry Point Module Name Page Number

4.24.8.4 GETDEF PL@T 4.24-6

4.58.1 GKAD GKAD 4.58-I

4.58.8.1 GKADIA _KAD 4.58-6

4.58.8.2 GKADIB RKAD 4.58-6

4.58,8.3 CKADIC GKAD 4.58-7

4.58.8.4 GKADID _KAD 4.58-7

4.66.1 _KAM _KAM 4.66-I

4.66.8.2 GKAMI& _KAM 4.66-4

4.66.8.1 GKAMIB GKA!_ 4.66-3

4.41.II.23 GLBBAS SSnl 4.41-22

4.32.1 GPSP G_SP 4.32-I

4.24.8.10 GPTLBL PLAT 4.24-9

4.24.8.9 GPTSYM PL_T 4.24-9

4.29.1 GPWG GPWQ 4.29-I

4.29.8.1 GPWClA GPW_ 4.29-5

4.29.8.2 GPW_IB _PWq 4.29-5

4.29.8.3 GPWGIC _PWG 4.29-6

4.21.I GPI GPI 4.21-I

4.22.1 _P2 GP2 4.22-I

4.25.1 GP3 GP3 4.25-2

4.25.8.3 _P3A _P3 4.25-4

4.25.8.4 CP3B mP3 4.25-7

4.25.8.2 GP3C GP3 4.25-2

4.25.8.5 GP3D rP3 4.25-9

4.31.I GP4 cD4 4.31-I

4.31.8.1 GP4PRT cP4 4.31-5

4.41.11.16 GRAV SSCl 4.41-20

4.41.11.5 GRAVLI SSCl 4.41-16

4.41.11.6 GRAVL2 SSCl 4.41-16

4.41.11.29 GRAVL3 SS_I 4.41-24

4.41.11.40 HBDY SSGI 4.41-28

4.27.8.45 HHBDY SHAI 4.27-21a

4.27.8.46 HRING SteAl 4.27-21b

4.46.8 IFAC SDR2 4.46-7

4.5.1 IFP IFP 4.5-I

4.5.7.9 IFPDC_ IFP 4.5-7

4.3.1 IFPI IFPl 4.3-I

4.3.7.1 IFPIB IFPI 4.3-2

4.3.7.2 IFPIC IFPI 4.3-3

4.1-12 (8/I/72)

GENERALCOM!4ENTSANDINDEXES

Section Number Entry Point Module Name Page Number

4.3.7.3 IFPID IFPI

4.3.7.4 IFPIE IFPI

4.3.7.5 IFPIF IFPI

4.3.7.6 IFPIG IFPI

4.3.7.8 IFPIXY IFPI

4.6.1 IFP3 IFP3

4.6.8.1 IFP3B IFP3

4.89.1 IFP4 IFP4

4.89.8.1 IFP4A IFP4

4.89.8.2 IFP4B IFP4

4.89.8.3 IFP4C IFP4

4.89.8.4 IFP4E IFP4

4.89.8.5 IFP4F IFP4

4.89.8.6 IFP4C IFP4

4.91,1 IFP5 IFP

4.91.8 IFP5A IFP

4.5.7.8 IFSlP IFP

4.5.7.8 IFS2P IFP

4.5.7.8 IFS3P IFP

4.5.7.8 IFS4P IFP

4.5.7.8 IFS5P IFP

4.5.7.1 IFXlBD IFP

4.5.7.2 I FX2BD I FP

4.5.7.3 IFX3BD IFP

4.5.7.4 IFX4BD IFP

4.5.7.5 IFX5BD IFP

4.5.7.6 IFX6BD IFP

4.5.7.7 IFX7BD IFP

4.4.5.3 INITCO XSORT

4.65.8.3 INITL TRD

4.98.1 IN_TTI INPUTTI

4.99.1 INPTT2 INPUTT2

4.97.1 INPUT INPUT

4.4.5.9 INTEXT XSBRT

4.65.8.8 INTFBS TRD

4.73.8.1 INTPRT MATPRT

4.24.8.7 INTVEC PL_T

4.48.8.40 INVERT READ

4.48.8.14 INVFBS READ

4.3-_

4.3-4

4.3-4

4.3-5

4.3-6

4.6-I

4.6-15

4.89-I

4.89-15

4.89-15

4.89-16

4.89-16

4.89-17

4.89-17

4.91-2

4.91-7

4.5-6

4.5-6

4.5-6

4.5-6

4.5-6

4.5-5

4.5-5

4.5-5

45-6

4.5-6

4.5-6

4.5-6

4.4-4

4.65-13

4.98-I

4.99-2

4.97-I

4.4-5

4.65-15

4.73-I

4.24-8

4.48-19e

4.48-12

4.1-13 (8/I/72)

HODULE FUNCTIONAL DESCRIPTIONS

Section Number .Entry Point Hodule Name Page Number

4.48.8.14 INVFSP READ

4.48.8.6 INVPWR READ

4.48.8.7 INVPI READ

4.48.8.8 INVP2 READ

4.48.8.9 INVP3 READ

4.48,8.41 INVTR READ

4.4.5.11 ISFT XS@RT

4.97.8 IUNI@N INPUT

4.27.8.7 KBAR SMAI

4.27.8,18 KC@NE SMAI

4.27.8.18 KC_NEX SMAI

4.27,8.16 KELAS SMAI

4.27.8.30 KFAC SMAI

4.27.8.39 KFLUD2 SMAI

4.27.8.40 KFLUD3 SMAI

4.27.8.41 KFLUD4 SMAI

4.27.8.9 KPANEL SMAI

4.27.8.47 KPLTST SMAI

4.27.8.11 KNDMEM SMAI

4.27,8.14 KQDPLT SMAI

4.27.8.6 KR_D SHAI

4,27.8.42 KSL_T SHAI

4.27.8.44 KS_LID SMAI

4.27.8.43 KTETRA SMAI

4.27,8.21 KTORDR SMAI

4.27.8.20 KTRAPR SMAI

4.27.8,12 KTRBSC SMAI

4.27.8.15 KTRIQD SMAI

4.27.8.19 KTRIRG SMAI

4.27.8.10 KTRMEM SMAI

4.27.8.13 KTRPLT SMAI

4.27.8.8 KTUBE SMAI

4.2.5.2 LDi XCSA

4.41.11.8 L_ADX SSGI

4.46.8.36 MAGPHA SDR2

4.74.8.1 MAP SEEMAT

4.74.8,1 MAPSET SEErIAT

4.28.8,12 MASSD SMA2

4.28.8.7 MASSTQ SMA2

4.48-12

4.48-8

4.48-8

4.48-9

4.48-9

4.48-19f

4.4-6

4.97-2

4.27-10

4.27-13

4.27-13

4.27-12

4.27-17

4.27-21

4.27-21

4.27-21

4.27-10

4.27-21b

4.27-11

4.27-12

4.27-10

4.27-21a

4.27-21a

4.27-21a

4.27-13

4.27-13

4.27-11

4.27-12

4.27-13

4.27-11

4.27-11

4.27-10

4.2-2

4.41-17

4.46-19

4.74-4

4.74-4

4.28-7

4.28-5

4.1-14 (8/I/72)

GENERAL COM_*IENTSAND INDEXES

Section Number Entry Point Module Name Page Number

4.72.1 MATGPR MAT_PR 4.72-I

4.71.1 MATPRN MATPRN 4.71-I

4.73.8.2 MATPRT MATPRT 4.73-2

4.65.8.6 MATVEC TRD 4.65-14

4.28.8.8 ,%_AR SMA2 4.28-6

4.28.8.9 MCBAR SMA2 4.28-6

4.33.1 MCEI MCEI 4.33-I

4.33.8.1 MCEIA MCEI 4.33-2

4.33.8.2 MCEIB MCEI 4.33-2

4.33.7 MCEIC MCEI 4.33-2

4.33.8.3 MCEID MCEI 4.33-2

4.34.1 MCE2 MCE2 4.34-I

4.28.8.11 MCBNE SMA2 4.28-6

4.28.8.10 MC_NtIX S_A2 4.28-6

4.28.8.18 MCRBD SMA2 4.28-8

4.84.1 MERGEI MER_E 4.84-I

4.28.8 MFAC SMA2 4.28-3

4.28.8.23 MFLUD2 SMA2 4.28-8a

4.28.8.24 MFLUD3 SMA2 4.28-8b

4.28.8.25 MFLUD4 SMA2 4.28-8b

4.28.8.26 MFREE SMA2 4.28-8b

4.24.8.13 MINMAX PL_T 4.24-II

4.7.5.11 MPLPRT X_Pl 4.7-6

4.41.II.24 MPYL SSGI 4.41-23

4.41.II.25 MPYLT SSnl 4.41-23

4.28.8.21 _DPLT SMA2 4.28-8a

4.28.8.5 MR_D S_A2 4.28-5

4.28.8.27 MSLBT SMA2 4.28-8b

4.28.8.28 MS,LID SMA2 4.28-8b

4.48.8.11 MTIMSU READ 4.48-10

4.28.8.15 MT_RDR SMA2 4.28-7

4.28.8.14 MTRAPR S_A2 4.28-7

4.28.8.19 _RBSC SMA2 4.28-8

4.28.8.22 _RIQD SMA2 4.28-8a

4.28.8.13 _,TTRIR_ SMA2 4.28-7

4.28.8.20 MTRPLT SMA2 4.28-8a

4.57.1 MTRXIN T-_RXIN 4.57-I

4.28.8.6 MTUBE S_A2 4.28-5

4.41.11.20 N_RM SSGI 4.41-21

4.1-15 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

Section _lumber Entry Point I'odul e _!ame

4.48.8.10 N@RMI READ

4.70.1 _FP @Fp

4.70.8.1 _FPPUN _]FP

4.70.8.2 OFPI _FP

4.70.8.3 _FPI _ @_FP

4.70.8.4 _FPIBD _FP

4.70.8.5 _FP2BD _FP

4.70.8.6 _]FP3BD @FP

4.70.8.7 _FP4BD OFP

4.70.8.8 _FP5BD _FP

4.48.8.5 _,RTCK READ

4.59.8.13 _RTH_ CEAD

4.7.5.10 _SCDMP XGPI

4.100.1 @UTPTI _UTPUTI

4. lOl. l _UTPT2 _]UTPUT2

4. I02. l BUTPT3 _UTPUT3

4.24.8. l PARAM PLAT

4.83. l PARTNI PARTN

4.83.8. l PARTN2 PARTN

4.83.8.2 PARTN3 PARTN

4.41 .ll .17 PERMUT SSGI

4.24.8.14 PERPE C PLAT

4.102.8.1 PHDMI A OUTPUT3

4.55.8.5 PKBAR PLA4

4.55.8.10 PKQADI PLA4

4.55.8.11 PKnAD2 PLA4

4.55.8.7 PKQDM PLA4

4.55.8.18 PK(I DMS PLA4

4.55.8.13 PKODMI PLA4

4.55.8.22 PKO,DPL PLA4

4.55.8.4 PKR@D PLA4

4.55.8.14 PKTQI PLA4

4.55.8.16 PKTQ2 P LA4

4.55.8.20 PKTRBS PLA4

4.55.8.8 PKTRI 1 PLA4

4,55.8.9 PKTR 12 PLA4

4.55.8.6 PKTRM PLA4

4.55.8.17 PKTRMS PLA4

4.55.8.12 PKTRMI PLA4

Page Number

4.48-I0

4.70-I

4.70-2

4.70-3

4.70-3

4.70-3

4.70-3

4 70-3

4 70-3

4 70-3

4 48-7

4 59-I0

4 7-6

4 lO0-1

4 lOl-I

4.102-I

4.24-4

4.83-I

4.83-4

4.83-4

4.41-20

4.24-II

4.102-2

4.55-4

4.55-5

4.55-5

4.55-5

4.55-7

4.55-6

4.55-8

4.55-4

4.55-6

4.55-7

4.55-8

4.55-5

4.55-5

4.55-4

4.55-7

4.55-6

4.1-16 (8/I/72)

GENERAL COMMENTS AND INDEXES

Section Number Entry Point Module Name Page Number

4.55.8.21 PKTRPL PLA4 4.55-8

4.55.8.19 PKTROD PLA4 4.55-7

4.55.8.15 PKTRn2 PLA4 4.55-6

4.52.1 PLAI PLAI 4.52-I

4.53.1 PLA2 PLA2 4.53-I

4.54.1 PLA3 PLA3 4.54-I

4.54.8.1 PLA31 PLA3 4.54-3

4.54.8.2 PLA32 PLA3 4.54-3

4.55.1 PLA4 PLA4 4.55-I

4.55.8.3 PLA4B PLA4 4.55-4

4.55.8.1 PLA41 PLA4 4.55-3

4.55.8.2 PLA42 PLA4 4.55-3

4.41.II.13 PLBAD SSGI 4.41-9

4.24.8.3 PL_T PLBT 4.24-5

4.24.8.5 PLT_PR PLBT 4.24-6

4.92.1 PLTTRA PLTTRAN 4.92-I

4.41.II.15 PRESAX SSGI 4.41-20

4.24.8.15 PROCES PL_T 4.24-12

4.73.1 PRTINT MATPR_ 4.73-I

4.73.8.2 PRT_T MATPRT 4.73-2

4.76.1 PRTMSG PRTMSG 4.76-I

4.77.1 PRTPRM PRTPARM 4.77-I

4.73.8.3 PRTVEC MATPRT 4.73-3

4.54.8.4 PSBAR PLA3 4.54-4

4.54.8.9 PSnADI PLA3 4.54-5

4.54.8.10 PSQAD2 PLA3 4.54-5

4.54.8.6 PSnDM PLA3 4.54-4

4,54.8.12 PSQDMI PLA3 4.54-6

4.54.8.16 PSQPLI PLA3 4.54-7

4.54.8.3 PSROD PLA3 4.54-3

4.54.8.15 PSTPLI PLA3 4.54-6

4.54.8.13 PSTQI PLA3 4.54-6

4.54.8.18 PST02 PLA3 4.54-7

4.54.8.14 PSTRBI PLA3 4.54-6

4.54.8.7 PSTRII PLA3 4.54-5

4.54.8.8 PSTRI2 PLA3 4.54-5

4.54.8.5 PSTRM PLA3 4.54-4

4.54.8.11 PSTRMI PLA3 4.54-5

4.54.8,17 PSTRQ2 PLA3 4.54-7

4.1-17 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

Section Number Entry Point Module Name Page Number

4.41.11.35 QDMEM SSGI 4.41-27

4.41.11.42 QDPLT SSGI 4.41-28a

4,41.11.41 QHBDY SS_I 4.41-28

4.19.1 QPARAM PARAM 4.19-I

4.48.8.38 QRITER READ 4.48-19d

4.64.1 RANDOM RANDOM 4.64-I

4.64.8.4 RAND1 RANDOM 4.64-6

4.64.8.5 RAND2 RANDOM 4.64-6

4.64.8.5 RAND2A RANDOM 4.64-6

4.64.8.6 RAND3 RANDBM 4.64-7

4.64.8.7 RAND4 RANDOM 4.64-7

4.64.8.2 RAND5 RANDBM 4.64-6

4.64.8.8 RAND6 RANDOM 4.64-7

4.54.8.1 RAND7 RANDOM 4.64-5

4.64.8.3 RAND8 RANDOM 4.64-4

4.37.1 RBMGI RBMGI 4.37-I

4.38.1 RBMG2 RBMG2 4.38-I

4.39.1 RBMG3 RBMG3 4.39-I

4.40.1 RBMG4 RBMG4 4.40-I

4.48.8.1 READ1 READ 4.48-4

4.48.8.2 READ2 READ 4.48-5

4.48.8.3 READ3 READ 4.48-6

4.48.8.4 READ4 READ 4.48-7

4.48.8.2 READ5 READ 4.48-5

4.48.8.42 READ6 READ 4.48.19f

4.48.1 REIG READ 4,48-I

4.41.11.14 RFORCE SSGI 4.41-19

4.41.11.43 ROD SSGI 4.41-28a

4.27.8.34 ROMBDK SMAI 4.27-19

4.46.8 ROMBER SDR2 4.46-7

4.48.8.35 RBTATE READ 4.48-19c

4.48.8.34 ROTAX READ 4.48.19c

4.4.5.2 RPAGE XS_RT 4.4-3

4,46.8.37 SAXIFI SDR2 4.46-19

4.46.8.38 SAXlF2 SDR2 4.46-19

4.46.8.15 SBARI SDR2 4.46-12

4.46.8.32 SBAR2 SDR2 4.46-18

4.46.8.27 SBSPL2 SDR2 4.46-16

4.31.8.2 SCALEX GP4 4.31-6

4.1-18 (811172)

GENERAL COMMENTS AND INDEXES

Section Number Entry Point Module Name Page Number

4.35.1 SCEI SCEI 4.35-I

4.46.8.16 SC_WEI SDR2 4.46-12

4.46.8.30 SC_NE2 SDR2 4.46-17

4.46.8.31 SC_NE3 SDR2 4.46-18

4.46.8.43 SDRETD SDR2 4.46-19b

4.45.1 SDRI SDRI 4.45-I

4.45.8.1 SDRIA SDRI 4.45-5

4.45.8.2 SDRIC SDRI 4.45-5

4.45.8.3 SDRID SDRI 4.45-5

4.46.1 SDR2 SDR2 4.46-I

4.46.8.2 SDR2A SDR2 4.46-8

4.46.8.1 SDR2AA SDR2 4.46-8

4.46.8.3 SDR2B SDR2 4.46-9

4.46.8.20 SDR2C SDR2 4.46-13

4.46.8.21 SDR2D SDR2 4.46-14

4.46.8.22 SDR2E SDR2 4.46-15

4.62.1 SDR3 SDR3 4.62-I

4.62.8.1 SDR3A SDR3 4.62-9

4.74.1 SEE_T SEEMAT 4.74-I

4.46.8.13 SELASI SDR2 4.46-12

4.46.8.26 SELAS2 SDR2 4.46-16

4.23.8.1 SETINP PLTSET 4.23-3

4.20.I SETVAL SETVAL 4.20-I

4.24.8.8 SHAPE PLBT 4.24-8

4.48.8.32 SIC_X READ 4.48-19b

4.48.8.33 SINCAS READ 4.48-19b

4.41.II.12 SLBAD SSGI 4.41-19

4.27.8.1 SMAI SMAI 4.27-8

4.27.8.2 SMAIA SMAI 4.27-8

4.27.8.3 SMAIB SMAI 4.27-9

4.27.8.4 SMAIBD SMAI 4.27-9

4.28.1 SMA2 SMA2 4.28-I

4.28.8.2 SMA2A SMA2 4.28-4

4.28.8.3 SMA2B S_2 4.28-4

4.28.8.4 SMA2BD SMA2 4.28-4

4.30.I SMA3 SMA3 4.30-I

4.30.8.1 SMA3A SMA3 4.30-5

4.30.8.2 SMA3B SMA3 4.30-5

4.30.8.4 SMA3BD SMA3 4.30-6

4.1-19 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

Section Number Entry Point Module Name Page Number

4.30.8.3

4.48.8.30

4.86.1

4.36.1

4.50.1

4.41.11.44

4.80.1

4.46.8.7

4.46.8.25

4.46 8.12

4.46 8.10

4.46 8.27

4.46 8.4

4.46 8.23

4.41 11.50

4.41 11.49

4.41 1

4.41 II.I

4.42 1

4.42 8.1

4.43.1

4.44.1

4.46.8.39

4.46.8.40

4,46.8.41

4.46.8.42

4.65.8.7

4.46.8.19

4.46.8.35

4.46.8.28

4.46.8.18

4.46.8.34

4.46.8.8

4.46.8.17

4.46.8.33

4.46.8.11

4.46,8.9

4.46.8.14

4.46.8.29

SMA3C SMA3

SMLEIG READ

SMPYAD SMPYAD

Sr4PI SMPI

SMP2 SMP2

S@LID SSGI

S_LVE S_LVE

SPANLI SDR2

SPANL2 SOR2

SNDMEI SDR2

SQDPLI SDR2

SQRTM READ

SR@DI SDR2

SR_D2 SDR2

SSGETD SSGI

SSGKHI SSGI

SS_I SSGI

SSGIA SSGI

SSG2 SSG2

SS62BI SSG2

SSG3 SSG3

SSG4 SSG4

SSL@TI SDR2

SSL_T2 SDR2

SS@LDI SDR2

SS_LD2 SDR2

STEP TRD

ST@ROI SDR2

ST@RD2 SDR2

STQME2 SDR2

STRAP1 SDR2

STRAP2 SDR2

STRBSI SnR2

STRIRI SDR2

STR!R2 SDR2

STRMEI SDR2

STRPLI SDR2

STRnDI SDR2

STRnD2 SDR2

4.30-6

4.48-19a

4.86-I

4.36-I

4.50-I

4.41-28a

4.80-I

4.46-10

4.46-16

4.46-11

4.46-11

4,48-19

4.46-10

4.46-16

4.41-28c

4,41-28c

4.41-I

4.41-14

4.42-I

4.42-4

4.43-I

4.44-I

4.46-19a

4.46-19a

4.46-19a

4.46-19b

4.65-15

4.46-13

4.46-19

4.46-17

4.46-13

4.46-18

4.46-10

4.46-13

4.46-18

4.46-11

4.46-11

4.46-12

4.46-17

4.1-20 (8/I/72)

GENERALCOMMENTSANDINDEXES

Section Number Entry Point Module Name Page Number

4.46.8.6 STUBEI SDR2

4.48.8.13 SUB READ

4.48.8.26 SUMM READ

4.3.7.7 SWSRT IFPI

4.103.1 TABFMT TABPRT

4.75.1 TABPT TABPT

4.26.1 TAI TAI

4.26.8.2 TAIA TAI

4.26.8.3 TAIB TAI

4.26.8.4 TAIC TAI

4.26.8.5 TAICA TAI

4.26.8.6 TAIF TAI

4.26.8.7 TAIG TAI

4.41.11.3 TEMPL SSGI

4.41.11.45 TETRA SS_I

4.41.11,10 TP_NT SSGI

4.41.11.46 TRBSC SSGI

4.65.1 TRD TRD

4.65.8.! TRDIA TRD

4.65.8.2 TRDIB TRD

4.65.8.4 TRDIC TRD

4.65.8.9 TRDID TRD

4.65.8.10 TRDIE TRD

4.48.8.31 TRIDI READ

4.41.11.36 TRIMEM SSGI

4.41.11.47 TRIQD SSGI

4.85.1 TRNSP TRNSP

4.41.11.48 TRPLT SSGI

4.41.11.32 TT_RDR SSGI

4.41.11.31 TTRAPR SSCl

4.41.11.30 TTRIR_ SSGI

4.8.1 UMFEDT UMFEDIT

4.8.6 UMFZBD UMFEDIT

4.48.8.29 VALVEC READ

4.60.8.1 VDR VDR

4.60.8.2 VDRA VDR

4.60.8.3 VDRB VDR

4.60.9.2 VDRBD VDR

4,95.1 VEC VEC

4.46-I0

4.48-11

4.48-18

4.3-6

4.103-I

4.75-I

4.26-I

4.26-14

4.26-14

4.26-14

4.26-15

4.26-15

4.26-15

4.41-15

4.41-28a

4.41-18

4.4i-28b

4.65-I

4.65-12

4.65-12

4.65-13

4.65-16

4.65-16

4.48-19a

4.41-27

4.41-28b

4.85-I

4.41-28b

4.41-26

4.41-25

4.41-25

4.8-I

4.8-I

4.48-19

4.60-5

4.60-5

4.60-6

4.60-7

4.95-I

4.1-21 (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

Section Number

4,73.8,3

4,48,8.39

4,76,8,2

4,24,8.17

4.4,5,5

4,7,62

4,11 ,I

4,11.6

4.12,1

4.13.1

4,14.1

4,18.1

4,10,1

4,9,5.2

4,2,1

4,9.5,4

4,17.1

4..4.5.4

4,4.5,10

4,9.5,7

4,7,5.9

4,7.5,8

4.7.1

4,7,6,2

4,7.5.2

4,7,5,1

4,7,5,1

4,7,5,5

4,7,5,4

4,7,6,2

4,7,5.5

4.7,5,3

4.7,5.6

4.9,5.6

4,9,5,5

4,4,5,6

4,9,5,3

4,16.1

4,4,5.1

Entry Point

VECPRT

WILVEC

WRTMSG

WRTPRT

XBCDBI

XBSBD

XCEI

XCEI

XCEI

XCEI

XCEI

XCEI

XCHK

XCLEAN

XCSA

XDPH

XEQUIV

XFADJ

XFADJI

XFILPS

XFLDEF

XFLORD

XGPI

XGPIBD

XGPIBS

XGPIDG

XGPIMW

XIPFL

XLNKHD

XMPLBD

XOPFL

X_SGEN

XPARAM

XPLEQK

XPOLCK

XPRETY

XPUNP

XPURGE

XRECPS

Module Name

MATPRT

READ

PRTMSG

PLOT

XS_RT

XGPI

REPT

REPT

JUMP

COND

EXIT

END

XCHK

XSFA

XCSA

XSFA

EQUIV

XSBRT

XS_RT

XSFA

XGPI

XGPI

XGPI

XGPI

XGP I

XGP I

XGPI

XGPI

XGPI

XGPI

XGPI

XGPI

XGPI

XSFA

XSFA

XS_RT

XSFA

XPURGE

XSORT

Page Number

4,73-3

4.48-19e

4.76-2

4,24-12a

4,4-4

4.7-7

4.11-I

4.11-2

4,12-I

4,13-I

4.14-I

4,18-I

4.10-I

4.9-4

4.2-I

4,9-6

4.17-I

4.4-4

4.4-5

4.9-7

4,7-5

4,7-5

4.7-I

4,7-7

4,7-3

4.7-3

4,7-3

4,7-4

4.7-4

4,7-7

4,7-4

4,7-3

4.7-4

4.9-6

4,9-6

4,4-4

4.9-5

4.16-I

4.4-3

4,1-22 (8/I172)

GENERAL COMMENTS AND INDEXES

Section Number Entry Point Module Name Page Number

4.2.5.1 XRGDFM XCSA 4.2-I

4.15.1 XSAVE XSAVE 4.15-I

4.2.5.4 XSBSET XCSA 4.2-2

4.7.5.7 XSCNDM XGPI 4.7-4

4.9.1 XSFA XSFA 4.9-I

4.4.1 XS_RT XS_RT 4.4-I

4.9.5.1 XS_SGN XSFA 4.9-3

4.48.8.12 XTRNSY READ 4.48-II

4.63.8.7 XYCHAR XYTRAN 4.63-8

4.63.8.1 XYDUMP XYTRAN 4.63-5

4.63.8.2 XYFIND XYTRAN 4.63-5

4.63.8.8 XYGRAF XYTRAN 4.63-8

4.63.8.4 XYL_G XYTRAN 4.63-6

4.63.8.3 XYBUT XYTRAN 4.63-6

4.69.1 XYPLBT XYPLBT 4.69-I

4.63.8.6 XYPRPL XYTRAN 4.63-7

4.63.8.5 XYTICS XYTRAN 4.63-7

4.63.1 XYTRAN XYTRAN 4.63-I

4.1-23 (8/I/72)

EXECUTIVEPREFACEMODULEXCSA(EXECUTIVECONTROLSECTIONANALYSIS)

4.2

4.2.1

4.2.2

EXECUTIVE PREFACE MODULE XCSA (EXECUTIVE CONTROL SECTION ANALYSIS)

Entry Point: XCSA

Purpose

To process the NASTRAN Executive Control Deck.

4.2.3 Calling Sequence

CALL XCSA. XCSA is called only by subroutine SEMINT.

4.2.4 Method

The cards of the Executive Control Deck are read and processed with checks being made for

illegal formats, duplication and errors peculiar to the particular card being processed. When

all of the control cards have been processed (i.e., CEND control card found), the Executive

Control Table (XCSA) is written on the Problem TaPe and XCSA returns to the callinq routine.

4.2.5 Subroutines

4.2.5.1 Subroutine Name: XRGDFM

I. Entry Point: XRGDFM

2. Purpose: To select a.rigid format based on the SBL card in the Executive Control Deck.

3. Calling Sequence: CALL XRGDFM (NEWS_L,BLDS_L,IAPP)

NEWS_L - Two-word array containing solution and subset numbers taken from S0L

control card.

_LDS_L Two-word array containing solution and subset numbers taken from the

Old Problem Tape if the problem is a restart. If not a restart, BLDS_L = O.

IAPP - Approach code (l = F_RCE, 2 = DISPL, 3 = DM/_P)taken from the APP card

in the Executive Control Deck.

4. Method: If the problem is being restarted, a check is made for a solution (Rieid

Format) change. If the solution has been changed, a bit is set in table MEDMSK in

named comon block /XMDMSK/.

4.2-I

MODULE FUNCTIONAL DESCRIPTIONS

A check is made for a legal solution number, and, if acceptable, a branch is made on the

solution number, and subroutine LDi (i = solution number) is called to create the DMAP and MED

records for the XCSA table. XRGDFM then returns to the calling routine XCSA.

4.2.5.2

1 •

2.

Subroutine Name: LDi, where i = solution number, i = 01, 02 12.

Entry Points: LDi

Purpose: To write the DMAP sequence and MED records of the XCSA Executive Table for

solution (Rigid Format) i (see XCSA Executive Control Table description, Section 2.4.2.5).

3. Calling Sequence: CALL LDi (SUBSET)

SUBSET - Solution subset number from the SOL control card.

4. Method: The packed DMAP program is generated, and then subroutine XSBSET is called to

select the proper solution subset for the DMAP program by altering the IS1 array. Upon

return from XSBSET the arrays IS1, JNM and INM (see 4.2.6.2 below) are written on the New

Problem Tape to complete the MED record for Executive Table XCSA. LDi then returns to

calling routine.

4.2.5.3 Subroutine Name: XSBSET

I. Entry Point: XSBSET

2. Purpose: To eliminate DMAP instructions not belonging to the specified subset by

altering the ISl array.

4.2-2 (8/I/72)

EXECUTIVE PREFACE MODULE XCSA (EXECUTIVE CONTROL SECTION ANALYSIS)

3D

NSS

SUBSET

ISl

NDI

NWPI

4. Method:

Calling Sequence: CALL XSBSET (IDI,NSS,SUBSET,ISI,NDI,NWPI)

IDl Table containing DMAP instruction numbers of those instructions that are

not part of the specified subset.

- Number of subsets in table IDl.

- Subset to be selected from table IDl.

- Module execution decision table.

- Number of DMAP instructions in DMAP program.

- Number of words per ISl entry.

Table IDl is searched and the proper subset is selected. Each DMAP instruction

has a corresponding entry in table ISl. If the ISl entry for an instruction is zero, then

the instruction is eliminated from the DMAP proqram. Therefore zeroino the ISl entries of

those instructions specified in table IDl yields the proper subset. XSBSET then returns to

the calling routine.

4.2.6 Design Requirements

4.2.6.1 Use of Open Core

Open core is used for GIN_ buffers, for generating the XPTDIC Executive Table (see section

2.4) on restarts, and for storing user generated DMAP programs. Named conunonblock /XCSABF/

defines the beginning of open core for module XCSA. Since XPTDIC is not stored permanently in

open core and because the use of open core to store a DMAP program and a call to LDi are

mutually exclusive, the LDi subroutines can be origined for overlay purposes at the same location

as /XCSABF/.

4.2.6.2 Restart Tables Initialized in the Routines

The following tables are initialized by the LDi (i = solution number) subroutine or its

associated Block Data program and are used to aid module XGPI in restarting a problem which uses

Rigid Format i.

I. ISl - Module Execution Decision Table: This table when used in conjunction with table

MEDMSK in named common block /XMDMSK/ will provide module XGPI with the information needed

to decide whether or not to set the execute flag in an _SCAR entry. Each DMAP instruction

4.2-3

MODULE FUNCTIONAL DESCRIPTIONS

in a Rigid Format has a corresponding entry in IS1. An entry in IS1 can be one to five

words in length, and only bits 1 through 31 are used to form a truth table. Note that if

an IS1 entry is zero, the corresponding DMAP instruction is unconditionally excluded from

the Rigid Format DMAP program being compiled by module XGPI.

2. JNM - File Name Restart Table: The JNM table provides module XGPI with the capability

of regenerating data blocks which are missing in the restart dictionary and which are

needed to restart the problem. Note that the restart must be a modified restart. If a

data block is missing, the JNM table will indicate which bit to set in table MEDMSK. MEDMSK

is then used with IS1 to determine which DMAP modules must be re-executed in order to

correctly regenerate the missing data block.

Sample JNM Entry:

Word 1

2

3

Data Block

Name (BCD)

BN (integer)

BN is the bit number of the bit which is to be set in table MEDMSK to regenerate the

specified data block. The usable bits (bits 1-31) of MEDMSK are numbered sequentially

starting from bit 31 of the first word. MEDMSK is five words long,

Example:

BN =

MEDMSK

Word

I, "--m 31, 32, ...m62, 63, ...,93 m 9t+i...,12W m 125,...,155.

1 2 3 4 5

3. INM - Card Name Restart Table: When the problem is beinn restarted and input data

(Bulk Data and/or Case Control Data) has been modified, table INM tells module XGPI

whether or not the modifications affect the compilation of the DMAP program associated

with the Rigid Format. Table MJCD in named common block /IFPXI/ and table MJMSK in named

common block /IFPXO/ indicate which cards have been modified. If INM has an entry for a

modified card, the INM entry will indicate which bit to set in table MEDMSK. MEDMSK is

then used with IS1 to determine which DMAP modules must be re-executed.

4.2-4

EXECUTIVE PREFACE MODULE XCSA (EXECUTIVE CONTROL SECTION ANALYSIS)

Sample INM Entry:

Word

BN is the number of the bit which is to be set in table MEDMSK if the associated card name

has been modified. See sample JNM entry for further description of BN.

4. IDl - Subset Table: DMAP instructions in a DMAP program are numbered sequentially

starting with "BEGIN" as instruction number I. Table IDl contains the instruction numbers

of those instructions that are not to be included in a subset.

Sample IDl Entry:

Word

l+Nl

NI (in*en:r_

Ij (integer)

Ik

Nl words

Repeat for all subsets

N1 = number of instructions to delete in subset I. (N1 _0).

lj - Ik = DMAP instruction numbers of instructions to be deleted.

4.2-5

MODULEFUNCTIONALDESCRIPTIONS

4.2.7 Diagnostic Messages

Every effort is made to get through module XCSA so that the modules IFPI and IFP can process

the Case Control Deck and the Bulk Data Deck. XCSA sets the N_G_ flag in named common block

/SYSTEM/ according to the severity of the errors found.

NOG_ = 0 - no errors found.

l - job will terminate after module XGPI.

2 - job will terminate after IFP modules.

3 - job terminates in XCSA.

See diagnostic message section of User's Manual (section 6.2) for a detailed discussion of

XCSA error messages. XCSA messages include numbers 501 thru 526.

4.2-6

EXECUTIVEPREFACE MODULE IFPI (INPUT FILE PROCESSOR, PART l)

4.3 EXECUTIVE PREFACE MODULE IFPI (INPUT FILE PROCESSOR, PART l)

4.3.1 Entry Point: IFPI

4.3.2 Purpose

To process the Case Control Deck. See section 2.3 of the User's Manual for a discussion

of the Case Control Deck.

4.3.3 Calling Sequence

CALL IFPI. IFPI, a Preface module, is called only by subroutine SEMINT.

4.3.4 Input Data

The input data consists of the Case Control Deck and the CASECC data block from the Old

Problem Tape if the problem is a restart.

4.3.5 Output Data Blocks

CASECC - Case Control Data Table.

PCDB - Plot Control Data Table (for the structure plotter).

XYCDB - XY output Control Data Block.

Notes:

I. CASECC will always exist.

2. PCDB will exist only if a structure plotter package is included in the Case

Control Deck.

3. XYCDB will exist only if a XY_UT plotter package is included in the Case

Control Deck.

4.3.6 Method

The Case Control Cards are read and stored on a scratch file for later use. The title

cards are abstracted to form page headings. Title card abstraction is stopped by a SYM, SUBCASE,

SYMC@M or REPCASE card. IFPI is stopped by a BEGIN BULK card.

4.3-1

MODULE FUNCTIONAL DESCRIPTIONS

4.3.7

4.3.7.1

The construction of CASECC is as follows:

I. The scratch tape is read one card at a time, and subroutine XRCARD is called to

translate the card.

2. The first four characters beginning with a non-blank are identified in a key word

table, and card type dependent routines are executed. (See Case Control Deck in User's

Manual).

3. When "SUBCASE" type cards are encountered, a CASECC record is written out.

4. If the card _UTPUT (PL_T) is encountered,XRCARD images of succeeding cards are written

on P2DB.

5. If the card _UTPUT (XY_UT) is encountered,IFPIXY processes the succeeding cards into

the XYCDB.

The module conclusion is as follows:

I. A copy of CASECC is placed on the NPTP for use in restart.

2. If this run is a restart, IFPIB is called to analyze CASECC changes and set modify flags

for later use in Executive Preface module XGPI (see section 4.7).

Subroutines

Subroutine Name: IFPIB

I. Entry Point: IFPIB

2. Purpose: To set modify flags for use in modified restart.

3. Calling Sequence: CALL IFPIB (ICASE,@PTP,CASECC,IBUFI,IBUF2,LENCC)

ICASE A two-dimensional array (LENCC,2) for storage of both copies of CASECC -

OPTP

CASECC

IBU I
IBUF2J

LENCC

array - input.

GIN_ file name of the Old Problem Tape - BCD - input.

GINO file name of CASECC - BCD - input.

GINO buffer pointers - integer - input.

Row dimension of ICASE - integer - input.

4.3-2

EXECUTIVE PREFACE MODULE IFPI (INPUT FILE PROCESSOR, PART l)

NW_RDS

4. Method:

C_M_NIIFPXOISPACE(3),NW_RDS

Pointer into /IFPXO/ such that IFPI modify flags are in SPACE(NW_RDS).

CASECC and the copy of CASECC on the _PTP are compared according to the following

scheme. The local array IW_RD classifies each word in CASECC into 0 and I. 0 words: If

the CASECC word is non-zero and IBIT is non-zero in this position, the IBIT bit is turned on

in /IFPXO/. l word: If the CASECC word is different from the _PTP word and IBIT is

non-zero in this position, the IBIT is turned on in /IFPXO/.

IFPIB also determines the loop nature of the problem. The looping rules are as

follows:

a. The current problem will loop under the following conditions: SPC set changes;

MPC set changes; direct input matrix changes; transfer function set changes; tran-

sient load changes; frequency set changes; differential stiffness coefficient set

is greater than zero; and Piecewise Linear coefficient set is greater than zero.

If any of the above conditions are met. LB_P$ is turned on in /IFPXO/.

b. The old problem might have been a looping problem if the above conditions were

present in the _PTP CASECC. If the old problem was a looping problem as determined

in (a) and the nu_er of records in CASECC changes, L_PI_ Is set (this should

force the re-execution of the entire loop).

c. If the problem is not a looping problem, N_L_P$ is set.

4.3.7.2 Subroutine Name: IFPIC

I.

2.

3.

ISUB

181

C_RE

SCRI

Entry Point: IFPIC

Purpose: To construct set lists frop SET cards.

Calling Sequence: CALL IFPIC (ISUB,181,CORE,SCRl,NWPC,ICC,NZ,THRU,NSET)

- l - master set. 2 - set belongs to a subcase - integer - input.

- Pointer to storage for set in core - integer - input/output.

- Open core array.

- GIN_ file number of scratch file containing card images - integer - input.

4.3-3 (311171)

MODULEFUNCTIONALDESCRIPTIONS

4.3.7.3

NWPC

ICC

NZ

THRU

NSET

4.3.7.4

I.

2.

3.

4.3.7.5

Numberof wordspercard- integer- input.

Currentline countof CaseControlcardecho- integer - input/output.

Lengthof opencore- integer- input/output.

BCDvalue"THRU"- BCD- input.

Numberof sets foundto currentset - integer- input.

SubroutineName:IFPID

I. EntryPoint: IFPID

2. Purpose:Towrite userdiagnosticmessagesfromIFPI.

3. CallingSequence:CALLIFPID(MSGN)

MSGN Usermessagenumber- integer- input.

SubroutineName:IFPIE

EntryPoint: IFPIE

Purpose:Towrite out CASECCandupdatesets.

CallingSequence:CALLIFPIE(CASE,ISUBC,SYMSEQ,NWDSC,181)

CASE ArraycontainingCaseControlrecordto bewritten out (CASE(LENCC,2)),

ISUBC FivewordBCDarraycontainingcurrentsubcasenumber- BCD- output.

SYMSEQ- Symmetrycoefficient array - real - input.

NWDSC Pointerto beginningof set lists - integer- input/output.

181 Pointerto endof set list - integer- output.

SubroutineName:IFPIF

I. EntryPoint: IFPIF

2. Purpose:Tofind the first four charactersbeginningwith a non-blankononeinput
card.

4.3-4

3.

Sn

IW@RD

IS

IBEN

II

IFPIX

IFPIA

4.3.7.6

I.

2.

3.

ITYPE

CASE

ISUBI

IFPIX

EXECUTIVE PREFACE MODULE IFPI (INPUT FILE PROCESSOR, PART l)

Calling Sequence: CALL IFPIF ($n,IWgRD,IS,IBEN,II)

- FCRTPJ_Nstatement nu_er which defines the return to be taken if the entire

card is blank.

- First four characters beginning with a non-blank, left justified - BCD - output.

- Nu_er of bits/character ti_s (nu_er of characters/word-l) - integer - input.

- Mask used to determine if character is blank 'bOO0' - input.

- Pointer to word in which IWCRD begins - integer - output.

Cg_N/IFPIX/CgRE(20)

- 20-word array holding card image - BCD - input.

C¢V_W_M/IFPIA/

- See /IFPIA/ description under Design Requirements (section 4.3.8).

Subroutine Name: IFPIG

Entry Point: IFPIG

Purpose: To find an equal sign and copy the remainder of the data into a specified arrays

Calling Sequence: CALL IFPIG (ITYPE,CASE,ISUBI)

- Indicates area

Io

2.
3.
4.
5.
6.
7.
8.

- integer - input.

in which to store data.

TITLE
SUBTITLE
LABEL
HEADI
HEAD2
HEAD3

PL_TID
First 32 words of CASE

of /¢UTPUT/

- Case control array (132,2) unless ITYPE = 8, when it may be only 32 word array.

Subcase nu_er -l or 2 of CASE array.

CCHMCN/IFPIX/CCRE(20)

- 20-word array holding card image.

4.3-5

_UTPUT -

IFPIA

MODULE FUNCTIONAL DESCRIPTIONS

C_MM_N/_UTPUTI

Output common block - holds BCD titles for NASTRAN pages.

COMMON/I FPI A/

See /IFPIA/ description under Design Requirements (section 4.3.8).

4.3.7.7 Subroutine Name: SWSRT

I. Entry Point: SWSRT

2. Purpose: To check set lists for duplicates and overlapping intervals.

sorts lists into increasing order.

3. Calling Sequence: CALL SWSRT (LIST,IST_R,NLIST)

LIST Array of set members.

IST_R Scratch space of length NLIST.

NLIST Number of members in LIST.

4.3.7.8 Subroutine Name: IFPIXY

I. Entry Point: IFPIXY

2. Purpose: To construct the XYCDB data block.

3. Calling Sequence: CALL IFPIXY (FLAG)

FLAG - O, first entry for initialization; I, data entry; -I, last entry.

to 1 on return from the first entry - integer - input/output.

CARD -

CARD1 -

SWSRT al so

FLAG is set

COMMON/IFPIX/CARD(20), CARD1(20)

Contains card data as read from the input file.

Contains XRCARD translatioq of CARD unless CARD(1) contains 'XTIT', 'YTIT',

'TCUR', 'YTTI' or 'YBTI' In this case CARD1 (20) contains BCD data occurring

after the equal sign.

4.3.8 Design Requirements

I. One scratch file.

2. Open core at /IFPIX/.

4.3-6

EXECUTIVE PREFACE MODULE IFPI (INPUT FILE PROCESSOR, PART l)

C@MM_N/IFPIX/

Card

Image

XRCARD
translation

of input card

20 words

set lists

currently
active

2 GINB buffers

3. Common block IFPIA.

Name Length

NAME 2

SUBC 1

SET 1

SYMS 1

TSTE 1

LABE 1

SUBT 1

SCRI 1

CASECC 1

BLANK 1

Meanin_

Name of data block for error

messages.

Subcase key word

Set key word

Symmetry sequence key word

Time step card selection key word

Label key word

Subtitle key word

GINB file number of scratch file

GINB file name of CASECC

Blank word

Initialized to

CASE
CC

SUBC

SETb

SYMS

TSTE

LABE

SUBT

301

CASE

bbbb

4.3-7

MODULEFUNCTIONALDESCRIPTIONS

Name

CARD

CeUN

T

BEGI

TITL

CASEN

SPCF

VEL_

ACCE

ELF_

STRE

DISP

_UTP

SYM

FREQ

DLBA

TEMP

DEFO

TIME

SPC

MAXL

IC

METH

LOAD

MPC

STIF

ALL

THRU

SORT

UNS_

Length

l

1

1

II

Meanin_

Heading word card CARD

Heading word COUN

COUNT T

Begin bulk key word BEGI

Title key word TITL

Case Control page heading Case Control
Deck echo

Forces of constraint key word SPCF

Velocity key word VEL_

Acceleration key word ACCE

Element forces key word ELF_

Element stress key word STRE

Displacement key word DISP

_utput key word _UTP

Symmetry subcase key word SYM

Frequency set key word FREQ

Dynamic loading key word DL_A

Temperature field key word TEMP

Deformation set key word DEF_

Time key word TIME

Single-point constraint set key word SPC

Maximum number of output lines key word MAXL

Initial condition set selection id IC

Real eigenvalue or buckling method METH
selection key word

Load set selection key word LOAD

Multipoint set selection key word MPCb

Stiffness thermal field key word STIF

ALL key word ALLb

THRU key word THRU

Sorted echo key word S_RT

Unsorted echo key word UNSO

Initialized to

4.3-8

EXECUTIVEPREFACEMODULEIFPI (INPUTFILEPROCESSOR,PARTl)

Nanle

ECH_

PL_T

M_DE

PUNC

PRIN

NWPC

NCPW

B_TH

N_NE

PCDB

NAME

VECT

SYMC

EQUAL1

NM_DES

IB_B

IEND

ISYMCM

L_ADN

I_UT2

ICC

NSET

NSYM

IN_M_R

NPTP

_PTP

D_L

ZZZZBB

Length

l

l

l

l

l

l

l

l

l

l

2

Meanino

Bulk data echo key word

Plot key word

Modes key word

Punch key word

Print key word

Number of words per card

Number of characters per word (NASTRAN)

Echo-sorted and unsorted

None key word

Plot control data GIN_ file name

GINB error message for PCDB file

Alternate displacement key word

Symcom key word

Equal sign left adjusted

Value of modes card

Structure plot flag
O, not currently in structure

plot mode
l, in structure plot mode

Sy_om flag

Current Subcase ID number

Printed card count

Number of current set lists

Number of 'SYM' subcases

Flag to turn off Title card search

GIN_ file name of the New Problem Tape

GIN_ file name of the Old Problem Tape

Dollar sign

Hollerith zeros

Initiated to

ECH_

PL_T

M_DE

PUNC

PRIN

20

4

B_TH

N@NE

PCDB

PCDB
bbbb

VECT

SYMC

=bbb

l

0

0

0

1

O

1

0

1

0

NPTP

_PTP

$bbbb

O000bb

4.3-9

MODULE FUNCTIONAL DESCRIPTIONS

Name

ISTR

ISU3

K2PP
B2PP
M2PP

DSC_

REPC

LENCC

LINE

OM

TFL

DEFA

ELST

MAT

@FRE

IMAG

PHAS

REAL

CMET

SDAM

INER

ADIS

AVEL

AACC

N_NL

C_NF

XYPL

PLC_

Length

1

1

1
1

1

Mean_

Storage flag for IFPIG titles

Subcase or master CASECC pointer

Key words for direct input matrix selection

Initiated to

1

1

K2PP
B2PP
M2PP

DSCOKey word for differential stiffness set
selection

Key word for repeat subcase subcase REPC

Length of Case Control Record 166

Key word for LINE/page count LINE

Word to distinguish between SUBC_H OMbb
SUBCASE

Key TFL

Key DEFA

Key ELST

Key MATE

Key _FRE

Key IMAG

Key PHAS

Key REAL

Key

Key
use

Key
selection

Key word for solution set displacement SDIS
selection

Key word for solution set velocity selection SVEL

Key word for solution set acceleration SACC
selection

Key word for non-linear load set selection N_NL

Not used

Key word for XYPL_T packet delimiter XYPL

Key word for Piecewise Linear set selection PLC@

word for transfer function set selection

word for default specification

word for element stress set selection

word for thermal material set selection

word for output frequency set selection

word for real/imaginary printout

word for magnitude/phase printout

word for real or real/imaginary printout

word for complex eigenvalue set selection CMET

word for Structural Damping Table for SDAM
in modal formulation

word for Inertia Relief Element set INER

4.3-10

Name

AXIS

NLL_

DELE

XYCB

ONEB

HARM

SINE

COSl

FLUID

SUBS

AVEC

F_RC

RAND

XYOU

_LBA

PLTI

PLT2

XTIT

YTIT

TCUR
YTTI

YBTI

IBEN

EQUAL

PRES

TEMP

4.

EXECUTIVE PREFACE MODULE IFPI (INPUT FILE PROCESSOR, PART I)

ken_

1

Meanin E

Key word for selection of Axis

symmetric boundary condition

_y word for non-linear output
set selection

Key word for element deletion
set selection

GIN_ file name of XY control data block

BCD one

Key word for harmonic output control

Key word for sine boundary conditions

Key word for cosine boundary conditions

Key word for fluid boundary conditions

Key word for SUBSEQ

Key word for solution set vector output

Not used

Key word for random set selection

Key word for XYPLOT packet delimiter

Key word for output load set selection

GINO file name of BCD nlot tape

GIN_ file name of binary plot tape

Key words for XY output titles

Right shifted blank 'O00b'

Right shifted equal '000='

Alternate displacement key word

Alternate displacement key word

Initiated to

AXIS

NLLO

DELE

XYCB

Ibbb

HARM

SINE

C_Sl

FLUI

SUBS

SVEC

RAND

XY@LI

OLOA

PLTI

PLT2

XTIT

YTIT

TCUR
YTTI

YBTI

PRES

TEMP

Interface with /SYSTEM/ (See Section 2.4).

IFPI can set the following cells of SYSTEM:

a. NOG_ - (NOGO flag). If a fatal error is detected.

b. NLPP - (Number of lines per page). If a LINE card is supplied by the user.

c. STFTEM - (Material Temperature Set ID). If a TEMP(_TE) card is supplied.

4.3-II (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

d. ECHB - (Echo flag). If an ECH_ request is made.

5. Interface with /_UTPUT/.

IFPI supplies the problem title, subtitle, and label as well as the Plot ID.

4.3.9 Diagnostic Messages

IFPI makes every attempt to process the entire Case Control Deck so that the complete Preface

will run. Hence all fatal messages only cause the N_GO flag to turn on.

IFPI causes messages 601-699. For the exact nature of these messages, refer to the Diagnostic

Message section of the User's Manual.

4.3-12 (811172)

EXECUTIVE PREFACE MODULE XSgRT (EXECUTIVE BULK DATA CARD S_RT)

4.4 EXECUTIVE PREFACE ,MODULEXS_RT (EXECUTIVE BULK DATA CARD S_RT)

4.4.1 Entry Point: XS_RT

4.4.2 Purpose

The function of XSBRT is to prepare a file on the New Problem Tape containing the sorted

bulk data. The operation of XS_RT is influenced by the type of run. If a cold start, the bulk

data is read from the system input stream (or the User's Master File), sorted and written on the

New Problem Tape. If an unmodified restart, the bulk data is copied from the Old Problem Tape

onto the New Problem Tape. If a modified restart, the bulk data is read from the Old Problem

Tape, and cards are deleted and/or added in accordance with cards in the system input stream.

Additionally, flags are set within restart tables for each card type changed in any way. Again,

the sorted bulk data is written onto the New Problem Tape. A print of the unsorted and/or sorted

bulk data is made on request. XS_RT processes all data cards between the BEGIN BULK and ENDDATA

cards in the input stream. Both cards must be present to properly bracket the NASTRAN Bulk

Data Deck.

4.4.3 Callin9 Sequence

CALL XS_RT. XS_RT, a Preface module, is called only by the Preface driver, SEMINT.

4.4.4 Method

If the input is to be from a User Master File, XS_RT begins by positioning the file to the

beginning of the proper subset of bulk data cards. INITC_ is then called to initialize machine

dependent masks and constants. The open core below XS_RT (/ES_RT/) is divided into 5 GIN_ buffers

and a work buffer. This work buffer will contain each data card and a chaining pointer to

indicate its sorted position. That is, the cards will be placed into the work buffer in the

same order as read, but their sorted order will be shown by a chaining word with each card

pointing to the position of the next card in alphanumeric sort. If the work buffer is unable

to hold all of the bulk data cards, each subset that fills the buffer is unchained and written

in sorted order onto a scratch file. This writing onto a scratch file frees the work buffer for

another subset of data cards.

4.4-I

MODULE FUNCTIONAL DESCRIPTIONS

Three scratch files may become involved in sorting a large number of bulk data cards.

After the first two scratches are filled with sorted subsets, they are merged, while main-

taining the sorted order, onto a third scratch. From this point_ after each new subset is

written onto a scratch, it is merged with the scratch containing all previous subsets. As

an example, assume three scratches are named A, B, and C. Scratch A is written with the first

subset of data from a filled work buffer. Scratch B is written with the second subset.

Scratch A and B are then merged to form scratch C. This frees scratch A and B. Scratch A is

then written with the third subset of data. A and C are merged to form a new B. A is then

written with the fourth subset. A and B are merged to form a new C. This process continues

until all bulk data has been sorted. Following the final merge, one of the scratch files

will contain all of the sorted bulk data cards.

As the sort and merge operations are being performed, any continuation cards or delete

cards encountered are written onto separate holding files. After all data cards in the input

stream have been processed, each of these holding files is processed. The delete card values

are placed in ascending order and any overlaps or redundancies are removed. The continuation

cards are checked for duplication and an in-core dictionary of their connection words is formed.

XS_RT may now make a pass through the scratch file containing all of the sorted bulk data

cards within the input stream. During this pass, the User Master File (UMF) or the Old

Problem Tape (_PTP) data cards are merged with those from the input stream. Both the UMF and

OPTP data cards were properly sorted during their preparation. As this merge progresses, any

data cards designated for removal by delete control cards are discarded. If the NASTRAN run

for which XSORT is operating is a restart, all data cards within the input stream plus any

deleted from the _PTP will cause data card type flags to be set within restart tables. This

entire pass is not performed if the run does not require either a UMF or OPTP.

Now a final pass of the resulting sorLed data is made to introduce any continuation cards

and write the completed Bulk Data Deck onto the New Problem Tape. The continuation cards are

connected to the sorted data cards by matching connection words. Continuation cards can in no

way affect the sorted order. If a print of tile resulting sorted deck is requested, it is

performed during this pass.

During any sort collation the data cards are ordered by comparing half-fields from left

to right. Each bulk data card may contain up to ten, eight column (character) fields.

4.4-2

EXECUTIVE PREFACE MODULE XS_RT (EXECUTIVE BULK DATA CARD SgRT)

Because of computer word size constraints, each data card is stored into twenty memory words, four

characters (half a card field) per word. Sorting proceeds by comparing the first words (4 charac-

ters) from each card. If an order cannot be established, i.e,, the words are equal, the second

words from each card are compared, and so on, until an order is established or total duplication

is determined. Each field (8 characters) is left (BCD) or right (integer) justified prior

to sorting to eliminate leading or trailing blanks. The characters within the first field

of each card are converted to a special internal character set prior to comparing to eliminate

machine dependent collation sequences which might order the same cards differently on different

machines. This internal set forces the collation order to be ascending from blank through

all numbers then all letters. A flowchart is given in Figure I.

4.4.5 Subroutines

In the following, note that XRECPS, RPAGE, INITCg, XFADJ, XBCDBI, XPRETY, CRDFLG, EXTINT,

and INTEXT are secondary entry points in XRECPS.

4.4.5.1 Subroutine Nane: XRECPS

I. Entry Point: XRECPS

2. Purpose: Positions the continuation card file to the proper record (card image) as

determined from the in-core continuation card dictionary.

3. Calling Sequence: CALL XRECPS (NEW, @LD)

Where: NEW = the file position being requested

9LD = the file position last requested.

Both arguments are integer record numbers.

4.4.5.2 Subroutine Name: RPAGE

I.

2.

with the system subroutine PAGE.

3. Calling Sequence: CALL RPAGE (NLINE)

Where: NLINE = integer number of lines being output.

Entry Point: RPAGE

Purpose: Counts output print lines for XSgRT, and performs the necessary interface

If NLINE _ lO0 a page eject is

4.4-3

MODULEFUNCTIONALDESCRIPTIONS

4.4.5.3

I.

2.

3.

4.4.5.4

forcedandthe line countis set to NLINE- lO0.

SubroutineName:INITC_

EntryPoint: INITC@

Purpose:Initializes machinedependentmasksandconstantswithin XSORT.

CallingSequeL_ce:CALLINITC_

SubroutineName:XFADJ

I. EntryPoint: XFADJ

2. Purpose:Adjustsfour characterfields, left or right, twoor four fields at

a time. If the fields containonly integers, the shift is right, otherwisethe shift

will be left. This routinedeterminesonly the direction of shift required. Actual

shifting is performedbyXFADJI.

3. CallingSequence:CALLXFADJ(BUF,SD,K)

Where:BUF= field array to beshifted

SD =IO' shift two fields at a time

I1, shift four fields at a time

_0, returned if right shift was done.
K

, returned if left shift was done.

4.4.5.5 Subroutine Name: XBCDBI

I. Entry Point: XBCDBI

2. Purpose: Converts two, four character BCD integer fields (right adjusted in the left

most four characters of the computer word) into a single binary integer (right adjusted

in the second of the two input words).

3. Calling Sequence: CALL XBCDBI (BUF)

Where: BUF : two _!ordarray to be converted.

4.4.5.6 Subroutine Name: XPRETY

I. Entry Point: XPRETY

4.4-4

EXECUTIVEPREFACE MODULE XSgRT (EXECUTIVE BULK DATA CARD S_RT)

4.4.5.7

2. Purpose: "Pretties-up" printed output by left adjusting all fields to eliminate any

leading zeros introduced when integer fields are right adjusted.

3. Calling Sequence: CALL XPRETY (BUF)

Where: BUF = card image array.

Subroutine Name: CRDFLG

I. Entry Point: CRDFLG

2. Purpose: Sets the card type flags within the restart tables.

3. Calling Sequence: CALL CRDFLG (CARD)

Where: CARD = first of two word card type field.

Subroutine Name: EXTINT

I. Entry Point: EXTINT

2. Purpose: Converts card type field from the machine dependent character code to

an internal machine independent code.

3. Calling Sequence: CALL EXTINT (CTYBF)

Where: CTYBF = first of two word card type field.

Subroutine Name: INTEXT

I. Entry Point: INTEXT

2. Purpose: Converts the card type field from an internal machine independent code to

the machine dependent character code.

3. Ca_ling Sequence: CALL INTEXT (CTYBF)

Where: CTYBF = first of two word card type field.

Subroutine Name: XFADJI

I. Entry Point: XFADJI

2. Purpose: Adjust four character fields left or right, two or four fields at a time.

This routine performs actual shifting with the direction of shift controlled through the

4.4.5.8

4.4.5.9

4.4.5.10

4.4-5

MODULEFUNCTIONALDESCRIPTIONS

calling sequence.(Noteentry point XFADJ).

3. CallingSequence:CALLXFADJI(BUF,SHIFT,SD)

Where: BUF= Field Arrayto beshifted.

SHIFT= Function LSHIFT or RSHIFT.

SD = IO, shift two fields at a time.

b , shift four fields at a time.

4.4.5.11 Function lqame: ISFT

I. Entry Point: ISFT

2. Purpose: Performs special shifting functions for subroutine XFAJI.

3. Calling Sequence: CALL ISFT

RESULT = ISFT(BUF,SFTCNT,J)

where: BUF = Word to be shifted.

SFTCi_T = Bits to be shifted.

J = Shift diFection control; 3 = right, 4 = left.

Design Requirements

I. Data cards operated upon by XSORT must conform to the NASTRAN format for bulk

data cards (ten, eight character fields per card). See section 2 of the User's Manual

for details.

2. Data cards must contain only valid BCD key punch codes or blanks. Non-standard

multi-punched code (e.g., some IBM EBCDIC) will cause unpredictable results.

3. XS_RT requires sufficient open core to contain five GIN_ buffers and a work buffer

for at least ten data cards. (Each data card requires twenty-one core locations). Sort

efficieF:cyincreases in proportion to the size of the work buffer.

4. The continuation card dictionary must fit into the core work buffer during the final

pass. Each continuation card requires two dictionary locations.

5. XS_RT logic is biased toward input that is already sorted. That is, the program

will operate at a much greater speed if verifying a sort rather than producing a sort.

4.4.6

4.4-6

EXECUTIVEPREFACEMODULEXS_RT(EXECUTIVEBULKDATACARDS_RT)

4.4.7 Diagnostic Messages

XS_RT can produce two catagories of diagnostic messages. The first are termed USER

messages and deal with bulk data card errors. The second are termed SYSTEM messages which

are generally fatal in nature and indicate serious I/_ malfunctions.

XS_RT message numbers includes 201 through 216. All messages are listed and explained in

section 6 of the User's Manual.

4.4-7

MODULEFUNCTIONALDESCRIPTIONS

XS RTENTER

No

I Position UMFto proper file

-i

Call

INITCB
to initialize
constants &

masks

Initialize work buffer
with low & high limit

Read card Ifrom input

No

Print card

I

Write card oncontin, file

Write card ondelete file

Yes

Adjust char. to left
to each field

Is

card
ENDDATA

?

Is

card a
continuation

?

Is

card a
comment

?

Is

Figure l.(a) Flowchart for module XSBRT.

4.4-8

EXECUTIVEPREFACEMODULEXSgRT(EXECUTIVE BULK DATA CARD S¢RT)

Between

ve to

I next field

Duplicate card J

I

I Sorted position found -set chaining pointer

No

Unchain sorted work buffer
and write on a scratch

No

Merge two scratches &
for_,a 3rd scratch

Process delete card file - sort

& eliminate redundancy re-write
onto file

JMerge(_)Old Prob. Tape or UMFwith final merged scratch from

input. Remove any cards deleted

Set-up next
scratch for
next unload

Figure l.(b) Flovchart for module XS9RT.

4.4-9

MODULEFUNCTIONALDESCRIPTIONS

Copysortedcardwithout
continuationontonew

problemtape

Formcontinuationcard
dictionary in core

Scansortedcardfile produced
fromthe last merge(_)ormerge

(_if UMFor restart

No

No

Collate cont. card with sorted
card. Write both onto new

problem tape

l
Copy sorted card
file onto new

problem tape

No

Print card(s)

RETURN

Figure l.(c) Flowchart for module XS_RT.

4.4-I0

EXECUTIVEPREFACEMODULEXS(aRT(EXECUTIVE BULK DATA CARD Si_RT)

more

cards
in sorted

Yes

Any
unused No

continuations
?

Message

Figure l.(d) Flowchart for module XSgRT.

4.4-II

EXECUTIVEPREFACEMODULEIFP(INPUTFILEPROCESSOR)

4.5 EXECUTIVEPREFACEMODULEIFP(INPUTFILEPROCESSOR)

4.5.1 Entry Point: IFP

4.5.2 Purpose

To process the Bulk Data Deck sorted by Executive Preface module, XSORT. This task is

accomplished as follows: l) the sorted Bulk Data Deck is read from the New Problem Taoe (NPTP)

card-by-card; 2) the contents of each field of each card are validated (see section 2.4 of the

User's Manual for detailed descriptions of each bulk data card); 3) card images or modified

card images are written on data blocks or the NPTP or the Data Pool File (see section 2.3.2 of

the Programmer's Manual for details on the formats of these data blocks).

4.5.3 Callin9 Sequence

CALL IFP. IFP, an Executive Preface module, is called only by the Preface driver,

subroutine SEMINT.

4.5.4 In_

The input to IFP consists of the Bulk Data Deck sorted by Executive Preface module XSgRT.

4.5.5

The output of IFP consists of: I) data blocks used in Rigid Formats; 2) the AXIC data

block, which is processed by Executive Preface Modules IFP3, IFP4 and IFP5 and is present only if

the NASTRAN run is a conical shell (a unique structural elemtn) problem, a hydroelastic problem,

or an acoustic cavity problem; 3) the PVT Executive table, which contains the names and values of

all DMAP parameters input by means of the PARAM bulk data card, and which is written on the New

Problem Tape to be processed by Executive Preface module XGPI; and 4) DMI's (Direct Matrix Inputs)

and DIT's (Direct Table Inputs), each of which is written on the Data Pool File as a data block

and is indistinguishable from any matrix data block or table data block pooled by the Executive

Segment File Allocator (XSFA) module.

4.5-I (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.5.5.1 Output Data Blocks Used in Rigid Formats

GEOMI

GERM2

GERM3

GERM4

EPT

MPT

DIT

EDT

DYNAMICS

MATP_L

Note:

- Grid point, coordinate system, and sequence data.

Element connection data.

Static loads and temperature data.

Displacement set definitions data.

Element Property Table.

Material Property Table.

Direct Input Tables.

Element Deformation Table.

Collection of bulk data cards for a dynamics problem.

Data block containing matrices input on DMIG bulk data cards.

Do not confuse the DTI (Direct Table Input) bulk data card and the DIT (Direct

Input Table) data block.

4.5.6 Method

4.5.6.1 General Comments

The bulk data cards processed by IFP are classified into five categories. Listed below is

a brief explanation of each with a few examples.

I. Closed End Cards (Fixed Length Card)

Cards such as CQUAD2 and PROD go through all the standard bulk data card checks (see 4.5.6.2)

before being processed by the card dependent subroutines within IFP, (IFSiP, i = I, 2, 3, 4,

5). These closed end cards are output to one of the standard GINB files.

2. Open Ended Cards (Variable Length Cards)

In cards such as SPCl and PLFACT, since the length and therefore the formats are not

known, the bulk data checks using the data initialized in the block data subprograms

must be made in the card dependent subroutines. Also, since the length is not known, a

flag is placed at the end of the information for that card before being written on the

file in order that routines reading an open ended card will be signaled as to an end-of-

card condition.

4.5-2 (8/I/72)

EXECUTIVE PREFACE MODULE IFP (INPUT FILE PROCESSOR)

3. GRDSET and BAR_R Cards

Special cards such as GRDSET and BAR_R are not output to a GIN_ data block, but are stored

in local variables, and provide default values for the GRID and CBAR cards.

4. DMI and DTI Cards

DMI and DTI cards are unique in the manner in which they are used by the user and orocessed

by IFP. The DMI card enables the user to define matrix data blocks directly, while the

DTI card gives the user the capability to input his own table data blocks directly. The

user must write a DMAP sequence or use the ALTER feature - see section 2.2 of the User's

Manual - in the Executive Control Deck to alter the Rigid Format chosen in order to use

Both DMI and DTI cards

4.5.6.2

the DMI or DTI feature since he is defining his own data blocks.

are written directly onto the Data Pool File.

5. PARAM Cards

PARAM bulk data cards are stored in open core by IFP until the entire Bulk Data Deck has

been processed. PARAM cards are then written as the PVT (Parameter Value Table) on the

NPTP for subsequent processing by the Executive Preface module XGPI.

Card Processing

I. IFP searches the NPTP for the Bulk Data Deck and extracts it in 20 word (one physical

card) segments. Each card is passed to subroutine RCARD, which takes the BCD card images

and converts the fields thereon to values, and identifies the values as to type: blank

data field, integer data field, real single precision data field, BCD data field, real

double precision data field or a data field which is in error.

IFP always has two physical bulk data cards in internal storage areas: the "current"

card and the "next" card. M is the local F_RTRAN array where the values of the current

bulk data card are located, and Ml the local F_RTP4_Narray where the values of the next

card are located. After the current card is processed, the data in Ml are transferred into

M, and new card values for Ml are input from the NPTP. When the values from Ml are trans-

ferred to M, the first two words (the card mnemonic) are stripped off. Ml(3) is stored in

M(1), Ml(4) is stored in M(2),and so on.

4.5-3

MODULE FUNCTIONAL DESCRIPTIONS

2. /IFPXl/ is referenced to verify the admissibility of the name (mnemonic) of the

particular card taken from the NPTP.

3. The approach acceptability flag is checked. This flag is defined as follows:

0 =

1 =

2 =

OK for any approach;

Not used by displacement approach;

lllegal for displacement approach.

The approach flag (DISPL, DMAP) is found in /SYSTEM/.

4. The proper output files are established. See Table 1 or Table 2 for the outnut file

on which the various bulk data cards will reside.

5. Uniqueness flags, which reside in C_MM_N/IFPX5/, are defined for each card

type as follows:

0 - No check is made;

1 - A check is made;

2 - A special check is made.

For example, on the bulk data card C_NR_D, field 2 is the EID, and it must be unique with

respect to all other C_NR_D EID's.

6. The next physical card is read from the NPTP. This will be the next card to be processed.

7. A check for too many continuation cards is made. This check is made on fixed length

cards only.

8. A check is made for the minimum and maximum number of words for a logical bulk data card.

9. A check for the proper types of values for the fields on a card is made by referencing

/IFPXT/, which contains format codes for each card type as follows:

0 : Blank

1 : Integer

2 : Real

3 = BCD

4 = Double Precision

5 = Anything.

4.5-4

EXECUTIVE PREFACE MODULE IFP (INPUT FILE PROCESSOR)

When RCARD passes format values to IFP, a format code of 0 will override this check. In the

card dependent code check (step lO), the value will be looked at to see if it is in error.

lO. An auxiliary subroutine IFSiP, i = l, 2, 3, 4, 5, is called to execute card dependent code.

If. If the input card passes the tests in the card dependent code, the data are written on

the appropriate GIN9 output file.

4.5.6.3 Module Conclusion

When the sorted Bulk Data Deck has been exhausted, the following steps are carried out.

I. The appropriate trailer codes are written for each data block. For listings of

trailer information reference section 2.3.2.

2. The PVT is written on the _PTP.

3. Restart flags are set in /IFPXO/.

4.5.7 Subroutines

IFP uses the utility routine RCARD described in section 3.4.20.

4.5.7.1 Block Data Subprogram: IFXIBD

Purpose: To initialize /IFPXI/, which is used by IFP to validate card names. All bulk

data card names must appear in this table.

4.5.7.2 Block Data Subprogram: IFX2BD

Purpose: To initialize /IFPX2/. This table contains two words per entry (two words per

card type): the first gives the GIN9 output file nun_)er,and the second gives the approach

acceptability flag.

4.5.7.3 Block Data Subprogram: IFX3BD

Purpose: To initialize /IFPX3/. This table contains two words per entry (two words per

card type): the first word is used as the Conical Shell Problem flag, and the second word is

used internally to store the nu_er of words to be output to the GIN9 output file.

4.5-5 (RII172)

MODULE FUNCTIONAL DESCRIPTIONS

4.5.7.4 Block Data Subprogram: IFX4BD

Purpose: To initialize /IFPX4/. This table contains two words per entry (two words per

card type): the first is the minimum number of words allowable, the second is the maximum

number of words allowable. The first word of an entry being negative implies the card is open

ended.

4.5.7.5 Block Data Subprogram: IFX5BD

Purpose: To initialize /IFPX5/. This table contains two words per entry (two words per

card type): the first is a pointer into /IFPX7/, the second is the field 2 uniqueness check flag.

4,5.7.6 Block Data Subprogram: IFX6BD

Purpose: To initialize /IFPX6/. This table contains two words per entry (two words per

card type): the first is header word 1 (card type), the second is header word 2 (trailer bit

position) of the three word header information of each logical record, which corresponds to all

the data of particular bulk data card type. See section 2.3.2 for details.

4.5.7.7 Block Data Subprogram: IFX7BD

Purpose: To initialize /IFPX7/. Each entry contains the admissible sequence of format

codes for that card type (see step 9 in section 4.5.6.2 above).

4.5.7.8 Subroutine Name: IFSiP, i = I, 2, 3, 4, 5

I. Entry Point: IFSiP, i = I, 2, 3, 4, 5

2. Purpose: These are the four subroutines that the module driver IFP calls to execute

card dependent code.

3. Calling Sequence: CALL IFSiP ($nl,$n2,$n3)

n I FORTRAN statement number defining the return taken in the event of a format

n 2

n3

or data error.

FORTRAN statement number defining the return taken when local variables are

set to provide default values for appropriate cards.

FORTRAN statement number defining the return taken in the event of a data error.

4.5-6 (8/I/72)

EXECUTIVE PREFACE MODULE IFP (INPUT FILE PROCESSOR)

4.5.7.9 Subroutine Name: IFPDC_

I. Entry Point: IFPDC_

2. Purpose: L_GICAL FUNCTION IFPDC_ decodes packed component code and returns .FALSE. if

no errors are detected and .TRUE. if any errors are detected. The decoded results are stored

in labeled common block /IFPDTA/ . This subroutine is also used by the Preface Module IFP3.

4.5.8 Design Requirements

Open core is defined in /IFPXX/. Open core is used to store all PARAM cards until the Bulk

Data Deck has been exhausted, at which time the PARAM cards are written on the NPTP as the PVT

Executive table.

IFP has a compilation-dependent overlay structure as shown in the sketch below.

IFSIP
IFS2P

IFP
RCARD

Block Data
Routines

IFS3P

i

IFS4P
IFS5P

/IFPXX/ Open Core

The open core (common block /IFPXX/ must be located below the longest of the IFSiP segments.

This is automatically done on the Univac ll08 but must be done by the programmer on the other

machines.

4.5.9 Diagnostic Messages

If a fatal error is detected during any phase of the processing of module IFP, the N_G_ flag

will be set, and the error message will be printed out. IFP will continue processing data cards

until all are processed.

4.5-7 (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

Tablel(a). BulkDataCardsProcessedby IFPSortedby Internal CardNumber.

Thefollowinglist givesanexplanationof the columnheadingson the followingpagesof

TableI.

A = Internal IFPBulkDataCardNumber

B = Bulk Data Card Name (an asterisk following a name implies the card is not available)

C = Internal IFP GIN_ Output File Nun_er

D = Data Block Name

E = Approach Acceptance Indicator

-2 = Illegal for the Force Approach

-l = Not Used by the Force Approach

0 = OK for any Approach

l = Not Used by the Displacement Approach

2 = Illegal for the Displacement Approach

F = Minimum Number of Words Allowed Per Logical Card (F negative implies an open ended card)

G = Maximum Number of Words Allowed Per Logical Card

H = Format Check Pointer Into IFX7BD

I = Field 2 Uniqueness Check Flag

0 = No Check is Made

l = Check is Made

2 = Special

J = Subroutine L_CATE Code for Card on Output Data Block

K = Trailer Bit Position

L = Pointer to Secondary (Card Dependent) Code

Sl = Subroutine IFSIP

$2 = Subroutine IFS2P

$3 = Subroutine IFS3P

$4 = Subroutine IFS4P

$5 = Subroutine IFS5P

M = FBRTRAN Statement Number in the Card Dependent Subroutines

N = Conical Shell Problem Flag

-l = Illegal for Shell Mode

4.5-8 (8/I/72)

EXECUTIVEPREFACEMODULEIFP(INPUTFILEPROCESSOR)

Table l(b). Bulk Data Cards Processed by IFP Sorted by Internal Card Number.

0 = OK for Shell Mode

l = Puts Card Into Different Data Block

0 = Users Map for Data Blocks IFX2BD,...,IFX6BD

Values for I = 1,2 or 3

J = 1,2 or 3

H = A,B,C,D or E

K = 1,2,3,4,5 or 6

I = Is Data Statement in the Block Data Program

J = The Group of A Through E Continuation Card Blocks Within the Ith Data Statement

H = Alphabetic Character in Col 6 (Continuation Column) in the Jth Group

K = The Pair Number on Line H Where the Actual Data is located.

4.5-9 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

1
2
3
4
5
6
7
8
9

I0
II
12
13
14
15
16
17
18
19
2O
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
4O
41
42
43
44
45
46
47
48
49
5O
51
52
53
54
55
56
57
58

Table l(c). Bulk Data Cards Processed by IFP Sorted

C D E F G H I J

GRID 1 GEOMI 0 4 12 1 1 4501
GRDSET 1 GEOMI 0 4 12 13 2 0
ADUMI 1 GERM1 0 8 8 537 0 0
SEQGP 1 GERM1 -I 4 8 37 0 5301
CORDIR 1 GEOMI 0 4 8 37 0 1801
CORDIC 1 GEOMI 0 4 8 37 0 1701
CORDIS 1 GEBMI 0 4 8 37 0 1901
C_RD2R 1 GEOMI 0 12 16 45 1 2101
CORD2C 1 GERM1 0 12 16 45 1 2001
CORD2S l GERM1 0 12 16 45 1 2201
PL_TEL 8 GE@M2 0 4 8 505 0 5201
SPCI I0 GE@M4 -2 -4 9 -I 0 5481
SPCADD I0 GERM4 -2 4 8 -I 1 5491
SUPORT I0 GEOM4 -2 4 8 37 0 5601
OMIT I0 GEOM4 -2 4 8 37 0 5001

SPC I0 GERM4 -2 4 8 I01 0 5501
MPC I0 GEOM4 -2 4 8 -I 0 4901
FORCE 9 GERM3 0 8 12 109 0 4201
M_MENT 9 GERM3 0 8 12 109 0 4801
FORCE1 9 GERM3 0 8 12 121 0 4001
MOMENT1 9 GERM3 0 8 12 121 0 4601
F_RCE2 9 GE@M3 0 8 12 133 0 4101
M_MENT2 9 GERM3 0 8 12 133 0 4701
PLOAD 9 GERM3 0 8 12 145 0 5101
SLOAD 9 GEOM3 -2 4 8 157 0 5401
GRAV 9 GE@M3 0 8 12 165 1 4401
TEMP 9 GEOM3 0 4 8 157 0 5701
GENEL 8 GEOM2 -2 -4 9 -I 1 4301
PROD 2 EPT 0 4 12 165 1 902
PTUBE 2 EPT 0 4 12 177 1 1602
PVISC 2 EPT -2 4 8 189 0 1802
ADUM2 1 GEOMI 0 8 8 537 0 I0
PTRIAI 2 EPT 0 4 16 221 1 1202
PTRIA2 2 EPT 0 4 8 237 0 1302
PTRBSC 2 EPT 0 4 12 257 1 1102
PTRPLT 2 EPT 0 4 12 257 1 1502
PTRMEM 2 EPT 0 4 8 237 0 1402
PQUADI 2 EPT 0 4 16 221 1 702
PQUAD2 2 EPT 0 4 8 237 0 802
PQDPLT 2 EPT 0 4 12 257 0 602
PQDMEM 2 EPT 0 4 8 237 0 502
PSHEAR 2 EPT 0 4 8 237 0 1002
PTWIST 2 EPT 0 4 8 237 0 1702
PMASS 2 EPT -2 4 8 269 0 402
PDAMP 2 EPT -2 4 8 269 0 402
PELAS 2 EPT -2 4 8 497 0 302
C_NROD 8 GEOM2 0 8 12 277 1 1601
CR_D 8 GEOM2 0 4 8 37 0 3001
CTUBE 8 GEOM2 0 4 8 37 0 3701
CVISC 8 GEOM2 -2 4 8 37 0 3901
ADUM3 1 GEOMI 0 8 8 537 0 I0
CTRIAI 8 GEOM2 0 8 12 313 1 3301
CTRIA2 8 GEOM2 0 8 12 313 1 3401
CTRBSC 8 GEOM2 0 8 12 313 1 3201
CTRPLT 8 GEOM2 0 8 12 313 1 3601
CTRMEM 8 GERM2 0 8 12 313 1 3501
CQUADI 8 GEOM2 0 8 12 325 1 2801
CQUAD2 8 GERM2 0 8 12 325 1 2901

by Internal Card Number.

K L M N

45 $3 I00 -I
0 $3 200 -I
0 S5 I00 0

53 S1 40 -I
18 S1 500 -I
17 S1 600 -I
19 S1 700 -I
21 S1 800 -I
20 S1 900 -I
22 S1 I000 -I
52 S1 IIII -I
58 $3 3980 -I
59 $3 4020 1
56 S1 1400 -I
50 S1 1400 -I
55 Sl 1600 -I
49 $3 1700 -I
42 S1 1800 1
48 S1 1800 1
40 S1 2000 -I
46 S1 2000 -I
41 S1 2200 -I
47 S1 2200 -I
51 S1 2400 -I
54 S1 2500 -I
44 Sl 2600 1
57 S1 2500 -I
43 $3 2800 -I

9 S1 2900 -I
16 S1 2920 -I
18 S1 310 -I

0 $5 200 0
12 S1 2980 -I
13 S1 3000 -I
II S1 3020 -I
15 S1 3020 -I
14 S1 3000 -I

7 S1 2980 -I
8 S1 3000 -I
6 S1 3020 -I
5 S1 3000 -I

I0 S1 3000 -I
17 S1 3000 -I

4 Sl 3200 -I
2 S1 3200 -I
3 S1 3240 -I

16 S1 3260 -I
30 S1 3281 -I
37 S1 3282 -I
39 S1 3283 -I

0 $5 300 0
33 S1 3360 -I
34 S1 3360 -I
32 S1 3360 -I
36 S1 3360 -I
35 S1 3360 -I
28 Sl 3460 -I
29 S1 3460 -I

IJHK

IIAI
IIA2
IIA3
IIA4
IIA5
IIA6
lIB1
lIB2
lIB3
lIB4
lIB5
lIB6
IICI
IIC2
IIC3
IIC4
IIC5
IIC6
lID1
lID2
lID3
lID4
lID5
lID6
lIE1
lIE2
lIE3
lIE4
lIE5
lIE6
12AI
12A2
12A3
12A4
12A5
12A6
12BI
12B2
12B3
12B4
12B5
12B6
12CI
12C2
12C3
12C4
12C5
12C6
12DI
12D2
12D3
12D4
12D5
12D6
12El
12E2
12E3
12E4

4.5-10 (8/I/72)

EXECUTIVE PREFACEMODULEIFP (INPUT FILE PROCESSOR)

Table l(d)

A B C

59
60
61
62
63
64
65
66
67
68
69
7O
71
72
73
74
75
76
77
78
79
8O
81
82
83
84
85
86
87
88
89
9O
91
92
93
94
95
96
97
98
99

I00
I01
102
103
I04
I05
106
107
I08
109
II0
III
112
113
114
115
116

CQDPLT 8
CQDMEM 8
CSHEAR 8
CTWIST 8
CONMI 8
C_NM2 8
CMASSI 8
CMASS2 8
CMASS3 8
CMASS4 8
CDAMPI 8
CDAMP2 8
CDAMP3 8
CDAMP4 8
CELASI 8
CELAS2 8
CELAS3 8
CELAS4 8
MATI 3
MAT2 3
CTRIARG 8
CTRAPRG 8
DEFBRM 4
PARAM 6
MPCADD lO
LOAD 9
EIGR 7
EIGB 7
EIGC 7
ADUM4 1

1
3
3

I0
5
5
5
5
5
9
1
1
1
3
1
8
8
1
8
8
8
8
8
8
8
8
8
2

MATS1
MATT1
BMITI
TABLEMI
TABLEM2
TABLEM3
TABLEM4
TABLESI
TEMPD
ADUM5
ADUM6
ADUM7
MATT2
ADUM8
CTORDRG
SP_INT
ADUM9
CDUMI
CDUM2
CDUM3
CDUM4
CDUM5
CDUM6
CDUM7
CDUM8
CDUM9
PDUMI

• Bulk Data Cards Processed by IFP

D E F G H I

Sorted by Internal Code Number.

J K L M N

GEOM2 0 8 12 325 1 2701 27 S1 3460 -I
GERM2 0 8 12 325 1 2601 26 Sl 3460 -I
GERM2 0 8 12 337 1 3101 31 S1 3540 -I
GEOM2 0 8 12 337 1 3801 38 S1 3540 -I
GERM2 0 8 28 349 1 1401 14 S1 3580 -I
GERM2 0 8 20 377 1 1501 15 S1 3600 -I
GEOM2 -2 4 12 337 1 I001 I0 S1 3620 -I
GERM2 -2 4 12 397 1 II01 II Sl 3623 -I
GERM2 -2 4 8 37 0 1201 12 S1 3674 -I
GERM2 -2 4 8 409 0 1301 13 S1 3697 -I
GERM2 -2 4 12 337 1 201 2 S1 3620 -I
GERM2 -2 4 12 397 1 301 3 S1 3623 -I
GERM2 -2 4 8 37 0 401 4 S1 3675 -I
GEOM2 -2 4 8 409 0 501 5 S1 3698 -I
GERM2 -2 4 12 337 1 601 6 S1 3620 -I
GERM2 -2 4 12 417 1 701 7 S1 3800 -I
GERM2 -2 4 8 37 0 801 8 S1 3676 -I
GERM2 -2 4 8 409 0 901 9 S1 3699 -I
MPT 0 4 20 429 1 103 1 S1 3860 0
MPT 0 8 20 449 1 203 2 S1 3880 0
GEOM2 -2 8 12 738 1 1708 17 $4 790 -I
GERM2 -2 8 12 737 1 1808 18 $4 800 -I
EDT -2 4 8 157 0 104 1 Sl 2500 -I
PVT 0 -5 16 -I 2 0 0 S3 3960 0
GERM4 -2 4 8 -I 1 4891 60 $3 4020 1
GERM3 0 4 8 -I 1 4551 61 S3 4060 1
DYNAMICS -2 14 18 469 1 307 3 $2 850 0
DYNAMICS -2 14 18 469 1 I07 1 $2 850 0
DYNAMICS -2 -4 I0 -I 1 207 2 $2 870 0
GEOMI 0 8 8 537 0 0 0 $5 400 0
GEOMI 0 8 8 -I 2 0 0 $2 890 0
MPT -2 4 16 545 1 503 5 $4 900 -I
MPT 0 4 16 545 1 703 7 $4 900 0
GEOM4 -2 -4 9 -I 0 4951 63 $3 3981 -I
DIT 0 -4 16 -I 1 105 1 $2 930 0
DIT 0 -4 16 -I 1 205 2 S2 930 0
DIT 0 -4 16 -I 1 305 3 $2 930 0
DIT 0 -4 16 -I 1 405 4 S2 960 0
DIT -2 -4 16 -I 1 3105 31 $2 930 -I
GEBM3 0 4 12 269 0 5641 65 $4 980 1
GERM1 0 8 8 537 0 320 0 S5 500 0
GEOMI 0 8 8 537 0 0 0 $5 600 0
GERM1 0 8 8 537 0 0 0 S5 700 0
MPT 0 4 16 525 1 803 8 S4 1020 -I
GEOMI 0 8 8 537 0 0 0 S5 800 0
GERM2 -2 4 12 750 1 1908 19 $4 1040 -I
GEBM2 -2 -4 9 794 0 5551 49 S4 1050 -I
GEOMI 0 8 8 537 0 0 0 $5 900 0
GERM2 0 8 24 925 1 6108 61 $5 I000 0
GEOM2 0 8 24 925 1 6208 62 $5 II00 0
GEOM2 0 8 24 925 1 6308 63 $5 1200 0
GERM2 0 8 24 925 1 6408 64 $5 1300 0
GEBM2 0 8 24 925 1 6508 65 $5 1400 0
GEOM2 0 8 24 925 1 6608 66 $5 1500 0
GEOM2 0 8 24 925 1 6708 67 $5 1600 0
GEOM2 0 8 24 925 1 6808 68 $5 1700 0
GERM2 0 8 24 925 1 6908 69 $5 1800 0
EPT 0 4 24 925 1 6102 61 $5 1900 0

IJHK

12E5
12E6
13AI
13A2
13A3
13A4
13A5
13A6
13BI
13B2
13B3
13B4
13B5
13B6
13CI
13C2
13C3
13C4
13C5
13C6
13DI
13D2
13D3
13D4
13D5
13D6
13El
i3E2
13E3
13E4
13E5
13E6
21AI
21A2
21A3
21A4
21A5
21A6
21BI
21B2
21B3
21B4
21B5
21B6
21CI
21C2
21C3
21C4
21C5
21C6
21DI
21D2
21D3
21D4
21D5
21D6
21El
21E2

4.5-11 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Table 1 (e). Bulk Data Cards Processed by IFP Sorted by Internal Card Number.

D E F G H I J K L M N

PDUM2 2 EPT 0 4 24 925 1 6202 62 $5 2000 0
PDUM3 2 EPT 0 4 24 925 1 6302 63 $5 2100 0
DMI 12 P_OL 0 -4 16 -I 0 0 0 $2 1190 0
DMIG 14 MATP_BL -2 -4 12 -I 0 114 1 $2 1200 0
PTORDRG 2 EPT -2 4 8 237 0 2102 21 S1 3000 -I
MAT3 3 MPT -2 4 20 449 1 1403 14 ,$4 1220 -I
DLOAD 7 DYNAMICS -2 4 8 -I 1 57 5 $3 4060 0
EP_INT 7 DYNAMICS -2 -4 9 794 0 707 7 $4 1050 0
FREQI 7 DYNAMICS -2 4 8 705 0 1007 I0 S1 1250 0
FREQ 7 DYNAMICS -2 4 8 -I 1 1307 13 $3 1260 0
NOLINI 7 DYNAMICS -2 8 12 725 0 3107 31 S1 1270 0
N@LIN2 7 DYNAMICS -2 8 12 725 0 3207 32 S1 1280 0
NOLle3 7 DYNAMICS -2 8 12 725 0 3307 33 S1 1290 0
N@LIN4 7 DYNAMICS -2 8 12 725 0 3407 34 S1 1290 0
RLOADI 7 DYNAMICS -2 8 8 337 1 5107 51 $3 1310 0
RLOAD2 7 DYNAMICS -2 8 8 337 1 5207 52 $3 1310 0
TABLED1 5 DIT -2 -4 16 -I 1 1105 II $2 930 0
TABLED2 5 DIT -2 -4 16 -I 1 1205 12 $2 930 0

SEQEP 7 DYNAMICS -I 4 8 37 0 5707 57 S1 40 -I
TF 7 DYNAMICS -2 8 12 -I 0 6207 62 S1 1360 0
TIC 7 DYNAMICS -2 4 12 713 0 6607 66 S1 1370 0
TL_ADI 7 DYNAMICS -2 8 8 681 1 7107 71 $3 1380 0
TL_AD2 7 DYNAMICS 0 8 16 689 1 7207 72 $3 1390 0
TABLED3 5 DIT 0 -4 16 -I 1 1305 13 $2 930 0
TABLED4 5 DIT 0 -4 16 -I 1 1405 14 $2 960 0
TSTEP 7 DYNAMICS 0 4 8 -I 1 8307 83 S1 1420 0
DSFACT 3 MPT 0 4 8 -I 1 53 I0 $3 1430 0
AXlC 15 AXIC -2 4 8 93 0 515 5 $3 1440 0
RINGAX 15 AXIC -2 4 12 245 1 5615 56 $3 1450 0
CC@NEAX 15 AXIC -2 4 8 645 1 2315 23 $3 1460 0
PC@NEAX 2 EPT -2 4 28 653 1 152 19 $3 1470 0
SPCAX 15 AXlC -2 4 12 485 0 6215 62 $3 1480 0
MPCAX 15 AXIC -2 4 8 -I 0 4015 40 $3 1490 0
OMITAX 15 AXIC -2 4 8 337 0 4315 43 $3 1500 0
SUPAX 15 AXlC -2 4 8 337 0 6415 64 $3 1500 0
POINTAX 15 AXIC -2 4 8 517 1 4915 49 $3 1520 0
SECTAX 15 AXIC -2 4 12 177 1 6015 60 $3 1530 0
PRESAX 15 AXlC -2 4 12 61 0 5215 52 $3 1540 0
TEMPAX 15 AXIC -2 4 8 237 0 6815 68 $3 1550 0
FBRCEAX 15 AXlC -2 -4 13 109 0 2115 21 $3 1560 0
M_MAX 15 AXIC -2 -4 13 109 0 3815 38 $3 1560 0
EIGP 7 DYNAMICS -2 4 8 561 0 257 4 S1 1580 0
PDUM4 2 EPT 0 4 24 925 1 6402 64 $5 2200 0
PDUM5 2 EPT 0 4 24 925 1 6502 65 $5 2300 0
PDUM6 2 EPT 0 4 24 925 1 6602 66 $5 2400 0
TABDMPI 5 DIT -2 -4 16 -I 1 15 21 $2 930 0
PDUM7 2 EPT 0 4 24 925 1 6702 67 $5 2500 0
PDUM8 2 EPT 0 4 24 925 1 6802 68 $5 2600 0
PDUM9 2 EPT 0 4 24 925 1 6902 69 $5 2700 0
FREQ2 7 DYNAMICS -2 4 8 705 0 1107 II S1 1660 0
UISET I0 GEOM4 0 8 8 37 0 II0 41 $5 2800 0
U2SET I0 GEOM4 0 8 8 37 0 210 2 $5 2900 0
U3SET I0 GEOM4 0 8 8 37 0 310 3 S5 3000 0
U4SET I0 GEOM4 0 8 8 37 0 410 4 $5 3100 0
U5SET I0 GEOM4 0 8 8 37 0 500 5 $5 3200 0
U6SET I0 GE@M4 0 8 8 37 0 610 6 $5 3300 0
U7SET I0 GERM4 0 8 8 37 0 710 7 $5 3400 0
U8SET I0 GEBM4 0 8 8 37 0 810 8 $5 3500 0

IJHK

21E3
21E4
21E5
21 E6
22AI
22A2
22A3
22A4
22A5
22A6
22BI
22B2
22B3
22B4
22B5
22B6
22CI
22C2
22C3
22C4
22C5
22C6
22DI
22D2
22D3
22D4
22D5
22D6
22EI
22E2
22E3
22E4
22E5
22E6
23AI
23A2
23A3
23A4
23A5
23A6
23BI
23B2
23B3
23B4
23B5
23B6
23CI
23C2
23C3
23C4
23C5
23C6
23DI
23D2
23D3
23D4
23D5
23D6

4.5-12 (8/I/72)

EXECUTIVE PREFACE MODULE IFP (INPUT FILE PROCESSOR)

Table l(f). Bulk Data Cards Processed by IFP Sorted by Internal Card Number.

A B C D E F G H I J K L M N

175 U9SET lO GERM4 0 8 8 37 0 910 9 $5 3600 0
176 UISETI lO GERM4 0 -4 9 -l 0 lifO II $5 3700 0
177 U2SETI lO GERM4 0 -4 9 -I 0 1210 12 $5 3800 0
178 U3SETI lO GERM4 0 -4 9 -l 0 1310 13 $5 3900 0
179 BAR_R 8 GERM2 0 4 12 25 2 0 0 Sl lO0 -l
180 CBAR 8 GERM2 0 8 20 73 l 2408 24 Sl 200 -l
181 PBAR 2 EPT 0 4 24 621 l 52 20 Sl 300 -l
182 DAREA 7 DYNAMICS -2 4 8 lOl 0 27 17 $3 1820 0
183 DELAY 7 DYNAMICS -2 4 8 lOl 0 37 18 $3 1820 0
184 DPHASE 7 DYNAMICS -2 4 8 lOl 0 77 19 $3 1820 0
185 PLFACT 3 MPT -2 4 8 -l l ll03 II $3 1420 -l

186 U4SETI lO GERM4 0 -4 9 -l 0 1410 14 $5 4000 0
187 U5SETI lO GERM4 0 -4 9 -l 0 1510 15 $5 4100 0
188 U6SETI lO GERM4 0 -4 9 -l 0 1610 lO $5 4200 0
189 MATT3 3 MPT -2 4 16 525 l 1503 15 $4 1020 -l
190 RF_RCE 9 GERM3 -2 8 12 I09 0 5509 55 Sl 1900 l
191 TABRNDI 5 DIT -2 -4 16 -l l 55 25 $2 930 0
192 U7SETI lO GERM4 0 -4 9 -l 0 1710 17 $5 4300 0
193 U8SETI lO GERM4 0 -4 9 -l 0 1810 18 $5 4400 0
194 U9SETI lO GERM4 -0 -4 9 -I 0 1910 19 $5 4500 0
195 RANDPS 7 DYNAMICS -2 4 12 782 0 2107 21 $4 1950 -l
196 RANDTI 7 DYNAMICS -2 4 8 752 0 2207 22 $4 1960 -l
197 I_ANDT2* 7 DYNAMICS -2 -4 8 -l l 2307 23 $9 -l
198 PL_ADI* 9 GERM3 -2 0 0 0 0 6909 69 $9 -l
199 PLEAD2 9 GERM3 -2 -4 9 774 0 6802 68 $4 1990 -l
200 DTI 12 PB_L 0 -4 16 -l 0 O 0 $2 2000 0
201 TEMPPI 9 GERM3 -2 -4 !0 -l 0 8109 81 $4 2100 -l
202 TEMPP2 9 GEBM3 -2 -4 lO -I 0 8209 82 $4 2200 -l
203 TEMPP3 9 GERM3 -2 °4 lO -l 0 8309 83 $4 2300 -l
204 TEMPRB 9 GEBM3 -2 -4 lO -l 0 8409 84 $4 2400 -l
205 GRIDB 15 AXIC -2 8 12 l l 8115 61 $4 3100 -l
206 FSLIST 15 AXIC -2 -4 lO -l 0 8215 82 $4 3200 -l
207 RINGFL 15 AXIC -2 4 8 497 l 8315 83 $4 3300 -l
208 PRESPT 15 AXIC -2 4 8 834 0 8415 84 $4 3400 -l
209 CFLUID2 15 AXIC -2 8 8 845 l 8515 85 $4 3500 -l
210 CFLUID3 15 AXIC -2 8 8 853 l 8615 86 $4 3600 -l
211 CFLUID4 15 AXIC -2 8 8 861 l 8715 87 $4 3700 -l
212 AXIF 15 AXIC -2 -8 lO -I 0 8815 88 $4 3800 -l
213 BDYLIST 15 AXIC -2 -4 lO -l 0 8915 89 $4 3900 -l
214 FREEPT 15 AXIC -2 4 8 834 0 9015 90 $4 4000 -l

215 ASET lO GERM4 -2 4 8 37 0 5561 76 Sl 1400 -l
216 ASETI lO GERM4 -2 -4 9 -l 0 5571 77 $3 3981 -l
217 CTETRA 8 GERM2 -2 8 8 337 l 5508 55 $4 4100 -l
218 CWEDGE 8 GERM2 -2 8 8 525 l 5608 56 $4 4200 -l
219 CHEXAI 8 GERM2 -2 16 16 531 l 5708 57 $4 4300 -l
220 CHEXA2 8 GERM2 -2 16 16 531 l 5808 58 $4 4400 -l
221 DMIAX 14 MATP_L -2 -4 9 -l 0 214 2 $4 4500 -l
222 FLSYM 15 AXIC -2 4 lO 826 0 9115 91 $4 4600 -l
223 AXSLBT 15 AXIC -2 8 8 869 l Ill5 II Sl 4100 0
224 CAXIF2 8 GERM2 -2 8 8 877 l 2108 21 Sl 4200 0
225 CAXIF3 8 GERM2 -2 8 8 877 l 2208 22 Sl 4300 O
226 CAXIF4 8 GERM2 -2 8 8 877 l 2308 23 Sl 4400 0
227 CSL_T3 8 GERM2 -2 8 8 877 l 4408 44 Sl 4500 0

228 CSL_T4 8 GERM2 -2 8 16 877 l 4508 45 Sl 4600 0
229 GRIDF 15 AXIC -2 4 8 885 l 1215 12 Sl 4700 0
230 GRIDS 15 AXIC -2 4 8 893 l 1315 13 Sl 4800 0
231 SLBDY 15 AXIC -2 -4 8 -l 0 1415 14 Sl 4900 0
232 CHBDY 8 GERM2 0 9 9 901 l 4208 42 Sl 5000 -l

IJHK

23EI
23E2
23E3
23E4
23E5
23E6
31Al
31A2
31A3
31A4
31A5
31A6
31Bl
31B2
31B3
31B4
31B5
31B6
31Cl
31C2
31C3
31C4
31C5
31C6
31Dl
31D2
31D3
31D4
31D5
31D6
31El
31E2
31E3
31E4
31E5
31E6
32AI
32A2
32A3
32A4
32A5
32A6
32BI
32B2
32B3
32B4
32B5
32B6
32CI
32C2
32C3
32C4
32C5
32C6
32DI
32D2
32D3
32D4

4.5-13 (811172)

MODULEFUNCTIONALDESCRIPTIONS

Table l(g). Bulk Data Cards Processed by IFP Sorted by Internal Card Number.

A B C D E F G H I J K L M N

233 QHBDY
234 MAT4
235 MAT5
236 SAME
237 SAME1
238 INPUT
239 BUTPUT

9 GERM3 0 9 9 901 0 4309 43 S1 5100 -I
3 MPT 0 4 8 317 1 2103 21 S1 3900 -I
3 MPT 0 8 8 82 1 2203 22 Sl 4000 -I

II GERM5 -2 -4 9 -I 0 III0 II $5 5 -I
II GERM5 -2 -8 9 -I 0 1210 12 $5 5 -I
II GERM5 0 17 17 909 0 1310 13 $5 5 -I
II GERM5 0 17 17 909 0 1410 14 $5 5 -l

IJHK

32D5
32D6
32EI
32E2
32E3
32E4
32E5

4.5-13a (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

Table 2(a). Bulk Data Cards Processed by IFP Sorted Alphabetically by Card Name.

The following list gives an explanation of the column headings on the following pages of

Table 2.

A = Internal IFP Bulk Data Card Number

B = Bulk Data Card Name (an asterisk following a name implies the card is not available)

C : Internal IFP GIN_ Output File Number

D = Data Block Name

E : Approach Acceptance Indicator

-2 :lllegal for the Force Approach

-I = Not Used by the Force Approach

0 = OK for any Approach

1 = Not Used by the Displacement Approach

2 =lllegal for the Displacement Approach

F = Minimum Number of Words Allowed Per Logical Card (F negative implies an open ended card)

G = Maximum Number of Words Allowed Per Logical Card

H = Format Check Pointer Into IFX7BD

I : Field 2 Uniqueness Check Flag

0 = No Check is Made

1 = Check is Made

2 = Special

J = Subroutine L_CATE Code for Card on Output Data Block

K = Trailer Bit Position

L = Pointer to Secondary (Card Dependent) Code

S1 = Subroutine IFSIP

$2 : Subroutine IFS2P

$3 = Subroutine IFS3P

S4 = Subroutine IFS4P

$5 = Subroutine IFS5P

M : F_RTRAN Statement Number in the Card Dependent Subroutines

N = Conical Shell Problem Flag

-I =lllegal for Shell Mode

4.5-14 (8/I/72)

EXECUTIVE PREFACE MODULE IFP (INPUT FILE PROCESSOR)

Table 2(b). Bulk Data Cards Processed by IFP Sorted Alphabetically by Card Name.

0 = OK for Shell Mode

l = Puts Card Into Different Data Block

0 = Users Map for Data Blocks IFX2BD.....IFX6BD

Values for I = 1,2 or 3

J = 1,2 or 3

H = A,B,C,D or E

K = 1,2,3,4,5 or 6

I = Is Data Statement in the Block Data Program

J = The Group of A Through E Continuation Card Blocks Within the Ith Data Statement

H = Alphabetic Character in Col 6 (Continuation Column) in the Jth Group

K = The Pair Nu_er on Line H Where the Actual Data is located.

4.5-15 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

Table 2(c). Bulk Data Cards Processed by IFP Sorted Alphabetically by Card

A B C D

89 1 GERM1
3 ADUMI 1 GERM1

32 ADUM2 1 GERM1
51 ADUM3 1 GERM1
88 ADUM4 1 GEBMI
99 ADUM5 1 GEBMI

I00 ADUM6 1 GEBMI
I01 ADUM7 1 GERM1
103 ADUM8 1 GERM1
106 ADUM9 1 GERM1
215 ASET I0 GERM4
216 ASETI I0 GERM4
144 AXIC 15 AXIC
212 AXlF 15 AXIC
223 AXSL_T 15 AXIC
179 BAR_R 8 GERM2
213 BDYLIST 15 AXlC
224 CAXlF2 8 GERM2
225 CAXIF3 8 GERM2
226 CAXlF4 8 GEBM2
180 CBAR 8 GEBM2
146 CC_NEAX 15 AXIC

69 CDAMPI 8 GEBM2
70 CDAMP2 8 GEBM2
71 CDAMP3 8 GERM2
72 CDAMP4 8 GEBM2

107 CDUMI 8 GERM2
108 CDUM2 8 GEBM2
109 CDUM3 8 GERM2
II0 CDUM4 8 GERM2
III CDUM5 8 GERM2
112 CDUM6 8 GERM2
113 CDUM7 8 GERM2
114 CDUM8 8 GERM2
115 CDUM9 8 GERM2

73 CELASI 8 GERM2
74 CELAS2 8 GEBM2
75 CELAS3 8 GERM2
76 CELAS4 8 GERM2

209 CFLUID2 15 AXlC
210 CFLUID3 15 AXIC
211 CFLUID4 15 AXlC

232 CHBDY 8 GEBM2
219 CHEXAI 8 GERM2
220 CHEXA2 8 GERM2

65 CMASSI 8 GEBM2
66 CMASS2 8 GERM2
67 CMASS3 8 GERM2
68 CMASS4 8 GERM2
63 C_NMI 8 GEBM2
64 CBNM2 8 GERM2
47 C_NR_D 8 GERM2

6 CBRDIC 1 GERM1
5 C_RDIR 1 GERM1
7 CBRDIS 1 GERM1
9 C_RD2C 1 GERM1
8 CBRD2R 1 GERM1

I0 C_RD2S 1 GERM1

E F G H I J K L M N

0 8 8 -I 2 0 0 $2 890
0 8 8 537 0 0 0 $5 I00
0 8 8 537 0 I0 0 $5 200
0 8 8 537 0 I0 0 $5 300
0 8 8 537 0 0 0 $5 400
0 8 8 537 0 320 0 $5 500
0 8 8 537 0 0 0 $5 600
0 8 8 537 0 0 0 $5 700
0 8 8 537 0 0 0 $5 800
0 8 8 537 0 0 0 $5 900

-2 4 8 37 0 5561 76 S1 1400
-2 -4 9 -I 0 5571 77 $3 3981
-2 4 8 93 0 515 5 $3 1440
-2 -8 I0 -I 0 8815 88 $4 3800
-2 8 8 869 1 1115 II S1 4100

0 4 12 25 2 0 0 S1 I00
-2 -4 I0 -I 0 8915 89 $4 3900
-2 8 8 877 1 2108 21 Sl 4200
-2 8 8 877 1 2208 22 S1 4300
-2 8 8 877 1 2308 23 S1 4400

0 8 20 73 1 2408 24 S1 200
-2 4 8 645 1 2315 23 $3 1460
-2 4 12 337 1 201 2 S1 3620
-2 4 12 397 1 301 3 S1 3623
-2 4 8 37 0 401 4 S1 3675
-2 4 8 409 0 501 5 S1 3698

0 8 24 925 1 6108 61 $5 I000
0 8 24 925 1 6208 62 $5 II00
0 8 24 925 1 6308 63 S5 1200
0 8 24 925 1 6408 64 $5 1300
0 8 24 925 1 6508 65 $5 1400
0 8 24 925 1 6608 66 $5 1500
0 8 24 925 1 6708 67 $5 1600
0 8 24 925 1 6808 68 $5 1700
0 8 24 925 1 6908 69 $5 1800

-2 4 12 337 1 601 6 S1 3620
-2 4 12 417 1 701 7 S1 3800
-2 4 8 37 0 801 8 S1 3676
-2 4 8 409 0 901 9 S1 3699
-2 8 8 845 1 8515 85 $4 3500
-2 8 8 853 1 8615 86 $4 3600
-2 8 8 861 1 8715 87 $4 3700

0 9 9 901 1 4208 42 Sl 5000
-2 16 16 531 1 5708 57 $4 4300
-2 16 16 531 1 5808 58 $4 4400
-2 4 12 337 1 I001 I0 S1 3620
-2 4 12 397 1 II01 II S1 3623
-2 4 8 37 0 1201 12 S1 3674
-2 4 8 409 0 1301 13 S1 3697

0 8 28 349 1 1401 14 S1 3580
0 8 20 377 1 1501 15 S1 3600
0 8 12 277 1 1601 16 S1 3260
0 4 8 37 0 i701 17 S1 600
0 4 8 37 0 1801 18 S1 500
0 4 8 37 0 1901 19 S1 700
0 12 16 45 1 2001 20 S1 900
0 12 16 45 1 2101 21 S1 800
0 12 16 45 1 2201 22 S1 I000

Name.

IJHK

0 13E5
0 IIA3
0 12A2
0 12D3
0 13E4
0 21B3
0 21B4
0 21B5
0 21CI
0 21C4

-I 32A5
-I 32A6

0 22D6
-I 32A2

0 32CI
-I 23E5
-I 32A3

0 32C2
0 32C3
0 32C4

-I 23E6
0 22E2

-I 13B3
-I 13B4
-I 13B5
-I 13B6

0 21C5
0 21C6
0 21DI
0 21D2
0 21D3
0 21D4
0 21D5
0 21D6
0 21El

-I 13CI
-I 13C2
-I 13C3
-I 13C4
-I 31E5
-I 31E6
-I 32AI
-I 32D4
-I 32B3
-I 32B4
-I 13A5
-I 13A6
-I 13BI
-I 13B2
-I 13A3
- 1 13A4
-I 12C5
-I IIA6
-I IIA5
-I lIB1
-I lIB3
-I lIB2
-I lIB4

4.5-16 (8/I/72)

EXECUTIVE PREFACEMODULEIFP (INPUT FILE PROCESSOR)

Table 2(d). Bulk Data Cards Processed by IFP Sorted Alphabetically by Card Name.

A B C D E F G H I J K L M N

60 CQDMEM 8 GEOM2 0 8 12 325 1 2601 26 S1 3460 -I
59 CQDPLT 8 GEOM2 0 8 12 325 1 2701 27 Sl 3460 -I
57 CQUADI 8 GEOM2 0 8 12 325 1 2801 28 S1 3460 -I
58 CQUAD2 8 GEOM2 0 8 12 325 1 2901 29 S1 3460 -I
48 CROD 8 GEOM2 0 4 8 37 0 3001 30 S1 3281 -I
61 CSHEAR 8 GEOM2 0 8 12 337 1 3101 31 S1 3540 -I

227 CSL_T3 8 GEOM2 -2 8 8 877 1 4408 44 S1 4500 0
228 CSLOT4 8 GEOM2 -2 8 16 877 1 4508 45 S1 4600 0
217 CTETRA 8 GEOM2 -2 8 8 337 1 5508 55 $4 4100 -I
104 CTORDRG 8 GEOM2 -2 4 12 750 1 1908 19 $4 1040 -I
80 CTRAPRG 8 GEOM2 -2 8 12 737 1 1808 18 S4 800 -I
54 CTRBSC 8 GEOM2 0 8 12 313 1 3201 32 S1 3360 -I
52 CTRIAI 8 GEOM2 0 8 12 313 1 3301 33 S1 3360 -I
53 CTRIA2 8 GEOM2 0 8 12 313 1 3401 34 Sl 3360 -I
79 CTRIARG 8 GEOM2 -2 8 12 738 1 1708 17 $4 790 -I
56 CTRMEM 8 GEOM2 0 8 12 313 1 3501 35 S1 3360 -I
55 CTRPLT 8 GEOM2 0 8 12 313 1 3601 36 Sl 3360 -I
49 CTUBE 8 GEOM2 0 4 8 37 0 3701 37 S1 3282 -I
62 CTWIST 8 GEOM2 0 8 12 337 1 3801 38 S1 3540 -I
50 CVlSC 8 GEOM2 -2 4 8 37 0 3901 39 Sl 3283 -I

218 CWEDGE 8 GEOM2 -2 8 8 525 1 5608 56 $4 4200 -I
182 DAREA 7 DYNAMICS -2 4 8 I01 0 27 17 $3 1820 0

81 DEFORM 4 EDT -2 4 8 157 0 104 1 S1 2500 -I
183 DELAY 7 DYNAMICS -2 4 8 I01 0 37 18 S3 1820 0
123 DLOAD 7 DYNAMICS -2 4 8 -I 1 57 5 $3 4060 0
I19 DMI 12 POOL 0 -4 16 -I 0 0 0 $2 1190 0
221 DMIAX 14 MATPOOL -2 -4 9 -I 0 214 2 $4 4500 -i
120 DMIG 14 MATPOOL -2 -4 12 -I 0 114 1 $2 1200 0
184 DPHASE 7 DYNAMICS -2 4 8 I01 0 77 19 $3 1820 0
143 DSFACT 3 MPT 0 4 8 -I 1 53 I0 S3 1430 0
200 DTI 12 POOL 0 -4 16 -I 0 0 0 $2 2000 0

86 EIGB 7 DYNAMICS -2 14 18 469 1 107 1 $2 850 0
87 EIGC 7 DYNAMICS -2 -4 I0 -I 1 207 2 $2 870 0

158 EIGP 7 DYNAMICS -2 4 8 561 0 257 4 S1 1580 0
85 EIGR 7 DYNAMICS -2 14 18 469 1 307 3 $2 850 0

124 EP_INT 7 DYNAMICS -2 -4 9 794 0 707 7 $4 1050 0
222 FLSYM 15 AXlC -2 4 I0 826 0 9115 91 $4 4600 -I

18 F_RCE 9 GEOM3 0 8 12 109 0 4201 42 S1 1800 1
20 F_RCEI 9 GERM3 0 8 12 121 0 4001 40 Sl 2000 -I
22 F_RCE2 9 GEOM3 0 8 12 133 0 4101 41 S1 2200 -I

156 FORCEAX 15 AXIC -2 -4 13 109 0 2115 21 $3 1560 0
214 FREEPT 15 AXlC -2 4 8 834 0 9015 90 $4 4000 -I
126 FREQ 7 DYNAMICS -2 4 8 -I 1 1307 13 $3 1260 0
125 FREQI 7 DYNAMICS -2 4 8 705 0 1007 I0 Sl 1250 0
166 FREQ2 7 DYNAMICS -2 4 8 705 0 1107 II S1 1660 0
206 FSLIST 15 AXIC -2 -4 I0 -I 0 8215 82 $4 3200 -I
28 GENEL 8 GEOM2 -2 -4 9 -I 1 4301 43 $3 2800 -I
26 GRAV 9 GEOM3 0 8 12 165 1 4401 44 Sl 2600 1

2 GRDSET 1 GEOMI 0 4 12 13 2 0 0 $3 200 -I
1 GRID 1 GEOMI 0 4 12 1 1 4501 45 $3 I00 -I

205 GRIDB 15 AXlC -2 8 12 1 1 8115 81 $4 3100 -I
229 GRIDF 15 AXlC -2 4 8 885 1 1215 12 S1 4700 0
230 GRIDS 15 AXIC -2 4 8 893 1 1315 13 Sl 4800 0
238 INPUT II GEOM5 0 17 17 909 0 1310 13 $5 5 -I

84 LOAD 9 GEOM3 0 4 8 -I 1 4551 61 $3 4060 1
77 MAT1 3 MPT 0 4 20 429 1 103 1 Sl 3860 0
78 MAT2 3 MPT 0 8 20 449 1 203 2 S1 3880 0

122 MAT3 3 MPT -2 4 20 449 1 1403 14 $4 1220 -I

0
IJHK

12E6
12E5
12E3
12E4
12C6
13A1
32C5
32C6
32BI
21C2
13D2
12D6
12D4
12D5
13Dl
12E2
12El
12Dl
13A2
12D2
32B2
31A2
13D3
31A3
22A3
21E5
32B5
21E6
31A4
22D5
31D2
13E2
13E3
23B2
13El
22A4
32B6
lIC6
liD2
liD4
23A6
32A4
22A6
22A5
23C4
31E2
liE4
liE2
lIA2
lIAl
31El
32DI
32D2
32E4
13D6
13C5
13C6
22A2

4.5-17 (811/72)

MODULE FUNCTIONAL DESCRIPTIONS

Table 2(e). Bulk Data Cards

B C D E

234 MAT4 3
235 MAT5 3

90 MATS1 3
91 MATT1 3

102 MATT2 3
189 MATT3 3
157 M_MAX 15

19 M_MENT 9
21 M_MENTI 9
23 M_MENT2 9
17 MPC I0
83 MPCADD I0

149 MPCAX 15
127 N_LINI 7
128 N_LIN2 7
129 N_LIN3 7
130 N_LIN4 7

15 _MIT I0
92 _MITI I0

150 _MITAX 15
239 _UTPUT II

82 PARAM 6
181 PBAR 2
147 PC_NEAX 2

45 PDAMP 2
116 PDUMI 2
117 PDUM2 2
118 PDUM3 2
159 PDUM4 2
160 PDUM5 2
161 PDUM6 2
163 PDUM7 2
164 PDUM8 2
165 PDUM9 2

46 PELAS 2
185 PLFACT 3

24 PLBAD 9
198 PLEAD1* 9
199 PLEAD2 9

II PL_TEL 8
44 PMASS 2

152 PBINTAX 15
41 PQDMEM 2
40 PQDPLT 2
38 PQUADI 2
39 PQUAD2 2

154 PRESAX 15
208 PRESPT 15

29 PROD 2
42 PSHEAR 2

121 PT_RDRG 2
35 PTRBSC 2
33 PTRIAI 2
34 PTRIA2 2
37 PTRMEM 2
36 PTRPLT 2
30 PTUBE 2
43 PTWIST 2

Processed by IFP Sorted Alphabetically by Card Name.

F G H

MPT 0 4 8 317
MPT 0 8 8 82
MPT -2 4 16 545
MPT 0 4 16 545
MPT 0 4 16 525
MPT -2 4 16 525
AXIC -2 -4 13 109
GE@M3 0 8 12 109
GE@M3 0 8 12 121
GE@M3 0 8 12 133
GE@M4 -2 4 8 -I
GE@M4 -2 4 8 -I
AXlC -2 4 8 -I
DYNAMICS -2 8 12 725
DYNAMICS -2 8 12 725
DYNAMICS -2 8 12 725
DYNAMICS -2 8 12 725
GEBM4 -2 4 8 37
GE@M4 -2 -4 9 -I
AXlC -2 4 8 337

GERM5 0 17 17 909
PVT 0 -5 16 -I
EPT 0 4 24 621
EPT -2 4 28 653
EPT -2 4 8 269
EPT 0 4 24 925
EPT 0 4 24 925
EPT 0 4 24 925
EPT 0 4 24 925
EPT 0 4 24 925
EPT 0 4 24 925
EPT 0 4 24 925
EPT 0 4 24 925
EPT 0 4 24 925
EPT -2 4 8 497
MPT -2 4 8 -I

GERM3 0 8 12 145
GERM3 -2 0 0 0
GERM3 -2 -4 9 774
GEBM2 0 4 8 505
EPT -2 4 8 269
AXIC -2 4 8 517
EPT 0 4 8 237
EPT 0 4 12 257
EPT 0 4 16 221
EPT 0 4 8 237
AXlC -2 4 12 61
AXlC -2 4 8 834
EPT 0 4 12 165
EPT 0 4 8 237
EPT -2 4 8 237
EPT 0 4 12 257
EPT 0 4 16 221
EPT 0 4 8 237
EPT 0 4 8 237
EPT 0 4 12 257
EPT 0 4 12 177
EPT 0 4 8 237

I J K L M N

1 2103 21 S1 3900 -I
1 2203 22 S1 4000 -I
1 503 5 $4 900 -I
1 703 7 $4 900 0
1 803 8 $4 1020 -I
1 1503 15 $4 1020 -I
0 3815 38 $3 1560 0
0 4801 48 S1 1800 1
0 4601 46 S1 2000 -I
0 4701 47 S1 2200 -I
0 4901 49 S3 1700 -I
1 4891 60 $3 4020 1
0 4015 40 $3 1490 0
0 3107 31 S1 1270 0
0 3207 32 S1 1280 0
0 3307 33 S1 1290 0
0 3407 34 S1 1290 0
0 5001 50 S1 1400 -I
0 4951 63 $3 3981 -I
0 4315 43 $3 1500 0
0 1410 14 S5 5 -I
2 0 0 $3 3960 0
1 52 20 S1 300 -I
1 152 19 $3 1470 0
0 402 2 S1 3200 -I
1 6102 61 $5 1900 0
1 6202 62 $5 2000 0
1 6302 63 $5 2100 0
1 6402 64 $5 2200 0
1 6502 65 $5 2300 0
1 6602 66 $5 2400 0
1 6702 67 $5 2500 0
1 6802 6E $5 2600 0
1 6902 69 $5 2700 0
0 302 3 S1 3240 -I
1 1103 II $3 1420 -I
0 5101 51 S1 2400 -I
0 6909 69 $9 -I
0 6802 68 $4 1990 -I
0 5201 52 S1 IIII -I
0 402 4 S1 3200 -I
1 4915 49 S3 1520 0
0 502 5 S1 3000 -I
0 602 6 S1 3020 -I
1 702 7 S1 2980 -I
0 802 8 S1 3000 -I
0 5215 52 $3 1540 0
0 8415 84 $4 3400 -I
1 902 9 S1 2900 -I
0 1002 I0 S1 3000 -I
0 2102 21 S1 3000 -I
1 1102 II S1 3020 -I
1 1202 12 Sl 2980 -I
0 1302 13 S1 3000 -I
0 1402 14 S1 3000 -I
1 1502 15 S1 3020 -I
1 1602 16 S1 2920 -I
0 1702 17 S1 3000 -I

IJHK

32D6
32EI
13E6
21AI
21B6
31B3
23BI
lID1
lID3
lID5
IIC5
13D5
22E5
22BI
22B2
22B3
22B4
IIC3
21A2
22E6
32E5
13D4
31AI
22E3
12C3
21E2
21E3
21E4
23B3
23B4
23B5
23CI
23C2
23C3
12C4
31A5
II D6
31C6
31DI
lIB5
12C2
23A2
12B5
12B4
12B2
12B3
23A4
31E4
lIE5
12B6
22AI
12A5
12A3
12A4
12BI
12A6
lIE6
12CI

4.5-18 (8/I172)

Table 2(f)

A B

31 PVISC
233 QHBDY
195 RANDPS
196 RANDTI
197 RANDT2*
145 RINGAX
207 RINGFL
190 RF_RCE
131 RL_ADI
132 RL_AD2
236 SAME
237 SAMEI
153 SECTAX
135 SEQEP
4 SEQGP

231 SLBDY
25 SL_AD
16 SPC
12 SPCI
13 SPCADD

148 SPCAX
I05 SPmINT
151 SUPAX
14 SUPmRT

162 TABDMPI
133 TABLEDI
134 TABLED2
140 TABLED3
141 TABLED4
93 TABLEMI
94 TABLEM2
95 TABLEM3
96 TABLEM4
97 TABLES1
191 TABRNDI
27 TEMP

155 TEMPAX
98 TEMPD
201 TEMPPI
202 TEMPP2
203 TEMPP3
204 TEMPRB
136 TF
137 TIC
138 TLBADI
139 TL_AD2
142 TSTEP
167 UISET
176 UISETI
168 U2SET
177 U2SETI
169 U3SET
178 U3SETI
170 U4SET
186 U4SETI
171 U5SET
187 U5SETI
172 U6SET

C

2
9
7
7
7
15
15
9
7
7
II
11
15
7
1

15
9
I0
I0
I0
15
8
15
10
5
5
5
5
5
5
5
5
5
5
5
9

15
9
9
9
9
9
7
7
7
7
7
I0
lO
lO
lO
lO
lO
lO
lO
lO
lO
lO

EXECUTIVE PREFACE MODULE IFP (INPUT FILE PROCESSOR)

Bulk Data Cards Processed by IFP Sorted Alphabetically by Card Name.

D E F G H I J K L M N
IJHK

EPT -2 4 8 189 0 1802 18 Sl 310 -I 12AI
GERM3 0 9 9 901 0 4309 43 Sl 5100 -l 32D5
DYNAMICS -2 4 12 782 0 2107 21 $4 1950 -l 31C3
DYNAMICS -2 4 8 752 0 2207 22 $4 1960 -l 31C4
DYNAMICS -2 -4 8 -l l 2307 23 $9 -l 31C5
AXlC -2 4 12 245 l 5615 56 $3 1450 0 22EI
AXIC -2 4 8 497 l 8315 83 $4 3300 -l 31E3
GERM3 -2 8 12 I09 0 5509 55 Sl 1900 l 31B4
DYNAMICS -2 8 8 337 l 5107 51 $3 1310 0 22B5
DYNAMICS -2 8 8 337 l 5207 52 $3 1310 0 22B6
GERM5 -2 -4 9 -l 0 lifo II $5 5 -l 32E2
GERM5 -2 -8 9 -l 0 1210 12 $5 5 -l 32E3
AXIC -2 4 12 177 l 6015 60 $3 1530 0 23A3
DYNAMICS -l 4 8 37 0 5707 57 Sl 40 -l 22C3
GE_MI -l 4 8 37 0 5301 53 Sl 40 -I lIA4
AXIC -2 -4 8 -l 0 1415 14 Sl 4900 0 32D3
GERM3 -2 4 8 157 0 5401 54 S1 2500 -I 11EI
GERM4 -2 4 8 lOl 0 5501 55 Sl 1600 -l llC4
GERM4 -2 -4 9 -l 0 5481 58 $3 3980 -l liB6
GERM4 -2 4 8 -l l 5491 59 $3 4020 l lICl
AXIC -2 4 12 485 0 6215 62 $3 1480 0 22E4
GERM2 -2 -4 9 794 0 5551 49 $4 I050 -l 21C3
AXIC -2 4 8 337 0 6415 64 $3 1500 0 23AI
GERM4 -2 4 8 37 0 5601 56 Sl 1400 -l lIC2
DIT -2 -4 16 -l l 15 21 $2 930 0 23B6
DIT -2 -4 16 -l l ll05 II $2 930 0 22CI
DIT -2 -4 16 -i i 1205 12 $2 930 0 22C2
DIT 0 -4 16 -l l 1305 13 $2 930 0 22D2
DIT 0 -4 16 -l l 1405 14 $2 960 0 22D3
DIT 0 -4 16 -l l I05 l $2 930 0 21A3
DIT 0 -4 16 -l l 205 2 $2 930 0 21A4
DIT 0 -4 16 -l l 305 3 $2 930 0 21A5
DIT 0 -4 16 -l l 405 4 $2 960 0 21A6
DIT -2 -4 16 -l l 3105 31 $2 930 -l 21Bl
DIT -2 -4 16 -l l 55 25 $2 930 0 31B5

GERM3 0 4 8 157 0 5701 57 Sl 2500 -l liE3
AXIC -2 4 8 237 0 6815 68 $3 1550 0 23A5
GERM3 0 4 12 269 0 5641 65 $4 980 l 21B2
GERM3 -2 -4 lO -l 0 8109 81 $4 2100 -l 31D3
GERM3 -2 -4 lO -l 0 8209 82 $4 2200 -l 31D4
GERM3 -2 -4 lO -l 0 8309 83 $4 2300 -l 31D5
GERM3 -2 -4 lO -l 0 8409 84 $4 2400 -l 31D6
DYNAMICS -2 8 12 -l 0 6207 62 Sl 1360 0 22C4
DYNAMICS -2 4 12 713 0 6607 66 Sl 1370 0 22C5
DYNAMICS -2 8 8 681 1 7107 71 S3 1380 0 22C6
DYNAMICS 0 8 16 689 l 7207 72 $3 1390 0 22DI
DYNAMICS 0 4 8 -l l 8307 83 Sl 1420 0 22D4
GEI_M4 0 8 8 37 0 llO 41 $5 2800 0 23C5
GERM4 0 -4 9 -l 0 lllO II $5 3700 0 23E2
GERM4 0 8 8 37 0 210 2 $5 2900 0 23C6
GERM4 0 -4 9 -l 0 1210 12 $5 3800 0 23E3
GERM4 0 8 8 37 0 310 3 $5 3000 0 23DI
GERM4 0 -4 9 -l 0 1310 13 $5 3900 0 23E4
GERM4 0 8 8 37 0 410 4 $5 3100 0 23D2
GERM4 0 -4 9 -l 0 1410 14 $5 4000 0 31A6
GERM4 0 8 8 37 0 500 5 $5 3200 0 23D3
GERM4 0 -4 9 -I 0 1510 15 $5 4100 0 31Bl
GERM4 0 8 8 37 0 610 6 $5 3300 0 23D4

4.5-19 (811172)

MODULEFUNCTIONAL DESCRIPTIONS

Table 2(g). Bulk Data Cards Processed by IFP Sorted Alphabetically by Card Nal_e.

A B

188 U6SETI
173 U7SET
192 U7SETI
174 U8SET
193 U8SETI
175 U9SET
194 U9SETI

C D E F G H I J K L M N

I0 GERM4 0 -4 9
I0 GERM4 0 8 8
I0 GERM4 0 -4 9
I0 GERM4 0 8 8
I0 GERM4 0 -4 9
I0 GERM4 0 8 8
I0 GERM4 -0 -4 9

-I 0 1610 I0 $5 4200 0
37 0 710 7 $5 3400 0
-I 0 1710 17 $5 4300 0
37 0 810 8 $5 3500 0
-I 0 1810 18 $5 4400 0
37 0 910 9 $5 3600 0
-I 0 1910 19 $5 4500 0

IJHK

31B2
23D5
31B6
23D6
31CI
23EI
31C2

4.5-20 (8/I/72)

EXECUTIVE PREFACE MODULE IFP3 (INPUT FILE PROCESSOR 3)

4.6 EXECUTIVE PREFACE MODULE IFP3 (INPUT FILE PROCESSOR 3)

4.6.1 Entry Point: IFP3

4.6.2 Purpose

I. To interpret Bulk Data cards unique to an axisymmetric conical shell problem.

2. To generate and distribute to data blocks GEOMI, GEOM2, GEOM3, and GEOM4 data cards

for all harmonics specified in the problem.

3. To convert the following input Bulk Gata cards to the followinq output Bulk Data cards.

Ipput Bulk Data Input Output Bulk Data OUtDUt

Card Type Data Block Card Type Data Block

AXIC AXIC None

CCONEAX AXIC CCBNE GERM2

FORCEAX AXIC FORCE GEBM3

F_RCE AXIC FORCE GERM3

GRAV AXIC GRAV GEOM3

L_AD AXIC L_AD GERM3

M_MAX AXIC M_MENT GEOM3

MOMENT AXlC MOMENT GERM3

MPCADD AXlC MPCADD GEOM4

MPCAX AXIC MPC GEOM4

_MITAX AXlC _MIT GEBM4

POINTAX AXlC MPC GEOM4
GRID GEBMI

PRESAX AXIC FRESAX GEOM3

RINGAX AXIC S_S _E_M4
GRID GERM1

SECTAX AXIC MPC GERM4
GRID GEOMI

SEQGP AXIC SEQGP GE_MI

SPCADD AXIC SPCADD GEOM4

SPCAX AXlC SPC GERM4

SUPAX AXIC SUP_RT GEOM4

TEMPAX AXIC TEMP GEOM3

TEMPD AXIC TEMPD GERM3

4.6-I

MODULE FUNCTIONAL DESCRIPTIONS

4.6.3 Callin_ Sequence

CALL IFP3. IFP3, a Preface module, is called only from the Preface driver SEMINT.

4.6.4 Input Data Blocks

AXIC Bulk Data Deck cards as output from IFP.

4.6.5 Output Data Blocks

GERM1

GEOM2

GERM3

GEOM4

- Grid Point Data.

- Element Connection Data.

- Loading Data.

- Constraint Data.

4.6.6 Parameters

Not applicable to IFP3.

4.6.7 Method

In the following a "card" is defined as the type of card image output by IFP, i.e., with

the mneumonic stripped off and a card image, in some cases a modified card image, written on

the output data block.

4.6.7.1 Initialization and Overall Method

IFP3 first determines the amount of core available, and then allocates three buffers for

the SCRATCH, AXIC, and GEOM data blocks. The AXIC data block is opened for input using PREL_C.

At this point the 21 types of input Bulk Data cards are found, one type at a time, on the AXlC

data block, using the L_CATE routine. The cards of each type are converted and output to a

GErM data block.

To facilitate the operation, all Bulk Data cards causing output to a particular GErM

data block are handled together. Thus the processing is such that all cards affecting GERM2

are first converted, and following these all those for GEOM3, then GERM4, and finally GE_MI.

The superscripts s and c in the following refer to the sine and cosine sets respectively.

4.6-2

EXECUTIVE PREFACE MODULE IFP3 (INPUT FILE PROCESSOR 3)

4.6.7.2 Conversion of Input Bulk Data Cards to Output Bulk Data Cards for GEgM2.

I. AXIC card

-Input Card-

AXICHa__

-Output Card-

(None)

The AXIC card supplies Harm which is used to compute the number of harmonics, N.

N = Harm + l

2. CCgNEAX card

(i)

where

-Input Card-

CC_NEAXJEL-iD_ JJProp-IDJ RingAID IRingB IDJ

-N Output Cards-

CC{_NERJEL-IDnJPr°p-IDIRingA IDnJRingB IDR J

EL-IDn = EL-ID x I000 + n, (2)

RingAID n = RingAID + lO00000 x n, (3)

RingBID n = RingBID + lO00000 x n, (4)

for n = l, 2, ..., N.

4.6-3

MODULE FUNCTIONAL DESCRIPTIONS

4,6.7.3

l °

Conversion of Input Bulk Data Cards to Output Cards for GERM3.

F@RCE card and MOMENT card

These two cards are output to GEBM3 as input from AXlC.

2. F_RCEAX card and M_MAX card

where

-Input Cards-

FORCEAXl Set IDIRing IDIHarm IDI Factor 1

M_MAXl Set ID IRing IDIHarm IDI Fact°r I

-Output Cards-

F(_RCEI Set ID [Ring IDHI 01 Factor 1

M(_MENTISet ID IRing IDHI 01 Fact°r I

Fr _I Fzl
Mr M_LMzI

rtF _zl
MrL I0IMzl

Ring ID H = Ring ID + (Harm ID + I) x I000000 (5)

If F_RCE cards and F_RCEAX cards both exist, then the resulting output cards of the F@RCE and

F_RCEAX cards are merged in sort on Set ID's. This applies to M_MENT and M@MAXcards also.

3. GRAV card, L@AD card, and TEMPD card

These three cards are output to GEOM3 as they are input from AXIC.

4. PRESAX card

-Input Card-

PRESAX Set IDIValue I RingA ID[Ring B ID_ @I-_ @2_

4.6-4

EXECUTIVE PREFACE MODULE IFP3 (INPUT FILE PROCESSOR 3)

where

-N Output Cards-

PRESAXnlSet ID [Value]RiRgAIDnlRiRgBIDRI _I J @2 J n I

RingAID n = RingAID + lO00000 x n

RingBID n = RingBID + lO00000 x n

for n = l, 2, ..., N.

5. TEMPAX card

TEMPAX
ISet ID [Ring ID!

-Input Card-

_I [Ti I ¢2 l T2] _3 1 T3 1

-N x 2 Output Cards -

IDn+ Ts

IDn+ 1 Tn

whe re

Ring IDn+l = Ring ID + lO00000 x (n+l)

Set IDs = Set ID + lO0000000

Set IDc = Set ID + 200000000

for n = O, l, N-l.

Ts and Tc are computed as follows. All TEMPAX cards having the same Set ID and
n n

Ring ID are gathered together. The angles @i and temperatures Ti are arrayed into a two-

(6)

(7)

(8)

(9)

(lO)

4.6-5

MODULEFUNCTIONAL DESCRIPTIONS

dimensional matrix.

¢i T1

@2 T2

@k Tk

where k is the total number of unique @'s, and the @'s are converted to radians.

The matrix is sorted on the @column, and duplicate angles are removed.

For n = O, we have

k

TCo - 4_I i-£-I (Ti + Ti+l) (¢i+I- ¢i)'
(11)

and

S = O.To (12)

For n > 0

Tc 1 k 1 I (Tiqbi+l " Ti+l @i) (sin - sin
- Z (qbi+1 - @i) { n n@i+l

n@i)
n _ i= 1

Ti+l " Ti 12 (cos n¢i+ 1 - cos n@i + n¢i+ 1 sin n@i+1 - n@i sin n@i)
n

(13)

and

k 1 J(Tiqbi+l - Ti+lq_i)
TSn - _I i:l_ (_i+l - q_l) _ n (-cos n@i+1 + cos n@i)

Ti+ 1 - T i }+ 2 (sin n@i+1 - sin n¢i - n@i+l cos n@i+l + n@i cos n@i)
n

(14)

4.6-6

EXECUTIVEPREFACEMODULEIFP3(INPUTFILEPROCESSOR3)

where

and

Ck+l = ¢I + 2_ (15)

Tk+l = Tl . (16)

4.6-7

4.6.7.4

I •

where

MODULE FUNCTIONAL DESCRIPTIONS

Conversion of Input Bulk Data Cards to Output Cards for GE@M4

SPCADD card

-Input Card-

SPCADD L_ S1 I "'" I $9

-2 Output Cards-

S PCADDSl Set IDS I S1 [...

SPCADDCISet IDCl S1 1 "'"

I-_ flOPen-ended

Set ID s = Set ID + I00000000 ,

Set ID c = Set ID + 200000000 •

The following 4 mandatory SPCADD cards are also created and put out on GEBM4 reaardless

of whether there are or are not SPCADD cards oresent.

SPCADD[IO0000101 _

_c_ool_ooooo_o_1_o_1-_ I

_c_ool_ooooooooi io_t _ I
_c_ooI_ooooooooi _°_iI -_ I

2. MPCADD card

All operations performed for the SPCADD card are performed for the MPCADD card.

(17)

(28)

4.6-8

3. SPCAX card

where

and

where

4. MPCAXcard

EXECUTIVE PREFACE MODULE IFP3 (INPUT FILE PROCESSOR 3)

-Input Card-

SPCAXISet IDIRing ID(Harm IDIComp I Value-I

-3 Output Cards-

SPCADDISet IDslset IDI lOl I -l 1

SPCADDC_et IDcIset IDI i02 I -l I

Set IDs = Set ID + lO0000000 ,

Set IDc = Set ID + 200000000 ;

Ring IDHI Comp I Value l

Ring IDH = Ring ID + (Harm ID + l) x lO00000.

-Input Card-

MPCAX Set ID Ring ID Harm I Comp ID Value ... -l -l -l -lI I I _ I I I I I I I
""'_Rep_e at s

-3 Output Cards-

MPCADDs_et ID ISet IDI I01 I -I I

MPCADD et ID set ID 102 -i

Set IDs = Set ID + lO0000000,

Set IDc = Set ID + 200000000.

4.6-9

(19)

(2O)

(2])

Open

Ended

(22)

(23)

and

MODULE FUNCTIONAL DESCRIPTIONS

MPCISet IOlRingIDHC°mPl Value "'" l-' [-il'l__-

For each 3-word group output,

Ring ID H : Ring ID + (Harm ID + 1) x 1000000. (24)

5. POINTAX card (also processed in GERM1 section)

-Input Card-

POINTAXI ID I Ring IDI _ I

-12 Output Cards-

_;I _o_I_oI _ I -_.o]

-con_- _nl _ Icoe_.nI

-cont- ID n I i IC°ef'n

-cont- -I I -I I -I

._c__o_l '° I _ I -_.°

-cont- IDn I i ICoef. n

-cont- ID n I i IC°ef'n

-cont-] -I l -I I -I

N 3-word groups
(n:l to N)

N 3-word qrnuDs
(n=l to N)

s set
i=l to 6

c set
i:l to 6

4.6-10

EXECUTIVE PREFACE MODULE IFP3 (INPUT FILE PROCESSOR 3)

where the Coef.n above are defined by:

i c set-Coef,n s set-Coef,n

I (ur)

2 (u¢)

3 (ut)

4 (Or)

5 (e_)

6 (ez)

cos (n¢)

sin (n¢)

cos (n¢)

sin (n¢)

cos (n¢)

sin (n@)

sin (n¢)

-cos (he),

sin (n¢)

=+l, n=O

-cos (n¢), = +I, n = 0

sin (n¢)

-cos (n¢), = +l, n = 0

and

IDn = Ring ID + (n x lO00000). (25)

6. SECTAX card (also processed in GECMI section)

-input Card-

-6 Output Cards-

,,c;[,o_I_o , I-_.ol

-cont- i,o.[i ICoef.n[

ID__o.=_I .I ']c_,.nf

-cont- !' 1]-_ I -_ I

N 3-word qrouos
(n=l to N)

s set
i=l to 3

4.6-II

MODULE FUNCTIONAL DESCRIPTIONS

where the Coef.
n

_c_I _o_i,o j_ i_o I
ID i Coef-cont-I n 1 I .nl

-cont-

-cont- I

above are defined by:

IDnI i JCoef.nI

N 3.word groups
(n=l to N)

c set
i=l to 3

and

7°

i c set-Coef, n s set-Coef, n

BMITAX card

(sin(n@2) - sin(n@l))
n

or R(_ 2 - 01) for n=O

_ _ (cos(n_2) - cos(n_l))
n

or 0 for n=O

E (sin(n@2) _ sin(n@l))n

or R(_ 2 _l) for n=O

_ _ (cos(n@2) - cos(n@l))n

or 0 for n=O

R (s sin(n_l))in(n¢ 2) -

or R(_ 2 - _l) for n=O

_ _ (cos(n@2) - cos(n,l))n

or O, for n=O

ID = Ring ID + (n x I000000)
n

(26)

-Input Card-

(_MITA Ring ID IHarm I D I Comb

-Output card-

_ _n_I0_ICom_I

Ring ID H = Ring ID + (Harm ID + I) x I000000. (27)

4.6-12

8°

9°

EXECUTIVE PREFACE MODULE IFP3 (INPUT FILE PROCESSOR 3)

SUPAX card

where

-Input Card-

SUPAXIRiR_ IDIHarm ID I Comp.l

-Output Card-

SUPORT _

Ring IDH = Ring ID + (Harm ID + I) x I000000.

RINGAX card (also processed in GE_MI section)

-Input Card-

RINC_X_iRg ID [R I Z I Comp 1

-2 x N Output Cards-

for n = l, 2..... N; and

where

Ring ID_ = Ring ID + I000000 x n,

sPccI 102 Fing IDC1 246 I 0 1

Ring ID_ = Ring ID + I000000 x n,

for n = l, 2, ..., N.

(28)

(29)

(3O)

4.6-13

MODULE FUNCTIONAL DESCRIPTIONS

4.6.7.5 Conversion of Input Bulk Data Cards to Output Cards for GERM1.

I. P(_INTAX card (also processed in GERM4 section)

-Input Card-

POINTAX _

-Output Card-

°_°1_°I °1 _ I°°iL°°[° I 01 oI
2. SECTAX card (also processed in GERM4 section)

-Input Card-

SECTAX _

-Output Card-

3. RINGAX card (also processed in GERM4 section)

-Input Card-

RI NC_AX_

-N Output Cards-

GR_DIRingIDI 0 l R IZ 100 I 0 1COmb1 0 1

/

where

for n = I, 2 N.

Ring ID n = Ring ID + I000000 x n, (31)

4.6-14

EXECUTIVE PREFACE MODULE IFP3 (INPUT FILE PROCESSOR 3)

4.6.7.6 Order of Output for Generated Card Images

IFP3 has the responsibility to output cards in the sort order outout by IFP.

IFP3 to simultaneously process some cards.

4.6.8 Subroutines

This causes

4.6.8.1 Subroutine Name: IFP3B

I. Entry Point: IFP3B

2. Purpose: To process the cards causing output to be created for GEQM4 and GE_MI.

3. Calling Sequence: CALL IFP3B

Design Requirements

The design requirements are:

I. To produce card images equivalent to those out out by IFP.

2. To output those images on GEQMI, GEQM2, GERM3, GEQM4 in the proper sort and order.

The following CQ_N blocks are required for data interface between subroutines IFP3 and

4.6.9

IFP3B.

1. CgV_ICN/IFP3LV/

This Cg_N block contains local variables commonbetween IFP3

and IFP3B only.

2o CgHH_N/IFP3BD/

This Cg_Fi_Nblock contains constants commonbetween IFP3 and

IFP3B and is initialized in the Block Data subprogram AXICBD.

3. CCMI_N/IFP3ZZ/

This Cg_N block defines the beginning of open-core.

4.6.10 Diagnostic Messages

IFP3 error messages are all user-oriented. They pertain to Bulk Data card errors for the

axisymmetric conical shell problem, and are output in summary form by IFP3 on the system output

file.

4.6-15

EXECUTIVEPREFACEMODULEXGPI(EXECUTIVEGENERALPROBLEMINITIALIZATION)

4.7 EXECUTIVEPREFACEMODULEXGPI(EXECUTIVEGENERALPROBLEMINITIALIZATION).

4.7.1 EntryPoint: XGPI

4.7.2 Pur__

Totranslate (compile)a DMAPprograminto aninternal form(the {_SCAR)for useby the

NASTRANExecutiveSystem,and, if restarting the problem,to initialize data blocks and named

common blocks for proper restart of the problem. See section 2 for format of the _SCAR.

4.7.3 Calling Sequence

CALL XGPI. XGPI is called only by subroutine SEMINT, the Preface driver.

4.7.4 Method

XGPI calls XGPIBS to initialize data for the module and to initialize the Link

Specification table in named common block /XLINK/. Upon return from XGPIBS, XGPI loads the XCSA

Executive Table into core from the Problem Tape. If restarting the problem, XGPI modifies

table MEDMSK in named common block /XI4DMSK/if necessary. See discussion of the INM table

in the description for the XCSA module, in section 4.2.6.2.

XGPI calls X_SGEN to execute phase l of the bMAP program compilation. X_SGEN processes

the DMAP instructions and generates the skeleton of the Operation Sequence Control Array (_SCAR).

See section 2.4.2.1 for details on the format of the _SCAR.

XGPI calls XFL_RD to execute phase 2 of the compilation. XFL_RD fills in the _SCAR

entries with the information needed for allocating files (by SFA) when DMAP modules are

executed. If restarting a problem, XFL_RD determines which data blocks are needed from the Old

Problem Tape to restart the proble_:and, when necessary, turns on execute flags for DMAP

modules to regenerate missing data blocks.

At this point, XGPI terminates the job if any errors were found in compilation; if not,

XGPI writes the _SCAR onto the Data Pool File. If the problem is a restart, XGPI copies the

data blocks specified by XFL_RD from the Old Problem Tape onto the D_ta Pool File and

initializes various named common blocks.

4.7-I

MODULE FUNCTIONAL DESCRIPTIONS

XGPI calls _SCDMP to print the _SCAR if requested by the user via the DIAG card in the

Executive Control Deck and to position the Data Pool File at the first _SCAR entry in preparation

for executing DMAP modules. If checkpointing is requested by the user, the Problem Tape

Dictionary is initialized and written on the Problem Tape. XGPI then returns to the calling

routine SEMINT.

4.7.5 Subroutines

The following labeled common blocks are used to communicate data and constants among the

complex of XGPI subroutines.

I. C_MMON/XGPIC/ - Contains 30 individual cells containing various flags, integer and BCD

constants, and machine dependent data. Also an additional 40 cell array contains a series

of required masks.

2. C_MM_N/XGPID/ - Contains restart type codes and approach type codes plus masks and flags

required in OSCAR generation.

3. COMM_N/XGPII/ - Defines the beginning of open core for the XGPI module and contains the

_SCAR as it is generated.

4. C_MM_N/XGPI2/ - Contains the MPL table (see sectio_ 2.4.2.2).

5. C_MM_N/XGPI2X/ - Contains the default parameters required by the MPL table.

6. C_MMON/XGPI3/ - Contains the PVT table (see section 2.4.2.4) prior to it being written

on the Problem Tape.

7. C_MM_N/XGPI4/ - Contains individual DMAP cards as they are output from XRCARD plus the

various flags and pointers required to process each DMAP instruction.

8. C_MM_N/XGPI5/ - Contains solution, solution subset, approach and start codes along with

data pertaining to DMAP ALTER numbers.

9. C_MM_N/XGPI6/ - Contains various pointers into the Module Execution Decision Table,

MED (see section I.I0).

I0. C_MM_N/XGPIT/ - Contains data pertaining to the IFILE Table (see section 4.7.6.3).

4.7-2

EXECUTIVE PREFACE MODULE XGPI (EXECUTIVE GENERAL PROBLEM INITIALIZATION)

II. C_MM_N/XGPI8/ - Contains pointers into the ICPDPL Table (see section 4.7.6.3).

Further details regarding these common blocks may be obtained from the source listings for

XGPIBD and XGPIBS.

4.7.5.1 XGPIDG

4.7.5.2

I. Entry Points: XGPIDG, XGPIMW.

2. Purposes: For XGPIDG, to write all fatal and non-fatal diagnostic messages for

module XGPI. For XGPIMW, to write all non-diagnostic messages for module XGPI.

3. Calling Sequences:

For XGPIDG:

CALL XGPIDG (NC_DE,I,J,K)

NC@DE - Message code nun_er

I,J,K - Integer values determined by NCgDE.

For XGPIMW:

CALL XGPIMW (MSGN@,I,J,A)

MSGN_ - Message code nun_er

I,J,A - Integer values determined by MSGN_

XGPIBS

I. Entry Point: XGPIBS.

2. Purpose: To initialize module data and the Link Specification table in name,

cormnonblock /XLINK/(see section 2.4).

3. Calling Sequence:

CALL XGPIBS

4.7.5.3 XgSGEN

I. Entry Point: X_SGEN.

4.7-3

MODULEFUNCTIONALDESCRIPTIONS

4.7.5.4

2. Purpose: To execute phase 1 of the compilation by translating the DMAP program

into a skeleton Operation Sequence Control Array (_SCAR).

3. Calling Sequence:

CALL XOSGEN

XLNKHD

I. Entry Point: XLNKHD.

2. Purpose: To generate the header section of an _SCAR entry and for problem re-

starts, to determine whether or not to set the _SCAR entry execute flag.

3. Calling Sequence:

CALL XLNKHD

4.7.5.5 XIPFL

4.7.5.6

I. Entry Points: XIPFL, X_PFL.

2. Purpose: For XlPFL, to generate the input data block section of an 0SCAR entry.

For X_PFL, to generate the output data block section of an OSCAR entry.

3. Calling Sequences:

CALL XlPFL

CALL XOPFL

XPARAM

I. Entry Point: XPARAM.

2. Purpose: To generate the parameter section of an _SCAR entry.

3. Calling Sequence:

CALL XPARAM

4.7.5.7 XSCNDM

I. Entry Point: XSCNDM.

2. Purpose: To scan all DMAP instructions and return to the c_lling program each

item in an instruction along with its identification (i.e., delimiter, BCD name,

4.7-4

4.7.5.8

4.7.5.9

EXECUTIVE PREFACE MODULE XGPI (EXECUTIVE GENERAL PROBLEM INITIALIZATION)

value or end of instruction) as it is requested.

3. Calling Sequence:

CALL XSCNDM

XFL_RD

I. Entry Point: XFL_RD.

2. Purpose: To compute the LTU (Last Time Used) and NTU (Next Time Used) values

for the input and output sections of _SCAR entries, and for problem restarts, to

determine whicK data blocks are needed from the Old Problem Tape to restart the

problem.

3. Calling Sequence:

CALL XFL_RD

XFLDEF

I. Entry Point: XFLDEF.

2. Purpose: To search the Old Problem Tape restart dictionary for a requested data

block name and flag name if found; and if not found, and if restart is modified and the

calling routine requests it, to attempt to regenerate the data block by turning on the

proper _SCAR execute flags.

3. Calling Sequence:

CALL XFLDEF (NAMI, NAM2, N@FIND)

NAMI,NAM2 Data block name (8 characters, 4 characters/word).

N_FIND - For input, N_FIND< 0 indicates that the calling routine wants

the data block regenerated if it is not in restart dictionary.

N_FINDmO indicates no regeneration is desired. For output,

N_FIND indicates to the calling routine what XFLDEF did.

N_FIND < O, the data block was regenerated. N_FIND = O, the

data block was in the restart dictionary and was flagged for

use in restarting the problem. N_FIND > O, the data block

was not found and was not regenerated.

4.7-5

MODULE FUNCTIONAL DESCRIPTIONS

4.7.5.10 BSCDMP

I. Entry Point: OSCDMP.

2. Purpose: To print the OSCAR on the system output file if requested by user, and

to position the Data Pool File at the first OSCAR entry.

3. Calling Sequence:

CALL _SCDMP (FILP_S)

FILPOS - The number of file marks to skip over in order to be positioned at

beginning of the OSCAR.

4.7.5.11 MPLPRT

I. Entry Point: MPLPRT

2. Purpose: To print the contents of the Module Properties List (MPL) as defined

by the Block Data Program XMPLBD. This printout, which occurs whenever a DIAG 31

card exists in the Executive Control Deck, is formatted for easy readability by

programmers and users alike.

3. Calling Sequence:

CALL MPLPRT

4.7.6 Design Requirements

4.7.6.1 Open Core Layout

The _SCAR array in named common block /XGPII/ defines the first location in open core.

All other arrays to be put in open core are equivalenced to OSCAR and are offset from OSCAR(1)

by an amount determined at execution time. This dynamic allocation of arrays in open core

optimizes the space available on a given machine, which means that any restrictions on data

(except those noted below) are due to the machine's core size and not the program.

4.7-6 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

The diagrams below show the order in which tables reside in open core during phase l and

phase 2 of the compilation.

Phase l

_SCAR

DMPCRD

LBLTBL

MED

FNM

IBUFR

Phase 2

_SCAR

PTDIC

ICPDPL

MED

FNM

IBUFR

In phase l the final sizes of the arrays _SCAR and LBLTBL are not known until the DMAP

program has been completely scanned by X@SGEN. These two arrays request space as needed

until it runs out. At this time the user is informed that the DMAP should be shortened or

core storage should be increased.

4.7-6a (8/I/72)

EXECUTIVEPREFACEMODULEXGPI(EXECUTIVEGENERALPROBLEMINITIALIZATION)

4.7.6.2 DataNecessaryForOperation

TheProblemTapeprovidesExecutiveTables×CSA,XALTER,PVT,andfor restarts, XPTDIC

(seesection2.4 for details). Datain namedcommonblocksis initialized bythe BLOCKDATA

routinesXMPLBD,XGPIBDandXBSBDor commonblockdatais initialized byroutine XGPIBS.

4.7.6.3 TableFormats

I. _SCAR:Locatedin namedcommonblock/XGPII/. See section 2.4.2.1 for format.

2. MED, CNM, FNM: Equivaienced to the _SCAR table. See ISl, INM and JNM table

descriptions in XCSA Module Functional Description (4.2.6.2).

3. PTDIC, ICPDPL: Equivalenced to _SCAR array.

Sample entry:

Word l

2

3

r
I RI_i 30129 28 _7

Word

1,2

Item

DBN

R,F

EQ

ET

Description

Data block name (BCD) of the data block from the restart

dictionary. Note, a data block name appears only once in

the table except for table VPS where it appears twice.

Reel nun_er and file number where the data block is last

located on Old Problem Tape. For XVPS there is an entry

(the first in PTDIC) which indicates where the first XVPS

data block is located on the Old Problem Tape. For purged

or not-generated data blocks, R = 0 and F = O.

Equivalence flag. EQ = 0 indicates the data block is

equivalenced to another data block.

End of tape flag. ET = l indicates that the data block is

split across two reels of the Old Problem Tape.

4.7-7

MODULEFUNCTIONAL DESCRIPTIONS

Word Item Description

ER End of logical record flag. ER = 1 indicates that the

complete logical record was written out prior to changing

reels when ET = I.

RU Reuse flag. RU = l indicates that this data block is to be

used to restart the problem.

Table ICPDPL contains all entries from PTDIC which had the RU flag set.

4. MPL: The MPL is located in named common block /XGPI2/. See section 2.4.2.2 for details

5. I_RDNL: Equivalenced to MPL, the I_RDNL table is used in phase 2 when the MPL is no

IORDNL in the order that they arelonger needed. Data block names are entered into

output from functional modules and IFP.

Sample entry:
Word

Word Item

1,2 DBN

3 LSTUSE

6. PVT:

TP

LTU

AP

1
--- DBN -- -

2

3 | I_LSTUS E4 l TTU-
31 30 1

Description

Data block name (BCD)

Pointer to input or output section entry

of a functional module _SCAR entry where the data

block was last referenced. LSTUSE is used to fill in

NTU's (Next Time Used) in _SCAR entries.

Tape flag. TP = l if the data block was declared TAPE

in a FILE DMAP instruction.

Last time used. Record number of _SCAR entry beyond which

the data block need not be saved for input.

Append flag. AP = l if the data block was declared

APPEND in a FILE DMAP instruction.

Located in named common block /XGPI3/.

4.7-8

EXECUTIVEPREFACE MODULE XGPI (EXECUTIVE GENERAL PROBLEM INITIALIZATION}

Sample entry:

CN

PVT File see section 2.4.2.4 for details.

MN - Maximum number of words in PVT (integer).

CN - Current number of words being used (integer).

7. IFILE: Located in named common block /XGPI7/. The purpose of IFILE is to save

information from FILE DMAP instructions.

W°rd lIii_32 _ -rpIDBNTpI-- iil

Word Item Description

1,2 DBN D_ta block name (BCD)

3 SV SAVE flag

TP TAPE flag

AP APPEND flag

4.7.6.4 Restrictions on Data

There are only three fixed length tables which might be overflowed by excess user data.

These tables are PVT, IFILE and I_RDNL.

4.7.7 Diagnostic Messages

Every effort is made to detect syntactical and logical errors in the DMAP program, and, for

restarts, to make sure that the problem is being restarted correctly. All tables are checked

for overflow.

The N_G_ flag in named common block /SYSTEM/ is set according to the severity of the

errors found. N_G_ = l indicates compilation is to be discontinued after phase 2. N_G_ = 2

4.7-9

MODULE FUNCTIONAL DESCRIPTIONS

indicates a serious error and causes XGPI to terminate the program immediately.

See the Diagnostic Message section of the User's Manual (section 6.2) for a detailed dis-

cussion of XGPI diagnostic messages, XGPI messages include numbers 1 thru 53.

4.7-I0

EXECUTIVE PREFACE MODULE UMFEDIT (USER MASTER FILE EDITOR)

4.8 EXECUTIVE PREFACE MODULE UMFEDIT (USER MASTER FILE EDITOR)

4.8.1 Entry Point: UMFEDT

4.8.2 Purpose

To create and manipulate User Master Files.

4.8.3 Callin9 Sequence

CALL UMFEDT. UMFEDT is called only by SEMIte, the Preface Driver.

4.8.4 Method

UMFEDIT functions as a post-processor to Executive Module XSBRT. Its primary task is to

generate a User Master File by repeatedly transferring sorted bulk data decks generated by XS_RT

from the New Problem Tape (NPTP) to the New User Master File (NUMF) based on control cards read

from the System Input File. See section 2 of the User's .Manualfor a description of these

control cards and how they control the contents of the NUMF.

in addition to creating a User Master File, UMFEDIT is used to list and/or punch Bulk Data

Decks from an existing User Master File (UMF). Control cards read from the System Input File

also control this process.

4.8.5 Subroutines

The UMFEDIT module has no auxiliary subroutines but uses XRCARD (see section 3.4 for a

description).

4.8.6 Design Requirements

I. Open core is defined at /UMFXXX/ and is utilized as follows:

C_E,_N/UMFXXX/

;GIN_ Buffer for UMF

GIN_ Buffer for UMF

GINB Buffer for NPTP

! Unused core
F

4.8-I

MODULEFUNCTIONALDESCRIPTIONS

2. TheBlockDatasubprogramUMFZBDfills /UMFZZZ/.

3. UMFEDIT operates only in the Preface environment. The Bulk Data Deck must have been

processed by XS_RT and accepted by the Input File Processor (IFP).

4.8.7 Diagnostic Messages

Bad Bulk Data Decks (indicated by ABORT = .TRUE.) will not be accepted by UMFEDIT for

inclusion on the NUMF. Subsequent Bulk Data Decks will be included, however, if acceptable.

Other errors detected in UMFEDIT will result in appropriate diagnostic messages being

written on the System Output File and termination via PEXIT. These messages are: 1703 through

1716, 1718, 1719, 1721, 1722, 1723, and 1725 through 1737.

4.8-2

EXECUTIVEMODULEXSFA(EXECUTIVESEGMENTFILEALLOCATOR)

4.9 EXECUTIVEMODULEXSFA(EXECUTIVESEGMENTFILEALLOCATOR)

4.9.1 Entry Point: XSFA

4.9.2 Pur_ur_ep__sg_

The Segment File Allocator (SFA) manages the data block to physical file relationships

throughout a NASTRAN problem. Since, in general, the number of data blocks required for

problem solution far exceeds the number of physical files available, allocation of files to

data blocks is done dynamically as the module sequence proceeds. The SFA will allocate

forward for as many modules as possible. A group of modules allocated by one operation of

the SFA is termed a segment.

4.9.3 Callin9 Sequence

CALL XSFA

_SCP_S -

(@SCP@S)

When input to XSFA, this integer argument is the current position (record

number) within the _SCAR. Upon return from XSFA, (1) if allocation was

successful, WSCP_S is the _SCAR position of the end of the segment as defined

above; (2) if allocation was unsuccessful, the input argument is set negative.

4.9.4 Method

SFA is called by GNFIST (see section 3.3.9 for a description of GNFIST) when GNFIST fails

to find the necessary data block names in the FIAT table to construct a complete FIST table

for the next operating module (see section 2.4 for descriptions of the FIST and FIAT).

The FIST table must contain an entry for each input, output, and scratch data block required by

the module. SFA operates by processing the _SCAR from its present position (_ext module to be

operated) through all remaining modules. Only functional module and output processor

_SCAR entries flagged for execution are processed. The _SCAR is read and processed by an

internal subroutine named XS_SGN (Serial _SCAR Sequence Generator) and the S_S table is

formed. From this table all allocation is performed. Following XS_SGN, another internal

subroutine named XCLEAN operates. XCLEAN acts to "clean up" the FIAT and DPL tables prior

to the basic allocation procedure. This clean-up involves deleting data block names not

needed for subsequent modules, removing equivalence flaas if one member of an equivalent

4.9-I

MODULE FUNCTIONAL DESCRIPTIONS

pair is deleted, and closing up gaps in the FIAT caused by deletions. Following operation of

XCLEAN, basic allocation begins. Allocation is accomplished during two passes through the S_S

table.

Pass one first checks to see if each data block from the S_S is already in the FIAT. If so,

it is considered allocated; otherwise the possibility of data block stacking is investigated.

Stacking is defined as assigning two or more data blocks to the same physical file by con-

sidering their use span. The various use span attributes available are: First-Time-Used (FTU),

Next-Time-Used (NTU), and Last-Time-Used (LTU). Data block A may use (be stacked on) the same

file as data block B if the first use (FTU) of data block B is subsequent to the last use (LTU)

of data block A. Thus many data blocks may be allocated to use the same physical file if their

use spans do not overlap. INPUTS may not be stacked. Following pass one, if any data blocks

within S_S remain un-allocated, pass two is begun.

Pass two first checks for files within the FIAT currently not assigned to any data block.

These files are considered empty and are assigned to the un-allocated data blocks. Once the

empty files are exhausted a check is made to determine if the next module to be operated has

all its data blocks allocated to files. If the next module (at the least) is allocated,

basic allocation is completed. If the next module has not been completely allocated, the

second part of pass two will force pooling of sufficient data blocks to provide the necessary

empty files for allocation of the remaining data blocks needed for the next module. Pooling

is accomplished by flagging the data blocks for copying onto a separate file called the

Data Pool File. The Data Pool File will therefore contain many different data blocks where

all other files contain only one data block at a tilne. Data blocks are chosen for pooling

by checking the next-time-used (NTU) attribute. The data block with tile greatest NTU will

be pooled first. Data blocks pooled are considered un-allocated; when they are subsequently

re-allocated to their own file, they will be flagged for unpooling.

Following basic allocation, subroutine XPUNP (Pool-Unpool) is operated. All data blocks

flagged for pooling are copied to the Pool File followed by all data blocks flagged for unpooling

being copied from the Data Pool File. Lastly subroutine XDPH (Data Pool Housekeeper) operates

to clean-up and if necessary re-copy the Data Pool File. SFA then returns control to GNFIST

with the calling argument set negative if it was un-able to allocate the next module. Figure]

illustrates the functional flow.

4.9-2 (811172)

EXECUTIVE MODULE XSFA (EXECUTIVE SEGMENT FILE ALLOCATOR)

4.9.5 Subroutines

XSFA performs basic allocation and its entry point, purpose and calling sequence are given

above. Below, it should be noted that XPLEQK and XFILPS are secondary entry points in XP_LCK.

4.9.5.1 Subroutine Name: XSBSGN (Serial _SCAR Sequence Generator)

I. Entry Point: XS_SC_N

2. Purpose: XS_SGN reads the _SCAR and creates the SOS (Serial _SCAR Sequence) and MD

(Module Descriptor) tables. The S_S table contains the data block names and various

attributes, while the MD table contains the _SCAR sequence numbers and the number of

input, output, and scratch data blocks required by each module.

S_S Table MD Table

Entries

Data Block
Name

ArAb:....
LIP ',LTU t , NTU
S_31 I. 30 1_ 16_IS

AL=

AP =

LTU =

T=

NTU=

Entry

Allocation Flag, set on by SFA
when data block is allocated.

Append Flag, set on by module
XGPI if data block is to be
added to.

Last-Time-Used, created by
XGPI as a data block attribute.

Tape Request Flag, set by XGPI
to indicate a physical tape file
is requested for data block.

Next-Time-Used, created by XS_SGN
as a data block attribute.

Entries

BSCAR Sequence #"

Inputs

Outputs

..........................

Scratches

= Full word integer
values for items

Entry

4.9-3

MODULEFUNCTIONALDESCRIPTIONS

Note: Itemscreatedor set by XGPIare passedvia _SCAR.

Thesetablesare containedwithin the /XSFAI/ common block.

3. Calling Sequence: CALL XSBSGN

4.9.5.2 Subroutine Name: XCLEAN (FIAT and DPL Clean-up)

I. Entry Point: XCLEAN

2. Purpose: XCLEAN deletes data block names from the FIAT and DPL when they are no

longer needed (their LTU has been reached). Following these deletions, equivalenced

data blocks flags within FIAT are checked for continuing validity. If, for example,

one member of an equivalenced pair has been deleted, the equivalence flag on the

remaining member is removed. Finally, empty spaces within FIAT are removed by closinn

up the table. XCLEAN also regenerates and stores various parameters into the extended

FIAT table. Since this table is non-resident and exists only during SFA operation,

values such as NTU and the on/off switches must be restored.

Word

l

Word

1

4

5

6

Item

Extended FIAT
l

01 IT i
II

_131 17116_1_15

-N = Pool
+N = Unpool Flag

NTU
._i

-I Yes Current Module
0 No

-l Yes Current Segment
0 No

Allocation Type

(Unused)

Description

Sample entry

(one for each FIAT entry)

On/off switch, data block is turned off following stacking

to prevent double stacking.

Tape request flag, copied from S_S when allocated.

_lext-Time-Used;copied from S_S when allocated, regenerated

by XCLEAN for data blocks remaining from previous allocation.

4.9-4

EXECUTIVEMODULEXSFA (EXECUTIVE SEGMENT FILE ALLOCATOR)

Word Item

-N

+N

Description

Flags XPUNP to pool data block, N = number of equivalent

names for data block (Equals l if data block not equivalenced).

Flags XPUNP to unpool data block, N = Data Pool File number

of data block.

Flag set yes if data block alloc)ted for module currently

being allocated - cleared between module allocations.

Flag set yes if data block allocated for module within current

segment - i.e., all data blocks allocated during one SFA

operation.

Allocation type - l =

2 =

3 _

5=

z

6 Unused

data block match, name already in FIAT

data block stacking, name on file with
another

empty file used for data block

data block using file freed by Pooling
another data block

same as 5 except pooled data block is
equivalenced

This table is contained within the /XSFAI/ common block.

4.9.5.3 Subroutine Name: XPUNP (Pool-Unpool)

I. Entry Point: XPUNP

2. Purpose: XPUNP checks the Pool and Unpool flags within the extended FIAT and performs

the I/_ operations necessary to copy data blocks from their separate files to the Data Pool

File and vice-versa. Data block trailers are copied from the FIAT onto the Data Pool File

as an additional record during pooling and are renlaced from this record during unnooling.

All requested pooling operations are performed prior to any unDoolinQ o_erations. As data

blocks are added to the Data Pool File, appropriate entries are added to the Data Pool

Dictionary (DPL). The extended FIAT (4.9.5.2) is contained within the /XSFAI/ common block.

3. Calling Sequence: CALL XPUNP

4.9-5

MODULE FUNCTIONAL DESCRIPTIONS

4.9.5.4 Subroutine Name: XDPH (Data Pool Housekeeper)

I. Entry Point: XDPH

2. Purpose: XDPH scans the Data Pool Dictionary (DPL) to determine the number and size of

the data blocks on the Data Pool File which have been flagged as no longer needed. If a

sufficient quantity of data is flagged, a complete housekeeping operation is performed.

This complete process involves re-copying the Data Pool File onto a scratch file while

skipping those data blocks flagged for removal. Following the re-copy, the scratch file

becomes the new Data Pool File and the old Data Pool File is released as a scratch file.

XDPH will also perform a partial housekeeping if a (several) flagged data block(s) appears

as the last data block on the Data Pool File. For this partial operation only the DPL

entries are modified to release the pool space, no re-copy is necessary.

3. Calling Sequence: CALL XDPH

4.9.5.5 Subroutine Name: XPOLCK (Data Pool Dictionary Check)

I. Entry Point: XPOLCK

2. Purpose: XP_LCK scans the Data Pool Dictionary for a particular data block name. If

found, the position within the dictionary and the Data Pool file number are returned to

the calling program.

3. Calling Sequence:

where:

DBNI, DBN2 -

FN

CALL XP@LCK (DBNI,DBN2,FN,L)

Request data block name (8 characters), 4 characters in each word,

left justified and filled with blanks (if necessary).

O, if data block not on the Data Pool File.N, if data block on the Data Pool File; N = Data Pool File number.

Position of data block entry within the dictionary if data block found.

4.9.5.6 Subroutine Name: XPLEQK (Data Pool Equivalence Check)

I. Entry Point: XPLEQK

4.9-6

EXECUTIVE MODULE XSFA (EXECUTIVE SEGMENT FILE ALLOCATOR)

2. Purpose: XPLEQK scans the Data Pool Dictionary for any equivalence to the called data

block name. If found, a copy of the equivalent names is moved from the Data Pool

Dictionary to the FIAT.

3. Calling Sequence: CALL XPLEQK (P_gLX,FIATX)

where:

P_LX - Position of data block entry within the dictionary (see argument L within

XP_LCK).

FIATX - Position of same data block entry within the FIAT.

4.9.5.7 Subroutine Name: XFILPS (Data Pool File Positioner)

I. Entry Point: XFILPS

2. Purpose: XFILPS positions the Data Pool File to the beginning of a requested data

block. (The Data Pool File is a multi-file file).

3. Calling Sequence: CALL XFILPS (FNEW)

where:

FNEW - The file count of the requested position. The current or old file _osition

is stored in the /XSFAI/ common block.

4.9.6 Design Requirements

I. Open core is used only for GIN9 buffers (2 maximum). The open core origin is

co_,_n block /ESFA/ located following all SFA subroutines.

2. SFA communicates data internal to the module subroutines via com_n block /XSFAI/.

The S_S, MD and extended FIAT tables reside in /XSFAI/.

3. The 9SCAR must be at the entry where allocation is to begin. Following allocation,

that initial 9SCAR position is restored.

4. BLOCK DATA subprogram defines the lengths of tables in /XSFAI/.

4.9-7

MODULEFUNCTIONALDESCRIPTIONS

4.9.7 Diagnostic Messages

Special DMAP routing may cause the warning 3022 message to be printed by SFA.

Following output of this message, SFA flags the data block as allocated (although it will

not appear in the FIAT) and continues. Since SFA cannot predict conditional DMAP routing, the

data block in question may not be required and the problem will proceed satisfactorily. If the

data block is required, the problem will terminate in the requesting module. Under these circum-

stances the DMAP routing should be studied.

All other error messages generated by SFA are fatal in nature and indicate serious I/O

malfunctions or executive table overflow. See section 6 of User's Manual for listinq and

explanation of these messages. XSFA messages include numbers lOOl through I004, lOll through

lOl4, 1021, 1031 through I035, 1041, and lOS1.

4.9-8

EXECUTIVEMODULEXSFA(EXECUTIVESEGMENTFILEALLOCATOR)

XSFA(E.TER)

Next
Module

Next
Data Block

Next

Data BlocLl

CallXSBSGN

Call

XCLEAN _

I
LI Set alloc range to

v I first/next module

i Pass l

_ Pick-up first/next data]block within module

Yes

° I

No

Pass 2

Pick-up first/next

"I data block within module
I

Figure l.(a) Flowchart for module XSFA.

I
Stack data block I_
on the same file F-"

I

Set data block I_.
as allocated p

4.9-9

MODULE FUNCTIONAL DESCRIPTIONS

No

I Use empty I
file for

data block

Find the data block

with the largest
NTU not required

in this module

 Yes

Set the pooling flag

for this data block

Use this now empty file

for new data block

3

I Set new data blockas allocated

Yes

No

Yes

Set ARG. NEG.
indicating

alloc, incomp.

Yes

<Call>XPUNP

XDPH

_ RETURN _

Figure l.(b) Flowchart for module XSFA.

4.9-10

EXECUTIVE DMAP MODULE CHKPNT (CHECKPOINT)

4.10 EXECUTIVE DMAP MODULE CHKPNT (CHECKPOINT)

4.10.1 Entry Point: XCHK

4.10.2 Pur__

To save, on the Problem Tape, specified data blocks along with other data necessary

for restarting a problem.

4.10.3 DMAP Calling Sequence

CHKPNT DBI,DB2.....DBN $

where DBI, DB2DBN (N _ l) are data blocks to be copied onto the Problem Tape for

use in restarting a problem.

4.10.4 Method

The Problem Tape Dictionary (XPTDIC), see section 2.4.2.3, is brought into core from the

Problem Tape, and the data block list in the CHKPNT _SCAR entry is scanned. Data blocks that have

been generated are entered into the local D!CT table (see discussion below) along with all data

blocks equivalenced to them. Data blocks that are purged, or have not yet been generated,

are entered in the local PURGE table. The data blocks are assigned file numbers and are

placed in the FDICT table. Data blocks are then copied onto the Problem Tape according to

their file number unless the data block is equivalenced and is already in the Problem Tape

Dictionary. Core resident data necessary for restart is also written on the Problem Tape as

the VPS Executive Table. Entries from FDICT and PURGE are entered into the Problem Tape

Dictionary, and the new checkpoint entries are punched for user submittal in the Executive

Control Deck upon problem restart. The updated Problem Tape Dictionary is written back on the

Problem Tape, and the Problem Tape is positioned to the beginning of the last file (i.e., XPTDIC)

in preparation for the next execution of the CHKPNT module.

4.10.5 Subroutine

Module XCHK has no auxiliary subroutines.

4.10-1

MODULEFUNCTIONALDESCRIPTIONS

4.10.6 Design Requirements

4.10.6.1 Open Core Layout

Named common block /ESFA/ defines the start of the open core area. The use of open core

is optimized by origining arrays GBUF, PTDIC and I_BUF at /ESFA/ and computing their offset

from the origin at execution time. The diagram below shows how the arrays are placed in open

core.

PTDIC(PTDT_P)

I_BUF(1OPNT)

GBUF(FPNT)

GBUF(DPPNT)

GBUF(NPTPNT)

COMM_N/ESFA/

Problem Tape Dictionary

Utility buffer

Data Block GIN_ buffer

Data Pool File GIN_ buffer

Problem Tape GIN_ buffer

4.10.6.2 Data Necessary for Operation

The data blocks, named common blocks and files needed by the CHKPNT module are listed

below, along with type of access required (i.e. fetch and/or store data) and reasons for use.

I. Data Pool File - fetch data blocks to be copied onto the Problem Tape.

2. Problem Tape - fetch and store data blocks.

3. Executive Table XPTDIC - fetch and store. Used to generate new checkpoint entries

which are then added to XPTDIC.

4. Common /XFIST/ - store temporary entry in FIST for copying data blocks.

5. Common/_SCENT/ -fetcb. CHKPNT_SCAR entry resides here.

6. Common/XCEITB/,/XVPS/ and /SYSTEM/ - fetch. Contains data to be written in VPS

Executive Table.

7. Common/XFIAT/ and Common/XDPL/ - fetch. Contains data block names of data blocks

to be copied.

8. Common/_UTPUT/ - store. Prints out page heading for Checkpoint Dictionary printout.

9. Common /STAPID/ - fetch and store. Used to write Problem Tape ID file on new reel of

of the Problem Tape when an end of reel is encountered.

4.10-2

EXECUTIVE DMAP MX)DULECHKPNT (CHECKPOINT)

4.10.6.3 Formats of Local Arrays

I. DICT table

The purpose of the DICT table is to hold preliminary data to be used in generating the

FDICT table.

Sample DICT entry:

Word Item

1,2 DBN

Word l

2

3

_ J31 |30129 17 1G

Description

BCD name (8 characters, 2 words) of the data block whose status is

generated and is to be checkpointed.

3 EQ Equivalence flag. EQ = l indicates all data blocks equivalenced to

tKis data block also reside in DICT table.

FA File number assigned flag. FA = l indicates that an FDICT entry has

been generated for this DBN and that a file number of where the data block

will reside on the Problem Tape has been assigned.

DP Data pool flag. DP = l indicates that the data block is on the Data Pool

File.

FP Varies according to DP flag. For DP = l, FP is not used. For DP = O,

FP is a pointer to the FIAT entry containing DBN or equivalenced DBN.

ID Varies according to DP flag. For DP = l, ID is the file number where

the data block resides on the Data Pool File. For DP = O, ID is the file

(unit) identifier. For the IBM 7094, ID is the unit control block pointer

for the file. For machines using the FBRTRAN GINB, ID is the FBRTRAN

logical unit nun#_erassigned to the file.

2. FDICT table

The purpose of the FDICT table is to hold final data to be used in generating XPTDIC entries

for data blocks whose status is generated.

4.10-3

Sample FDICT entry:

Word

MODULE FUNCTIONAL DESCRIPTIONS

-- DBN I

Word Item

1,2 DBN

EQ

ET

ER

3 R,F

Description

BCD name of data block.

Equivalence flag. EQ = l indicates all data blocks equivalenced to

this data block also reside in the FDICT table.

End-of-tape flag. ET = l indicates that the data block is split

across two reels of Problem Tape.

End-of-logical-record flag. ER = l indicates that the complete

logical record was written out prior to changing reels when ET = I.

Reel number and file number where the data block will be written on

the Problem Tape.

4.10.6.4 Restrictions

XPTDIC cannot be written across two reels of Problem Tape (i.e. a fatal error occurs if

an end-of-tape is encountered while writing XPTDIC).

4.10.7 Diagnostic Messages

See Diagnostic Message section of User's Manual (section 6.2) for a detailed discussion of

CHKPNT module diagnostic messages. XCHK messages include numbers llOl through If09.

4.10-4

EXECUTIVEDMAPINSTRUCTIONREPT(REPEATA GROUPOFDMAPINSTRUCTIONS)

4.11 EXECUTIVEDMAPINSTRUCTIONREPT(REPEATA GROUPOFDMAPINSTRUCTIONS)

4.11.1 Entry Point: XCEI

The XCEI module executes the DMAP control instructions: REPT, EXIT, C_ND and JUMP.

4.11.2 Purpose

To repeat a group of DMAP instructions a specified number of times.

4.11.3 DMAP Callin9 Sequence

REPT n,c $

where:

I. n is a BCD name appearing in a LABEL instruction which specifies the location of the

beginning of the group of DMAP instructions to be repeated.

2. c is an integer constant which specifies the number of times to repeat the

instructions.

4.!1.4

BEGIN $

LABEL Ll $

M(_DULEI A/B/V,Y,PI $

M_DULE'N B/C/V,Y,PN $

REPT LI,3 $

END $

4.11-1

MODULE FUNCTIONAL DESCRIPTIONS

The DMAP instructions from MODULE1 to M_DULEN will be repeated 3 times. Note that REPT

is placed at the end of the group of instructions to be repeated.

4.11.5 Method

Executive Table CEITBL in named common block /XCEITB/ (see section 2.4 for format) is

searched for the REPT entry and the entry is updated after determining whether or not to repeat

the loop again. If the loop is not to be repeated, a return is made to the calling routine. If

a repeat of the loop is to be executed, the Problem Tape Dictionary (XPTDIC) is read into core

from the Problem Tape, and dictionary entries created inside the loop are deleted. The updated

XPTDIC is written back on the Problem Tape. Data blocks that are referenced only inside the loop

and which have not been declared saved in a FILE DMAP instruction have their status changed to

not-generated (i.e. data block trailers within FIAT are cleared and if the data block name appears

in the DPL it is removed). The _SCAR on the Data Pool Tape is positioned to the top of loop and

a return is made to the calling routine.

4.11.6 Subroutine

4.11.6.1 Subroutine Name: XCEI.

I. Entry Point: XCEI

2. Purpose: To execute DMAP Control modules REPT, JUMP, C_ND, and EXIT as described

in the respective Executive DMAP Module Descriptions in this section and in sections 4.12,

4.13 and 4.14.

3. Calling Sequence:

CALL XCEI

4.11.7 Design Requrements

4.11.7.1 Open Core Layout

Named comRon block /ESFA/ defines the start of the open core area.

diagram shows the layout.

COMMON/ESFA/

Data Pool File GIN_ buffer area.

Problem Tape GIN_ buffer area.

Problem Tape Dictionary (XPTDIC).

The following

4.11-2

EXECUTIVE DMAP INSTRUCTION REPT (REPEAT A GROUP OF DMAP INSTRUCTIONS)

4.11.7.2 Data Necessary For Operation

The tables, named common blocks and files needed by the control modules are listed

below, along with type of access required (i.e. fetch and/or store data) and reasons for use.

I. Data Pool File - XCEI must re-position the BSCAR to the correct entry when a

transfer is to be executed.

2. Problem Tape - fetch and store the Problem Tape Dictionary when looping.

3. Data Block XPTDIC - fetch and store. The Problem Tape Dictionary must be updated

when looping.

4. C_MI_N /XVPS/ - fetch.

/XVPS/ contains the C_ND instruction parameter value.

5. C_V_N /XCEITB/ - fetch and store.

/XCEITB/ contains control parameters for REPT and EXIT instructions.

6. C_Vt4_N/_SCENT/ - fetch.

/_SCENT/ contains the Control Module _SCAR entry.

7. C_4_N /XFIAT/ - fetch and store.

Must be updated when looping.

8. C_V_N /XDPL/ - fetch and store.

Must be updated when looping.

4.11-3

EXECUTIVEDMAPINSTRUCTIONJUMP(UNCONDITIONALDMAPTRANSFER)

4.12 EXECUTIVEDMAPINSTRUCTIONJUMP(UNCONDITIONALDMAPTRANSFER)

4.12.1 Entry Point: XCEI

4.12.2 Pur__

To alter the normal order of execution of DMAP modules by unconditionally transferring

program control to a specified location in the DMAP program.

The normal order of execution of DMAP modules is the sequential order of occurrence of

the modules as DMAP instructions in the D_P program.

4.12.3 DMAP Calling Sequence

JUMP n $

where n is a BCD name appearing on a LABEL instruction which specifies where control is to be

transferred.

4.12.4 Method

If control is being transferred to a previous DMAP module in the _SCAR (i.e., looping),

the Problem Tape Dictionary is read into core from the Problem Tape and dictionary entries

created inside the loop are deleted. The updated Problem Tape Dictionary is written back out on

the Problem Tape. Data blocks that are referenced only inside the loop and which have not

been declared saved in a FILE DMAP instruction have their status changed to not-generated.

The _SCAR is positioned to the specified location. Table CEITBL in named common block /XCEITB/

is searched for REPT entries and the loop count is zeroed if the jump is transferring control

from inside the loop to outside the loop. A return is then made to the calling program.

If control is being transferred to a subsequent DMAP module in the _SCAR, the BSCAR is

positioned to the specified location and a return is made to the calling program.

See description of the Executive DMAP instruction REPT (see section 4.11) for further details.

4.12-I

4.13

4.13.1

4.13.2

EXECUTIVE DMAP INSTRUCTION C_ND (CONDITIONAL TRANSFER)

EXECUTIVE DMAP INSTRUCTION C_ND (CONDITIONAL TRANSFER)

Entry Point: XCEI

To alter the normal order of execution of DMAP modules by conditionally transferring

program control to a specified location in the DMAP program.

4.13.3 DMAP Callin9 Sequence

C_ND n,V $

where:

I. n is a BCD name appearing on a LABEL instruction which sDecifies where control is to be

transferred.

2. V is a BCD name of a variable parameter whose value indicates whether or not to execute

the transfer. If V < O, the transfer is executed.

4.13.4

BEGIN $

C_ND LI,K $

M_DULEI A/B/V,Y,PI $

LABEL Ll $

M@DULEN X/Y/ $

END $

If K _ O, M_DULEI is executed.

executed.

If K< 0 control is transferred to L1 and M_DULEN is

4.13-I

MODULEFUNCTIONALDESCRIPTIONS

4.13.5 Method

Theparametervaluefor the C_NDinstruction is examined.If the valueis greater

thanor equalto zero,a return is madeto the calling routine. If the valueis less than

zero, theCONDinstruction is executedexactly like the JUMPinstruction. Seedescription

of the ExecutiveDMAPinstruction JUMP(section4.12) for further details.

4.13-2

EXECUTIVEDMAPINSTRUCTIONEXIT(TERMINATEDMAPPROGRAM)

4.14 EXECUTIVEDMAPINSTRUCTIONEXIT(TERMINATEDMAPPROGRAM)

4.14.1 Entry Point: XCEI

4.14.2 Purpose

To terminate a NASTRAN job.

4.14.3 DMAP Calling Sequence

EXIT c $

where c is an integer constant which specifies the number of times the instruction is to

be ignored before terminating the program. If c = 0 the calling sequence may be shortened

to EXIT $.

4.14.4

BEGIN $

LABEL Ll $

M_DULEI A/B/V,Y,PI $

EXIT 3 $

REPT LI,3 $

END $

The EXIT instruction will be executed the third time the loop is repeated (i.e., the

instructions within the loop will be executed four times).

4.14-I

MODULEFUNCTIONALDESCRIPTIONS

4.14.5 Method

A determinationis madewhetheror not to terminatethe job byexaminingthe loopcountcf

the EXITentry in namedcommonblock/XCEITB/. If the job is to be terminated, routine PEXIT

is called; if not, the loop count in the EXIT entry is incremented, and a return is made to the

calling program.

See description of the Executive DMAP instruction REPT (section 4.11) for further details.

4.14-2

EXECUTIVEDMAPMODULESAVE(SAVEVARIABLEPARAMETERVALUES)

4.15 EXECUTIVEDMAPMODULESAVE(SAVEVARIABLEPARAMETERVALUES)

4.15.1 Entry Point: XSAVE

4.15.2

To specify which variable parameter values are to be saved from the preceding functional

module for use by subsequent modules.

4.15.3 DMAP Calling Sequence

SAVE VI,V2VN $

where VI,V2.....VN (N _ l) are the BCD names of some or all of the variable parameters which

appear in the immediately preceding functional module DMAP instruction. A SAVE DMAP instruction

must imediately follow the functional module instruction wherein the parameters being saved

are generated.

4.15.4 Method

The specified parameter values are transferred from blank common to the VPS Executive

Table located in named common block /XVPS/. See description of the _SCAR in section 2.4.2.1

for the format of a SAVE _SCAR entry.

4.15.5 Subroutine

The XSAVE module has no auxiliary subroutines

4.15.6 Design Requirements

SAVE must access blank common and named common blocks /XVPS/ and /_SCENT/.

4.15-I

EXECUTIVEDMAPMODULEPURGE(EXPLICITDATABLOCKPURGE)

4.16 EXECUTIVEDMAPMODULEPURGE(EXPLICITDATABLOCKPURGE)

4.16.1 Entry Point: XPURGE

4.16.2 Pur__

To flag a data block so that it will not be allocated to a physical file and so that

modules attempting to access it will be signaled.

4.16.3 DMAP Calling Sequence

PURGE DBNIA,DBN2A,D3N3A/PARMA/DBNIB,DBN2B/PARMB $

Note: The number of data block names (DBNi_) prior to each parameter (PARMa) and the

number of sets of data block names and parameters in a particular calling

sequence is variable.

4.16.4 Input Data Blocks

DBNIA,DBN2A, etc. - Any data block names appearing within the DMAP sequence.

4.16.5 Output Data Blocks

(None specified or permitted)

4.16.6 Parameters

PARMA, etc. - One required for each data block name or set of names.

4.16.7 Method

4.16.7.1 Summary

The data blocks (within the DMAP calling sequence) are purged if the value of the asso-

ciated parameter is < O. If the data blocks are already purged and the parameter value is > O,
m

the purged data blocks are unpurged so that they may be subsequently reallocated. If the data

blocks are not purged and if the parameter value is _0, no action is taken.

4.16-I

MODULE FUNCTIONAL DESCRIPTIONS

4.16.7.2 Functional Flow

PURGE operates by modifying entries within the FIAT (File Allocation Table) and DPL

(Data Pool Dictionary). The FIAT contains an upper section (unique part) and a lower section

(tail part). Both parts contain entries structured as described in the Executive Table

description for the FIAT, section 2.4.1.2. The length of the unique part is defined by the unique

files available count in the FIAT header. The tail part is defined as the remainder of the

FIAT. The unique part contains one entry for each unique (separate) file available for allo-

cation, and the file ID's within these entries are not modified through a NASTRAN run. The

tail part contains entries for stacked files (see description for Executive ModuleXSFA, section 4.9).

purged files, and members of equivalenced sets. An entry within the FIAT is purged by flagging

(setting all bits on) its file ID. Therefore, if a data block within the unique part is to

be purged, its name is moved to the tail. A data block entry within DPL is purged by removing

its entry from the DPL. A data block which is already purged is unpurged by removing the flagged

entry from the FIAT so that it may be subsequently allocated to a physical file. Figure 1

illustrates the logic flow.

4.16.8 Design Requirements

I. No open core is required by this module.

2. The _SCAR record containing the DMAP purge request must reside in the labeled

common block /_SCENT/.

3. The validity of all data block names and controlling parameters is checked during

NASTRAN initialization by module XGPI.

4.16.9 Diagnostic Messaqes

PURGE may produce the following System Fatal messages:

1201, FIAT _VERFL_W

1202, DPL _VERFLOW

Both of these messages indicate that the assembled size of the particular table has

been exceeded. Although it is unlikely that either message will occur, a study of the

erroneous problem's operation along with diaqnostic prints of the FIAT and DPL, obtained

via the DIAG Executive Control card (see User's Manual, section 2), should indicate some

4.16-2

EXECUTIVE DMAPMODULEPURGE(EXPLICIT DATA BLOCK PURGE)

corrective action. Possible corrective actions include: increasing the basic table size

through re-assembly; providing more physical files to the NASTRAN system; and altering the

DMAP operations.

4.16-3

MODULEFUNCTIONALDESCRIPTIONS

PURGE

!

Pick-up data block I
name from purge

entry in _SCAR

I Search total
FIAT for data
block name

No

Unique

Yes

Set purge
flag on

[RnemOv_rdOat_hbel_L

I Clear data block I
name from unique

part of FIAT

w __ v

I Unpurge
(Remove data block
name from FIAT)

Yes

Yes

 ,No
Create a

purged entry
for the data
block in the
FIAT tail

Go backto ENTER

Figure lo Flowchart for module PURGE.

4.16-4

4.17

EXECUTIVE DMAP MODULE EQUIV (DATA BLOCK NAME EQUIVALENCE)

EXECUTIVE DMAP MODULE EQUIV (DATA BLOCK NAME EQUIVALENCE)
I

4.17.1 Entry Point: XEQUIV

4.17.2 Purpose

To attach one or more equivalent (alias) data block names to an existing data block so that

module accesses to data by equivalenced names will be identical.

4.17.3 DMAP Calling Sequence

EQUIV DBNIA,DBN2A,DBN3A/PARMA/DBNIB,DBN2B/PARMB $

Not___e:The number of data block names (DBNi_) prior to each parameter (PARMa) and the

number of sets of data block names and parameters in a particular calling sequence are

variable.

4.17.4 Input Data Blocks

DBNIA,DBN2A, etc. - Any data block names appearing within the DMAP sequence. The Ist

data block name in each series (DBNIA and DBNIB) is primary and the 2nd, etc. data block

names become equivalent to the primary.

4.17.5 Output Data Blocks

(None specified or permitted)

4.17.6 Parameters

PARMA, etc. - One required for each set of data block names.

4.17.7 Method

4.17.7.1 Summary

The data block names are made equivalent if the value of the associated parameter is < O.

If a set of data blocks is already equivalenced and the parameter value is _ O, the equivalence

is broken and the data block names again become unique. If the data blocks are not equivalenced

and if the parameter value is _ O, no action is taken.

4.17-I

MODULE FUNCTIONAL DESCRIPTIONS

4.17.7.2 Functional Flow

EQUIV operates by modifying entries within the FIAT (File Allocation Table) and DPL (Data

Pool Dictionary). The FIAT contains an upper section (unique part) and a lower section (tail

part). Both parts contain entries structured as described in the Executive Table description

for the FIAT, section 2.4. The length of the unique part is defined by the unique files

available count in the FIAT header. The tail part is defined as the remainder of the FIAT.

The unique part contains one entry for each unique (separate) file available for allocation

and the file ID's within these entries are not modified through a NASTRAN run. The tail part

contains entries for stacked files (see description for Executive Table XSFA), purged files and

members of equivalenced sets. Entries within the FIAT and DPL are made equivalent by setting

their EQUIV flags (sign bit within an entry) and making their file ID's identical. Since a data

block within the unique part of the FIAT must have a unique file ID, only one member of an equiva-

lence set may reside within the unique section, all others will be placed in the FIAT tail. Thus,

if t_o Gata blocks occupying unique physical files are equivalenced, one will be moved to the

FIAT tail. Data blocks previously equivalenced are unequivalenced (broken) by removing the

EQUIV flags and the secondary entries. When two or more data blocks are equivalenced, the first

data block of the set is considered the primary data block. All others are considered secondary.

The file containing the primary data block is logically attached to all data blocks in the set:

primary and secondary. Data on files attached to secondary data blocks prior to equivalencin_

is lost upon equivalence. If the primary data block is purged, the secondary(s) will be purged.

Figure 1 illustrates the logic flow.

4.17.8 Design Requirements

I. No open core is required by the module.

2. The OSCAR record containing the DMAP EQUIV request must reside in the labeled

common block /_SCENT/.

3. The validity of all data block names and controlling parameters is checked during

NASTRAN initialization by XGPI.

4. XEQUIV is an entry point in XPURGE.

4.17-2

EXECUTIVE DMAP MODULE EQUIV (DATA BLOCK NAME EQUIVALENCE)

4.17.9 Diagnostic Messages

EQUIV may produce the following System Fatal Messages:

1201 FIAT _VERFL@W

1202 DPL QrVERFL_

Both of these messages indicate that the assembled size of the particular table has been

exceeded. Although it is unlikely that either message will occur, a study of the erroneous

problem's operation along with diagnostic prints of the FIAT and DPL obtained, via the DIAG

Executive Control card (see User's Manual, section 2), should indicate some corrective action.

Possible corrective actions include: increasing the basic table size through re-assembly;

providing more physical files to the NASTRAN system; and altering the DMAP operations.

4.17-3

MODULE FUNCTIONAL DESCRIPTIONS

ENTER _ EQUIV

Pick-Up Data Block

Name from EQUIV

Entry in OSCAR

Search Total FIAT

for Data Block Name

Was

Block Name
in FIAT?

No

lOCk Primar

ondary

Primary

Secondary

No Prim, 'y
Data B1 ock

Yes

Set Logic to
PURGE for All

Data Blocks
in this Set

Parameter
Value _ O?

No

ock Primary
or Secon-

Name
n the DPL

Yes

Set Primary
Data E!lock

EQUIV Flag
in DPL

Primary
Jata Block ir

No

Figure 1. (a) Flowchart for EQUIVmodule

4.17-4

EXECUTIVE DMAP MODULE EQUIV (DATA BLOCK NAME EQUIVALENCE)

P

ISet Primary Data
Block EQUIV Flag

in FIAT

'r

lock Namein

Block EQUIV Flag

I in DPL

L

No

Clear Stacked
Data Block Names

from FIAT

_No _F-_

Unequivalence
(Clear Secondary
Data Block from

FIAT)

No

ClearfromDataDPLBlock)

I

D Figure I. (b) Flowchart for EQUIV module

4.17-5

MODULE FUNCTIONAL DESCRIPTIONS

I Clear Data Block I
Name from Unique

Part of FIAT

Add Secondary
Data Block Entry

in FIAT Tail

i Equivalence I
Tail Secondary Data I

Block to PrimaryJ

_n Block

DPL

No

<_BI ock Name

Yes

ilo _I Remove Secondary I
Data Block Name I

Primary &
Secondary Data

Block in DPL Occu
Same File?

Yes

No

Clear Secondary
Data Block Name

from DPL

es

I Add Secondary

I Da ta Bol OD_kLName

Figure I. (c) Flowchart for EQUIV module

4.17-6

EXECUTIVE DMAP INSTRUCTION END (END OF DMAP PROGRAM)

4.18 EXECUTIVE DMAP INSTRUCTION END (END OF DMAP PROGRAM)

4.18.1 Entry Point: XCEI

The XCEI module executes the DMAP control instructions: REPT, EXIT, COND, and JUMP.

4.18.2 Pur_se

To denote the end of a DMAP program. This DMAP instruction performs a function

similar to an END statement in a FORTRAN compilation, i.e., to signal the end of the

source program.

4.18.3 DMAP Callinq Sequence

END $

Note: An END DMAP instruction is operationally equivalent to an EXIT 0 $ or EXIT $

DMAP instruction.

4.18.4 Method

The END instruction is translated during a DMAP program compilation in module XGPI

into an EXIT $ instruction. (see section 4.14).

4.18-1

EXECUTIVE DMAP MODULE PARAM (PARAMETER PROCESSOR)

4.19 EXECUTIVE DMAP MODULE PARAM (PARAI_TER PROCESSOR)

4.19.1 Entry Point: QPAF_M

4.19.2 _

To perform specified arithmetic and logical operations on D_P parameters.

4.19.3 DMAP Calling Sequence

PARAM //C,N,_P/V,N,_UT/V,N,INI/V,N,IN2 $

where the following operations (_P) are available:

AND

_R

CUT

-l

+l

+l

+l

-l

-I

-I

+l

IN1

<0

<0

>0

>0

<0

<0

>0

20

IN2

<0

>0

<0

20

<0

-->0

<0

->0

ADD INI+IN2

SUB INI-IN2

i MPY INI*IN2

DIV

N¢T

IKPL

NgP

<0

<0

>-0

_0

iINI/IN2

-INl

-I

+I

-I

-!

_UT

<0

>0

>0

_>C

Integer Arithmetic

4.19-I

MODULE FUNCTIONAL DESCRIPTIONS

Notes:

I.

2.

4.19.4

*not used.

PARAM does its oven SAVE; therefore, a DMAP SAVE instruction is not needed

following the module.

3. PARAM has no input or output data blocks.

Examples

1. PARAM //C,N,NOP/V,N,PI=5

and saves it in the VPS.

$ - this example sets the value of parameter P1 to 5

2. PARAM //C,N,NOT/V,N,XYZ/V,N,NOXYZ $ this example changes the sense of

parameter N_XYZ which may be useful for the COND or EQUIV instructions. Alternatively,

XY2 could have been set in the following way:

PARAM //C,N,MPY/V,N,XYZ/V,N,NOXYZ/C,N,-I $

4.19.5 Method

QPARAM performs the indicated parameter operation and stores the result in the VPS

(/XVPS/).

4.19.6 Diagnostic Messages

_PERATION C_DE N_T DEFINED F_R MODULE PARAM, EXECUTION TERMINATED.

The listed operation code was not recognized by PARAM.

4.19-2

EXECUTIVE DMAP MODULE SETVAL (SET VALUES)

4.20 EXECUTIVE DMAP MODULE SETVAL (SET VALUES)

4.20.I Entry Point: SETVAL

4.20.2 Purpose

To set {)MAP parameters equal to other DMAPparameters or to constants.

4.20.3 DMAPCallin 9 Sequence

SETVAL //V,N,XI/V,N,YI/V,N,X2/V,N,Y2/V,N,X3/V,N,Y3/V,N,X4/V,N,Y4/V,N,X5/V,N,Y5 $

4.20.4 Input Data Blocks

None.

4.20.5 OutPut Data Blocks

None.

4.20.6 Parameters

X|, X2, X3, X4, X5 - Output-integers-no default values.

Yl, Y2, Y3, Y4, Y5 - Input-integers-default values =-l.

4.20.7 Method

This module does nothing except set Xl = YI, X2 = Y2, X3 = Y3, X4 = Y4, and X5 = Y5.

Only two parameters need be specified in the calling sequence (Xl and Yl).

4.20.8 Subroutines

SETVAL has no auxiliary subroutines.

4.20.9 Design Requirements

SETVAL should reside in the root segment in all links.

4.20.I0 Diagnostic Messages

None.

4.20-I

FUNCTIONALMODULEGPI(GEOMETRYPROCESSOR- PHASEl)

4.21 FUNCTIONALMODULEGPI(GEOMETRYPROCESSOR- PHASEI)

4.21.1 Entry Point:

4.21.2 Purpose

GPI.

GPI performs basic geometry processing for the model. A list of all grid and scalar points

is assembled and placed in internal order. Coordinate system transformation matrices are computed,

and all grid points are transformed to the basic coordinate system.

4.21.3 D_P Callinq Sequence

GPI GEgMI,GEOM2/GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/V,N,NgCSTM/V,N,N_GPDT $

4.21.4 Input Data Blocks

GEgMI - Grid point, coordinate system, sequence data.

GEOM2 - Element connection data.

4.21.5 Output Data Blocks

GPL - Grid Point List.

EQEXIN - Equivalence between external grid or scalar numbers and internal numbers.

GPDT - Grid Point Definition Table.

CSTM - Coordinate System Transformation Matrices.

BGPDT - Basic Grid Point Definition Table.

SIL - Scalar Index List.

Note: No output data block may be purged.

4o21.6 Parameters

LUSET - Output, integer, no default. Total degrees of freedom in the g displacement set.

NgCSTM - Output, integer, no default. Number of coordinate systems defined in the Bulk Data

Deck, -l if no coordinate systems defined.

NOGPDT - Output, integer, no default. -l if no arid or scalar Doints defined in Bulk Data

Deck, +l otherwise.

4.21-I

MODULE FUNCTIONAL DESCRIPTIONS

4.21.7 Method

4.21.7.1 Construction of the GPL and First Logical Record of the EQEXIN.

The SPOINT cards and the scalar element cards (CELASi, CDAMPi, CMASSi, i = 1,2,3,4) are

read from GEOM2, and a list is made of all referenced scalar points. The GRID cards are read from

GEOMI, and a merged list of all grid and scalar points is constructed and written on SCRI, a

scratch file. The list is expanded to pairs of numbers. The first number is the identification

number, ID, the second is the resequenced number which is given on the SEQGP cards or is lO00*ID

if not given on SEQGP cards. The paired list is sorted by SORT on the sequence numbers. The

resulting set of first numbers is written as the first logical record in the GPL (Grid Point List).

These are the point identification numbers in order of their sequence numbers. The sequenced

paired list is written as the second logical record of the GPL data block. The second numbers in

the sequenced paired list are replaced by the indices l, 2, 3,..., accordinq to position. The

list is sorted again, this time using the first number of each pair (the identification number).

The resulting paired list is the first logical record of the EQEXIN data block which is used to

convert external numbers, given by the first number of a pair, to the internal grid point indices,

given by the second number in the pair.

4.21.7.2 Formats of GPDT, BGPDT and CSTM.

The geometry data blocks are the GPDT, the BGPDT and the CSTM. Their formats, although

described in section 2.3.3, are repeated here since the following terms will be referenced in the

discussion below on the construction of the CSTM.

GPDT - There is one entry for each grid or scalar point. The order of the entries

is by the internal (sequenced) order. Each entry contains:

I. Internal sequence number.

2. Locating coordinate system ID.

3. x,y,z for a rectangular system.

4. r,8,z for a cylindrical system.

5. p,8,_ for a spherical system.

6. Global coordinate local coordinate system ID.

7. Permanent single-point constraint coordinate (l = x, 2 = y, etc.).

4.21-2

FUNCTIONAL MODULE GPI (GEOMETRY PROCESSOR - PHASE l)

For scalar points, word 2 = -l and words 3 through 7 are zero. The data is essentially

a duplicate of the GRID bulk data card except that the identification number is renlaced by

the internal sequence number.

BGPDT - Contains one entry for each grid or scalar point. The contents are:

I. Local coordinate system ID for global coordinate definition.

2. xi) Locations of point

3. Yil in basic coordinate
4. zi system.

CSTM- The CSTM contains one entry for each local coordinate system. The order is by

coordinate system identification numbers. Each entry contains 14 words:

Word Item

l N - the coordinate system ID.

2

3-5

6-14

4.21.7.3

TypeN - the coordinate system type (rectangular, cylindrical or

spherical}.

{RoN} - the location of the system origin in basic coordinates.

[ToN] - the three-by-three matrix defining the orientation of the

coordinate system principal axes.

Construction of the GPDT.

The GPDT data block is formed in core sized groups. The grid and scalar data are read one

entry at a time from SCRI. EQEXIN (in core) is searched to find the internal nu_er, and the grid

data are stored (if possible) in the internal position allocated in core. If core will not hold

the GPDT, the data are written on SCR2, and S_RT is called to sort and write the data on the GPDT.

4.21.7.4 Construction of the CSTM.

Sixteen words are alloted for each local coordinate system, and five words are alloted for

each referenced grid point. The C_RDij data is read from GE_MI and stored in core. External

point ID's on C_RDij cards are replaced with internal numbers. A C_RDIj card references three

grid points. It may be converted to a CSTM entry if these grid points have their locations

reduced to basic coordinates. A C@RD2j card references another local coordinate system. It may

4.21-3

MODULE FUNCTIONAL DESCRIPTIONS

be converted to a CSTM entry if that referenced system has been reduced to a CSTM entry. The

basic logic is to make repeated passes over the coordinate system data, each time reducing one or

more coordinate systems and, when possible, converting referenced grid points to basic system

location.

A C_RDIj card image references three grid points - a, b and c. If the locations of these

points in basic coordinates are the vectors {Ra}, {Rb}, {Rc}, the solution for coordinate system

N is

{RoN } = {Ra} , (I)

{Vk} = {Rb} _ {Ra} , (2)

{Vi} = {Rc} _ {Ra} , (3)

{V k }

{k} : T'_ (unit "z" vector), (4)

{k} x {V i}
{Jl = (unit "y" vector), (5)

l{k} x {Vi}l

{i} = {j} x {k} (unit "x" vector). (6)

Point a is the origin, point b lies on the z (or polar) axis, point c lies in the x-z plane

(e = 0 or @ = 0). The three-by-three matrix [T N] is defined as:

m

i

[TN] : 2

13

Jl kl

J2 k2

J3 k3

N, type N, {RoN} and [T N] form the CSTM entry for the coordinate system.

(7)

4.21-4

FUNCTIONALMODULEGPI(GEOF_TRYPROCESSOR- PHASEl)

A GRiDpoint (j) referencedto coordinatesystem(N) maybe reducedto basiccoordinates

(Xo' Yo"Zo)by the equations:

I. If typeN = Rectangular (R), Xj, Yj and Zj are given by

Ix°ll::IYo = {RoN} + [TN] " (8)

Zo (zj)

2. If type N = Cylindrical (C), r, e and Z are given by

Xj = r cos e, (9)

Yj = r sin e, (lO)

z. = z. (11)
3

Xo' Yo and Zo are calculated as in Equation 8.

3. If type N = Spherical (S), p, B and ¢ are given by

Xj = p sin B cos $, (12)

Yj : p sin 8 sin $, (13)

Zj : p cos B. (14)

Xo' Yo and Zo are calculated as above.

When the basic location of a grid point has been calculated, the entry in the list is changed such

that the reference coordinate system (entry No. 2) is zero and the three values are Xo, Yo' Zo"

4.21-5

MODULEFUNCTIONALDESCRIPTIONS

TheC_RD2jcardimagereferencesanothercoordinatesystemanddefinesthreepoints in the

referencedsystem:a, b andc. If systemnumberNis definedbysystemnumberM,the solution is

I. If typeM= rectangular,the numbersdefining the threebointsare the vectors:
{a}, {b}, and{c},

2. If typeM= cylindrical, the numbersare r, 8 andz. Theequationsto convertthese
to rectangularvectorsare

a 2

a 3

Ir a cos 8 a 1

r a sin 0a

Za

: {a} . (15)

The {b} and {c} vectors are calculated similarly.

3. If type M = spherical, the numbers given for the points are p, 8, and qb.

lal! laP sin _ c°s q_I

a 2 = ap sin e sin = {a}

a 3 ap cos

and similarly for points b and c.

4. The definition of the new system is that point a is the origin, point b lies on

the z (or polar) axis and point c lies in the x-z (or e = O) plane.

the CSTM data are

{RoN} = {RoM} + [TON] {a}.

We calcul ate

(16)

In system M the vectors defining the axes of system N are

{Vk} = {b} - {a};

The equations for

{k}
{v k}

: _ , ("z" unit vector);

{V i} = {c} - {a};

(17)

(18)

(19)

(20)

4.21-6

FUNCTIONAL MODULE GPI (GEOMETRY PROCESSOR - PHASE l)

{j}
{k} x {Vi}

l{k} x {Vi} I ' ("Y" unit vector);
(21)

{i} = {j} x {k} , ("X" unit vector).

The orientation of the axes is defined by the matrix

JlkI[TON] = [TOM] i2 J2 k2 "

J3 k

(22)

(23)

5. On each pass of the C_RDij data at least one new system must be converted. After

each pass the referenced GRID data is checked and converted. The resulting C_RDij data

will be the CSTM data block with each entry reduced from 16 to 14 words.

4.21.7.5 Construction of the BGPDT, the SIL and the Second Logical Record of the _QEXIN.

The BGPDT and the SIL data blocks are formed simultaneously. The SIL data block is simely

a list of the first scalar index for each grid or scalar Doint. A grid point has six scalar

indices (or degrees of freedom), and a scalar point has one scalar index. Every degree of freedom

in the problem has a scalar index, but since the six degrees of freedom for a grid point are con-

secutive, only the first one is listed.

The GPDT data are read a point at a time. The basic location coordinates of the point are

formed using Equation 8 through Equation 14 and these data are written on the BGPDT file. The SIL

value for the next point is calculated by incrementing the last value by six (grid point) or by

one (scalar point).

A test is made on the value of the displacement coordinate system (field 6) in the GPDT data.

If this value is the integer, -l, the point is a special RINGFL, GRIDF, or GRIDS fluid point. It

is given one scalar index, the displacement coordinate system is basic (0), and its location

coordinates in the BGPDT data block are calculated like a normal grid point.

Finally the second logical record of EQEXIN is written. This record contains pairs of ex-

ternal numbers, lO*scalar index + type where type = l for a grid point, 2 for a scalar point.

4.21-7 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

4.21.8 Subroutines

GPI has no auxiliary subroutines.

4.21.9 Design Requirements

4.21.9.1 Allocation of Core Storage

During the assembly of the GPL, space for 2*(number of grid points plus number of scalar

points) plus two GINO buffers is required. During the assembly of the CSTM, core storage is

allocated as follows:

ICSDT

ILIST

BUFI

C_MM_N/GPAI/Z(1)

External point number

Internal number

Coordinate system ID

li = rectangular
Coordinate system type = cylindrical

= spherical

Coordinate system definition = C_RD2j

Reference coordinate system ID

IIgllg2 la 3

b 1

c 2

c 3

Internal grid number

Defining coordinate system ID

GIN_ buffer

Two words per entry

one entry per grid or

scalar point

Sixteen words per entry

one entry per coordinate

system

Five words per entry

one entry for each grid

point referenced on a

C_RDIi card.

4.21-8 (lllll70)

FUNCTIONAL MODULE GPI (GEOMETRY PROCESSOR - PHASE l)

Total storage requirements during this phase, therefore, equals 2*(number of grid + number

of scalar points) + 16*(number of coordinate systems) + 5*(number of grid points referenced on

C_RDIj cards) + one GIN_ buffer.

4.21.9.2 Environment

Open core for GPI is defined by /GPAI/. The table /GPTAI/ must be in core when GPI is

executed. GPI uses two scratch files.

4.21.I0 Diagnostic Messages

The following diagnostic messages may be issued by GPI:

2001, 2002, 2003, 2004, 2005, 2006, 2012

4.21-9

4.22

FUNCTIONALMODULEGP2(GEOMETRYPROCESSOR- PHASE2)

FUNCTIONAL MODULE GP2 (GEOMETRY PROCESSOR - PHASE 2)

4.22.1 Entry Point: GP2

4.22.2

GP2 processes element connection data and converts external point numbers to internal

numbers.

4.22.3 DMAP Calling Sequence

GP2 GEgM2,EQEXIN/ECT $

4.22.4 Input Data Blocks

GERM2 - Element connection data.

EQEXIN - Equivalence between external grid or scalar numbers and internal numbers.

Rote: EQEXIN may not be purged.

4.22.5 Output Data Blocks

ECT - Element Connection Table.

Note: ECT may not be purged.

4.22.6 Parameters

None

4.22.7 Method

The first data record of EQEXIN (containing pairs of external point identification and

internal index) is read into core. GEt,M2is opened, and the header record is skipped. The ECT

is opened, and the header record is written. The following process is repeated for each logical

record in GEgM2.

I. The 3-word header is read. If an end-of-tile is encountered, sten (4) is executed. Other-

wise, /GPTAI/ (see description in section 2.5) is searched for a match. If found, step (2)

is executed. If not found, an internal table, CARDS, which defines additional cards Drocessed

4.22-I

MODULE FUNCTIONAL DESCRIPTIONS

by GP2 (e.g. GENEL) is searched. If a match is found, step (3) is executed. Otherwise,

the record is skipped, and step (1) is repeated.

2. The 3-word header from GEOM2 is written on the ECT. Parameters defining the element are

fetched from /GPTAI/. If the number of words per element is less than 5, the sort flag in

the GERM2 trainer is fetched. Each element card of the current type on GERM2 is read.

Each external grid identification is converted to an internal index by performing a binary

search in the EQEXIN table. If the point is not in the table, an error message is queued

and the NOGO flag is turned on. If the data is not to be sorted, the element is written

directly on the ECT. Otherwise it is saved in core (or written on a scratch file if core is

full). When all elements of a given type have been processed, the sort flag is again tested.

If off, the ECT record is closed and return to step (1) is made. Otherwise, the data are

sorted by SORT and the ECT record is then written.

3. For GENEL, SEQBFE and QDSEP data (the latter two are Force Method only), each entry is

read, all external point identifications are converted to internal indices as in (2) and the

entry is written on the ECT. When the logical record on GERM2 is exhausted, the ECT record

is closed and return to step (1) is made.

4. The ECT trailer is written, and all files are closed. If the NOG_ flag was turned on,

PEXIT is called. Otherwise, a normal exit is made.

4.22.8 Subroutines

The module GP2 consists of one subroutine, GP2.

4.22.9 Design Requirements

4.22.9.1 Allocation of Core Storage

GP2 requires space for 2*(number of grid points + number of scalar points) + three GINO

buffers.

4.22.9.2 Environment

Open core is defined by /GPA2/. The table /GPTAI/ must be in core when _P2 is executed.

GP2 uses up to four scratch files.

4.22-2

FUNCTIOIIALMODULE GP2 (GEOMETRY PROCESSOR - PHASE 2)

4.22.10 Diagnostic Messaqes

The following diagnostic messages may be issued by GP2:

2007, 2059, 2060, 206l, 2138.

4.22-3 (8/I/72)

4.23

FUNCTIONAL MODULE PLTSET (PLOT SET DEFINITION PROCESSOR)

FUNCTIONAL MODULE PLTSET (PLOT SET DEFINITION PROCESSOR)

4.23.1 Entry Point: DPLTST

4.23.2

To generate the structural element sets to be used by the structural plotter

(functional module PL_T).

4.23.3 DMAP Calling Sequence

PLTSET PCDB,EQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NGP/V,N,NPSET

4.23.4 Input Data Blocks

PCDB

EQEXIN

ECT

Note:

4.23.5

PLTSETX -

PLTPAR -

GPSETS

ELSETS

Note:

4.23.6 Parameters

NGP -

NPSET -

- Plot Control Data Block for the structure plotter.

Equivalence between external grid or scalar numbers and internal numbers.

Element Connection Table.

If PCDB is purged, nothing is done in this module. However, if PCDB is not purged,

neither EQEXIN nor ECT may be purged.

Output Data Blocks

User error messages related to the definition of element plot sets for the

structure plotter.

Plot parameters and plot control table.

- Grid point sets related to the element plot sets.

Element plot set connection tables.

None of these data blocks may be pre-purged unless PCDB is also purged.

Output-integer-no default. Total number of grid points.

Output-integer-default value = -l. Number of element plot sets (set to -l if

none).

4.23-I

MODULE FUNCTIONAL DESCRIPTIONS

4.23.7 Method

Each logical card in the plot control data block (PCDB) is read. If the first entry on a

card is not "SET", the card is assumed to be a plot parameter or control card meaningful only

to the PLOT module. In this case, the logical card is copied onto the PLTPAR data block.

If the first entry on a card is "SET", it is assumed to be a definition of a new element

plot set. As each entry on the card is read, it is decided whether a list of elements (by type,

range or explicit id's) or a list of grid points (by range or explicit id) is being included or

excluded. Each element type which is specified is inserted into a table (TYP, I00 words long).

If a range of elements or an explicit element id is specified, it is inserted into the beginning

of open core (the EL array). And finally, if a range of grid points or an explicit grid point id

is specified, it is inserted into the end of open core (the GP array). When a set has been

completely specified, it is written out onto a scratch file (MSET) in the following format:

Word 1

Word 2 to NEL+I

Word 1

Word 2 to NTYP+I

Word 1

Word 2 to NPT+I

= NEL (number of entries in the EL array).

= the entries in the EL array.

= NTYP (number of entries in the TYP array).

= the entries in the TYP array.

= NPT (number of entries in the GP array).

= the entries in the GP array.

After all the SET cards have been processed, subroutine C_MECT is called to set up a

shortened element connection table (ECTX). For each element type, the table is as follows:

for each element I

of this type

Word 1

Word 2

Word 3

Word 4,
etc.

= two character BCD element type symbol (left justified)

= number of grid points per element.

= element id.

: internal grid point numbers of the grid points connected

by this elebient

4.23-2 (12-I-69)

FUNCTIONALMODULEPLTSET(PLOTSETDEFINITIO_PROCESSOR)

This table, in conjunctionwith MSET,is usedby subroutineCNSTRCto createthe GPSETSand

ELSETSdatablocks. TheELSETSdatablock is simplya duplicateof ECTXfor eachplot set, except

that only thoseelementswhichare in the set are included. TheGPSETSdatablockfor eachplot

set is simplya list of indicesinto the subsetof grid pointswhichpertain to this set.

4.23.8 Subroutines

Utility routines CLSTAB, FREAD, G_PEN, INTGPX, INTGPT, INTLST, RDMODX, RDMODE and RDWORD are

used by PLTSET. See Section 3.4 for their descriptions.

4.23.8.1 Subroutine Name: SETINP

l •

2.

3.

COFV40N/GPTAI/NTYPES ,LAST, I NCR, ELEM(1)

Entry Point: SETINP

Purpose: To create the plot parameter and control data block (PLTPAR) and interpret

the plot set definition cards from the Plot Control Data Block (PCDB).

Calling Sequence: CALL SETINP

(Note Section 2.5.2.1)

4.23.8.2 Subroutine Name: COMECT

I.

2.

3. Calling Sequence: CALL C_MECT

COMMON/GPTAI/NTYPES,LAST,INCR,ELEM(1)

4.23.8.3 Subroutine Name: CNSTRC

Entry Point: COMECT

Purpose: To create a shortened form of the Element Connection Table (ECT).

(Note Section 2.5.2.1)

l •

2.

3.

C{_MMON/GPTAI / NTYPES ,LAST, I NCR,ELEM(1)

Entry Point: CNSTRC

Purpose: To construct the element and grid point plot set data blocks (ELSETS,GPSETS).

Calling Sequence: CALL CNSTRC (GP,ELE,BUF,FtAX)

(Note Section 2.5.2.1)

4.23-3 (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

Where:

GP

ELF=

BUF=

MAX=

NGPlocationsusedto set up the grid point indexlist for the grid

point set datablock (GPSETS),

MAXlocationsusedto set up the elementset datablock (ELSETS).

Locationof 3 GIN_buffers.

Amountof coreavailablefor the FLEarray (opencore).

4.23.9 Design Requirements

Open Core Design (Common Block XXPSET)

I. Subroutine SETINP

EL(1)

EL(NEL)
GP(NPT)

GP(1)
xc(1)

C_MM_N/XXPSET/

Element id's and ranges

Grid point id's and ranges

5 GINO buffers

I

2. Subroutine CNSTRC

For this subroutine, open core is partitioned by the calling program as follows:

GP(1)

GP(NG)
ELE(1)

ELE(MAX)
BUF(1)

Grid point index table

Plot set element id's

3 GIN_ buffers

4.23-4 (811172)

FUNCTIONALMODULEPLTSET(PLOTSETDEFINITIONPROCESSOR)

4.23.10 Diagnostic Message s

A fatal message occurs in SETINP if a set specification is so large that open core is filled

(i.e., array EL meets array GP). All other diagnostics are non-fatal and are written on the

PLTSETX data block for printing by the PRTMSG module.

4.23-5 (8/I/72)

FUNCTIONAL MODULE PLOT (STRUCTURAL PLOTTER)

4.24 FUNCTIONAL MODULE PL_T (STRUCTURAL PLOTTER)

4.24.l Entry Point: DPLOT

4.24.2

To draw structural shapes on a variety of different plotters.

4.24.3 DMAP Callin9 Sequence

PLCT PLTPAR,GPSETS,ELS_TS,CASECC,BGPDT,EQEXIN,SIL,PLTDSPI,PLTDSP2/PLCTX/V,N,NGP/

V,N,LSIL/V,N,NPSET/V,N,PLTFLG/V,N,PLTNUM $

4.24.4 Input Data Blocks

PLTPAR

GPSETS

ELSETS

CASECC

BGPDT

EQEXIN

SIL

PLTDSPI

PLTDSP2

Notes:

- Plot parameters and plot control table.

- Grid point sets related to the element plot sets.

- Element plot set connection tables.

- Case Control Data Table.

- Basic Grid Point Definition Table.

- Equivalence between external grid or scalar numbers and internal numbers.

- Scalar Index List.

- Translational displacements (statics).

- Translational displacements (dynamics).

I. Only SIL, PLTDSPI, and PLTDSP2 may be purged. If this is the case, only undeformed

shapes may be drawn.

2. If either PLTSDPI or PLTDSP2 is purged, that type of deformed shape will not be

drawn.

3. If either PLTDSPI or PLTDSP2 is not purged, SIL may not be purged.

4.24.5 Output Data Blocks

PLOTX User messages.

Note: PLOTX may not be purged.

4.24-I

MODULEFUNCTIONAL DESCRIPTIONS

4.24.6 Parameters

NGP

LSIL

NPSET

PLTFLG

PLTNUM

Integer-input-no default value. Number of grid points.

Integer-input-no default value. Last scalar index value.

Integer-input-no default value. Number of element plot sets.

Integer-input/output-default value = I. Displacement plot flag.

= l if undeformed shapes have not yet been drawn.

= -l if undeformed shapes have been drawn.

Integer-input/output-default value = O. Plot number.

4.24.7 Method

Subroutine PARAM reads each card in the plot parameter and control table (PLTPAR). If

the first entry on a card is not 'FIND' or 'PL_T', it is assumed to be a plot parameter

card to be processed within PARAM (e.g., PR_JECTION, PLOTTER, etc.). Within PARAM, an implied

'FIND' card is initially set up to automatically find an origin, vantage point, and scale. In

addition this same implied "FIND" card is set up each time a new projection is defined as a

'PL_TTER' card is encountered. At the same time, the view angles are re-initialized to their

default values, the regions pertaining to each origin are reset to full pictures, and all pre-

viously defined origins are nullified.

When a 'FIND' card is encountered, subroutine FIND is called both to interpret the card

and act upon its requests. And finally, when a 'PL_T' card is encountered, subroutine PL_T

is called both to interpret the card and to act upon its requests. However, in this case, if

the implied 'FIND' card set up by subroutine PARAM still exists (i.e., if no origin, scale,

or vantage point has been defined) the FIND subroutine is called to satisfy these needs before

subroutine PLOT is called.

In subroutine FIND, after the interpretation of the 'FIND' card is completed, a coordinate

system rotation matrix is calculated relative to the current view angles, and then the vantage

point, scale factors, and the origin requested are calculated as needed.

In subroutine PL_T, after the interpretation of the 'PLOT' card is completed, a list of

messages to the plotter operator is generated. Then all plots requested on the plot card are

generated by calling subroutine DRAW for each plot request.

4.24-2

FUNCTIONALMODULEPL_T(STRUCTURALPLOTTER)

SubroutineDRAWgeneratesoneplot. It sets upthe regionof the plot, rotates the grid

points based upon the current viewing angles, applies the latest scale factor to the structural

coordinates, and translates these coordinates to the origin specified for this plot. It also

controls the various aspects of a plot as specified on the 'PL_T' card, e.g., drawing a shape,

labeling grid points, etc., for both undeformed and deformed structures (superimposition if

called for).

4.24-3 (12-I-6g)

MODULEFUNCTIONAL DESCRIPTIONS

4.24.8 Subroutines

The following utility routines are called by PLOT: CLSTAB,FREAD,GOPEN,(INTGPX,INTGPT),

INTLST,(RDM_DX,RDMODY,RDM_DE,RDWORD). See the subroutine descriptions in section 3. The

subroutines FNDSET, MINMAX, PERPEC and PROCES are support subroutines used by more than

one of the following subroutines.

4.24.8.1 Subroutine Name: PARAM

I. Entry Point: PARAM

2. Purpose: To interpret the plot parameter cards and to detect the 'FIND' and 'PL_T'

plot control cards. In addition, it serves as a driver for subroutine FIND and PLOT.

3. Calling Sequence: CALL PARAM (SETID,X)

C_MM_N/XXPARM/ - See XXPARM table description below (section 4.24.9.2).

C_MM_N/PLTDAT/ - See PLTDAT miscellaneous table description (section 2.5).

Where:

SETID =various plot set id's created in the PLTSET module. (Record l of GPSETS).

X = Open core.

4. Method: All plot parameters are inserted in the XXPARM table. Any parameter which

is not recognizable causes a message to be created to this effect, and the parameter

is then ignored.

5. Additional Subroutines Required: FIND,PLOT

4.24.8.2 Subroutine Name: FIND

I. Entry Point: FIND

2. Purpose: To interpret a 'FIND' card and to calculate the parameters requested on

the card.

3. Calling Sequence: CALL FIND (MODE,SETID,X)

C_MM_N/XXPARM/ - See XXPARM table description below (section 4.24.9.2).

C_MM_N/PLTDAT/ - See PLTDAT miscellaneous table description (section 2.5).

Where:

MODE = Current value of the XRCARD mode value as read a_d modified by subroutine

4.24-4

FUNCTIONALMODULEPL_T(STRUCTURAL PLOTTER)

RDM@DX.

SETID = Various plot set id's created in the PLTSET module (record l of GPSETS).

X = Open core.

4. Method: After interpreting the 'FIND' card, the coordinate system rotation matrix

is calculated (based upon the current view angles), the vantage point, scale factor, and

desired origin are calculated.

5. Additional Subroutines Required: FNDSET,MINtIAX,PR_CES,PERPEC.

4.24.8.3 Subroutine Name: PL_T

I. Entry Point: PL_T

2. Purpose: To interpret the 'PL_T' card, and produce all the plots requested on the card

by acting as a driver to subroutine DRAW.

3. Calling Sequence: CALL PL_T (M_DE,SETID,X)

C_MMON/XXPARM/ - See XXPARM table description below (section 4.24.9.2).

C_I.IM_N/PLTDAT/- See PLTDAT miscellaneous table description (section 2.5).

Where:

M_DE = Current value of the XRCARD mode value as read and modified by subroutine

RDM_DX.

SEIID : Various plot set id's created in the PLTSET module (record l of GPSETS).

X - Open core.

4. Method: After interpreting the defom}ed structure plot requests (there may be many

on one 'PL_T' card), the rest of the 'PLgT' card is read into memory. For each deformed

structure request, the appropriate displacement data block (PLTDSPI or PLTDSP2) is

searched for a matching subcase id. If one is found, (this search does not occur if only

the undeformed requests are being serviced), then the rest of the plot card is interpreted

for the various plotting options. Subroutine DRAW is then called to service these

options and to draw the corresponding picture for each plot element set listed on the

'PL_T' card.

5. Additional Subroutines Required: HEAD,FNDSET,GETDEF,ORAW.

4.24-5

II IIIII

MODULEFUNCTIONALDESCRIPTIONS

4.24.8.4 Subroutine Name: GETDEF

I. Entry Point: GETDEF

2. Purpose: To read the translational components of a set of displacements (in the basic

coordinate system).

3. Calling Sequence: CALL GETDEF (DFRM,GPT,D)

C_MM_N/XXPARM/ - See XXPARM table description below (section 4.24.9.2).

where:

DFRM = Displacement data block to be read (pre-positioned at the set of displacements

to be read).

GPT = List of grid point indices defining a subset of grid points.

D = Array into which the displacement components are to be read (3 per grid

point - X,Y,Z).

4. Method: The scalar index list (SIL data block) is used to determine at which grid

point a particular displacement component is specified. While reading the components,

a maximum absolute component (MAXDEF) is determined.

4.24.8.5 Subroutine Name: PLT_PR

I. Entry Point: PLTOPR

2. Purpose: To generate printed output to be used by the plotter operator in setting

up the plotting equipment, and to generate output informing the user of the plotting

parameters used to generate the plots.

3. Calling Sequence: CALL PLTOPR

C_MM_N/PLTDAT/ - See PLTDAT miscellaneous table description (section 2.5).

C_MM_N/XXPARM/ - See XXPARM table description below (section 4.24.9.2).

4. Method: All output is written on the PLOTX data block for subsequent processing by

the PRTMSG module. The resulting output can be used by the user to alter certain

plot parameters on a subsequent run, if he desires, in order to slightly alter the plots

produced,

4.24-6

FUNCTIONALMODULEPL_T(STRUCTURAL PLOTTER)

4.24.8.6 Subroutine Name: DRAW

I. :Entry Point: DRAW

2. Purpose: To service the many possible plotting options and generate the corresponding

picture.

3. Calling Sequence: CALL DRAW (GPLST,X,U,S,DEF_PJ4,STERE_)

C(_MMON/PLTDAT/- See PLTDAT miscellaneous table description (section 2.5).

C{_MM{_N/XXPARM/- See XXPARM table description below (section 4.24.9.2).

C{_MM(_N/RSTXXX/- See RSTXXX table description below (section 4.24.9.2).

C(_MM(_N/DRWDAT/- See DRWDAT table description below (section 4.24.9.2).

: List of indices (one for each structural grid point) into the subset of grid

points which pertain to the element set appropriate to this plot.

X : Coordinates of the grid points in this element set (3 per grid point - r,s,t).

U = Defor_tion components for each grid point in this element set (3 per grid

point - x,y,z).

S = Location into which the s and t deformed structure grid point coordinates are

to be placed.

DEF_RM{_ 0 if an undeformed structure plot is requested.
l if a deformed structure plot is requested.

_= 0 if the left image of a stereo plot is to be generated.
STERE@

l if the right image of a stereo plot is to be generated.

4. Method: Initially, the grid points are rotated based upon the current viewing angles,

translated to the selected plot origin, and converted to plotter units using the current

scale factor, and the deformation components are reduced to the specified maximum deformation

value. Then the undeformed structural plot is generated.

Next, the deformed structural shape (if requested) is drawn. Then the deformation vectors

(as requested) are drawn.

where:

GPLST

4.24-7 (12-I-69)

Im

MODULEFUNCTIONALDESCRIPTIONS

4.24.8.7

5. Additional Subroutines Required:

Subroutine Name: INTVEC

MINMAX,PR_CES,PERPEC,INTVEC,SHAPE,GPTSYM,GPTLBL,DVECTR,

ELELBL

I. Entry Point: INTVEC

2. Purpose: To interpret the user supplied deformation vector plot request.

3. Calling Sequence: CALL INTVEC (VECTOR)

where:

VECTOR= BCD characters specified in the deformation vector request (any

combination up to four letters of the characters R, X, Y, Z, N).

Input and Output. On input, VECTORis integer (=0) or BCD. On

output, VECTORin integer (=0, if = 0 upon input).

4. Method: The result is stored into VECTOR, as follows:

0

X = 2

1

Y = 2

2

Z = 2

3

R = 2 (if VECTOR= 'R' only, it is treated as if

VFCTOR= RXYZ).

-VECTOR (the negative of the sum of the other

characters)

N =

4.24.8.8 Subroutine Name: SHAPE

I. Entry Point: SHAPE

2. Purpose: To draw a structural shape.

3. Calling Sequence: CALL SHAPE (GPLST,X,U,PEN,DEF_RM)

where:

GPLST = List of indices into the subset of grid points pertaining to the shape

to be drawn.

= Corresponding grid point coordinates of the undeformed structure (3 per

grid point - r, s, t).

4.24-8 (3/I171)

FUNCTIONALMODULEPLIBT(STRUCTURAL PLOTTER)

U

PEN =

DEFi_RMI=

Corresponding grid point coordinates of the deformed structure (2 per grid

point - s, t).

Pen number or line density to be used to draw the shape.

0 if the undeformed shape is to be drawn.

l if the deformed shape is to be drawn.

4. Method: The structural shape to be drawn is defined as a compact element connection

table on the ELSETS data block (assumed open and positioned at the correct element set).

As each element is read, it is drawn, taking into account whether the element is one or

two dimensional.

4.24.8.9 Subroutine Name: GPTSYM

II

2.

3.

Where:

GPLST

X

Entry Point: GPTSYM

Purpose: To type a special symbol at each of a subset of grid points.

Calling Sequence; CALL GPTSYM (GPLST,X,U,SYM,DEF_M)

U

SYM =

List of indices defining the subset of grid points.

Corresponding grid point coordinates of the undeformed structure (3 per

grid point - x,s,t).

Corresponding grid point coordinates of the deformed structure (2 per

grid point - s,t).

Two indices to be used to construct the special symbol.

0 if the undeformed grid points are to be used.

l if the deformed grid points are to be used.

4.24.8.10 Subroutine Name: GPTLBL

I. Entry Point: GPTLBL

2. Purpose: To type the external grid point id of each of a subset of grid points.

3. Calling Sequence: CALL GPTLBL (GPLST,X,U,DEFtRM)

CgMM_N/PLTDAT/ - See the PLTDAT miscellaneous table description (section 2.5).

4.24-9 (3/1/71)

MODULE FUNCTIONAL DESCRIPTIONS

Where:

GPLST

X

= List of indices defining the subset of grid points.

: Corresponding grid point coordinates of the undeformed structure (3 per

grid point - r,s,t).

U = Corresponding grid point coordinates of the deformed structure (2 per

grid point - s,t).

I 0 if the undeformed grid points are to be used.
DEFORM =

1 if the deformed grid points are to be used.

4. Method: The internal and external id of each structural grid point is read from the

EQEXlN data block. If the grid point is part of the specified subset, then the external

id is printed to the immediate right of the grid point.

4.24.8.11 Subroutine Name: DVECTR

I. Entry Point: DVECTR

2. Purpose: To draw deformation vectors.

3. Calling Sequence: CALL DVECTR (GPT,X,U_PEN)

Where:

GPT

PEN

= List of indices defining the subset of grid points at which vectors are to

be drawn.

= Corresponding grid point coordinates of the undeformed structure (3 per

grid point - x,s,t).

= Corresponding grid point coordinates of the deformed structure (2 per

grid point - s,t).

: Pen number or line density to be used to draw the vectors.

4.24.8.12 Subroutine Name: FNDSET

I. Entry Point: FNDSET

2. Purpose: To find the subset of grid points pertaining to a set of elements, and to read

the corresponding grid point coordinates from the BGPDT data block.

3. Calling Sequence: CALL FNDSET (SET,GPID,X)

4.24-10 (3/I/71)

Where:

SET

GPID

FUNCTIONAL MODULE PL_T (STRUCTURAL PLOTTER)

= Element plot set index.

= Array into which the list of indices defining the subset of grid points

is to be read.

X = Array into which the corresponding coordinates are to be read (3 per grid

point - x,y,z).

4. Method: If SET = O, the grid point set index data block (GPSETS) is assumed positioned

at the correct record. Otherwise, GPSETS is first positioned correctly (record SET+I).

The indices are then read into GPID, and the corresponding coordinates are read from

BGPDT into X.

4.24.8.13 Subroutine Name: MINMAX

I. Entry Point: MINMAX

2. Purpose: To initialize the minimum and maximum grid point coordinates to a very

large and small nun_er, respectively.

3. Calling Sequence: CALL MINMAX

C_MM_N/RSTXXX/ - See the RSTXXX table description below (section 4.24.9.2).

4.24.8.14 Subroutine Name: PERPEC

I. Entry Point: PERPEC

2. Purpose: To calculate the vantage point and/or translate the grid point coordinates

to the vantage point.

3. Calling Sequence: CALL PERPEC (X,STERE_)

CCMM¢N/XXPARM/ - See XXPARM table description (section 4.24.9.2).

CCMMCN/RSTXXX/ - See the RSTXXX table description (section 4.24.9.2).

where:

X

STERE_ =

Set of grid point coordinates to be translated (3 per grid point - r,s,t)

Ii if the coordinates of the left image for stereo are to be calculated.
if the coordinates of the right image for stereo are to be calculated.

4.24-II (3/I/71)

MODULE FUNCTIONAL DESCRIPTIONS

4. Method: After the vantage point is calculated (if required), each grid point is

translated. In the process, unless the projection is stereo, the minimum and maximum

s and t coordinates are calculated. Finally, the differences between these minima and

maxima, and their averages, are calculated.

4.24.8.15 Subroutine Name: PRICES

I. Entry Point: PRICES

2. Purpose: To exchange coordinate axes (as requested) and rotate the grid point coordi-

nates based upon the current view angles.

3. Calling Sequence: CALL PROCES (X)

C_MM_N/XXPARM/ - See the XXPARM table description below (section 4.24.9.2).

C_MH_N/RSTXXX/ - See the RSTXXX table description below (section 4.24.9.2).

where:

X = Grid point coordinates (3 per grid point - x,y,z).

4. Method: In addition to its primary purpose, this subroutine calculates the minimum and

maximum rotated grid point coordinates, and the differences and averages of these minima and

maxima.

4.24.8.16 Subroutine Name: ELELBL

I. Entry Point: ELELBL

2. Purpose: To type the element identification number of each element in a subset of

elements.

3. Calling Sequence: CALL ELELBL (GPLST,X,U,DEF_RM)

C_MM_N/CHAR94/ - See the CHAR94 miscellaneous table description (section 2.5).

C_MMON/PLTDAT/ - See the PLTDAT miscellaneous table description (section 2.5).

where:

GPLST = List of indices defining the set of grid points associated with the elements

to be labeled.

4.24-12 (311171)

MODULE FUNCTIONAL DESCRIPTIONS

= Corresponding grid point coordinates of the undeformed structure.

= Corresponding grid point coordinates of the deformed structure.

_0 if the undeformed grid points are to be used
DEF@RM h if the deformed grid points are to be used

4. Method: The compact element connection table (ELSETS) is read. As each element id is

read, it is typed at the center of the element. The two character symbolic name of the

element type is appended to the element ID.

4.24.8.17 Subroutine Name: WRTPRT

I. Entry Point: WRTPRT

2. Purpose: To write messages on a data block for subsequent processing by WRTMSG.

Calling Sequence: CALL WRTPRT (G,L,F,N)

G

L =

F =

N =

GIN_ file name

List vector of length L(1) in cells L(2)-L(L(1)+I)

Format vector

Length of format vector

,

4.24-12a (8/I/72)

FUNCTIONALMODULEPLgT(STRUCTURALPLOTTER)

4.24.9 Design Requirements

4.24.9.1 Open Core Design (Common Block XXPL_T)

NPSET : Number of element plot sets.

NGP = Total number of grid points.

NGPSET = Number of grid points in an element.

Define

Io Subroutine DPL@T partitions open core for subroutine PARAM as follows:

C_4_N/XXPL_T/

x(o)

X(NPSET)

X(BUF)

Element plot set id's

Open Core

3 GIN_ buffers

2. Subroutine FIND partitions open core for subroutines FNDSET, PERPEC, and PR¢CES as

follows:

x(o)

X(NGP)

X(NGP+3*NGPSET)

X(NGP+4*NGPSET)

GPLST(NGP)

Grid point indices into a subset

of grid points

X(3,NGPSET)

Coordinates of the grid points

in the subset

XR(NGPSET)

's' grid point coordinates for

the right image of a stereo pair.

Rest of open core

4.24-13

MODULEFUNCTIONALDESCRIPTIONS

3. SubroutinePL@Tpartitions opencorefor subroutinesFNDSET,GETDEF,

andDRAWasfollows:

DEFLST(O)

DEFLST(NDEF)

DEFLST(NDEF+N)

DEFLST(NDEF+N+NGP)

DEFLST(NDEF+N+NGP+3*NGPSET)

DEFLST(NDEF+N+NGP+4*NGPSET)

DEFLST(NDEF+N+NGP+7*NGPSET)

DEFLST(NDEF+N+NGP+9*NGPSET)

DEFLST(BI)

DEFLST(NDEF)

List of specified deformation
subcases

PLTCRD(N)

Rest of the 'PLOT' card

GPLST(NGP)
Grid point indices into a subset

of grid points

X(3,NGPSET)

Coordinates of the grid points
in the subset

XR(NGPSET)

's' grid point coordinates for
the right image of a stereo
pair

U(3,NGPSET)

Coordinates of the deformed grid

points in the subset

S(2,NGPSET)

's' and 't' coordinates of the

deformed grid points

Rest of open core

PL_TTER Buffers

5 GIN_ Buffers

4.24-14 (8/I/72)

FUNCTIONAL MODULE PLFF (STRUCTURAL PLOTTER)

4.24.9.2

Io

SET

LABEL

gRIGIN

PEN

SHAPE

SYMBOL

SYM

VECTgR

Block Data Interface

C_MM_N/DRWDAT/ SET,LABEL,_RIGIN,PEN,SHAPE,SYMB_L(2),SYM(6),VECT_R

- Element plot set index.

- Grid point label option.

- Origin index.

- Pen number or density value.
Integer

- Structural shape drawing option.

- Grid point symbol indices.

- Symmetry options.

- Deformation vector options.

2. Cg_gN/RSTXXX/ CSTM(3,3),MIN(3),MAX(3),D(3),AVER(3)

CSTM - 3x3 coordinate system rotation matrix.

MIN - Minimum rotated grid point coordinates.

MAX - Maximum rotated grid point coordinates, Real

D - Differences between the minima and maxima.

AVER - Averages of the minima and maxima.

3. C¢_PICN/XXPARM/ PBUFSZ,CAMERA,BFRAMS,PLTMDL(2),TAPDEN,

NPENS,PAPSIZ(Z),PAPTYP(2),PENSIZ(8),PENCLR(8,2),"SRIP(1)",

SCALE,_BJM_D,FSCALE,MAXDEF,DEFMAX,

AXIS(3),DAXIS(3),VANGLE(3),BETA_S,BETAP,"SKIP(4)",

FVP,RO,SOL,SOR,TO,DO,DO2,DO3,PRJECT,SOS

FgRG,gRG,NgRG,gRIGIN(II),EDGE(II,4),XY(II,3)

In the following descriptions, the value(s) in parentheses to the right of the variable name,

the default value, and the letter in parentheses to the right of the explanation

pertain to the type of the variable (I implies integer and R implies real).

PBUFSZ(O) = Plot tape buffer size (1)

4.24-15 (12-I-69)

MODULEFUNCTIONALDESCRIPTIONS

Plotter Data

CAMERA(2)

BFRAMS(1)

PLTMDL(4020,O)

TAPDEN(O)

Pen and Paper Data

NPENS(8)

PAPSIZ(8.5,11.)

PAPTYP(VELLUMbb)

PENSIZi(1)

PENCLRi,I(BLAC) & PENCLRi,2(Kbbb)

Scalin 9 Data

SCALE

@BJM_D(I.)

FSCALE(1)

MAXDEF(O.)

DEFMAX

Viewin9 Data

AXlS (1,2,3)

DAXIS(I,2,3)

VANGLE(O.,-I.IOI0, 34.27)

BETA_S(23.17)

BETAPCo.)

: Plotter camera number (1).

= Number of blank frames between plots (I).

= Plotter model (BCD or I or R).

= Plot tape density (I).

: Maximum number of pens (I).

= Paper size in inches (R).

= Paper type (BCD).

= Pen sizes (I).

= Pen colors (BCD).

= Object-to-plotter or model-to-plotter
(stereo only) scale factor (R).

= Object-to-model scale factor (R-stereo only).

: Find scale factors option (1).

: Forced value of the largest deformation
component (R).

= Actual largest deformation component (R).

: Undeformed structure axis orientation (I).

= Deformed structure axis orientation (I).

= View angles (R-alpha,beta,gamma).

= Orthographic and stereo default value for the
"beta" view angle (R).

= Perspective default value for the "beta" view
angle (R).

4.24-16 (12-I-69)

FUNCTIONALMODULEPL@T(STRUCTURALPLOTTER)

Projection Data

FVP(1)

RO

SOL

SOL,SOR

TO

DO

D02(l.)

D03(2.)

PRJECT(1)

SOS(2.756)

Origin Data

F_RG(1)

_RG(O)

N_RG(IO)

@RIGIN

EDGEi,I(O.) & EDGEi,2(O.)

EDGEi,3(I.) l EDGEi,4(I.)

XYi,l

XYi,3

XYi,l & XYi,2

= Find vantage point option (1).

= "r" component of the vantage point (R).

= "s" component of the perspective vantage
point (R).

= "s" components of the stereo vantage point (R).

= "t" component of the vantage point (R).

= Projection plane separation value (R).

= Perspective default projection plane separation
value (R).

= Stereo default projection plane separation
value (R).

= Projection type (I, l=orthographic, 2 = per-
spective, 3 = stereo).

= Ocular separation value (R).

= Find origin point option (1).

= Number of active origins (1).

= Maximum nun_er of active origins (1).

= Active origin id's (1).

: Lower left corner of the region specified
for the ith origin (R).

= Upper right corner of the region specified
for the ith origin (R).

: x component of the ith origin (R).

= y component of the ith origin (R).

: left and right x components of the ith origin

for stereo projection (R).

4.24.9.3 Common Storage Requirements

I. IXXPLCT/

2. IPLTDAT/

3. IXXPARMI

4. IRSTXXX/

5. IDRWDAT/

Open core.

- Plotter data (see miscellaneous table description - section 2.5).

- Plotting parameters.

- Plot co-ordinate system calculations.

- Drawing data.

4.24-17

MODULEFUNCTIONALDESCRIPTIONS

4.24.10 Diagnostic Messages

A non-fatal message, number 3008, CALL MESAGE(8,x,x), will be generated by subroutine PL_T if

not enough core is available for the grid point data needed for a specific element plot set. If

this occurs, this set will not be used to generate a plot.

All other diagnostics are non-fatal and are written onto the PLOTX message data block

for printing by the PRTMSGmodule. These messages are all quite self-explanatory and

straightforward, and do not have any external message numbers.

4.24-18

_ r

4.25

4.25.1

4.25.2

FUNCTIC_AL MODULE GP3 (GEOMETRY PROCESSOR - PHASE 3)

FUNCTIONAL MODULE GP3 (GEOMETRY PROCESSOR - PHASE 3)

Entry Point: GP3

Purpose

GP3 processes static loads and temperature data. Static load data are collected by load

set, and external numbers are converted to internal numbers. Similarly, temperature data are

collected by temperature set and external numbers are converted to internal numbers.

4.25.3 DMAP Callin9 Sequence

GP3 GE_M3,EQEXIN,GE_M2/SLT,GPTT/V,N,N_L_AD/V,N,N_GRAV/V,N,N_TEMP $

4.25.4 Input Data Blocks

GERM3

EQEXIN

GE@M2

Note:

Static loads and temperature data.

Equivalence between external grid and scalar numbers and internal numbers.

Element connection data.

EQEXIN may not be purged.

4.25.5 Output Data Blocks

SLT - Static Loads Table.

GPTT - Grid Point Temperature Table.

4.25.6 Parameters

N_L_AD -

N_GRAV

N_TEMP

Output-integer-no default.

+l otherwise.

Output-integer-no default. -l if no GRAV cards in the Bulk Data Deck,

+l otherwise.

Output-integer-no default. -l if no TEMP or TEMPO cards in Bulk Data Deck

(or if GPTT is purged), +l otherwise.

-l if no static loads (i.e. SLT is not created),

4.25-I

MODULE FUNCTIONAL DESCRIPTIONS

4.25.7 Method

Subroutine GP3 is the control program for the module. It executes each of the major

subroutines of GP3 (GP3C, GP3A, GP3B) depending on the status of the data blocks. A flow

chart for GP3 is included in Figure I.

4.25.8 Subroutines

4.25.8.1 Subroutine Name: GP3

I. Entry Point: GP3

2. Purpose: Module control program.

3. Calling Sequence: CALL GP3

4.25.8.2 Subroutine: GP3C

I. Entry Point: GP3C

2. Purpose: To convert PLEAD2 data to PLEAD format, merge PLEAD2 data with PL@AD

data (if present) and write the resulting data on SCR2, a scratch file.

3. Calling Sequence: CALL GP3C

4. Method: PLEAD2 cards are read into core from GEOM3. Six words are used for each

entry. The first word (set identification) is set negative and the sixth word of

each entry is set to zero. GERM2 is opened and the header record is skipped. The

following steps occur for each record on GE_H2.

I. The 3-word header is read. /GPTAI/ (see section 2.5) is searched for a match. If

no match is found, the record is skipped and the process is repeated. If an end-of-

file is encountered, step (3) is executed. If a match is found, a test on element

type is made. If a one-dimensional element, the record is skipped and the process

repeated. Otherwise, step (2) is executed.

2. An entry of the current element type is read. A linear search through the PLOAD2

data in core is made to find a match on element identification (3rd word of each

PLOAD2 entry). If no match is found, the next entry is read. For each match which

is found, the grid identification numbers which connect the element are stored

4.25-2

D
FUNCTIONAL MODULE GP3 (GEOMETRY PROCESSOR - PHASE 3)

in the corresponding PLOAD2 entry and the first word of the PLOAD2 entry is set

positive. When all data for the current element type has been read, a return to

step (1) is made.

3. A pass through each entry in the PLOAD2 data is made. For each entry for which

the first word is negative, an error n_ssage is queued and the NOG_ flag turned on.

Upon con_letion of the pass, PEXIT is called if the NOGO flag was turned on.

Otherwise step (4) is executed.

4. LOCATE is called to position GEOM2 to PLOAD data. If none exists, step (5) is

executed. Otherwise, the PLOAD data is read into core following the PLOAD2 data.

The combined list is sorted by SORT on set identification nu_er.

5. The data in core is written as one logical record on SCR2. A return to GP3 is given.

Allocation of core storage in GP3C is as follows:

NPLD2

BUFI

Before conversion

PLOAD2 set ID

Scale factor

Element ID

0

Same format as Ist

entry

GINB buffer

C[_MMI_N/GP3COR/Z(l)

l

Six words

per
p

PLOAD2

card

I Last NPLD2
PLOAD2
entry

BUFI

After conversion

+ PLOAD2 or PLOAD set !D

Scale factor

Grid point ID1

Grid point ID2

Grid point ID 3

Grid point ID4 or O

Same format as Ist entry

GINO buffer

;ix words

)er entry

4.25-3

4.25.8.3

I.

2.

3.

4.

NTYPES

Note:

MODULE FUNCTIONAL DESCRIPTIONS

Subroutine: GP3A

Entry Point: GP3A

Purpose: To assemble to Static Loads Table (SLT).

Calling Sequence: CALL GP3A

Method: GP3A assembles the SLT by making two passes on the load cards (FORCEi, M_MENTi,

etc). On the first pass each of the cards is read from GERM3, (or SCR2 for PLBAD

data), unique set identifications are extracted and saved in core, all external

point identifcations are converted to internal indices by performing a binary search

in the EQEXIN table, the data are written on SCRI, and pointer tables are accumulated.

These tables are as follows:

STATUS

Pointer in LIST table to first entry of card type

Pointer in LIST table to last entry of card type
2 words/entry

L_st Entry

l entry per

card type

entry = (-l, -l) if card type not present

4.25-4

FUNCTIONAL MODULE GP3 (GEOMETRY PROCESSOR - PHASE 3)

NEQX

ILIST

NLIST

ISET

BUF2

BUFI

C_IM_N/GP3CgR/Z(1)

External point ID

Internal index

Load set ID

Pointer to data in set

No. of data words in set

Set ID2

Set IDl

GINO buffer

GINO buffer

2 words/entry

3 words/entry

I Last entry
in table

i l word/entry

EQEXIN Table

(l entry per

point in model)

LIST Table

(l entry per set

t)ercard type)

Set LIST

(l entry per set

per card type)

Note:

Set IDs are stored backward in core.

ISET-I to record entry, etc.

ISET points to first entry,

4.25-5

MODULE FUNCTIONAL DESCRIPTIONS

At the end of the first pass, the LIST table is moved to the beginning of open core.

The set list is sorted, and duplicate set identifications are discarded. The resulting

list is stored immediately following the LIST table. If all data for the load cards

will fit in the remaining core, this data is read from SCRI.

ILIST=I

NLIST

ISET

ITABL=NSET

BUFI

follows:

COMM_NIGP3C_RIZ(I)

Set ID

Pointer to data in set

No. of data words in set

Set ID 1

Set ID
n

Load data

GINO buffer

3 words/entry

ILast entry

I word/entry

}Last entry

Core storage is as

LIST Table

Set LIST

4.25-6

4.25.8.4

I.

2.

o

4.

FUNCTIONAL MODULE GP3 (GEOMETRY PROCESSOR - PHASE 3)

The SET list is written in the header record on the SLT. For each set ID in the

SET list, the LIST table is searched for a match. When found, the pointer

to the data is fetched. The data are sorted on the applied point (except GRAV and

PLEAD data) and the data written on the SLT. As a result, each logical record of

the SLT contains all data for one set. Finally, if combination load cards are

present, they are copied from GEgM3 to the last record of the SLT.

If core will not hold the entire load data, the logic is similar to above except

that SCRI is passed once for each set and only uata belonging to a single card

type within a set are read into core.

Subroutine Name: GP3B

Entry Point: GP3B

Purpose: To assemble the grid point related temperature data and store on the SCRATCHI

file.

Calling Sequence: CALL GP3B

Method: EQEXIN is read into core. A list of default temperatures (TEMPD cards

if present) is read from GEgM3. The temperature data (TEMP cards) are read to

determine the number of temperature sets, the set identifications and the number

of entries in each temperature set. For each temperature set, a three-word entry

is written in the header record of the SCRATCHI:

Word l = Set ID

Word 2 = default temperature (real) or -l (integer)

Word 3 = record number in SCRATCHI of temperature data for the set or zero if only

default temperature is defined.

GE(IM3is backspaced one logical record. The temperature data are re-read. Vhen all

temperature data for a set have been read into core, the data are sorted on point identi-

fication and written as one logical record on SCRATCHI. This process is repeated for

each temperature set.

Allocation of core storage for GP3C is as follows:

4.25-7 (9/I/70)

MODULE FUNCTIONAL DESCRIPTIONS

ITEMPD

ITABL+I

Nl

BUF2

BUFI

C_MMONIGP3C_RIZ(1)

External point ID

Internal index

Temperature Set ID

Default Temperature

Number of data words in set l

Point ID

Temperature

GINO buffer

GINB buffer
i

2 words/entry

--I 2 words/entry

I 1 word/entry

2 words/entry

EQEXIN Table

(l entry Der

point in model)

Default temperature

1 entry per set

Definition of data

in temperature sets

Temperature data

for one set

4.25-8

4.25.8.5

I.

2.

.

4.

MODULE FUNCTIONAL DESCRIPTIONS

Subroutine Name: GP3D

Entry Point: GP3D

Purpose: To process TEMPPI, TEMPP2, TEMPP3, and TEMPRB data and assemble the element

temperature table referred to as the GPTT.

Calling Sequence: CALL GP3D

Method: TEMPPI, TEMPP2, TEMPP3, and TEMPRB card data are read from GERM3, converted for

GP3D's use and written on SCRATCH2. The grid point temperature data header is then read

from SCRATCHI (as created in GP3B). A similar header record is then constructed from

the union of the grid point temperature set data and the element temperature set data.

This is written on GPTT. For each temperature set, for which there is other than a

default temperature available, a record is then written on the GPTT containing specific

element temperature data by element type and element identification. Allocation of

core storage for GP3D is as follows:

Element temperature set list
data (2 words/entry)

Grid point temperature set
list data (3 words/entry)

Grid point data for current
temperature set (2 words/entry)

TEMPPI, TEMPP2, TEMPP3 data for
current temperature set
(7/words/entry)

TEMPRB data for current set ID
(15 words/entry)

: unused

GIN_ buffer

GIN_ buffer

Z(1)

Z(NL!ST)
Z(IGPTT)

Z(NGPTT)
Z(IGPT)

Z(NGPT)
Z(IETI)

Z(NETI)
Z(IET2)

Z(NET2)

Z(BUF2)

Z(BUFI)

4.25-8a (9/I/70)

FUNCTIONALMODULEGP3(GEOMETRYPROCESSOR- PHASE3)

4.25.9 Design Requirements

4.25.9.1 Allocation of Core Storage

The core storage maps presented in the method sections of GP3A, GP3B and GP3C provide

detailed storage requirements. A summary is presented here.

GP3C: Maximum requirement = 6* (number of PLEAD2 + number of PLEAD cards) + one

GIN_ buffer.

GP3A: Let NPTS = number of grid + number of scalar points and NSETS = (number of load

sets) * (number of card types per load set) and SYSBUF = one GIN_ buffer.

Then maximum storage requirement equals MAX ((2*NPTS+4*NSETS+2*SYSBUF), (4*NSETS + MAX

(number of words for one set of one card type) + SYSBUF))o

GP3B: See storage map.

4.25.9.2 Environment

I. Block Data

The block data program GP3BD initializes /GP3C_M/ with GIN_ file names, data defining

the load cards and other miscellaneous data. It must be resident in core when GP3 is

executed.

2. General

/GPTAI/ is used by GP3C and must be core resident when GP3 is executed. Open core is

defined by /GP3C_R/. The normal overlay is to include GP3BD, GP3, GP3C, GP3A, GP3B in

one segment. GP3 uses two scratch files.

4.25.10 Diagnostic Messages

The following messages may be issued by GP3:

2008, 2009, 2015, 3008, 4010, 4011, 4012. See Section 6 of the User's Manual for details.

4.25-9 (IIII170)

I

MODULE FUNCTIONAL DESCRIPTIONS

GP3

_ ENTER

RDTRL

)
FRead Trailer]zLon _E_M3

/

>
_Yes

Build PLEAD

Data on SCR2

RDTRL

Purged?

No

k_AD2 Cards
_n GERM2?

\ Yes
\

\

GP3C

[Assemble SLT] \\ _

on GPTT \

_ RDTRL >

Read Trailer]
J Lon SLT

/

Yes

No

rprocessTEI_P
/Land TEM_D Data]

/

GP3B _ pr°cessTEMtPI'2'3]4J land TE_,PPB Data
and Assemble

GP3D >/ LGPTT '

Figure I. Flowchart for module GP3

4.25-I0 (911170)

FUNCTIONAL MODULE TAI (TABLE ASSEMBLER)

4.26 FUNCTIONAL MODULE TAI (TABLE ASSEMBLER)

4.26.1 EntrX Point: TAI

4.26.2

TAI processes element connection data, element property data and geometry. These data are

merged in two different sorts for efficiency in later processing. The Element Sumary Table

contains, for each element, connection, property and geometry data. The Element Connection

and Properties Table contains, for each grid or scalar point in the model, connection, property

and geometry data for all elements connected to the point. Element temperature data are also

included for both data blocks where applicable. Additionally, general elements are processed

and the GEI (General Element Input) data block is assembled.

4.26.3 DMAP Callin) Sequence

TAI, ECT,EFT,BGPDT,SIL,GPTT,CSTM/EST,GEI,ECPT,GPCT/V,N,LUSET/V,N,NSIL/V,N,N_SIMP

/C,N,O/V,N,N_GENL/V,N,GENEL $

4.26.4 Input Data Blocks

ECT - Element Connection Table.

EPT - Element Properties Table.

BGPDT - Basic Grid Point Definition Table.

SIL - Scalar Index List.

GPTT - Grid Point Temperature Table.

CSTM ° Coordinate System Transformation Matrices.

Note: The ECT, BGPDT and SIL data blocks may not be purged.

4.26.5 Output Data Blocks

EST - Element Summary Table.

GEI - General Element Input.

ECPT - Element Connection and Properties Table.

GPCT - Grid Point Connection Table.

Not____e:No output data block may be purged.

4.26-I

MODULE FUNCTIONAL DESCRIPTIONS

4.26.6 Parameters

LUSET

NSIL

N_SIMP

Input-integer-no default.

Output-integer-no default.

in the model.

NOGENL -

GENEL -

4.26.7 Method

Degrees of freedom in the g-displacement set.

Number of grid points plus number of scalar points

Output-integer-no default. Number of elements in the model (exclusive of

general elements) or -I if no elements.

Output-integer-no default. Number of general elements in the model or -I

if no general elements.

Output-integer-no default. GENEL = -NOGENL.

4.26.7.1 General Comments

The purpose of the Table Assembler Module is to combine all of the element data in a

convenient form for the generation of the structural matrices (ECPT) and for the calculation of the

element stresses and forces (EST), The complete description of an element requires: (I) the

locations of the connected grid points, (2) necessary orientation data and end conditions,

(3) element properties, (4) a material reference, (5) transformations from the basic system

to the global coordinate system and (6) element temperature. Scalar elements require no

geometric or material data. General elements may require geometric data.

Four data blocks are formed in this module. The ECPT data block is used in structural

matrix generation. It contains all element data for each grid point or scalar point in the

order of the sequenced grid point numbers (internal grid point indices). The EST data block

contains element data in groups of element type and with sequential element I.D. numbers

within each group. It is used to calculate element stresses and forces in a convenient order

for output. The GEl data block centains ti_e general element flexibility and support matrices.

The GPCT data block is used to allocate storage in the structural matrix assemblers.

The reason for assembling the ECPT and EST tables rather than generating functions such

as element stiffness matrices and stress functions is the expected size of the problems. The

computing time used to recalculate certain data is expected to be compensated for by the time

savings that result from sorting and merging smaller tables.

4.26-2

FUNCTIONAL MODULE TAI (TABLE ASSEMBLER)

Subroutine TAI is the main control program for the module. It executes each of the

major routines of the Table Assembler (TAIA to assemble the EST, TAIB to assemble the ECPT

and GPCT, and TAIC to assemble the GEl) depending on the status of the data blocks and data

for the problem. A flow chart of TAI is included as Figure I.

4.26.7.2 TAIA

Assembly of the Element Summary Table is performed in two steps. For the first step,

the EPT is read into core one property type at a time. The ECT is read one element at a time.

For each element the referenced property data are found by performing a binary search in the

EPT in core. The ECT and EPT data are written on SCRI, a scratch file, one element at a time.

one logical record per element type.

To initiate the second step, the BGPDT and SIL data blocks are read into core. If a

temperature set is selected, the appropriate temperature data from the GPTT are read into core.

Data from SCRI are read one element at a time. Internal indices for the grid points are used

as pointers into the BGPDT and SIL tables. The temperature of the element is extracted from the

GPTT,data block. Each temperature is found by performing a binary search in the GPTT with the

element identification number. If the entry is not found in the GPTT, the default temperature for

the set is substituted. The internal indices are now replaced with corresponding scalar index

values. A line comprising ECT, EPT, BGPDT and GPTT data for the element is written on the EST.

Each logical record of the EST comprises all data of one element type.

4.26-3 (llll/70)

MODULEFUNCTIONALDESCRIPTIONS

Allocationof corestorageduringthe secondstep is asfollows:
C_MM_N/TAAI/Z(1)

L_CBGP=I Coordinate system ID

NBGP

NBGP+I

ITMP

BUF2

BUFf

x

Y

z

SILl

SIL2

Element type and N

Element ID

Temperature data

GINB buffer

GINB buffer

4 words/entry

} 1 word/entry

I N+I words/entry

BGPDT table

one entry per point

in problem

SIL table

one entry per point

in problem

GPTT table

one entry per

defined element

4.26.7.3 TAIB

The ECPT data block is assembled in TAIB. Each logical record in the ECPT corresnonds to a

grid or scalar point in the model. For each point, the data far each element connected to the

point are listed. The data for each element are identical to the EST data. Each set of element

data will be listed in the ECPT "n" times, where "n" is the number of grid points connected by the

element. A sample of the ECPT is given in Table I. The logical phases of the operation are as

follows:

A list is formed in core giving the relative locations of the elements in the ECT data

in the order which they will be placed in the ECPT data block. Storage is allocated by

4.26-4 (ll/I/70)

FUNCTIONALMODULETAI (TABLE ASSEMBLER)

forming the GPC (Grid Point Counter) and then replacing the GPC by a running sum of

elements connected to points. A sample is:

IMplied GPC GPCS

Grid Point Nun_er of Sum of Previous

internal index Connected Elements Elements

(1) 5 0

(2) 3 5

(3) 1 8

(4) 2 9

(5) 6 ll

17

The GPC is formed as follows. An area of core equal to the number of grid and scalar

points of the model is set to zero. The ECT is read one element at a time. The storage

location corresponding to the internal index of each referenced grid point is incremented by

one. When each element in the ECT has been processed, a running sum of the core table is

formed.

The contents of each word in the GPC now provide a pointer to the first storage location

where a second pointer to the element data will be stored. Since the total nun_er of connected

elements may exceed available core storage, spill logic is provided. A band of entries in the

GPC is determined. The ECT is read one element at a time. The position of each element of

a given element type is determined by summing the nun_er of words for each entry for the

element (i.e. if m = number of words per ECT entry, then the position of the element in the

ECT record = (i-l)*m where i = entry number in the ECT record). For each point referenced by

the element (which is in the band currently being processed), the contents of the associated

position in the GPC is fetched. The element position and its type are stored at the indicated

locations.

The location in the GPC is incremented by one. When a pass of the ECT is complete, the

skeleton ECPT is written, one logical record per point in the band of the current pass. Each

4.26-5

MODULEFLINCTIONALDESCRIPTIONS

logical recordconsistsof pairs of (-l, elementpointer).

numberof elementsconnectedto the point. Example:

C_MMON/TAA2/Z(1)

1

IECPTO

/
code for element

type (l = BAR)

6

)I 23

I

r/-- 1 i 0
I

15 l 36

I /8o
3 I

I

1 I 16

1 I 0
I

The number of pairs equals the

GPC

Storage for the

3 element pointers

connected to grid point l

Stcrage for the

2 element pointers
connected to grid point 2

)osition of element in ECT record

Skeleton ECPT data is written on a scratch file:

-l

I
1 1 0

I

-l

15 , 36
I

-l

I

3 t 80
I

-I

I
1 = 16

=

-I

I
1 _ 0

I

Logical record l

(all elements connected

to grid point l)

Logical record 2

(data for grid p:)int2)

4.26-6

FUNCTIONAL_DULETAI(TABLEASSEMBLER)

Whenall entries of theGPChavebeenprocessed,the skeletonECPTis complete.

Anareaof coreequalto twowordsperelementtypeis set to zero. TheECT is read into core

following the above table until either the ECT is exhausted or core is filled. A pointer to

the beginning of data for each element type is stored in the table. The skeleton ECPT is

now read one pair of words at a time. If the data to which the element pointer points are

currently in core, they are written out on a second scratch file. The first word of the entry

contains the number of words in the ECT data. If the data are not in core, the pair (-l,

element pointer) is written on the second scratch file. This process is repeated until the

skeleton has been exhausted. If all the ECT is in core, the new skeleton ECPT is complete.

Otherwise, the files for old and new skeleton ECPT are switched, and the process continues by

reading more of the ECT data into core. Storage allocation at this point follows:

N21

CCMM_N/TAA2/Z(1)

Pointer to ECT data for Ist element type _2

JSum of ECT words read on previous passes

ECT data for Ist element type

ECT data for 2nd element type

words/entry one entry

per

element

type

4.26-7

MODULEFUNCTIONALDESCRIPTIONS

Theremainderof the ECPTassemblyis verysimilar to the ESTconstruction. The

principal differenceis that the entire EPTis held in core. Apointer table similar to the

ECTtable is formed(twoentries perelementtype). TheEPTis readinto core,andthe first

position of eachEPTtypeis storedin the table alongwith the numberof EPTentries of that

type. If the BGPDT,SILandGPTTcanbeheld in corewith the EPT,the ECPTis assembled

in onepass. Otherwise,twopassesaremade. TheskeletonECPTis readoneentryat a time.

Foreachelement,the propertydataareattachedby performinga binarysearchin the associated

propertytable in core. If onepass,the BGPDT,SIL andGPTTdataare attachedasin TAIA.

Otherisethe ECTandEPTdataarewritten ona scratchfile, anda secondpassis madeto attach

the BGPDT,SILandGPTTdata. Table1 containssampleECPTcontents.

Duringthe final passof the ECPTassembly,the GPCTis constructed.TheGPCTis

comprisedof onelogical recordperpoint (sameas ECPT).Eachlogical recordconsistsof the

pivot point andall otherpointsconnectedto the pivot bymeansof elementconnections.

4.26-8

FUNCTIONAL MODULE TAI (TABLE ASSEMBLER)

Table I. Sample ECPT Data Contents.

Reference Grid Point First Scalar Index

(Pivot Point)

Ist Element Type

Connected Grid Point First Scalar Indices

(From ECT and SIL)

Anisotropic Angle(From ECT)

Material Number (From EPT)

235

9 (Triangular membrane)

625

235

535

0.0

Ist Element Properties (From EPT)

Location and Orientation Data for Grid

Points

(From BGPDT)

E!e__nt Temperature (From GPTT)

2nd Element Type

0.5
0.0
l.O

5, I0.0, I00.0, 0.0
5, If.O, lO0.O, 0.0
O, 235.0, 50.0, 25.0

15.5

34 (Bar)

etc.

Last Element Type (for point 235) l (Rod)

End of Logical Record (new grid point)

Reference Grid Point First Scalar Index

(Pivot Point)

etc.

etc.

241

4.26-9

MODULEFUNCTIONALDESCRIPTIONS

4.26.7.3 TAIC

TheGeneralElementflexibility andsupportmatricesareassembledin TALC.Thedata,

givenin the ECTdatablock, consistof the followingsectionsfor eachGeneralElement:

I. A list of the independentdegreesof freedom,ui, in termsof grid points and
componentsand/orscalar points.

2. A list of supportingdegreesof freedom,ud, givenbygrid andscalar points
(Maybenull).

3. A flexibility matrix [Z] with rowsandcolumnscorrespondingto the list of given

ui points.

4. A supportmatrix [S] with rov,s correspondingto the ui points andcolumns

correspondingto the ud points. (Maybenull).

Thetasksof TAICare to (1) convertthe lists of ui andud to scalar indicesandsort
themby increasingscalarindex, (2) rearrangethe matricesto correspondto the sortedlists

of ui andud degreesof freedom,and(3) onuseroptioncalculatethe supportmatrix fromgrid
point geometry.

Thesetasksareaccomplishedasfollows:

I. Foreachset of coordinates(ui andud) of lengthn, a 4xntable is formedwhere
the four entries correspondingto eachdegreeof freedomare:

a) Thepositionasgiven(l, 2, 3 ...n)

b) Theinternal position (zeroinitially)

c) Thegrid or scalar point I.D. (Internal index)

d) Thegrid point component(l = x, 2 = y, etc)

2. The list is sorted on the third and fourth position. If a point I.D. in the third

position is duplicated, the duplicates are sorted on the components in the fourth

position. The list now corresponds to the desired order of ircreasing scalar indices.

3. The SIL data block is read, and each of the points in the list is converted to its

SIL value. (The position of a SIL number is its internal point index.) The SIL

value and the component ci determine the scalar index, Ni, of a degree of freedom by:

4.26-I0

FUNCTIONALHODULE TA] (TABLE ASSEMBLER)

Ni = SIL + (ci - l) {l)

for grid points and

for scalar points.

.

5.

6.

Ni = SIL (2)

The list of scalar indices is written on the GEI data block file.

In order to rearrange the matrices to correspond to the proper sequence of degrees

of freedom the above list is modified as follows:

a) The internal position nu_er is placed in the second position of each entry in

the list. The first entry uses l, the second, 2, etc.

b) The list is sorted again to return the original order as given on the input card

images. The first position of each entry supplies this order. The internal

position of a term in a matrix is now given by the second numbers in each entry.

Steps (1) through (4) are repeated for both the ui and ud sets.

The [Z] and [S] matrices are rearranged according to the sorted lists of degrees

of freedom. The row and column numbers are converted by the algorithm:

a) For a term of Zij , where i and j are the row and column as given by the matrix

order, the position i of the ui irternal number list gives 4, the new

column nu_er.

b) For a term of Sij, where i and j are the external row and column numbers, the

row number i is converted using the ui list. The column number j uses the

ud list.

If a matrix is small enough to fit in core, the new row and column numbers

are used to place the term in its correct position in core. If the matrix

will be larger than core, the new row and column indices and the term itself

are written on a scratch file. When all terms are processed, the file is

sorted to form a sequenced matrix. The terms of the matrix are written on

the GEl file in full matrix form.

4.26-II

MODULE FUNCTIONAL DESCRIPTIONS

4.26.7.4 TAICA

The [S] matrix must be generated ff the user inputs a list of six ud points and does

not supply an IS] matrix. This is accomplished in subroutine TAICA as follows:

The BGPDT and CSTM data are read into core. (SIL is already in core).

A six by six matrix [Do] is formed, where each row corresponds to a ud scalar index (j).

IDol is a six by six matrix which transforms the three translations and three rotations

in the basic coordinate system to the six rigid body ud degrees of freedom:

lu ,}= fool

xo

Yo

zo

0x

0z

basic

(3)

The steps for generation of each row of [D] are as follows:

I. Xj, Yj, Zj the BGPDT location vector for the grid point containing scalar point j is

found.

2. [Tj] the 3x3 global-to-basic transformation matrix for the grid point containing j

is fetched using subroutine MAT.

3. If scalar j is a translation, define:

[Ej]
I I 0 0 0 Zj -Yj i

I
0 1 0 -Zj 0 Xj

0 0 l Yj -Xj 0

(4)

The column of [Tj] corresponding to the degree of freedom j is defined as the

row vectorIVj} T. The row vector of [Do] corresponding to point j is:

4.26-I?

FUNCTIONAL MODULE TAI (TABLE ASSEMBLER)

{Doj}T : {Vj}T [Ej]. (5)

4. If scalar j is a rotation, the column of [Tj] corresponding to the degree of

freedom j is defined as the row vector {Vj}T. The row vector of [Do] corresponding to

point j is:

{Doj}T T }. (6)= {0 0 O: Vj

When all 6 rows [DO] have been generated, the matrix is inverted:

[Hdo] : [Do]'l. (7)

[Hdo] transforms the ud displacements to rigid body motions about the basic

coordinate system, i.e.:

I Xo
Yo

Zo

I 8x°

Byo

8zo

= [Hdo] {ud} (8)

basic

If the matrix is ill-conditioned, a fatal error exists.

The [S] matrix may now be calculated a row at a time. The list of ui points, (si), is

read one at a time, and the [S] matrix is formed a row at a time. Call each row {Si}T.

The steps for generation of each row are as follows:

I. Using the basic coordinates Xi, Yi' Zi for the grid point corresponding to scalar si,

the global-to-basic transformation matrix ITi] is fetched.

2. The column of ITi] corresponding to the scalar coordinate of ui is defined as the row

vector {Vi}T.

4.26-13

MODULE FUNCTIONAL DESCRIPTIONS

3. If ui is a translation, we form

I I 0 0 0 Zi
[E] = O 1 0 -Zi 0

0 0 l Yi -Xi

and

4. If ui is a rotation:

s=iooo:vTl[,o_]

4.26.8 Subroutines

4.26.8.1 Subroutine Name: TAI

I. Entry Point: TAI

2. Purpose: Module driver.

3. Calling Sequence: CALL TAI

4.26.8.2 Subroutine Name: TAIA

I. Entry Point: TAIA

2. Purpose: To assemble the EST.

3. Calling Sequence: CALL TAIA

4.26.8.3 Subroutine Name: TAIB

I. Entry Point: TAIB

2. Purpose: To assemble the ECPT and GPCT.

3. Calling Sequence: CALL TAIB

4.26.8.4 Subroutine Name: TAIC

I. Entry Point: TAIC

vi1Xi
0

(9)

(lO)

(ll)

4.26-14

2.

3.

4.26.8.5

I.

2.

3.

4.26.9

2.26.9.1

TAIA.

TAI B.

FUNCTIONAL MODULE TAI (TABLE ASSEMBLER)

Purpose: To assemble the GEI.

Calling Sequence: CALL TAIC

Subroutine Name: TAICA

Entry Point: TAICA

Purpose: To calculate the general element support matrix [S].

Calling Sequence: CALL TAICA

Design Requirements

Allocation of Core Storage

Step (1): Maximum core storage equals all property data for one element type

plus three GINB buffers.

Step (2): Maximum core storage equals 5* (number of grid and scalar points in

model) plus 2* (number of grid point temperatures in selected set) plus two GIN_

buffers.

The initial steps of TAIB are open ended. The final assembly of the ECPT requires

that all EPT data be held in core at one time. At another time the same storage

requirement as TAIA exists plus additional storage to hold a list of the maximum

number of points connected to any one point by means of element connections.

4.26-15 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

TAIC. The maximum storage requirement equals 5* (number of grid and scalar points

in the model) plus the CSTM table plus 4* (number of u i + number of ud points)

plus three GINQ buffers.

4.26.9.2 Environment

TAI is designed to allow each of the major phases of the module to be in a separate

overlay segment. Open core for each is defined as follows:

TAIA: /TAAI/

TAIB: /TAA2/

TAIC: /TACl/

GIN_ file names and DMAP parameters are communicated through blank C_MM@N. No block

data program is used. Communication between TAIC and TAICA occurs through /TAICAX/ and /TACI/.

4.26.10 Diagnostic Messages

The following messages may be issued by TAI:

2010, 2011, 2013, 2014, 2015, 2044, 2045, 2063, 2082

4.26-16

FUNCTIONAL MODULE TAI (TABLE ASSEMBLER)

TAI

ENTER

+

Initialize I
GINg File
Names

+

< RDTRL > -IReadTrailerqLon GCPT]

+

SetforFlag IApproach

< RD_TRL > "_-Read Trailer7
-L oRECT __

+

Set flag I
for general
elements

Approach
Flag

Force

Displacement

TAIA _{ AssembleEsT]

Assemble]TAIB ECPT,GPCT

General

<_lement

\

_n

TAIC
_=[Assemble]GEl

Figure l(a).

Set F1ag
for Each

Super
Element

Type

Test

for Any
Super

Elements

Absent

TAIA

Test
General
Element

Flag

TAIC

Flowchart for module TAI

Present _>

Assemble 1EST

Off

Assemble]GEl

4.26-17

MODULE FUNCTIONAL DESCRIPTIONS

FAssembleEsT]
_Initial

I TAIA >"

.[Assemble]
"" LECPT]

TAIB >"

FAssemble

\C.-_Portion of SEST]

TAID /

J

_Absent

o- taner j

I Present FAssemble

, ,_Portion of SEST]

TAID 1

Absent

FAssemble
I wresen_ |Portion

, v , -"LofSEST

Absent

TPresent FAssemble]
_Portion |

,'L0f SEST]

TAIF 1

I _FAssemble 7

< TAIG _ L Final EST]

Figure l(b). Flowchart for module TAI

4.26-18

FUNCTIONAL MODULE SI_I (STRUCTURAL MATRIX ASSEMBLER - PHASE I)

4.27

4.27.1

4.27.2

FUNCTIONAL MODULE SMAI (STRUCTURAL MATRIX ASSEMBLER - PHASE l)

Entry Point: SMAI

Purpose

• Kx
To generate the stiffness matrix exclusive of general elements [gg], the structural

damping matrix,[K_gl, and the Grid Point Singularity Table, GPST.

4.27.3 DMAP Calling Sequence

SMAI CSTM,MPT,ECPT,GPCT,DIT/KGGX,K4GG,GPST/V,N,NOGENEL/V,N,NOK4GG $

4.27.4 Input Data Blocks

CSTM

MPT

ECPT

GPCT

UII

4.27.5

Notes:

KGGX

K4GG

GPST

Notes:

- Coordinate System Transformation Matrices.

- Material Properties Table.

- Element Connection and Properties Table.

- Grid Point Connection Table.

- Direct Input Tables.

I. The CSTM may be purged.

2. The ECPT and the GPCT cannot be purged, or else a fatal error will occur.

3. If some element references a material property, the MPT cannot be purged.

4. If some material property is temperature dependent, DIT cannot be purged.

Output Data Blocks

- Partition of stiffness matrix exclusive of general elements - g set.

- Partition of structural damping matrix - g set.

- Grid Point Singularity Table.

I. Neither KGGX or GPST may be pre-purged.

2. If K4GG is pre-purged, K4GG will not be generated.

3. If N_GENL > 0 (see below) the GPST will not be generated.

4.27.6 Parameters

NOGENL Input-integer-no default value, i_OGENLis the number of general

4.27-I

MODULE FUNCTIONAL DESCRIPTIONS

elements in the model, If N_GENL > 0 then GPST will not be generated.

N_K4GG - Output-integer-no default value. If K4GG has been pre-purged or is the

zero matrix, N_K4GG is set equal to -I. Otherwise NOK4GG is set = +I.

4.27.7 Method

Matrix generation modules such as SMAI, SI._2, DSMGI and PLA4 all use the ECPT(or a

variation thereof in the case of PLA4) and its companion data block, the GPCT, as the basic

data blocks for generation of stiffness and structural damping matrices (SMAI), mass and

viscous damping matrices (SMA2), the differential stiffness matrix (DSMGI), and the non-

linear stiffness matrix (PLA4). The central role of the ECPT data block in these modules

is discussed in section 1.8.

Subroutine SMAI is the module driver. Its tasks are: to set up GIN_ buffers and matrix

control blocks for the output matrices; to determine if the CSTM data block exists, and,

if it does, to read it into open core and call the initialization routine PRETRD; to call

the material properties initialization routine PREMAT, where material property cards and

tables are read into open core; to open and position all files so that input data blocks

are ready to be read and output data blocks are ready to be written; to call subroutine SMAIA,

the module "workhorse", which will create the output data blocks. Upon return from SMAIA,

files are closed and trailers are written. Subroutine descriptions for PRETRD and PREHAT

can be found in section 3.4.37 and 3.4.36 respectively.

Subroutine SMAIA consists entirely of a loop in which, during each pass of the loop, a

record of the GPCT and a record of the ECPT are processed in a complementary manner. Each

pass through thisprincipal loop creates either one or six rows (or columns since [K_g]. and

[K_g] are symmetric of the stiffness matrix, KGGX, (and the structural damping matrix, K4GG,

if called for in the DMAP calling sequence). One row will be generated if the pivot point,

the first word of both the GPCT record and the ECPT record, is a scalar point; six rows will

be generated if the pivot point is a grid point. The latter case holds in the majority of

cases. The loop is terminated when an end-of-file is sensed on the file containing the GPCT.

The loon, h_oin_k_....hy ----''.''"__t*:m_+_to,:authe First two words of the current GPCT record.

If the second non-standard return from subroutine READ occurs, it implies the current pivot

point has no elements connected to it so that one or six null rows must be output for the

4.27-2

FUNCTION#_ MODULE SMAI (STRUCTURAL MATRIX ASSEMBLER - PHASE I)

matrices. This non-standard return, it should be noted, does not occur in the majority of cases.

A nor_l return from READ implies a normal path through the principal loop. The remainder of the

GPCT record is read into core, and a pointer table is constructed. This pointer table relates

the scalar index numbers of the GPCT record, which are the column indices of the (possible) non-

zero terms of the generated matrices, to locations in core in which the correspondinq submatrices

will reside. The pointer table is defined recursively as follows:

Pl = l (I)

Pi = Pi-l + q' i > l (2)

where q is 6 if the point (i-l) is a grid point and q is l if the point (i-l) is a scalar point.

It is then determined if all the submatrices corresponding to the current pivot point

can be held in open core. If they can, there is no problem. If they cannot, spill logic

is provided only if the structural damping matrix is not called for. Rather than compute all

submatrices, store them on a scratch file, retrieve them when computations have been completed

and sort them, the following approach was adopted. It is determined what the maximum number

of rows that can be held in core is: 3, 2 or I. The element submatrices are computed in

their respective routines (i.e. KR_D, KBAR) and passed to the "insertion" subroutine, SMAIB,

which "inserts" into the correct open core positions only those rows which can be contained.

When the ECPT record is exhausted, the link vector, LINK, (see discussion below of the

LINK variable in /SMAICL/) is searched to determine if any structural element entries in the

ECPT were skipped because the corresponding element subroutine did not reside in the link

(element subroutine overlay segment) currently in core. If there did exist such an element,

the ECPT file is backspaced and the ECPT record is reprocessed such that all element sub-

matrices not computed on the previous pass(es) of the ECPT record will be computed. If

(or when) the LINK array is identically zero, signifying that all element submatrices

corresponding to the current pass of the ECPT record have been computed, the DETCK subroutine

is called if the input parameter N_GENL _0. DETCK generates the GPST by examining the

"translational" and "rotational" diagonal 3 X 3 submatrices of the 6 rows of the KGGX matrix

currently in core. If the total number of rows to be computed (6 or l) for the current ECPT

record is not in core due to spill problems, DETCK stores those elements of the 3 X 3 sub-

4.27-3

MODULEFUNCTIONALDESCRIPTIONS

matricescurrently in corein local variablesandthenDrocessesthe entire 3x3submatriceson

the last passof the ECPTrecord(seedefinitions of the variablesLR_WICandNR_WSCin /SMAICL/

below).

After DETCK returns, the number of rows in core are packed onto the KGGX (and, if called

for, the K4GG) data block(s) using the standard matrix packing routines BLDPK, ZBLPKI and

BLDPKN. If the last row in core is not equal to the total number of rows to be computed,

the ECPT file is backspaced and the record is processed again, this time the next set of

3, 2 or l rows being output. If the last row in core is equal to the total number of

rows to be computed, the processing of the ECPT record is complete and a transfer is made

to the top of the "GPCT and ECPT processing" loop to process the next record of the GPCT and

ECPT. The loop terminates when an end-of-file is encountered while attempting to read the

GPCT. Upon loop termination, SMAIA returns to SMAI.

It should be noted that the most difficult logic of the routine involves the LINK

vector and the spill logic. The programmer is advised that the LINK vector logic will not be

used on any of tilecurrent hardware/software configurations because l) the routine residing

in segment (link) 2, KCONE, cannot be used in conjunction with any other structural element

routine and 2) the axisymmetrical element routines KTRIRG, KTRAPR and KT_RDR cannot (from a

mathematical modeling point of view) be used in conjunction with any other structural element

routines. The spill logic is very seldom entered since for the majority of cases the geometry

of the mathematical model is such that the number of words in any GPCT record - and hence the

number of (potentially) non-zero columns in any six rows of the matrix - is generally quite

small. A high upper limit for the number of words in any GPCT record would be 40.

4.27-4

FUNCTIONALMODULESI_l (STRUCTURALHATRIX ASSEMBLER - PHASE I)

4.27.7.1 Determining Grid Point Singularities in Subroutine DETCK

Let the pivot point be a grid point with scalar index p in the following discussion.

Let [Q] be the "translational" or "rotational" 3x3 symmetric submatrix along the diagonal

of the stiffness matrix, [K_g],_i.e., the rows and columns of the "translational" [Q] matrix

would correspond to scalar index numbers p, p+l, and p+2; and the rows and columns of the

"rotational" [Q] matrix would correspond to scalar index numbers p+3, D+4, and p+5.

The following steps comprise the algorithm for determining the presence or absence of

grid point singularities. The discussion assumes [Q] is the "translational" 3x3 matrix but the

same algorithm holds for the "rotational" [Q].

I. The matrix [Q] is scaled by the magnitude of the largest term, Qmax:

[B] : _ (3)
Qmax"

if the largest term is non-positive, the singularity is of order 3, and the scalar index

numbers p, p+l and p+2 are written on the GPST.

2. The vector magnitudes of 3xl columns (rows) are calculated:

i,_B 2 2 2bz = + B + B , (4)
11 12 13

,,%_B 2 B2 B 2= + + , (5)
b2 21 22 23

J 2 2 2
b3 = + B + B • (6)

31 32 33

3. For each bi = O, the singularity order counter IgRDER is increased by one.

4. If two bi are zero, the order of the singularity is two, and the scalar index numbers

j and k corresponding to these two rows of [B] are written on the GPST.

4.27-5

MODULEFUNCTIONALDESCRIPTIONS

5. If onebi is zero, andi is the rowsuchthat bi = O, define j and k as the other rows

of [B] and calculate:

Bjj Bik_m : det

L_k,i BkkJ

(7)

R = _iB_j + B_j)(B;k + B_k) (8)

If _< lO-2, the order of the singularity is 2 and the GPST contains the paired scalar

index values for i, j, k in the order (1) (i,j) if Bkk > 0 or (2) (i,k) if Bjj > O.
m

If _ lO-2, the order of the singularity is one and only the SIL value for i is written

on the GPST.

6. If all b. > O, we calculate
1

D = det [B] (9)

If D > .5 x lO-2 x (blb2b3), there are no singularities, and DETCK returns if [Q] is the

"rotational" matrix. If [Q] is the "translational" matrix, the "rotational" [Q] is

input to the algorithm.

7. If D < .5 x lO"2 x (blb2b3), one or more singularities exist. The following terms are

calculated:

22 B2_
mt = det , (I0)

32 B3_

ll B1 1m2 = det , (II)
_31 B3

11 BI_]

m3 : det _21 B2d , (12)

4.27-6 (8/I/72)

j

FUNCTIONAL MODULE SMAI (STRUCTURAL MATRIX ASSEMBLER - PHASE l)

RI = _(B_ + Bz) (B2 + B2) ,
2 23 32 33

(13)

r2 = V(B_+B2)(B_ +_2),
1 13 31 33

(14)

R,: V(B ,

8. Determine i, j, k such that:

+B2)(B_,+B_).12 22
(15)

mi m. mk

(16)

mi
9. If_< 10-2, the singularity is of order 2. Redefine i, j, k such that Bii < Bjj < Bkk-

i

The SIL values for the paired indexes (j,k), (i,k) and (i,j) are written on GPST only if the

corresponding B is greater than zero. For instance if Bkk is zero, the SIL pair (i,j) is not

written on the GPST.

mi
lO. If_IO -2, (see step 8) the singularity is of order I. The SIL values are written

i

on the GPST in the order

mi
i since _--> 10-2 , (17)

mj

j if _ > I0"2 , (18)

mk >
k if _k I0-2 (Ig)

4.27-7 (3/I/71)

MODULE FUNCTIONAL DESCRIPTIONS

4.27.8 Subroutines

The utility routines PRETRD and PREMAT (or HMAT) are called in SMAI for initialization

purposes so that the structural element subroutines can call the entry points TRANSD of PRETRD and

MAT of PREMAT (or HMAT) to fetch Coordinate System Transformation Matrices (CSTM) data and material

properties data respectively. GMMATD is used by element routines as a general matrix multiply

routine, and INVERD is used for inversion of small in-core (order usually < 12) matrices. It

should be noted that all matrices referenced in the structural element subroutines are stored by_

rows and are double precision. See the subroutine descriptions for these routines in Section 3.

The principal means of communicating an element entry of the ECPT to an element stiffness

matrix generation routine is through /SMAIET/. This fact is not explicitly stated in each of the

descriptions of the element routines (e.g. KR_D) given below. Since much of the mathematics needed

for generating: (I) element stiffness matrices (module SMAI); (2) element mass and damping

matrices (module SMA2); (3) element contributions to load vectors (module SSGI); (4) element stress

(and force) data recovery (module SDR2); (5) element differential stiffness matrices (module

DSMGI); (6) element stress (and force) data recovery for non-linear elements in a Piecewise Linear

Analysis Rigid Format problem (module PLA3); and (7) element stiffness matrices for non-linear

elements in a Piecewise Linear Analysis problem (module PLA4), is similar or even identical,

detailed mathematical algorithms are grouped by element in Section 4.87.

It should be noted that routines DKI,DKK,DKM,DKINT,DKJ,DKEF,DK89,DKIOO,KFAC,DKJAB,DK219,

DK211,R_MBDK,D4K,D5K,D6K and DMATRX are used only (directly or indirectly) by the axisymmetric

shell element routines KTRIRG, KTRAPR and KT_RDR.

4.27.8.1 Subroutine Name: SMAI

I. Entry Point: SMAI

2. Purpose: See discussion above.

3. Calling Sequence: CALL SMAI

4.27.8.2 Subroutine Name: SMAIA

I. Entry Point: SMAIA

4.27-8 (811/72)

FUNCTIONAL MODULE SMAI (STRUCTURAL MATRIX ASSEMBLER - PHASE I)

2.

3.

4.27.8.3

Purpose: See discussion above.

Calling Sequence: CALL SMAIA

Subroutine Name: SMAIB

I. Entry Pointt SMAIB

2. Purpose: This routine, called by the module's element stiffness matrix generation

routines such as KR@D, KBAR, etc., adds a double precision 6 x 6 or l x l matrix, [Ke], to

Kx 4
the "submatrix" of [gg] or [Kgg] corresponding to the current pivot point.

3. Calling Sequence: CALL SMAIB (KE,J,II,IFILE,DAMPC)

KE Row-stored double precision 6 x 6 or l x l matrix to be added to the

submatrix in core - double precision - input.

Kx K4
J The column index of the [gg] or [gg] matrix which corresponds to the

first column of the [Ke] matrix - integer - input.

II - If II is O, the [Ke] matrix is 6 x 6. If II is greater than zero, it is

r x rv4 l
the row index of the LKgg] or L"ggJ matrix corresponding to the l x l

matrix [Ke] to be added - integer - input.

IFILE - GIN_ file number of the matrix in core being added to - KGGX or K4GG -

integer - input.

K4
DAMPC - If [Ke] is 6 x 6 and the [gg] matrix is called for, the input matrix [Ke] is

DAMPC before being added to the submatrix of [K;g] inmultiplied by core.

Block Data Program Name: SMAIBD

Entry Point: SMAIBD

Purpose: Block data program which sets GIN_ file numbers, I/_ parameters, and SMAI

4.27.8.4

I.

2.

overlay parameters.

3. Calling Sequence: None

4.27.8.5 Subroutine Name: DETCK

I. Entry Point: DETCK

4.27-9

4.27.8.6

I.

2.

3.

4.27.8.7

I.

2.

3.

4.27.8.8

I.

2.

3.

4.27.8.9

I.

2.

3.

MODULE FUNCTIONAL DESCRIPTIONS

2. Purpose: This routine generates the Grid Point Singularity Table by examining the

3x3 "translational" and "rotational" diagonal submatrices of the KGGX matrix. This

routine is called after the submatrix for each pivot point has been completed.

3. Calling Sequence: CALL DETCK (JARG)

If JARG = O, the pivot point has elements connected to it.

If JARG = -l, the pivot point is a scalar point and no elements are

JARG - connected to it.

If JARG = l, the pivot point is a grid point and no elements are connected

to it.

Subroutine Name: KR_D

Entry Point: KROD

Purpose: To generate the element stiffness matrix for a R_D element.

Calling Sequence: CALL KR_O

Subroutine Name: KBAR"

Entry Point: KBAR

Purpose: To generate the element stiffness matrix for a BAR element.

Calling Sequence: CALL KBAR

Subroutine Name: KTUBE

Entry Point: KTUBE

Purpose: To generate the element stiffness matrix for a TUBE element.

Calling Sequence: CALL KTUBE

Subroutine Name: KPANEL

Entry Point: KPANEL

Purpose: To generate the element stiffness matrix for a SHEAR or TWIST panel element.

Calling Sequence: CALL KPANEL (IARG)

4.27-I0

4.27.8.10

I.

2.

3.

4.27.8.11

FUNCTIONALMBDULESHAI(STRUCTURALHATRIX ASSEMBLER - PHASE I)

_IARG = 4 calls for generation of the matrix for a shear panel;
IARG

tIARG 5 implies a twist panel.

Subroutine Name: KTRMEM

Entry Point: KTRMEM

Purpose: To generate the element stiffness matrix for a TRMEM element.

Calling Sequence: CALL KTRMEM (1)

I = _0 - Do complete triangular membrane.

l - Return 3 transformed 3 x 3 matrices only for pivot point.

KTRMEM is called by KQDMEM.

Subroutine Name: KQDMEM

I. Entry Point: KQDMEM

2. Purpose: To generate the element stiffness matrix for a QDMEM element.

3, Calling Sequence: CALL KQDMEM

Subroutine Name: KTRBSC

I. Entry Point: KTRBSC

2. Purpose: To generate the element stiffness matrix for a basic bending triangle

element.

3. Calling Sequence: CALL KTRBSC (1)

0 - Do complete element computation for basic bending triangle

I = l - Form only the [KU] 9x9 matrix.

2 - Form only the [KU] 9x9 matrix but save the [H]"l and [S] matrices.

4.27.8.12

4.27.8.13

If I = l,

Subroutine Name: KTRPLT

I. Entry Point: KTRPLT

2. Purpose: To generate the element stiffness matrix for a triangular plate element.

3. Calling Sequence: CALL KTRPLT

4.27-II

4.27.8.14

4.27.8.15

MODULE FUNCTIONAL DESCRIPTIONS

Subroutine Name: KQDPLT

I. Entry Point: KQDPLT

2. Purpose: To generate the element stiffness matrix for a quadrilateral plate element.

3. Calling Sequence: CALL KQDPLT

Subroutine Name: KTRIQD

I. Entry Point: KTRIQD

2. Purpose: To generate the element stiffness matrix for any of the following elements:

TRIAl ,TRIA2 ,QUADI ,QUAD2.

3. Calling Sequence: CALL KTRIQD (IARG)

I! - TRIAl element"

TRIA2 element.
IARG =

QUADI element.

4 QUAD2 element.

4.27.8.16 Subroutine Name: KELAS

I. Entry Point: KELAS

2. Purpose: To generate stiffness matrix contributions from the ELASI,ELAS2,ELAS3 and

ELAS4 elements and structural damping matrix contributions from the ELASI,ELAS2 and

ELAS3 elements.

3. Calling Sequence: CALL KELAS (IARG)

IARG Indicates the type of element being processed. It can take on the values

1,2,3 and 4 denoting the ELASI,ELAS2,ELAS3 and ELAS4 elements respectively.

Integer-input.

4.27.8.17 Subroutine Name: KBEAM

I. Entry Point: KBEAM

2. Purpose: To generate the element stiffness matrix for a BEAM element.

3. Calling Sequence: CALL KBEAM

4.27-12

4.27.8.18

4.27.8.19

FUNCTIONAL MODULE SMAI (STRUCTURAL MATRIX ASSEMBLER - PHASE I)

Subroutine Names: KC(_NE,KC(_NEX

I. Entry Point: KC_NE, KC_NEX

2. Purpose: To generate the element stiffness matrix for a conical shell problem.

3. Calling Sequence: CALL KC_NE and CALL KC(_NEX

Subroutine Name: KTRIRG

I. Entry Point: KTRIRG

2. Purpose: To calculate an element stiffness matrix for a triangular cross-section

ring, TRIARG, element.

3. Calling Sequence:

4.27.8.20 Subroutine Name: KTRAPR

CALL KTRIRG

I. Entry Point: KTRAPR

2. Purpose: To calculate an element stiffness matrix for a trapezodial cross-section

ring, TRAPRG, element.

3. Calling Sequence:

4.27.8.21 Subroutine Name: KT_RDR

CALL KTRAPR

I. Entry Point: KT_RDR

2. Purpose: To calculate an element stiffness matrix for a toroidal thin shell ring,

T_RDRG, element.

3. Calling Sequence: CALL KT_RDR

Function Name: DKI

I. Entry Point: DKI

2. Purpose: To evaluate integrals in double precision for the triangular and

trapezoidal cross-section rings in subroutines KTRIRG and KTRAPR.

3. Calling Sequence: DP = DKI (I,J,K,L,M,N,IP,IQ,R,Z)

4.27.8.22

4.27-13 (8/I/72)

4.27.8.23

I.

2.

3.

4.27.8.24

I.

2.

3.

4.27.8.25

l .

2.

MODULEFUNCTIONAL DESCRIPTIONS

I, J The subscripts of R defining two lines on the limit of integration,

integer-input.

K, L The subscripts of R, Z defining another line on the limit of integration,

integer-input.

M, N - The subscripts of R, Z defining the fourth line on the limit of

integration, integer-input.

IP,IQ - Integers that define the power of the r and z variables respectively,

- input.

R,Z - Vectors of the r and z coordinates of all points used to describe the

area of integration, double precision - input.

Function Name: DKK

Entry Point: DKK

Purpose: To calculate the slope of a line given two points in function DKI.

Calling Sequence: DP = DKK (I,J,R,Z)

I, j - The subscripts of R, Z defining the two points.

R, Z - Vectors of the r and z coordinates.

Function Name: DKM

Entry Point: DKM

Purpose: To calculate the y-intercept of a line given two points in function DKI.

Calling Sequence: DP = DKM (I,J,R,Z)

I, J The subscripts of R, Z defining the two points.

R, Z Vectors of the r and z coordinates.

Function Name: DKINT

Entry Point: DKINT

Purpose: To evaluate the following function in the FORTRAN function routine DKI:

4.27-14

FUNCTIONALMODULESMAI(STRUCTURALMATRIXASSEMBLER- PHASEl)

where

1 w

fI(A,B) = _ Z
t=O

C_EF • At • Bw-t • AJ (20)

and

CgEF

s=Hl w-s+l for t # 0s

1 for t =0
(21)

AJ =

R(J) (w+v-t+l) -R(I) (w+v-t+l)

w+v-t+l

In[_--_]

for (w+v-t+l) p 0

for (w+v-t+l) = 0.

(22)

3e Calling Sequence:

I,j

A, B

V,W

R, Z

DP = DKINT (I,J,A,B,V,W,R,Z)

The subscripts of R, Z.

The arguments of the function f in Equation 20.

Integer paran_ters of the function.

- Vectors of the r and z coordinates.

4.27.8.26 Function Name: DKJ

Io

2.

Entry Point: DKJ

Purpose: To evaluate the following function in function DKINT.

DKJ = R(J)(SiII R}II(s+l
S

R(J)
{In[_]

for s+l p 0

for s+l = 0 .

(23)

3. Calling Sequence: DP = DKJ (I,J,R,S)

I, J The subscripts of R

4.27-15

MODULE FUNCTIONAL DESCRIPTIONS

R

S

- Vector of the r coordinates.

- Integer parameters of the function,

4.27.8.27 Function Name: DKEF

Io

2.

Entry Point: DKEF

Purpose: To evaluate the following function in function DKINT.

3. Calling Sequence:

DKEF = I_ =_I

DP = DKEF (T,W)

w-s+l
for t # 0s

for t = O.

T, W - Integer parameters of the function.

(24)

4.27.8.28 Function Name: DK89

I. Entry Point: DK89

2. Purpose: To evaluate the following function in function DKI.

M
DK89(I,A,B) - l Z M! (-A)s • d

_s=O

where

(2s)

d =

(A+B.R(1)(M+I-N-S)

(M-S)! S!(M+I-N'S)

In(_A + B.R(1))
(M+I-N)! (N-l).

for (M+I-N-S) # 0

for (M+I-N-S) = 0

(26)

3. Calling Sequence:

I

A, B

M, N

R

DP = DK89 (I,A,B,M,N,R)

The subscript of R.

The arguments of the function.

Integer parameters of the function.

Vector nf the r coordinates

4.27.8.29 Function Name: DKIO0

I. Entry Point: DKIO0

4.27-16

FUNCTIONAL MODULE SMAI (STRUCTURAL MATRIX ASSEMBLER - PHASE l)

2. Purpose:

where

To evaluate the following function in subroutine DKI.

-I M+N-2
DKIOO(I,A,B) : --_ _. (M+N-2)!-d ,

A_,-,,,,-, j s=O
(27)

(A+B.R(1))(M-I-S).(_B)S

(M+N-2-S)! S! (M-I-S)'R(1)(M-I-S)

IA+B R(1)
(-B)M-I'In(J R(I) J)

(M-I)!(N-I)!

for (M-I-S) _ 0

for (M-I-S) = 0 •

(28)

. Calling Sequence:

I

A, B

M, N

R

DP= DKIO0 (I,A,B,M,N,R)

The subscript of R.

lhe arguments of the function.

Integer parameters of the function.

Vector of the r coordinates.

4.27.8.30 Function Name: KFAC

I.

2.

3.

4.27.8.31

Entry Point: KFAC

Purpose: To evaluate the factorial function in functions DKSg and DKIO0.

Calling Sequence: K = KFAC (N)

N - The integer argument of the function.

If N < 2, the functional value is set to I.

Function Name: DKJAB

I. Entry Point: DKJAB

2. Purpose: To evaluate the following function in F_RTRAN function DKI using the

function evaluated in F_RTRAN function DK89.

DKJAB(I,A,B) - R(1)MIg(IA+B'R(I)I) - _ • DK89(I,A,B)M (29)

4.27-17

MODULEFUNCTIONAL DESCRIPTIONS

3. Calling Sequence:

I

A, B

M, N

R

DP= DKJAB (I,A,B,M,N,R)

The subscript of R.

The arguments of the function.

Integer parameters of the function.

Vector of the r coordinates.

4.27.8.32 Function Name: DK219

I. Entry Point: DK219

2. Purpose: To evaluate the following function in F_RTRANfunction DKI using the

function evaluated in FORTRANfunction DKIO0.

DK219 (I,A,B) : - I n(IA+B'R(1)I)
M.R(1) M

(3O)

+ _ " DKIO0 (I,A,B)

3. Calling Sequence:

I

A, B

M, N

R

DP= DK219 (I,A,B,M,N,R)

The subscript of R.

The arguments of the function.

Integer parameters of the function.

Vector of the r coordinates.

4.27.8.33 Function Name: DK211

I. Entry Point: DK211

2. Purpose: To evaluate the following function in F_RTRAN function DKI.

DK21I(I,A,B)

I0

_-[In(12-B.R(1)I)] 2

[InIAI]'[InlR(1)l] - t_l

_In(IB.R(1) I)]2 +

oo

_'2 A t

for B.R(1) = A

for B.R(1)#A, [B.R(1)]2=A2

for [B'R(1)] 2 < A2

for [B.R(I)]2 > A2

(31)

4.27-18

FUNCTIONAL MODULE SMAI (STRUCTURAL MATRIX ASSEMBLER - PHASE l)

3.

4.27.8.34

Calling Sequence: DP = DK211 (I,A,B,R)

I - The subscript of R.

A, B - The arguments of the function.

R - Vector of the r coordinates.

Subroutine Name: R_MBDK

I. Entry Point: R_MBDK

2. Purpose: To evaluate integrals in double precision for the toroidal thin shell

ring in subroutine KT@RDR.

3. Calling Sequence: CALL R@MBOK (A,B,N@SIG,PRECIS,NUM,ITD@NE,FINTG,K_DE,FUNCT,X)

N@SIG -

PRECIS -

NUM

ITD_NE -

FINTG -

K_DE -

FUNCT -

X

Lower and upper limit of integration respectively.

Number of correct significant digits desired.

Actual number of significant digits attained.

Maximum number of halvings of the interval [A,B] to be made.

Actual number of halvings of the interval [A,B].

Resultant value of integral.

Print control (not used).

Function subprogram used to evaluate the integral.

Vector of parameters used by function subprogram.

4.27.8.35 Function Name: D4K

I. Entry Point: D4K

2. Purpose: To evaluate the following function to be integrated by subroutine R_MBDK.

3.

D4K = CJ.sin2@

R_-Rp.sin _)+Rp-sin _1"cos ¢+Rp.COS _-sin@

Calling Sequence: DP = D4K (X)

X - Vector of function parameters.

x(1) -

X(2) - Rp

X(3) - Rl

(32)

4.27-19

4.27.8.36

MODULE FUNCTIONAL DESCRIPTIONS

X(4) - cos_i

X(5) - sin _I

X(6) - J + l

Function Name: D5K

I. Entry Point: D5K

2. Purpose: To evaluate the following function to be integrated by subroutine ROMBDK.

3.

4.27.8.37

I.

2.

3.

D5K = @J.2"sin@'cos_

R_-Rp-sina_ + Rp.sina_ cos_ + Rp.COS_t.sin_

DP = D5K (X)

Vector of function parameters.

Rp

Rl

COS _I

sin _i

J+l

Calling Sequence:

X

X(1) -

X(2) -

X(3)

x(4)

x(5)

x(6)

Function Name: D6K

(33)

Entry Point:

Purpose:

Calling Sequence:

X

X(1) -

X(2) -

X(3) -

X(4) -

D6K

To evaluate the following function to be integrated by subroutine ROMBDK.

D6K = @Jc°sZ@ (34)

Ri-Rp.sinal + Rp.sin_1.cos_ + Rp.COS_1"Sl_

DR = D6K (X)

Vector of function parameters.

Rp

R1

COS _z

4.27-20

FUNCTIONAL)IODULESMAI (STRUCTURAL MATRIX ASSEHBLER - PHASE I)

X(5) - sin _

X(6) - J + I

4.27.8.38 Subroutine Name: DMATRX

I. Entry Point: DMATRX

2. Purpose: To form the element stiffness matrix in field coordinates for the toroidal

thin shell ring in subroutine KT@RDR.

3. Calling Sequence: CALL DMATRX (D,V,C,CA,CA2,VA,DM,DB,YI)

D

V,C,CA,
CA2,VA,
DM,DB

YI

4.27.8.39

- Resultant stiffness matrix.

Terms used in the evaluation of the stiffness matrix.

- Array of integral values.

Subroutine Name: KFLUD2

I.

3.

4.27.8.40

Entry Point: KFLUD2

Purpose: To form the element psuedo stiffness matrix for the FLU!D2 and AX!F2 elements°

Calling Sequence: CALL KFLUD2

Subroutine Name: KFLUD3

I.

2.

3.

4.27.8.41

Entry Point: KFLUD3

Purpose: To form the element psuedo stiffness matrix for the FLUID3 and AXIF3 elements.

Calling Sequence: CALL KFLUD3

Subroutine Name: KFLUD4

I. Entry Point: KFLUD4

2. Purpose: To form the element psuedo stiffness matrix for the FLUID4 and AXIF4 elements.

3. Calling Sequence: CALL KFLUD4

4.27-21 (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

4.27.8.42 SubroutineName:KSL_T

I. EntryPoint: KSL_T

2. Purpose:Toformthe elementpsuedostiffness matrix for the SL_T3andSL_T4elements.

3. Calling Sequence:CALLKSL_T(IARG)

IARG=
0 = SLBT3 elements

l = SL_T4 elements

4.27.8.43 Subroutine Name: KTETRA

I. Entry Point: KTETRA

2. Purpose: To calculate and insert element stiffness matrices for the TETRA (solid

tetrahedron) element. It is also used for the subelements of the WEDGE, HEXAI, and

HEXA2 elements.

3. Calling sequence: CALL KTETP_A(I_PT), where:

If I_PT = O, the stiffness is divided by 2.

If I_PT = I, the stiffness is unmodified.

If I_PT_ lO0, the element is tested for geometric consistency.

4.27.8.44 Subroutine Name: KSBLID

I. Entry Point: KSBLID

2. Purpose: To perform, on the WEDGE, HEXAI, and HEXA2 elements, the following tasks:

a) Check geometric consistency.

b) Rearrange the ECPT data into the TETRA format for each subelement and call the

KTETRJ_subroutine.

3. Calling sequence: CALL KSBLID (ITYPE), where

ITYPE = l implies a WEDGE element (three tetrahedra).

ITYPE = 2 implies a HEXAI ele_nt (five tetrahedra).

ITYPE = 3 implies a HEXA2 element (ten tetrahedra).

4.27.8.45 Subroutine Name: HHBDY

I. Entry Point: HHBDY

4.27-21a (8/I/72)

2,

,

4.27.8.46

I.

2.

FUNCTIONAL MODULE SMAI (STRUCTURAL MATRIX ASSEMBLER - PHASE l)

Purpose: To calculate thermal convection matrix terms for the boundary heat transfer

elements (HBDY).

Calling sequence: CALL HHBDY.

Subroutine Name: HRING

Entry Point: HRING

Purpose: To calculate thermal conductivity matrix terms for the TRIARG and TRAPRG

elements.

Calling Sequence: CALL HRING(ITYPE), where

ITYPE = 3 implies a TRIARG element.

ITYPE = 4 implies a TRAPRG element.

KPLTST

3.

4.27.8.47 Subroutine Name:

I. Entry Point: KPLTST

2. Purpose: To examine the planarity of quadrilateral elements.

3. Calling Sequence: CALL KPLTST (GI,G2,G3,G4) where

Gi = Grid Point coordinate vectors

4.27.9 Design Requirements

4.27.9.1 Open Core Design

The open core common block for module SMAI is defined by the following F_RTRAN statements:

I. D_UBLE PRECISIBN DZ(1)

2. INTEGER IZ(1)

3. CBMM_N /SMAIX/ Z(2)

4. EQUIVALENCE (Z(1),IZ(1),DZ(1)).

The open core layout is given in Figure I.

4.27-21b (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

I. D_UBLEPRECISIONDZ(1)

2. INTEGER IZ(1)

3. COMM@N/SMAIX/ Z(1)

4. EQUIVALENCE (Z(1),IZ(1),DZ(1)).

The open core layout is given in Figure I.

ICSTM

IMATI

IGPCT

IP_INT

16X6K

IGGPST

IGGPCT

IGECPT

IG4GG

IGKGG

C_MM_N ISMAIX/

CSTM Data

MPT and DIT

to be read into

core by MAT or

HMAT

GPCT Data

Pointer table defined

iF Equations l and 2

Submatrices for KGGX

and K4GG for the current

pivot point.

GINO buffer for GPST

GIN_ buffer for GPCT

GIN_ buffer for ECPT

GIN_ buffer for K4GG

GIN_ buffer for KGGX

Figure I. Open core layout for module SMAI.

4.27-22 (8/I/72)

FUNCTIONALMODULESMAI(STRUCTURALMATRIXASSEMBLER- PHASEI)

Thedefinition of the variables is as follows:

ICSTM - The zero pointer to the CSTM portion of open core; defined to be zero.

IMATI

IGPCT -

IP_INT -

I6X6K -

16X64 -

The zero pointer to the MPT and DIT data read into core by subroutine PREMAT;
defined to be ICSTM + NCSTM, where NCSTM is the length of the CSTM portion

of open core.

The zero pointer to the GPCT portion of open core; defined to be IMATI + MATCR,
MATCR being the length of open core used by subroutine PREMAT.

The zero pointer to the pointer table in open core. The pointer table is used
as a dictionary to relate the GPCT to the submatrices in core; defined to be
IGPCT + NGPCT, NGPCT being the length of the GPCT.

The zero pointer to the submatrices of KGGX; I6X6K = (IP_INT + NP_INT -l)/
2+2 where NP_INT = NGPCT is the length of the pointer table. The extra
arithmetic to define I6X6K is necessary because the submatrices are double
precision nun_)ers. While the above indices are single precision indices,
I6X6K is a double precision index.

The zero pointer to be submatrices of K4GG; I6X64 = 16X6K + N6X6K, where
N6X6K is the nun_er of double precision numbers in the submatrices of KGGX.
I6X64 is a double precision index.

The pointers for the GIN_ buffers, IGGPST, IGGPCT, IGECPT, IG4GG and IGKGG are,

unlike the above, 'one' pointers. It should be noted that the lengths NCSTM and MATCR are

constant throughout the module operation, while the length of the GPCT data will va_v from pivot

point to pivot point as the ECPT and GPCT data blocks are processed serially. (Hence it is

probable that for a pivot point with a relatively small nun_er of elements connected to it the

entire submatrix may be held in core, while spill logic will be entered only when a pivot point

has a great many elements connected to it.)

4.27.9.2 Block Data Subprogram

The block data program SMAIBD sets GIN_ file numbers, I/_ parameters and SMAI overlay

parameters in common blocks /SMAII_/ and /SMAICL/.

4.27.9.3 Common Storage Requirements

Blank common is used only for DMAP parameters. The following common blocks are used

throughout the module: /SMAII_/, /SMAIBK/, /SMAICL/, /SMAIET/ and /SMAIDP/. They are given

in detail here since other matrix assembler modules such as SMA2 and DSMGI are designed similarly.

All common block variables are integer except (1) DODET in /SMAICL/ which is a logical variable;

(2) the array in /SMAIET/ which is a mixed (integer and real) array; and (3) the double

precision array in /SMAIDP/.

4.27-23

MODULEFUNCTIONALDESCRIPTIONS

I.

parameters.

Word Number

The SMAII_ common block is 36 words in length and is used for SFtAIinput/output

Variable

l IFCSTM

2 IFMPT

3 IFDIT

4 IDUMI

5 IFECPT

6 IGECPT

7 IFGPCT

8 IGGPCT

9-I0 IFGEI,IGGEI

II IFKGG

12 IGKGG

13 IF4GG

14 IG4GG

15 IFGPST

16 IGGPST

17 INRW

18 OUTRW

19 CLSNRW

20 CLSRW

21 NEOR

22 E_R

23-29 MCBKGG

30-36 MCB4GG

2.

parameters.

Definition

GIN_ file number for the CSTM data block.

GIN_ file number for the MPT data block.

GIN_ file number for the DIT data block.

Undefined.

GIN_ file number for the ECPT data block.

GIN_ buffer pointer for the ECPT.

GIN_ file number for the GPCT data block.

GIN_ buffer pointer for the GPCT.

Undefined.

GIN_ file number for the KGGX data block.

GIN_ buffer pointer for KGGX.

GIN_ file number for the K4GG data block.

GIN_ buffer pointer for K4GG.

GINO file number for the GPST data block.

GINO buffer pointer for the GPST.

Input with rewind option for subroutine _PEN.

Output with rewind option for subroutine OPEN.

Close without rewind option for subroutine CLOSE.

Close with rewind option for subroutine CLOSE.

No end-of-record indicator for subroutine READ.

End-of-record indicator for subroutine READ.

Matrix control block for the KGGX matrix.

Matrix control block for the K4GG matrix.

The SNtAIBKcommon block is lO words in length and is used for SMAI open core bookkeeping

It contains zero pointers and lengths for the various sub-arrays in open core.

4.27-24

FUNCTIONALMODULESMAI(STRUCTURAL.MATRIXASSEMBLER- PHASEI)

Word Number Variable Definition

1 ICSTM Zero pointer to the CSTM sub-array in open core. For
example the first location of this sub-array is referenced
as IZ (ICSTM + l).

2 NCSTM Length of the CSTM sub-array in open core.

3 IGPCT Zero pointer to the GPCT sub-array in open core.

4 NGPCT Length of the GPCT sub-array.

5 IP_INT Zero pointer to the P_INT sub-array in open core.

6 NP_INT Length of the P_INT sub-array.

7 I6X6K Zero pointer to the 6x6 submatrices of KGBX.

8 N6X6K Number of words allocated to the 6x6 submatrices of KGGX.

9 16X64 Zero pointer to the 6x6 submatrices of K4GG.

I0 N6X64 Undefined.

3. The SMAICL common block is 133 words in length and is used for module control parameters.

Word Number Variable Definition

1 I_PT4 Indicator used by element routines denoting whether or not
the K4GG matrix will be generated. I_PT4 = O, implies no
generation; I_PT4 = l implies generation.

2 K4GGSW Indicator set to -I initially. If I_PT4 = I, then element
routines will set K4GGSW = l, when a non-zero element
structural damping matrix is generated.

3 NPVT The scalar index which is the pivot point. This is the first
word of every record of the ECPT data block.

4 LEFT The number of words of open core remaining after all sub-
arrays in open core have been allocated.

5 FR_WIC The first row of the submatrices in core. If all six rows
of the matrices to be generated cannot be held in core, spill
logic is initiated, and 3, 2 or l rows of the submatrices are
generated during each pass of the ECPT record for the pivot
point which causes the spill. FR_WIC can take on the values
1,2,3,4,5 or 6.

6 LR_WIC The last row of the submatrices in core. LR_WIC is defined as
FR_WIC + NR_WSC -l, where NR_WSC is the number of rows in core.
If there are no spill problems, then LR_WIC = 6 if the pivot
point is a grid point, and LR_WIC = l if the pivot point is a
grid point.

7 NR_WSC The number of rows of the submatrices currently in core.

8 TNR_WS Total number of rows of the submatrices to be generated.
TNR_WS = 6 if the pivot point is a grid point and TNR_WS = l
if the pivot point is a scalar point. This definition holds
whether or not the K4GG matrix is to be generated. (In
actuality, if the K4GG is generated the total number of rows

4.27-25 (711170)

MODULE FUNCTIONAL DESCRIPTIONS

Word Number

I0

11-20

21

22

Variable

Jt,IAX

NLINKS

LINK

N_G_

IDETCK

Defi ni ti on

generated for any ECPT record is 12 or 2).

The number of columns of KGGX (and K4GG) to be generated with
the current ECPT record.

The number of machine links (overlay segments) necessary to
contain the module's element routines. Currently NLINKS is
defined to be 3. This variable is used in conjunction with
the LINK array defined below. For machines with large
memories, it is desirable to have all element routines in
one link, for when in any ECPT record there are elements which
reside in different links, overlay overhead can be very costly
(particularly on second generation computing systems).

Before the current ECPT record is read for the first time, the
LINK array is set to -I for LINK(1), I = I, ...NLINKS. When
the first element is read from the ECPT, the proper element
routine is called, thereby loading the link in which that
element routine resides. The variable LINCOR, the link in core,
is defined as LINC_R = IBVRLY(ITYPE), where ITYPE is the ele-
ment's internal number, e.g., R_D = I, BEAM = 2, etc. For the
next element read from the ECPT, it is determined in what link
it resides. If it resides in the link whici_ is in core, the
element routine is called. If the routine does not reside in
the link currently in core, it is determined whether (a) the

link has already been processed or (b) the link has not been
processed in which case a "to-be-processed-later" flag is set.
For case (a) LINK (ITEMP) is I; for case (b) LINK(ITEMP) is
set = O, where ITEMP = I_VRLY(ITYPE). When an end-of-record
is sensed for the ECPT, LINK(LINCOR) is set to 1 and LINK
array is searched for zeros. If there are no zeros, the process-
ing of the ECPT record is complete. If there are zeros, that
is, links to be processed, the file corresponding to the ECPT
is backspaced and processing of the record is repeated.

Flag used to indicate if a user fatal error message occurred
in the processing of any element. NOGO = 1 indicates an error.
Execution is termination upon completion of the processing of
the GPCT. N_G_ = 0 indicates no error. Continue execution.

Used as a first pass indicator in the DETCK subroutine. There
will be multiple passes through the DETCK routine, for each
ECPT record, only if there are spill problems, i.e., the total
number of rows to be generated for the ECPT record will not fit
in core.

4.27-26 (8/I/72)

FUNCTIONALMODULESMAI(STRUCTURALMATRIXASSEMBLER- PHASEI)

23 D_DET Logical variable which if true implies the DETCK routine will
be called and if false will not be called. If the input para-
meter, N_GENL, is greater than zero, implying general elements
exist, then D_DET is set false. Otherwise D_DET is true.

4. The common block SI._IET is I00 words in length and is used as the means of communicating

the element data from the ECPT data block to the element subroutines.

5. The common block SMAIDP defines an array of 300 double precision words. This block is

used as "scratch" storage by element routines. Those variables which in most F_RTRAN

programs would be local subroutine variables are defined in /SMAIDP/ by the module's element

routines in order to preserve core storage and hence increase open core.

4.27.9.4 Arithmetic Considerations

All floating point arithmetic operations are carried out in double precision.

and [K_g]

4.27.10

are double precision matrices.

Kx
Both [gg]

Di agnostic Messages

The module has a variety of "fail-safe" error checks. If any of these checks fails, it

implies an obscure program design error or a computer operating system/hardware failure.

Diagnostic messages 2022, 2023, 2034 are of this type.

User fatal error messages 2025, 2026, 2031, 2032, 2033, 2035, 2036, 2037, 2038, 2039, 2040,

5001, 5002, 5003, and 5004 occur when one of the structural element routines encounters some user

data which makes generation of an element matrix impossible. Examples would include a user defin-

ing a ROD or BAR element of zero length; a user defining the four points of a SHEAR panel element

not in the proper cyclical order; a user defining TRPLT data so that a matrix in a algorithm is

singular; etc. It should be noted the first time this type of user data is encountered a fatal

error occurs, that is the module does not continue to process data for uncovering any more errors.

Detailed descriptions of these error messages can be found in Section 6 of the User's

Manual.

4.27-27 (8/I/72)

4.28

4.28.1

4.28.2

FUNCTIONAL MODULE SMA2 (STRUCTURAL HATRIX ASSEMBLER - PHASE 2)

FUNCTIONAL MODULE SMA2 (STRUCTURAL MATRIX ASSEMBLER - PHASE 2)

Entry Point: SMA2

To generate the mass matrix [Mgg] and the damping matrix [Bgg].

4.28.3 DMAP Calling Sequence

SMA2 CSTM,MPT,ECPT,GPCT,DIT/MGG,BGG/V,Y,WTMASS=I.O/V,N,N_MGG/V,N,N_BGG/V,Y,

4.28.4

CSTM -

MPT -

ECPT -

GPCT

DIT -

Notes:

I.

2.

3.

4.

4.28.5

MGG -

BGG -

Notes:

I.

.

C_UPMASS/V,Y,CPBAR/V,Y,CPR_D/V,Y,CPQUADI/V,Y,CPQUAD2/V,Y,CPTRIAI/V,Y,CPTRIA2/

V,Y,CPTUBE/V,Y,CPQDPLT/V,Y,CPTRPLT/V,Y,CPTRBSC/ $

Input Data Blocks

Coordinate System Transformation Matrices.

Material Properties Table.

Element Connection and Properties Table.

Grid Point Connection Table.

Direct Input Tables.

The CSTM may be purged.

If son_ element references a material property, the MPT cannot be purged.

Neither the ECPT nor the GPCT may be purged.

If some material property is temperature dependent, DIT cannot be purged.

Output Data Blocks

Partition of mass matrix - g set.

Partition of damping matrix - g set.

MGG cannot be pre-purged.

BGG can be pre-purged.

4.28-I (3/I/71)

MODULE FUNCTIONAL DESCRIPTIONS

4.28.6 Parameters

WTMASS - Input-real-default value (in DMAP calling sequence) = 1.0. WTMASS is the scalar

value by which the generated mass matrix will be multiplied before the columns

N_MGG

NOBGG

are packed onto the output file.

- Output-integer-no default value.

mass matrix is the zero matrix.

- 8utput-integer-no default value.

WTMASS is the ratio of mass to weight.

NOMGG is set equal to -I if the generated

Otherwise it is set = +I.

If the BGG matrix is either pre-purged or is

generated as the zero matrix, N_BGG is set = -I. Otherwise it is set = +I.

COUPMASS - Input-integer-default value = -I. If COUPFtASS = -I, "consistent" mass matrices for

all elements will not be generated; if COUPMASS>O, "consistent" mass matrices

for all elements will be generated. If COUPMASS = 0 "consistent" mass matrices

will be generated for element types depending on the values of CPBAR, CPROD, CPQUADI,

CPQUAD2, CPTRIAI, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, and CPTRBSC.

CPBAR, CPROD, CPQUADI, CPQUAD2, CPTRIAI, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT and CPTRBSC - Input -

integer-default value = -I.

These parameters choose between "consistent" mass and norma_ mass algorithms for their res-

pective element types as given below.

Parameter Element Ty]__es-

CPBAR BAR

CPROD ROD, CONROD

CPQUADI QUADI

CPQUAO2 QUAD2

CPTRIAI TRIAl

CPTRIA2 TRIA2

CPTUBE TUBE

CPQDPLT QDPLT

CPTRPLT TRPLT

CTRBSC TRBSC

These parameters function in conjunction with COUPMASS and have no effect if COUPMASS _ O.

If COUPMASS = 0 a negative value for these parameters will cause the "normal" mass matrix to be

generated. A value equal to or greater than zero will cause the "consistent" mass matrices to be

generated for all element types controlled by this parameter.

4.28-2 (3/I/71)

FUNCTIONAL MODULE SMA2 (STRUCTURAL MATRIX ASSEMBLER - PHASE 2)

4.28.7 Method

S)tA2is structured similarly to module SMAI. A separate module was written to generate

the mass and damping matrices in order to maximize the amount of open core space available

for element matrices during matrix generation. This core space was especially critical on

the development computer, the IBM 7094-7040 DCS. Since SMA2 is so similar to SMAI, the

details of the similarities will not be repeated here; tee differences will be pointed out.

The reader is referred to the Module Functional Description (MFD) for SMAI (section 4.27).

When all rows (or, in the case of spill, the number of rows in core) for each pivot

point have been computed, each matrix element of [Mgg] is multiplied by WT_SS before being

packed onto the output data block MGG.

4.28.8 Subroutines

SMA2, like SMA!, uses the utility routines PRETRD, PREMAT and GMMATD.

The principal means of communicating an element entry of the ECPT to an element mass or

damping matrix generation routine is through /SI_2ET/. This fact is not explicitly stated in

each of the descriptions of the element routines (e.g., MR_D) given below.

The following list gives a correspondence between SMAI and SMA2 routines that are used only

(directly or indirectly) by the axisymmletricshell element routines IRIARG and TRAPRG. All

of the SMA2 routines are the same as their SMAI counterparts except for name. The reason for

duplicating these routines with different names was to maximize open core for element matrices

in SMAI and SMA2, which both reside in the same NASTRAN link. For details on each of the

routines, see the corresponding SMAI counterpart (section 4.27.8).

S_'AI SMA2

DKI DMI

DKK DMK

DKM DMM

DKINT DMINT

DKJ DMJ

DKEF DMEF

4.28-3 (.3/I/71)

FUNCTIONAL MODULE SMA2 (STRUCTURAL MATRIX ASSEMBLER - PHASE 2)

SMAI SMA2

DK89 DM89

DKIO0 DMIO0

KFAC MFAC

DKJAB DMJAB

DK219 DM219

DK211 DM211

4.2B-3a (311171)

4.28.8.1

I.

2.

MODULEFUNCTIONALDESCRIPTIONS

SubroutineName:SMA2

Entry Point: SMA2

Purpose:Themoduledriver whichparallels SMAI.

methodsectionof theMFDfor SMAI(section4.27.7).

3. Calling Sequence:CALLSMA2

4.28.8.2 Subroutine Name: SMA2A

I. Entry Point: SMA2A

2. Purpose: To generate [Mgg] and [Bgg].

for SMAI for details on SMAIA (section 4.27.8).

3. Calling Sequence: CALL SMA2A.

4.28.8.3

For further details see the

This routine parallels SMAIA. See the MFD

Subroutine Name: SMA2B

I. Entry Point: SMA2B

2. Purpose: To add a double precision 6 by 6 or 1 by 1 matrix [Ke] to the "submatrix" of

[Mgg] or [Bgg] corresponding to the current pivot point.

3. Calling Sequence: CALL SMA2B (KE,J,II,IFILE,DUMDP).

KE,J,II are as defined for subroutine SMAIB (see section 4.27.8).

IFILE - GIN_ file number of the matrix in core being added to [Mgg] or [Bgg]-integer-input.

DUMDP - A dummy double precision argument added so that the calling sequence to

SMA2B would conform to that of SMAIB.

4.28.8.4 Block Data Program Name: SMA2BD.

I. PuYpose: To set GIN@ file numbers, I/_ parameters and SMA2 overlay parameters in

/SMA21_/ and /SMA2CL/.

4.28-4

FUNCTIONP_LMODULESMA2(STRUCTURALMATRIXASSEMBLER- PHASE2)

4.28.8.5 SubroutineName:MP,_D

I. EntryPoint: MR_D

2. Purpose:Togeneratethe elementmassmatrix for a R_Delement.

3. Calling Sequence: CALL MR_D.

4.28.8.6 Subroutine Name: _gUBE

I. Entry Point: MTUBE

2. Purpose: To generate the element mass matrix for a TUBE element.

3. Calling Sequence: CALL MTUBE

4.28.8.7 Subroutine Name: MASSTQ

I. Entry Point: MASSTQ

2. Purpose: To generate an element mass matrix for any of the two-dimensional

structural elements listed under the Calling Sequence.

3. Calling Sequence: CALL MASSTQ(IARG)

IARG =

4 = TRMEM

1 : QDNEH

3 = TRBSC

3 : TRPLT

7 = QDPLT

5 = TRIAl

4 = TRIA2

2 = QUADI

l = QUAD2

6 = SHEAR

6 = TWIST

4.28-5

MODULE FUNCTIONAL DESCRIPTIONS

4.28.8.8 Subroutine Name: MBAR

I. Entry Point: MBAE

2, Purpose: To generate the "diagonal" (uncoupled) element mass matrix for a BAR

element.

3. Calling Sequence: CALL MBAR

4.28.8.9 Subroutine Name: MC_AR

I. Entry Point: MCBAR

2. Purpose: To generate the "consistent" (coupled) element ma_s n_atrix for a BAR

element.

3. Calling Sequence: CALL MCBAR

4.28.8,10 Subroutine Name: MC@NMX

I. Entry Point: MC_NMX

2. Purpose: To generate an element mass matrix for either of the two concentrated-

mass-elements listed under Calling Sequence.

3. Calling Sequence: CALL MCOrlMX(IARG)

IARG - 11

CONMI

{2 = C_NI12

4.28.8.11 Subroutine Name: MC_NE

I. Entry Point: MC_NE

2. Purpose: To generate an element mass matrix for the axisymmetric conical shell

element (C_NE).

3. Calling Sequence: CALL MC_NE

4.28-6

FUNCTIONAL MODULE SMA2 (STRUCTURAL MATRIX ASSEMBLER - PHASE 2)

4.28.8.12 Subroutine Nan:e: MASSD

I. Entry Point: 14ASSD

2. Purpose: To generate l by l element mass matrices for scalar elements MASSi, i = 1,2,3,4;

and l by l element damping matrices for scalar damping elements DAMPi, i = 1,2,3,4.

3. Calling Sequence: CALL _SSD(1)

l - Generate element mass matrix for a t._SSlelement,

2 - Generate element mass matrix for a MASS2 element,

3 - Generate element mass matrix for a F_SS3 element,

4 - Generate element mass matrix for a I4ASS4element,
I-,

5 - Generate element damping matrix for a DAMPI element,

6 - Generate element damping matrix for a D_P2 element,

7 - Generate element damping matrix for a DAMP3 element,

8 - Generate element damping matrix for a DAMP4 element.

4.28.8.13 Subroutine Name: MTRIRG

I. Entry Point: I-_RIRG

2. Purpose: To generate an element mass matrix for a triangular cross-section ring,

TRIARG, element.

3. Calling Sequence: MTRIRG.

4.28.8.14 Subroutine Name: MTRAPR

I. Entry Point: MTRAPR

2. Purpose: To generate an element mass matrix for a trapezoidal cross-section ring,

TRAPRG, element.

3. Calling Sequence: CALL MTRAPR.

4.28.8.15 Subroutine Name: MT_RDR

I. Entry Point: MT_RDR

4.28-7

2. Purpose:

element,

3. Calling Sequence:

4.28.8.16 SubroutineName:

MODULEFUNCTIONALDESCRIPTIONS

To generateanelementmassmatrix for a toroidal thin shell ring, T_RDRG,

CALLMT_RDR.

BVISC

I, EntryPoint: BVISC

2. Purpose:Togenerateanelementdampingmatrix for a VISCelement.

3. Calling Sequence:Call BVISC

4.28.8.17 SubroutineName:MBEAM

I. Entry Point: MBEAM

2. Purpose: To generate an element mass matrix for a BEAMelement.

3. Calling Sequence: CALL MBEAM

4.28.8.18 Subroutine Name: MCR_D

I. Entry Point: MCR_D

2. Purpose: To generate the "consistent" (coupled) element mass matrix for any of the

elements listed under calling sequence,

3. Calling Sequence: CALL MCR_D (IARG)

IARG :

l - R@D

1 - C_NR_D

3 - TUBE

4.28.8.19 Subroutine Name: MTRBSC

I. Entry Point: MTRBSC

2. Purpose: To generate the "consistent" (coupled) element mass matrix for a basic bending

triangle element.

3o Calling Sequence: CALL MTRBSC

4.28-8 (12-I-69)

MODULEFUNCTIONALDESCRIPTIONS

4.28.8.20 Subroutine Name: MTRPLT

I. Entry Point: MTRPLT

2. Purpose: To generate the "consistent" (coupled) element mass matrix for a triangular

plate element.

3. Calling Sequence: CALL MTRPLT

4.28.8.21 Subroutine Name: MQDPLT

I. Entry Point: MQDPLT

2. Purpcse: To generate the "consistent" (coupled) element mass matrix for a quadrilateral

plate elerent.

3. Calling Sequence: CALL MQDPLT

4.28.8.22 Subroutine Name: MTRIQD

I. Entry Point: MTRIQD

2. Purpose: To generate the "consistent" (coupled) elenent for any of the following

elements: T_IAI, TRIA2, QUADI, QUAD2.

3. Calling Sequence: CALL MTRIQD (IARG)

l - TRIAl element.

2 - TKIA2 element.
IARG =

3 - QU_I element.

4 - QUAD2 element.

4.28.8.23 Subroutine Name: MFLUD2

I. Entry Point: MFLUD2

2. Purpose: To generate the psuedo mass matrix terms for the FLUID2 and AXIF2 elements.

3. Calling Sequence: CALL MFLUD2

4.28-8a (8/I/72)

FUNCTIONAL MODULE SMA2 (STRUCTURAL MATRIX ASSEMBLER - PHASE 2)

4.28.8.24

I.

2.

3.

4.28.8.25 Subroutine Name:

I.

2.

3.

4.28.8.26 Subroutine Name: MFREE

I. Entry Point: MFREE

l •

2.

3.

Subroutine Name: MFLUD3

Entry Point: MFLUD3

Purpose: To generate the psuedo mass matrix terms for the FLUID3 and AXIF3 elements.

Calling Sequence: CALL MFLUD3

MFLUD4

Entry Point: MFLUD4

Purpose: To generate the psuedo mass matrix terms for the FLUID4 and AXIF4 elements.

Calling Sequence: CALL MFLUD4

2. Purpose: To generate the psuedo mass matrix terms for the free surface element.

element is internally generated in IFP4 from FSLIST data.

3. Calling Sequence: CALL MFREE

4.28.8.27 Subroutine Name: MSLOT

Entry Point: MSL_T

Purpose: To generate psuedo mass matrix terms for the SL_T3 and SLOT4 elements.

4.28.8.28

I.

2.

3.

Calling Sequence: CALL MSL_T (IARG)

0 = SLOT3
IARG

1 : SL_T4

Subroutine Name: MSOLID

Entry Point: MS,LID

This

Purpose: To generate the mass matrix terms for the three-dimensional solid elements.

Calling Sequence: CALL MSOLID(1)

I Element

1 TETRA
2 WEDGE
3 HEXAI
4 HEXA2

4.28-8b (8/I/72)

FUNCTIONAL MODULE SMA2 (STRUCTURAL MATRIX ASSEMBLER - PHASE 2)

4.28.9 Design Requirements

4.28.9.1 Open Core Design

The open core design for SMA2 is the same as that in SMAI with the exception that /SMA2X/

defines the beginning of open core and only four buffers are needed, one each for MGG, BGG,

ECPT and GPCT.

4.28.9.2 Common Stcrage Requirements

The common storage requirements for SMA2 are similar to those in SMAll The common blocks

/SMA2I_/, /SMA2BK/, /SMA2CL/, /SMA2ET/ and /Sr_2DP/ of SMA2 correspond to /SF_II_/, /SMAIBK/,

/SMAICL/, /SMAIET/ and /SMAIDP/ of SMAI. See the MFD for SMAI (see section 4.27.9). The

following differences are worthy of note.

I. In /SMA21@/, words 15 and 16 are undefined and words 23 through 36 define matrix

control blocks for MGG and BGG.

2. /SMA2CL/ is only 131 words in length, the last two words of /SMAICL/ being reserved

for variables unique to SMAI.

4.28.9.3 Arithmetic Considerations

Floating point arithmetic operations are carried out in double precision.

and [Bgg] are real symmetric double precision matrices.

4.28.10 DiaBnostic MessaBes

Both [Mgg]

See the diagnostic message section in the MFD for SMAI (section 4.27.10).

4.28-9 (711170)

4.29

4.29.1

4.29.2

FUNCTION_MODULEGPWG(GRIDPOINTWEIGHTGENERATOR)

FUNCTIONALMODULEGPWG(GRIDPOINTWEIGHTGENERATOR)

Entry Point: GPWG

Purpose

To con_Dutethe center of mass of the structure relative to a given point and find the

principal inertias about the center of gravity.

4.29.3 DMAP Calling Sequence

GPWG BGPDT,CSTM,EQEXIN,MGG/_GPWG/V,Y,GRDPNT/V,Y,WTMASS

4.29.4 Input Data Blocks

BGPDT

CSTM

EQEXIN

MGG

Notes:

- Basic Grid Point Definition Table.

- Coordinate System Transfor_tion Matrices.

- Equivalance between external grid or scalar numbers and internal nu_ers.

- Partition of mass matrix - g set.

I. BGPDT,EQEXIN and MGG cannot be purged.

2. CSTM must be present if some grid point of the model is not in basic

coordinates.

4.29.5 Output Data Blocks

_GPWG - Grid Point Weight Generator Output Table.

Notes: This data block cannot be purged.

4.29.6 Parameters

GRDPNT

WTMASS

- Input-integer-default = -l. GRDPNT selects the grid point about which the

inertias will be calculated. If GRDPN1 is not the external ID of a geometric

grid point, the basic origin is used.

- Input-real-default = l.O. WTMASS gives the ratio of mass to weight for the

structure. All output quantities are in weight units.

4.29-I (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.29.7 Method

The Grid Point Weight Generator module calculates the masses, centers of gravity, and

inertias of the general mathematical model of the structure. The data are extracted from the [Mgg]

matrix by using a rigid body transformation calculation. The transformation is defined by the

global coordinate displacements resulting from unit translations and rotations of the whole body

about a reference point.

Because of the scalar mass effects, the total mass may have directional properties, and the

center of gravity may not be a unique location. This effect is shown in the output by giving for

each of the three masses its own direction and center of gravity. The inertia terms are calculated

by using the directional mass effects. The axes about which the inertia terms are calculated may

not intersect. However, these axes are those which provide uncoupled rotation and translation

effects. This is the significance of the term "center of gravity". If the structural model has

been constructed using only real masses, the three masses printed out will be equal, the center of

gravity will be unique, and the axes of the inertia terms will intersect at the center of gravity.

The actual computation proceeds in 4 parts.

I. Computation of the [D] T matrix takes place in subroutine GPWGIA. Six vectors are formed

which will describe the six motions about the reference point. The matrix [D] formed from

the vectors which describe rigid body displacements in global coordinates in terms of the six

unit displacements and rotations in basic coordinates at the reference point:

(Ug} = [D] (Uo } (reference point). (I)

The method of generation is as follows:

EQEXlN is placed in core and searched for GRDPNT to obtain its internal sequence number. If

the value of the parameter GRDPNT is not the ID number of a physical grid point, the basic

origin is used. Assuming GRDPNT is a physical grid point, BGPDT is read to obtain {Ro] for the

reference point. The BGPDT file is then rewound. CSTM (if present) is placed in core and

readied for use by subroutine PRETRS. Each grid point in the BGPDT is considered in order.

If it is a scalar point, zero is stored in each of the six columns of [D] T.

If it is a grid point,

{r i} : {R i} - {R o} : , (2)

4.29-2 (8/I/72)

FUNCTIONAL MODULE GPWG (GRID POINT WEIGHT GENERATOR)

is computed where {Ri} is the basic coordinate location of the ith grid point given in the

BGPDT table and {Ro} is the location of the reference point.

The transformation matrix to the grid point,

i 0 r3 -i21
[Tr] : -r3 0 l '

r2 -rI

(3)

is formed. Subroutine TRANSS calculates the 3x3 transformation matrix [Ti] from global

coordinates to basic coordinates for the grid point. The matrix

pi T : TiT Tr1[d] : F ' -
L 0 : Ti

(4)

The rows of [d] form the columns of [D]T. The matrix [D]T is generated ais computed.

column at a time and is packed out onto a scratch file.

2. If all points were scalar points, GPWG returns; otherwise subroutine TRANPI is

called to form [D] from [D] T,

3. [Mo] is computed by two calls to subroutine SSG2B,

[Mo] : [D]T [Mgg] [D]. (5)

4. Output quantities are computed as follows:

Mo is unpacked, output and partitioned as follows:

: tr]

(The matrix is symmetric, where the superscripts t and r refer to translation and rotation

respectively.)

A check is made for inconsistent scalar masses. Let

and

t 2 (7)
6 = _/Z(Mij)

: _ i _ j. (8)

4.29-3 (8/I172)

MODULEFUNCTIONALDESCRIPTIONS

If _ > 10-3, the coordinates should be rotated. Otherwise [S] = [I]. If rotation

is necessary, the eigenvectors of [_t], {el} , {e2} , and {e3}, are determined by the

Jacobi technique. Define

[S] : [{eI} , {e2} , {e3}]. (g)

The [S] matrix is output. [Mt], [Mr] and [Mtr] are computed as follows:

[Mt] = [s]T [_t] [S], (IO)

[Mtr] : [s]T [_tr] [S], (II)

[Mr] : [s]T [_-r] [S]. (12)

The following terms, defined in the principal axis system {el}, {e2}, and {e3}, are calculated

and output: The mass terms are:

: _ (13)Mx M I'

My M 2' (14)

=Mz M 3' (15)

the "centers of gravity" are:

tr

MII

Xx : _ ' Yx -

tr

M23

Xy - My ' Yy -

tr
-M32

Xz - M ' Yz -
z

tr tr
-M13 M12

"x ' zx : (161

tr tr
M22 -M21

My ' Zy = My ' (17)

tr tr
M31 M33

Mz , Zz = Mz (18)

and the inertias are:

r 2 _ Mz y2Ill = Mll - My Zy z ' (19)

r
Il2 = 121 = -Ml2 - Mz Xz Yz ' (20)

= = r Xy Z.y ,Il3 131 -Ml3 - My

= r x2 _ Mx 2122 M22 " Mz z Zx '

(21)

(22)

4.29-4 (8/I/72)

FUNCTIONALMODULEGPWG(GRIDPOINTWEIGHTGENERATOR)

= = r - Mx Yx Zx 'I32 123 -M23

133 = M_3 MxYx2 - MyXy2 .

(23)

(24)

These terms form the symmetric matrix [I].

For principle inertias eigenvalues and eigenvectors are found such that:

°°1FIlPl IP2 0 = [Q]T [I] [Q]. (25)

[Q] contains the normalized eigenvectors (the directions of the principal inertias), and

the IPi terms are the eigenvalues. The matrices [S] and [Q] are actually coordinate

rotation matrices and show the directions of the principal masses and inertias.

4.29.8 Subroutines

Utility Subroutines PRETRS,TRANSS,TRANPI,SSG2B and GMMATS are used. See subroutine

descriptions, section 3.

4.29.8.1 Subroutine Name: GPWGIA

I. Entry Point: GPWGIA

2. Purpose: To form the [D]T matrix.

3. Calling Sequence: CALL GPWGIA(P_INT,BGPDT,CSTM,EQEXIN,DT,N_G_)

P_INT

BGPDT

CSTM

EQEXIN

DT

N_G_

- External grid point id of reference point - integer - input.

- GIN_ file number of _GPWG - integer - input.

- GIN_ file number of CSTM - integer - input.

- GIN_ file number of EQEXIN - integer - input.

- GIN_ file nu_er of file on which [D]T will be written - integer - input.

o Flag for all scalar problem- integer - output. N_G_ = 0 implies all

scalars.

4.29.8.2 Subroutine Name: GPWGIB

I. Entry Point: GPWGIB

4.29-5 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

2. Purpose: To form output quantities as given in paragraph 4 of section 4.29.7.

3. Calling Sequence: CALL GPWGIB (M_,_GPWG,WTMASS,IP)

M_

@GPWG

WTMASS

IP

- GIN_ file number of [M o] matrix - integer- input.

- GIN_ file number of _GPWG - integer - input.

- Mass to weight ratio parameter - real - input.

- External grid point id of reference point (=0 if basic origin was used)

- integer - input.

4.29.8.3 Subroutine Name: GPWGIC

I.

2.

method.

Entry Point: GPWGIC

Purpose: To compute eigenvectors and values of a 3 by 3 matrix by the classical Jacobi

3. Calling Sequence: CALL GPWGIC (B,E,EV,IFLAG)

B - 3 by 3 input matrix - real - input.

E 3 by 3 matrix of eigenvectors - real - output.

EV 3 eigenvalues - real - output.

IFLAG Error termination flag - integer - output.

not conwrge.

4.29.9 Design Requirements

GPWG requires four scratch files. Open core for GPWGIA is defined at /GPWGAI/.

core for GPWGIB is defined at /GPWGBI/.

The layout of open core is as follows:

C_MM_N /GPWBGI/

)

I 1 BGPDT entry

CSTM Data Block16 words per entry

GIN_ buffer

CSTM

If IFLAG > O, GPWGIC could

Open

4.29-6

FUNCTIONAL MODULE GPWG (GRID POINT WEIGHT GENERATOR)

C_N IGPWGAI/

INo]

_GPWG

36 words for 6 by 6 matrix

GIN_ buffer

4.29.10 Diagnostic Messages

The following fatal error messages may occur: 3007, 3008.

4.29-7

FUNCTIONAL MODULE SMA3 (STRUCTURAL MATRIX ASSEMBLER - PHASE 3)

4.30 FUNCTIONAL MODULE SMA3 (STRUCTURAL MATRIX ASSEMBLER - PHASE 3)

4.30.I Entry Point: SMA3

4.30.2 Pur__

To generate the final stiffness matrix, [Kgg], by generating a matrix of order g for each

x
general element in the model, and successively adding this matrix to [Kgg], the stiffness matrix

exclusive of general elements.

4.30.3 DMAP Calling Sequence

SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,N_GENL/V,N,NOSIMP $

4.30.4 Input Data Blocks

- General Element Input.

- Partition of stiffness matrix exclusive of general elements - g set.

GEl

KGGX

Note:

I.

2.

elements (i.e., there are no simple elements).

4.30.5 O__utputData Blocks

KGG - Partition of stiffness matrix - g set.

in the model, including general elements.

Not___e_e:KGG may not be pre-purged.

4.30.6 Parameters

LUSET

NBGENL

GEI cannot be pre-purged.

KGGX may be pre-purged. This implies that the model consists entirely of general

Contains contributions from all elements

Input-integer-no default value. LUSET is the total number of degrees of

Kx
freedom in the g displacement set. It is the order of the [gg] and [Kgg]

matrices.

Input-integer-no default value. NBGENL is the number of general elements in

the GEl data block.

4.30-I

MODULE FUNCTIONAL DESCRIPTIONS

NOSIMP -

4.30.7 Method

4.30.7.1

K x
Input-integer-no default value. If NOSIMP < O, [gg] does not exist, i.e., all

elements of the model are general elements. If NOSIMP zO, [K_g]_ does exist.

Mathematical Considerations

Two matrices can be used to form a stiffness matrix for each general element in the GEl

data block: a flexibility influence coefficient matrix, [Z], and a rigid body matrix, [S].

The former must be present and must be non-singular; the latter may or may not be present.

The set of degrees of freedom (scalar index numbers) used by [Z] is designated the "ui" set;

the set of degrees of freedom used by [S] is designated the "Ud" set. Call the length of the

u i set m, and call the length of the u d set n. [Z] is m by m, and [S] is m by n.

For each general element in the model, the stiffness matrix corresponding to the general

element, [Kge], is made up of four partitions if the u d set exists. They are:

[Kii] : [Z] -I ,

[Kid] : [Z]-I[s] ,

[Kdi] = [s]T[z] -I =

[Kdd] = [s]T[z]-I[s]

T
[Kid] ,

(1)

The four matrices must be merged such that I):

[K ge] :
K. : Kdl , dd]

and

coordinates in order of ascending scalar index numbers.

If the u d set does not exist, then

IN ge] : [Kii] =

2) the rows and columns of [K ge] must correspond to a merged list of both u i and u d

[z] -I

(2)

(3)

(4)

(5)

(6)

4.30-2

FUNCTIONAL MODULE SMA3 (STRUCTURAL MATRIX ASSEMBLER - PHASE 3)

4.30.7.2 Initialization

The GEI data block is opened, and the header record is skipped. It is determined whether

the number of general elements, f, is even or odd. This is done to insure that the result of

the final matrix addition,

where

[Kgg] = [Krs] + [Kgef] , (7)

f-l

[Krs] = [K_g] + T [Kgei] , (8)
i=l

and [Kgef] is the final general element matrix, will be written on the output data block, KGG.

Kx
If [gg] does not exist, and there is only one general element, then the GINO file number

(201) for the KGG data block is stored in IFA, the variable which contains the GIN(_file number of

the file onto which the current [Kge] matrix will be packed.

The principal logic of the module driver, S,MA3,is carried out in a loop in which, during

each pass of the loop, a [Kge] matrix is generated and added, using subroutine SSG2C, to the

running sum matrix, [Krs].

4.30.7.3 Generation and Addition of a General Element Matrix

The steps involved in the principal loop of the program are as follows:

I. The loop counter is incremented.

2. The first three words of the next logical record are read from GEl: the element id;

the length of the ui set, m; and the length of the ud set, n.

3. The matrix control blocks for the scratch files IFB and IFC are interchanged

provided that:

a. this is not the first pass through the loop;

b. this is not the second pass through the loop and the number of general element

is odd a__n_dthereare only general elements in the model;

and

c. this is not the second time through the loop and [K_g] exists.

4.30-3

MODULE FUNCTIONAL DESCRIPTIONS

4. It is determined whether the orders of the [Z] and [S] matrices are such that the

in-core matrix routines GMMATD and INVERD can be used. This is accomplished as follows.

Define

p = 2(m + n + m2 + n2 + 2mn) , (9)

q = 2(m + n + m2) + 3m , (I0)

and

r = max(p,q) . (II)

p is the number of computer words needed to store: I) the u i and u d sets in two

different sorts; 2) the double precision m by m [Z] matrix; 3) the double precision

n by n [s]T[z]'I[s] matrix; and 4) the double precision m by n [S] matrix and the double

precision m by n [Z]'I[s] matrix.

q is the number of computer words needed to store: I) the u i and u d in two different

sorts; 2) the double precision m by m [Z] matrix; and 3) 3m cells of scratch storage

to be used by subroutine INVERD.

If r is less than the available amount of core, the in-core routine, SMA3A, is Galled

to compute [Kge]. Otherwise: I) SMA3B generates [Z] and - [s]T; 2) FACTOR decomposes

[Z] into its triangular factors; 3) SSG3A computes [Z]-I; 4) SSG2B computes - [s]T[z];

5) TRANPI transposes - [s]T; 6) SSG2B computes -[Z][s]T; 7) SSG2B computes [s]T[z]-I[s];

and 8) SMA3C builds the final [K ge] matrix of order g by g.

5. The matrix [K ge] having been generated as in step 4, SSG2C is called to add [K ge] to

[Krs].

4.30.8 Subroutines

Utility routines GMMATD, INVERD, FACTOR, SSG3A, SSG2B, TRANPI and SSG2C are used in this

module.

4.30-4

4,3O .8.1

l .

4.30.8.2

I.

2.

3,

FUNCTIONAL MODULE SMA3 (STRUCTURAL MATRIX ASSEMBLER - PHASE 3)

Subroutine Name: SMA3A

2.

routines GMMATD and INVERD.

3. Calling Sequence: CALL SMA3A (MCBA)

COMMON /GENELY/ - see description below (section 4.30.9.2).

MCBA -

4. Method:

Entry Point: Sr,_3A

Purpose: To build a g by g general element matrix, [Kge], using the in-core matrix

The matrix control block corresponding to [Kge]. Word l is input; words

2 through 7 are output.

The ui set and the ud set (if present) of scalar index numbers are read into

core, and a list L is formed of length m+ n, such that L(k) = _ implies the cth entry

of the string: {Uil,Ui2,....Uim,Udl,Ud2.....Udn} is the kth smallest. The m2 single

precision elements of [Z] are read and stored at double precision locations. [Z]-l is

computed using INVERD. [S], if present, is read and stored at double precision locations.

GMMATD is called twice to compute [Z]-I[s] and [s]T[z]-I[s]. The elements of [Kge], as

defined in Equation 5, are output to the GINO file corresponding to MCBA(1) with non-zero

terms in the row and column positions specified by the ui and ud sets.

determines the sequence of elements to be output for any one column.

Subroutine Name: SMA3B

Entry Point: SMA3B

Purpose: To create [Z] and [S] from the GEI data.

Calling Sequence: CALL SMA3B (IFLAG)

C_MM_N /GENELY/ - see description below (section 4.30.9.2).

IFLAG -I IFLAG = -I implies [S] does not exist.1IFLAG l implies [S] exists. - integer - output.

4.

The list L

Method: The GEI data block is read for the row numbers and non-zero terms of [Z].

These are output in standard NASTRAN matrix format by subroutine BLDPK. IS]T is generated

in a similar manner. (- [S]T is created rather than [S] for computational ease in subse-

quent calculations - see paragraph 4 in section 4.30.7.3 above).

4.30-5

MODULE FUNCTIONAL DESCRIPTIONS

4.30.8.3 Subroutine Name: SMA3C

I. Entry Point: SMA3C

2. Purpose: To create the [K ge] matrix from [Z] -I,

3. Calling Sequence: CALL SMA3C (IFLAG, KE)

- [z] "l [s], . [s]TEz] -I and [s]T[z]-I[s].

C@MM_N /GENELY/ - see description below (section 4.30.9.2).

COMMON //LUSET size of problem.

IFLAG is as described in SMA3B. Here it implies [K ge] = [Z] -I.

KE - Matrix control block for [K ge] - integer - input/output.

4. Method: A matrix of g size is created from [Z] -I, [Z]-I[s], - [s]T[z] and [s]T[z]-I[s]

with the non-zero terms in the row and column positions specified by the u i and u d lists.

This matrix can be added to the existing [K rs] to reflect the stiffness terms of this

general element.

4.30.8.4 Block Data Subprogram: SMA3BD

Purpose: To initialize the GINO file numbers and GINO options indicators in /GENELY/,

which is discussed below.

4.30.9 Design Requirements

4.30.9.1 Open Core Design

The open core common block for the module driver SMA3 and subroutine SMA3A is defined by

the following F_RTRAN statements:

I. D@UBLE PRECISI@N DQ(1)

2. INTEGER IQ(1)

3. DIMENSION Q(1)

4. C_MMON /GENELX/ Q

5. EQUIVALENCE (IQ(1),DQ(1),Q(1))

SMA3 uses open core only for one GIN_ buffer, which is reserved for the GEl data block while

SMA3A, SMA3B, or SMA3C is executing, and which is reserved for use by SSG2C when this routine

adds [K ge] to [K rs] at the end of the principal loop in the driver.

4.30-6

FUNCTIONAL MODULE SMA3 (STRUCTURAL MATRIX ASSEMBLER - PHASE 3)

SMA3A uses low order open core as outlined in paragraph 4 in section 4.30.7 above.

The open core for subroutine SMA3B is defined at /SMAB3/ and is used for two GIN_ buffers

in high order open core.

The open core for subroutine SMA3C is defined at /SMAC3/ and is used for: l) the ui and ud

sets in low order open core and 2) six GIN_ buffers in high order open core.

4.30.9.2 Common Storage Requirements

The common block /GENELY/ is used for: l) GIN2 file numbers; 2) GIN_ option indicators;

3) matrix control blocks; and 4) zero pointers to sub-arrays in /GENELX/ when SMA3A executes.

It is defined as follows:

COMMON /GENELY/ IFGEI,IFKGGX,IF{_UT,IFA,IFB,IFC,IFD,IFE,IFF,INRI.4,_UTRW,CLSRW,CLSNRW,E_R,

NE_R,MCBA(7),MCBB(7),MCBC(7),MCBE(7),MCBF(7),MCBKGG(7)_IUI_IUD,IZI,IS,IZIS,ISTZIS,IBUFF3(3),

LEFT

Variable Definition

IFGEI,IFKGGX,IF_UT GIN_ file numbers for the two input data blocks
and the output data block respectively.

IFA GIN_ file number for the current [Kgel being

computed.

IFB,IFC GIN_ file numbers for [Krs] and [Krs] + [Kgel

matrices. They are "flip-flopped" such that
IFC = IF_UT for the final matrix addition.

IFD,IFE,IFF GIN_ file numbers for scratch files which are
used in subroutine SMA3C.

INRW,_UTRW,CLSRW,CLSNRW,E_R,NE_R GIN0 option indicators as defined in section
4.27.9.3.

MCBA,MCBB,...,MCBF,MCBKGG Matrix control blocks for the matrices corres-

ponding to IFA, IFB, ..., IFF, and IFKGXX.

IUI,IUD,IZI,IS,IZIS,ISTZIS Zero pointers to the sub-arrays in /GENELX/
corresponding to: I) u_ set; 2) uA set; 3) [Z]-';

4) IS]; 5) [z]-l[s] and 6) [s]T[z]-I[s]. Note

that IZI, IZIS, ISTZIS are zero pointers into
double precision arrays.

IBUFF3(3) Three word buffer which contains the general
element id, m and n.

LEFT The number of computer words currently remaining
in /GENELX/.

4.30-7

MODULEFUNCTIONAL DESCRIPTIONS

4.30.9.3 Arithmetic Considerations

All floating point arithmetic operations are carried out in double precision.

4.30,10 Diagnostic Messages

In SMA3A, system fatal error 2028 can occur. See section 6 of the User's Manual for details.

4.30-8

FUNCTIONAL MODULE GP4 (GEOMETRY PROCESSOR - PHASE 4)

4.31 FUNCTIONAL MODULE GP4 (GEOMETRY PROCESSOR - PHASE 4)

4.31.I Entry Point: GP4

4.31.2 Purpose

GP4 assembles the various displacement sets and builds the displacement set definition

table (USET). Additionally, for statics problems, GP4 analyzes subcases based on single-point

and multipoint constraint sets, and set parameters to control execution of the Rigid Format.

4.31.3

GP4

4.31.4

CASECC

GEOM4

EQEXIN

SIL

GPDT

Note:

4.31.5

RG

YS

USET

XX

Note:

DMAP Callin 9 Sequence

CASECC,GEBM4,EQEXIN,SIL,GPDT / RG,YS,USET,XX / V,N,LUSET / V,N,MPCFI / V,N,MPCF2 /

V,N,SINGLE / V,N,_MIT / V,N,REACT / V,N,NSKIP / V,N,REPEAT / V,N,N_SET / V,N,N_L /

V,N,NBA / C,N,SSID $

Input Data Blocks

Case Control Data Table.

- Displacement set definitions.

- Equivalence between external grid or scalar and internal numbers.

- Scalar Index List.

- Grid Point Definition Table.

Only GEBM4 may be purged.

Output Data Blocks

- Multipoint constraint equations matrix.

- Constrained displacement vector(s) set.

- Displacement set definition table.

- Reserved for future use.

YS may be purged.

4.31.6 Parameters

LUSET - Input-integer-no default.

MPCFI - Output-integer-no default.

constraints, -l otherwise.

Degrees of freedom in the g-displacen_nt set.

+l if the current subcase contains multipoint

4.31-I (811172)

MODULE FUNCTIONAL DESCRIPTIONS

MPCF2

SINGLE

_MIT

REACT

NSKIP

REPEAT -

NOSET -

N_L

NBA

SSID -

4.31.7 Method

Output; integer, no default. +I if the current subcase contains a different

multipoint constraint set from the last subcase, -I if no new multipoint constraint

set or no multipoint constraints in the current subcase.

- Output, integer, no default.

constraints, -I otherwise.

- Output, integer, no d_fault.

-I otherwise.

- Output, integer, no default.

+I if the current subcase contains single-point

+I if the model contains omitted coordinates,

+I if the model contains supports, -I otherwise.

Input and output, integer, deault = O. Number of records to skip to reach the

first record in the Case Control Data Block for the next subcase. (NSKIP = 0 for

the first subcase).

Output, integer, no default.

problem, +I otherwise.

Output, integer, no default. -I if MPCFI = -I and SINGLE : -I and OMIT : -I and

REACT = -I, +I otherwise.

Output, integer, default = +I. -I if all degrees of freedom in the model belong

to dependent displacement sets (i.e., no degree of freedom belongs to an

independent set), +I otherwise.

Output, integer, default = +I. -I if MPCFI = -I and SINGLE = -I and _MIT = -I,

+I otherwise.

Input, integer, default = O. Reserved for future use.

-I if the current subcase is the last subcase in the

CASECC is read for each subcase. Parameters are set to control the return point for the next

subcase. The user-requested constraint set numbers are extracted and saved for control of the

following steps.

The multi-point constraint cards (MPC) each define a row of a constraint matrix equation:

[R m] {u m} + [R n] {u n} : 0 (I)

4.31-2 (811/72)

FUNCTIONALMODULEGP4(GEOMETRYPROCESSOR- PHASE4)

For'eachrequestedMPCset, the MPCcardimagesare readfromGEBM4,andthe grid pointsand

their scalarcoordinates(or scalar points) areconvertedto the scalar degreeof freedomnumbers.

TheEQEXINandSILdatablocksareplacedin core, the point "id" numberis foundasthe first

entry of a pair in the first recordof EQEXIN,thecorrespondingnumberin the secondentry of the

pair is the internal grid point index. Thei th positionof the SlLcontainsthe valueof the

scalar degreeof freedomnumberfor the first degreeof freedomof point i. TheSILvalue, SILu,
for the componentc, (c = 1,2..... 6) of a grid point p is foundbythe equation:

SIL : SIL + (c - I) (2)
u p

The SIL of a point is the scalar index of its first degree of freedom. The point "id's" and

components given on the MPC cards are converted to scalar index numbers, a sorted list is formed

of the um scalar indices, (see definition below of the sets defined in USET), and the data are

written on SCRI, a scratch file. Each term in the equation is paired with a packed word giving

its equation number and its SIL value. The equation data are now sorted to group the data by each

scalar index number in order of increasing dependent um point number. This essentially creates a

Fq
column stored matrix LRg_. Each row in the matrix corresponds to a um point. Each column corre-

sponds to a unique scalar index (Ug point).

The SUP_RT (Ur), ASET (ua) and OMIT (uo) card images are read from GERM4. The grid and com-

ponent numbers are sorted and written on SCRI. The GPDT is read, and a list is formed of the

permanent single-point constraints (Usg) which were identified on the GRID bulk data cards. This

list is written on SCRI.

The SPCADD, SPCI and SPC bulk data card images identify the sets of single-point constraints

used as boundary points (Usb) and include any possible constrained displacement values (Ys). The

user-requested set of SPC cards are extracted from the CASECC data block and the SPCADD cards.

The requested SPC and SPCI card images are read, the grid and component "id" numbers are converted

to scalar indices, and a paired list of scalar indices and their corresponding displacement values

is written on SCRI. The non-zero Ys values formed in the previous step form a packed vector with

indices given by their position in the list. This is the YS data block, a vector packed relative

to the us set.

The USET data block contains one coded word for each scalar degree of freedom in the entire

structure. The word is coded to identify the set or sets of coordinates to which the scalar

4.31-3 (Bl1172)

MODULE FUNCTIONAL DESCRIPTIONS

degree of freedom belongs (see Section 2.3.13). An area of core is set equal to zero, and the

lists of u m, u o, u r and u s points are read from SCRI. The scalar index of a coordinate corre-

sponds to a position in core. The word in that position is modified to identify tile set to which

that scalar index belongs. With the urn, Uo, u r and u s points known, the Ug, u n, uf, u a and u_

points may be identified. The "nesting" of these sets follows the scheme:

U
m

u
S

uo
un

.............1
u_ I ua

Ug

USET is written as one logical record on the USET data block.

The final operation is to process each degree of freedom in USET to insure that the displace-

ment set definitions are consistent and assign any otherwise undefined degrees of freedom in USET.

The governing rule (as may be noted in the nesting scheme) is that each degree of freedom may

belong to at most one dependent subset. If any inconsistent definitions are found, they are

written on SCRI. When each point has been analyzed, EQEXIN and SIL are read into core. Then

SCRI is read, and, for each entry, an error message is queued. MESAGE is then called to abnormally

terminate GP4.

Unassigned degrees of freedom are assigned according to the following:

I. If any ASET (or ASETI) cards are present, undefined degrees of freedom will be

placed in the uo set.

2. if _MIT (or _MITI) cards are present, undefined degrees of freedom will be placed in the

u a set. These degrees of freedom may also be redundantly specified on ASET (or ASETI)

cards if desired. In this case all non-u o set degrees of freedom must be specified since

rule l applies.

3. If neither ASET (or ASETI) nor _MIT (or _MITI) cards are present, all free degrees of

freedom will be assigned to the ua set.

4.31-4 (8/1/72)

FUNCTIONALMODULEGP4(GEOMETRYPROCESSOR- PHASE4)

4.31.7.1 Definitionsof the SetsDefinedin USET

Ug All structural degreesof freedomdefinedby grid andscalar points.

um Dependentcoordinatesusedin themultipoint constraintequations. Definedas
the first degreeof freedomof anMPCcard.

un - All structural degreesof freedomexceptum.

us - All fixed points. TheUsgpointsare definedby the GRIDcardsandhavea displace-

mentof zero. TheUsbpoints aredefinedbythe SPCcardsandmayhavea constrained
displacement.

uf - All degreesof freedomin the structureexceptumandus.

uo - Theseare "omittedcoordinates"definedby _MITandBMITIcards. In statics, the
structural matrix is partitioned, andthesedegreesof freedomare solvedseparately.

In dynamics,the displacementsof thesepointsareapproximatedby their static

displacementsundermassloads.

ua - Theseare the unconstraineddegreesof freedomof the system.Theyincluderigid
bodymodesin dynamics.

ur - Theseare fictitious supportsdefinedby the SUP_RTcards. In dynamicsandinertia
relief the elastic displacementsaremeasuredrelative to thesepoints.

u_ - Thisset includesall degreesof freedomnot definedby the um,us, uo andur points.
Thestiffness matrixdefinedby thesepoints is usedfor the solution of displacements

versusloads.

4.31.8 Subroutines

The module GP4 consists of a main subroutine, GP4, and an auxiliary subroutine, GP4PRT.

4.31.8.1 Subroutine Name: GP4PRT

l •

2.

Entry Point: GP4PRT

Purpose:

a. Prints, at user request via DIAG 21, a list of degrees of freedom. For each
degree of freedom, an indication is made identifying the sets to which it belongs.

b. Prints, at user request via DIAG 22, the contents of selected displacement sets.
For each set, a list of all degrees of freedom belonging to the set is given.

4.31-5 (8/I172)

MODULE FUNCTIONAL DESCRIPTIONS

3,

4.

Calling Sequence: CALL GP4PRT (BUF)

Method: The DIAG flags are tested and local variables set. Table EQE×IN is then read

into open core and sorted. If DIAG 21 is on, table USET (already in open core) is

examined and the external degree of freedom is extracted from EQEXIN and printed along

with the set indications. If DIAG 22 is on, transpose process takes place.

4.31.8.2 Subroutine Name: SCALEX

I. Entry Point: SCALEX

2. Purpose: Decodes packed component codes.

3. Calling Sequence: CALL SCALEX (I,C,L)

I = Value to be decoded

C = If non-positive, return after loading I into L(1).

L = Array into which the decoded values are placed.

4.31.9 Design Requirements

The maximum storage requirement for GP4 is one word per degree of freedom (i.e., LUSET = 6*

(number of grid points) + number of scalar points) plus one GIN_ buffer. Its open core is defined

by /GP4C_R/. Two scratch files are used by GP4.

4.31.10 Diagnostic Messages

The following messages may be issued by GP4:

2045, 2048, 2049, 2050, 2051, 2052, 2053, 2101, 3008, 3001, 3002, 2110

4.31-6 (8/I/72)

FUNCTIONAL MODULE GPSP (GRID POINT SINGULARITY PROCESSOR)

4.32

4.32.1

4.32.2

FUNCTIONAL MODULEGPSP (GRID P_INT SINGULARITY PRBCESS_R).

Entry Point: GPSP,

The GPST data block contains data on possible stiffness matrix singularities. These singu-

larities may be removed through the application of single or multipoint constraints. The GPSP

module checks each singularity against the list of constraints, and if the singularity is not

removed, writes data for warning the user.

4.32.3 DMAP Callin9 Sequence

GPSP GPL,GPST,USET,SIL/_GPST $

4.32.4 Input Data Blocks

GPL - Grid Point List.

GPST - Grid Point Singularity Table.

USET - Displacement set definitions table.

SIL - Scalar Index List.

Note: No input data block can be purged.

4.32.5 Output Data Blocks

OGPST - Unremoved Grid Point Singularities. This data block will be processed by the _FP

(Output File Processor) module.

4.32.6 Parameters

None.

4.32.7 Method

USET is read into core. The USET data block contains one word for each degree of freedom in

the structural model. This word identifies the displacement coordinate sets to which the coordi-

nate belongs. Each entry in the GPST data block contains the order of the singularity and the

scalar index numbers of the degrees of freedom involved. The logic of the algorithm depends on

the order of the singularity. For each type the logic is:

I. If order = l, the contents of the GPST data are:

a. _RDER : 1

4.32-I

MODULE FUNCTIONAL DESCRIPTIONS

b. Number of words following

c. NI

d.
N2 1 may not appear

e. N3)

NI, N2 and N3 are the scalar indices of the degrees of freedom which will remove the

singularity if constrained. If the singularity is not removed, the _GPST data is output.

2. If order = 2:

a. CRDER = 2

b. Number of words following

c. N11

d. N21

e. N1z

f. N2z
may not appear

g. N13

h. Nz3

Each pair of indices identifies two degrees of freedom which cause the singularity. If

both indices for any pair belong to the USET (UM or US), the singularity is removed. If

only one of the degrees of freedom in a pair is constrained by a u s or u m coordinate, the

singularity order is now _RDER = I. The numbers listed are not unique, and more than one

of the Nij indices may belong to the u s or um sets. Keeping the same sequence, the

unconstrained scalar indices in each partially constrained pair is listed in the _GPST in

the form for ORDER = I.

3. If order = 3:

a. _RDER = 3

b. Number of words following

c. NI

d. N2

e. N_

All three indices (NI, N2, and N3) must belong to the us or u m sets to remove the

4.32-2

FUNCTIONAL MODULE GPSP (GRID POINT SINGULARITY PROCESSOR)

singularity. If one or two of the coordinates are constrained, the order is two or one, and

the remaining scalar indices or index is listed in the _GPST.

If any singularities are unremoved, a message is given to this effect. Also the SIL

values must be converted to external grid point-component notation for user readability.

The first time an unremoved singularity is detected, SIL is read into core beneath USET, and

GPL is placed beneath SIL. Each SIL value is looked up in SIL for a pointer into GPL to the

external grid point ID. Scalar points are differentiated from grid points. Data is

output to the _GPST in the order: grid point ID, type, singularity order and components.

When all entries in the GPST have been processed, the routine returns.

4.32.8 Subroutines

None.

4.32.9 Design Requirements

Open core is defined at /GPSPA/.

C_I_N /GPSPS/

USET

SIL

GPL

_GPSP
Buffer

GPSP
Buffer

Scratch
Buffer-

_SET,GPL,SIL

}

}

}

LUSET (Length of USET)

LSIL+I (Length of SIL+I)
Last cell has LUSET stored

LGPL (Length of GPL)

GIN_ buffer

GIN_ buffer

GIN_ buffer

4.32.9.1 Allocation of Core Storage

If no singularities exist, USET plus two GIN_ buffers must be held in core.

exist, USET, SIL, 6PL plus three GIN_ buffers must be held in core.

If singularities

4.32-3

MODULEFUNCTIONAL DESCRIPTIONS

4.32.10 Diagnostic Messages

The following diagnostic messages may occur: 3007 (if the GPST does not contain legal SIL

numbers, indicating a programming error); 3008 (if the core storage requirements given in section

4.32.9.1 are not met).

4.32-4

FUNCTIONALMODULEMCEI(HULTIPOINT CONSTRAINT ELIMINATOR - PHASE l)

4.33 FUNCTIONAL MODULE MCEI (MULTIPOINT CONSTRAII_TELIMINATOR - PHASE l)

4.33.1 Entry Point: MCEI

4.33.2 Purpose

MCEI partitions [Rg] into [Rm] and [Rn] and then solves the matrix equation [Rm] [Gm]

-[Rn] for [Gm].

4.33.3 DMAP Callin9 Sequence

MCEI USET,RG/GM $

4.33.4 Input Data Blocks

- Displacement set definitions table.

- Multipoint constraint equations matrix.

Neither USET nor RG may be purged.

USET

RG

Note:

4.33.5 Output Data Blocks

GM

Note:

4.33.E

Multipoint constraint transformation matrix - m set.

GM may not be purged.

Parameters

None

4.33.7 Method

[Rg] is a matrix with each row defining a constraint equation. The row scalar indices

correspond to the um set of coordinates and the column indices correspond to the Ug set. The first

operation of MCEI is to partition [Rg] into [Rm] and [Rn]. MCEIA performs this operation by

initializing /PARMEG/ and calling PARTN (see section 3.5.6 for PARTN details).

The second operation of MCEI is to solve the matrix equation

[Rm] [Gm] = -JR n] (I)

4.33-I

MODULE FUNCTIONAL DESCRIPTIONS

for [Gin]. If [Rm] is diagonal, tile operation is straightforward, In this case MCEID is

called. The terms -rii are stored in core, the [Rn] matrix is read interpretively by

INTPK, and the terms of [Gm] are Formed from the equation

r..

gij r.
II

where the terms in the numerator belong to [Rn] and those in the denominator belong to [Rm].

[Rm] is not diagonal, Equation 1 is solved by decomposition and forward-backward substitution.

In this case, MCEIB is called. MCEIB performs an unsymmetric decompositiun of [Rm] by

initializing /DC_MPX/ and calling DECOMP. MCEIC is then called by MCEI. MCEIC performs a

forward-backward substitution to solve for [Gm] by initializing /GFBSX/ and calling GFBS.

See section 3.5.15 and 3.5.19 for further details on DECOMP and GFBS, respectively.

4.33.8 Subroutines

4.33.8.1 Subroutine Name: MCEIA

I. Entry Point: MCEIA

2. Purpose: To partition [Rg] into [Rm] and [Rn].

3. Calling Sequence: CALL MCEIA

4.33.8.2 Subroutine Name: MCEIB

I. Entry Point: MCEIB

2. Purpose: To decompose [Rm] into lower and upper triangular factors.

3. Calling Sequence: CALL NCEIB

4.33.8.3 Subroutine Name: MCEID

I. Entry Point: MCEID

2. Purpose: To solve the matrix equation [Rm] [Gm]

diagonal.

= [R n] for [Gin] where [Rm] is

3. Calling Sequence: CALL MCEID

4.33.9 Design Requirements

4.33-2

(2)

If

FUNCTIONAL MODULEMCEI (MULTIPOINT CONSTRAINTELIMINATOR - PHASE I)

4.33.9.1 Allocation of Core Storage

The maximum core storage requirement in the module is one double precision vector in

the um displacement set plus three GINO buffers.

4.33.9.2 Environment

Communication of GIN_ file names to each of the phases of MCEI occurs through blank

C_,I_N. The four phases are designed so that each may be in a separate overlay segment.

core for each of the phases is as follows:

MCEIA: /MCEAI/

MCEIB: /MCEBI/

MCEIC: /MCECI/

MCEID: /MCEDI/.

4.33.10 Diagnostic Messages

The following messages may be issued by MCEI:

3005, 3016

Open

4.33-3

4.34

4.34.1

4.34.2

FUNCTIONAL MODULE MCE2 (MULTIPOINT CONSTRAINT ELIMINATOR - PHASE 2)

FUNCTIONAL MODULE MCE2 (MULTIPOINT CONSTRAINT ELIMINATOR - PHASE 2)

Entry Point: MCE2

Purpose

MCE2 partitions the stiffness matrix [Kgg] into [Knn], [Kmn] and [Kmm] and then performs

the matrix reduction [Knn] = [_nn] + [GmIT [Kmn] + [_mnIT [Gm] + [Gm]T [_mm] [Gm]

Similar partitions and reductions are performed on [Mgg], [Bgg] and [K_g] if these matrices

are not purged.

4.34.3 D[CAPCalling Sequence

MCE2 USET,GM,KGG,MGG,BGG,K4GG/KNN,MNN,BNN,K4NN $

4.34.4 Input Data Blocks

USET

GM

KGG

MGG

BGG

K4GG

Note:

- Displacement set definitions table.

- Multipoint constraint transformation matrix - m set.

- Partition of stiffness matrix - g set.

- Partition of mass matrix - g set.

- Partition of damping matrix - g set.

- Partition of structural damping matrix - g set.

MGG, BGG and K4GG may be purged.

4.34.5 Output Data Blocks

KNN

MNN

BNN

K4NN

Note:

- Partition of stiffness matrix - n set.

- Partition of mass matrix - n set.

- Partition of damping matrix - n set.

- Partition of structural damping matrix - n set.

MNN, BNN or K4NN may be purged only if MGG, BGG or K4GG is purged.

4.34.6 Parameters

None

4.34-I

MODULEFUNCTIONALDESCRIPTIONS

4.34.7 Method

Using subroutine UPART to generate row and column partitioning vectors and subroutine

MPART to perform the actual partitioning, [Kgg] is partitioned as follows:

l _
F nn i Knm 1

_ -- -,- -- - . (I)
Lmn , Kmm]

Subroutine ELIM is called to perform the following matrix reduction:

[Knn] = [Knn] + [Gm]T [_mn] + [Kmn]T [Gm] + [Gm]T [_m] [Gm]. (2)

, K4
For each of the data blocks corresponding to the matrices [Mgg], [Bgg] [gg] which is not

purged, the above partitioning and matrix reductions are performed.

4.34.8 Subroutines

Calls are made to the following matrix utility routines:

UPART see section 3.5.9 for details

MPART see section 3.5.9 for details

ELIM see section 3.5.22 for details

4.34.9 Design Requirements

4.34.9.1 Allocation of Core Storage

The maximum storage requirement for MCE2 is four times the number of degrees of freedom

in the un displacement set plus one GIN@ buffer.

4.34.9.2 Environment

The module MCE2 consists of one subroutine, MCE2. Calls are made to the matrix utility

routines as indicated above. Six scratch files are used.

4.34-2

FUNCTIONAL MODULE SCEI (SINGLE-POINT CONSTRAI:_TELIMINATOR)

4.35 FUNCTIONAL MODULE SCEI

4.35.1 Entry Point: SCEI

4.35.2 Pu___ose

(SINGLE-POINT CONSTRAINT ELIMINATOR)

4.35.5

To reduce the n set matrices to f set matrices by removing the single-point constraints.

4.35.3 DMAP Callinq Sequence

SCEI USET,KNN,MNN,BNN,K4NN/KFF,KFS,KSS,MFF,BFF,K4FF/ $

4.35.4 Input Data Blocks

USET - Displacement set definitions table.

KNN - Partition of stiffness matrix - n set.

MNN - Partition of mass matrix - n set.

BNN - Partition of damping matrix - n set.

K4NN - Partition of the structural damping matrix - n set.

Notes: I. USET cannot be purged.

2. KNN,MNN,BNN and K4NN can be purged.

3. At least one degree of freedom must belong to the f and s sets.

Output Data Blocks

KFF - Partition of stiffness matrix after single-point constraints have been

removed - f set.

KFS - Partition of stiffness matrix after single-point constraints have been

removed.

KSS - Partition of stiffness matrix after single-point constraints have been

removed - s set.

MFF - Partition of mass matrix after single-point constraints have been removed -

s set.

BFF - Partition of damping matrix after single-point constraints have been removed -

f set.

K4FF - Partition of structural damping matrix with single-point constraints removed -

f set.

4.35-I

MODULE FUNCTIONAL DESCRIPTIONS

4.35.6 Parameters

None

4.35.7 Method

The matrices are partitioned using USET(UN,UF,US) as follows (see section 1.7 for details):

I. If [Knn] exists:

[Knn] "-_> __Kff !Kf_s_] (I)---i- °

LKsfiKss]

The [Kff], [Kfs] and [Kss] partitions are generated and saved.

2. If [Mnn] exists:

3. If [Bnn] exists:

K4
4. If [nn] exists:

: Mfs

[Mnn] :> LMsfff" ! Mss"
(2)

[Bnn] :> -B---,-B-
E sf ; ss

(3)

K4 _ i K4s

Inn] => L"t,,
4

For the [Mnn], [Bnn] and [Knn] matrices, only the "ff" partition is generated and saved.

One call to UPART followed by 4 calls to MPART accomplishes the above tasks.

4.35-2

FUNCTIONAL MODULE SCE] ($1NGLE-POINT CONSTRAINT ELIMINATOR)

4.35.8 Subroutines

UPART and MPART are called. See subroutine description in section 3.5._

4.35.9 Design Requirements

One scratch file is necessary.

4.35-3

FUNCTIONAL MODULE SMPI (STRUCTURAL MATRIX PARTITIONER - PHASE l)

4.36 FUNCTIONAL MODULE SMPI (STRUCTURAL MATRIX PARTITIQ_IER - PHASE])

4.36.1 Entry Point: SMPI

Purpose4.36.2

SMPI partitions [Kff] into [Kaa], and [Koa] and [Koo]. The matrix equations [Koo] [Go] : -[Koa]

is solved for [Go]. [Kff] is then reduced by the matrix equation [Kaa] = [Kaa] + [Koa]T [Go].

If [Mff] is not purged, it is reduced by the equation [Maa] = [Maa] + [Go]T [Moa] + [Moa]T [GO]

+ [Go]T [Moo] [Go]. Similarly, [Bff] and [K_f] are reduced.

4.36.3 DMAP Calling Sequence

SMPI

4.36.4

USET

KFF

MFF

BFF

K4FF

Note :

4.36.5

G_

KAA -

K00 -

L@O -

u_o -

MAA -

M_ -

M_A -

BAA -

K4AA -

USET,KFF,MFF,BFF,K4FF/GO,KAA,KBO,LOO,UO_,MAA,MOO,MOA,BAA,K4AA $

Input Data Blocks

- Displacement set definitions table.

- Partition of stiffness matrix - f set.

- Partition of mass matrix - f set.

- Partition of damping matrix - f set.

- Partition of structural damping matrix - f set.

MFF, BFF or K4FF may be purged.

Output Data Blocks

Structural matrix partitioning transformation matrix.

Partition of stiffness matrix - a set.

Partition of stiffness matrix - o set.

Lower triangular factor of KOOB - o set.

Upper triangular factor of KO_B - o set.

Partition of mass matrix - a set.

Partition of mass matrix - a set.

Partition of mass matrix.

Partition of damping matrix - a set.

Partition of structural damping matrix - a set.

4.36-I (8/I/72)

Note:

MODULE FUNCTIO_IAL DESCRIPTIONS

4.36.6

I. U_@ and L_ are not standard form matrices. Their format is comnatible only for

input to subroutine FBS.

2. HAA, rl_, H_A, BAA or K4AA may be purged only if MFF, BFF or K4FF are purged.

Parameters

None.

4.36.7 Hethod

Using subroutine UPART to generate row and column partitioning vectors and subroutine MPART

to perform the actual partitioning, [Kff] is partitioned as follows:

Kaa I Kao

[Kff]_> _ - - (I)

I KoojL K°a I

Subroutine FACTOR is called to decompose [Koo] into triangular factors. Subroutine S_LVER

is called to perforn_ a fo_ard-backward substitution solving for [G o] in the matrix equation

[Koo] [G o] = -[Koa] ,

and computing [Kaa] from the equation

[Kaa] = [Kaa] + [Koa] [G O] •

For each of the data blocks [Mff], [Bff], [K_f] which is not purged, the above

partitioning operation is performed and the matrix reductions:

[Maa] = [Maa] + [Go]T [Moa] + [Moo IT [G O] + [Go]T [[Ioo] [G o] ,

[Baa] = [Baa] + [Go IT [Boa] + [Boa]T [G O] + [Go]T [Boo] [G o] ,

[K4aa] = [_4aa] + [Go]T [K4oa] + 4 T [K4oo][Koa] [G O] + [Go]T [G o] ,

(2)

(3)

(4)

(5)

(6)

are performed by subroutine ELIM.

4.36-2 (8/I/72)

FUNCTIONAL_.YJDULES_.IPI(STRUCTURALMATRIXPARTITIONER- PHASEI)

4.36.8 Subroutines

Calls are made to the following matrix utility routines:

UPART See subroutine descriptions - Section 3.5.9 for details

MPART See subroutine descriptions - Section 3.5.9 for details

FACTOR See subroutine descriptions - Section 3.5.23 for details

S_LVER See subroutine descriptions - Section 3.5.20 for details

ELIM See subroutine descriptions - Section 3.5.22 for details

4.36.9 Design Requirements

4.36.9.1 Allocation of Core Storage

The maximum storage requirement for SMPI is four times the number of degrees of freedom in

the ua displacement set plus one GlrIO buffer.

4.36.9.2 Environment

The module SMPI consists of one subroutine, SMPI. Calls are made to the matrix utility

routines indicated above. Six scratch files are used.

The matrix multiply-add routine is used by ELIM to perform the matrix reductions described

by equations 3, 4, 5 and 6. For equations 4, 5 and 6, the reduction is done in three phases as

shown below for the mass matrix.

[A] = [Moo] [G o] + [Moa] (7)

[B] = [Moa]T [G o] + [Maa] (8)

[Maa] = [Go]T [A] + [B] (9)

4.36-3 (811172)

FUNCTIONAL MODULE RBMGI (RIGID BODY MATRIX GENERATOR - PHASE l)

4.37 FUNCTIONAL MODULE RBMGI (RIGID BODY F_TRIX GENERATOR - PHASE l)

4.37.1 Entr_ Point: RBMGI

4.37.2

RBMGI partitions [Kaa] into [K_], [K_r] and [Krr]. If [Maa] is not purged, it is

partitioned similarly.

4.37.3 DMAP Callin_ Sequence

RBMGI USET,KAA,MAA/KLL,KLR,KRR,MLL,MLR,MRR $

4.37.4 Input Data Blocks

USET - Displacement set definitions table.

KAA - Partition of stiffness matrix - a set.

Fb_A - Partition ofmass matrix - a set.

Note: USET may not be purged.

4.37.5 Output Data Blocks

KLL Partition of stiffness matrix - _ set.

KLR Partition of stiffness matrix.

KRR Partition of stiffness matrix - r set.

MLL - Partition of mass matrix - _ set.

MLR - Partition of mass matrix.

MRR - Partition of mass matrix - r set.

Note: Output data blocks may be purged only if the corresponding input data block is

purged.

4.37.6 Parameters

None

4.37.7 Method

Using subroutine UPART to generate row and column partitioning vectors and subroutine

4.37-I

MODULEFUNCTIONAL DESCRIPTIONS

MPART to perform the actual partitioning, [Kaa] is partitioned as follows:

[! _7[Kaa]:> - 'K '
Kr_ ' rr]

(1)

Similarly, if [Maa] is not purged, it is partitioned,

4.37.8 Subroutines

RBMGI calls the following matrix utility routines:

UPART_ see section 3.5.9 for details.

MPART

4.37.9 Design Requirements

4.37.9.1 Allocation of Core Storage

Storage requirements for RBMGI are minimal since no unpacked vectors are held in core.

4.37.9.2 Environment

The module RBMGI consists of one subroutine, RBMGI. Calls are made to the matrix

utility routines indicated above. One scratch file is used.

4.37-2

4.38

4.38.1

FUNCTIONAL MODULE RBMG2 (RIGID BODY MATRIX GENERATOR - PHASE 2)

FUNCTIONAL MODULE RBMG2 (RIGID BODY MATRIX GENERATOR - PHASE 2)

Entry Point: RBMG2

4.38.2 Purpose

LLL -

ULL -

Notes

RBMG2 decomposes [K_£] into its triangular factors [L_£] and [U£_].

4.38.3 DMAP Callin9 Sequence

RBMG2 KLL/LLL,ULL/V,N,P_WER/V,N,DET $

4.38.4 Input Data Blocks

KLL - Partition of stiffness matrix - Z set.

Note: KLL may not be purged.

4.38.5 Output Data Blocks

Lower triangular factor of KLL - £ set.

Upper triangular factor of KLL - £ set.

I. LLL and ULL may not be purged.

2. ULL is not a standard upper triangular matrix.

for input to subroutine FBS.

4.38.6 Parameters

4.38.7 Method

Output-integer-default = I.

Output-real-default = l.O.

det [Kz_] = DET*IOP_WER

Its format is compatible only

Power of I0 in the determinant of KLL.

Magnitude of determinant of KLL, i.e.,

4.38-I

RBMG2 calls the matrix utility routine FACTOR (see section 3.5.23 for FACTOR details).

RBMG2 calls subroutine FACTOR to perform the decomposition of [K££] into [L_] and [Ucz].

4.38.8 Subroutines

MODULE FUNCTIONAL DESCRIPTIONS

4.38.9 Design ReRuirements

For allocation of core storage, see subroutine SDC_MP (section 3.5.14).

consists of one subroutine, RBMG2. Three scratch files are used.

The module RBMG2

4.38.10 Diagnostic Messages

Message number 3005 may be issued by RBMGI.

4.38-2

FUNCTIONAL MODULE RBMG3 (RIGID BODY MATRIX GENERATOR - PHASE 3)

4.39 FUNCTIONAL MODULE RBMG3 (RIGID BODY MATRIX GENERATOR - PHASE 3)

4.39.1 Entry Point: RBMG3

4.39.2 Purpose

RBMG3 solves for the rigid body transformation matrix [D] from the equation

[K_] [D] : -[K_r]

The rigid body error ratio, c, is computed from

E : II[Krr] + [Kcr]T [D]II

ll[Krr]II

Note: The absolute value II II is the square root of the sum of the

squares _,,,_1_k_-is" not a determinant).

4.39.3 DM_P Cal!in 9 Sequence

RBMG3 LLL,ULL,KLR,KRR/DM $

4.39.4 Input Data Blocks

LLL - Lower triangular factor of KLL - _ set.

ULL - Upper triangular factor of KLL - _ set.

KLR - Partition of stiffness matrix.

KRR - Partition of stiffness matrix - r set.

Note: Input data blocks may not be purged.

4.39.5 Output Data Blocks

DM - Rigid body transformation matrix.

Note: The DM data block corresponds to the matrix [D] and may not be purged.

4.39.6 Parameters

None.

(I)

(2)

4.39-I (811172)

MODULE FUNCTIONAL DESCRIPTIONS

4.39.7 Method

Subroutine S_LVER is called to perform the operations in Equation land 2.

4.39.8 Subroutines

RBMG3 calls the matrix utility routine S_LVER and has no auxiliary subroutines. See section

3.5.20 for S_LVER details.

4.39.9 Design Requirements

For allocation of core storage, see subroutines FBS (section 3.5.17) and MPYAD (section 3.5.12).

Two scratch files are used.

4.39-2

4.40

4.40.1

4.40.2

FUNCTIONALMODULERBMG4(RIGIDBODYMATRIXGENERATOR- PHASE4)

FUNCTIONALMODULERBHG4(RIGIDBODYMATRIXGENERATOR- PHASE4)

Entry Point: RBMG4

RBMG4 computes the rigid body mass matrix [mr] from the matrix equation

[mr] = [Mrr] + [D]T [M_r] + [Mcr]T [D] + [D]T [M_] [D].

4.40.3 DMAP Callin_ Sequence

RBMG4 DM,MLL,MLR,MRR/MR $

4.40.4 Input Data Blocks

DM - Rigid body transformation matrix.

MLL - Partition of mass matrix - _ set.

MLR - Partition of mass matrix.

t_n,4_ - Partition of _ss matrix - r set.

Notes:

I.

2.

MR

4.40.5

4.40.6

No input data block may be purged.

The DM data block corresponds to the matrix [D] in Equation I.

Output Data Blocks

Rigid body mass matrix - r set.

Parameters

_one

4.40.7 Method

Subroutine ELIIIis called to compute [mr] as in Equation l (see section 3.5.22 for ELIM

details).

(1)

4.40-I

MODULEFUNCTIONALDESCRIPTIONS

4.40.8 Subroutines

RBMG4consists of one subroutine, RBMG4.

Matrix utility routine ELIM (section 3.5.22) is called by RBMG4.

4.40.9 Design Requirements

For allocation of core storage, see subroutine MPYAD (section 3.5.12). Three scratch files

are used.

4.40-2

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE l)

4.41 FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE l)

4.41.I Entry Point: SSGI

4.41.2

To compute the static loads, thermal loads, and enforced deformation loads selected by the

user.

4.41.3 DMAP Callin9 Sequence

SSGI SLT,BGPDT,CSTM,SIL,EST,MPT,GPTT,EDT,MGG,CASECC,DIT/PG/V,N,LUSET/V,N,NSKIP

4.41.4 Input Data Blocks

SLT - Static Loads Table.

BGPDT - Basic Grid Point Definition Table.

CSTM - Coordinate System Transformation Matrices.

SIL - Scalar Index List.

EST - Element Summary Table.

MPT - Material Property Table.

GPTT - Grid Point Temperature Table.

EDT - Element Deformation Table.

MGG - Partition of mass matrix - g set.

CASECC -

DIT

Notes:

I.

Case Control Data Table.

Direct Input Tables.

SLT, BGPDT, SIL cannot be purged if external static loads or LOAD cards are selected

in CASECC.

2. CSTM cannot be purged if any grid point or load references a coordinate system other

than basic.

3. EST, MPT cannot be purged if thermal or element deformation loads are selected.

4. GPTT cannot be purged if thermal loads are applied.

5. EDT cannot be purged if element deformation loads are selected.

4.41-I

MODULEFUNCTIONALDESCRIPTIONS

6. MGGcannotbepurgedif GRAVITYor RF_RCEloadsareapplied.

7. CASECCcannotbepurged.

8. DITcannotbepurgedif temperaturedependentmaterialsare loaded.

4.41.5 Output Data Blocks

PG - Static load vector matrix giving static loads - g set.

Note: PG can never be purged.

4.41.6 Parameters

LUSET

NSKIP

4.41.7

Input-integer-no default. LUSET defines length of PG.

Input-integer-no default. One static load is built for each CASECC record

starting with NSKIP + l as long as the boundary conditions are constant.

Overview of the Method Used in SSGI

The purpose of the first phase of static solution calculation (module SSGI) is the generation

of the load vectors on the whole structure. The structure may be loaded in three different ways:

I. Simple applied loads and moments may be given to grid and scalar points. Pressure

loads may be applied to an area defined by three or four grid points. Centrifugal force

fields may also be defined.

2. Thermal and enforced deformation loads are generated by using the structural element

characteristics. The loads on the connected grid points are equivalent to fixing the

displacements and replacing the element by the load it would apply to the points.

3. Gravity loads are dependent on the mass characteristics of the structure. A gravity

load is produced by generating a vector of accelerations on all grid points in the structure

and pre-multiplying the vector by the structural mass matrix.

The details on load vector generation for these three different types of loading are given in

sections 4.41.8, 4.41.9 and 4.41.I0 below. The function of module SSGI is to read the case control

data and extract the necessary load set data, calculate load vectors for each requested load set,

and combi;_ethese sets to produce the loads requested for all subcases using the same boundary.

condition.

4.41-2

FUNCTIONALMODULESSGI(STATICSOLUTIONGENERATOR- PHASEl)

4.41.7.] ModuleInitialization

Commonblock/L_ADX/, which contains GIN_ file numbers for input data files and position

pointers, is initialized.

A list of all external load sets is extracted from the SLT. (This must be less than lOl.)

CASECC is skipped forward NSKIP records (in case several boundary conditions are being solved in

one run). For each succeeding record which is not an eigenvalue record, not a symmetry record,

not a differential stiffness record, and for which the boundary conditions are those for the

current loop (SPC and MPC sets), a list is made of each thermal or enforced deformation load. The

external loads selected are marked in the above list. If a selected external load is not in the

above list, the L_AD cards are read in and their component id's searched. A L_AD card may cause

additional members to be selected. A composite list is created which contains:

External load id°s

selected ones marked < lO0

Thermal load id's < lO0

Enforced deformation load id's < lO0

< lO0

If there is no record which allows construction of a load, SSGI aborts. If a selected external

load id does not exist either as a L_AD card or simple load set, SSGI aborts. (Subroutine SSGIA).

4.41.7.2 Individual Load Vector Generation

Each requested set of loads is used to generate a {P_} load vector. The vectors are generated

one at a time in core and written on the PG temporary file, a scratch file. Files PG temporary,

SLT, BGPDT, CSTM and SIL are opened. The vector generation depends on the type of load and type

of input data. Details are given in sections 4.41.8, 4.41.9 and 4.41.I0 below.

4.41-3

MODULE FUNCTIONAL DESCRIPTIONS

4.41.7.3 Subcase Load Vector Generation

Each simple load set, j, produces a {P_} load vector, and each subcase may be a combination

of various simple load sets. As each load set vector is formed, it is written on PG temporary.

When all sets have been generated, the CASECC data block and the L_AD card images are read again.

A table is formed for each subcase consisting of the required set number and the scale factor for

each set if given on a L_AD card. The file containing the load vectors for the sets is read for

each subcase, c, and added to a {P_} load vector. The {P_} load vectors are packed and written

as the PG data block in standard NASTRAN matrix form.

4.41.8 Direct Applied Loads

Direct loads are applied to the structural model by means of F_RCE, F_RCEI, F_RCE2, GRAV,

MOMENT, MOMENTI, MOMENT2, PLOAD, PLEAD2, RFORCE, and SL_AD Bulk Data Cards and the PRESAX card

which is used for the axisymmetric conical shell problem only.

4.41.8.1 F_RCE and M_MENT Card Processing

The data described by a F_RCE or MBMENT data card are given as follows:

N = Grid point index;
P

Nc = Coordinate system number;

S = Scalar factor; and

The BGPDT data for the point are determined.

equals Nc, the vector is

IAII{p} = A 2 •

A3

If the global coordinate number, Ng,

(1)

for the point

{Pg} = S {P} , (2)

where the row index is determined from SIL. If Ng _ Nc, [Tg] and [Tc] are calculated using the

location coordinates and the two local coordinate systems (subroutines GLBBAS and BASGLB). The

4.41-4 (811172)

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE l)

load in global coordinates is:

= S [Tg]T[Tc] {P} . (3){Pg}

If a F_RCE card is used, the loads are added to the first three positions for the grid point in

the load vector. If a MgMENT card is used, the loads are added to the last three positions.

(Subroutine DIRECT).

4.41.8.2 F_RCEI and M_MENTI Card Processing

The data described by F_RCEI or M_MENTI card are given as follows:

Np = Application point number;

S = Load magnitude;

NI,N2 = Grid point numbers describing the
vector direction of the load.

The basic coordinates of the points Nl, N2 and Np are found in the BGPDT.

PER,_T and FNDPNT). If {R_} and {R2} are the vectors corresponding to Nl

direction is:

(Subroutines

and N2, the load

{R2} - {RI}

{d} = I{R2} _ {R_} I. (4)

The coordinate transformation [Tg] for point Np is calculated (Subroutine BASGLB).
The load

vector in global coordinates is:

{Pg} : S [Tg]T{d} (5)

If a F_RCE1 card was used the values are added to the first three coordinates, starting with the

SIL number, in the load vector. If a M_MENT1card was used, the values are added to the last

three (subroutine TP_NT).

4.41.8.3 F_RCE2 and M_MENT2Card Processing

The data on a F_RCE2 or M_MENT2card are as follows:

N = Application point number;
P

S = Load magnitude;

4.41-5

MODULE FUNCTIONAL DESCRIPTIONS

NI,N2,N3,N 4 are such that the direction of the force is
determined by Equation 6 below.

The algorithm is similar to the one for the F_RCEI and MOMENT1 case except that four basic

coordinate system vectors, {RI}, {R2}, {R3}, {R,}, are formed for the four points and:

{d} =
({R2} - {RI}) x ({R,} - {R3})

I({R2} {R_}) x ({R4} - {R_})J '

(6)

(Subroutine FP_NT).

4.41.8.4 PLEAD and PLEAD2 Card Processing

The data contents for a PLOAD card are (a PLOAD2 card is transformed into a PLEAD card by

GP3):

p : Pressure value;

NI,N2,N3,N 4 Points describing area over
which pressure load is acting.

(N 4 is optional.)

For each of the four points, Ni, the basic coordinate system vector, {Ri}, is formed.

If N4 = O, the load on each point is:

P [({RI} {R2}) x ({R3} - {R2})]{F} : -
(7)

The load vector in global coordinates for each point is:

{Pgi } = [Ti]T{F} .

If N4 # O, the quadrilateral is subdivided into four triangles as shown.

(8)

.-I-

4.41-6

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE l)

PT

changed each time the triangle calculation is done.

4.41.8.5 SL_AD Card Processing

The data contents for a SL_AD card are:

Np = Scalar point id and

S = Load on point,

The scalar index is computed by subroutine FNDSIL, and S is added in.

4.4].8.6 RF_RCE Card Processing

The data contents for an RFBRCE card are:

For each triangle {Pgi} is calculated for the three connected points using a pressure value

= I/2 p. The equations are the same as the previous case except that the points are inter-

(Subroutine PLEAD.)

(Subroutine SL@AD.)

Np

Nc

A

= Index of grid point through which
rotation vector passes;

= Coordinate system number defining
the rotation vector;

= Factor for vector;

Rx,Ry,Rz are components of rotation vector in cps.

The following sequence of operations comprises RF_RCE card processing which is carried out

in subroutine RFBRCE.

I. The local to basic coordinate transformation matrix, [Tc], for the reference coordinate

system Nc is extracted from the CSTM data block.

2. The rotation vector in basic coordinates, and in radians per second, is:

{mb} = 2_A ITc] _Rx_

3. Define the basic location vector of the reference point Np

{ra} {0}.

(g)

as {ra}. If Np = O, set

4,41-7 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4. Extract the basic coordinate system vector {r i} for each point from BGPDT.

5. Using {r i} and the local coordinate system referenced by the point, calculate the

global-to-basic transformation matrix [Ti].

6. For the six columns of the mass matrix [Mgg] corresponding to the grid point i, the 6x6

matrix partition on the diagonal is extracted. Define this as [Mi].

7. Partition the 6x6 matrix into 3x3 matrices

FMi : Mi7
L_t__L_.t.r_I

[Mi]--> IMP" i M_ I ' (I0)
Lrt, r_]

and transform the rotational velocity vector to global coordinates

{_g} = [TilT {_b } . (II)

8. Calculate the forces and moments on the grid point by the equations:

x M i
{F} = -{_g} x [M_] [Ti]T({wb } x [{r i} - {ra}]) - {Wg} [tr] {_g} (12)

{M} = -{_g} x [Mr_] [Ti IT ({_b } x [{r i} - {ra}]) - {_g} x [M_] {_n} (13)

9. The load vector partition in global coordinates is:

4.41.8.7 PRESAX Card Processing

The data contents for a PRESAX card (which applies only to pressure loading of an

AXISYMMETRIC shell) are:

p --

Na =

Nb =

_i =

qb2 =

n =

Pressure;

Index value of harmonic Ring A;

Index value of harmonic Ring B;

(degrees);

(degrees);

Harmonic number of harmonic being added.

4.41-8 (12-I-69)

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE l)

The algorithm given in the following steps is performed in subroutine PRESAX.

I. Cz and ¢2 are converted to radians.

2. BGPDT data are extracted for both RINGA and RINGB, giving {r} and {z}.

3. The calculations for harmonic n are:

= J(rb-ra)2 + (Zb-Za)2, (15)

rb-ra
sin _ - ,

(16)

cos
Zb-Za

(17)

For the cosine case, if n = O, we calculate:

P_o = P_ + (_2 - _I) cos _ , (lB)

;r. r.\

Pizo =-P_ 131-]--+6--J-)(qb2- qbl)sin _ . (]g)

Ifn>O

rn -_ + (sin (n(h2)- sin (nq_1))cos _b, (20)

zr_
pi : _p _ (__L _JJ)(sin (nqb2) sin (n@])) sin

in n \o + u/ - "
(2l)

4.41-9 (7/l/70)

MODULEFUNCTIONALDESCRIPTIONS

For the sine case, if n > O,

Pirn : p _ <___i+___>n

pi : p _ <___i ___,i>zn n +

(COS in@2) - cos (n@l)) cos _,

(cos (n@2) - cos (n@1)) sin _.

4. The above equations are solved for i = a, i = b and i = b, _ = a.

to the corresponding grid point location in the PG load vector

i
Pr

0i

Pz

0
0
O

(Subroutine PRESAX).

4.41.8.8 GRAV Card Processing

The loads are added

Each GRAV input card describes a uniform acceleration field with the following parameters:

N = Coordinate system ID;

G = Scale factor;

{V} = Vector of load in coordinate

system N.

The gravi+y vector in basic coordinates is:

{gb } = G [TON] {V}.

(22)

(23)

where [TON] is the 3x3 orientation matrix of coordinate system N.

MPYL). This vector {gb} is saved for later processing.

'the number of gravity loads listed.

(24)

(25)

(Subroutines GRAV, FDCSTM,

Subroutine EXTERN then returns, noting

4.41-I0

FUNCTIONALMODULESSGI(STATICSOLUTIONGENERATOR- PHASEI)

4.41.9 Thermal and Enforced Deformation Loads

The thermal and enforced deformation loads are calculated using the stiffness properties of

the structural elements. The EDT data for each load set and the MPT, DIT and SIL data blocks are

placed in core. The EST data block and the GPTT data for the selected set are read one element at

a time. The loads produced by that element are placed in the PG load vector. The actual algo-

rithms for generating element loads are given in Section 4.87.

4.41.I0 Gravity Loads

Acceleration vectors are computed for each gravity load by two means, one for an axisvmmetric

shell problem, the other for non-shell problems.

4.41.I0.I Gravity Loads for an Axisymmetric Shell Problem

m (number of rings) and n (number of harmonics) are extracted from the /SYSTEM/ common block.

The first m points in the BGPDT define the "zero" harmonic. The second m entries define the "one"

harmonic etc. The acceleration vectors are calculated by the formulae:

ax 2g = + g; + gz ' (26)

gxy = g_+ gy2, (27)

gz

cos Og g , (28)

a

sin 0 = _xy
g g , (29)

sin Cg = gy 9

gxy (30)

gx

cos _g - (31)
gxy

4.41-II (9/I170)

MODULE FUNCTIONAL DESCRIPTIONS

The vectors {a} for harmonics n = 0 and n = 1 are defined for load set cosine by:

and for load set sine by:

{a_} g cos 9g (all rings),

{a_} = g sin eg cos @g

(all rings)

(32)

(33)

1

1

0

{a_} : g sin @g sin ,g

0

These vectors are used as in the normal case. They are merged into {ag} which in turn is pre-

multiplied by [Mgg] to give the {Pg} vector (subroutine GRAVL3).

4.41.10.2 Gravity Loads for Non-Shell Problems

The acceleration vector must be transferred to the global coordinate system at each grid

point and expanded to a vector acting on the Ug coordinates. For each grid point (i) the BGPDT

data is read, and using the CSTM data, a 3x3 basic to global transformation matrix [Ti] is

formed. The acceleration at the point i in basic coordinates is:

{a_} = [Ti] {gb }, (35)

where {gb } is the gravity vector saved in Equation 25. The vector {a_} is placed in the total

acceleration vector in positions SILi, SILi+l , and SILi+2. No values are calculated for scalar

points or rotation coordinates (Subroutine GRAVLI).

When all {ag} vectors have been calculated for the whole structure, they are pre-multiplied

by the structural mass matrix to produce a load vector:

{Pg} = [Mgg] {ag} , (36)

4.41-12 (8/I/72)

(34)

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE I)

(subroutine SSG2B).

The gravity vectors are appended to the other load vectors, and scalar points are zeroes in

case interaction occurred. Gravity loads on scalar points are not supported.

4.41.I0.3 Direct-Applied Thermal Loads

Direct loads are applied to the heat transfer model by means of the QHBDY data cards. These

cards contain the following data:

S_xmbol

FLAG,

Qo'

Af,

G1 ,G2 ,G3 ,G4

The word "FLAG" indicates the type of load, "P_INT," "LINE," "REV," "AREA3," or "AREA4," and

the number of grid points defined by GI,G2, etc. The loads are formed into a vector {P] with a

length equal to the number of points. The values of {P} are:

{P} = AQo{V}.

The values for A and {V} are given in the following table:

Description

Identified type of load

Flux density

Area factor

Internal grid point numbers

FLAG

Number of grid-

points at which
load vector is

applied

{v}

1 -Af { 1}

2 -A__(length)2 I_l

2 _ _(length) 12Xl + x21

3 (x 1 + 2x2,'

make into overlapping triangles, as
4 in FLAG = 4 (divide loads by two)

4.41-13 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

where the values xi, Yi" zi are the BGPDT values for point i and:

_ _ 2 I/2
(length) = [(x2 Xl)2 + (Y2 - Yl)2 + (z2 Zl)]

(area) : ½ Ir12 x r131

where rlj = yj Yl J = 2,3

zj zl

The load is to be inserted into all three translational degrees of freedom at the gridpoints.

The scalar indices may be found in the SIL table.

4.41-13a (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.41.11

4.41 .II .I

Subroutines

Subroutine Name: SSGIA.

I. Entry Point: SSGIA.

2. Purpose: To build a list of external loads, thermal loads and enforced deformation loads

selected by the user in CASECC.

3. Calling Sequence: CALL SSGIA (NI,ILIST,NEDT,NTEMP,NCENT,CASECC,IHARM)

N1 - Number of external loads present - integer - output.

ILIST - List of load ID's with selected load ID's set negative - integer - output.

NEDT - Number of enforced deformation loads - integer - output.

NTEMP - Number of thermal loads - integer - output.

NCENT - Not used (set to zero) - integer - output.

CASECC - GINO number of Case Control Data Block - integer - input.

IHARM - Boundary conditions for axisymmetric shell problem.

1 = sine, 2 = cosine - integer - output.

C_MM_N//XX,L_ADNN

L_ADNN - Number of records in CASECC to skip before beginning to build loads - integer -

input.

C@MMON/L_ADX/

L_ADX - See description of /L_ADX/ conTnon block below (section 4.41.11.8).

4.41.11.2 Subroutine Name: EXTERN.

I. Entry Point: EXTERN

2. Purpose: To compute user-selected external loads.

4.41-14

FUNCTIONAL t4ODULESSGI (STATIC SOLUTION GENERATOR - PHASE l)

3. Calling Sequence: CALL EXTERN (NLIST,NGRAV,GVECT,ILIST,PG,NI,IHARM)

NLIST - Number of load id's in ILIST array - integer - input.

NGRAV - Number of gravity loads selected - integer - output.

GVECT - Array of gravity vectors, 3 numbers per vector - real - output.

ILIST - List of all load id's - integer - input.

PG - Matrix control block for file on which external loads will be written - integer -

input/output.

Nl - Number of external load id's - integer - input.

IHARM - Boundary condition for axisymmetric shell problem

l = sine, 2 = cosine.

C_I_M_NIILUSET

LUSET - Length of PG - integer - input.

C_N_IgN/L_ADX/- See /L_ADX/ descripticn in section 4.41,II.8.

4.41 .ll.3

I.

2.

3.

Subroutine Name: TEMPL.

Entry Point: TEMPL

Purpose: To compute thermal loads for each element.

Calling Sequence: CALL TEMPL (NTEMP,ILIST (Nl+l),PG(1))

NTEMP - Number of thermal loads - integer - input.

ILIST(NI+I) - Beginning of thermal load list - integer - input.

PG - Matrix control block for load file - integer - input/outDut.

C_M_N/L_ADX/- See /L_ADX/ description in section 4.41.II.8.

C_MMgN//LUSET

LUSET Length of PG - integer - input.

4.41-15

MODULE FUNCTIONAL DESCRIPTIONS

4.41.11.5 Subroutine Name:

I.

2.

3.

4.41.11.4 Subroutine Name: EDTL.

I. Entry Point: EDTL

2. Purpose: To compute enforced deformation loads for each element.

3. Calling Sequence: CALL EDTL (NEDT,ILIST(NI+I),PG(1))

NEDT Number of enforced deformation loads - integer - input.

The remainder of the variables has the same meaning as in TEMPL (section 4.41.11.3).

GRAVLI.

Entry Point: GRAVLI

Purpose: To build acceleration vectors for gravity loads.

Calling Sequence: CALL GRAVLI (NGRAV,GVECT,SCRI,IHARM)

4.41 .II .6

NGRAV

GVECT

SCRI

IHARM

Number of gravity loads selected - integer - input.

Array of gravity vectors, three words per gravity vector - real - input.

GIN@ file number on which to build the acceleration vectors - integer - input.

Boundary condition for axisymmetric shell problem.

1 = sine, 2 = cosine - integer - output.

Subroutine Name: GRAVL2.

I. Entry Point: GRAVL2

2. Purpose: To add gravity loads onto previously generated load vectors and check scalar

points.

3. Calling Sequence: CALL GRAVL2 (NGRAV,PGG,PG(1))

NGRAV - Number of gravity vectors - integer - input.

PGG - GIN_ file number of gravity loads - integer - input.

PG - Matrix control block for all other (non-gravity) loads - integer - input/output.

C_MM_N/L_ADX/

L_ADX See /LOADX/ common block (section 4.41.11.8).

4,41-16

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE l)

C_MM_N//LUSET

LUSET - Length of PG vector - integer - input.

4.41.II.7 Subroutine Name: C_MBIN.

I. Entry Point: C_I_IN

2.

3.

Purpose: To combine subloads into subcase loads.

Calling Sequence: CALL C@I_IN (PG,ILIST,NI)

PG - Matrix control block for PG vector - integer - input/output.

ILIST - List of all load ID's - integer - input.

Nl - Number of entries in ILIST - integer - input.

C_MM_N/L_ADX/

LOADX - See /L_ADX/ description, section 4.41.II.8)

C_I_M_N//LUSET

LUSET - Length of PG vector - integer - input.

C_MM_N/L_ADS/NL_ADS,IARY(300)

NL_ADS - Number of loads to build.

IARY For each load: Number of subloads

Subload ID
I repeated for each subload

Scale Factor)

Subload ID }
Scale Factor

4.41 .ll.8 Common Block L_ADX.

reheated for
each load

I. Purpose: To transmit file numbers and pointers.

2. Variable List: C@MM_N/L_ADX/LC,SLT,BGPDT,_LD,CSTM,SIL,ISIL,EST,MPT,GPT,EDT,IMPT,IGPTT,

IEC,L_ADF,MGG,N_BLD,DIT,ICM

4.41-17 (711170)

MODULE FUNCTIONAL DESCRIPTIONS

SLT,BGPDT,CSTM,SlL,EST,MPT,GPTT,EDT,MGG,DIT

blocks - integer - input.

LC

OLD -

ISIL -

LOADF -

NOBLD

IMPT -

IGPTT

IEC

4.41 .II .9

.

.

- GIN_ file numbers for respective data

3.

Length of open core - integer - input.

Current grid point position of the BGPDT - integer - input.

Current SlL position - integer.

GINO file number of load file - integer - input.

Build-nobuild flag for direct load routines - integer.

Unused at present.

Subroutine Name: DIRECT.

Entry Point: DIRECT

Purpose: To apply loads due to FORCE and M_MENT cards.

Calling Sequence: CALL DIRECT

COMMON/LOADX/

LOADX See description of /L_ADX/ above (section 4.41.11.8).

4.41 .II .I0

I.

2.

3.

Subroutine Name TP_NT.

_ntry Point: TPONT

Purpose: To apply loads due to FORCE1 and M_MENTI cards.

Calling Sequence: CALL TPBNT

C_MM_N/L_ADX/

L_ADX - See description of /L_ADX/ above (section 4.41.11.8).

4.41-18

4.41.II.II Subroutine Name:

I.

2.

3.

4.41 .ll.12 Subroutine Name:

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE l)

FP_NT.

Entry Point: FPONT

Purpose: To apply loads due to F_RCE2 and MBMENT2 cards.

Calling Sequence: CALL FP@NT

COMM_N/LOADX/

L@ADX See description of /LOADX/ above (section 4.41.II.8).

SLOAD.

I. Entry Point: SL_AD

2. Purpose: To apply loads due to SLOAD cards.

3. Calling Sequence: CALL SLBAD

COF_N/LOADX/

LOADX - See description of /LOADX/ above (section 4.41.II.8).

4.41.II.13 Subroutine Name: PLOAD.

I. Entry Point: PLEAD

2. Purpose: To apply loads due to PLOAD cards.

3. Calling Sequence: CALL PLOAD

CgMMON/LOADX/

L_ADX - See description of /LOADX/ above (section 4.41.II.8).

4.41.I1.14 Subroutine Name: RF_RCE.

I. Entry Point: RF_RCE

2. Purpose: To apply loads due to RFgRCE cards.

3. Calling Sequence: CALL RFBRCE (LCORE)

LC_RE - Current buffer top - integer - input.

COMM_N/LOADX/

L_ADX - See description of /LOADX/ above (section 4.41.II.8).

4.41-19

MODULE FUNCTIONAL DESCRIPTIONS

4.41.II.15 Subroutine Nan,: PRESAX.

I. Entry Point: PRESAX

2. Purpose: To apply loads due to axisymmetric pressure loads.

3. Calling Sequence: CALL PRESAX (IHARM)

IHARM - Axisymmetric boundary condition - integer - input.

CO_ON/LOADX/

LBADX - See description of /L_ADX/ above (section 4.41.11.8).

4.41.11.16 Subroutine Name: GRAV.

I. Entry Point: GRAV

2. Purpose: To extract gravity vector and convert to basic coordinates.

3. Calling Sequence: CALL GRAV (NGRAV,GVECT,NEX,ILIST,NLBOP)

NGRAV Number of gravity loads - integer - outnut.

GVECT - Array of gravity vectors - real - output.

NEX - Number of external loads - integer - input.

ILIST List of external load ID's - integer - input/output.

NLO_P - Current pointer into ILIST.

COMM_N/LOADX/

L_ADX - See description of /LOADX/ above (section 4.41.11.8).

4.41.11.17 Subroutine Name: PERMUT.

I. Entry Point: PERMUT

2. Purpose: To reorder a list of grid point ID's to allow the most efficient extraction

of these grid points from the BGPDT.

3. Calling Sequence: CALL PERMUT (PBNT,1ORD,NP,OLD)

PONT List of points - integer - input.

4.41-20

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE l)

I_RD - Pointers to P_NT, i.e., I_RD (I) contains subscript of PgNT which should be

4.41.II.20

extracted first from the BGPDT - integer - output.

NP - Number of points - integer - output.

_LD - Current position of BGPDT - integer - input.

4.41.II.18 Subroutine Name: FNDPNT.

I. Entry Point: FNDPNT

2. Purpose: To extract BGPDT data from the BGPDT.

3. Calling Sequence: CALL FNDPNT (BGPDD,PONT)

BGPDD - Four-word BGPDT entry - output.

PONT - Grid point id of desired BGPDT entry - integer - input.

4.41.II.19 Subroutine Name: CR@SS.

I. Entry Point: CR_SS

2. Purpose: To compute the cross product of two vectors.

3. Calling Sequence: CALL CR_SS (VI,V2,V3)

Vl - Three-word vector - real - input.

V2 - Three-word vector - real - input.

V3 = V1 x V2 - real - output.

Subroutine Name: NORM.

I. Entry Point: N_RM

2. Purpose: To normalize a vector.

3. Calling Sequence: CALL NORM (Vl, XLV)

VI - Three-word vector - real - input/output.

XLV - Norm of Vl.

Vl on output = VI/XL unless XL = 0.0, then Vl = Vl.

4.41-21

MODULE FUNCTIONAL DESCRIPTIONS

4.41 .II .21

I.

2.

3.

4.41.11.22 Subroutine Name:

I.

2.

3.

Subroutine Name: FNDSIL.

Entry Point: FNDSlL (in subroutine FNDPNT)

Purpose: To find the SIL value of a particular grid point id.

Calling Sequence: CALL FNDSIL (GPID)

GPID - Grid point id on input, SIL value on output - integer - inDut/outnut.

C_MM_N/LOADX/

LOADX - See description of /LOADX/ above (section 4.41.11.8).

BASGLB.

Entry Point: BASGLB

Purpose: To convert a vector from the basic to the global coordinate system.

Calling Sequence: CALL BASGLB (VIN,V_UT,GRDPNT,CSYS)

VIN - Three-word input vector - real - input.

V_UT - Three-word output vector - real - output.

VIN may equal V_UT.

GRDPNT - Location of grid point at which vector is to be aDDlied (not used unless

coordinate system type is spherical or cylindrical) - real - input.

CSYS - Coordinate system id - integer - input.

C_MM_N/L_ADX/

L_ADX See description of /L_ADX/ above (section 4.41.11.8).

4.41.11.23 Subroutine Name: GLBBAS.

I. Entry Point: GLBBAS

2. Purpose: To convert a vector from global to basic coordinates.

3. Calling Sequence: CALL GLBBAS (VIN,V_UT,GRDPNT,CSYS)

Where the variables have the same names as in BASGLB.

4.41-22 (3/I/71)

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE I)

4.41.II.24 Subroutine Name: MPYL.

I. Entry Point: MPYL

2. Purpose: To multiply two in-core matrices together: [A] - [B] = [C].

3. Calling Sequence: CALL MPYL (A,B,NC_LA,NR_WA,NC_LB,C)

A (NC_LA,NR_WA) matrix

B (NC_LB,NC_LA) matrix These matrices are stored row-wise.

C (NC_LB,NR_WA) matrix

Note: A or B _ C

4.41.II.25 Subroutine Name: MPYLT.

I. Entry Point: MPYLT

2. Purpose: To multiply two in-core matrices together [A]T • [B] = [C].

3. Calling Sequence: CALL MPYLT (A,B,NR_WB,NC_LA,NC_LB,C)

A (NC_LA,NR_B) matrix i

B (NC_LB,NR_WB) matrix I These matrices are stored row-wise.
!

C (NC_LB,NC_LA) matrix 1

4.41.II.26 Subroutine Name: FDCSTM.

I. Entry Point: FDCSTM

2. Purpose: To extract the orientation matrix from the CSTM.

3. Calling Sequence: CALL FDCSTM (ICSTM)

ICSTM - Coordinate system id desired.

C_MM_N/TRANX/XX(5),T_(3,3)

TO - 3x3 orientation matrix.

C_HM_N/L@ADX/

LOADX - See description of/LBADX/ above "s_ction 4.41.II.8).

4.41-23

MODULE FUNCTIONAL DESCRIPTIONS

4.41.11.27 Subroutine Name: FGPTT.

I. Entry Point: FGPTT

2. Purpose: To find temperature in the GPTT.

3. Calling Sequence: CALL FGPTT (SILAR,TAR,NP)

SILAR Array of SIL's for which temperatures are desired - inteqer - input.

TAR Array of temperatures at SIL's - real - output.

NP Number of entries in SILAR.

C_MM_N/FPT/T_,NSIL,NGPTT,NR_WSP

T_ - Default temperature - real - input.

NSIL - Number of SIL entries - integer - input.

NGPTT - Length of GPTT.

NROWSP- Beginning of SIL table - integer - input.

4.41.11.28 Subroutine Name: FEDT.

I. Entry Point: FEDT (in subroutine FNDPNT)

2. Purpose: To extract one enforced deformation from the EDT given one element id.

3. Calling Sequence: CALL FEDT (EID,DELTA,IDEFM)

_ID - Element id - integer - input.

DELTA - Deformation of element EID - real - output.

IDEFM Set id of current deformation set.

4.41.11.29 Subroutine Name: GRAVL3.

I. Entry Point: GRAVL3

2. Purpose: To compute an acceleration vector for an axisymmetric shell problem.

3. Calling Sequence: CALL GRAVL3 (NGRAV,GVECT,AG,IHARM)

NGRAV - Number of gravity vectors - integer - input.

GVECT Gravity vector array - real - input.

AG GIN_ file number of acceleration vector - integer - input.

4.41-24 (3/I171)

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE I)

IHARM - Boundary condition flag

l = sine, 2 = cosine

Cgt_i_N//LUSET

LUSET - Length of PG vector.

C_t_N/SYSTEM/IX(26),t_l

MN - Packed word giving number of rings/number of harmonics.

4.41.II.30 Subroutine Name: TTRIRG

I. Entry Point: TTRIRG

2. Purpose: To calculate an element thermal load vector for a triangular cross-section

ring in the SSGI module.

3. Calling Sequence: CALL TTRIRG (TI,PG)

TI Array of four temperatures at the four points of the ring - real - input.

PG Load vector array - real - input.

C_MM_N/TRIMEX/

TRIMEX - This contains the EST entry for the element.

4.41.II.31 Subroutine Name: TTRAPR.

I. Entry Point: TTRAPR

2. Purpose: To calculate an element thermal load vector for a trapezoidal cross-section

ring in the SSGI module.

3. Calling Sequence: CALL TTRAPR (TI, PG)

C_MM_N/TRIMEX/

The arguments are the same as in TTRIRG.

4.41-25

MODULE FUNCTIONAL DESCRIPTIONS

4.41.II.32 Subroutine Name: TTORDR.

I. Entry Point: TT_RDR

2. Purpose: To calculate an element thermal load vector for a toroidal thin shell ring

in the SSGI module.

3. Calling Sequence: CALL TTORDR (TI,PG)

C_MM_N/TRIMEX/

The arguments are the same as those in TTRIRG (section 4.41.11.30).

4.41.11.33 Subroutine Name: FCURL.

I. Entry Point: FCURL

2. Purpose: To form the element thermal load matrices in field coordinates for the

toroidal thin shell ring in subroutine TT_RDR.

3. Calling Sequence: CALL FCURL (FMEO,FMEI,FFEO,FFEI,YI,S,LAMI)

FMEO, FMEI The resultant thermal load matrices.
FFEO, FFEI

YI - Array of integral values.

S, LAMI - Terms used in the evaluation of the thermal load matrices.

4.41.11.34 Subroutine Name: CONE.

I. Entry Point: CONE

2. Purpose: To calculate an element thermal load vector for an axisymmetric shell in

the SSGI module.

3. Calling Sequence: CALL C_NE (TI,PG)

C_MM_N/TRIMEX/

The arguments are the same as in TTRIG (section 4.41.11.30).

4.41-26

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE l)

4.41.II.35 Subroutine Name: QDMEM.

I. Entry Point: QDMEM

2. Purpose: To calculate an element thermal load vector for quadrilateral elements in

the 3SGI module.

3. Calling Sequence: CALL QDMEM (TI,PG)

C_MM_N/TRIMEX/

The arguments are the same as in TTRIRG (section 4.41.II.30).

4.41.II.36 Subroutine Name: TRIMEM.

I. Entry Point: TRIMEM

2. Purpose: To calculate an element thermal load vector for triangular elements in

the SSGI module.

3. Calling Sequence: CALL TRIMEM (TYPE,TBAR,PG)

C_MM_N/TRIMEX/

TYPE - Flag indicating normal entry (0) or subelement call from a QDMEM(I) - integer -

input.

TBAR - Average temperature over the element - real - input.

PG and /TRIMEX/ are as in TTRIRG (section 4.41.II.30).

4.41.11.37 Subroutine Name: BAR.

I. Entry Point: BAR

2. Purpose: To calculate an element thermal load vector or deformation load vector for

the bar element in the SSGI module.

3. Calling Sequence: CALL BAR (PG, IDEFM, ITEMP, IDEFT)

C_MM_N/TRIMEX/

IDEFM - 0 if element deformation load vector is not to be computed - integer - input.

ITEMP 0 if element thermal load vector is not to be computed - integer - input.

4,41-27

MODULE FUNCTIONAL DESCRIPTIONS

IDEFT - Set ID of the element deformation set.

integer - input.

PG,/TRIMEX/ are as in Section 4.41.11.30.

4.41.11.38 Subroutine Name: FEDTST

I ,

2.

3.

This is used only if IDEFM # 0 -

Entry Point: FEDTST (in FNDPNT)

Purpose: To put in core the element id's and associated values for a given deformation

set from the EDT.

Calling sequence: CALL FEDTST (IDEF)

IDEF - Set id of current deformation

C_MM_N /FPT/DUM(3),NR_WI,LCBRE

NRBW - Number of words of open core used.

LCBRE - End of available open core.

COMMON/SSGIBX/CORE

C_RE - First cell of open core available.

4.41.11.39 Subroutine Name: FEDTED

I. Entry Point: FEDTED (in FNDPNT)

2. Purpose: To determine if all elements in a selected deformation set were used.

3. Calling Sequence: CALL FEDTED (IDEF)

IDEF - Set id of current deformation set.

4.41.11.40 Subroutine Name: HBDY

I. Entry Point: HBDY.

2. Purpose: To calculate heat transfer flux loads due to convective film coefficients and

temperatures of the surrounding fluid (heat transfer analysis only).

3. Calling sequence: CALL HBDY.

4.41.11.41 Subroutine Name: QHBDY

I. Entry Point: QHBDY.

2. Purpose: To generate heat flux loads in a heat transfer problem.

3. Calling sequence: CALL QHBDY.

4.41-28 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.41.11.42 Subroutine Name: QDPLT

I. Entry Point: QDPLT

2. Purpose: To generate the element thermal load data for quadrilateral plate elements.

3. Calling Sequence: CALL QDPLT (TI)

TI - Array of grid point temperatures

COMMON /TRIMEX/

4.41.II.43 Subroutine Name: ROD

I. Entry Point: R_D

2. Purpose: To generate the element thermal load data and enforced deformation load

data for the ROD, CONR(JDand TUBE elements.

3. Calling Sequence: CALL ROD

COMM_N /TRIMEX/

4.41.II.44 Subroutine Name: SOLID

I. Entry Point: SOLID

2. Purpose: To generate the element thermal load data for all solid elements except

TETRA.

3. Calling Sequence: CALL SOLID (T,P,I)

T = Temperature vector

P = Load vector

I = l, element is WEDGE
2, element is HEXAI
3, element is HEXA2

4. Method: Calls are made to TETRA.

4.41.II.45 Subroutine Name: TETRA

I. Entry Point: TETRA

2. Purpose: Computes element thermal load data for tetrahedra either directly (for

the TETRA element) or indirectly via SOLID (for the other solid elements).

4.41-28a (8/I/72)

3.

4.41 .II.46

I.

2.

3.

MODULE FUNCTIONAL DESCRIPTIONS

Calling Sequence: CALL TETRA (T,P,K)

T = Temperature vector

P = Load vector

K = Option Flag

= O, divide by 6.0
O, divide by 12.0

Subroutine Name: TRBSC

Entry Point: TRBSC

Purpose: To compute the thermal load data for the basic bending triangle element TRBSC.

Calling Sequence: CALL TRBSC (I,T)

I = 0 (basic bending triangle)
1 (sub-computations for SQDPLI)
2 (sub-computations for STRPLI)

T = Temperature vector

Subroutine Name: TRIQD

Entry Point: TRIQD

Purpose: To compute the thermal load data for the triangular and quadrilateral elements.

Calling Sequence: CALL TRIQD (N,T)

N = 1 implies TRIAl
2 implies TRIA2
3 implies QUADI
4 implies QUAD2

= Temperature vector

Subroutine Name: TRPLT

Entry Point: TRPLT

Purpose: To compute the thermal load data for the triangular bending elements.

Calling Sequence: CALL TRPLT (T)

T = Temperature vector

4.41.11.47

l •

2.

3.

T

4.41 .I 1.48

I.

2.

3.

4.41-28b (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.41.II.49 Subroutine Name: SSGKHI

I. Entry Point: SSGHKI

2. Purpose: Computes element thermal load and enforced deformation load data for use by

TRBSC, TRPLT and QDPLT.

3. Calling Sequence: CALL SSGKHI (TR,TI,FN)

TR - Real Temperature Vector

TI - Integer Temperature Vector

FN - Multiplication fraction

4.41.II.50 Subroutine Name: SSGETD

l °

2.

3.

Entry Point: SSGETD

Purpose: Computes element temperature from a pre-positioned record.

Calling Sequence: CALL SSGETD (E,T,G)

E - Element identification number for which temperature is desired.

T - Area into which temperature data is returned.

G - = O, element temperature format data is desired

O, number of grid points.

4.41.II.51 Subroutine Name: BASGLB

I. Entry Point: GBTRAN

2. Purpose: Finds a Global to Basic transformation matrix stored by rows.

3. Calling Sequence: CALL GBTRAN (IC, P, T)

IC - Coordinate system identification number.

P - Location of grid point at which vector is to be applied.

T - Transformation matrix stored by rows.

4.41-28c (8/I/72)

FUNCTIONAL MODULE SSGI (STATIC SOLUTION GENERATOR - PHASE l)

4.41.12 Design Requirements

Three scratch files are needed.

Open core is defined as follows:

I. /SSGAIX/ during EXTERN phase

C#I_4_N/SSGAIX/

PG

MGG Buffer

SIL Buffer

CSTM Buffer

BGPDT Buffer

SLT Buffer

PG Buffer

LUSET

Used if RFgRCE
cards present

6 GIN_ buffers

. /SSGBIX/ during EDTL, TEMPL phase

Cg_4gN/SSGBIX/

PG

PREMAT Tables

SIL
i

GPTT/EDT

Scratch Buffer

GPTT or EDT Buffer

CSTM Buffer

EST Buffer

PG Buffer

LUSET

5 GIN_ buffers

lO0 L_AD ID's maximum.

4.41-29 (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

4.41.13 Diagnostic Messages

If the core storage requirements as depicted in the above diagrams are not met, SSGI will

issue fatal error message 3008.

4.41-30

FUNCTIONALMODULESSG2(STATICSOLUTIONGENERATOR- PHASE2)

4.42 FUNCTIONALMODULESSG2(STATICSOLUTIONGENERATOR- PHASE2)

4.42.1 Entry Point: SSG2

4.42.2 Pur_

To reduce the applied load vectors and enforced displacements into equivalent load

vectors applied to the independent displacement coordinate sets.

4.42.3 DMAP Calling Sequence

SSG2 USET,GM,YS,KFS,G_,DM,PG/QR,P_,PS,PL/ $

4.42.4 Input Data Blocks

USET

GM

YS

KFS

G_

DM

PG

- Displacement set definitions table.

- Multipoint constraint transformation matrix - m set.

- Constrained displacements - s set.

- Partition of stiffness matrix after single-point constraints have been removed.

- Structural matrix partitioning transformation matrix.

Rigid body transformation matrix.

Static load vector matrix giving static loads - g set.

I. USET must be present.

2. GM must be present if m set is not null.

3. YS must be present if s set is not null.

4. KFS must be present if s set is not null.

5. G_ must be present if o set is not null.

6. DM must be present if r set is not null.

7. PG must be present.

Output Data Blocks

- Determinate support forces matrix - r set.

- Partition of the load vector matrix giving loads due to static force - o set.

- Partition of load vector matrix giving loads in s set.

- Partition of load vector matrix giving static loads on £ set.

Notes:

4.42.5

QR

P_

PS

PL

4.42-I

MODULE FUNCTIONAL DESCRIPTIONS

Notes: I. QR must be present if r set is non-null.

2. P_ must be present if o set is non-null.

3. PS must be present if s set is non-null.

4. PL must be present if _ set is non-null.

5. If the problem has no sets, SSG2 will return.

4.42.6 Parameters

None

4.42.7 Method

The fifth word of the USET trailer control block is analyzed to determine the presence of

m's, s's, o's, or r's.

Each of the following steps is omitted if the appropriate set is null. The following

steps indicate the operations on one load set vector. The actual algorithm uses all vectors

in each step by performing matrix operations.

I. If m's are present, the PG vectors are partitioned using USET (UG,UN,UM) and sub-

routines CALCV and SSG2A:

The loads on the u n set are calculated as:

{Pn } : {_} + [Gm]T {Pm } , (2)

by calling subroutine SSG2B.

2. If s's are present, the {Pn } load vectors are partitioned using USET (UN,UF,US) and

subroutines CALCV, and SSG2A:

The {Ps } vectors are output in data block PS. The loads on the uf

(3)

set are calculated as:

4.42-2

FUNCTIONAL MODULE SSG2 (STATIC SOLUTION GENERATOR - PHASE2)

IPf_ = _Ff_- IKfsl IYsl (4)

The IYsl vector normally is zero. If more than one load vector is being reduced,

Ys} is expanded to have N identical columns such that the above matrix equation

is dimensionally consistent. This is accomplished in subroutine SSG2BI (see below).

3. If o's are present, the {Pf} vectors are partitioned using USET (UF,UA,U_) and

subroutines CALCV and SSG2A:

Pol vectors are written on data block P_.

The equivalent loads on the ua set are calculated as:

IPa =l a(+ T Ipo((6)

Subroutine SSG2B is called to perform this operation.

4. If r's are present, the {Pa} vectors are partitioned using USET (UA,UL,UR)

and subroutines CALCV and SSG2A:

,IP_I,vectors are written on data block PL.

The reaction vectors on the support points are:

lqr_ : _ IPrl - [DmIT

where [Dm] corresponds to the data block DM.

4.42.8 Subroutines

SSG2 uses matrix subroutines CALCV and SSG2A for matrix partitioning operations and

subroutine SSG2B to drive subroutine MPYAD. See section 3 for details.

IPf((8)

{qr} vectors are written on data block QR.

4.42-3

MODULE FUNCTIONAL DESCRIPTIONS

4.42.8.1 Subroutine Name: SSG2BI

I. Entry Point: SSG2DI

2. Purpose: SSG2BI is exactly like SSG2B. It computes [A] [B] + [C] = [D] except

YS is first expanded onto SCRI which then plays the role of [B] .

3. Calling Sequence: CALL SSG2BI (A,SCRI,C,D,T,PREC,ISIGN,YS,SCR2)

The variables have the meaning as SSG2B except for YS, which is the GIN_ file number of the

YS data block - integer - input. See 3.5.13 for SSG2B details.

4.42.9 Design Requirements

/SSG2X/ is open core for CALCV. Four scratch files are used.

SSG2BI is an entry point in SSG2B.

4.42-4 (7/I/70)

FUNCTIONALMODULESSG3(STATICSOLUTIONGENERATOR- PHASE3)

4.43 FUNCTIONALMODULESSG3(STATICSOLUTIONGENERATOR- PHASE3)

4.43.1 Entry Point: SSG3

4.43.2 Purpose:

To perform the actual static solutions. A displacement solution is produced for each

applied load and tested for possible matrix decomposition errors.

4.43.3 DMAP Callin9 Sequence

SSG3 LLL,ULL,KLL,PL,L_,U_@,K_B,P_/ULV,U_V,RULV,RU@V/V,N,_MIT/V,Y,IRES $

4.43.4 Input Data Blocks

LLL - Lower triangular factor of KLL - _ set.

ULL - Upper triangular factor of KLL - _ set.

KLL Partition of stiffness matrix - _ set.

PL Partition of the load vector matrix giving static loads on _ set

L_ Lower triangular factor of K_B - o set.

U_ Upper triangular factor of K_B - 0 set.

K_B - Partition of stiffness matrix - o set.

P@ - Partition of the load vector matrix giving loads due to static forces - o set.

Notes: I. ULL,LLL and PL must be present.

2. KLL can be purged if RULV is purged.

3. U_, L_, P_ can be purged if _MIT(O.

4. K_B can be purged if _MIT• 0 or RU_V is purged.

4.43.5 Output Data Blocks

ULV Partition of the displacement vector matrix giving displacements - _ set.

U_V Partition of the displacement vector matrix giving displacements - o set.

RULV - Residual vector matrix for the _ set.

RU_V - Residual vector matrix for the o set.

Notes: I. ULV must be present.

4.43-I

MODULEFUNCTIONALDESCRIPTIONS

4.43.6

2. U_V can be purged if _MIT< O.

3. RULV and RUOV can be purged.

4. [RULV] = [KLL] [ULV] - [PL].

[RUOV] = [K_B][U_V] - [PO].

Parameters

_MIT

IRES

Input-integer-no default. _MIT controls operations on o-set matrices.

Not used-integer-no default. IRES is a user-controlled parameter that he may set

to +l on a Bulk Data PARAM card so that residual vectors may be printed. It is

included here to define an initial value for IRES.

4.43.7 Method

4.43.7.1 Solution Algorithim

For normal statics problems PL and PO vectors are used; for inertia relief problems

the PLI and P@I vectors are generated in the SSG4 module and used instead of PL and P_. The

equations to be solved are:

[Kc_] {u_} = {P_}, (I)

and if o's are present (_MIT > O)

[Koo] [u_] = {Po }, (2)

where

[KL_] = [Lc_] lULL] , (3)

[Koo] = [Loo] [Uoo]. (4)

[L_] and [Loo] are lower traingular matrices. [U_] and [Uoo] are upper triangular matrices.

The equations are solved in the following manner:

[L] [U] {u} = {P}, (5)

or

4.43-2

FUNCTIONALMODULESSG3(STATICSOLUTIONGENERATOR- PHASE3)

[L] {y} = {P} . (6)

In turn the solution for the displacementvectoris:

[U] {u} : {y} • (7)

ErrorCheckAlgorithm4.43.7.2

If RULVis not purged,anerror checkis made.Sinceit is possiblefor thestiffness

matricesto benearlysingularor ill-conditioned, the modulecalculatesthe followingerror

analysistermsfor boththe {u_}and{uo} solutions:

{6P_} : {P_}- [K&&]{u&}, (8)

{u_}T {6P_}

ce - (9)
{p_}T {u_}

{6Pz} forms data block RULV or RU_V. ce is printed for each solution.

4.43.8 Subroutines

SSG3A - is the only auxiliary subroutine in module SSG3 (see section 3.5.18 for description).

4.43.9 Design Requirements

Two scratch files are needed.

4.43-3 (3/I/71)

FUNCTIONAL MODULE SSG4 (STATIC SOLUTION GENERATOR - PHASE 4)

4.44 FUNCTIONAL MODULE SSG4 (STATIC SOLUTION GENERATOR - PHASE 4).

4.44.1 Entry Point: SSG4

4.44.2 Purpose

The purpose of this module is to calculate mass loads in a Static Analysis with Inertia

Relief problem. The rigid body accelerations are functions of the reactions on the fictitious

supports. The inertia loads on the structure are proportional to these accelerations.

4.44.3 DMAP Calling Sequence

SSG4 PL,QR,P_,MR,MLR,DM,MLL,M_B,MI_AB,G_,USET/PLI,P_I/V,N,_MIT $

4.44.4 Input Data Blocks

PL - Partition of the load vector matrix giving static loads - _ set.

QR - Determinate support forces matrix - r set.

P_ - Partition of the load vector matrix giving loads due to static force - o set.

MR - Rigid body mass matrix - r set.

MLR Partition of mass matrix.

DM Rigid body transformation matrix.

MLL Partition of mass matrix - _ set.

M_OB - Partition of mass matrix - o set.

M_AB - Partition of mass matrix.

G_ Structural matrix partitioning transformation matrix.

USET - Displacement set definitions table.

Note: All matrices must be present if their appropriate set is non-null.

4.44.5 Output Data Blocks

PLI - Partition of load vector for inertia relief matrix giving loads due to static and

inertial forces on _ set.

4.44-I

MODULEFUNCTIONALDESCRIPTIONS

P_I- Partition of loadvector for inertia relief matrixgiving loadsdueto inertial and

static forcesono set.

Note: Bothmatricesmustbepresentif their appropriateset is non-null.

If @MIT> O, the o set is non-null.

4.44.6 Parameters

@MIT- Input-integer-nodefault.

4.44.7 Method

I. Fheaccelerationsof the ur degreesof freedomare:

{ar} = . [mr]-I {qr}.

[mr] correspondsto datablockMR.

(i)

Subroutines FACTOR and SSG3A are used to solve for {at}.

2.

{P_}

[D] corresponds to data block DM.

3. If _MIT m O:

The total load vectors on the structure are:

= {P_}+ [[M_] [D] + [M_r]] {ar}.

Subroutine SSG2B is used to drive MPYAD.

[E oolE ol+t ool]I-V-]

The product [-_-] {ar} i

(2)

{p_} : (3)

s formed by merging columns of [D] {ar} with {ar} using USET (UA,UL,UR).

Subroutine SDRIB is used to drive MERGE, and SSG2B for the matrix products.

4.44.8 Subroutines

SSG2B - See subroutine description, section 3.5.13

SSG3A - See subroutine description, section 3.5.18

SDRIB - See subroutine description, section 3.5.8

4.44.9 Design Requirements

Five scratch files are necessary.

4.44-2

FUNCTIONALMODULESDRI(STRESSDATARECOVERY- PHASEl)

4.45 FUNCTIONALMODULESDRI(STRESSDATARECOVERY- PHASEI)

4.45.1 Entry Point: SDRI

4.45.2

The SDRI module utilizes solution vectors to produce displacements, eigenvectors,

velocities, accelerations, applied loads and reaction loads. The vectors input to SDRI are

in the form of packed matrices with each column a solution vector for a different subcase.

eigenvalue, frequency/load, or transient output time. The row position of each term in a

vector corresponds to a degree of freedom in a unique displacement set. The relative position

of the term must be converted to a relative position in the vector which includes all dis-

placement components in the system. The dependent components of the displacement vector

are recovered and merged to produce a complete vector describing all degrees of freedom in

the structural or dynamics model. In the Static Analysis or Static Analysis with Inertia

Relief Rigid Formats, SDRI collects solutions for each boundary condition onto a single file,

convenient for the solution of symmetry problems.

4.45.3 DMAP Callin9 Sequence

SDRI USET,PG,ULV,U_V,YS,G_,GM,PS,KFS,KSS,QR/UGV,PGG,QG/V,N,APPEND/V,N,F_RMAT $

4.45.4 Input Data Blocks

USET

PG

ULV

U_V

YS

Ge

GM

PS

KFS

KSS

QR

- Displacement set definitions table.

- Static load vector matrix giving static loads - g set.

- Partition of the displacement vector matrix giving displacements -_ set.

- Partition of the displacement vector matrix giving displacements in the o set.

- Constrained displacements - s set.

- Structural matrix partitioning transformation matrix.

- Rigid body transformation matrix.

- Partition of load vector matrix giving loads in s set.

- Partition of stiffness matrix after single-point constraints have been

removed - s set.

- Partition of stiffness matrix after single-point constraints have been

removed - s set.

- Determinate support forces matrix - r set.

4.45-I

MODULE FUNCTIONAL DESCRIPTIONS

Notes :

4.45.5

UGV

PGG

QG

Notes :

I. USET must always be present.

2. PG may or may not be present.

3. ULV must always be present.

4. U_V must be present unless the o set is null or F_RMAT = DYNAMICS (see below).

5. YS may or may not be present.

6. G_ must be present unless the o set is null.

7. GM must be present unless the m set is null.

8. PS may or may not be present.

9. KFS must be present unless the s set is null or QG is not present.

I0. KSS must be present unless YS is absent or the s set is null or QG is not present.

II. QR may or may not be present.

Output Data Blocks

Displacement vector matrix giving displacements in the g set.

Static load vector appended to include all boundary conditions - g set.

Single-point constraint forces and determinate support forces matrix - g set.

I. If PG is present, PGG must be present.

2. UGV must be present.

3. QG must be present.

4. If APPEND t I, UGV, PGG, QG will be appended to the data already on these files.

4.45.6 Parameters

APPEND - Input-integer- no default. See note 4 above.

FgRMAT - Input-BCD-no default. Format indicates the problem type.

STATICS Statics type problem.

REIGEN Real eigenvalue problem.

DYNAMICS - Dynamic problem.

4.45.7 Method

The following steps are performed by the SDRI module in the most general case. Most

problems, however, do not use all of the constraint options. In these cases certain steps

4.45-2

FUNCTIONALMODULESDRI(STRESSDATARECOVERY- PHASEI)

areskipped. Thetask SDRIperformsalsovaries fromRigidFormatto RigidFormat.

I. If PGis present,it is copiedor appendedontoPGG.(SubroutineSDRIA).

2. If r's arepresentandthe problemtypeis not DYNAMICSor REIGEN:

This is accomplishedby subroutineSDRIB,the driver for MERGE.

details.

If s's arealso present:

Otherwise,

lq÷l> If

See section 3.5.8 for

I _i >

which is then copied or appended onto QG.

3. If o's are present, the dependent degrees of freedom of the "omitted" coordinates

{u o} are computed. For statics problems:

lqg I '

(Subroutine SDRIB and SDRIA).

For Dynamic problems:

Uo=e_o][o°]
This is accomplished by calling SSG2B (see section 3.5.13). The independent degrees of

freedom {ua} or {u d} are merged with the dependent coordinates {uo} , using subroutine

SDRIB:

lu-:-I:>lu,l•

4. If s's are present, the coordinates fixed by single-point constraints, lUsl,

(I)

(2)

(3)

(4)

(5)

(6)

4.45-3

MODULEFUNCTIONAL DESCRIPTIONS

may have constrained displacements, {Ys }, in a statics problem.

the {uf} vector using subroutine SDRIB:

I-ysf-I :> {u n}

These are merged with

(7)

The forces of single-point constraint {qs} are calculated using SSG2B from the equation:

{qs} = - {ps} + [Kfs]T {uf} + [Kss] {Ys}.

Subroutine SDRIB is used to merge {qs } with {qf} to form {qg} .

the f-set:

{qg} is copied or appended onto data block QG (Subroutine SDRIA).

lu;l-_>

(8)

{qf} is {qr} expanded to

(9)

If YS is not present,

(lO)

The forces of single-point constraint are computed as in Equation 7 except the {Ys } term

is omitted.

If e-points (extra points) are present in a dynamics problem, [Kfs] must be converted to

[K_s] by subroutine SDRIC. If the problem is a transient problem, {uf} must be reduced to

displacement vectors only, since {uf} contains triples - displacement, velocity and

acceleration in transient problems. This reduction is accomplished in SDRID.

5. If m's are present, the dependent coordinates, {Um}, of the multipoint constraint

equations are calculated using:

(II)

In dynamics problems [Gm]

{um} : [Gm] {un} •

: [G_]. The two vectors {um} and {un} are merged

4.45-4

FUNCTIONAL _IODULESDRI (STRESS DATA RECOVERY - PHASE I)

6o

_>(Ug}

{Ug} (or {Up} for dynamics problems) is copied or appended onto UGV.

4.45.8 Subroutines

(12)

SSG2B and SDRIB are used as utility routines.

4.45.8.1

I.

2.

3.

See section 3.5.13 and 3.5.8 for details.

Subroutine Name: SDRIA

Entry Point: SDRIA

Purpose: To copy or append vectors.

Calling Sequence: CALL SDRIA (IN,I_UT)

IN GIN_ file number of input file - integer - input.

I_UT GIN_ file number of output file - integer - input.

C_MM_N//IAPEND- Append flag. If IAPEND _ l, I_UT will be positioned after the last

record and IN copied onto I_UT at this point. Otherwise IN is copied

onto I_UT.

4.45.8.2 Subroutine Name: SDRIC

I°

2.

3.

KFS

KDFS

4. Design Requirement;

parameters.

Entry Point: SDRIC

Purpose: To expand a file (KFS) from the f set to the fe set for dynamics.

Calling Sequence: CALL SDRIC (IPVECT,KFS,KDFS)

IPVECT - GIN_ file number of the partitioning vector previously generated -

integer - input.

- GIN_ file number of [Kfs] - integer - input.

- GIN_ file number of [K_s] - integer - input.

SDRIC depends on a previous call to SDRIB to initialize set

4.45.8.3 Subroutine Name: SDRID

I. Entry Point: SDRID

4.45-5

MODULEFUNCTIONAL DESCRIPTIONS

2.

3.

4.45.9

Purpose: To strip velocity and acceleration vectors from {uf}.

Calling Sequence: CALL SDRID (PS,IUF,IUFI,ITRAN)

PS GIN_ file number of PS - integer - input.

IUF GIN_ file number of {uf} - integer - input.

IUFI - GIN_ file number of {uf} stripped - integer - input.

ITRAN - Flag which shows whether problem is a transient analysis or not - integer -

input. Its values are:

1 :>not transient

0 :>transient.

Design Requirements

Six scratch files are required.

4.45-6

FUNCTIONALMODULESDR2(STRESSDATARECOVERY- PHASE2)

4.46

4.46.1

4.46.2

FUNCTIONALMODULESDR2(STRESSDATARECOVERY- PHASE2)

Entry Point: SDR2

Purpose

The SDR2 module processes the output requests for forces of single-point constraint,

loads, point displacements, point velocities, point accelerations, element stresses, and element

forces, fomatting the output data blocks with these final output results for: a) direct output-

ing by the Output File Processor (_FP) module or b) input to the S_RT2 processor (SDR3) module and

then the XY-output modules (XYTRAN and XYPL_T).

4.46.3 DMAP Calling Sequence

SDR2 EQEXIN
'CASECC_ CSTN,MPT,DIT,{EQDYN }, _SIL_lCASEXX_' ISILD_'GPTT'EDT'

BGPDT, P°°I
PGV]

PPF ,

CL_

QG
QBG
BQG
QGI
QPC
QP

UGV
UGVl
UPV
UPVC
UBGV
PHIG
CPHIP

XYCDB /

I I I _QGI

_PGI _QBGI
_PPCl , _BQGI
_PPI _QPCl

_QPI
iI00ovlEs1i100Pvl_UPVCI _ _ESCl
' _UBGVI (')_ESBI '

_PHIG
_ _BESI_CPHIP

@EFI _ (PUPV
OEFCI _ _PUGVI
OEFBI _'_PPHIG
OBEFI ! _PUBGV]

C,N,

STATICS
REIGEN
DSO
DSI

FREQ
TRANSNT
BLKO
BLKI
CEIGEN
PLA

IV,N,N_S_RT2 $

4.46-I

MODULEFUNCTIONALDESCRIPTIONS

4.46.4 Input Data Blocks

CASECC

CASEXX

CSTM

MPT

DIT

EQEXIN

EQDYN

SIL

SILD

GPTT

EDT

BGPDT

PGG

PGVl

PPF

PPT

LAMA

CLAMA

QG

QBG

BQG

QGI

QPC

QP

UGV

UGVl

UPV

- Case Control Data Table.

- Case Control Data Table for Dynamics problems.

- Coordinate System Transformation Matrices.

- Material Property Table.

- Direct Input Tables.

- Equivalence between external grid or scalar numbers and internal numbers.

- Equivalence between external points and scalar index values.

- Scalar Index List.

- Scalar Index List for Dynamics.

- Grid Point Temperature Table.

- Element Deformation Table.

- Basic Grid Point Definition Table.

- Static load vector appenoed to include all boundary conditions.

- Matrix of successive sums of incremental load vectors.

- Dynamic loads for frequency response.

- Linear dynamic loads for transient analysis.

- Real Eigenvalue Table.

- Complex Eigenvalue Table.

- Single-point constraint forces and determinant support forces matrix.

- Single-point forces of constraint matrix for Differential Stiffness - g set.

- Single-point forces of constraint matrix for a Buckling Analysis problem - g set.

- Matrix of successive sums of incremental vectors of single-point constraint

forces.

- Complex single-point forces of constraint - p set.

Transient single-point forces of constraint - p set.

Displacement vector matrix giving displacements in the g set.

Matrix of successive sums of incremental displacement vectors.

Transient solution vectors - p set.

4.46-2

UPVC

UBGV

PHIG

CPHIP

EST

ESTL

XYCDB

FUNCTIONALMODULESDR2(STRESSDATARECOVERY- PHASE2)

Frequencyresponsesolutionvectors- p set.

Displacementvectormatrix for differential stiffness giving displacements

in the g set.

Eigenvector matrix giving eigenvectors.

Complex eigenvectors in the p set.

Element Summary Table.

Element Summary Table for Linear Elements.

XY Case Control Data Block.

Notes:

I. If the first input data block is purged, it is a fatal error. This data

block is called "Case Control" in this Module Functional Description.

2. The CSTM may be purged if no coordinate systems are referenced, or if stresses

and/or forces are not requested.

3. The MPT may be purged if no stress or force requests are present.

4. The DIT may be purged if no stress or force requests are present, or if no

temperature dependent materials are referenced.

5. The second record of EQEXIN or EQDYN must exist if a request exists for any of:

loads, forces of single-point constraint, displacements, velocities, accelerations,

or plots.

6. SIL or SILD may be purged if no stress or force requests exist, or there are

no extra-points and no thermal loads. (The second record is used by SDR2).

7. The GPTT may be purged if no thermal loading exists, or there are no requests for

stresses or forces.

8. The EDT may be purged if there are no elemen_ requests for forces or stresses,

or if there are no enforced element deformations in the problem.

9. The BGPDT may be purged if the problem is in basic coordinates and no element

requests for stresses or forces exist.

IO. LAMA or CLAMA may not be purged if an eigenvalue or frequency response problem•

4.46-3

MODULE FUNCTIONAL DESCRIPTIONS

II. If input data block II (QG or QBG etc.) is purged, forces of single-point constraint

requests are ignored.

12. If input data block 12 (UGV or UGVI etc.) is purged, SDR2 will process only loads and

forces of single-point constraint requests.

13. If the EST or ESTL is purged, element stresses and force requests are ignored.

14. The XYCDB may be purged.

4.46.5 Output Data Blocks

_PGI - 1
_PPCI Output load vector requests,
_PPI

_QGI - /

_QBGI
_BQGI Output forces of single-point constraint requests.
_QPCl
_QPI

_UGVl - 1
_UPVCI Output displacement vector requests.
_UBGVI

@PHIG -}_CPHIP Output eigenvector requests.

OESI - /

_ESCI
_ESBI Output element stress requests.

OBESI

@EFI -

_EFCI I_EFBI Output element force requests.

_BEFI -

PUPV
PUGVl
PPHIG
PUBGVI

Translation components of the displacement vector rotated to basic coordinates.

Notes :

Output data blocks purged will result in output requests to those data blocks

not being processed.

4.46-4

FUNCTIONAL MODULE SDR2 (STRESS DATA RECOVERY - PHASE 2)

4.46.6

STATICS

REIGEN

DSO

DSI

FREQ

TRANSNT

BKLO

BKLI

CEIGEN

PLA

N_S(_RT2

Parameters

- BCD constant indicating a Statics solution.

BCD constant indicating a Real Eigenvalue solution.

BCD constant indicating the Statics phase of a Differential Stiffness solution.

BCD constant indicating final phase of a Differential Stiffness solution.

BCD constant indicating a Frequency Response solution.

BCD constant indicating a Transient Response solution.

BCD constant indicating the Statics phase of a Buckling solution.

BCD constant indicating the final phase of a Buckling solution.

BCD constant indicating a Complex Eigenvalue solution.

BCD constant indicating a Piecewise Linear Analysis solution_

Integer-Output-Set to 0 if there are no S_RT2 requests or requirements,

and set to l otherwise.

4.46-5

MODULE FUNCTIONAL DESCRIPTIONS

4.46.7 Method

The SDR2 functional module is constructed in a modular form consisting of five stages.

A small executive control program (subroutine SDR2) containing the main entry point for the

module serially calls the five stages for execution.

I. Stage I, performed by subroutine SDR2AA, prepares, if necessary, a modified Case

Control data block, internal to SDR2, to insure that any XY-output requests present

and not included in the _FP output requests of Case Control are included in the output

of SDR2 for later processing by functional modules XYTRAN and XYPLOT.

2. Stage II, performed by subroutine SDR2A, analyzes the overall output requests within

the subcases of Case Control and sets flags for use by stages III, IV, and V.

3. Stage III, performed by subroutine SDR2B, is executed only if stage II has determined

that some element force or stress output requests are present within Case Control. If

executed, element stress matrices are computed once and stored along with certain other

element properties appearing in the EST for each element appearing in a master set of

element requests. (The master set is a set which is the union of all elements for which

output requests are present in any subcase of Case Control). These stored data are used

in stage V repeatedly as necessary to satisfy the various output request combinations

and multiple displacement vectors that may be present.

4. Stage IV, performed by subroutine SDR2C, is executed only if in stage II it has been

determined that some output requests are present for any of: forces of single-point

constraint, loads, displacement, velocities, accelerations, or deformed structure plots.

If they are present, these requests (except for structure plots) are fully processed

within this stage.

5. Stage V, performed by subroutine SDR2D, is executed only if stage III was executed.

Stage V performs final element stress and force computations. For each subcase of Case

Control containing element output requests, the appropriate displacement vector is applied

to the stress matrices, computed in Stage III, of the elements requested for output to

arrive at the final stress and/or force outputs.

4.46-6

FUNCTIONAL MODULE SDR2 (STRESS DATA RECOVERY - PHASE 2)

For several of the five stages the main subroutine listed utilizes additional subroutines

to accomplish its particular task. The methods employed within each stage are further

described in the subroutine descriptions in the next section.

4.46.8 Subroutines

The utility routines PRETRS and PREMAT are called within the SDR2 module for initialization

purposes so that the structural element subroutines can call the entry point TRANSS of PRETRS

and MAT of PREMAT to fetch Coordinate System Transformation Matrices (CSTM) data and material

properties (MPT and DIT) data respectively. G_ATS is used by element roJtines as a general

matrix multiply routine and INVERS is used for inversion of small in-core (order usually _ 12)

matrices. It should be noted that all matrices referenced in the structural element subroutines

are stored by rows and are single precision. See the subroutine descriptions for these

routines in section 3.

The axisymmetric shell element routines STRIRI, STRAPI, STgRDI, STRIR2, STRAP2, ST_RD2

utilize the following functions and subroutines whose double precision versions are described

in the Module Functional Description for S_l (section 4;27.8).

SDR2 (Single precision) SMAI (Double precision)

AI DKI

AK DKK

DF4,1

BINT DKINT

AJ DKJ

C_EF DKEF

F89 DK89

FFIO0 DKIO0

IFAC KFAC

FJAB DKJAB

F6219 DK219

F6211 DK211

R_MBER R(_MBDK

F4 D4K

F5 D5K

F6 D6K

AMATRX DMATRX

4.46-7

MODULE FUNCTIONAL DESCRIPTIONS

4.46.8.1 Subroutine Name: SDR2AA

I. Entry Point: SDR2AA

2. Purpose: To perform stage I as defined above, under "Method".

3. Calling Sequence: CALL SDR2AA

4. Method: SDR2AA attempts to open the XYCDB data block. If it is purged, a return is

given to SDR2. Otherwise, the header record and first data record of XYCDB are skipped

and data applying to all subcases are read from the second data record. If no such data

exist a dummy master is created. Otherwise, the master data are reduced to a list of

unique pairs. If only master data exist, flags are set appropriately.

For each record in the Case Control data block the following processing occurs.

a. The record is read into core. If no XYCDB subcase corresponds to the Case

Control subcase, pointers are set to the master data. Otherwise, the master data

and appropriate XYCDB subcase data are merged and reduced to unique pairs.

b. For each request for solution set output in XYCDB, the corresponding request

in Case Control is examined. If no request is present in Case Control, the XYCDB

request is reduced to a set in Case Control format, and a request for the set is

turned on in Case Control. If the Case Control set is "ALL", no further action

is taken. If the Case Control request is a set, the set is "merged" with the XYCDB

set, and the request is altered to reflect the new set (unless all points in the

XYCDB set were already in the Case Control set). A flag is set if any new requests

are formed.

c. When all requests for the current Case Control record have been analyzed, the

record (as modified) is written on a scratch file.

d. When all Case Control records have been read, the GINO file name for the Case

Control data block is switched to the scratch file (unless no modifications were

made to Case Control).

4.46.8.2 Subroutine Name: SDR2A

I. Entry Point: SDR2A

4.46-8

FUNCTIONALMODULESDR2(STRESSDATARECOVERY- PHASE2)

2. Purpose:ToperformstageII asdefinedabove,under"Method".

3. Calling Sequence:CALLSDR2J_

4. Method:SDR2AanalyzesCaseControlto determinethe overall outputrequests. Flags

areset to zerofor all requestpossibilities, and,as eachrecordof CaseControl is

analyzed,flags are set to l for thoserequestspresent. Simultaneously,a masterset

of all structural elementsrequestedfor outputis created. Themasterset is thena

unionof all elementrequestspresentwith duplicatesremoved.

4.46.8.3 SubroutineName:SDR2B

I. EntryPoint: SDR2B

2. Purpose:ToperformstageIII asdefinedabove,under"Method".

3. Calling Sequence:CALLSDR2B

4. Method:SDR2Bperformsthe "phaseI" stress andforce recoverycomputations.

TheCSTMis first readinto core, if present,andthenthe materialpropertydataare

readinto corevia the routinePREMAT.At this point, the ESTis openedandprocessed

with onepass.

SDR2Adetermineda masterset list of all elementsrequestedby the userto be

output. Thismasterset list, residingin core, is nowusedasthe ESTis processed.

Foreachrecordof the ESTa particular elementtype is represented.Thusthe first

wordof anESTrecord(giving the elementtype) is read,andthe elementdependent

variablesareset. Theelementsummaryfor eachelementof this typeis read,and,if

the elementis includedin the masterset, the phaseI stress recoveryroutine is called

to computethe elementstress matriceswhichare functionsof elementgeometryand

materialpropertiesonly. Theresultsof this computationareoutputto a scratchdata

block for useby SDR2D(stageV). Whentheend-of-recordis encounteredonthe ESTfor

this elementtype, the nextelementtyperecordis processed,until all recordsof the

ESThavebeenpassed.

4.46-9

MODULEFUNCTIONALDESCRIPTIONS

4.46.8.4

I.

2.

3.

4.46.8.5

I,

2.

3.

4.46.8.6

I.

2.

3,

4.46.8,7

I.

2.

3.

IP_AG

4.46.8.8

Subroutine Name: SR_DI

Entry Point: SR_DI

Purpose: To generate element stress matrices for the R_D element.

CALL SRODICalling Sequence:

Subroutine Name: SBEAMI

Entry Point: SBEAMI

Purpose: To generate element stress matrices for the BEAM element.

CALL SBEAMICalling Sequence:

Subroutine Name: STUBEI

Entry Point: STUBEI

Purpose: To generate element stress matrices for the TUBE element.

CALL STUBEICalling Sequence:

Subroutine Name: SPANLI

Entry Point: SPANLI

Purpose: To generate element stress matrices for the SHEAR and TWIST elements.

Calling Sequence: CALL SPANLI (IARG)

i 4 implies SHEAR panel element stress matrices will be generated.

5 implies TWIST panel element stress matrices will be generated.

Subroutine Name: STRBSl

I. Entry Point: STRBSI

2. Purpose: To generate element stress matrices for the TRBSC element and perform

sub-computations for the SQPDLI and STRPLI routines.

4.46-10

FUNCTIONAL MODULE SDR2 (STRESS DATA RECOVERY - PHASE 2)

3. Calling Sequence: CALL STRBSI (IARG)

I! = TRBScelement

IARG = Sub-computations for SQDPLI.

= Sub-computations for STRPLI.

4.46.8.9 Subroutine Name: STRPLI

I. Entry Point: STRPLI

2. Purpose: To generate element stress matrices for the TRPLT element.

3. Calling Sequence: CALL STRPLI

4.46.8.10 Subroutine Name: SQDPLI

I. Entry Point: SQDPLI

2. Purpose: To generate element stress matrices for the QDPLT element.

3. Calling Sequence: CALL SQDPLI

4.46.8.11 Subroutine Name: STRMEI

I. Entry Point: STRMEI

2. Purpose: To generate element stress matrices for the TRMEM element and perform

sub-computations for the SQDMEI routine.

3. Calling Sequence: CALL STRMEI (IARG)

_0 = TRMEM
IARG t

l = Sub-computations for SQDMEI subroutine.

4.46.8.12 Subroutine Name: SQDMEI

I. Entry Point: SQDMEI

2. Purpose: To generate element stress matrices for the QDMEM element.

3. Calling Sequence: SQDMEI

4.46-11

MODULE FUNCTIONAL DESCRIPTIONS

4.46.8.13 Subroutine Name: SELASI

I. Entry Point: SELASI

2. Purpose: To generate element stress matrices for the elements listed under the

Calling Sequence.

3. Calling Sequence: CALL SELASl (IARG)

i = ELASl

= ELAS2

IARG = ELAS3

= ELAS4

4.46.8.14 Subroutine Name: STRQDI

I. Entry Point: STRQDI

2. Purpose: To generate element stress matrices for the elements listed under the

Calling Sequence.

3. Calling Sequence:

I = TRIAl

2 = TRIA2

IARG 3 = QUADI

4 = QUAD2

CALL STRQDI (IARG)

4.46.8.15 Subroutine Name: SBARI

I. Entry Point: SBARI

2. Purpose: To generate element stress matrices for the BAR element.

3. Calling Sequence: CALL SBARI

4.46.8.16 Subroutine Name: SC_NEI

I. Entry Point: SC_NEI

2. Purpose: To generate element stress matrices for the C_NE element.

3. Calling Sequence: CALL SC_NEI

4.46-12

FUNCTIONAL MODULE SDR2 (STRESS DATA RECOVERY - PHASE 2)

4.46.8.17 Subroutine Name: STRIRI

I. Entry Point: STRIRI

2. Purpose: To generate element stress matrices for the TRIRG element.

3. Calling Sequence: CALL STRIRI

4.46.8.18 Subroutine Name: STRAPI

I. Entry Point: STRAPI

2. Purpose: To generate element stress matrices for the TRAPRG element.

3. Calling Sequence: CALL STRAPI

4.46.8.19 Subroutine Name: ST_RDI

I. Entry Point: ST_RDI

2. Purpose: To generate stress matrices for the T_RDRG elephant.

3. Calling Sequence: CALL ST_RDI

4.46.8.20 Subroutine Name: SDR2C

I. Entry Point: SDR2C

2. Purpose: To perform stage IV as defined above, under "Method".

3. Calling Sequence: CALL SDR2C

4. Method: SDR2C operations are dependent on the Rigid Format being executed. In all

cases the second record of EQEXIN or EQDYN is first read into core. An over-all loop

of 3 passes is then executed to process the following: pass l: displacements, velocities,

accelerations; pass 2: single-point constraint forces; and pass 3: loads.

For each pass the Case Control data block is opened for input, and the following

operations are performed depending on Rigid Format:

a. For eigenvalue problems, a list of eigenvalues and mode numbers is read into core

from LAMA or CLAMA.

b. For Differential Stiffness or Buckling phase l problems, the first record of

4.46-13

MODULE FUNCTIONAL DESCRIPTIONS
b

Case Control, which is used in phase 0 of Buckling or Cifferential Stiffness, is

skipped.

c. For frequency or traQs-i_zt response problems, a list of frequencies or times is

read into core from PPF or PPT.

At this point a record in Case Control is read, and it is determined if a symmetry

sequence of length LSYM is to be output. If it is, the previous LSYM vectors of the

UGV data block are unpacked and a linear combination is formed in core. Otherwise, UGV is

opened, if not yet opened, and the next vector present is unpacked into core.

Data items are now assembled for the identification record, and this identification

record is output to the output data block. Output line entries for the point-ID's requested

are then written on the output data block forming a data record. At this time, if the user

requested magnitude/phase for complex outputs, the magnitude/phase computations are performed

on the real/imaginary pairs.

When all requests have been processed for this vector, the next Case Control record

is read. If no more Case Control records exist and there are more vectors present,

those vectors are processed using the last Case Control record's specifications.

When all vectors have been processed for the current loop pass, the next pass may

be made for forces of single-point constraint or loads.

If deformed structure plots are requested, an output plot data block is formed

during the first loop pass, described above, containing translation components of the

displacement vector rotated to basic coordinates.

4.46.8.21 Subroutine Name: SDR2D

I. Entry Point: SDR2D

2. Purpose: To perform stage V as defined above, under "Method".

3. Calling Sequence: CALL SDR2D

4.46-14

FUNCTIONAL MODULE SDR2 (STRESS DATA RECOVERY - PHASE 2)

4. Method: SDR2D performs the phase 2 stress and force recovery computations. In this

phase actual stresses and forces are computed for the user-requested elements. These

stresses and forces are a function of the stress matrices computed in Stage Ill and the

displacements at the grid points of the elements.

The operations of SDR2D are dependent upon the Rigid Format being executed. In

all cases the Case Control data block is opened first. For eigenvalue problems a list

of eigenvalues and mode numbers is read into core from LAMA or CLAMA. For Differential

Stiffness or Buckling phase l problems, the first record of Case Control, which is used

in phase 0 of Buckling or Differential Stiffness, is skipped. For frequency or

transient response problems, a list of frequencies or times is read into core from PPF

or PPT.

Core and GIN_ buffers are then allocated as required for a) the Case Control data block,

b) the Element Deformation Table, c) the Grid Point Temperature Table, and d) the element

stress matrices. If there is insufficient space in core for the element stress matrices,

they are maintained on the scratch data block generated in stage Ill.

The displacement data block (UGV) is now opened, and the displacement vectors present

are processed serially with Case Control as in stage IV. Each element requested for

output has its respective phase 2 element stress and force recovery routine called.

The element routine outputs form the entries for the output data record of this

element type. In the case of a complex displacement vector, the element routine

is called first with a pointer to the real displacement vector and then with a pointer

to the imaginary displacement vector. The results of these two calls are merged to

form the complex output stresses and forces.

4.46.8.22 Subroutine Name: SDR2E

I. Entry Point: SDR2E

2. Purpose: To pass through the element stress matrices once, executing the final

element stress and force computations for the requests in the current subcase of Case

Control.

3. Calling Sequence: SDR2E ($n)

n = F_RTRAN statement number defining the return taken in the event of an error in SDR2E.

4.46-15

MODULEFUNCTIONAL DESCRIPTIONS

4.46.8.23 Subroutine Name: SROD2

I. Entry Point: SR_D2

2. Purpose: To perform final stress and force computations for the R_D element.

3. Calling Sequence: CALL SROD2

4.46.8.24 Subroutine Name: SBEAM2

Io Entry Point: SBEAM2

2. Purpose: To perform final stress and force computations for the BEAM element,

3. Calling Sequence: CALL SBEAM2

4.46.8.25 Subroutine Name: SPANL2

I. Entry Point: SPANL2

2. Purpose: To perform final stress and force computations for the SHEAR and TWIST

elements.

3. Calling Sequence: CALL SPANL2 (IARG)

_4 = SHEAR element.
IARG

5 = TWIST element.

4.46.8.26 Subroutine Name: SELAS2

I. Entry Point: SELAS2

2. Purpose: To perform final stress and force computations for the ELASI, ELAS2,

ELAS3, and ELAS4 elements.

3. Calling Sequence: CALL SELAS2

4.46.8.27 Subroutine Name: SBSPL2

I. Entry Point: SBSPL2

2. Purpose: To perform final stress and force computations for the TRBSC, TRPLT,

and QDPLT elements.

4.46-16

FUNCTIONAL MODULE SDR2 (STRESS DATA RECOVERY - PHASE 2)

3. Calling Sequence: CALL SBSPL2 (IARG)

li = TRBSC element"

IARG = TRPLT element.

= QDPLT ele_mnt.

4.46.8.28 Subroutine Name: STQME2

I. Entry Point: STQME2

2. Purpose: To perform final stress computations for the TRMEM ard QD_!EMelements.

3. Calling Sequence: CALL STQME2 (IARG)

1 : TRMEM element.
IARG

2 = QDMEM element.

4.46.8.29 Subroutine Name: STRQD2

I. Entry Point: STRQD2

2. Purpose: To perform final stress and force computations for the TRIAl, TRIA2, QUADI,

and QUAD2 elements.

3. Calling Sequence: CALL STRQD2 (IARG)

IARGj3 = TRIAl or TRIA2 element.

4 = QUADI or QUAD2 element.

4.46.8.30 Subroutine Name: SC_NE2

I. Entry Point: SC_E2

2. Purpose: To perform final harmonic stress and force computations for the C_NE element.

3. Calling Sequence: CALL SC(_r_E2

4.46-17

4.46.8.31

MODULEFUNCTIONALDESCRIPTIONS

Subroutine Name: SC_NE3

I. Entry Point: SC_NE3

2. Purpose: To compute the final stresses and forces for one of the 14 possible

points in a C_NE element.

3. Calling Sequence: CALL SC_NE3 (LARG)

LARG = Logical argument set .FALSE. initially and then set .TRUE. by SC_NE3 after

4.46.8.32

Io

2.

3.

4.46.8.33 Subroutine Name:

I.

2.

3.

TGRID

4.46.8.34

Io

2.

3.

TGRID

the last point defined for a particular element has had its final stresses

and forces computed.

Subroutine Name: SBAR2

Entry Point: SBAR2

Purpose: To perform final stress and force computations for the BAR element.

Calling Sequence: CALL SBAR2

STRIR2

Entry Point: STRIR2

Purpose: To perform final stress and force computations for the TRIRG element.

Calling Sequence: CALL STRIR2 (TGRID)

= 3 word real array giving grid point temperatures at the 3 connection grid points.

Subroutine Name: STRAP2

Entry Point: STRAP2

Purpose: To perform final stress and force computations for the TRAPRG element.

Calling Sequence: CALL STRAP2 (TGRID)

= 4 word real array giving grid point temperatures at the 4 connection grid points.

4.46-18

I

!

FUNCTIONAL MODULE SDR2 (STRESS DATA RECOVERY - PHASE 2)

4.46.8.35 Subroutine Name: STBRD2

I. Entry Point: ST_RD2

2. Purpose: To perform final stress and force computations for the T_RDRG element.

3. Calling Sequence: CALL ST_RD2 (TGRID)

TGRID = Two-word real array giving grid point temperatures at the two connection grid points.

4.46.8.36 Subroutine Name: MAGPHA

I. Entry Point: MAGPHA

2. Purpose: To compute the magnitude and phase of a complex number, c.

3. Calling Sequence: CALL MAGPHA (A,B)

A - Real part of c on input, magnitude of c on return.

B - Imaginary part of c on input, phase of c on return.

4.46.8.37 Subroutine Name: SAXIFI

I.

2.

3.

Entry Point: SAXIFI

Purpose: To generate element pressure-velocity matrices for the AXIF elements.

Calling Sequence: CALL SAXIFI (IARG)

0 = AXIF2

IARG = l = AXIF3

2 = AXIF4

4.46.8.38

I.

2.

3.

Subroutine Name: SAXIF2

Entry Point: SAXIF2

Purpose: To generate element velocities or accelerations for the AXIF elements.

Calling Sequence: CALL SAXIF2 (I_PT, IPART, BRANCH, EIGEN)

0 = AXIF2

I_PT = l = AXIF3

2 = AXIF4

IPART = 1 l = Real Vector

2 = Imaginary Vector

BRANCH = SDR2 Process code word

EIGEN = 3 words for complex or real eigenvalue or real frequency.

4.46-1g (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.46.8.39 Subroutine Name: SSLBTI

I. Entry Point: SSL_TI

2. Purpose: To generate element pressure-velocity matrices for the SLBT elements.

3. Calling Sequence: CALL SSL_TI (I_PT)

I_PT = I 0 = SL_T3
l = SLOT4

4.46.8.40 Subroutine Name: SSLBT2

I. Entry Point: SSL_T2

2. Purpose: To compute element velocities or accelerations for the SL_T elements.

3. Calling Sequence: CALL SSL_T2 (I_PT, IPART, BRANCH, EIGEN)

I_PT = I 0 = SL_T3
l = SL_T4

IPART = I l = Real Vector

2 = Imaginary Vector

BRANCH = SDR2 Process code word

EIGEN = 3 words for eigenvalue or frequency.

4.46.8.41 Subroutine Name: SSOLDI

I. Entry Point: SS_LDI

2. Purpose: To generate stress matrices for the solid elements.

3. Calling Sequence: CALL SS@LDI (1)

Element Type

l TETRA
2 WEDGE
3 HEXAI
4 HEXA2

4.46-19a (811172)

MODULEFUNCTIONALDESCRIPTIONS

4.46.8.42

I.

2.

3.

4.46.8.43

I.

2.

3.

Subroutine Name: SS_LD2

Entry Point: SSOLD2

Purpose: To perform final stress and force computations for the solid elements.

Calling Sequence: CALL SSOLD2 (I,T)

Element Type

l TETRA
2 WEDGE
3 HEXAI
4 HEXA2

T - Temperature Vector

Subroutine Name: SDRETD

Entry Point: SDRETD

Purpose: Reads element temperature from a pre-positioned record.

Calling Sequence: CALL SDRETD (ID,T,G)

ID - Element identification number for which the data is desired.

T - Area into which data will be stored

G - O, element temperature format data is desired.

O, number of grid points.

4.46.9 Design Requirements

I. Since the five stages of the SDR2 module must be able to operate under all Rigid Formats,

a branch design has been used within each stage whereby operations that are variant under

different Rigid Formats are grouped into substructures within that stage. At these locations,

a branch is always made to the substructure appropriate to the Rigid Format being executed.

2. The following common blocks appear only within the subroutines of the SDR2 module.

a. COMMON /SDR2XI/

This common block contains seventeen flag words which are set on the basis of requests

in the Case Control data block by SDR2A.

b. COMMON /SDR2X2/

This common block contains twenty-nine pointers defining the locations of the various

requests and set definitions within the Case Control data block.

4.46-19b (8/I/72)

FUNCTIONAL MODULE SDR2 (STRESS DATA RECOVERY - PHASE 2)

c. C@MMBN/SDR2X3/

This common block contains data constants unique to the structural elements.

d. C_MMBN/SDR2X4/

This common block contains local variables and flags set by the subroutines of the

SDR2 module for communications between these subroutines.

e. COMM_N/SDR2X5/

This common block is used by SDR2B to send EST data to the phase 1 element routines

and to receive outputs from the phase 1 element routines.

f. CBMMON/SDR2X6/

This common block consists of a three hundred word scratch area for use by the element

routines while performing phase 1 computations.

g. C_MMBN/SDR2X7/

This common block is used by SDR2D for sending and receiving data to the element

routines performing phase 2 computations.

h. CBMM_N/SDR2X8/

This common block consists of a three hundred word scratch area in core for use by the

element routines while performing phase 2 computations.

4.46.10 Diagnostic Messages

SDR2 being one of the last modules to execute in a problem solution, makes every attempt

at execution in any event. Should an error be detected by SDR2, a message is queued for output

and, if possible, SDR2 continues to execute portions of the solution not affected by the error,

The following NASTRAN messages may be output by SDR2: 2075, 2076, 2077, 2078, 2079, 2080, 3001,

3002, 3003, and 3008.

4.46-20 (8/I/72)

4.47

4.47.1

4.47.2

FUNCTIONAL MODULE DPD (DYNAMICS POOL DISTRIBUTOR)

FUNCTIONAL MODULE DPD (DYNAMICS POOL DISTRIBUTOR)

Entry Point: DPD

Purpose

DPD is the principal data processing module for dynamics problems. New tables are

assembled to account for any extra points in the model and the additional displacement sets

used in dynamics. Bulk data cards which control the solution of a dynamics problem are

processed and assembled into various data blocks for convenience and efficiency in solution

of the dynamics problem.

4.47.3 DMAP Calling Sequence

DPD DYNAMICS,GPL,SIL,USET/GPLD,SILD,USETD,TFP_L,DLT,PSDL,FRL,NLFT,TRL,EED,EQDYN/

V,N,LUSET/V,N,LU_ETD/V,N,N_TFL/V,N,N_DLT/V,N,N_PSDL/V,N,N_FRL/V,N,N_NLFT/

V,N,N_TRL/V,N,N_EED/C,N,O/V,N,N@UE $

4.47.4 Input Data Blocks

DYr_MICS Collection of bulk data cards for dynamics problem.

GPL Grid Point List.

SIL Scalar Index List.

USET Displacement set definitions table.

Note: DYNAMICS may be purged. Other input data blocks may not be purged.

4.47.5 Output Data Blocks

GPLD

SILD

USETD

TFP_L

DLT

PSDL

Grid Point List Dynamics.

Scalar Index List Dynamics.

Displacement set definition table dynamics.

Transfer Function Pool.

Dynamic Loads Table.

Power Spectral Density List.

4.47-I

MODULEFUNCTIONAL DESCRIPTIONS

FRL

NLFT

TRL

EED

EQDYN

Note:

4.47.6

GPLD, SILD, USETD and EQDYNmay not be purged.

purged.

- Frequency Response List.

- Non-Linear Forcing Table.

- Transient Response List.

- Eigenvalue Extraction Data.

Equivalence between external and internal numbers - dynamics.

All other data blocks may be

Parameters

LUSET

LUSETD

N_TFL

N_DLT

Degrees of freedom in the g - displacement set.

Degrees of freedom in the p - displacement set.

Number of transfer function sets in the bulk data,

- Input-integer-no default.

- Output-integer-no default.

- Output-integer-no default.

-I if no sets are defined.

- Output-integer-no default. +I if dynamics load data are present in the bulk data

(i.e., DLT is created), -I otherwise.

N_PSDL - Output-integer-no default.

N_FRL - Output-integer-no default.

N_NLFT - Output-integer-no default.

NOTRL - Output-integer-no default.

N_EED - Output-integer-no default.

N_UE Output-integer-no default.

+I if the PSDL is created, -I otherwise.

+I if the FRL is created, -I otherwise.

+l if the NLFT is created, -l otherwise.

+l if the TRL is created, -l otherwise.

+l if the EED is created, -l otherwise.

Number of extra points in the model,

-I if there are no extra points.

4.47.7 Method

4.47.7.1 General

Subroutine DPD is the main control program for the module. It initializes each of the

DMAP parameters, allocates buffers in open core (/DPDC_R/), and calls each of the principal

routines of the module as follows.

4.47-2

FUNCTIONAL MODULE DPD (DYNAMICS POOL DISTRIBUTOR)

I. DPDI to assemble GPLD, USEID, SILD and EQDYN.

2. DPD2 to assemble DLT.

3. DPD3 to assemble FRL and PSDL.

4. DPD4 to assemble NLFT and TRL.

5. DPD5 to assemble EED and TFL.

4.47.7.2 Assembly of GPLD, USETD, SILD and EQDYN

The second logical record of GPL, which contains pairs of external point identification

and sequence numbers, is read into core. Three words are used for each entry in the GPL. In

the third word of each entry the internal index is stored. The list of extra points is

read from the EP_INT record in DYN_41CS. For each extra point, a three-word entry is

added Lu Lhe list now in core. The first word contains the extra point identification, the

second contains the initial sequence number equal to lO00 times the point ID, and the third

word is zero. The SEQEP record in DYNAMICS is read. For each referenced point, the sequence

number is replaced by the new sequence number. The list in core is now sorted on sequence

number by subroutine SORT. The sequence number in each entry is replaced by an internal

index according to the position of the entry following the sort. The GPLD is now written.

It consists of one logical record of one word entries, each entry containing the external

point identification. The internal index is implied by the position of the entry in the

record.

The SIL is read into core following the table of three-word entries currently in core.

Bit masks are initialized for the various displacement sets in statics and dynamics. Files

containing the USETD and SILD data blocks are opened to write. The file containing the USET

data block is opened to read. Each of the three-word entries in core is processed as follows.

I. If the entry corresponds to a grid point, six words are read from USET, bits for

displacement sets in dynamics are turned on according to the statics sets to which the

point belongs, six words are written on USETD, one word is written on SILD, the second

word of the three-word entry is replaced with the scalar index value in the p-set, the

third word is replaced with the scalar index value in the g-set, and the scalar index

counter for the p-set is incremented by six.

4.47-3

MODULE FUNCTIONAL DESCRIPTIONS

2. If the entry corresponds to a scalar point, one word is read from USET, and the

process proceeds as above except that one word is written on USETD and the scalar

index counter is incremented by one.

3. If the entry corresponds to an extra point, one word is written on USETD, the extra

point counter is incremented, and the process proceeds as with a scalar point.

When all entries have been processed, USETD is complete and the first logical record

of SILD is complete. The second logical record of SILD is now written. It comprises two-word

entries, each pair containing a scalar index value in the g-set and the corresponding

scalar index value in the p-set.

The third word of each of the three word entries in core is now replaced with a code

word which is ten times the scalar index value in the p-set plus the type of point (I : grid,

2 = scalar, 3 = extra). The table is sorted on external point identificatlon. EQDYN is written

as two logical records. The first record contains pairs, each consisting of an external point ID

and a scalar index value in the p-set. The second record contains pairs, each consisting of an

external point ID and a code word.

4.47.7.3 Assembly of the DLT

The DAREA, DELAY and DPHASE tables are read from DYNAMICS, one table at a time. Grid

point and component codes are converted to a scalar index value in the p-set by subroutine

DPDAA. When all entries of a table have been read, the table is sorted on scalar index value

and written as a logical record on a scratch file (three scratch files are used, one for each

of the three types of tables). The table identification is saved in core.

The RL_ADI, RL_AD2, TL_ADI and TL_AD2 cards are read from DYNAMICS and stored in core.

Eleven words are used for each entry. In the first word of each entry, a code for the card

type is stored. When all cards have been read and stored in core, the data are sorted on

load set identification.

DL_AD cards are read from DYNAMICS and stored in core, and the data within each DL_AD card

are sorted on referenced set identification. The file containing the DLT data block is opened

to write. The header record is written. It contains the data block name, a list of set

4.47-4

FUNCTIOrIALMODULE DPD (DYNA_IICSPOOL DISTRIBUTOR)

identifications defined on DL_AD cards and a list of set identifications defined on RL_ADI,

RL_AD2, TL_ADI and TL_AD2 cards. The DL_AD data are then written as the first logical record

of the DLT. The remainder of the DLT co, rises one logical record per load set. For each

entry in the ll-word per entry table in core the following processing occurs.

I. The scratch file containing the tables referenced in the entry is positioned

to read the referenced table.

2. Entries are read from each of the referenced tables. A four-word entry is written

on the DLT consisting of the scalar index value, A, _, and _.

3. When all entries from the tables have been read, the DLT record is closed, and

the process repeats for the next load set.

4.47.7.4 As_en_ly of the FRL and the PSDL

FREQI, FREQ2 and FREQ cards are read from DYNAI',IICSand stored in core. Frequencies on

FREQ cards are converted to radians. When all the data have been read, a list containing three

words per entry is accumulated in core. The first word contains the frequency set identifica-

tion, the second word contains a pointer to the first word where data belonging to the set

are stored, and the thir_ word defines the type (0 = FREQI, -l = FREQ2, N = FREQ, where N is

the number of words in the frequency set). The list is sorted on set identification. The file

containing the FRL data block is opened to write. The header record is written. It contains

the data block name and a list of all frequency set identifications. The remainder of the

FRL is comprised of one logical record per frequency set.

For each entry in the three-word per entry list in core the following processing occurs.

I. If the entry corresponds to a FREQI set, then N+l frequencies are written as a

logical record on the FRL by the following equation:

fi = fo + (i-l) Af, i = 1,2..... N + I. (1)

2. If the entry corresponds to a FREQ2 set, then N+l frequencies are written as one logical

record on the FRL by the following equation:

4.47-5

where

MODULEFUNCTIONALDESCRIPTIONS

fi = fo lO(i-l) 6 i : 1,2,.... N+ l

fe
a : _Tl°glo(T-)'

o

(2)

(3)

3. If the entry corresponds to a FREQ set, the frequencies in the set are sorted, and

any duplicate frequencies are discarded. The sorted list is written as one logical

record on the FRL.

The RANDPS cards are read into core (if no RANDPS data are present, the PSDL is not

assembled). The RANDTI and RANDT2 cards are read into core, and a list similar to that in

the frequency processing is formed. This list is sorted on set identification number. The

file containing the PSDL is opened to write, and the set identifications are written in the

header record. The RANDPS data are written as the first logical record of the PSDL. The

remainder of the PSDL contains one logical record per set. For RANDT2 sets, the data are

sorted on time lag, and duplicates are discarded prior to writing the record. For RANDTI

sets, N + l time lags, _i' are written where

_i : to + (i-l)Az i = 1,2...., N + 1 (4)

4.47.7.5 Assembly of the NLFT and TRL

The N_LINi (i = 1,2,3,4) cards are read into core. Each referenced grid point and

component code is converted to a scalar index value in the Up-Set. The data are sorted

on set identification number. USETD is read into core. The file containing the NLFT data

block is opened to write, and the set identifications are written in the header record. The

remainder of the NLFT contains one logical record per set. Scalar index values within each

set are converted to scalar index values in the ud and ue sets. The data within each set are

sorted on the scalar index value to which the forcing function is applied.

The TIC cards are read, referenced grid points and component codes are converted to

scalar index values in the Up-Set, and the data are written on SCRI, one logical record per set.

A list of the TIC set identifications is accumulated in core. USETD is read into core. The

4.47-6

FUNCTIONALMODULEDPD(DYNAMICSPOOLDISTRIBUTOR)

file containingtheTRLdatablockis openedto write. Theset identifications arewritten

in the headerrecord. Thelast wordof the headercontainsthe degreesof freedomin the Ud-Set.

Dataare readfromSCRI. Scalarindexvaluesareconvertedto scalar indexvaluesin the Ud-set.

EachTICset is written asonelogical recordonthe TRL. Whenall theTICdatahavebeen

processed,theTSTEPdataarecopiedfromDYNAMICSto the TRL,one logical record per TSTEP set.

4.47.7.6 Assembly of the EED and TFL

Processing of EIGB, EIGC, EIGP and EIGR cards is minimal. For each card type present,

a corresponding logical record is written on EED. For each of the cards which specify P¢INT,

the referenced grid point and component code is converted to a scalar index value (ua set

for EIGB and EIGR cards, ud set for EIGC cards).

Transfer function data are read from the TF record on DYNAMICS one set at a time. For

each transfer function set, the point and component codes are converted to scalar index values

in the Up set, which in turn form row and column numbers of the transfer function matrices.

The data are written on the TFL, one transfer function set per logical record• The set

identification nu_er is the first word of each logical record. Four word entries follow.

The first word is 65536*column number plus row number; the next three words are the terms of

the matrices.

4.47.8 Subroutines

Auxiliary subroutines DPDI, DPD2, DPD3, DP4 are described above.

4.47.8.I Subroutine Name: DPDAA

I. Entry Point: DPDAA

2. Purpose: To convert a grid point and component code to a scalar index value in

the Up set.

3. Calling Sequence: CALL DPDAA

4. Method: A flag called INEQ is maintained in /DPDC_M/. If the flag is zero,

EQDYN is read into core and INEQ is set to one. The grid point and component to be

converted is stored in BUF(L) and BUF(L+I) where BUF and L are in /DPDC_M/. A binary

search is performed in EQDYN. If the point is found, the corresponding scalar index

value is stored in BUF(L). Otherwise, an error message is queued, and an internal

4.47-7

MODULE FUNCTIONAL DESCRIPTIONS

N_G_ flag is turned on.

4.47.9 Design Requirements

4.47.9.1 Allocation of Core Storage

In general, core storage requirements in DPD are the EQDYN table plus one set of data

being processed plus two or three GIN_ buffers. In DPD3 where EQDYN is not required, it is

assumed that all data required to assemble the FRL or PSDL can be held in core at one time.

4.47.9.2 Environment

The Block Data program DPDCBD initializes /DPDC_M/ with GIN_ file names, L_CATE codes for

the various card types processed by DPD, and miscellaneous data. It must be resident in

core when DPD is executed.

DPD is designed to operate in a single overlay segment. Communication in the module

occurs through /DPDC_I4/ and open core /DPDC_R/. If an alternate overlay is desired, DPDCDB,

DPD and DPDAA could form a local primary segment and each of DPOI, DPD2, DPD3, DPD4 and DPD5

could form separate secondary segments. In this case, /DPDC_R/ must be inserted after the

longest of the secondary segments. Four scratch files are used by DPD.

4.47.10 Diagnostic Messages

The following messages may be issued by DPD:

2064, 2066, 2068, 2069, 2071, 2107, 2135, 2136.

4.47-8 (12-I-69)

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

4.48 FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

4.48.1 Entry Point: REIG

4.48.2 _:

To solve the equation

[K] - X [M]){u} : 0

for eigenvalues X and their associated eigenvectors.

4.48.3 DMAP Callin_ Sequence

READ KAA,MAA,MR,DM,EED,USET,CASECC/LAMA,PHIA,MI,0EIGS/V,N,F_RMAT/v,N,NEIGvS/V,N,NSKIP

Input Data Blocks

- Partition of stiffness matrix - a set.

- Partition of mass matrix - a set.

Rigid body mass matrix - r set.

Rigid body transformation matrix.

Eigenvalue Extraction Data.

Displacement set definitions table.

- Case Control Data Table.

4.48.4

KAA

MAA

MR

DM

EED

USET

CASECC

Notes:

I.

2.

3.

4.

5.

4.48.5

LAMA

KAAmust be present.

MR may or may not be present.

DM and USET must be present if MR is present.

EED and CASECC must be present.

In Buckling Analysis MAA = -KDAA

Output Data Blocks

- Real Eigenvalue Table

4.48-I (8/I/72)

(1)

MODULEFUNCTIONAL DESCRIPTIONS

PHIA

MI

_EIGS

- Eigenvectors matrix giving the eigenvectors in the a set.

- Modal Mass Matrix.

- Real Eigenvalue Summary Table.

4.48.6 Parameters

F(_RMAT

NEIGVS

NSKIP

- Input-BCD-no default. If F_RMAT _ MODES, READ will solve a buckling problem

(i.e., [_ M - K] {u} = O) using EIGB data cards where M is the negative of the

differential stiffness matrix.

- Output-integer-no default. NEIGVS is the number of eigenvalues found. If none

were found, NEIGVS = -l.

- Input-integer-default value of one. The method used by READ is taken from the

NSKIP record of CASECC.

4.48.7 Method

REIG is the main controlling program for the READ module. Its responsibility is to decide

which method was asked for (Inverse Power, Determinant or Givens) and to pass control to the

appropriate routine. Once eigenvalues have been extracted, RE[G directs the sorting and normaliz-

ing of the vectors for final output. The flow of the module can be seen in the flow charts shown

in Figure I.

4.48.8 Subroutines

The subroutines used by READ are divided into five classes: l) subroutines used by REIG,

2) subroutines used for the Inverse Power Method, 3) subroutines used for the Determinant Method,

4) subroutines used for the Givens Method, and 5) general subroutines. The descriptions for the

general subroutines can be found in section 3.

4.48-2 (8/I/72)

FUNCTIONALMODULEREAD(REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

REIG INVERSE POWER DETERMINANT GIVENS

READI INVPWR DETM SUMM VALVEC

READ2 INVPI DETMI SQRTM SMLEIG

READ3 INVP2 DETM2 DETFBS TRIDI

REAJ)4 INVP3 DETM3 SIC_X

READS N_RMI DEll'f4 SINCA_S

READ6 MTIMSU DETM5 R@TAX

9RTCK XTRNSY DETM6 R_TATE

INVERT SUB FDVECT EMPCgR

INVTR INVFBS F_ADD FILCgR

DETDET QRITER

ARRM WILVEC

GENERAL

DECgMP

ADD

PREL_C

SSG2B

SDRIB

SDC_MP

FACT@R

TRANPI

TRNSP

MERGE

MPYAD

4.48-3 (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

4.48.8.1 Subroutine Name: READ1

I. Entry Point: READ1

2. Purpose: To compute the eigenvectors for the rigid body modes.

3. Calling Sequence: CALL READI (DM,MR,SCRI,SCR2,SCR3,PHIAT,USET,NR,LAMAT,SCR4)

DM,MR,USET are the GIN_ file numbers of their respective data blocks - integer - input.

SCRI ,SCR4 are the GIN_ file numbers of 4 scratch files - integer - input.

PHIAT GIN_ file number of a temporary storage file for the eigenvectors - integer - input.

LAMAT - GIN_ file number of a temporary storage file for the eigenvalues - integer - input.

NR - Number of rigid body modes - integer - output.

C_MMON /READIA/Z(1)

Z(1) Array of open core for READI

4. Method: Let r be the number of rigid body modes and let

etc.

Set {v I }

a.

I l = p

= {I l} and perform the following three steps for i = l, 2 r.

Normalize {v i} by the following equations:

Si : {vi}T [m r] {vi},

l

{_i} =_i {vi}'

Si must be greater than zero for a consistent rigid body system.

(2)

(3)

(_)

(5)

4.48-4

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

b. Calculate using j : 1,2i:

_J = {@j}T [mr] {li+l}" (6)

c. The next vector is then:

(Return to step b).

i

• : - z :j {_j}.{Vi+l_ {li+l} j=l

This procedure is a modification of the Schmidt orthogonalization procedure using

the {I} vectors as a starting point. Since the [mr] matrix is non-sir.)ular,the {I}

vectors are independent with respect to the matrix. Each new vector {li+l} is made

orthogonal with respect to the previous vectors by subtracting its scalar matrix

products (_) with the other vectors. The matrix of resulting vectors [@to] should

form a diagonal, unit matrix [mro] with the equation:

[mro] = [@ro]T [mr] [@ro] •

The remaining displacements of the rigid body eigenvectors are formed from the

equation

(7)

(8)

[@_o] = [D] [@ro], (9)

where [D] corresponds to the data block DM.

Each column of [@ro] is merged with [@40] using USET (UA,UL,UR).

4.48.8.2 Subroutine Name: READ2

I. Entry Points: READ2, READ5

2. Purpose: To compute the modal mass matrix [MI], to normalize the extracted eigenvalues,

and to prepare the output files LAMA and @EIGS.

3. Calling Sequence: CALL READ2 (MAA,PHIA,SCRI,N_RM,IA,USET,MI,LAMA,_EIGS,SCR2,EPSI,SCR3)

CALL READ5 (IP_UT)

4.48-5 (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

MAA,PHIA,USET,MI,LAMA,_EIGSare the GIN_file numbersof their respectivedata

blocks- integer- input.

SCRI,...,SCR3areGIN_file numberof 3 scratchfiles - integer- input.

NQRM

IA

- Normalization method requested.

MAX - Implies maximum component.

P_INT - Implies specified component.

MASS - Implies unit modal mass matrix.

Input - BCD

- If N@RM = P_INT, IA is the component number which is set to l.O -

integer - input.

EPSI - If EPSI # 0.0, the off-diagonal terms of the modal mass matrix [MI] are checked

for the number which exceed EPSI.

C_MM@N /READ2A/Z(1)

Z(1) - Array of open core for READ2.

4.48.8.3 Subroutine Name: READ3

I. Entry Point: READ3

2. Purpose: To sort the eigenvalues in ascending order and to output the eigenvalues

and eigenvectors in order. Also, to pack the eigenvectors in standarE matrix format.

3. Calling Sequence: CALL READ3 (N_VECT,NC_L,SCRI,SCR2,PHI,LAMBDA)

N_VECT - Number of eigenvectors extracted - integer - input.

NC_L - Length of the vectors - integer - input.

SCRI - GIN_ file containing the unsorted eigenvalues - integer - input.

SCR2 - GIN_ file containing the unsorted eigenvectors - integer - input.

PHI - GIN_ file for the output sorted vectors - integers - input.

LAMBDA - GIN_ file for the output sorted eigenvalues - integer - input.

C_MM_N /READ2A/Z(1)

Z(1) - Area of open core available to READ3.

4.48-6

FUNCTIONALMODULEREAD(REALEIGENVALUEANALYSIS- DISPLACEMENT)

4.48.8.4 Subroutine Name: READ4

I. Entry Point: READ4

2. Purpose: To test for close and equal roots found by the Determinant Method and make

sure the corresponding vectors are orthogonal.

3. Calling Sequence: CALL READ4 (LAMAT,MPHIA,SCRI,EPSI,MAA)

LAMAT - GIN_ file number of temporary storage file for the eigenvalues found -

integer - input.

MPIIIA - Matrix control block for PHIA - integer - input.

SCRI - GIN@ file number of a scratch file - int_er - input.

EPSI - Close root test criteria ° real - input.

MAA GIN_ file nun_er of l_Jk- integer - input.

C_r_._N/READ2A/Z(1) See READ2A

Z(1) - Array of open core for READ4.

4.48.8.5 Subroutine Name: _RTCK

I. Entry Point: _RTCK

2. Purpose: _RTCK will generate the generalized mass matrix for the close roots and

make the epsilon test to determine if the vectors should be orthogonalized.

3. Calling Sequence: CALL _RTCK (X,MAA,BUFFER(1),NUM,NDIM,GM,ACCUM,EPSI)

X - Unorthogonalized eigenvectors - real - input/output.

MAA and EPSI are as described in READ4.

BUFFER

NUM

NDIM

GM

ACCUM

- GIN@ buffer.

- Number of close roots - integer - input.

- Order of the problem - integer - input.

- Generalized mass for the close roots - reel array - output.

- Running sum of [Maa] [Ca] - real i_pu_/output.

4.48-7

MODULEFUNCTIONALDESCRIPTIONS

4.48.8.6 SubroutineName:INVPWR

I. EntryPoint: INVPWR

2. Purpose:INVPWRis themaindriver for the InversePowerMethodof eigenvalue

extraction.

3. CallingSequence:CALLINVPWR

C@MM_N/INVPWX/K(7),M(7),LAM(7),PHI(7),SCRFIL(8),EIGSUM,LMIN,LMAX,N_EST,NDPLUS,NDMNUS,

EPS,N_RTH_

K,M Matrix control blocks for the input stiffness and mass matrices, [K] and [M].

LAM,PHI Matrix control blocks for the output eigenvalue and eigenvector files.

SCRFIL(8) GINB file numbers for eight scratch files.

EIGSUM GIN_ file number for the eigenvalue summary file - integer.

LMIN-LMAX Desired range for eigenvalues - real.

N@EST Number of estimated eigenvalues in the range - integer.

NDPLUS Number of desired positive eigenvalues - integer.

NDMNUS Number of desired negative eigenvalues - integer.

EPS Convergence criteria - real.

N_RTH_ Number of roots extracted - integer.

COMM_N/INVPX/Z(1)

Z(1) Area of open core available to INVPWR.

4. Method: Reference can be made to the flow charts in Figure 1 for the program

logic. Theoretical implications are handled in section 4.48.11 and in the

Theoretical Manual.

4.48.8.7 Subroutine Name: INVPI

I. Entry Point: INVPI

2. Purpose: To set up a call to ADD to form

[A] : [K] - Zo [M] (lO)

4.48-8

FUNCTIONAJ__DULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

KsM

A

LAM_

z(1)

4.48.8.8

I.

2.

3. Calling Sequence: CALL INVPI

C_Mr_N /INVPWX/K(7),M(7),A

C_MM_N /INVPXX/LAM_

C_I,I_N/INVPIX/Z(1)

Matrix control blocks for the input matrices.

GIN_ file number for the output matrix.

- Double precision scalar multiplier.

- Area of open core available to ADD.

Subroutine Name: INVP2

Entry Point: INVP2

Purpose: To initialize and call DECAMP for subroutine INVPWR.

Calling Sequence: CALL INVP2

C_MM_N /INVPWX/DUM(14),A(7),L(7),XX(2),U,SCRI,SCR2,SCR3,LL,UU

C_MM_N /INVPXX/DUMM(12),SWITCH

C_.I_N /INVP2X/Z(1)

A - GIN_ file number of the input matrix - integer - input.

L,U - GIN_ file number for the lower and upper triangular matrices output from DECAMP-

integer - input.

SCRI,
SCR2,
SCR3

_

LL,UU - GIN@ file numbers for alternate storage of L and U - integer - input.

SWITCH - 0 - Store output matrices in L and U. l - Store output matrices in LL and UU -

integer - input.

Z(1) - Area of open core available for DECAMP.

Three scratch files used by DECI_MP- integer - input.

4.48.8.9 Subroutine Name: INVP3

I. Entry Point: INVP3

2. Purpose: To solve for an eigenvalue and eigenvector using the Inverse Power Method.

3. Calling Sequence: CALL INVP3

C_MM_N _INvPW_K(7),M(7)_LAM(7),PH_(7),_RFIL(8)_EIG_M,LMIN,LMAX,N_EST,NDPLUS,NDMNUS,EPS

C_MM_N /INVP3X/Z(1)

4.48-9

MODULEFUNCTIONALDESCRIPTIONS

4.48.8.10 SubroutineName:

SeeINVPWRfor a descriptionof /INVPWX/(section 4.48.8.6).

Z(1) Open core for INVP3.

4. Method: The logic flow of INVP3 is given in Figure l with the mathematical

equations supplied in 4.48.11. Theoretical considerations are given in the Theoretical

Manual.

INVP3 was designed with two aspects in mind: first to assure that all roots within

a given region are found, and second to avoid any possibility of looping uncontrollably.

To accomplish these ends, considerable testing was inserted around the mathematical

equations.

5. Design Requirements: INVP3 needs sufficient storage to hold seven double precision

a set vectors and four GIN_ buffers in core.

N_RMI

I. Entry Point: N_RMI

2. Purpose: To normalize a vector {x} such that its maximum component is one.

3. Calling Sequence: CALL N_RMI (X,DIV)

C_MM_N/INVPWX/XX,N

N - Length of the double precision vector {x}.

X - Double precision vector {x}.

DIV - Double precision value of the divisor used to normalize {x}- output.

4.48.8.11 Subroutine Name: MTIMSU

I. Entry Point: MTIMSU

2. Purpose: To pre-multiply a vector by a matrix i.e.j:

{x} : [M] {y}.

3. Calling Sequence: CALL MTIMSU (Y,X,BUF) (BUF is not used)

C_MM_N/INVPWX/DUM(7),M(7)

C@MM_N/INVPXX/DU_4(13),NZERO

(ll)

4.48-10 (3/1/71)

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACE31ENT)

M - Matrix control block for matrix [M].

X,Y - Double precision left and right hand side vectors.

BUF - GIN_ buffer.

NZER9 - Number of zero columns of matrix [M].

4.48.8.12 Subroutine Name: XTRNSY

I. Entry Point: XTRNSY

2. Purpose: To form the dot product of two vectors

a = {x}T {y}. (12)

3. Calling Sequence: CALL XTRNSY (X,Y,A)

C_MM_N /iNVPWX/XX,N

N - Length of vectors {x} and _y}.

X,Y - Double precision vectors.

A - Double precision value of the dot product.

4.48.8.13 Subroutine Name: SUB

I. Entry Point: SUB

2. Purpose: To evaluate the vector equation

3, Calling Sequence:

Cgt_gN /INVPWX/XX,N

{z} : a{x} - b{y}. (13)

CALL SUB (X,Y,A,B)

N - Length of the vectors {x} and {y}.

X,Y - Double precision vectors in the above equation.

contains the difference vector {z}.

A,B - Double precision scalar multipliers.

Y, upon return from SUB,

4.48-II (7/I/70)

MODULE FUNCTIONAL DESCRIPTIONS

4.48,8.14 Subroutine Name: INVFBS (or INVFSP)

I. Entry Point: INVFBS (or INVFSP)

2. Purpose: INVFBS will perform the forward-backward substitution necessary to

solve one iteration of the Inverse Power Method given by

([K] - Xo [M]) {W n}

3. Calling Sequence: CALL INVFBS (X,Y,BUF)

COMM_N /INFBSX/L(7),U(7)

L,U

X

Y

BUF

4.

= [M] {Un_l}.

Matrix control blocks for the lower and upper triangular matrices generated

by decomposition of ([K] - X [M]).
0

Double precision right hand vector, [M] {Un_l}.

Double precision solution vector, {Wn}.

GIN_ buffer.

Method: INVFBS is a stripped down version of GFBS. Both vectors are stored in

core. Real, double-precision arithmetic is used for INVFBS and real, single-precision

arithmetic is used for INVFSP.

(14)

4.48-12 (8/I/72)

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

4.48.8.15 Subroutine Name: DETM

I. Entry Point: DETM

2. Purpose: To supervise the operations of the Determinant Method.

3. Calling Sequence: CALL DETM

All determinant routines use common blocks /KEGEAN/ and /DETMX/.

C_MM_N /REGEAN/IM(7)_IK(7)_IEV(7)_SCRl_SCR2_SCR3_SCR4_SCR5_LC_RE_RMAx_RM_N_MZ_NEv_EPSI_

RMINR,NE,NIT,NEVM,SCR6,SCR7,NFOUND,LAMA,IBUCK,NSYM

IM(7) -

IK(7) -

IEV(7) -

SCR!,°++,

SCR7

SCRI -

SCR2 -

SCR3 -

LC_RE -

RMAX -

RMIN -

MZ

NEV

EPSI

RMINR

NE

Matrix control block for MAA.

Matrix control block for KAA.

Matrix control block for the eigenvectors.

GIN_ file number of 7 scratch files - integer - input.

Contains [KAA] - _[MAA].

Contains [LLL].

Contains [ULL].

Amount of open core reserved for starting points, determinants, scale factors

and accepted eigenvalues - integer - input.

Maximum eigenvalue of interest - real - input/output.

Minimum eigenvalue of interest - real - input.

Number of zero eigenvalues - integer - input.

Number of estimated eigenvalues in the range of interest - integer - input.

Convergence criteria - real - input/output. EPSI = l.OxlO-ll currently.

Lower boundary to search region. (RMINR = -.OI*RMIN)

For buckling problems a pole of geometrically increasing order is placed at

RMINR each time the search procedure points below RMIN - real - input.

Number of changes in the convergence criteria - integer - input. NE is currently

set at 4.

4.48-13

MODULEFUNCTIONALDESCRIPTIONS

NIT - Numberof iterations allowedto convergeto aneigenvalue.NITis

currentlyset to 20- integer- input.

NEVM - Numberof eigenvaluesdesired- integer- input.

NF_UND- Numberof eigenvaluesfound- integer- output.

LAMA - GIN@file numberof eigenvaluestoragefile - integer- input.

IBUCK- Bucklingflag. If IBUCK: 3, the currentproblemis a BucklingAnalysis

problem- integer- input.

NSYM Symmetricdeterminantflag. If NSYM= l, symmetricdecompositionis used

to computethe determinantof A - integer- input.

c@MM_N/DETMX/P(4),DETX(4),Psl(4),DETl(4),N2EV,IPSAV,IPS,IDET,_PDETA,PREc,NSTART'NDCMP,Ic,NSM_VE,

ITERM,IS,ND,IADD,SMLI,IPDETX(4),IPDETI(4),IFAIL,K,FACTI,IFFND,NFAIL,NP_LE,ISNG

P

DETX

PSl

DETI

N2EV

IPSAV

IPS

IDET

IPDETA

PREC

NSTART

NDCMP

IC

- The 3 trial values of the eigenvalue - double precision - input/output.

- The determinants of the 3 P's above - double precision - input/output.

- The 3 current starting points - double precision - input/output.

- The determinants of the 3 starting points - double precision - input/output.

- The number of starting points - integer - input.

- Pointer to the accepted eigenvalues - integer - input.

- Pointer to the starting points - integer - input.

- Pointer to the determinants of the starting points - integer - input.

Pointer to the scale factors of the determinants - integer - input.

Precision of the calculations - integer - input.

Number of passes through the starting points - integer - output.

- Total number of decompositions - integer - output.

- Total number of convergence criteria changes - integer - output.

4.48-14

n

)

NSM_VE

ITERM

IS

ND

IADD

SMLI

IPDETX

IPDETI

IFAIL

K

FACTI

IFFND

NFAIL

NP_LE

ISNG

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

- Number of starting point moves - integer - output.

- Reason for termination - integer - output.

- Start set counter - integer - input/output.

- Number of n_ starting points to evaluate - integer - input.

- Pointer to next starting point to evaluate - integer - input/output.

- Magnitude of smallest diagonal element of lULL] - real - output.

- Scale factors for the determinants in DETX - integer - input/output.

- Scale factors for the determinants in DETI - integer - input/output.

- If this set of starting points produced a failure to iterate to a root,

IFAIL = l - integer - input/output.

- Current iteration counter - integer - input.

- Constant = EPSI*SQRT(RMAX) - real - input/output.

- If an eigenvalue is accepted on a given pass through the starting points,

IFFND = l - integer - input/output.

Number of failures to iterate to a root - integer - output.

Order of the current pole at RMINR - integer - input/output.

- Number of singular matrices detected during decomposition - integer - input/output.

COI_VQNIDETDX/DZ(1)

DZ(1) - Array of open core for DETM.

4. Method: The general method used for the Determinant Method is described in

section 4.88.

5. Design Requirements: DETM needs sufficient open core to hold two double precision a set

vectors and one GINO buffer. Open core at /DETDX/ is used for storage of starting points,

determinants, powers and accepted eigenvalues.

4.48.8.16 Subroutine Name: DETMI

I. Entry Point: DETMI

2. Purpose: To compute the locations of the starting points.

3. Calling Sequence: CALL DETMI ($n)

4.48-15

4.48.8.17

I.

2.

3.

4.48.8.18 Subroutine Name: DETM3

I. Entry Point: DETM3

2.

3.

n 1

n 2 -

n 3 -

4.48.8.19

I.

2.

3.

4.48.8.20 Subroutine Name: DETM5

I. Entry Point: DETM5

2.

3.

4.48.8.21 Subroutine Name: DETM6

MODULE FUNCTIONAL DESCRIPTIONS

- The statement number to which DETMI will return if the first three starting points

yield a singular matrix.

Subroutine Name: DETM2

Entry Point: DETM2

Purpose: To evaluate the determinant of ND starting points.

Calling Sequence: CALL DETM2

Purpose: To iterate for an eigenvalue.

Calling Sequence: CALL DETM3 ($nl,$n2,$n3)

- Return for a new starting point.

Return for a new pass through the starting points.

Return for problem time expired.

Subroutine Name: DETM4

Entry Point: DETM4

Purpose: To move any starting points necessary.

Calling Sequence: CALL DETM4

Purpose: To write out the eigenvalue analysis summary for the determinant method.

Calling Sequence: CALL DETM5.

I. Entry Point: DETM6

4.48-16

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

2. Purpose: To rescale any number by powers of lO.

3. Calling Sequence: CALL DETM6 (D,POWER)

The arguments are both input and output to the routine and are defined by the

following equation.

Dout x IoP_WERout = Din x IoP_WERin,

.l! [Doutl! lO.

D is double precision and P_WER is integer.

4.48.8.22 Subroutine Name: FDVECT

I.

2.

3.

SMLI

PK

4.48.8.23

I.

2.

3.

P

PREC

4.48.8.24

I.

2.

3.

Entry Point: FDVECT

Purpose: To build the load vector to solve for an eigenvector.

Calling Sequence: CALL FDVECT (SMLI,PK)

- Smallest diagonal term of [ULL] - real - input.

- Accepted eigenvalue - double precision - input.

Subroutine Name: EAJ)D

Entry Point: EADD

Purpose: To compute [A] = [K_] - p[MJ_A].

Calling Sequence: CALL EADD (P,PREC)

- Trial value for one eigenvalue - double precision - input.

- "2" - integer - input.

Subroutine Name: DETDET

Entry Point: DETDET

Purpose: To compute the swept determinant of [A].

Calling Sequence: CALL DETDET (DETA,IP_WR,P,SMLI,_LDD,IPR_LD)

(15)

(16)

4.48-I7

MODULEFUNCTIONALDESCRIPTIONS

DETA

IP@WR

P

SMLI

@LDD

IPR_LD

4.48.8.25

I.

2.

- Sweptdeterminantof [A] - doubleprecision- output.

Scalefactor of DETA- integer- output.

Valueof p usedin computing[A] - doubleprecision- input.

Valueof smallestdiagonaltermof [ULL]- real - output.

Sweptdeterminantof previousvalueof p - doubleprecision- input.

Scalefactor of _LDD- integer- input.

SubroutineName:ARRM

EntryPoint: ARRM

Purpose:Toarrangethreestarting points in orderby the magnitudeof their

scaleddeterminants.

3. CallingSequence:

p -

D -

ND -

4.48.8.26

I.

2.

3.

CALLARRM(P,D,ND)

Arrayof 3 starting points- doubleprecision- input/output.

Arrayof 3 determinantsat P - doubleprecision- input/output.

Arrayof 3 scalefactors of D- integer- input/output.

SubroutineName:SUMM

EntryPoint: SUMM

Purpose:Toaddtwoscalednumberstogether.

CallingSequence:CALLSUMM(SUM,ISUM,TI,ITI,T2,1T2,N)

Theargumentsaredefinedby the followingequation:

SUMx lOISUM: Tl x lOITl + T2x lOIT2

If N= l, theminussign is used,otherwisethe positive sign is used.

SUM,Tl, T2aredoubleprecision.

N, ITl, ISUM,IT2are integers.

(17)

4.48-18

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

4.48.8.27 Subroutine Name: SQRTM

I. Entry Point: SQRTM

2. Purpose: To compute the square root of a scaled number.

3. Calling Sequence: CALL SQRTM (A,IA,B,IB)

The arguments are defined by the following equation:

A x lOIA = B_xlO IB

A and B are double precision.

IA and IB are integers.

4.48.8.28 Subroutine Name: DETFBS

I.

2.

3.

F

X

BUFFER

FU

NROW

4.48.8.29

I.

2.

3.

Entry Point: DETFBS

Purpose: To solve for the eigenvector.

Calling Sequence: CALL DETFBS (F,X,BUFFER,FU,NR_W)

Array containing the load vector {F} - double precision - input.

Array containing the eigenvector - double precision - output.

GIN_ buffer.

Matrix control block for lULL] - integer - input.

Order of the problem (length of F and X) - integer - input.

Subroutine Name: VALVEC

Entry Point: VALVEC

Purpose: To extract the eigenvalues and eigenvectors of a symmetric matrix.

Calling Sequence: CALL VALVEC

C_MM_N /GIVN/Xl,M_,MD,MRl,Ml,M2,M3,M4,X9(3),RSTRT,Xl8(82),N,LFREQ'_RDER,Y4,HFREQ,LAMA,NV,

X8(2),NF_UND,OEIGS,PHIA,NVER,NEVER,MAX,ITERM

CCMM_N IXXVLVCIZ(1)

/GIVN/ is used by all Givens routines.

4.48-19 (12-I-69)

FUNCTIONALMODULEREAD(REALEIGENVALUEANALYSIS- DISPLACEMENT)

M_

MD, MR1, MI, M2, M3, M4

RSTRI

N

LFREQ, HFREQ

_RDER

LAMA, _EIGS, PHIA

NV

NF_UND

NVER

NEVER

MAX

ITER

Z

GIN_ file number of the input matrix - integer - input.

GINO file numbers of scratch files - integer - input.

'0' indicates no restart is being made - integer - input.

Order of the problem- integer - output.

- Frequency range for computation of eigenvectors - real - input.

Eigenvalue sort order flag - integer - input.

- GINO file name of the associated data blocks - integer - input.

- Number of eigenvectors to compute - integer - input.

- Number of rigid body modes previously found - integer - input.

- Number of fails to converge on eigenvectors - integer - output.

"'- of =_i_ to converye oT_eig_nvdlues - integer output.

- Maximum number of QR iterations allowed - integer - input.

- Reason for termination - integer - input.

- Open core for VALVEC.

Xl, xg, Xl8, YY, X8 are dummy variables and are not currently used.

4.48.8.30 Subroutine Name: SMLEIG

I. Entry Point: SMLEIG

2. Purpose: To compute the eigenvalues for a l by l and 2 by 2 matrix and the eigenvector

for a l by l matrix.

3. Calling Sequence: CALL SMLEIG (D,_,VAL)

D - Array of diagonal values - double precision - output.

- Array of off-diagonal values - double precisior,- output.

VAL - Array ef eigenvalues - double precision - output.

4.48.8.31 Subroutine TRIDI

I. Entry Point: TRIDI

4.48-19a (12-I-69)

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

2.

3.

D

C -

A

B

AA

4.48.8.32

I.

2.

3.

D

C@S

4.48.8.33

I.

2.

3.

R@W

FLAG

Purpose: To tridiagonalize a symmetric matrix.

Calling Sequence: CALL TRIDI (D,_,C,A,B,/_A)

- Diagonal terms of the tridiagonal matrix - double precision - output.

- Off diagonal terms of the triadiagonal matrix - double precision - output.

Scratch array which contains another copy of the diagonal terms at the conclusion

of TRIDI - double precision - output.

Remainder of core - double precision - scratch.

Scratch array which contains the square of the off-diagonal terms - double precision

- output.

Remainder of core - single precision - scratch.

Subroutine Name: SIC_X

Entry Point: SIC_X

Purpose: To initialize the arrays in SICAS. See section 4.48.8.33.

Calling Sequence: CALL SIC@X (D,@,C_S)

- Array of diagonal values - double precision - input/output.

- Array of off-diagonal values - double precision - input.

- Array of cosine rotation factors - double precision - irput/output.

Subroutine Name: SIC@X (D,@,C_S)

Entry Point: SINCAS

Purpose: To compute the rotation factors for a given row.

Calling Sequence: CALL SINCAS (R_W,FLAG)

- The number of the current row to rotate - integer - input.

- If no rotations are required for this row, FLAG = O. Otherwise, FLAG = l - integer

- input.

4.48-19b (12-I-69)

FUNCTIONALMODULEREAD (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

4.48.8.34 Subroutine Name: RgTAX

]. Entry Point: RgTAX

2. Purpose: To initialize the arrays in R_TATE.

3. Calling Sequence: CALL R_TAX (_,SIN,C_S)

SIN -

C_S -

4.48.8.35

I.

2.

3.

A

R@W

R@WI

R@W2

4.48.8.36

I.

2.

3.

MTI

MT2

PT

PC

See section 4.48.8.35.

Array of off-diagonal values - double precision - input/output.

Array of sine rotation factors - double precision - input.

Array of cosine rotation factors - input.

Subroutine Name: R@TAX

Entry Point: R@TATE

Purpose: To rotate as much of the matrix as fits into core.

Calling Sequence: CALL RgTATE (A,Rg_,R_WI,RgW2)

- Partition of the _atrix h_A In core - uuuu,_ pre_ision - input.

-- The row number of current rotation row - integer - input.

The row nun_er of the first row of the matrix partition in core - integer - input.

The row number of the last row of the matrix partition in core - integer - input.

Subroutine Name: EMPC_R

Entry Point: EMPCgR

Purpose: To empty core of a triangular matrix partition.

Calling Sequence: CALL EMPCgR (MTI,MT2,PT,PC,FRSRgW,MIDR@W,LASRgW,NX,A,Z)

- GIN_ file name of the first output file - integer - input.

GIN9 file name of the second output file - integer - input.

Precision (l = single precision, 2 = double precision) of the input matrix -

integer - input.

Precision (l = single precision, 2 = double precision) of the output matrix -

integer - input.

The row number of the first row in core - integer - input.

When the current row is greater than MIDRgW, write the remainder of the matrix

4.48-19c (I2-I-69)

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

LASR_W

NX

onto MT2 - integer - input.

The row number of the last row in core - integer - input.

Order of the matrix - integer - input.

Storage containing the triangular matrix - double precision - input.

GIN_ buffer - input.

4.48.8.37 Integer Function Name:

I. Entry Point: FILC_R

FILCOR

2,

3.

MTI

MT2

PC

FRSR_W

MIDR_W

NX

A

NZA

Z

ROW

4.48.8.38

Purpose: To fill core with a triangular matrix.

Calling Sequence: R_W = FILC_R (MTI,MT2,PC,FRSR_W,MIDR_W,NX,A,NZA,Z)

- GIN_ file name of the first part of the matrix (up to MIDR@W) - integer - input.

- GIN_ file name of the rest of the matrix - integer - input.

- Precision (I = single precision, 2 = double precision) of the matrix in core -

integer - input.

- The row number of the first row of the matrix to be read - integer - input.

- Breakpoint of the matrix - integer - input.

- Order of the matrix - integer - input.

- Core storage to hold the matrix - integer - input.

- Number of single precision wo_ds at A - integer - input.

- GIN_ buffer - input.

- The row number of the last row read into A - integer - output.

Subroutine Name: QRITER

I. Entry Point: QRITER

2. Purpose: To obtain the eigenvalues of a tridiagonal matrix by the Ortega - Kaiser QR

iteration technique.

3. Calling Sequence: CALL QRITER (VAL,_,LOC,QR)

4.48-19d (12-I-69)

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

VAL Diagonal terms of the tridiagonal matrix on input, reordered eigenvalues on return -

double precision - input/output.

-- Squares of the off-diagonal terms of the tridiagonal matrix. These are iteratively

reduced to zero - double precision - input/output.

L_C - Array giving the o_der in which each eigenvalue is found - integer - output.

QR -- QR _ 0 implies that the eigenvalues already exit at VAL and this is an ordering call

only - integer - input.

Subroutine Name: WILVEC

Entry Point: WILVEC

Purpose: To compute eigenvectors by the Wilkinson method.

Calling Sequence: CALL WILVEC (D,_,VAL,VL_C,V,F,PoQ,R,VEC,NX,SVEC)

- Array of diagonal values - double precision - input.

Array of off-diagonal values - double precision - input.

Array of eigenvalues - double precision - input.

Array of original ordering of eigenvalues - integer - input.

V,F,P,Q,R Scratch arrays of length equal to the order of the problem - double precision -

input/output.

VEC - Array of core to store vectors - double precision - scratch.

NX - Not used

SVEC - Array of core to store vectors - single precision - scratch.

Subroutine Name: INVERT

I. Entry Point: INVERT

2. Purpose: To drive INVTR (see section 4.48.8.41) to compute the inverse of an upper or

lower triangular matrix.

3. Calling Sequence: CALL INVERT (IA,IB,SCRI)

C_MM_N/INVTRX/Z(1)

4.48.8.39

I.

2.

3.

D

-

VAL -

VL_C -

4.48.8.40

4.4B-19e (12-I-69)

IA

IB

SCRI

Z

4.48.8.41

I.

2.

3.

FUNCTIONALMODULEREAD (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

- GIN_ file name of an upper or lower triangular matrix - integer - input.

GIN@file name of the inverse of the matrix on IA - integer - input.

- GIN_ file name of a scratch file - integer - input.

- Open core for INVERT.

Subroutine Name: INVTR

Entry Point: INVTR

Purpose: To invert a triangular matrix.

Calling Sequence: CALL INVTR (X,DX)

C_MM_NIINVTRX/FA(7),FB(7),SCRFIL,NX,PREC

X Open core for INVTR - single precision - scratch.

DX Open core for INVTR (same address as X) - double precision - scratch.

FA Matrix control block for the input matrix - integer - input.

FB Matrix control block for the output matrix - integer - input.

SCRFIL GINp file name of a scratch file - integer - input.

NX Length in words of X - integer - input.

PREC Precision (I = single precision, 2 = double precision) of the computation -

integer - input.

Subroutine Name: READ6

Entry Point: READ6

Purpose: To merge the rigid body eigenvectors with vectors computed by GIVENS.

Calling Sequence: CALL READ6 (IRBM,IMGIV,NR,IPHIA)

C_MM_N/READ6X/Z(1)

4.48.8.42

I.

2.

3.

IRBM

IMGIV

NR

- GIN_ file name for eigenvectors computed by READ1 - integer - input.

- GIN_ file name for eigenvectors computed by GIVENS - integer - input.

- Number of eigenvectors computed by READI - integer - input.

4.48-19f (12-I-69)

IPHIA

Z

4.48.9

FUNCTIONALMODULEREAD(REALEIGENVALUEANALYSIS- DISPLACEMENT)

- GIN_file namefor mergedeigenvectors- integer- input.

- Opencorefor READ6.

Design Requirements

Design requirements are peculiar to the method chosen.

be consulted. Nine scratch files are used.

4.48.10 Diagnostic Messages

The appropriate subroutines should

Messages output from READ are peculiar to the individual subroutine.

4.48-19g (3/I/71)

MODULE FUNCTIONAL DESCRIPTIONS

4.48.11 Mathematical Considerations for the Inverse Power Method

The algorithm for finding the eigenvalues and eigenvectors of

([K] - X[M]) [4] = O, (19)

is given as follows.

I. The iteration algorithm is given by the following equations.

([K] - Xo [M]) {Wn} = [M] {Un_ I} , (20)

_ 1 {Wn} '
{_n } Cn

{%} : }) },
1

where Cn is the absolute value of the maximum component of {Wn}.

extends over all previously extracted eigenvectors.

2. Form

3. Compute

{F n} : [M] {Un}.

an = ({un}T {Fn})I/2 .

The sum over i

(Zl)

(22)

(23)

(24)

4. Compute

{6u n }
= {un} {Un_ 1}

an _n-I

(25)

5. Compute

{6F n} : [M] {6u n} . (2'6)

6, Compute the approximate eigenvalue

X 1
1 _n-I

Cn a n
(27)

4.48-20

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

7. For the rapid convergence test, compute

n = ({6un}T {6Fn})I/2. (28)

8o For normal convergence, compute

X2 _ {6un}T {6Fn_I}

2
q

(29)

and

k2 2

6n = ({6un}T {6Fn}) /(l - _l) (3O)

go

and

For the shift decision test, compute

hl,n =
m_n l_n-i

R
o

. (31)

10glo 6_n-_)
k : • (32)

lOglO (k2/kl)

I0. For the k2 reliability test, compute

h2,n : k2,n - X2,n-I (33)

Ro

The above equations, along with the proper logic given in Figure l form the basis for the

Inverse Power Method.

4.48-21

MODULEFUNCTIONALDESCRIPTIONS

REIG
ENTER

_Yes

_No
Extract rigid body I

I

modes (READI) I
L

Inverse

Extract roots by Givens GivensJ Method _Power v

Tridiagonalization method _ _'_"_

ant
Extract roots by Determinant

Write eigenvalue summary

record (READ5) I

Figure l.(a)

Extract roots by Inverse
Power method (INVPWR)

method (DETM)

=0 __

_o
!

Sort eigenvalues & vectors I
into ascending order (READ3) i

61

_Det. or

Givens _ Orthogonalize vectors for 1
close roots (READ4)

Unv" I

Normalize vectors, compute 1
modal mass, and write |

eigenvalue summary_ (READ.2) /

3

Flowchart for module READ.

4.48-22 (12-I-69)

FUNCTIONALMODULEREAD(REALEIGENVALUE#J_ALYSIS- DISPLACEMENT)

INVPWR

I Initialize Iparameters

I Pick ko in center of I_search region

t°° ([K] - ko [H]) (INVPI)]

I°ec_P°seICK_-_°EM_I_INVP2_
!

Evaluate eigenvalues in I
the region (INVP3) I

Yes

OutputsummaryeigenvalueI

Figure l.(b) Flowchart for module READ

4.48-23

MODULE FUNCTIONAL DESCRIPTIONS

Use last
iteraterated vector

INVP3

ENTER

$
Initialize

parameters

sTes

Use previously stored ___ Orthogonalize Ivector for starting vector

Solve for {_n }(INVFBS)

Normalize vector(NORM1)

$
OrthogonaliZevector1

On

Generate a 1starting vector

Figure l.(c) Flowchart for module READ

4,48-24

FUNCTIONAL F_DULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

Compute J{F n} = [M] {_n }

Compute Ian = ({pn}T{Fn})I/2

]_ Set rapidconvergence flag

L

I Compute

{Pn}

6_n} - an

{Pn_l}

O_n.1

n = J{CS_n}T[l'l]{6_n }11/2

No

Yes Ist
iteration

Yes
or

nn_ 1 <

nn > 1.01 nn"

No

c2 flag _2 = _I

{6pn}T{6Fn-1}n2

Figure l.(d) Flowchart for module READ

4.48-25

MODULE FUNCTIONAL DESCRIPTIONS

2,n 2,n-l
h :

2,n o

Yes

No

Set E2 flag
=_

2,n 2,n-l

Yes _I

Convergence achieved
Save _ and @

sufficient
time remain

for finding
more
roots

es

New

regi on needed

No

completed
or all

eigenvalues

Yes

No

91 Move shift point I'

Figure l.(e) Flowchart for module READ.

RETURN

4.48-26 (8/I/72)

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

Set shift flag

K -----7_-_/2,

Yes

Continue

terating

ft

Save current vector

L
I Move _ close to [

0

eigenval ue

C RETURN

Figure l.(f) Flowchart for module READ

4.48-27

FUNCTIONALMODULEDSMGI(DIFFERENTIALSTIFFNESSMATRIXGENERATOR- PHASEI)

4.49

4.49.l

4.49.2

FUNCTIONALMODULEDSMGI(DIFFERENTIALSTIFFNESSMATRIXGENERATOR- PHASEl)

Entry Point: DSMGI

Purpose

To generate the differential stiffness matrix, [K_g]_

Static Analysis with Differential Stiffness and Buckling Analysis.

4.49.3 DMAP Callin9 Sequence

DSMGI CASECC,GPTT,SIL,EDT,UGV,CSTM,MPT,ECPT,GPCT,DIT/KDGG/V,N,DSCOSET

4.49.4 Input Data Blocks

CASECC - Case Control Data Table.

GPTT - Grid Point Temperature Table.

SIL - Scalar Index List.

EDT - Element Deformation Table.

UGV - Initial Approximation to the Displacement Vector - g set.

CSTM - Coordinate System Transformation Matrices.

MPT - Material Properties Table.

ECPT - Element Connection and Properties Table.

GPCT - Grid Point Connection Table.

DIT - Direct Input Tables.

Notes:

, which is used in two Rigid Formats:

I. A fatal error exists if CASECC is purged.

2. A fatal error exists if there is a temperature load and the GPTT is purged.

3. A fatal error exists if there is a temperature load and the SIL is purged.

4. A fatal error exists if an element deformation set is requested by the user in

case control and EDT is purged.

5. A fatal error exists if UGV is purged.

6. CSTH can be purged. However, if son._grid point of the model is not in basic

coordinates and the CSTM is purged, a fatal error occurs.

4.49-I

MODULE FUNCTIONAL DESCRIPTIONS

7. If the MPT is purged and some elemept references a material property, a fatal

error occurs.

8. A fatal error occurs if the ECPT is purged.

9. A fatal error occurs if the GPCT is purged.

lO. If some material property is temperature dependent, DIT cannot be purged.

4.49.5 Output Data Blocks

KDGG - Partition of differential stiffness matrix - g set.

Note: KDGG cannot be pre-purged. A fatal error occurs if it is.

4.49.6 Parameters

DSC_SET - Output-integer-no default value. The set identification number of a DSFACT bulk

data card chosen by the user in his Case Control Deck. If no such set was

specified by the user, DSC_SET is set to -l.

4.49.7 Method

The module driver, DSMGI, is a very short routine whose only function is to call the two

principal subroutines of the module, DSI and DSIA, which accomplish the two phases of the module.

The first phase of the module is incorporated in subroutine DSI. This routine creates the scratch

file ECPTDS (GIN_ file number 301) by appending to each element in the ECPT data block for which

differential stiffness is defined an element deformation, an average element loading temperature

for all elements except the conical shell element (a loading temperature at each grid point is

appended for the conical shell element) and the proper components of the displacement vector, UGV.

It should be noted that although element defo_nations are defined only for rods, tubes, beams, and

bars, an element deformation is attached to each element writter_ on the ECPTDS scratch data block.

The elements admissible to the ECPTDS scratch data block are: rods, beams, tubes, shear (but

not twist) panels, triangular and quadrilateral elements (TRMEM's and QDMEM's), the combination

membrane and plate triangular and quadrilateral elements (TRIAl, TRIA2, QUADI, QUAD2) and the

conical shell element.

The flow of DSl is given in the following steps:

I. The length of variable core is determined, buffers are defined at the bottom of open

4.49-2 (12-I-69)

FUNCTIONAL MODULE DSMGI (DIFFERENTIAL STIFFNESS MATRIX GENERATOR PHASE l)

core, and zero pointers to, and lengths of, subarrays in open core are initialized.

2. The Case Control data block, CASECC, is read to determine the element deformation set

number, the loading temperature set number, and the differential stiffness coefficient

set number.

3. If there is no temperature load, go to step 4. If there is a temperature load, the

Grid Point Temperature Table data block, GPTT, is read such that the pro)er temperature

set is read into open core. The Scalar Index List data block, SIL, is read into open

core, and the internal grid point numbers in the GPTT are replaced with the corresponding

SIL numbers.

4. If a non-zero element deformation set number was rrad from CASECC, the element deforma-

tion set is read into open core.

5. The first (and only) record of the displacement vector file, UGV, is read into open

core, and then the ECPTDS and ECPT files are opened and positioned correctly.

6. The ECPT data block is read record by record, and the ECPTDS scratch data block is

generated for use by subroutine DSIA. The procedure for each record is as follows. The

pivot point is read. For each element in the current ECPT record, it is determined if

the element type is admissible to the ECPTDS data block. If is not admissible, the next
i

element entry is read; if it is admissible, a test is made to determine if the element type

is a TRIAl, QUADI or conical shell element. If it is a TRIAl, QUADI or a conical shell

element and if this element has zero membrane thickness (which implies the element has bend-

ing properties only) and since differential stiffness is not defined for plate elements, then

the next element entry is read from the current ECPT record. When the first element of the

ECPT record which belongs to the differential stiffness set is encountered, the pivot point

is written on the ECPTDS data block. Note that if the element is a BAR, the ECPT entry is

rearranged to conform with the ECPT entry for the BEAM so that the DBAR subroutine may be

called in subroutine DSIA. The element type is written on the ECPTDS record. Then an

element deformation number, an average element loading temperature (two loading temperatures

for a conical shell element), and the displacement vecto_ components are appended in core

to the ECPT entry for the element. Finally this _Dended ECPT entry is written on ECPTDS.

It should be noted that the 2nd through the (n+l):t words (n being the number of grid points

of the element) of every ECPT entry, since they are scalar index numbers, are direct pointers

4.49-3 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

into the displacement vector, UGV. Note further that for elements for which differential

stiffness is defined (save for the BAR, the BEAM and the conical shell element) only the

three translational components of the displacement vector at each grid point are appended.

For the BAR and BEAM all six displacement compGnents at each grid point are appended. For

the special case of the conical shell element, only the six displacement components at each

grid point associated with the zeroth harmonic are apperlded.

When an end-of-record is sensed for an ECPT record, an indicator is interrogated to

determine whether or not any of the elements in the record were written on the ECPTDS data

block. If there weren't any, a -I is written on ECPTDS with an end-oF-record mark; if there

was at least one element, an end-of-record is written on ECPTDS. In either case, after this

step has been done, the next ECPT record is processed identically. When an end-of-file is

sensed on the ECPT, the files for ECPT and ECPTDS are closed, and the routine returns to

DSMGI.

T_e module driver, DSMGI, tests the argument of DSl. If it is equal to zero, this implies

that no element of the ECPT was a member of the set of elements for which differential stiffness

is defined, and hence a fatal error exit occurs. If the argument is greater than zero, subroutine

DSIA is called.

In the second phase of the module, subroutine DSlA processes the scratch file ECPTDS to

Kd
produce the differential stiffness matrix, [gg]. The logic of this processing is very similar

to that used in subroutine SMAIA (of module SMAI, the stiffness matrix generation routine).

See the Module Functional Description for SNtAI (section 4.27) for details.

4.49-4 (12-I-69)

FUNCTIONAL MODULE DSMGI (DIFFERENTIAL STIFFNESS MATRIX GENERATOR - PHASE I)

4.49.8 Subroutines

All subroutines defined below except DSI are necessary to accomplish the second phase

of the module, which is the processing of the ECPTDS scratch file in order to generate Kd
[gg].

The auxiliary routines PRETRD, PREMAT, G_TD and INVERD are used similarly to module SMAI.

The data (an ECPTDS entry) input to an element differential stiffness matrix generation

routine (e.g., DR@D) are communicated to the routine via /DSIAET/, which fact is not expressly

stated in the subroutine descriptions given below.

4.49.8.1 Subroutine Name: DSI

l°

2.

3.

IARG

4.49.8.2

Entry Point: DSI

Purpose: See discussion above.

Calling _........... DSI (iARG)

Initially set to zero in subroutine DSI. This variable is set to l in DSI every

time an element in the ECPT is encountered which is in the set of elements for

which differential stiffness is defined. If IARG is still zero upon DSl's

return to DSMGI, DSMGI will terminate the job by calling MESAGE and PEXIT.

Subroutine Name: DSIA

I.

2.

3.

4.49.8.3

Entry Point: DSIA

Purpose: See discussion above.

Calling Sequence: CALL DSIA

Subroutine Name: DSIB

I. Entry Point: DSIB

2. Purpose: This routine, called by the module's element matrix generation routines

such as DR_D, DBEAM, etc., adds a double precision 6 by 6 element differential stiffness

matrix to the "submatrix" corresponding to the current pivot point. This same function

is performed in module SFtAIby subroutine SMAIB, in SMA2 by SMA2B and in PLA4 by PLA4B.

4.49-5

MODULE FUNCTIONAL DESCRIPTIONS

4.49.8.4

3. Calling Sequence: CALL DSlB (KE,J)

KE - Row-stored double precision 6 by 6 matrix to be added to the "submatrix" corresponding

to the current pivot point. Double precision; input.

Kd
J - The column index of the [gg] matrix which corresponds to the first column of the KE

matrix. Integer; input.

Block Data Subprogram Name: DSIABD

I. Entry Point: DSIABD

2. Purpose: This block data program sets I) GINO file numbers; 2) GIN_ _PEN, WRITE

and CLOSE option parameters; 3) differential stiffness element routine (e.g., DR_D, DBAR)

overlay parameters; and 4) an array which defines the number of words to be read for

each element from the ECPTDS scratch file. The common block /DSlAAA/ is used for the

second phase of the module.

4.49.8.5

I.

4.49.8.6

4.49.8.7

Subroutine Name: DR_D

5.

or TUBE element.

3. Calling Sequence:

Subroutine Name:

Entry Point: DR_D

Purpose: To generate the element differential stiffness matrix for a R_D, C_NR_D

CALL DR_D

DBAR

I. Entry Point: DBAR

2. Purpose: To generate the element differential stiffness matrix for a BAR or BEAM

element.

3. Calling Sequence: CALL DBAR

Subroutine Name: DSHEAR

I. Entry Point: DSHEAR

2. Purpose: To generate the element differential stiffness matrix for a SHEAR (panel)

element.

4.49-6 (8/I/72)

3.

4.49.8.8

I.

2.

3.

IARG =

4.49.8.9

FUNCTIONAL MODULE DSMGI (DIFFERENTIAL STIFFNESS MATRIX GENERATOR PHASE l)

Calling Sequence: CALL DSHEAR

Subroutine Name: DTRMEM

Entry Point: DTRMEM

Purpose: To generate the element differential stiffness matrix for a TRMEM element.

Calling Sequence: CALL DTRMEM (IARG)

I O = Called from DSGMI

l = Called from DQDMEM

2 = Called from DTRIA

3 = Called from DQUAD

Subroutine Name: DQDMEM

I. Entry Pnint: DQDM,EM

2. Purpose: To generate the element differential stiffness matrix for a QDMEM element.

3. Calling Sequence: CALL DQDMEM

4.49.8.10 Subroutine Name: DCBNE

Entry Point: DC_NE

Purpose: To generate the element differential stiffness matrix for a conical shell

I.

2.

element.

3. Calling Sequence:

4.49.8.11

CALL DC_NE

Subroutine Name: DTRIA (IARG)

I. Entry Point: DTRIA

2. Purpose: To generate the element differential stiffness matrix for a TRIAl and TRIA2

element.

3. Calling Sequence: CALL DTRIA (IARG)

IARG = I l = TRIAl element

(2 = TRIA2 element

4.49-7 (8/I/72)

FUNCTIONAL MODULE DSMGI (DIFFERENTIAL STIFFNESS MATRIX GENERATOR PHASE I)

4.49.8.12 Subroutine Name: DQUAD (IARG)

I. Entry Point: DQUAD

2. Purpose: To generate the element differential stiffness matrix for a QUADI and QUAD2

element.

3. Calling Sequence: CALL DQUAD (IARG)

I 1 = QUADI elementIARG

2 = QUAD2 element

4.49.8.13 Subroutine Name DTRBSC (IARG, NPIV_T)

I.

2.

for ele_f_ntary triangles.

3. Calling Sequence: CALL DTRBSC (IARG, NPIV_T)

I 1 : Called from DTRIA
IARG (2 : Called from DQUAD

NPIV_T = 0,1,2, or 3 = Point on triangle used as pivot point.

Entry Point: DTRBSC

Purpose: Used by subroutines DTRIA and DQUAD to generate differential stiffness matrices

(0 = no pivot)

4.49.9 Design Requirements

4.49.9.1 Open Core Design

During phase one of the module's operation, the maximum core storage requirements are given

in the following diagram, in which open core, the Z array, is defined at /DSlX/.

4.49-7a (8/I/72)

Z(IGPTT)

Z(IEDT)

Z(IDISP)

MODULE FUNCTIONAL DESCRIPTIONS

C_MM_N/DSIX/

GPTT data with internal grid point

numbers replaced by scalar index

numbers from the SIL

EDT data

Single precision displacement

vector in unpacked form from the

UGV data block

Z(BUFFRI)

Z(BUFFR2)

GIN_ buffer

GIN@ buffer

During phase two of the module's operation, the open core design is the same as that

for module SMAI, except that only 3 GIN_ buffers are needed instead of 5, one for ECPTDS,

one for GPCT and one for KDGG. Open core for phase two is defined at /DSIAXX/.

4.49.9.2 Common Storage Requirements

During phase one, there are no special common storage requirements.

During phase two, /DSIAAA/ takes the place of /SMAII_/, /SMAIBK/ and /SMAICL/; /DSIAET/

corresponds to /SMAIET/; and /DSIADP/ corresponds to /SMAIDP/. See the common storage re-

quirements section of the SMAI Module Functional Description for details on /SMAII_/, /SMAIBK/,

/SMAICL/, /SMAIET/ and /SMAIDP/ (section 4.27.9.3).

4.49-8

FUNCTIO_UkLMODULEDSMGI(DIFFERENTIALSTIFFNESSMATRIXGENERATOR- PHASEl)

4.49.9.3 ArithmeticConsiderations

All floating point arithmeticoperationsarecarriedout in doubleprecision. [K_g]is
a real doubleprecisionsymmetricmatrix.

4.49.10 Diagnostic Messaqes

During phase one the fatal messages 2029 and 2030 can be called if the GPTT is not in the

proper format. If a BAR element is encountered whose coupled bending interia property,

ll2, is non-zero, then it is set to zero and the user is warned of this fact with message

2111. User messages 2081 and 2083 are fatal messages indicating a null differential stiffness

matrix and a null displacement vector respectively.

For phase two diagnostics, the reader is referred to the diagnostic message section of

the Module Functional Description for SMAI.

4.49-9

FUNCTIONALMODULESMP2(STRUCTURALMATRIXPARTITIONER- PHASE2)

4.50 FUNCTIONALMODULESMP2(STRUCTURALMATRIXPARTITIONER- PHASE2)

4.50.I Entry Point: SMP2

4.50.2 Purpose

To perform the following matrix operations:

.,-d Kd -I

[Kdf] _ .d ,T_ Kd I
_(_aoJ: oo_J

(1)

[Kdaa] = [_,daa]+ [Kdao] [Go]+ ([Kdao] [Go])T+ [GoIT [Kdoo][Go]-

4.50.3 DMAP Callin9 Sequence

SMP2 USET,G_,KDFF/KDAA/

4.50.4 Input Data Blocks

USET

G@

KDFF

Displacement set definitions table.

Structural matrix partitioning transformation matrix.

Partition of differential stiffness matrix - f set.

4.50.5 Output Data Blocks

KDAA - Partition of differential stiffness matrix - a set.

4.50.6 Parameters

None

4.50.7 Method

matrix [K_f] is partitioned as in Equation l usingThe USET (UF,UA,U_), and matrix

subroutine ELIM (see section 3.5.22 for details) is called to perform the operations in

Equation 2.

(2)

4.50-I (711170)

MODULEFUNCTIONALDESCRIPTIONS

4.50.8 Subroutines

SMP2 has no auxiliary subroutine.

4.50.9 Design Requirements

See design requirements for subroutine UPART and its entry point MPART which perform

the symmetric partition of Equation l; also see design requirements for subroutine ELIM.

These are in sections 3.5.9 and 3.5.22 respectively.

4.50-2

4.51

4.51.l

4.51.2

FUNCTIONALMODULEDSMG2(DIFFERENTIALSTIFFNESSMATRIXGENERATOR- PHASE2)

FUNCTIONALMODULEDSMG2(DIFFERENTIALSTIFFNESSMATRIXGENERATOR- PHASE2).

Entry Point: DSMG2

Purpose

This module performs the following matrix operations:

eK J: e aal÷ eKdaa , (1>

ekes]: [Kfs]+ _[K_s], (2)

FK_s]: [Kss]+ _[K_s], (3)

{P_} = B{P_} , (4)

{P_} : B{Ps} , (5)

{Y_} = B{Ys} , (6)

{u_b} : _{u_} . (7)

The value of B is on a DSFACT bulk data card whose set identification number is specified by the

input parameter DSC_SET. The particular value on that card to be used for B on any pass through

the DMAP loop in the Static Analysis with Differential Stiffness Rigid Format is controlled by the

parameter NDSKIP (see below).

4.51.3 DMAP Callin_ Sequence

DSMG2 MPT,KAA,KDAA,KFS,KDFS,KSS,KDSS,PL,PS,YS,U_V/KBLL,KBFS,KBSS,PBL,PBS,YBS,UBg_V/

V,N,NDSKIP/V,N,REPEATD/V,N,DSC_SET $

4.51.4 Input Data Blocks

MPT

KAA

KDAA

- Material Property Table.

- Partition of stiffness matrix - a set.

- Partition of differential stiffness matrix - a set.

4.51-I

KFS

KDFS

KSS

KDSS -

PL -

PS

YS

u_v -

Notes:

I.

2.

3.

4.51.5

KBLL -

KBFS-

KBSS -

PBL

MODULE FUNCTIONAL DESCRIPTIONS

Partition of stiffness matrix after single-point constraints have been removed.

Partition of differential stiffness matrix after single-point constraints have

been removed.

Partition of stiffness matrix after single-point constraints have been removed -

s set.

Partition of differential stiffness matrix after single-point constraints have

been removed - s set.

Partition of the load vector matrix giving static loads on _ set.

Partition of the load vector matrix giving loads in s set.

Constrained displacement vector - s set.

Partition of the displacement vector matrix giving displacements in the o set.

A fatal error occurs if MPT is purged.

KAA and KDAA cannot be purged.

KFS and KDFS must be both purged or both non-purged.

4. KSS and KDSS must be both purged or both non-purged.

5. A fatal error occurs if PL is purged.

6. PS, YS and U_V can be purged.

Output Data Blocks

Partition of the stiffness matrix of the first order anproximation to large

displacements - _ set.

Partition of the stiffness matrix of the first order approximation to large

displacements.

Partition of the stiffness matrix of the first order approximation to large

displacements - s set.

Partition of the load vector of the first order approximation to the large

displacements - _ set.

4.51-2

PBS

YBS

UB_V -

FU;_CTIO;_AL;._ULE DS,4G2(blFFEREi_TIALSTIFF;_ESS;._TRIXGEi_ERATOR- PHASE 2)

- Partition of the load vector of the first order approximation to the large

displacements - _ set.

- Partition of the constrained displacement vector of the first order approximation

to the large displacement vector - s set.

Partition of the displacement vector of the first order approximation to the

large displacement problem - o set.

Notes:

I.

2.

3.

4.

5.

KBLL must not be purged or a fatal error exists.

KBFS can be purged if and only if both KFS and KDFS are purged.

KBSS can be purged if and only if both KSS and KDSS are purged.

PL must not be purged or a fatal error exists.

PBS, YBS and UB_V can be Durapd,_........if _n_ n_ly_,,,_¢,,,nS, w,_and uD_v.......respectiveiy

are purged.

4.51.6 Parameters

NDSKIP

REPEATD

DSC@SET

- Input and output-integer - must be set to zero before the DMAP loop for Static

Analysis with Differential Stiffness is initiated. This parameter is used as a

loop counter for the DMAP loop in the Static Analysis with Differential Stiffness

Rigid Format. It enables this module to skip the proper number of words on the

proper DSFACT card (see definition of the parameter DSC_SET below) to fetch the

value of B for the scalar multiplications defined above.

Output-integer-no default value. This parameter is set to +l if another pass is

to be made through the Static Analysis with Differential Stiffness DMAP loop (and

hence through the DSMG2 module). It is set to -l if the module determines that

the current pass through the module will be the final one. This latter condition

is met if (1) no differential stiffness coefficient set number was specified by

the user in his Case Control Deck (if this condition is true, module DSMGI sets

the parameter DSC_SET (see below) equal to -I and a value of 1.0 is used for _);

or if (2) the current B is the last one on the user specified DSFACT card.

- Input-integer-no default value. DSCOSET is the differential stiffness coefficient

4.51-3

MODULEFUNCTIONALDESCRIPTIONS

4.51.7 Method

set numberof a DSFACTbulk datacardchosenbythe user in his CaseControlDeck.

If nosuchset wasspecifiedby the user, DSC_SET= -l andthis modulewill set

B = l.O andset the REPEATDparameterto -l. If DSFACT> O, DSFACTis usedto

searchthe MPTfor the DSFACTbulk datacardchosenbythe user.

REPEATDis set to oneandNDSKIPis incrementedbyone. If DSCOSET= -l, REPEATD is set to

-l and the three matrix additions in Equations l, 2 and 3 are carried out using the matrix sub-

routine SSG2C. It should be noted that if DSC_SET = -l, it is assumed that DMAP equivalences have

been made between PL and PBL, PS and PBS, YS and YBS, and U_V and UB_V and hence Equations 4

through 7 are not calculated.

If DSC_SET # -l, the MPT is searched until a match is found between DSCOSET and a DSFACT

bulk data card image on the MPT. If a match is found, the parameter NDSKIP is used to find the

correct value of B for this pass through the DMAP loop. If a match is not found, a fatal error

occurs. A match having been found, the following operations are performed.

I. REPEATD is set to -l if it is determined that this B is the last one on the DSFACT card.

2. The four scalar multiplications in Equations 4 through 7 are performed using matrix

subroutine SSG2C.

3. The three matrix additions in Equations l through 3 are performed using matrix sub-

routine SSG2C.

4.51.8 Subroutines

DSMG2 has no auxiliary subroutines.

4.51.9 Design Requirements

A description of SSG2C can be found in section 3.5.11.

If DSCOSET = -l, it is assumed that DMAP equivalences have been made between the data blocks

corresponding to the matrices in Equations 4 through 7.

Two GINB buffers are needed and open core is defined at /DSMG2X/.

4.51.I0 Diagnostic Messages

Fatal error message 2084 may occur.

4.51-4

FUNCTIONALMODULEPLAI(PIECEWISELINEARANALYSIS- PHASEI)

4.52

4.52.1

4.52.2

FUNCTIONALMODULEPLAI(PIECEWISELINEARANALYSIS- PHASEl)

Entry Point: PLAI

PLAI is a pre-processor for the modules unique to the Piecewise Linear Analysis Rigid Format.

PLAI extracts the linear elements from the ECPT data block (an element is defined to be linear if

its modulus of elasticity (E on a MATI bulk data card) is not referenced as a stress-strain

tabular function defined on a TABLESI bulk data card. PLAI extracts the nonlinear element entries

from the ECPT data block to form ECPTNL, and separates the linear and nonlinear element entries

in the EST to form ESTL and ESTNL. The linear elements are used to generate the [K_] matrix.
gg

4.52.3 D_P Calling Sequence

PLAI

4.52.4

CSTM

MPT

ECPT

GPCT

DIT

CASECC

EST

Notes:

CSTM,MPT,ECPT,GPCT,DIT,CASECC,EST/KGGXL,ECPTNL,ESTL,ESTNL/V,N,KGGLPG/v,N,NPLALIM/

V,N,ECPTNLPG/V,N,PLSETN_/V,N,N_NLSTR/V,N,PLFACT $

Input Data Blocks

- Coordinate System Transformation Matrices.

- Material Properties Table.

- Element Connection and Properties Table.

- Grid Point Connection Table.

- Direct Input Tables.

Case Control Data Table.

Element Summary Table.

I. The CSTM may be purged. However, if it is, and some grid point is not in

basic coordinates, then a fatal error exists.

2. If an element references a material property and the MPT is purged, a fatal

error exists.

3. If any of the data blocks ECPT, GPCT, DIT, CASECC or EST is purged, a fatal

error exists.

4.52-I (811172)

MODULE FUNCTIONAL DESCRIPTIONS

4.52.5

KGGXL

ECPTNL

ESTL

ESTNL

Note:

Output Data Blocks

- Stiffness matrix of linear elements exclusive of general elements - g set.

- Element Connection and Properties Table for Nonlinear Elements.

- Element Summary Table for Linear Elements.

- Element Summary Table for Nonlinear Elements.

None of the output data blocks may be pre-purged.

4.52.6 Parameters

KGGLPG

NPLALIM

ECPTNLPG

PLSETN_

N_NLSTR

- Output-integer-no default value. Purge flag for the KGGXL matrix. If all

elements are nonlinear, the KGGXL matrix is the zero matrix, and the module

sets KGGLPG = -I. If a linear element is found, KGGLPG will be set to +I.

- Output-integer-no default value. NPLALIM is the number of load increments

on the PLFACT card chosen by the user in his Case Control Deck. This

parameter controls the number of steps in the DMAP loop of the Piecewise

Linear Analysis (PLA) Rigid Format.

- Output-integer-no default value. Purge flag for the ECPTNL data block

as well as a fatal error condition flag with respect to the PLA Rigid Format.

If the module finds that all elements are linear, ECPTNLPG is set : -I, and,

upon completion of the module, a JUMP to an error condition message writer

will occur, and then an EXIT will be executed. If at least one element is

nonlinear, ECPTNLPG is set to +I, and the flow through DMAP sequence continues.

Ou}put-integer-no default value. PLSETN_ is the set number on a PLFACT

card which is chosen by the user in his Case Control Deck. It is used

in med:_les PLA3 and PLA4 to find the proper PLFACT card in the MPT data

block.

Output-integer-no default value. N_NLSTR is a flag used to control the

calling of the PLA3 module, which outputs stresses, in _FP (Output File

Processor) format, for nonlinear elements. If either (a) the user does not

request the output of element stresses, or (b) the user has requested

4.52-2 (8/I/72)

FUNCTIONALMODULEPLAI(PIECEWISELINEARANALYSIS- PHASEI)

PLFACT

4.52.7 Method

elementstressoutputfor a set of elementsall of whosemembersare

linear, thenNBNLSTRis set to -I. If there is a stressoutputrequest

for somenonlinearelement,thenNBNLSTRis set = +I andPLA3will be

called eachtimethroughthe PLADAMPloop.

Output-complex-nodefault value. Thefirst loadincrementfactor to be

usedthe first timethroughthe PLADAMPloop.

Theroutine is dividedinto twophases.Phase1 processesthe ECPTdatablockin a fashion

similar to moduleSMAI(seeSection4.27). Foreachpivot point, everyelementis examinedto

determinewhetherit is linear or nonlinear. This is accomplishedby calling subroutineMAT

(seeSection3.4.36)with thesecondword,INFLAG,of the commonblock /MATIN/ equal to 5. If

the element is linear, the proper element stiffness matrix generator routine such as KR_D, KBAR,

etc. is called. The element routine will, in Lurn, call subroutlne SMAIB to add its contribution

to the 6 (or fewer, if the pivot point is a scalar point or there is not enough core storage

available-see Module Functional Description for SMAI, Section 4.27-) mows of the KGGXL matrix

currently being generated. If the MAT routine determines that the element is nonlinear, then

the ECPT entry for that element, along with words needed subsequently in module PLA4, is appended

(see data block description for ECPTNL in Section 2.3.34.4 for details). The number of words

appended depends upon element type. This appended ECPT entry is written onto the ECPTNL data

block.

Phase 2 of this routine reads the first record of CASECC into core, and the MPT data block

is searched to find the set number on a PLFACT bulk data card (if the default is not used) re-

quested by the user in CASECC. If the default value is specified by the user as described for

the PLCB card of Section 2.3 of the User's Manual, a single value of 1.0 will be generated.

Parameters PLFACT and PLASETNO are set. The EST data block is then processed. The logic here

is similar to Phase I. For each element, it is determined if the element is linear or nonlinear.

If tile element is linear, its EST entry is copied onto the ESTL data block. If the element is

non-llnear and stress output is requested, the EST entry along with words needed subsequently

in module PLA3 are appended. The number of words appended depends upon element type and is not

the same number of words appended to the ECPT entry to create the ECPTNL. If the element

nonlinear and stress output is not requested, the EST entry for the element is written onto the

ESTL data block.

4.52-3 (8/i/7z)

MODULEFUNCTIONAL DESCRIPTIONS

4.52.8 Subroutines

PLAI has no auxiliary subroutines as such. However, it uses all the structural element

routines of module SMAI to generate rKx_] ' which in turn use the common blocks of SMAI as wellL gg

as the "insertion" routine, SMAIB. See Module Functional Description for SMAI, section 4.27.

4.52.9 Design Requirements

For phase 1 of PLAI, the design requirements are the same as those for SMAI. For phase

2, the first record of CASECC must be held in open core.

4.52.10 Diagnostic Messages

For phase l, see diagnostic messages for module S_l, section 4.27.10. For phase 2, a user

fatal message, 3032, occurs if the PLFACT bulk data card which was chosen by the user in his

Case Control Deck could not be found in the MPT.

4.52-4 (8/I/72)

G.53

4.53.1

4.53.2

FUNCTIONAL MODULE PLA2 (PIECEWISE LINEAR ANALYSIS - PHASE 2)

FUNCTIONAL MODULE PLA2 (PIECEWISE LINEAR ANALYSIS - PHASE 2)

Entry Point: PLA2

Purpose

To add the incremental displacement vector, the incremental load vector, and the incremental

vector of single-point forces of constraint for the current pass through the Piecewise Linear

Analysis Rigid Format DMAP loop to the current running sum of these vectors:

{Ugi+I} : {Ugi} + {AUgi} , (I)

{Pgi+l} : {Pgl}..+ {APql}.., (2)

{qgi+l } : {qo_i } + {aqgi} (3)

4.53.3 DMAP Callin_ Sequence

PLA2 DELTAUGV,DELTAPG,DELTAQG/UGVI,PGVI,QGL/V,N,PLAC_UNT $

4.53.4

DELTAUGV

DELTAPG

DELTAQG

Note:

Input Data Blocks

- Incremental displacement vector in Piecewise Linear Analysis - g set.

- Incremental load vector in Piecewise Linear Analysis - g set.

- Incremental vector of single-point forces of constraint in Piecewise

Linear Analysis - g set.

I. DELTAUGV and DELTAPG cannot be pre-purged.

2. DELTAQG may be pre-purged.

4.53.5 Output Data Blocks

UGVl

PGVI

QGI

Matrix of successive sums of incremental displacement vectors - g set.

Matrix of successive sums of incremental load vectors - g set.

Matrix of successive sums of incremental vectors of single-point forces of

constraint - g set.

4.53-I

MODULE FUNCTIONAL DESCRIPTIONS

Notes:

I.

2.

UGVI and PGVI cannot be purged.

QGI may be purged if DELTAQG is purged.

4.53.6 Parameters

FtAC_UNT Input and output-integer - this parameter must be set to 1 outside the

Piecewise Linear Analysis Rigid Format DMAP loon. This is done usinq

the PARAM module rather than through the Module Properties List (MPL).

4.53.7 Method

If PLAC_UNT = I, that is, this is the first time PLA2 has been called in the Piecewise

Linear Analysis Rigid Format DMAP loop, then the DELTAUGV data block is copied onto the UGVI

data block. If PLAC@UNT > I, then PLAC@UNT is used as a counter to determine how many records

(running sum displacement vectors) to skip on the file containing UGVI so that the most recently

computed running sum displacement vector can be read into open core for the vector addition.

Once this vector is read into open core, the incremental displacement vector is read and

interpreted using subroutines INTPK and ZNTPKI, and the vector addition given in Equation 1 is

carried out element-by-element.

Equations 2 and 3 are computed using the method described in the above oaraqra_h.

4.53.8 Subroutines

PLA2 has no auxiliary subroutines.

4.53.9 Design Requirements

Open core is defined at /PLA2X/.

4.53.10 Diagnostic Messages

User message 2127 or 2128 is output if either DELTAUGV (DELTAPG) or UGVI (PGVI) is purged.

4.53-2

FUNCTIONAL MODULE PLA3 (PIECEWISE LINEAR ANALYSIS - PleASE3)

4.54 FUNCTIONAL MODULE PLA3 {PIECEWISE LINEAR ANALYSIS - PHASE 3)

4.54.1 Entry Point: PLA3

4.54.2 Pu_Purpose

To compute element stresses for nonlinear elements (see definition of linear elements in

section 4.52.2) for which the user has requested stress output. It also updates the ESTNL data

block so that the output data block, ESTNLI, contains up-to-date element stress information.

4.54.3 DMAP Callin_ Sequence

PLA3 CSTM,MPT,DIT,DELTAUGV,ESTNL,CASECC/_NLES,ESTNLI/V,N,PLACOUNT/V,N,PLSETNB $

4.54.4 Input Data Blocks

CSTM

MPT

DIT

DELTAUGV

ESTNL

CASECC

Notes:

4.54.5

_NLES

ESTNLI

Note:

4.54.6 Parameters

- Coordinate System Transformation Matrices.

- Material Properties Table.

- Direct Input Tables.

- Current incremental displacement vector.

- Element Summary Table for Nonlinear Elements.

- Case Control Data Table.

I. CSTM can be purged. However, if some grid point of the model is not in basic

coordinates and the CSTM is purged, a fatal error occurs.

2. A fatal error occurs if either MPT, DIT, DELTAUGV, ESTNL or CASECC is purged.

Output Data Blocks

- Nonlinear element stresses (to be processed by the Output File Processor).

- Element Summary Table for Nonlinear Elements - Updated.

Neither output data block may be purged.

PLAC_UNT - Input-integer-no default value. This is the Piecewise Linear Analysis (PLA)

4.54-I

MODULEFUNCTIONAL DESCRIPTIONS

PLTSETN@

Rigid Format DMAP loop counter. It is used in this routine to find the proper

loading factors on the PLFACT bulk data card specified by the user (see

PLSETN_ below).

Input-integer-no default value. PLSETNO is the set identification number of

scme PLFACT bulk data card chosen by the user in his Case Control Deck. It is

used to find this PLFACT card in the MPT data block.

4.54.7 Method

The module driver, PLA3, is a short routine whose only function is to call subroutines

PLA31 and PLA32 which accomplish phase l and phase 2 of the task of the module respectively.

Subroutine PLA31 reads the incremental displacement vector into core and appends to each element

entry of the ESTNL data block the components of the incremental displacement vector corresponding

to the grid points of each element. This merged information is written on the scratch data

block ESTNLS, GIN_ file number 301. In PLA32, the ESTNLS data block is read, and the proper

element routine is called to compute element stresses which are prepared in _FP (Output File

Processor) format. Each element routine also updates incremental stress data. The ESTNL data

for each element with the updated stress information (but without the components of the displace-

ment vector) are written on ESTNLI.

Ir_PLA31, for TRMEM and QDMEM elements, only the three translational components of the dis-

placement vector at each grid point of the element are appended to the ESTNL entry. Other elements

for which Piecewise Linear Analysis is defined use all six components at each grid point.

In PLA32, the difference quotients y* and ¥, which are the previous and current (with respect

to the DMAP loop in the PLA Rigid Format) load increment ratios, are computed as follows. Let

PI' P2' P3..... be the loading factors on a PLFACT bulk data card. Define Po = O. Define

_i = Pi - Pi-l ' (1)

for i _ I. Then, define Yl = O, and

* _i
Yi - ' (2)

_i-l

4.54-2 (8/I/72)

FUNCTIONALMODULEPLA3(PIECEWISELINEARANALYSIS- PHASE3)

for i > l, anddefine

(3)

for i _ I. These difference quotients are stored in /PLA32C/ for communication to the module's

element routines so that they can compute the estimated next strain. The details of the element

calculation are given in section 4.87. The input parameter PLAC_UNT, being the counter for the

PLA Rigid Format DMAP loop, controls the computation of y* and y. However, the module's design

assumes (1) PLAC_UNT is set to one outside the PLA DMAP loop and (2) module PLA2, which incre-

ments PLAC_UNT by one, will be executed prior to every DMAP call to PLA3. Hence, the proper

choice for the subscript i in Equations l, 2 and 3 is one less than the value of PLAC_UNT.

The difference PLAC_UNT-I is stored in /PLA32C/ as IPASS.

4.54.8 Subroutines

PLA3 uses, for element routine calculations, the utility routines PRETRS, PREMAT, GMMATS and

element drivers. Communication of an appended ESTNL element entry to an element routine during

phase 2 of PLA3 is accomplished via /PLA32E/, which is I00 words in length. This fact is not

explicitly stated below.

The element drivers PSTRM, PSQDM, PSTRII, PSTRI2, PSQADI, and PSQAD2, use a) /PLA3ES/, which

is 300 words in length, as a con_nunicationlink for the element subroutines which they call; and

b) /PLA3UV/, which is 25 words in length, as a communication link for displacement vectors between

the driver and their subroutines. PLA32 will call the element drivers listed above (plus PSR_D

and PSBAR); the other subroutines described below (in sections 4.54.8.11 through 4.54.8.18) are

only used (directly or indirectly) by the ele_nt drivers.

4.54.8.1 Subroutine Name: PLA3I

I. Entry Peint: PLA31

2. Purpose: To perform phase l of the module's operations as described above.

3. Calling Sequence: CALL PLA31

4.54-3 (12-I-69)

MODULEFUNCTIONALDESCRIPTIONS

4.54.8.2 Subroutine Name: PLA32

I. Entry Point: PtA32

2. Purpose: To perform phase 2 of tffemodule's operation as described above.

3. CALL PLA32Calling Sequence:

Subroutine Name:4.54.8.3 PSR@D

I. Entry Point: PSROD

2. Purpose: To compute element stresses and to update the ESTNL entry for a R_D, CONROD or

TUBE element. Note that for a TUBE element, the ESTNL entry is rearranged and elementary

transformations are performed in PLA32 so that the PSRODroutine may compute element stresses

for a TUBE.

3. Calling Sequence:

4.54.8.4 Subroutine Name: PSBAR

CALL PSROD

I. Entry Point: PSBAR

2. Purpose: To compute element stresses and to update the ESTNL entry for a BAR element.

3. Calling Sequence: CALL PSBAR

4.54.8.5 Subroutine Name: PSTRM

I. Entry Point: PSTRM

2. Purpose: To calculate the material properties matrix, arrange the flow of element

stress calculations and update the ESTNL entry for the TRMEMelement.

3. Calling Sequence: CALL PSTRM

Subroutine Name: PSQDM

I. Entry Point: PSQDM

2. Purpose: To calculate the material properties matrix, arrange the flow of element stress

calculations and update the ESTNL entry for the QDMEMelement.

4.54.8.6

3. Calling Sequence: CALL PSQDM

4.54-4 (12-I-69)

FUNCTIONALMODULEPLA3(PIECEWISELINEARANALYSIS- PHASE3)

4.54.8.7 SubroutineName:PSTRII

I. EntryPoint: PSTRII

2. Purpose:Tocalculatethe materialpropertiesmatrix, arrangethe flowof elementstress

calculationsandupdate the ESTNL entry for the TRIAl element.

3. CALL PSTRII

PSTRI2

Entry Point: PSTRI2

4.54.8.8

I.

2.

Calling Sequence:

Subroutine Name:

Purpose: To calculate the material properties matrix, arrange the flow of element stress

calculations and update the ESTNL entry for the TRIA2 element.

3. Calling Sequence: CALL PSTRI2

Subroutine Name: PSQADI

I. Entry Point: PSQADI

2. Purpose: To calculate the material properties matrix, arrange the flow of element stress

calculations and update the ESTNL entry for the QUADI element.

CALL PSQADI

PSQAD2

I. Entry Point: PSAQD2

2. Purpose: To calculate the material properties matrix, arrange the flow of element stress

calculations and update the ESTNL entry for the QUAD2 element.

CALL PSQAD2

PSTRMI

I. Entry Point: PSTRMI

2. Purpose: To generate element stress matrices for the TRMEM element, and the membrane

portion of TRIAl and TRIA2 elements, and perform subcomputations for the PSQDMI routine.

3. Calling Sequence: CALL F'STRMI(NTYPE)

4.54.8.9

3. Calling Sequence:

4.54.8.10 Subroutine Name:

3. Calling Sequence:

4.54.8.11 Subroutine Name:

4.54-5 (12-I-69)

MODULEFUNCTIONALDESCRIPTIONS

_0 = TRMEM, TRIAl, or TRIA2
NTYPE

Subcomputations for the PSQDMI subroutine

4.54.8.12 Subroutine Name: PSQDMI

I. Entry Point: PSQDMI

2. Purpose: To generate element stress matrices for the QDMEMelement and the membrane

portions of QUADI and QUAD2 elements.

3. Calling Sequence: CALL PSQDMI

4.54.8.13 Subroutine Name: PSTQI

I. Entry Point: PSTQI

2. Purpose: To generate element stress matrices for the TRIAl, TRIA2, QUADI, and QUAD2

elements.

3. Calling Sequence: CALL PSTQI (NTYPE)

1 = TRIAl

2 = TRIA2
NTYPE

3 = QUADI

4 = QUAD2

4.54.8.14 Subroutine Name: PSTRBI

I. Entry Point: PSTRBI

2. Purpose: To generate element stress matrices for subcalculations of basic bending

triangles for the plate portion of TRIAl, TRIA2, QUADI and QUAD2 elements.

3. Calling Sequence: CALL PSTRBI (I_PT)

_I : Subcalculations for PSQPLI
I@PT

2 Subcalculations for PSTPLI

4.54.8.15 Subroutine Name: PSTPLI

I. Entry Point: PSTPLI

2. Purpose: To generate the element stress matrices for the plate portion of TRIAl and

4.54-6 (I2-I-69)

FUNCTIONAL'MODULEPLA3(PIECEWISELINEARANALYSIS- PHASE3)

TRIA2 elements.

3. Calling Sequence: CALL PSTPLI

4.54.8.16 Subroutine Name: PSQPLI

I. Entry Point: PSQPLI

2.

3.

4.54.8.17 Subroutine Name:

I.

2.

3.

Purpose: To generate element stress matrices for the QUADI and QUAD2 elements.

Calling Sequence: PSQPLI

PSTRQ2

Entry Point; PSTRQ2

Purpose: To perform final stress computations for TRMEM and QDMEM elements.

Callino S(_(lllPnr_- PAl I DCTD(_O /MTVnC%

_I = TRMEMelementNTYPE(2= QDMEMelement

4.54.8.18 Subroutine Name: PSTQ2

I. Entry Point: PSTQ2

2. Purpose: To perform final stress computations for the TRIAl, TRIA2, QUADI, and QUAD2

elements.

3. Calling Sequence: CALL PSTQ2 (NPTS)

13 = TRIAl and TRIA2 elements

NPTS _4 = QUADI and QUAD2 elements

4.54.9 Design Requiren_nts

I. The module was designed so that phase l and phase 2 can be executed in separate overlay

segments.

2. Open core for phase l is defined at /PLA31X/ and for phase 2 at /PLA32X/. Open core

requirements for both phases are minimal. In phase l, the single precision incremental

displacement vector in unpacked form must be able to be contained in open core. In phase 2,

the CSTM and MPT data blocks, tables in the DIT referenced on MATS1 bulk data cards, and

4.54-7 (12-1-69)

MODULEFUNCTIONALDESCRIPTIONS

the first record(andonly recordsincea PLAproblemallowsonly oneCASECCrecord)of

CASECCmustbeableto becontainedin opencore.

3. In additionto the commonblocksmentionedabove,PLA32uses/PLA32S/, which is 325

words in length, as scratch storage for the module's element routines, and /SOUT/, which

is 30 words in length, as a storage buffer for computed element stresses.

4. One scratch file is used, and all arithmetic operations are performed in single

precision.

4.54.10 Diagnostic Messages

During phase I, the following diagnostic messages may appear. If the incremental displace-

ment vector is null, user fatal error 3005 will be given. Two system fatal "fail-safe" error

messages, 2091 and 2092, may be implemented if the ESTNL input data block was incorrectly con-

structed in PLAI or was incorrectly updated during the previous execution of the PLA3 module.

During phase 2, error messages 3001, 3002 or 3003 may occur if the proper loading factors

Pj cannot be found on the PLFACT bulk data card image in the MPT. If the ECPTDS scratch file

is not in the prescribed format, system fatal message 2091 will occur.

If the minimal core storage requirements in either phase 1 or phase 2 are not met, the

usual fatal error 3008 will occur.

4.54-8 (12-I-69)

FUNCTIONAL_DULEPLA4(PIECEWISELINEARANALYSIS- PHASE4)

4.55

4.55.1

4.55.2

FUNCTIONAL _DULE PLA4 (PIECEWISE LINEAR ANALYSIS - PHASE 4)

Entry Point: PLA4

Purpose

n£i
To generate the stiffness matrix for nonlinear elements, [Kgg_, and to update the

Element Connection and Properties Table for Nonlinear Elements, ECPTNL, so that it contains

up-to-date element stress information.

4.55.3 D_P Callin_ Sequence

PLA4

4.55.4

CSTM

MPT

ECPTNL

GPCT

DIT

DELTAUGV

Notes:

4.55.5

KGGNL

ECPTNLI

Note:

V,N,PLFACT

Input Data Blocks

CSTM,MPT,ECPTNL,GPCT,DIT,DELTAUGV/KGGNL,ECPTNLI/V,N,PLAC_UNT/V,N,PLSETN_/

$

- Coordinate System Transformation Matrices.

- Material Properties Table.

- Element Connection and Properties Table for Nonlinear Elements.

- Grid Point Connection Table.

- Direct Input Tables.

- Current incremental displacement vector.

I. CSTM may be purged. However, if some grid point of the model is not in basic

coordinates and the CSTM has been purged, a fatal error will occur.

2. A fatal error occurs if either MPT, ECPTNL, GPCT, DIT or DELTAUGV is purged.

Output Data Blocks

Stiffness matrix of nonlinear elements - g set.

Element Connection and Properties Table for Nonlinear Elements - updated.

Neither KGGNL or ECPTNLI may be purged.

4.55-I

MODULEFUNCTIONALDESCRIPTIONS

4.55.6 Parameters

PLAC_UNT - Input-integer-no default value.

PLSETN_

PLFACT

4.55.7 Method

Loop counter for the Piecewise Linear

Analysis (PLA) Rigid Format DMAP loop. The module uses this parameter to find

the correct loading factors on the PLFACT bulk data card chosen by the user,

Input-integer-no default value. Set identification number of a PLFACT

bulk data card chosen by the user in his Case Control Deck. The module uses

this parameter to search the MPT for this card.

Output-complex-no default value. The difference of loading factors to be used

during the next pass of the PLA Rigid Format DMAP loop.

The module driver PLA4 is a short routine whose only function is to call subroutines

PLA41 and PLA42 which accomplish phase l and phase 2 of the task of the module respectively.

Subroutine PLA41 reads the incremental displacement vector into core and appends to each

element entry of the ECPTNL data block the components of the incremental displacement vector

corresponding to the grid points of each element. This merged information is written on the

scratch data block ECPTS, GIN_ file number 301. In PLA42, the ECPTS data block is processed

in a fashion similar to the processing of the ECPT data block in module SMAI (see the Module

Functional Description for SMAI, section 4.27).

In PLA41, for all elements except the BAR element, only the three translational

components of the displacement vector at each grid point of an element are appended to the

ECPTNL element entry. For a BAR element, all six components of the displacement vector at

each grid point are appended.

The logic of the processing of the scratch data block, ECPTS, in PLA42 is very similar

to that used in subroutine SMAIA (of SMAI, the stiffness matrix generation module - see

the Module Functional Description for SMAI, section 4.27). The similarities are not enumerated

here, but notable differences are the following.

I. Before PREMAT is called to read into open core the MPT data block and tables from

the DIT data block referenced on MATSI bulk data cards, the MPT is read in subroutine

4.55-2

FUNCTIONALMODULEPLA4(PIECEWISELINEARANALYSIS- PHASE4)

PLA42to computey* andy asin Equationsl, 2 and3 in section4.54, andthe real part

of the outputDMAPparameterPLFACTis set to the valueof _i+l in Equation3 in section
4.54. Theimaginarypart of PLFACTis set to zero. Thereasonfor PLFACTbeingcomplexis

that it is an input parameterto the DMAPmoduleADDduringthe next passof the PLA

RigidFormatDMAPloop, andADD(seesection4.78) requiresits parametersto becomplex.

2. WhenPREMATis called, the last argumentis set negativeto signal PREMATthat this

is a PLAproblemandhencethat specialprocessingwill be required.

3. Subsequentto the call of anelementroutine, the elementtypeandthe updatedECPT

entry arewritten ontothe ECPTNLIdatablock.

4.55.8 Subroutines

PLA4 uses PRETRD, PRETRS, PREMAT, INVERS, INVERD, GF_4ATS,and GMMATD as utility routines. The

common block /PLA42E/ is the .me_ansof co."municatinga) the element entry of the ECPTS from rL_42

to an element stiffness matrix generation routine and b) the ECPTS element entry with updated

stress information from the element routine back to PLA42 upon completion of element matrix

generation. This fact is not explicitly stated in the descriptions of the element routines

(e.g., PKR@D) given below.

The element drivers PKTRM, PKQDM, PKTRII, PKTRI2, PKQADI, and PKQAD2 use a) /PLA4ES/, which

is 300 words in length, and b) /PLA4UV/, which is 25 words in length, as communication links with

the subroutines that they call. PLA42 will call the drivers listed above which will use (directly

and indirectly) the subroutines described below in sections 4.55.8.12 through 4.55.8.22.

4.55.8.1 Subroutine Name: PLA41

I. Entry Point: PLA41

2. Purpose: See discussion above.

3. Calling Sequence: CALL PLA41

4.55.8.2 Subroutine Name: PLA42

I. Entry Point: PLA42

2. Purpose: See discussion above.

4.55-3 (12-l-6g)

MODULE FUNCTIONAL DESCRIPTIONS

4.55.8.3

4.55.8.4

4.55.8.5

4.55.8.6

3. Calling Sequence: CALL PLA42

Subroutine Name: PLA4B

I. Entry Point: PLA4B

2. Purpose: To add a double precision 6 by 6 element stiffness matrix to the "submatrix"

corresponding to the current pivot point. This routine performs the same function as, and

is modeled after, subroutine SMAIB of module SMAI.

3. Calling Sequence: CALL PLA4B (KE,J)

KE - Row-stored double precision 6 by 6 matrix to be added to the submatrix in core - input.

J - The column index of the KGGNL matrix which corresponds to first column of the KE

matrix - integer - input.

Subroutine Name: PKR_D

I. Entry Point: PKROD

2. Purpose: To generate the element stiffness matrix for a ROD element and to update

the ECPTNL element entry for a R_D element.

3. Calling Sequence: CALL PKR_D

Subroutine Name: PKBAR

I. Entry Point: PKBAR

2. Purpose: To generate the element stiffness matrix for a BAR element and to update the

ECPTNL element entry for a BAR element.

3. Calling Sequence: CALL PKBAR

Subroutine Name: PKTRM

I. Entry Point: PKTRM

2. Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the TRMEM element.

3. Calling Sequence: PKTRM

4.55-4 (12-I-69)

FUNCTIONAL MODULE PLA4 (PIECEWISE LINEAR ANALYSIS - PleaSE4)

4.55.8.8

4.55.8.9

4.55.8.7 Subroutine Name: PKQDM

I. EEntry Point: PKQDM

2. Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the QDMEM element.

3. Calling Sequence: CALL PKQDM

Subroutine Name: PKTRII

I. Entry Point: PKTRII

2. Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the TRIAl element.

3. Calling Sequence: CALL PKTRII

Subroutine Name: PKTRI2

I. Entry Point: PKTRI2

2. Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the TRIA2 element.

CALL PKTRI2

PKQADI

I. Entry Point: PKQAI)I

2. Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the QUADI element.

CALL PKQADI

PKQAD2

Entry Point: PKQAD2

Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the QUAD2 element.

3. Calling Sequence: CALL PKQAD2

3. Calling Sequence:

4.55.8.10 Subroutine Name:

3. Calling Sequence:

4.55.8.11 Subroutine Name:

I.

2.

4.55-5 (12-I-69)

MODULEFUNCTIONALDESCRIPTIONS

4.55.8.12 SubroutineName:PKTRMI

I. EntryPoint: PKTRMI

2. Purpose:Togenerateelementstressmatricesfor theTRMEM,TRIAlandTRIA2elements,

andperformsubcomputationsfor the PKQDMIroutine.

3. Calling Sequence:CALLPKTRMI(NTYPE)

_0= TRMEM,TRIAlor TRIA2NTYPE
Subcomputationsfor the PKQDMIroutine

4.55.8.13 SubroutineName:PKQDMI

I. EntryPoint: PKQDMI

2. Purpose:Togenerateelementstressmatricesfor the QDMEM,QUADIandQUAD2elements.

3. CALLPKQDMI

PKTQI

CallingSequence:

4.55.8.14 SubroutineName:

I. EntryPoint: PKTQI

2. Purpose:Togenerateelementstressmatricesfor the TRIAl,TRIA2,QUADI,andQUAD2

elements.

3. CallingSequence:CALLPKTQI(NTYPE)

l = TRIAl

2 = TRIA2
NTYPE

3 = QUADI

4 = QUAD2

Subroutine Name: PKTRQ2

I. Entry Point: PKTRQ2

2. Purpose: To perform final stress computations for the TRMEM and QDMEM elements.

3. Calling Sequence: CALL PKTRQ2 (NTYPE)

_l = TRMEM element
NTYPE

QDMEM element

4.55.8.15

4.55-6 (12-I-69)

4.55.8.16

FUNCTIONALMODULEPLA4(PIECEWISELINEARANALYSIS- PHASE4)

SubroutineName:PKTQ2

I. EntryPoint: PKTQ2

2. Purpose:Toperformfinal stress computationsfor theTRIAl,TRIA2,QUADI,andQUAD2
elements.

3. Calling Sequence: CALL PKTQ2 (NPTS)

13 = TRIAl or TRIA2 elements
NPTS

t4 QUADI or QUAD2 elements

4.55.8.17 Subroutine Name: PKTRMS

I. Entry Point: PKTRMS

2. Purpose: To generate the element stiffness matrix for the TRMEM element and sub-

computations for the PKQDMS routine.

3. Calling Sequence: CALL PKTPJ4S(NTYPE)

NTYPEII =TRMEM
Sub-computations for PKQDMS

4.55.8.18 Subroutine Name: PKQDMS

I. Entry Point: PKQDMS

2. Purpose: To generate the element stiffness matrix for the QDMEM element.

3. Calling Sequence: CALL PKQDMS

PKTRQD4.55.8.19 Subroutine Name:

I.

2.

QUAD2 elements.

3. Calling Sequence:

Entry Point: PKTRQD

Purpose: To generate the element stiffness matrix for the TRIAl, TRIA2, QUADI, or

CALL PKTRQD (NTYPE)

4.55-7 (12-l-69)

MODULE FUNCTIONAL DESCRIPTIONS

NTYPE

4.55.8.20

1 = TRIAl

2 = TRIA2

3 = QUADI

4 = QUAD2

Subroutine Name: PKTRBS

I. Entry Point: PKTRBS

2. Purpose: To generate the element stiffness matrix subcalculations for the PKTRPL and

PKQDPL routines.

3. Calling Sequence: CALL PKTRBS (1OPT)

l_PT Ii = Subcomp utati°ns f°r PKQDPL
Subcomputations for PKTRPL

4.55.8.21 Subroutine Name: PKTRPL

I. Entry Point: PKTRPL

2. Purpose: To generate the element stiffness matrix for the TRIAl and TRIA2 elements.

3. Calling Sequence: CALL PKTRPL

4.55.8.22 Subroutine Name: PKQDPL

I. Entry Point: PKQDPL

2. Purpose: To generate the element stiffness matrix for the QUADI and QUAD2 elements.

3. Calling Sequence: CALL PKQDPL

4.55.9 Design Requirements

The module was designed so that phase 1 and phase 2 can be executed in separate overlay

segments.

Open core for phase 1 is defined at /PLA41X/ and for phase 2 at /PLA42X/. In phase 1 the

single precision incremental displacement vector in unpacked form must be able to be contained in

core. In phase 2, the open core requirements are the same as those for module SMAI (see section

4.27.9.1) except that only four GIN_ buffers are required during the principal loop of phase 2,

4.55-8 (12-I-69)

FUNCTIONALMODULEPLA4 (PIECEWISE LINEAR ANALYSIS - PHASE4)

which processes the ECPTS and GPCT in a complementary manner. One GIN_ buffer is defined for

each of KGGNL, ECPTNLI, ECPTS and GPCT.

In addition to /PLA42E/, which is lO0 words in length, subroutine PLA42 uses the following

common blocks: a) /PLA42D/, which is 300 double precision words in length, and is used as a

scratch storage for the module's element routines; b) /PLA425/, which is 325 single precision words

in length, and is used as scratch storage for the module element routines; and c) /PLA42C/, which

is a communication region for phase 2 of the task of the module. /PLA42C/ is defined as follows:

C_MM_N/PLA42C/NPvT,GA_4A,GAMMAS,IPASS,ICSTM,NcSTM,IGPCT,NGPcT,IP@INT,NP@INT,_6X6K,N6X6K,CSTM,MPT,

E_PTS,GPCT,D_T_KGGNL,E_PT_,_NRW,_UTRW,E_R,NE_R,CLSRW,JFt_X,FR_W_,LR_W_C,NR_W_C,NL_NKS,NW_RDS(4_),

10VRLY(40),LINK(40),N_G_

GAMMA,GAMMAS

IPASS

NPVT,ICSTM,NCSTM,IGPCT, 1NGPCT,IP_INT,NP_INT,
16X6K,N6X6K

DIT,KGGNLCSTM'MPT'ECTPS'GPCT'1

ECPT_

The load increment ratios as defined in Equations 2 and 3 in

section 4.54.

Number of _ne current pass through the PLA DMAP loop.

As defined in section 4.27.9.

GINO file nun_ers for their corresponding data blocks.

GIN_ file number for the £CTPNLI data block.

As defined in section 4.27.9.INRW,_UTRW..... 1I_VRLY(40),LINK(40),N_G_ -

The variables a) corresponding to GIN_ file numbers, b) GIN_ parameter options (e.g., INRW,

_UTRW), and c) NLINKS, I_VRLY, and NW_RDS, and N_GB are set in the block data subprogram PLA4BD.

One scratch file is used, and all operations associated with stiffness matrix calculations

are performed in double precision.

4.55.10 Diagnostic Messages

During phase l, if the incremental displacement vector is null, user fatal error 2083 will

occur.

During phase 2, error messages 3001, 3002, or 3003 may occur if the proper loading factors

cannot be found on the PLFACT bulk data card image in the MPT. Other diagnostic messages for

phase 2 are the same as those for module SMAI (see section 4.27.10).

4.55-9 (12-I-69)

FUNCTIONAL MODULE CASE (SIMPLIFY CASE CONTROL)

4.56 FUNCTIONAL MODULE CASE (SIMPLIFY CASE CONTROL)

4.56.1 Entry Point: CASE

4.56.2Purpose

To remove looping considerations from later dynamics modules.

4.56.3 DMAP Callin9 Sequence

CASE CASECC,PSDL/CASEXX/C,N,APPROACH/V,N,REPEAT/V,N,L(_(BP$

4.56.4

CASECC

PSDL

Note:

Input Data Blocks

- Case Control Data Table.

- Power Spectral Density List.

PSDL is used only if APPROACH = FREQRESP and Random Analysis is selected in CASECC.

4.56.5

CASEXX

Note:

4.56.6

OutpLt Data Blocks

- Case Control data table for dynamics problems.

CASEXX cannot be purged.

Parameters

APPROACH Input-BCD-no default.

criteria.

BCD Value

STATICS

REIGEN

DSO

DSI

FREQRESP

TRANRESP

BLKO

3LKI

CEIGEN

Defines the approach to be used for looping

N_NE

N_NE

N_NE

N_NE

DIRECT INPUT MATRICES OR TRANSFER FUNCTIONS

L_AOS

N_NE

N_NE

DIRECT INPUT MATRICES OR TRANSFER FUNCTIONS

4.56-I

MODULE FUNCTIONAL DESCRIPTIONS

BCD Value

PLA

REPEAT

L_P

- Input and output-integer-set equal to zero outside of the DMAP loop by the PAP,AM

module. -I if no additional loops; + loop count if loops.

- Output-integer-default = -I. -I if this is not a looping problem, 0 if this

is a looping problem.

4.56.7 Method

The method of operation depends upon the input parameter APPROACH.

4.56.7.1 Transient Response

If APPROACH = TRANRESP, CASECC is skipped over REPEAT records. If REPEAT = O, REPEAT is set

to I. One record of CASECC is read and copied onto CASEXX. An attempt is made to read another

record. If no more records exist, REPEAT is set to -I. Also, if this is the first entry to CASE

(i.e., REPEAT = I), LOOP is set to -I. If additional records exist, REPEAT and LO_P are set to I.

4.56.7.2 Complex Eigenvalue Analysis

If APPROACH = CEIGEN, REPEAT records are skipped in CASECC. If REPEAT = O, REPEAT is set to

I. One record of CASECC is read and copied onto CASEXX. The names of the Direct Input Matrices

and Transfer Functions sets are saved. An attempt is made to read another record. If no

more exist, REPEAT is set to -I. Also if this is the first entry (i.e., REPEAT = I) LOOP is set

to -I. If additional records exist, their Direct Input Matrices and Transfer Functions sets are

compared to those saved. If they all agree, this record is copied onto CASEXX and the process

is repeated. If they do not agree, REPEAT is incremented by I, LO_P is set to I, and CASE returns.

4.56.7.3 Frequency Response

If APPROACH = FREQRESP, the method used is the same as Complex Eigenvalue Analysis except a

test is also made for frequency set selection changes. In addition, if RANDPS cards are selected,

the selected set is read from PSDL and the unique subcase "id's" referenced are stored. Each sub-

case id copied onto CASEXX is compared to this list, and the entry is marked as found. If at the

completion of CASE unmarked entries exist, the routine terminates with message 3033.

4.56-2 (311171)

FUNCTIONAL MODULE CASE (SIMPLIFY CASE CONTROL)

4.56.8 Subroutines

No auxiliary subroutines are used by CASE.

4.56.9 Design Requirements

Open core is defined at /CASC_R/.

C@MM_N/CASC_R/

CASECC

Record

List

CASEXX buffer

PSDL buffer

CASECC buffer

Present only if RANDOM checks done

3 GIN_ buffers

4.56.10 Diagnostic Messages

If a case control record cannot be held in core, CASE will issue error message 3008.

Message 3033 may be issued by CASE as outlined above.

4.56-3

FUNCTIGI_ALMODULEMTRXIN(MATRIXINPUT)

4.57 FUNCTIONALMODULEMTRXIN(MATRIXINPUT)

4.57.1 Entry Point: MTRXIN

4.57.2 Purpose

MTRXIN has two purposes: (l) to provide a capability for direct inputmatrices as may occur in

control systems in the dynamics Rigid Formats and, (2) to provide the DMAP user a capability

of converting matrices input on DMIG bulk data cards to NASTRAN matrix format.

4.57.3 DMAP Callin_ Sequences

I. Dynamics Rigid Formats:

MTRXIN cASEcc,MATP_L,EQDYN'SILD'TFP_BL/K2PP,M2PP,B2PP/v,N,LUSETD/V,N,NBMATl/V,N,N_MAT2/

V,N,N(_IAT3 $

2. uMAP Approach:

MTRXIN, ,MATP_L,EQEXIN,SIL,/NAMEl,NAME2,NAME3/V,N,LUSET/v,N'N9MATl/V'N,N9MAT2/V,N,N_MAT3

4.57.4

CASECC

MATP_gL

EQDYN

SILD

TFP_gL

EQEXIN

SIL

Notes:

I.

2.

Input Data Blocks

- Case Control.

- Data block containing matrices input on DMIG bulk data cards.

- Equivalence between external numbers and internal numbers, dynamics.

- Scalar Index List - dynamics.

- Transfer Function Pool.

- Equivalence between external numbers and internal numbers.

- Scalar Index List.

If CASECC is purged, the second purpose is assumed by MTRXIN.

EQDYN, EQEXIN, SIL and SILD may not be purged.

4.57-I

MODULE FUNCTIONAL DESCRIPTIONS

4.57.5

K2PP

M2PP -

B2PP -

NAMEI_

NAME2 -
NAME3)

Note:

Output Data Blocks

- Direct input stiffness matrix - p set.

Direct input mass matrix - p set.

Direct input damping matrix - p set.

The same names that appear or_ the DMIG cards, i.e., the DMIG matrix called
NAME1 will be output on data block NAME1.

Any output data block may be purged.

4.57.6 Parameters

LUSET

LUSETD

NOMATi

Input-integer-no default.
and SIL.

Input-integer-no default.
and SILD.

Output-integer-no default.
-I otherwise.

Degrees of freedom in the g set. Used with EQEXIN

Degrees of freedom in the p set. Used with EQDYN

+I if the i th output data block is generated,

4.57.7 DMAP Example

Assume the bulk data contain two DMIG matrices named M1 and M2 which reference grid and/or

scalar points only. The following set of DMAP instructions will generate these two matrices in

NASTRAN matrix format, multiply them together and print the result.

BEGIN

GPI

SAVE

MTRXIN,

SAVE

C_ND

C_ND

MPYAD

MATPRN

LABEL

END

GE_MI,GE_M2/GPL,EQEXlN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/C,N,O/C,N,O

LUSET $

,MATP_L,EQEXIN,SIL,/MI,M2,/V,N,LUSET/V,N,N_MI/V,N,N_M2/C,N,O $

NOMI,N_M2 $

EXIT,NOMI $

EXIT,N_M2 $

MI,M2,/PR_DUCT/C,N,O/C,N,I/C,N,I/C,N,I $

PRODUCT.... // $

EXIT $

4.57-2

FUNCTIONAL MODULE MTRXIN (MATRIX INPUT)

4.57.8 Method

The first logical record in the Case Control data block is read into core, and the names of

the requested DMIG matrices are fetched. If the Case Control data block is purged, FNAME is

called to determine the names of the DMIG matrices from the names of the output data blocks. If

the Case Control record was read, the transfer function set selection is fetched. If transfer

matrices are requested, the TFP_L data block is opened, and the file is positioned to the

requested set. Each transfer function matrix for which a corresponding direct input matrix exists

is written on a scratch file. If no direct input matrix exists corresponding to a transfer func-

tion matrix, the transfer function matrix is written directly on the appropriate output data block.

The transfer function matrices are written in NASTRAN matrix format by decoding the row and

column numbers and calling BLDPK.

Upon completion of the writing of the transfer function matrices (if any), the second record

of EqLXIN or EQDYN is read into core. The second word of each entry is converted into a scalar

index number by dividing by lO. The MATPO_L data block is opened. The following processing

occurs:

I. The header information for the DMIG matrix is read. If an end-of-file is encountered,

step (5) is executed. If the matrix is not requested, the remainder of the record is

skipped and step (1) is repeated. Otherwise, step (2) is executed.

2. Each term in the matrix is read. The grid identification and component code are

converted to a scalar index value by performing a binary search in EQEXIN or EQDYN in

core. The scalar index forms a row position of the matrix. The row and column number

(packed in one word) and the value for the term are stored in core. If core storage is

exceeded, the terms are written on a scratch file.

3. When all terms have been read, converted and stored, the matrix is sorted by S_RT.

The matrix is now written in NASTRAN format by BLDPK.

4. If a transfer function is to be added to the DMIG matrix, the ADD routine is called

to accomplish the matrix addition.

5. A test is made to determine if all requested matrices have been processed. If not,

an error message is queued, and PEXIT is called. Otherwise, the module makes a normal exit.

4.57-3

MODULEFUNCTIONALDESCRIPTIONS

4.57.9 Design Requirements

4.57.9.1 Allocation of Core Storage

Storage is required to hold the EQDYNor EQEXIN table (2 words per point in the problem) plus

fiw GINB buffers. Complete spill logic is provided for processing the DMIG matrices.

4.57.9.2 Environment

The module MTRXIN consists of one subroutine, MTRXlN. Calls are made to the utility routine

S_RT and matrix operation ADD. Open core is defined by /MTRXXX/. Seven scratch files are used.

4.57.10 D,ia_nosticMessages

The following messages may be issued by MTRXIN:

2065, 2070, 2074.

4.57-4

FUNCTIONAL MODULE GKAD (GENERAL K ASSEMBLER DIRECT)

4.58 FUNCTIONAL FDDULE GKAD (GENERAL K ASSEMBLER DIRECT)

4.58.1 Entry Point: GKAD

4.58.2 Purpose

To assemble the dynamic stiffness, damping and mass matrices.

4.58.3 _4AP Calling Sequence

GKAD USETD,GM,G_,KAA,BAA,MAA,K4AA,K2PP,M2PP,B2PP/KDD,BDD,MDD,GMD,G_D,K2DD,M2DD,B2DD/

V,N,TYPE/V,N,APP/V,N,FORM/V,Y,G/V,Y,W3/V,Y,W4/V,N,NOK2PP/V,N,NOM2PP/V,N,NOB2PP/

V,N,MPcFl/v,N,SINGLE/V,N,0MIT/V,N,N0UE/V,N,N0K4GG/V,N,N0BGG/v,N,KDEKA/V,Y,M_DAcC

4.58.4

USETD

GM

GO

KAA

BAA

MAA

K4AA

K2PP

M2PP

B2PP

Notes:

Input Data Blocks

- Displacement set definitions table dynamics.

Multipoint constraint transformation matrix - m set.

Structural matrix partitioning transformation matrix.

- Partition of stiffness matrix - a set.

- Partition of

- Partition of

- Partition of

- Direct input

- Direct input

- Direct input

I.

2.

3.

4.

5.

6.

7.

8.

9.

damping matrix - a set.

mass matrix - a set.

structural damping matrix - a set.

stiffness matrix - p set.

mass matrix - p set.

damping matrix - p set.

USETD cannot be purged.

GM cannot be purged if MPCFI _ O.

G_ cannot be purged if OMIT • O.

KAA cannot be purged if KDEKA • O.

BAA cannot be purged if NOBGG _ O.

MAA may be purged.

K4AA cannot be p_rged if N@K4GG _ O.

K2PP cannot be purged if NOK2PP _ O.

M2PP cannot be purged if NOM2PP _ O.

4.58-I

4.58.5

KDD

BDD

MDD

GMD

G_D

K2DD

M2DD

B2DD

4.58.6

Notes :

TYPE

APP

F_RM

W3

MODULE FUNCTIONAL DESCRIPTIONS

I0. B2PP cannot be purged if N_B2PP m O.

Output Data Blocks

W4

- Dynamic stiffness matrix - d set.

- Dynamic damping matrix - d set.

- Dynamic mass matrix - d set.

Multipoint constraint transformation matrix - dynamics.

- Omitted coordinate transformation matrix - dynamics.

Direct input stiffness matrix - d set.

Direct input mass matrix - d set.

Direct input damping matrix - d set.

I. GMD cannot be purged if MPCFI _ O.

2. G_D cannot be purged if _MIT _ O.

3. K2DD cannot be purged if N_K2PP > O.

4. M2DD cannot be purged if NOM2PP _ O.

5. B2DD cannot be purged if N_B2PP _ O.

Parameters

Input-BCD-no default. If TYPE = TRANSIENT the transient equations are used;

otherwise the frequency response equations are useo,

Input-BCD-no default. If APP = FORCE the P set = d set; otherwise p's are

reduced to d's by removing m's, s's, and o's.

- Input-BCD-no default. If F_RH = M_DAL, KDD and BDD are not computed. MDD is

not computed unless M_DACC _ O.

Input-real-default = O.O. G is the coefficient of K4DD if TYPE # TPJ_NSIENT. G/W3

is coefficient of KIDD if TYPE = TRANSIENT.

- Input-real-default = 0.0. If TYPE = IRANSIENT G/W3 is the coefficient of KIDD.

If W3 = 0.0 KIDD is not used.

- Input-real-default = 0.0, 1.O/W4 is the coefficient of K4DD if TYPE : TPJ_NSIENT.

If W4 = 0.0 K4DD is not used.

4.58-2

N_K2PP

N_M2PP

N_B2PP

MPCFI

SINGLE

_MIT -

N_UE

N_K4GG

N_BGG

KDEKA

M_DACC -

4.58.7 Method

FUNCTIONAL MODULE GKAD (GENERAL K ASSEMBLER DIRECT)

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

constraints.

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

Input-integer-default = -1.

only if F_RM = M_DAL)

N_K2PP m 0 indicates presence of K2PP.

N_M2PP _ 0 indicates presence of M2PP.

N_B2PP _ 0 indicates presence of B2PP.

MPCFI m 0 indicates presence of GM.

SINGLE _ 0 indicates presence of single-point

_MIT _ 0 indicates presence of G_.

N@UE m 0 indicates presence of extra points.

N_K4GG m 0 indicates presence of K4AA.

N_BGGZ 0 indicates presence of BAA.

KDEKA _ O indicates presence of MAA and KAA.

M_DACC _0 requests computation of MDD (meaningful

If extra points are present (N_UE_O) and multipoint constraints or omitted coordinates

are present (MPCFI>_Oor _MIT>_O),then

and

SubroutiI_eGKADIA performs these tasks.

GM _> GMD, (1)

G_ _) G_D. (2)

If direct input matrices are present and m's, s's or o's are present, the direct input

D2
matrices are reduced from the p set to the d set. Let [pp] be a direct input matrix,

D2 : [K_p], M2 B2[pp] [pp] or [pp]

I. If m_s are present,

4.5B-3

MODULE FUNCTIONAL DESCRIPTIONS

2 , _2

D2 nn I nm (3)

[pp] :> "_-} Bmm
-_ -

mn ,

(The e coordinates are included with the n coordinates). Then compute:

[D 2nn] = [D2nn] + [D2nm] [Gd] + [Gmd]T [D'mn] + [Gd] T [D2n] [Gmd]

2. If s's are present,

I_' °L]ff I

E0_=> L°_TT_j ¢_

3.

where only [D_f] is saved. The e coordinates are included with the f coordinates.

If o's are present, first partition [D_f]

[°_]=> [_ ::°oo]_ (6)

then:

Steps 1 through 3 are done for K2PP, M2PP and B2PP, using subroutines GKADIC and GKADID.

4.58-4

FUNCTIONAL MODULE GKAD (GENEPJ_LK ASSEMBLER DIRECT)

If F(_RM= I_DAL ar,d F_DACC < O, GKAD is done.

the d set by adding zeros at extra points.

If not, the a set matrices are expanded to

Let [Daa] be an a set matrix. Then,

!

a, => [D d]
I

The above step is done for KAA, BAJ_,MN_, and K4AA and is performed in subroutine GKADIB.

Compute KDD, BDD and MDD.

I. For Frequency Response or Complex Eigenvalue Analysis (TYPE f TRAN),

(8)

[Sdd]= [B_d]+ [8_d], (I0)

["dd] = [M_d]+ ["_] " (11)

2. For Transient Analysis (TYPE = TRAN),

[Kdd] : [K_d] + EKed], (12)

[Mdd] : [M_d] M2+ [dd] . (14)

If W3 or W4 is zero, the corresponding matrices are ignored.

4.58-5

MODULEFUNCTIONALDESCRIPTIONS

4.58.8 Subroutines

GKAD uses matrix utility routines SSG2C, CALCV, MERGE, UPART, MPART and ELIM.

for these routines can be found in section 3.

Descriptions

4.58.8.1 Subroutine Name: GKADIA

I.

2.

3.

Entry Point: GKADIA

Purpose: To expand GM or G_ to d size matrices:

[Gm . o] ----> [G]

Calling Sequence: CALL GKADIA (USETD,GO,GOD,SCRI,UE,UA,UNE)

USETD GINQ file number of USETD - integer - input.

GQ GINO File number of G_ - integer - input.

GQD - GIN_ file number of GQD - integer - input.

SCRI - GIN@ file number of scratch file - integer - input.

UE - Pointer to UE bit in USETDword - integer - input.

UA - Pointer to UA bit in USETD word - integer - input.

UNE - Pointer to UNE bit in USETDword - integer - input.

(15)

4.58.8.2 Subroutine Name: GKADIB

I. Entry Point: GKADIB

2. Purpose: To expand a set matrices to d set size.

3. Calling Sequence: CALL GKADIB (USETD,KAA,MAA,BAA,K4AA,KIDD,MIDD,BIDD,K41DD,UA,

UE,UD,SCRI)

USETD

KAA

MAA

BAA

K4AA

- GIN_ file number of USETD - integer - input.

- GIN_ file number of KAA - integer - input.

- GIN_ file number of MAA - integer - input.

- GIN_ file number of BAA - integer - input.

- GIN_ file number ef K4AA - integer - input.

4.58-6

FUNCTIONAL MODULE GKAD (GENERAL K ASSEMBLER DIRECT)

KIDD

MIDD

BIDD

K41DD

SCRI

UA

UE

UD

- GIN_ file number of KIDD - integer - input.

- GIN_ file number of MIDD - integer - input.

- GIN_ file number of BIDD - integer - input.

- GIN_ file number of K41DD - integer - input.

- GIN_ file number of scratch file - integer - input.

- Pointer to UA bit in USETD word - integer - input.

- Pointer to UE bit in USETD word - integer - input.

- Pointer to UD bit in USETD word - integer - input.

4.58.8.3 Subroutine Name: GKADIC

I. Entry Point: GKADIC

2. Purpose: To initialize GKADID.

3. Calling Sequence: CALL GKADIC (GMD,G_D,SCRI,SCR2,SCR3,SCR4,SCR5,SCR6,USETD)

GMD,G_D,USETD are GIN_ file numbers of their respective data blocks - integer - input.

SCRISCR6 are GIN_ file numbers of six scratch files - integer - input.

4.58.8.4 Subroutine Name: GKADID

I. Entry Point: GKADID

2. Purpose: To reduce "2PP" matrices to "2DD" matrices.

3. Calling Sequence: CALL GKADID (K2PP,K2DD)

K2PP - GIN_ file number of input matrix - integer - input.

K2DD - GIN_ file number of reduced matrix - integer - input.

4.58.9 Design Requirements

Six scratch files are necessary. Open core for GKADIA and GKADIB is defined at /GKADAI/.

Open core for GKADIC and GKADID is defined at /GKAOCI/.

4.58.10 Diagnostic _ssa_es

None

4.58-7

4.59

4.59.1

FUNCTIONALMODULECEAD(COMPLEXEIGENVALUEANALYSIS- DISPLACEMENT)

FUNCTIONALMODULECEAD(COMPLEXEIGENVALUEANALYSIS- DISPLACEMENT)

Entry Point: CEAD

4.59.2 Purpose

To solve the equation

([M]p2 + [B]p + [K]) {u} = {0}

for the eigenvalues p and the associated eigenvectors {u} where [M], [B] and [K] are mass,

damping and stiffness matrices respectively.

4.59.3 DMAP Callin9 Sequence

CEAD KDD,BDD,MOD,EED,CASECC/PHID,CLAMA,gCEIGS/V,N,NFgUND $

4.59.4 Input Data Blocks

KDD

BDD

MDD

EED

CASECC

Notes:

I.

2.

3.

4.59.5

PHID

CLAMA

9CEIGS

Note:

Dynamic stiffness matrix - d set.

- Dynamic damping matrix - d set.

- Dynamic mass matrix - d set.

- Eigenvalue Extraction Data.

- Case Control Data Table.

EED must be present.

CASECC must be present.

At least one of KDD, BDD and MDD must be present.

Output Data Blocks

- Complex eigenvectors in the d set.

- Complex eigenvalue table.

- Complex eigenvalue summary table.

No output data block can be purged.

(1)

4.5g-I

MODULE FUNCTIONAL DESCRIPTIONS

4.59.6 Parameters

NFOUND - Output-integer-no default. NFOUND indicates the number of eigenvalues

found. If none were found, NF_UND is set to -I.

4.59.7 Method

The Complex Eigenvalue Analysis Module calculates the eigenvalues and eigenvectors for

a general system which may have complex terms in the mass, damping, and stiffness matrices.

The eigenvectors are scaled according to the user-requested normalization scheme. Modal masses

are not calculated since they will, in general, be complex, and their value is rather dubious.

The form of the problem solved by the Complex Eigenvalue Analysis Module is given in Equation I.

The eigenvalues p and the eigenvectors {u} are always treated as complex. These data

are related to the ud displacements if a direct formulation is used or are related to the

u h displacements if a modal formulation is used. The method to be used and the necessary data

are selected by calling for one ID number in the EED data block. A set of EED data which

defines either the Determinant Method or the Inverse Power Method must be used. Subroutine

ClNVPR or CDETM is called to solve the eigenvalue problem (see subroutine descriptions below

for method details). The eigenvalues and associated vectors are sorted by the magnitude of the

imaginary part cf the eigenvalue with all positives listed ahead of all negatives. (Subroutine

CEADIA).

4.59.8 Subroutines

The subroutines used by CEAD can be divided into four groups: I) those used by CEAD;

2) those use(! for the Inverse Power Method; 3) those used by the Determinant Method; and, 4)

general utility routines. The descriptions of the utility routines can be found in section 3.

CEAD Inverse Power Determinant General

CEADIA ClNVPR ClNFBS CDETM CDC_MP

ClNVPI CMTIMU CDETM2 ADD

ClNVP2 CXTRNY CSUMM PREL_C

ClNVP3 CSUB CSQRT

CN_RM _RTH_ CDTFBS

CN_RMI CDIFBS CDETM3

CDIVID CSQRTX

4.59-2 (8/I/72)

4.59.8.1

I.

2.

3.

LAMAI

PHIl

LAMA_

PHI_

NF@UND

4.59.8.2

I.

2.

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

Subroutine Name: CEADIA

Entry Point: CEADIA

Purpose: To sort the eigenvectors and eigenvalues.

Calling Sequence: CALL CEADIA (LA_I,PHII,LAMA_,PHI_,NFOUND)

- GIN9 file number of unsorted eigenvalues - integer - input.

- GIN_ file number of unsorted eigenvectors - integer - input.

- GIN9 file number of data block CLAF_ - integer - input.

- GINO file number of data block PHID - integer - output.

- Number of eigenvalues found - integer - input.

Subroutine Name: CINVPR

Entry Point: CINVPR

Purpose: CINVPR is the main driver for the Complex Inverse Fower Method of

eigenvalue extraction.

3. Calling Sequence: CALL ClNVPR (EED,METHgD,NFgUND)

C_MM_N /CINVPX/K(7),M(7),B(7),LAM(7),PHI(7),EIGSUFI,SCRFIL(II),N_REG,EPS,REG(7,10)

Cg_MgN /CINVX/Z(1)

K,M,B - Input matrix control blocks for the stiffness, mass, and damping

LAM,PHI

EIGSUM

SCRFIL(II)

NgREG

EPS

REG(7,10)

z(1)

matrices [K], [M], and [B].

- Matrix control blocks for the output eigenvalue and eigenvector files.

- The output eigenvalue summary file.

- Eleven scratch files available to Inverse Power.

- Number of regions input to CINVPR.

- Convergence criterion.

Storage space for up to lO region parameters.

Open core for ClNVPR.

4.59-3

MODULE FUNCTIONAL DESCRIPTIONS

EED

METHOD -

NF_UND -

4. Method:

GIN_ file number for this input data block.

ID of an EIGC card for the Inverse Power Method.

Number of eigenvalues found.

Complex Inverse Power was, in general, designeclidentically to Real Inverse

Power. The notable exceptions are in the iteration equation and the orthogonalization

with respect to previously extracted eigenvectors. With these points in mind, the

basic flow can be taker_from READ in section 4.48. Theoretical development is given in

the Theoretical Manual.

4.59.8.3 Subroutine Name: CINVPI

I. Entry Point: ClNVPI

2. Purpose: To generate calling sequences to ADD to form

[A] : [K] + X[B] + X2[M].

3. Calling Sequence: CALL CINVP!

CCMMeN /CINVPX/ K(7),M(7),B(7),DUM(15),A

C_MM_N/CINVIX/Z(1)

C_MM_N/ClNVXX/ LAMBDA

K,M,B - Matrix control blocks for the input matrices.

A GIN_ file number for the output matrix.

Z(1) Area of open core available to ADD.

LAMBDA Complex double precision scalar multiplier.

Subroutine Name: ClNVP2

Entry Point: CINVP2

Purpose: To initialize and call CDC_MPfor subroutine ClNVPR.

4.59.8.4

I.

2.

(2)

4.59-4

FUNCTIONALMODULECEAD(COMPLEXEIGENVALUEANALYSIS- DISPLACEMENT)

3. CallingSequence:CIviLCINVP2

C_4(_N/CINVPX/ DUM(36),A,XX,L,U,SCRI,SCR2,SCR3,LL,UU

C_N /CINVXX/DUI_(4)_SWITCH

C_MM_N /ClNV2X/Z(1)

A

L,U

SCRI,SCR2,SCR3

LL,UU

SWITCH

z(1)

GIN_ file nu_er for the input matrix.

GIN_ file nun_er for the lower and upper triangular factors output

from CDC_MP.

- Three scratch files used by CDC_MP.

- GIN_ file nunbers for alternate storage of L and U.

_ _0, store factors on L and U.

!l, store factors on LL and UU.

- Area of open core used by CDC_MP.

4.59-5

MODULEFUNCTIONAL DESCRIPTIONS

4.59.8.5 Subroutine Name: CINVP3

I. Entry Point: ClNVP3

2. Purpose: To solve for a complex eigenvalue and eigenvector using the Inverse

Power Method.

3. Calling Sequence: CALL CINVP3

C_MM_N/CINVPX/K(7),M(I),B(I),LLM(I),PHI(I),XXX,SCRFIL(II)

C_MMON/CINV3X/Z(1)

See section 4.59.8.2 above for details on /CINVPX/.

Z(1) - Area of open core available in CINVP3.

4. Method: The logic flow and the mathematical equations are essentially identical

to INVP3, with the following exceptions. The eigenvalues and eigenvectors are found

corresponding to the matrix equation

(X2[M] + X[B] + [K]) [¢] : [0]

where the iteration equation is given by

(X_[M] + Xo[B] + [K]) {Wn} : -([B] + Xo[M]) {Un_ I} -[M] {Vn-I}_

with

1

{Un } = _ {Wn} ,

- 1

{Tn } = ko{U n} + _ {Un-l} '

{u n} : {Ur} - _ mi{¢i},
i

{Vn} = {_n } - _ _i xi{_i}'

and

{¢i}T [Xi[M]{_ n} + [M] {v-n] + [B] {gn}]

{¢i}T (2Xi [M] + [B]) {@i}

4.59-6

(3)

(4)

(5)

(6)

(7)

(8)

(9)

where

_i =

Cn =

_i =

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

Previously extracted right-hand vector,

Previously extracted left-hand vector,

Largest element (in magnitude) of {Wn} , and

Previously extracted eigenvalue.

The above equations replace Equations 19 through 22 in section 4.48. The calculation of the

4.59.8.6

remaining equations remains the same except for the use of complex arithmetic. The left

eigenvector is obtained by _ecomposing Equation 3 with _o - _i and using CDIFBS to make the

appropriate substitution using the factors from CDCOMP.

5. Design Requirements: CINVPS requires fourteen complex double precision vectors in

core plus four GINO buffers.

Subroutine Name: CNORM

I. Entry Point: CN_RM

2. Purpose: To normalize successive iterated vectors such that the maximum element is

equal to unity, and to return the normalizing divisor.

3. Calling Sequence: CALL CNORM (X,DIV)

X - Input vector to be normalized.

DIV - Divisor which was used to normalize the vector corresponding to the

argument X.

Subroutine Name: CN_I

Entry Point: CNOP_I

Purpose: To normalize a complex vector such that the largest magnitude of an element is

4.59.8.7

I.

2.

equal to one.

3. Calling Sequence: CALL CNORM (X,N)

X - Vector to be normalized.

N - Length of the vector (complex terms).

4.59-7

MODULEFUNCTIONALDESCRIPTIONS

4.59.8.8 SubroutineName:CINFBS

I. EntryFoint: CINFBS

2. Purpose:Toperformthe forward-backwardsubstitution necessaryto solvean

4.59.8.9

iteration of the InversePowerMethod.

3. CallingSequence:CALLCINFBS(X,Y,BUF)

C_I_ON /CINFBX/L(7),U(7)

L,U -

X -

y -

BUF

4. Method: CINFBS is a stripped down version of GFBS.

and only complex double precision arithmetic is used.

Subroutine Name: CDIFBS

I. Entry Point: CDIFBS

2.

Matrix control blocks for the factors output from CDCOMP.

Complex double precision input vector.

Complex double precision solution vector.

GIN_ buffer.

Both vectors reside in core,

Purpose: To perform the forward-backward substitution necessary to solve for the

left eigenvector.

3. Calling Sequence: CALL CDIFBS (X,BUF)

C_MM@N /CINVPX/DUM(41),UPRTRI,XXX,L_WTRI

UPRTRI,L_WTRI - Files containing the upper and lower triangular factors output from CDC_MP.

× - The output complex double precision left eigenvector.

BUF- GINO buffer used by CDIFBS.

4. Method: CDIFBS actually solves the system of equations

[A]T {x} = {y}, (lO)

where [A] has been decomposed into [A] = [L] [U]. To solve the transpose problem we have

that

4.59-8

sothat

FUNCTIONALMODULECEAD(COMPLEXEIGENVALUEANALYSIS- DISPLACEMENT)

[A]T = ([L] [U])T = [U]T [L]T (ll)

[U]t ILlT {x} = {y}. (12)

CDIFBS is a modified form of GFBS which does the forward pass on [U] anC the backward

pass on [L]. All arithmetic operations are complex double precision.

4.59.8.10 Subroutine Name: CMTIMU

I. Entry Point: CMTIMU

2. Purpose: To pre-multiply a vector {y} by a matrix to obtain a vector {x}.

3. Calling Sequence: CALL CMTIMU (Y,X,FILE,BUF)

C_MM_N /CINVPX/DUM(I):r_(7)

FILE - If FILE = O, form {x} = [M]{y}.

FILE # O, form {x} = [A] {y}, where [A] is the matrix on FILE.

X,Y - Complex double precision vectors.

BUF - GIN_ buffer.

4.59.8.11 Subroutine Name: CXTRNY

I. Entry Point: CXTRNY

2. Purpose: To form the inner product of two complex vectors, {x} and {y}

a : {x} T {_}, (13)

where {y--} denotes a vector all of whose components are the complex conjugates of {y}.

3. Calling Sequence: CALL CXTRNY (X,Y,A)

C_M_N /ClNVPX/XX,N

N - Length of the vectors.

X,Y Complex double precision vectors.

A - Complex double precision value of the inner product of {x} and {y}.

4.59-9 (12-I-69)

MODULEFUNCTIONAL DESCRIPTIONS

4.59.8.12 Subroutine Name: CSUB

I. Entry Point: CSUB

2. Purpose: To evaluate the vector equation

{z} : a{x} - b{y}, (14)

N

X,Y,Z

A,B

4.59.8.13

I.

2.

3.

where {x}, {y}, a and b may be complex.

3. Calling Sequence: CALL CSUB (X,Y,Z,A,B)

COMM_N/ClNVPX/XXX,N

Length of the vectors {x} and {y}.

Complex double precision vectors.

Complex double precision scalar multipliers.

Subroutine Name: ORTH_

Entry Point: _RTH_

Purpose: To orthogonalize a vector with respect to all previously extracted vectors.

Calling Sequence: CALL ORTHO(U,VDXl,X2_X3,X4,X5,NZ,BUFI,BUF2,BUF3,BUF4)

COMMON/CINVPX/K(7),M(I),B(7),LAMBDA(I),PNI(I),XXX,SCRFIL(IO)

C_MM_N/CINVXX/DUM(19),NR_TS

See section 4.59.8.2 for /CINVPX/ details.

NR_@TS - Number of eigenvectors already extracted.

U,V - Input-current vectors - Output - orthogonalized vectors.

Xl ,X5- Storage space for five complex double precision vectors.

NZ

I
BUF4

4. Method:

The number of words of core available to ORTHO.

Four GIN_ buffers.

ORTHOsolves the equations

{u n} : {u n} -
1

_i Xi {¢'i}' (15)

4.59-10

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

{Vn} = {Vn} - Z _i ki {_i}'
i

(16)

where

{¢i}T[xi[M] {un} + [M] {vn} + [B] {Un}]

_i =
{¢i}T[2 ki[M] + [B]] {¢i}

and

}:

{¢i} =

ki =

Previously found left eigenvectors.

Previously found right eigenvectors.

Previously found eigenvalues.

Note that the demoninator of equation 17 is constant with respect to the current

iterate un and vn. Thus it is computed once for each vector and saved on the left vector

scratch file in place of the left vector.

(17)

4.59-II (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

r4.59.8.14 Subroutine Name: CDETM

I. Entry Point: CDETM

2. Purpose: To solve the complex eigenvalue problem by the Determinant Method.

3. Calling Sequence: CALL CDETM(METH_D,EED,M,B,K,LAMA,PHID,_CEIGS,NF_UND,SCRI,SCR2,

SCR3,SCR4,SCR5,SCR6,SCR7,SCR8)

METHOD - ID of an EIGC card for the Determinant Method - integer - input.

EED,OCEIGS, I- GIN_ file numbers of their respective data blocks - integer - input.
M,B,K

LA_ - GINO file number of temporary eigenvalue storage file - integer - input.

PHID - GINO file number of temporary eigenvector storage file - integer - input.

NFOUND - Number of eigenvalues found - integer - output.

SCRI,SCR2, }....SCR8 - GIN_ file numbers of 8 scratch files - integer - input.

4. Method: The overall flow and theoretical considerations of the Determinant Method

are explained in section 4.88. Two refinements are made in CDETM. The first is the

handling of multiple search regions, which allows the user to control the distribution of

starting points in the complex plane. See the EIGC bulk data card description in section

2 of the User's Manual for further details. The second is the use of the EIGP card tc define

poles which will be swept from the determinant as if they were previously accepted

eigenvalues. This allows the user to prevent convergence to known or already extracted

eigenvalues.

5. Design Requirements: CDETM requires two complex double precision d set vectors plus

one GIN_ buffer in core.

4.59.8.15 Subroutine Name: CDETM2

I. Entry Point: CDETM2

2. Purpose: To arrange 3 starting points in order of the magnitude of the determinant.

3. Calling Sequence: CALL CDETM2(P,D,IP,PR,PI,DR,DI,IPS)

P - Three starting point values - input-complex double precision.

4.59-12

FUNCTIONALMODULECEAD(COMPLEXEIGENVALUEANALYSIS- DISPLACEMENT)

D

IP

PR

PI

DR

DI

IPS

4.59.8.16

I.

- Scaled determinants at P - input-complex double precision.

- Scale factors for D - input - integer.

- Real parts of the reordered starting points - output-double precision.

- Imaginary parts of the reordered starting points - output-double precision.

- Real parts of the reordered determinants - output-double precision.

- I_aginary parts of the reordered detern_inants- output-double precision.

- Scale factors of the reordered determinants - output - integer.

Subroutine Name: CSUMM

Entry Point: CSUV_I

.

3.

The arguments are defined in the following equation:

(DI,D2) x lOIDl + (D3,D4) x lOID2 =

where all Di's are double precision.

4.59.8.17 Subroutine Name: CSQRT

I.

2.

3.

The arguments are defined in the following equation:

(D3,D4) x I0ID2 = _/(DI,D2)

Purpose: To add two scaled complex numbers together.

Calling Sequence: CALL CSUMM (DI,D2,IDI,D3,D4,ID2,D5,D6,ID3)

(D5,D6) x lOID3,

Entry Point: CSQRT

Purpose: To compute the positive principal square root of a scaled complex number.

Calling Sequence: CALL CSQRT (DI,D2,1DI,D3,D4,1D2)

x lOIDl

where all Di's are double precision.

(18)

(19)

4.59-13

MODULEFUNCTIONALDESCRIPTIONS

4.59.8.18

I.

2.

3.

F

SubroutineName:CDTFBS

EV

BUFFER(1)

FU

NR_W

Entry Point: CDTFBS

Purpose: To solve for the eigenvector given the decomposed impedance matrix.

Calling Sequence: CALL CDTFBS (F,EV,BUFFER(1),FU,NROW)

- Applied complex load vector - input-complex double precision.

- Eigenvector - output- complex double precision.

- GIN_ buffer.

Matrix control block for [U] - integer - input.

Order of problem - integer - input.

4.59.8.19 Subroutine Name: CDETM3

I. Entry Point: CDETM3

2. Purpose: To rescale a scaled complex number.

3. Calling Sequence: CALL CDETM3(DI,D2,1DI)

Let Dl, D2, IDl be the input values of Dl, D2, IDl. On return from CDETM3

(DI,D2) x lOIDI : (D-i-,_)x lO_'_'T,

and

l.O _ I(DI,D2)I

where all Di's are double precision.

4.59.8.20 Subroutine Name: CDIVID

I.

3.

lO.0 ,

Entry Point: CDIVID

Purpose: To divide a complex vector by a complex number.

Calling Sequence: CALL CDIVID (DIV,V,VI,NV)

where V is a complex D.P. vector of length NV to be divided by DIV and the answer put

in Vl.

4.59-14 (8/I/72)

(20)

(21)

FUNCTIONALMODULECEAD(COMPLEXEIGENVALUEANALYSIS- DISPLACEMENT)

4.59.9 Design Requirements

Open core is defined at /CEADIX/ to process EED. Open core is defined at /CEADAI/ for use

by CEADIA.

4.59-15 (811/72)

FUNCTIONAL MODULE VDR (VECTOR DATA RECOVERY)

4.60 FUNCTIONAL MODULE VDR (VECTOR DATA RECOVERY)

4.60.1 Entry Point : VDR

4.60.2 Purpose

VDR formats data blocks f o r i n p u t t o the Output F i l e Processor (gFP) and XY p l o t

(XYPLBT) modules t o provide a c a p a b i l i t y f o r output o f vectors i n the so lu t i on set.

4.60.3 DMAP C a l l i n g Sequence

VDR CASECC,EQDYN ,USETD,UDV aPP ,XYCDB ,PNL/@UDVl 90PNLl/

TRANREsP) FREQRESP / C 9N (DI'E~T) M~DAL /V,N,S@RTZ/V aN,BUTPUT/V ,N,SDR2/V,N9FMflDE 6
CEIGN

4.60.4 Inpu t Data Blocks

CASECC - Case Control Data Table.

EQDYN - Equivalence between ex terna l and i n t e r n a l number - Dynamics.

USETD - Displacement s e t d e f i n i t i o n s t a b l e - Dynamics.

UDV - P a r t i t i o n o f Displacement Vector.

PP - Dynamic Load Vector.

XYCDB - XY Control Data Block.

PNL - Non-Linear Load Vector.

Notes :

1. CASECC, EQDYN and USETD may no t be purged.

2. PP may be purged on ly i f UDV i s purged.

3. PNL and XYCDB may be purged.

4.60.5 Output Data Blocks

gUDV1 - Output Displacement Requests - So lu t i on set .

BPNLl - Output Non-Linear Load Requests - Solu t ion set.

MODULEFUNCTIONALDESCRIPTIONS

Note: Output data blocks may be purged.

4.60.6 Parameters

The first parameter indicates a Rigid Format and must be one of the three names shown

above. The second parameter indicates a direct or modal formulation and must be one of the

two names shown above.

S_RT2 -

_UTPUT -

SDR2

FM_DE

Output-integer-no default.

Output-integer-no default.

-l otherwise.

Output-integer-no default. +l if any requests for output in the physical set

are found in CASECC or XYCDB, -l otherwise.

Input-integer-no default. If a modal formulation, FM_DE = mode number of the

first mode. FM_DE is not used in a direct formulation.

4.60.7 Method

+I if any S_RT2 output is requested, -I otherwise.

+l if any output in the solution set is requested,

4.60.7.1 General

VDR is the main control program for the module. VDRA is called to analyze the Case

Control (CASECC) and XYCDB data blocks. If any requests for solution set output are found,

VDRB is called to assemble the OUDVl output data block for processing by the _FP. If the

problem is a transient response problem, VDRB is called a second time to process any requests

for non-linear load output.

4.60.7.2 Analysis of the Case Control and XYCDB Data Blocks

VDRA attempts to open the XYCDB data block. If it is purged, a return is given to VDR.

Otherwise, the header record and first data record of XYCDB are skipped, and data applying to

all subcases are read from the second data record. If no such data exist, a dummy master

is created. Otherwise, the master data are reduced to a list of unique pairs. If only master

data exist, flags are set appropriately.

For each record in the Case Control data block the following processing occurs:

4.60-2

FUNCTIONALMODULEVDR(VECTORDATARECOVERY)

I. Therecordis readinto core. If noXYCDBsubcasecorrespondsto the CaseControl

subcase,pointersareset to themasterdata. Otherwise,themasterdataandappropriate

XYCDBsubcased_taaremergedandreducedto uniquepairs.

2. Foreachrequestfor solutionset outputin XYCDB,the correspondingrequestin Case

Controlis examined.If no requestis presentin CaseControl, the XYCDBrequestis

reducedto a set in CaseControlfor_t, anda requestfor the set is turnedon in Case

Control. If the CaseControlset is "ALL",nofurther action is taken. If the Case

Controlrequestis a set, the set is mergedwith the XYCDBset, andthe request

altered to reflect the newset (unlessall points in the XYCDBset werealreadyin the

CaseControlset). A flag is set if anynewrequestsare formed.

3. Whenall requestsfor the currentCaseControlrecordhavebeenanalyzed,the

record(asmodified)is written ona scratchfile.

4. Whenall CaseControlrecordshavebeenread, the GIN_file namefor the CaseControl

datablockis switchedto the scratchfile (unlessnomodificationsweremadeto Case

Control).

4.60.7.3 Preparationof SolutionSetOutput

Theoperationsof VDRBare dependenton the RigidFormatbeingexecuted.VDRBoperates

in all six of the dynamicsRigidFormats.Theinitial operationsin VDRBproceedasfollows:

I. Fora direct solution, or a modalsolutionwith extra points, the secondrecordof EQDYN

is read into core. USETD is read into core.

2. If the problem is a direct solution, each entry in EQDYN is processed. The scalar

index value (the 2nd word of each entry) is replaced by the scalar index value in the

solution set plus a code indicating which components of the point are in the solution

set.

3. If the problem is a modal solution with extra points, the scalar index of each extra

point in EQDYN is replaced with a scalar index in the solution set. The scalar indices of

all other points are replaced with zero.

4. If the problem is a complex eigenvalue problem, a list of mode nu_ers and complex

eigenvalues is read into core from the CLAPLAdata block.

4.60-3

MODULE FUNCTIONAL DESCRIPTIONS

5. If the problem is a transient response problem, a list of times is read into core

from the PP data block.

6. If the problem is a frequency response problem, a list of frequencies is read into

core from the PP data block.

7. The header record on the input file is skipped, and various parameters are

initialized for the overall processing.

A record on the Case Control data block is read. The output request is examined. If

the output is defined in terms of a set, pointers to the set definition are computed. The

vector is unpacked in core (unless the vector is already in core in the case of velocities and

accelerations for frequency problems).

Information is assembled to write the identification record on the output data block

as follows.

I. For complex eigenvalues, the mode number and eigenvalue are picked up from the list

in core.

2. For frequency response, the frequency is picked up from the list in core. A

comparison with the _FREQ selection in Case Control is made. If the current frequency

is not marked for output, the remainder of the calculations for the current vector are

skipped.

3. For a transient problem, the time is picked up.

The identification record is written. Entries are written in the data record according to

the request. The modified EQDYN table in core is used to pick up points in the vector to be

output. Conversion to magnitude and phase is made if requested.

When all points in the current request have been processed, post processing occurs

depending on the problem type as follows:

I. For complex eigenvalues, a pointer is updated to the next mode number and eigenvalue.

If all eigenvectors have not been processed, the steps above are repeated. Otherwise,

terminal processing is initiated.

4.60-4

FUNCTIONAL MODULE VDR (VECTOR DATA RECOVERY)

2. For frequency response, if the vector just processed was a displacement vector,

the corresponding velocity vector is determined by differentiating with respect to time.

{v} = iw {u}. (1)

Similarly, if the vector just processed was a velocity vector, the corresponding

acceleration vector is formed by differentiating with respect to time:

{a} = iw {v}. (2)

If all vectors have not been processed, the steps above are repeated. Otherwise,

terminal processing is initiated.

3. For transient response, pointers are updated so that the vectors will be processed in

the order a) displacement, b) velocity, and c) acceleration. If all vectors have not been

processed, the steps above are repeated. Otherwise, terminal processing is initiated.

The terminal processing consists of closing all files, writing a trailer on the

output file and exiting.

4.60.8 Subroutines

4.60.8.1 Subroutine Name: VDR

I. Entry Point: VDR

2. Purpose: Main control program for the module.

3. Calling Sequence: CALL VOR

4.60.8.2 Subroutine Name: VDRA

I. Entry Point: VDRA

2. Purpose: To analyze the output requests in the Case Control and XYCDB data blocks.

3. Ca;ling Sequence: CALL VDRA

4.60-5

MODULEFUNCTIONALDESCRIPTIONS

4.60.8.3 SubroutineName:VDRB

_UTFL

IREQ

I. Entry Point: VDRB

2. Purpose: Tc process requests for solution set output and assemble the output

data block.

3. Calling Sequence: CALL VDRB (INFIL,OUTFL,IREQ)

INFIL - GINO file name of the data block containing vectors to be output in the

solution set.

- GINO file name of the data block where solution set output will be written.

Word position in the Case Control record where solution set output request is

defined.

4.60.9 Design Requirements

4.60.9.1 Allocation of Core Storage

The maximum storage requirements for the module are in VDRB.

storage is as follows:

l

ILIST

ICC+I

IVEC

BUF3

BUF2

BUFI

A general picture of core

C@MMON/VDRCOR/Z(1)

EQDYNTable

List of eigenvalues,
frequencies or times

Case Control record

Unpacked Vector

Buffer for input file

Buffer for output file

Buffer for Case
Control

2 words per entry, one entry for each
point in the problem.

l, 2 or 3 words per entry, one entry for
each eigenvalue, frequency or time.

One word for each degree of freedom in the
solution set. (two words if complex).

4.60-6

FUNCTIONALMODULEVDR(VECTORDATARECOVERY)

4.60.9.2 Environment

The Block Data program VDRBD initializes /VDRC_M/ with GIN_ file names, data defining

position of parameters in a Case Control record, data definirg rigid formats and problem

types, and miscellaneous data. It must be in core when VDR is executed.

The module VDR is designed to be executed as one overlay segment. Open core is defined

by /VDRC_R/. Two scratch files are used.

4.60-7

FUNCTIONALMODULEFRRD(FREQUENCY RESPONSE - DISPLACEMENT APPROACH)

4.61 FUNCTIONAL MODULE FRRD (FREQUENCY RESPONSE - DISPLACEMENT APPROACH)

4.61.1 Entry Point: FRRD

4.61.2

To solve the matrix equation

[-_ [M]

at a given set of frequencies _i

A _.3 DMAP _a,,,_-_ngSequence_.Ul

FRRD

+ i_ [B] + [K]] [X] = [P(_i)]

and loads P (which may be functions of _i).

4.61.4

CASECC - Case Control Data table.

USETD - Displacement set definitions table dynamics.

DLT - Dynamic Loads Table.

FRL - Frequency Response List.

GMD - Multipoint constraint transformation matrix - dynamics.

GgD - Omitted coordinate transformation matrix - dynamics.

KHH - Modal stiffness matrix - h set.

BHH - Modal damping matrix - h set.

MHH - Modal mass matrix - h set.

PHIDH - Transformation matrix from d set to modal coordinates.

DIT - Direct Input Tables.

Notes: I. CASECC cannot be purged.

2. USETD cannot be purged.

3. DLT cannot be purged.

4. FRL cannot be purged.

5. GMD cannot be purged if MPCFI _ O.

6. G_D cannot be purged if _MIT _ O.

(i)

ASEc,USETD,DLT,FRL,GMD,G_D,_H,BHH'MHH,PHIDH,D_T/UHv,PS,PD,PP/V,N,APP/V,N,F_/

V,N,LUSETDIV,N,MPCFI/V,N,SINGLE/V,N,_MIT/V,N,N_NCUP/V,N,FRQSET/C,Y,DEC_M_PT:I $

Input Data Blocks

4.61-I (8/I/72)

4.61.5

MODULE FUNCTIONAL DESCRIPTIONS

7. PHIDH cannot be purged if F_RM = MODAL.

8. DIT cannot be purged if a load uses tables.

Output Data Blocks

UHV -

PS

PD

pp

Notes :

4.61.6

Displacement vectors.

Partition of load vector matrix giving loads in s set.

Load vectors - d set.

Load vectors - p set.

I. UHV, PD, and PP cannot be purged.

2. PS cannot be purged if SINGLE > O.

Parameters

APP

FORM

LUSETD

MPCFI

SINGLE

OMIT

N_NCUP

FRQSET

DECOMOPT -

4.61.7 Method

Input-BCD-no default.

Input-BCD-no default.

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

FORM = MODAL

Output-integer-no default.

list from CASECC.

Input-integer-default = I.

I.
2.
3.

4.

APP should be set equal to DISP.

FORM = MODAL implies a modal solution should be used.

LUSETD indicates length of p set.

MPCFI _ 0 implies multipoint constraints present.

SINGLE _ 0 implies single-point constraints present.

OMIT _ 0 implies omitted coordinates present.

NONCUP = -I implies noncoupled solution if

FRQSET is the set id of the selected frequency

Selects type of arithmetic for equation solution.

Indicates double precision with pivoting.
Indicates double precision without pivoting.

Not used at present.
Indicates sinQle precision without pivotinQ.

4.61.7.1 Overview of the Method

The Frequency Response module for the displacement approach assembles a frequency-dependent

load vector and solves for the steady-state, frequency response, displacement vectors. Various

4.61-2 (8/I/72)

FUNCTIONAL MODULEFRRD (FREQUENCYRESPONSE- DISPLACEMENTAPPROACH)

load sets are defined as functions of frequency. Combinations of these sets are used with the

various specified frequencies. Load vectors for each frequency are formed and reduced to loads

on the proper degree of freedom. The solutions for both direct formulation and coupled modal

formulation are identical except that different matrices are used. The solution involves a

triangular decomposition and back substitution using the type of arithmetic selected by the

parameter DEC_M_PT for each frequency.

analytic equations.

4.61.7.2

I.

The solutions for the uncoupled modal formulation are

Logical Phases

The load vectors for each desired frequency are assembled from the DLT data block.

4.61.7.3

The DL_AD section of the DLT tells which load sets to use and what scale factors to use

in combining the load sets. The data for each load set are given in the RL_AD section

of the DLT. This work is done in subroutine FRRDIA.

2. The total load vectors are partitioned and manipulated to produce load vectors

on the solution coordinates. This work is done in subroutine FRRDIB.

3. The matrix equation for displacements is now solved for each load combination

and each frequency. The overall dynamic matrix is formed. The matrix is decomposed,

and the displacements are formed by back substitution using the various loads. If the

formulation is an uncoupled modal system, the displacements are calculated directly.

This work is done by subroutines FRRDIC and FRRDID or FRRDIF.

4. The solution vectors are then resorted into load-frequency order. This work is

done by subroutine FRRDIE.

Algorithms

I. Assembly of Load Vectors:

The frequency set id is extracted from CASECC. This frequency set is placed in

core from the FRL and converted from radians to frequency. These frequencies are output

into the header of PP for later output identification. The load id is read from CASECC,

found in DLT, and a table is constructed giving a simple id and a scale factor for each

component. The DLT data are read for each simple id, and a list of the required tables is

extracted. Core is allocated to hold as many load vectors as possible up to the number of

4.61-3 {811182)

FUNCTIONALMODULEFRRD(FREQUENCYRESPONSE- DISPLACEMENTAPPROACH)

frequencies. If tables arepresent,theyare initialized andevaluatedfor all frequencies

in core. TheDLTis read,andtwotypesof loadsareconstructed:

l) RL_ADI

P(f) : A [C (f) + iD(f)] e i(O-2_fT), (2)

4.61-3a(8/I/72)

2) RL_AD2

MODULEFUNCTIONALDESCRIPTIONS

P(f) : A B(f) ei(@(f) + O-2_fT) (3)

whereA, B, C, D, O,zand@areuserinput constantsor tables.

If all frequenciescannotbeevaluatedat once,additionalpassesthroughthe DLTaremade

until all areevaluated. If additional subcasesexist in CASECC,the abovestepsare

repeatedfor eachload.

2. Manipulationof LoadVectors:

Thevectorsproducedin the previoussectionsare relatedto the p set. Theyare

reducedbythe followingstepsusingdatablocksUSETD,GMDandGOD.

If MPCFI> O:

3.

If SINGLE > O:

{Pne}

Pne _ (4)
{Pp}--">l m-'_I ,

= {P-ne} + [Gmd]T {Pm} . (5)

{Ps} is output on data block PS.

If _MIT > O:

{Pd} is output on PD.

If FORM = M@DAL:

{Pd} : {'pd} + [Gdo]T {Po },

{Ph} : [@dhIT {Pd}.

Solution Phase:

For a direct formulation the equation to be solved is:

[_ 2 [Mdd] + i_ [Bdd] + [Kdd]] {Ud} =

(7)

(8)

(9)

{Pd(_)} . (IO)

4.61-4

FUNCTIONAL_DULEFRRD(FREQUENCYRESPONSE- DISPLACEMENTAPPROACH)

For a coupledmodalformulationthe equationto besolvedis:

[_2 [Mhh] + i_[Bhh] + [Khh]] {Uh} = {pn(_)}. (II)

Theleft handmatrix is generatedby twocalls to ADDanddecomposed.Thenormalmatrix

decompositionchecksare relaxedin thesesolutions. It is expectedthat the matrices

will not passthe triangular deco_ositionat certain frequencies.Thesolutionwill

proceed,andonly a warningwill be issued. Theloadsat the givenfrequencyare collected

fromthe loadfile andfed to GFBSfor a forwardbackwardsubstitutionsolution. If the

decompositionfailed, a zerovectorwill result.

Foroneuncoupledmodalformulationthe equationsto besolvedare;

{ Pi(_) }: . (12)
{_i} _mim2 + ibim + ki

With zero damping the uncoupled modal formulation may produce division by small

numbers. This fact is noted and the solution proceeds,

4. Order Phase:

Except for the uncoupled modal approach it may be necessary to reorder the solutions

from a frequency / load sort to a load / frequency sort.

4.61.8 Subroutines

Utility subroutines PRETAB,TAB,CALCV,SSG2B,SSG2A,SSG2C,CDC_MP,SCDCMP,CSPSDC,CXFBS and

GFBS are used. See subroutine descriptions, Section 3 for details.

4.61.8.1 Subroutine Name: FRRDIA

I. Entry Point: FRRDIA

2. Purpose: To assemble the user selected loads.

3. Calling Sequence: CALL FRRDIA (DLT,FRL,CASECC,DIT,PP,LUSETD,NFREQ,NL_AD,FRQSET)

DLT,FRL,CASECC,DIT,PP are GIN_ file nu_ers of their respective data blocks - integer -

input.

LUSETD - Length of p set - integer - input.

NFREQ - Nu_er of frequencies in selected frequency set - integer - output.

4.61-5 (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

NL_AD- Numberof loads(recordsin CASECC)selected- integer- output.

FRQSET- Setid of selectedfrequencyset - integer- output.

4.61.8.2 SubroutineName:FRRDIB

I. EntryPoint: FRRDIB

2. Purpose:Toreduceloadsfromthe p to the d (or h) set.

3. CallingSequence:CALLFRRDIB(pp,USETD,GMD,G_D,MULTI,SINGLE,_MIT,M_DAL,Pt_IDH,

pD,PS,PH,SCRI,SCR2,SCR3,SCR4)

PP,USETD,GMD,G_D,PHIDH,PD,PS,PHareGIN_file numbersof their respectivedata

blocks- integer- input.

MULTI -

SINGLE-

_MIT -

MODAL-

SCRI.... ,.
SCR4

MULTI> 0 impliesm'sarepresent- integer- input.

SINGLE>0 impliess's are present- integer- input.

OMIT_0 implieso's arepresent- integer - input.

M_DAL= MODAimpliesa modalformulation- BCD- input.

GIN_file numbersof 4 scratchfiles - integer- input.

4.61.8.3 SubroutineName:FRRDIC

I. EntryPoint: FRRDIC

2. Purpose:Toformanddecompose"left" handside of the frequencyequation.

3. CallingSequence:CALLFRRDIC(FRL,FRQSET,MDD,BDD,KDD,I,ULL,LLL,SCRI,SCR2,SCR3,

SCR4,IG_D)

FRL,MDD,BDD,KDD,ULL,LLL,SCRI-4areGIPI_file numbersof their respectivedatablocks-

integer- input.

FRQSET- Setid of selectedfrequencyset - integer - output.

I - Currentfrequencycounter- integer- input.

IG_D - IGO_D= l impliesa singularmatrix - integer - output.

4.61.8.4 SubroutineName:FRRDID

I. EntryPoint: FRRDID

2. Purpose:Tosolvefor displacementsgivendecompositionfactors andloads.

4.61-6

FUNCTIONALMODULE FRRD (FREQUENCY RESPONSE - DISPLACEMENT APPROACH)

3. Calling Sequence: CALL FRRDID (PD,ULL,LLL,SCRI,SCR2,UDVP,I,NL_AD,IG_D,NFREQ)

PD,ULL,LLL,UDVP,SCRI,SCR2 are GIN_ file numbers of their respective data blocks -

integer - input.

I

NL_AD

IG_D

NFREQ

- Current frequency count - integer - input.

- Number of loads - integer - input.

- IG_D = l implies a singular matrix - integer - input.

- Total number of frequencies - integer - input.

4.61.8.5 Subroutine Name: FRRDIE

I.

2.

3.

UDVP

UDV

NLgAD

I

Entry Point: FRRD!E

Purpose: To reorder displacements if necessary.

Calling Sequence: CALL FRRDIE (UDVP,UDV,NL_AD,I)

- GIN_ file number of displacements sorted by frequency/load - integer - input.

- GINg file number of displacements sorted by load/frequency - integer - input.

- Number of loads - integer - input.

- Number of frequencies solved.

4.61.8.6 Subroutine Name: FRRDIF

I. Entry Point: FRRDIF

2. Purpose: To solve the uncoupled modal equations.

3. Calling Sequence: CALL FRRDIF (MHH,BHH,KHH,FRL,FRQSET,NLCAD,NFREQ,PH,UHV)

MHH,BHH,KHH,FRL,PH,UHV are GIN¢ file numbers of their respective data blocks. -

integer - input.

FRQSET - Selected frequency set id-integer - input.

NFREQ - Number cf frequencies in FRQSET - integer - input.

NL_AD Number of loads (Subcases in current execution) - integer - input.

4.61.9 Design Requirements

Eight scratch files are used by FRRD.

Open core at /FRRDAI/ is used as follows:

4.61-7

MODULEFUNCTIONALDESCRIPTIONS

COMM_N/FRRDAI/
FrequencyList

ID1

Scalel

ID2

Scale2

TableID's 1

}

F (f) 1

Buffer

NFREQ

ID, scale for all members of a DL_AD card

NTABL

2* LUSETD

2* LUSETD

NTABL

As many loads as will fit

up to all frequencies.

Open core at /FRRDBI/, /FRRDCI/, /FRRDDI/ are used by the matrix routines•

Open core at/FRRDFI/ is used as follows:

C(_MM_N/FRRDF1/

Frequency List 1

UHV

PH

NFREQ

h set size

h set size

h set size

2 GIN_ Buffers

4.61.10 Diagnostic Messages

Module FRRD may issue the following diagnostic messages:

3005, 3008 and 3045.

4.61-8

4.62

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - SORT1 TO SORT2 PROCESSOR)

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - SORTI to S_RT2 PROCESSOR)

4.62.1 Entry Point: SDR3

4.62.2 Purpose

_o transpose (perform SORT2) data blocks containing data prepared for output in the form of

ELEMENT-ID-SETS or P_INT-ID-SETS versus TIME-STEP or FREQUENCY-STEP to data prepared for output

in the form of TIME-STEP-SETS or FREQUENCY-STEP-SETS versus ELEMENT-ID or P_INT-ID.

4.62.2.1 Example of S_RTI and SORT2 Output

Below is a table of _FP printed output of SDR3 input (S_RTI) and output (S_RT2) data blocks.

SDR3 Input Data Block Printed (SBRTI)

TIME = l.O DIS P LA C E ME NT S

POINT-ID Tl T2 T3 Rl R2 R3

l 0.0 4.53 0.0 0.0 0.0 0.0
2 0.0 5.12 0.0 0.0 0.0 0.0

TIME = 2.0 D I S P L ACE ME NT S

POINT-ID Tl T2 T3 Rl R2 R3

l 0.0 4.83 0.0 0.0 0.0 0.0
2 0.0 5.53 0.0 0.0 0.0 0.0

TIME = 3.0 D I S P L A C E M E NT S

POINT-ID Tl T2 T3 Rl R2 R3

l 0.0 6.84 0.0 0.0 0.0 0.0
2 0.0 7.96 0.0 0.0 0.0 0.0

SDR3 Output Data Block Printed (SORT2)

POI_-ID = l D I S P L A C E ME NT S

TIME Tl T2 T3 Rl R2 R3

l.O 0.0 4.53 0.0 0.0 0.0 0.0
2.0 0.0 4.83 0.0 0.0 0.0 0.0
3.0 0.0 6.84 0.0 O.O 0.0 O.O

POINT-ID = 2 D I S P L AC E M E N T S

TIME Tl T2 T3 Rl R2 R3

l.O 0.0 5.12 0.0 0.0 0.0 0.0
2.0 0.0 5.53 O.O 0.0 0.0 0.0
3.0 0.0 7.96 0.0 0.0 0.0 0.0

4.62-I

MODULE FUNCTIONAL DESCRIPTIONS

4.62.3 DMAP Calling Sequence

SDR3 INI,IN2,1N3,1N4,1N5,1N6/@UTI,_UT2,_UT3,_UT4,_UT5,_UT6/ $

4.62.4 Input Data Blocks

One to six data blocks in any order desired. Input data blocks to SDR3 which are purged

are ignored.

4.62.5 Output Data Blocks

One to six data blocks in corresponding order to that of the input data blocks. If SBRT2

is to be performed, there must be an available output data block for the corresponding inout data

block (Non-Fatal Error if this condition is not met).

4.62.6 Parameters

None

4.62.7 Method

4.62.7.1 Input and Output Data Block Record Arrangements

Both tile input and output data blocks of SDR3 have the following format:

4.62-2

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - SJ_RTITO SI_RT2PROCESSOR)

Group l

Group M

Header

ID

DATA

ID

DATA

ID

DATA

ID

DATA

ID

DATA

I Record 0

Record l

I Record 2

I Record 3

;}Record 4

I Record N -l

I Record N (an even number)

4.62-3

MODULE FUNCTIONAL DESCRIPTIONS

4.62.7.2 Description of a Group

I. An input (SORT1) data block Group and an output (S_RT2) data block Group are given in the

following figures:

Theoretical Input Group

(S_RTI)

One Input Group <

ID

Data Type 1

DATA

Entries 1 thru Ki

ID

Data Type J

DATA

Entries 1 thru

ID

Data Type 1

DATA

Entries 1 thru Kz

ID

Data Type J

DATA

Entries 1 thru

Record pair for
Data Type I.

Record pair for
Data Type J.

Record pair for
Data Type I.

Record pair for
Data Type J.

Base Set for

Value I.

Base Set for

>Value I.

4,62-4

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - S_RTI TO SORT2 PROCESSOR)

Theoretical Output Group

(SORT2)

One Output Group

ID Record

Data Type l

DATA Record

Entries I thru I

ID Record

Data Type l

DATA Record

Entries l thru I

ID Record

Data Type J

DATA Record

Entries 1 thru I

ID Record

Data Type J

DATA Record

Entries l thru I

Record pair for
P_INT or ELEMENT l

Record pair for
POINT or ELEMENT KI

Record pair for

POINT or ELEMENT Ij

Record pair for

POINT or ELEMENT Kj

S_RT2 Collection
of Data Type I.

S_RT2 Collection
of Data Type J.

4.62-5

MODULE FUNCTIONAL DESCRIPTIONS

2. In the above figures each Group is independent of any other Group so far as SDR3 need

be concerned.

3. A Group is defined as a collection of successive records belonging to the same subcase.

4. An ID-Record is of a fixed size equal to 146 words.

5. A DATA-Record contains multiple Entries with each Entry being of a length in words

specified within the immediately preceding ID-Record.

6. I = The number of Values (FREQUENCIES or TIMES) present in the Group.

7. A Base Set is a sub-Group of the Group containing data records for one particular Value.

8. J = The number of different Data Types (DISPLACEMENTS, VELOCITIES, etc.) within a Base Set.

9. Kj : The number of Entries for Data Type i.

I0. Respective records of any two Base Sets within an input data block Group are of the

same size.

II. Respective Entries within respective DATA Records of all Base Sets of an input data

block Group begin with the same ELEMENT-ID or P_INT-ID.

12. Most input data blocks will contain only one Group having but one Data Type. There is

normally more than one Base Set within any Group.

13. A pictoral representation of a S(_RTI to SORT2 process is given on the next page using

the following data:

Values = 3 time steps (I.0, 2.0, 3.0)

_I-Displacements (3 Entries/Value - points 5, 8 and 9)

Data Types :I_ Velocities (2 Entries/Value - points 3 and 4)Accelerations (2 Entries/Value - points 1 and 4)

4.62-6

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - SgRTI TO SCRT2 PROCESSOR)

Base
Set

Base
Set

Base
Set

Input Data Block

S_RTI Group

t: 1.0

S_RTI to S_RT2
Process

Output Data Block

S_RT2 Group

DISPLACEMENTS ID

Pt. 5 Record
Pt 9 Entr

DATA
Record

t = l.0 Entr

Pt.

t = !.O

Pt. 9

t = 2.0
Entr

Entr t = 3.0

Pt. 3

t = 2.0

_tr

t = 2.0

_.r

t=3.O

t : 3.0

t = 3.0

Pt. ntr,

Pt. 4

Pt. l

Entr

Pt. 4

4.62-7

MODULEFUNCTIONALDESCRIPTIONS

4.62.7.3 Physical Data Processing (S_RTI to S_RT2)

All emphasis is placed on the Group, and thus in performing S@RT2 a Group pointer always

points to the first record of the current Group being processed.

Each Group is processed and completed successively until all Groups have been processed.

For each Group a loop of J passes is executed. During the jth pass of this loop, the jth Data

Type (note 4.62.7.2) present of the Base Sets will be collected and transposed. The transpose

consists of determining how many Entries are present for the current Data Type and then dividing

the available core into that many Regions. The Entries of each DATA record for the jth Data Type

are distributed in Entry order, one each, to the Regions. At the time each Entry is distributed

to a Region, the Entry's first word (P_INT-ID or ELEMENT-ID) is replaced by the Value (FREQUENCY

or TIME) in the ID-Record associated with the DATA-Record from which the Entry has come. At the

conclusion of each pass of this loop, output to the data block can proceed. For each Region an

ID-Record is written. This ID-Record is a copy of the input data block ID-Record in the first

Base Set for the jth Data Type, having had the Value (FREQUENCY or TIME) replaced with the P_INT-

ID or ELEMENT-ID of the respective Region. The filled portion of the Region is then output as the

DATA-Record.

4.62.7.4 Spill Logic

If during the Entry distribution the Regions can hold no more Entries, spill to scratch files

is performed.

required.

Layer I

A Layer of records is written, one record for each Region, each time spill is

Scratch l

Region l

Region N+l

Region K-l

Scratch 2

Regi on 2

Region K

Scratch N

Regi on N

Region K-2

4.62-8

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - S_RTI TO S_RT2 PROCESSOR)

At the output stage, if spill to the scratch files has occurred, the Regions in the scratch

files are output before the in-core Regions.

4.62.8 Subroutines

4.62.8.1 Subroutine Name: SDR3A

I.

2.

3.

4.62.9

Entry Point: SDR3A

Purpose: To perform all SORT2 operations when called by the driver routine SDR3.

Calling Sequence: CALL SDR3A (OFPFIL)

BFPFIL - An array of six words, one for each input data block, each of which is set

to zero before the CALL and then reset by SDR3A with a traceback positive

integer in the event an error for its respective data block occurred.

Design Requirements

I. The design requires that the largest DATA-Record fit in core. If a problem is outputting

so many ELEMENT-ID or P_INT-ID Entries for a particular FREQUENCY or TIME that core is

insufficient, then more subcases in conjunction with output request sets are recommended.

2. C_MM@NISDR3ZZIZ(1)

This common block defines open core for the SDR3 module.

3. SDR3 will open all its scratch files (8).

4.62.10 Diagnostic Messaqes

All errors within SDR3 are considered non-fatal-User Warning type errors. Any error

resulting in termination of the S)RT2 process results in the setting of an SDR3 traceback number,

an appropriate message, and a call to the @FP (Output File Processor) which in turn will output

the data block in S_RTI format. If BFP is unable to output the data block it in turn will call

the TABPRT routine, and the data block will be printed.

4.62-9 (8/I/72)

4.63

4.63.1

4.63.2

FUNCTIONALMODULEXYTRAN(XY- OUTPUTDATATRANSLATOR)

FUNCTIONALMODULEXYTRAN(XY- OUTPUTDATATRANSLATOR)

EntrX Point: XYTRAN

Purpose

To read the first record of the XYCDB data block (prepared by subroutine IFPIXY of

Executive module IFPI); to set xy-output parameters from the serial specifications of this

record; to interpret the user curve requests; to locate in the XYTRAN input data blocks (2

thru 6) the data sets containing the requested curve data; to prepare summary and xy-coordinate

data for the requested curves and output them to the system output printer and punch units; and to

prepare xy-coordinate data and output them to the XYTRAN output data block for direct plotting by

the XYPL_T module of those curve requests specified to be plotted.

4.63.3 DMAP Callin_ Sequences

4.63.3.1 Frequency Response - Direct Formulation. (Rigid Format 8)

I. Vector data recovery output.

XYTRAN XYCDB,_UDVC2 ,,,,/XYPLTFA/C,N,FREQ/C,N,DSET/V,N,PFILE/V,N,CARDN_ $

2. Stress data recovery output.

XYTR_ XYCDB,_PPC2,_QPC2,_UPVC2,_ESC2,_EFC2/XYPLTF/C,N,FREQ/C,N,PSET/v,N,PFILE/V,N,CARDN_ $

3. Random response output.

XYTRA,'_ XYCDB,PSDF,AUT_,,,/XYPLTR/C,N,RAND/C,N,PSET/V,N,PFILE/V,N,CARDN_ $

4.63.3.2 Transient Response - Direct Formulation. (Rigid Format g)

I. Vector data recovery output.

XYTRAN XYCDB,_UDV2,_PNL2,,,/XYPLTTA/C,N,TRAN/C,N,DSET/V,N,PFILE/V,N,CARDN_ $

2. Stress data recovery output.

XYTRAN XYCDB,OPP2,_QP2,@UPV2,_ES2,_EF2/XYPLTT/C,N,TRAN/C,N,PSET/V,N,PFILE/V,N,CARDN_ $

4.63.3.3

I.

XYTRAN

Frequency Response - Modal Formulation. (Rigid Format II)

Vector data recovery output.

XYCDB,_UHVC2,,,,/XYPLTFA/C,N,FREQ/C,N,HSET/V,N,PFILE/V,N,CARDN_ $

4.63-I

MODULE FUNCTIONAL DESCRIPTIONS

2. Stress data recovery output.

XYTRAN XYCDB,OPPC2,_QPC2,0UPVC2,_ESC2,0EFC2/XYPLTF/C,N,FREQ/C,N,PSET/V,N,PFILE/

V,N,CARDNO $

3. Random response output.

XYTRAN XYCDB,PSDF,AUT@,,,/XYPLTR/C,N,RAND/C,N,PSET/V,N,PFILE/V,N,CARDNO $

4.63.3.4 Transient Response -Modal Formulation. (Rigid Format 12)

I. Vector data recovery output.

XYTRAN XYCDB,OUHV2,_PNL2,,,/XYPLTTA/C,N,TRAN/C,N,HSET/V,N,PFILE/V,N,CARDNO $

2. Stress data recovery output.

XYTRAN XYCDB,@PP2,@QP2,_UPV2,0ES2,_EF2/XYPLTT/C,N,TRAN/C,N,PSET/V,N,PFILE/V,N,CARDN_

4.63.4 Input Data Blocks

XYCDB

_UDVC2

_PPC2

_QPC2

_UPVC2

_ESC2

_EFC2

PSDF

AUTO

_UDV2

OPNL2

OPP2

_QP2

_UPV2

_ES2

_EF2

OUHVC2

OUHV2

- XY Output Control Data Block.

- Output displacement vector requests (solution set, S_RT2, complex).

- Output load vector requests (solution set, SORT2, complex).

- Output forces of single-point constraint requests (solution set, SORT2, complex).

- Output displacement vector requests (p set, SORT2, complex).

- Output element stress requests (S@RT2, complex).

- Output element force requests (SORT2, complex).

- Power Spectral Density Table.

Autocorrelation function table.

Output displacement vector requests (solution set, SORT2, real).

Output

Output

Output

Output

Output

Output

Output

Output

nonlinear load requests (solution set, SORT2, real).

load vector requests (p set, SORT2, real).

forces of single-point constraint (p set, S_RT2, real).

displacement vector requests (p set, SORT2, real).

element stress requests (SORT2, real).

element force requests (SORT2, real).

displacement vector requests (solution set, SORT2, complex).

displacement vector requests (solution set, SORT2, real).

4.63-2

FUNCTIONAL MODULE XYTRAN (XY - OUTPUT DATA TRANSLATOR)

4.63.5 Output Data Blocks

XYPLTFA - 1
XYPLTF -

XYPLTR - 1
XYPLTTA -

XYPLTT - i

XY-Plot output requests prepared by XYTRAN for direct plotting by XYPLgT.

4.63.6 Parameters

CARDH(_

PFILE

FREQ

TRAN

RAHD

DSET

PSET

HSET

- Input and output-integer-default value = O. CARDN_ is incremented by one and

punched in columns 73-80 of each card punched by XYTRAN.

- Input and output-integer-default value = O. PFILE is incremented by one for

each frame XYTRAN defines for output by XYPL_T.

- Input-BCD-2-word-constant distinguishes the problem as frequency response.

- Input-BCD 2-word-constant distinguishes the problem as transient response.

- Input-BCD 2-word-constant distinguishes the problem as random response.

Input-BCD 2-word-constant distinguishes the input vector as the d set.

Input-BCD 2-word-constant distinguishes the input vector as the p set.

Input-BCD 2-word-constant distinguishes the input vector as the h set.

4.63-3

MODULEFUNCTIONALDESCRIPTIONS

4.63.7 Method

4.63.7.1 The following diagram illustrates the process of serially reading through the XYCDB

data block's first record and performing the XYTRAN data processing.

ENTER

i,d

Read l BCD word

[
word any of | Read the next

the following? Yes _i 32 words into
"XTIT,YTIT, v i the respective

YTTI,YBTI, m title array.TCUR"

L
v

r
Is BCD | Read 1 word

word one of Yes J and set
the recognized

_eValu e appropriate

rbs v I value.

b..
r

Is BCD i Read data as
word "XY"
indicating Yes dictated by

command data _ phase-l.Perform
is next phase-ll

?

I
_IBCD word is not recognized

I write warning message.

Figure I. Flowchart for reading the first record of XYCDB

w

4.63-4

FUNCTIONALMODULEXYTRAN(XY - OUTPUT DATA TRANSLATOR)

4.63.7.2 Phase I

In Phase I the XYCDB data block is further read to:

I. Determine the type of XY-output curves desired. (Response, Autocorrelation,

or Power Spectral Density Function);

2. Determine the type of data (displacements, stresses, etc.,) and subcases

desired;

3. Determine which types of XY-output are requested of XYPUNCH, XYPEAK, XYPRINT,

XYPAPLgT, and XYPL_T (XY-output requests are described in section 4 of the User's Manual).

4. Determine the point-component curve relationships for a frame.

The data for all curves of a given frame (upper and lower, or whole) are then collected

and stored in core.

4.63.7.3 Phase II

The operations of Phase II involve the analysis of the curve data in conjunction with the

XY-output specifications stored to this point as a set of values, and the computation and

setting of dynamic curve limits. When all processing is complete, output to the printer, the

punch, and the XYTRAN output data block is accomplished.

4.63.8 Subroutines

4.63.8.1 Subroutine Name: XYDUMP

I. Entry Point: XYDUMP

2. Purpose: To perform phase II as described above.

3. Calling Sequence: CALL XYDUMP (IARG,ITYPE).

IARG - 201, GIN_ output data block nu_er.

ITYPE - l for RESPONSE, 2 for PSDF, 3 for AUT¢.

4.63.8.2 Subroutine Name: XYFIND

I. Entry Point: XYFIND

2. Purpose: To position one of the XYTRAN input data blocks (2 thru 6) to the

beginning of a data set record for a particular ELEMENT-ID or POINT-ID of a specific

4.63-5 (6/l/7l)

MODULEFUNCTIONALDESCRIPTIONS

data type.

Calling Sequence:

4.63.8.3

4.63.8.4

3. CALL XYFIND ($nI,$n2,$n3,MAJID,IDZ)

nI Return taken in the event an end-of-file is sensed when an E_F should not be hit.

n2 = Return taken in the event an end-of-record is sensed when an end-of-record.

should not be hit.

n3 = Return taken if the data requested could not be found.

MAJID = An array of the eleven data type major-IDs.

IDZ : Pointer into the Z array of open core to an ELEMENT-ID or PO!NT-ID.

Subroutine Name: XY_UT

I. Entry Point: XYOUT

2. Purpose: To output to the system printer unit an xy-output summary or to output

to the system printer and/or punch unit(s) an xy-output coordinate pair.

3. Calling Sequence: CALL XYOUT (IARG,BUFF)

IARG = I <0 implies print summary.

t >_0implies print and/or punch coordinate pair.

BUFF = Array containing data to be output.

Subroutine Name: XYL_G

I. Entry Point: XYL_G

2. Purpose: To analyze the input arguments Vl and V2 and to reset these arguments to

powers of ten bracketing the original values. An example follows.

w I
= 0.5

= 5.6 Input arguments.

UndefinedJ

V2

IARG

Vl

V2

IARG

= O.l

= lO.O

2

Output arguments.

4.63-6

FUNCTIONALMODULEXYTRAN(XY- OUTPUT DATA TRANSLATOR)

3. Calling Sequence: CALL XYL_G(VI,V2,1ARG)

Vl = Smaller input real variable.

V2 = Larger input real variable.

IARG = Number of logrithmic cycles needed to bracket Vl and V2.

return)

4.63.8.5

4.63.8.6

(Set by XYLgG before

Subroutine Name: XYTICS

I. Entry Point: XYTICS

2. Purpose: To accept user-specified xy-plot edge-tic specifications and compute

actual edge-tic beginning and ending values, their increments to the successive edge-tics,

and their scientific values with powers of ten.

3. Calling

I¢UT =

9UT =

IARGI =

Rl =

R2 =

ISKIP =

Sequence: CALL XYTICS (19UT,_UT,IARGI,RI,R2,1SKIP)

Integer output array I One and the same array.

Real output array

Number of edge-tic divisions desired by user.

Minimum coordinate value of edge.

Maximum coordinate value of edge.

Edge-tic skip count i_dicating which edge-tics are to have a value printed

along with the tic-mark.

Subroutine Name: XYPRPL

I. Entry Point: XYPRPL

2. Purpose: To process the XYPAPLgT request. The XYTRAN output data block is read and

a proper plot is generated for each XYPAPL_T request. Frame numbers are printed as well as

titles, and the data are scaled to the size of the page width.

3. Calling Sequence: CALL XYPRPL

4.63.8.7 Subroutine Name: XYCHAR

I. Entry Point: XYCHAR

2. Purpose: To store the points to be plotted into the appropriate line of the output buffer.

4.63-7 (6/I/71)

MODULEFUNCTIONALDESCRIPTIONS

3,

IR(BW

ICOL

CURVCH

4.63.8.8

Calling Sequence: CALL XYCHAR(IROW,ICOL,CURVCH)

= Y coordinate of the point to be plotted

= X coordinate of the point to be plotted

= Symbol to be used for the point

Subroutine Name: XYGRAF

I. Entry Point: XYGRAF

2. Purpose: To print the proper plot for a frame.

3. Calling Sequence: CALL XYGRAF(GP_APH)

GP_APH = Frame border data for the plot

4.63.9 Design Requirements

I. The XYTP_ANdesign requires that for a particular frame all of the curve data for the

curves of that frame fit in core. If this condition is not possible, one curve at a time

will be cancelled, with a warning message output, until the condition is met for the frame

in question.

2. The following C_MM_N blocks are used in the subroutines of module XYTRAN.

a. C_MM_N/XYW@RK/

This common block contains variables required in the processing of the user output

requests.

b. COMMON/XYTRZZ/

Defines open core for the module

4.63.10 Diagnostic Messages

All XYTRAN diagnostic messages are of a USER-WARNING nature. There are no FATAL type

error diagnostics. XYTRAN is in all cases expected to make a normal return.

4.63-8 (6/I/71)

FUNCTIONALMODULERANDOM(RANDOMANALYSISMODULE)

4.64 FUNCTIONALMODULERAND_M(RANDOMANALYSISMODULE)

4.64.1 Entry Point: RANDi_M

4.64.2 Purpose

To compute power spectral density functions and autocorrelation functions from frequency

response data.

4.64.3 DMAP Callin9 Sequence

RANDOM XYCDB,DIT,PSDL,_UPVC2,_PP2,_QP2,_ESC2,_EFC2,CASECC/PSDF,AUT_/V,N,N_RAND $

4.64.4 Input Data Blocks

4.64.5

XYCDB

DIT

PSDL

_UPVC2 -

_PP2 -

_QP2 -

_ESC2 -

_EFC2 -

CASECC

Note.___s:I.

2.

3.

4.

5.

PSDF

AUT_

XY Plotter Control Data Block.

Direct Input Tables.

Power Spectral Density List.

Output displacement vector requests (p set, S_RT2, complex).

Output load vector requests (p set, S_RT2, complex).

Output forces of single-point constraint (p set, S_RT2, complex).

Output element stress requests (S_RT2, complex).

Output element force requests (S_RT2, complex).

Case Control Data Table.

If XYCDB is purged, RAND@M returns.

DIT cannot be purged if PSDL points to tables in DIT.

If PSDL is purged, RANDOM returns.

_UPVC2, _PP2, _QP2, _ESC2, _EFC2 must contain the requested outputs.

CASECC cannot be purged.

Output Data Blocks

- Power Spectral Density Table.

- Autocorrelation function table.

Notes: PSDF and AUT_ cannot be purged.

4.64-I

MODULE FUNCTIONAL DESCRIPTIONS

4.64.6 Parameters

N_RAND Output-integer-no default.

O, otherwise.

N_RAND = -I, if no random analysis is requested;

4.64.7 Method

4.64.7.1 Overview of the Method

The Random Analysis Module calculates power spectral density functions, autocorrelation

functions and mean deviations for selected displacements, loads, forces of single-point constraint,

and element forces and stresses.

4.64.7.2 Module Initialization

The following 4 steps of subroutine RAND7 comprise module initialization.

I. The XYCDB must be present or RANDOM returns.

2. A set of RANDPS Bulk Data cards from PSDL must be selected in CASECC or RANDOM returns.

3. The frequency list is extracted from the first non-empty data file.

4. The selected RANDPS cards are read in and stored. The tables _eferenced are

prepared by subroutine PRETAB.

defines the functions

The RANDPS (see section 2.4 of the User's Manual) card

Sab(f) = (x + iy) FK(f) (1)

where a is the subcase id of the excited load set; b is the subcase id of the applied

load set (a < b); (x,y) is a complex number such that if a = b, then y must be 0.0; and

K is the table identification number of a TABRNDI Bulk Data card which defines Fk(f),

a power spectral density as a tabular function of frequency.

If on any RANDPS card a # b, the equations are called coupled, otherwise they are called

uncoupled.

4.64-2

FUNCTIONAL MODULE RANDCM (RANDOM ANALYSIS MODULE)

4.64.7.3 The Uncoupled Case

The following eight steps are accomplished in subroutine RAND5.

I. The XYCDB is read for a list of requested points. This list is stored in core.

(Subroutine RAND6).

2. Core is allocated for as many points as possible at one word per frequency. If

all points will not fit in core, another pass will be made on this file.

3. Compute Saa(f) at each load change (subroutine TAB).

4. Read in the data from the S{_RT2data block and compute:

Sja(f) = IUj(f)l2 Saa(f), (2)

where Uj(f) is the response of the jth point at frequency f.

5. These are summed over all loads to form the power spectral density function:

Sj(f) = zaSJa(f)' (3)

where 'a' runs over all subcase id's on the RANDPS cards.

6. When all subcases for the points in core have been processed, the mean response qj

is calculated in subroutine RAND3 for each point j:

= Z [(Sj(fi) + Sj(fi+l)] (fi+l - fi)}I/2' (4)
i=l

where N = nu_d_erof frequencies. The mean response is output with both the PSDF and

the autocorrelation function.

7. If PSDF for point j is requested, one id and data record are written on the PSDF

data block.

8. If an autocorrelation function is requested for point j, the Sj(f) are transformed

to the time domain to give the autocorrelation function:

Rj(Tm) = N'IIl_ FSj(fi+l) - Sj(fil [cos(2_mfi+l) cos(2_mfi)]- +
i=l 4- 2T m L (fi÷l-fi)

l [Sj(f+l) sin) - Sj(fi) sin (2_Tmfi)]1 (5)2_%m (2_Zmfi+l '

4.64-3

MODULE FUNCTIONAL DESCRIPTIONS

where i is the index of the frequencies; N is highest frequency; T m is defined by

: m
Tm TO + _ (Tma x - To), (6)

where To is the starting time lag, M is the number of time lag intervals, and Tma x

is the maximum time lag (o < TO < _m), all of which are defined on a RANDTI Bulk Data

card. Note that if, in Equation 5, Tm : O, then

_2

Rj (_m) = qj. (7)

If more points for this data block remain to be done, the file is rewound and another

pass is made. If additional file types are requested, steps 1 through 8 outlined above are

repeated. This completes the uncoupled case processing.

4.64.7.4 The Coupled Case

The following 6 steps are accomplished in subroutine RAND8.

I. A list of unique subcase id's is extracted from the RANDPS cards.

2. The XYCDB is read for a list of requested points. This list is stored in core

(subroutine RAND6).

3. An array of core is reserved for each point as follows:

Let NFREQ = the number of frequencies used and NUNO be the number of unique subcase id's

mentioned on the RANDPS cards. Each point requires 2 NFREQ*NUN_ words of storage.

As many points as possible are done at once. The data file is read and the data are

stored (real/imaginary) for each point until all subcases for all points in core have

been processed.

4. For each RANDPS card Sab(fi) is looked up for all f (subroutine TAB).

For each point in core S_(f) is computed:

S!(f)j : Hja(f) Sab(f) Hjb(f), (8)

where Hja(f) denotes the value of point j for subcase a. The bar over the third

l(f) are summed over all
factor in Equation 8 denotes the complex conjugate. These Sj

RANDPS cards to form SjCf):..

4.64-4

FUNCTIONAL MODULE RANDall(RANDOM ANALYSIS MODULE)

Sj(f) = [Z_ Hja(f) Sab(f) _b(f)I.
ab

Note that Sba = Tab, the complex conjugate.

5. The mean response and autocorrelation functions are computed as in Equations

5, 6 and 7.

6. If more points for this file remain to be done, the file is rewound and another

pass is made.

If additional file types are requested, steps l thru 6 are repeated. If not, the

coupled case processing is complete.

4.64.8 Subroutines

4.64.8.1 Subroutine Name: RAND7

I. Entry Point: RAND7

2. Purpose: To initialize for both the coupled and uncoupled cases.

3. Calling Sequence: CALL RAND7(IFILE,NFILE,PSDL,DIT,IC_UP,NFREQ,NPSDL,NTAU,LTAB,

CASECC,XYCDB).

PSDL,DIT,CASECC,XYCDB are GIN_ file numbers for their respective data blocks -

- integer - input.

IFILE -

NFILE -

IC@UP -

m

NFREQ -

NPSDL -

NTAU -

LTAB

Array of GIN_ file numbers of data files to RAND(_M- integer - input.

Number of files in IFILE - integer - input.

-I No RANDOM analysis to be done.

0 uncoupled algorithm to be used - integer - output.

l coupled algorithm to be used.

Number of frequencies - integer - ouLput.

Number of RANDPS cards selected - integer - output.

Number of T's on RANDTI cards - integer - output.

Amount of core taken up by table storage - integer - output.

C_MM_NIRANDMX/

RAND7 stores most of its output data in /RANDMX/.

(section 4.64.9).

See core storage layout of /RANDMX/

(9)

4.64-5

MODULE FUNCTIONAL DESCRIPTIONS

4.64.8.2

I.

2.

3.

Subroutine Name: RAND5

Entry Point: RAND5

Purpose: To compute uncoupled PSDF and AUTO numbers.

Calling Sequence: CALL RAND5(NFREQ,NPSDL,NTAU,XYCDB,LTAB,IFILE,PSDF,AUT_,NFILE)

4.64.8.3

I.

2.

3.

4.64.8.4

I.

2.

3.

FILE

MID

TYPE

ID

COMP

Q

4.64.8.5

I.

PSDF,AUT_ - GINO file numbers of respective files - integer -input.

Other variables are as in RAND7 (Section 4.64.8.1).

Subroutine Name: RAND8

Entry Point: RAND8

Purpose: To compute coupled PSDF and AUT_ numbers.

Calling Sequence: CALL RAND8 (Same as RAND5).

Subroutine Name: RAND1

Entry Point: RANDI

Purpose: To put one _FP type ID on PSDF and AUTO.

Calling sequence: CALL RAND1 (FILE,MID,TYPE,ID,COMP,Q).

- GINO file number of output file - integer - input.

- File type (PSDF = 4001,AUTO = 4002) - integer - input.

- Curve type - DISP,VEL_,ACCE,L_AD,SPLF,ELFO, or STRE - BCD, input.

- Point id - integer - input.

- Point component - integer - input.

- Mean deviation - real - input.

Subroutine Name: RAND2

Entry Points: RAND2, RAND2A

2. Purpose: To read a SBRT2 type output file until it finds a point id selected by

the user in a list.

3. Calling Sequence:

FILE

ILIST

CALL RAND2 (FILE,ILIST,L_AD,IF,LEN,LLIST, DATA)

CALL RAND2A (DATA)

- GINO file number of the SORT2 data file - integer - input.

- List of user desired points - input and output.

4.64-6 (811172)

FUNCTIONAL MODULE RANDOM (RANDOM ANALYSIS MODULE)

LBAD

IF

LEN

LLIST

DATA

4.64.8.6

Subcase id of first data record in ILIST - integer - output.

Format of data - real/imaginary or magnitude/phase - integer - output.

Length of the data line for this record - integer - output.

Length of the ILIST array.

Data array - input.

Subroutine Name: RAND3

l.

2.

3.

F

S

Q

N

4.64.8.7

Entry Point: RAND3

Purpose: To compute the mean response q.

Calling Sequence: CALL RAND3 (F,S,Q,N)

- Array of frequencies - real - input.

- Array of power spectral density functions - real - input.

- Mean response - real - output.

- Length of the F and S arrays - i_teger - input.

Subroutine Name: RAND4

I. Entry Point: RAND4

2. Purpose: To compute the autocorrelation function R(z).

3. Calling Sequence; CALL RAND4 (F,S,TAU,R,N)

F,S,N are as described in RAND3.

TAU - T point at which R is to computed - real - input.

R - Autocorrelation function at TAU - real - output.

4.64.8.8 Subroutine Name: RAND6

I.

2.

3.

XYCDB

BUFFER

NPOINT

Entry Point: RAND6

Purpose: To extract from the XYCDB a list of user requested points for RANDOM output.

Calling Sequence: CALL RAND6 (XYCDB,BUFFER,NP_INT,IZ,INPUT)

- GIN_ file number of the XYCDB data block - integer - input.

- GIN_ buffer - array - input.

- Number of points requested by the user for this file - integer - output.

4.64-7 (8/I/72)

MODULEFUNCTIONAb DESCRIPTIONS

IZ Array in which RAND6 stores the list of requests - integer - output.

INPUT - GINO file number of data file for which list of request is desired.

4,64.9 Design Requirements

Open Core at /RANDMX/ is arranged as follows:

C_MM_N/RANDMX/

fl

fNFREQ

RANDPS
Card
Data

T1

TNTAU

Table Data
From PRETAB

NFREQfrequencies

5 words per card:

Subcase ID
Subcase ID

X
Y

Table

NTAU Taus

LTAB Table data

NPSDL cards

The above data are placed in core by RAND7 and are the same for both the coupled and

uncoupled cases• The remaining data are core dependent.

Uncoupled case data:

Saa(fl)

Saa(f2)

Saa(fNFREQ)

Requests from
RAND6

NP_INT of
them 5 words/

point

These are evaluated each time the

Subcase id changes.

I) Data Block
2) Point ID
3) Component
4) Request Type

l = PSDF
2 = AUTO
3 - Both

5) Destination
l = Print
2 = Punch
3 = Both
4 = Plot

4.64-8

FUNCTIONAL MODULE RANDOM (RANDOM ANALYSIS MODULE)

Sj(f)

Sj+l(f)

Sab(fI)

Sab(fNFREQ)

Request

Hja(f)

Hjb(f)

Sj(f)

AUT@

PSDF

Input

NFREQ

NFREQ

Sj(f) for each point in the

request list (spill is possible
here)

I 3 GIN_ buffers

l

Coupled case data:

These are re-evaluated for each RANDPS card

Unique subcase ID's from RANDPS cards

NUNQ of them

As in uncoupled request list

2*NFREQ

NUNQ
of H's

Repeated for each
point in request
list (spill
possible here).

NFREQ

3 GINO buffers

4.64-9

HODULEFUNCTIONAL DESCRIPTIONS

4.64.10 Diagnostic Messages

RANDOMis defined as an output processor and thus must not stop due to user innut error.

Hence all messages are of a warning nature.

Random may issue message 3048.

4.64-10

FUNCTIONAL MODULE TRD (TRANSIENT ANALYSIS - DISPLACEMENT)

4.65 FUNCTIONAL MODULE TRD (TRANSIENT ANALYSIS - DISPLACEMENT)

4.65.1 Entry Point: TRD

4.65.2 Purpose

To solve the transient problem.

4.65.3 DMAP Calling Sequence

TRD CASECC,USETD,DLT,TRL,NLFT,DIT,KHH,BHH,MHH,GMD,G_D,PHIDH/UHVT,PDT,PST,PPT,PNLH/V,N,

4.65.4

CASECC

USETD

DLT

TRL

NLFT

DIT

KHH

BHH

MHH

GMD

G_D

PHIOH

Notes :

I.

2.

3.

4.

F_RM/V,N,LUSETD/V,N,MPCFI/V,N,SINGLE/V,N,_MIT/V,N,N_NCUP/V,N,N_UE

Input Data Blocks

- Case Control Data table.

- Displacement set definitions table-dynamics.

Dynamic Loads Table.

Transient Response List.

- Non-Linear Forcing Table.

- Direct Input Tables.

- Modal stiffness matrix - h set.

- Modal damping matrix - h set.

- Modal mass matrix - h set.

- Multipoint constraint transformation matrix - dynamics.

- Omitted coordinate transformation matrix - dynamics.

- Transformation Matrix from d - set to modal coordinates.

CASECC cannot be purged.

USETD cannot be purged.

DLT cannot be purged if a dynamic load was selected in CASECC.

TRL cannot be purged.

4.65-I

4.65.5

4.65.6

MODULE FUNCTIONAL DESCRIPTIONS

UHVT

PDT

PST

PPT

PNLH -

Notes:

FORM

LUSETD

MPCFI

SINGLE

_MIT

N_NCUP

N@UE

5. NLFT cannot be purged if nonlinear loads are selected in CASECC.

6. GMD cannot be purged if MPCFI _ O.

7. G_D cannot be purged if _MIT _ O.

8. PHIDH cannot be purged if F_RM = M_DAL.

Output Data Blocks

- Modal transient solution vectors - h set.

Linear dynamic load matrix for transient analysis - d set.

Linear load vector for transient analysis - s set.

Linear dynamics loads for transient analysis - p set.

Nonlinear loads in modal transient problem - h set.

I. UHVT cannot be purged.

2. PDT cannot be purged.

3. PST cannot be purged if SINGLE _ O.

4. PPT cannot be purged.

5. PNLH cannot be purged if nonlinear loads are selected.

Parameters

- Input-BCD-no default. If F_RM = M_DAL a modal formulation will be used,

othem_ise a direct formulation will occur.

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

Input-integer-no default.

LUSETD indicates length of p set.

If MPCFI > 0 multipoint constraints are present.

If SINGLE > 0 single-point constraints are present.

If _MIT > 0 omitted coordinates are present.

If N_NCUP= -I an uncoupled solution will be done.

N_UE indicates the number of extra polnts-used in

nonlinear load formulation.

4.65-2

FUNCTIONALMODULETRD(TRANSIENTANALYSIS- DISPLACEMENT)

4.65.7 Method

4.65.7.1 Overview of the Method

The Transient Analysis module integrates, over specified time periods, equations of

motion of a structure having time dependent loads. A general structure may be used with real

stiffness, mass and damping matrices. Non-linear effects may be calculated by specifying

certain loading functions on the free, physical displacements of the system. This analysis

is particularly useful when shock loads are applied to a structure. It is also more efficient

than frequency analysis or complex eigenvalue analysis when the applied loads are well defined

and the frequency characteristics are secondary to damping and peak load characteristics_ This

analysis is also the only dynamic general system analysis which allows non-linearities.

4.65.7.2 Logical Phases of Solution

I. The applied load vectors are assembled. The time increment from the TRL data block

is used to identify the times at which the loads are assembled. The initial conditions

are assembled.

2. The loads are reduced to the solution coordinates.

3. The left hand matrix of the general integration equation, Equation 15 below, and the

two right hand matrices are assembled. The triangular decomposition of the left hand

matrix is performed.

4. The solution loop of the program may now proceed until the time increment is

changed. The steps are:

a. Compute the non-linear load for this time step. Add this load to the load

vectors computed in Step 2.

b. Multiply the displacement vectors into the right hand matrices and add the

resultant vectors to the applied load vector.

c. Solve for the left hand displacement vector by performing a back substitution

into the triangular decomposition of the left hand matrix. If this is an output

time step, the velocity and acceleration are computed using differences of the

displacement vectors.

4.65-3

MODULE FUNCTIONAL DESCRIPTIONS

d. If the time increment changes for the next time step, the program returns to

step 3. If the increment is the same, steps 4a thru 4d are repeated.

5. If the equations are in the uncoupled modal formulation form (i.e., no transfer

functions, direct input matrices, or non-linear functions), the solution logic is

much faster. For each coordinate, the displacement, velocity and acceleration may be

computed independently versus time. Steps 3 and 4 are omitted.

4.65.7.3 Algorithms for Each Logical Phase

I. Assembly of Applied load vectors: CASECC is read and the selected time step, load,

non-linear load, and initial condition set ids are extracted. The initial displacement

and velocity vectors are packed on a scratch file for later use. The computation and out-

put data on the TSTEP card are stored in core. The DLT is read to build a list of load

"id's", and table "id's" and scale factors for the simple components of a load. Core is

zeroed, and loads for as many times as possible are constructed in core and output.

Two types of loads are available, TL_ADI and TLOAD2.

For the TL_ADI load,

P(t) = AF (t-z), (I)

where F is a user input table.

For the TLOAD2 load,

P(t) = _ tBec_ elsewherecos(2_f t + P) 0 _ t _ T2-TI

where t = t-T 1 - z and T I, T2, f, P, C and B are user input coefficients.

(Subroutines TRDIA, PRETAB and TAB).

2. Reduction of loads to the solution coordinates:

If m's are present (MPCFI_O),

Ppl.._I _ne _,

{Pne } : [G_] T {Pm } + {§ne }.

(2)

(3)

(4)

4.65-4

FUNCTIONAL MODULE TRD (TRANSIENT ANALYSIS - DISPLACEMENT)

If s's are present (SINGLE _ 0),

{Pne} _--_ I Pfe
P- -I"

{Ps} is reduced to the output times and output on data block PS.

If o's are present (i_4IT>_0),

{Pfe}==_I_ } '

{Pd} = [Gdo]T {Po} + {Pd}.

(5)

(6)

(7)

{Pd} is reduced to the output times and output on data block P¢.

If this is a modal formulation (FgRM= M_DAL),

{Ph} = {¢dn}T {Pd}. (8)

{Pp} is reduced to output times and output on data block PP.

3. Solution of the coupled equations: The matrix

is formed and decomposed. The matrix

is formed and saved. The matrix

[E] =

+12At [B] + ½ [K]) ,

_ 2

(9)

(lO)

(ll)

is formed and saved.

The solution loops then proceed until a time step change occurs.

are brought in and the starting equation

The initial conditions

4.65-5

MODULE FUNCTIONAL DESCRIPTIONS

1 + pl} + {No} + [C] {uo} + [E] {U_l},[D] {uI} = ½{Pll_ + Po

is solved for {Ul}, where {uo} is the starting displacement vector;

{U!l} = {uo} - {Uo} At,

{_o} is the starting velocity vector;

{P_} = [K] {uo} + [B] {Go};

{NO} is the non-linear load calculated from {Uo}; and

{PlI}_ = [K] {ull}+_[B] {uo} = {P_} - At [K] {_o}.

Note that the load computed at t = O is never used but is replaced by {P_}.

through {un} are now computed from the general equation:

[D] {ui+2} = ½ {Pi + Pi+l + Pi+2} +

{Ni+l} + [C] {ui+I} + [E] {ui}.

{u2}

(12)

(13)

(14)

(15)

(16)

If non-linear loads are selected, they are evaluated directly at the solution points for

time step by the following process. N_LINI loads are computed as,

where

point, uj

as,

Pi(t) : S T (uj(t)), (17)

T is a user selected table, i is the loaded solution point, j is the deflecting

is the previously computed displacement at point j. N_LIN2 loads are computed

Pi(t) : S uj (t) uk (t), (18)

where i, j, and k are as in N_LINI loads.

4.65-6

FUNCTIONALMODULETRD(TRANSIENTANALYSIS- DISPLACEMENT)

NgLIN3 loads are computed as,

Pi(t)

!

JS {uj(t)}A, uj(t)>O

I 0 , uj(t)_O

NgLIN4 loads are computed as,

Pi(t)

J-S {-ui(t)}A, ui(t)< O

I 0 , ui(t) _ O.

The user specifies the set of times at which data is to be saved.

an output time, the displacement vector for time t = ti is output.

The velocity vector given by:

(Ig)

(20)

If the current time is

{_i} : _ [{Ui+l} - {Ui_l}], (21)

is output.

The acceleration vector given by

l

{'_i} = _ [{ui+l} + {ui_l} - 2 {ui}], (22)

is output.

If the time step is scheduled to change at ti+l from AtI to At2J the displacement for time

i+l has been calculated. {Ui_l}, {ui}, and {ui+l} are saved along with {Pi+l}. The matrices

are formed and decomposed as in Equations 9,10, and II for At = At2.

The following equation is used for computing {ui+2},

[D] {ui+2} = ½ {PI + Pi+l + Pi+2}+ {Ni+l} + [C] {Ui+l} + [El {u_}.

The vectors {P_] and {u_} in the above equation are calculated as follows. Define

(23)

4.65-7

MODULE FUNCTIONAL DESCRIPTIONS

1

{ui+ I} = _ ({Ui+l} - {ui}), (24)

{_i+l} _ 1 ({ui+ I} - 2 {ui} + {Ui_l}), (25)

t

{uli} : {ui+ I} - {Ui+ l} At2, (26)

then:

2

{u I} = {ui+ I} - At 2 {Ui+l } + z_t2 {_i+l} '
2

(27)

{PI i} : [M] {_'i+l} + [B] {GI}+ [K] {ul}. (28)

4. Solution of Uncoupled Modal Equation: If the method of matrix formulation is modal

and no transfer functic, ns or direct input matrices are used, the equations may be

solved in a more accurate, more direct manner. The diagonal terms of MHH, BHH, and KHH

are stored in core. The following data are necessary to solve the transient behavior of

a modal coordinate (_i).

mi =

b i =

K. =
1

Modal mass of mode (MHH)

Modal damping coefficient (BHH)

Modal stiffness (KHH)

moi = (Ki/mi)I/2 (29)

(3O)

tj = time of the jth time step,

(31)

4.65-8 (811172)

FUNCTIONAL MODULE TRD (TRANSIENT ANALYSIS - DISPLACEMENT)

hj = time increment after the jth time,

fij = applied load on coordinate i at the jth time.

The following coefficients are generated for each distinct time increment and stored in

core.

There are four cases. (_ = lO-5 and the subscript i is implied).

a. If mo2 > B2 + _ (underdamped):

F = e-Bh (cos _h + C sin _h) , (32)

G = !e -Bh sin wh ,
W

(33)

: 1 {e-Bh (2_BA hT_ [(m2-B2 Bh) sin _h - --+ h_) cos ,_h] + 2Bm} ,
_2 0 _2 0 _2 0

(3-i)

B = 1 {e-Bh _hT_ [(- _2__2) sin wh + 2_ cos _h] + _h - 2_}
2 i

_0 2 _0 _0 2

(35)

2

-Bh
F' - o e sin _h , (36)

G' = e-Bh(cos =h - _ sin _h) , (37)

A' = _I [e-Bh {(8 + h=_) sin _h + mcos _h} - m] , (38)

B' - l [-e-Bh (Bsin _h + _ cos _h) + 9]hk_ (39)

b. If I_o 2 - B2I < E (critically damped):

F : e-Bh(l + Sn) , (40)

G = he -!Sii , (41)

4.65-9 (]2-]-69)

MODULEFUNCTIONAL DESCRIPTIONS

2 _ e-6h (2 + 2h6 + h 2 62)] ,A = [_ - (42)

B = _I [-2 + 6h + e-Bh (2 + Bh)] (43)

F' : -B2he-Bh , (44)

G' : e-Bh(l - Bh) , (45)

A' 1 [e-6h: BIT (I + hB + h2B2) -I] , (46)

1 e-6h
B' = h--_[l- (6h + l)] . (47)

c. If coo2 < 62 - _ (over damped):

F = e-Bh (cosh coh +_sinh coh) ,
CO

(48)

G = 1 e-cohsinh coh ,
CO

(49)

1 {e-6h + 62h_ [(co2 2
COO

hB) sinh coh- (2co.___+hco)cosh _h] + 2co.___},

coo 2 co0 2

(50)

1 {e-6h + 62 2co_ _[_2 sinh coh+--cosh coh]+ _h 26co},
2 CO02 CO 2_0 0

(51)

F I

2

coo e-Bh sinh cob
CO J

(52)

G' = e"Bh (cosh coh- _ sinh coh) ,
co

(53)

A' = l [e-6hhT_ {(B + hcoo2)sinh cob+ cocosh coh}- co] , (54)

B' : 1 e-Sh
[- (B sinh coh+ cocosh coh)+ co] . (55)

4.65-I0 (12-I-69)

FUNCTIONALMODULETRD(TRANSIENTANALYSIS- DISPLACEMENT)

d. If l_ol= IBI _c (undamped):

F = I, (56)

G = hm (57)

A = h2/3m, (58)

B = h2/6m, (59)

F I _ Ol (60)

I Z l, (61)

A' = h/2mt

B' = h/2m.

The equations for each displacement, velocity, and acceleration in terms of the

applied loads and previous displacement and velocity are:

(63)

{i,j+l = Fi_i,j + Gi{i,j + Aifi,j + Bifi,j+l ' (64)

_i,j+l = F'iCl,j +G'I_I,j + A'ifi,j + B'ifi,j+l ,

= Pi,j+l + bi_i,j+l Ki_i,j+l
_i,j+l

mi mi mi

(65)

(66)

4.65-II (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

4.65.8 Subroutines

Utility routines PRETAB, TAB, SSG2A, CALCV, SSG2B, ADD, and DECAMP are used.

subroutine descriptions, section 3 for details.

4.65.8.1

I.

2.

3.

See

Subroutine Name: TRDIA

Entry Point: TRDIA

Purpose: To assemble the loads at all time steps.

Calling Sequence: CALL TRDIA (DLT,TRL,CASECC,DIT,PPA,IC,LUSETD,NLFTP,NGR@UP,

ITRL,M_DAL)

DLT, TRL, CASECC, DIT are GINO file numbers of their respective data blocks - integer -

input.

PPA

IC

LUSETD -

NLFTP -

NGROUP -

ITRL -

M_DAL -

4.65.8.2

- GIN_ file number of applied loads - p set - for all times - integer - input.

GINO file number of initial condition matrix - integer - input.

Length of p set - integer - input.

Non-linear load set id selected in CASECC - integer - output.

Number of time step changes - integer - output.

Number of records to skip in TRL to obtain selected TSTEP card - integer -

output.

If MODAL =

Subroutine Name:

I. Entry Point: TRDIB

2. Purpose:

output time loads.

3. Calling Sequence:

l, a modal formulation is being used - integer - input.

TRDIB

To reduce the applied loads to the solution set and remove all but

CALL TRDIB (PPA,USETD,GM_,G@D,PHIDH,MPCFI,SINGLE,_MIT,FORM,

PD,PS,PP,PAPPLD,SCRI,SCR2,SCR3,SCR4,NGR_UP,TRL,ITRL)

4.65-12

FUNCTIONALMODULETRD (TRANSIENT ANALYSIS - DISPLACEMENT)

PPA

USETD,GM_,

GgD,PHIDH,PD,_ -
PS,PP,TRL !

ScR4SCRI""' I -

MPCFI,SINGLE,
¢_IIT,F_RM } -

NGR_UP,ITRL

PAPPLD

4.65.8.3

I.

2.

3.

Same as for TRDIA

GINg file numbers of their respective data blocks - integer - input.

GINg file numbers of 4 scratch files.

Module input parameters as explained in section 4.65.6.

Same as for TRDIA - integer - input.

GINg file number of applied loads - integer - input.

Subroutine Name: INITL

Entry Point: INITL

Purpose: To form [C] and [El matrices and to form and decompose the [D] matrix.

Calling Sequence: CALL INITL (gFFSET,DELTA)

C{_r_4_N/TRDXX/

CFFSET

DELTA

4.65.8.4

' I.

2.

3.

IC,NGRCUP_ -
NLFTP)

UDV,DIT
NLFT,PNL } -

SCRI

PAPPLD

NgUE -

See section 4.65.8.4.

- Length of reserved area of core - integer - input.

- Current time increment - real - input.

Subroutine Name: TRDIC

Entry Point: TRDIC

Purpose: To solve the coupled equations.

Calling Sequence: CALL TRDIC (IC,PAPPLD,NGR_UP,NLFTP,UDV,I,SCRI,DIT,NLFT,NCUg

MgDAI,PNL)

Are as described in TRDIA - integer - input.

Are GIN¢ file numbers of their respective data blocks - integer - input.

GIN_ file number of a scratch file.

Is as described in TRDIB.

Module parameter.

4.65-13

MODULEFUNCTIONALDESCRIPTIONS

M_DAI -I if F_RM _ M_DAL.

I Current loop count.

integer - input.

C_MM_N/TRDXX/IK(7)IM(7),IB(7),C,ULL,LLL,E,SCRI,SCR2,1_PEN

IK(7)

IM(7)

IB(7)

C

ULL,LLL

E

SCRI ,SCR2-

I_PEN

1 if F_RM : M_DAL - integer - input.

Runs from 1 to number of time step changes -

Matrix control block for K matrix.

Matrix control block for M matrix.

Matrix control block for B matrix.

GIN_ file number for C matrix.

GIN_ file numbers for decomposition products of D matrix.

GIN_ file number for E matrix.

GIN_ file numbers for 2 scratch files.

l implies C,ULL,LLL, and E are open.

0 implies C,ULL,LLL, and E are closed.

4.65.8.5

I.

2.

3.

u_

UDOT_

UI

P_

PI

DELTAT

Subroutine Name: F_RMI

Entry F_RMI

Purpose: To compute {U_l}, {P_}, and {P_l} for starting the integration procedure.

Calling Sequence: CALL F_RMI (U_,UD_T_,UI,P_,PI,DELTAT,IBUF)

- Array of core containing {uo} - real - input.

- Array of core containing {i0} - real - input.

- Array of core for storage of {U.l} - real - output.

- Array of core for storage of {P_} - real - output.

Array of core for storage of {P_l} - real - output.

Current time step size - real - input.

IBUF GIN_ buffer

C_MM_N/TRDXX/ (see above).

4.65-14 (7/I/70)

4.65.8.6

I.

2.

3.

Y

X

FILEA

IBUF

FUNCTIONALMODULETRD (TRANSIENT ANALYSIS - DISPLACEMENT)

Subroutine Name: MATVEC

Entry Point: MATVEC

Purpose: To form the product{X} = {X} + [A] {Y} where [A] is a matrix and {Y} is a vector.

Calling Sequence: CALL MATVEC (Y,X,FILEA,IBUF)

- Array of core containing Y array real - input.

- Array of core containing X array real - input/output.

- Matrix control block for A. If FILEA(1) <_O, MATVEC will return.

- GIN(Jbuffer. If IBUF <__O, MATVEC will assume the file is already in core.

4.65.8.8

COMMON/Tpnxx/ (S_ section 4.65.8.4)

4.65.8.7 Subroutine Name: STEP

I. Entry Point: STEP

2. Purpose: To integrate forward l time step.

3. Calling Sequence: CALL STEP (U2,UI,U_,P,IBUF)

U2 - Array which will contain {ui+2] - real - output.

U! - Array containing {ui+l} - real - input.

UO - Array containing {ui} - r(al - input.

P Array containing combined load - real - input.

IBUF - GIN9 buffer - input.

COMI_N/TRDXX/ (See section 4.65.8.4)

Subroutine Name: INTFBS

I. Entry Point: INTFBS

2. Purpose: To perform the forward-backward substitution necessary to solve the system

of equations: [A] {Y} = {X} for {Y}.

3. Calling Sequence: CALL INTFBS (X,Y,IBUF)

X - Load vector (i.e. right hand side) - real- input.

4.65-15 (7/I/70)

MODULEFUNCTIONAL DESCRIPTIONS

Y - Solution vector - real - output.

IBUF - GIN@buffer.

C_MMON/TRDXX/(See section 4.65.8.4)

COMMON/INFBS/FILEL(7),FILEU(7)

FILEL Matrix control block of the lower triangular factor from the decomposition

of A.

FILEU Matrix control block of the upper triangular factor from the decomposition

of A.

Subroutine Name: TRDID

Entry Point: TRDID

Purpose: To compute the non-linear loads at each time step.

Calling Sequence: CALL TRDID

C@MM_N/TRDD_/NLFT,D_T,NLFTP,N_UT,_c_UNT,_L_P,M0DA_,Nz_c_RE,_U2,_P4,_PNL(7),NM0DES_

NSTEP,PNL

The variables DIT,NLFT,NLFTP,M_DAI and PNL are defined as in TRDIC (see section 4.65.8.4).

4.65.8.9

I.

2.

3.

NOUT -

IC_UNT -

ILOOP -

NZ

IC_RE -

IU2

IP4

IPNL -

NM_DES -

NSTEP -

Output interval - integer - input.

Current time step counter - integer - input.

Current time change counter - integer - input.

Length of open core - integer - input.

Pointer to first unused cell of open core - integer - input.

Pointer to displacement vector - 1 - integer - input.

Pointer to load area -I - integer - input.

Matrix control block for PNL - integer - input/output.

Number of modes if modal formulation is being used - integer - input.

Number of times steps for this time increment - integer - input.

4.65-16 (7/I/70)

FUNCTIONAL MODULE TRD (TRANSIENT ANALYSIS - DISPLACEMENT)

4.65.8.10 Subroutine Name: TRDIE

I. Entry Point: TRDIE

2. Purpose: To solve the uncoupled modal equations.

3. Calling Sequence: CALL TRDIE (14HH,BHH,KHH,PH,UHV,NGR_UP)

MHH,BHH,KHH,
PH,UHV

- GINO file numbers of their respective data blocks - integer - input.

NGROUP - Number of time step changes - integer - input.

4.65.8.11

I.

2.

3.

UDDIPI

UDIPI

UIP

PIP

IBUF

Subroutine Name: FORM2

Entry Point: F_RM2

Purpose: To compute {u;} and {P;} when changing time steps.

through 28)

Calling Sequence: CALL FORM2 (UDDIPI,UDIPI,UIP,PIP,IBUF)

(See Equations 23

- Array of core containing {_i+l} - real - input.

- Array of core containing {_i+!} - real - input.

- Array of core containing {u_} - real - output.

- Array of core containing {P;} - real - output.

- GINO buffer

COMMON/TRDXX/ (See section 4.65.8.4)

4.65-17 (3/I171)

MODULE FUNCTIONAL DESCRIPTIONS

4.65.9 Design Requirements

I. Open core at /TRDAI/ is illustrated as follows:

C_MM_N/TRDAI/

Load IDl

Scalel

Load ID2

Scale2

Table IDl

Table ID2

Tables

Load at Tl

Load at T2

Load at T3

PRETAB Buffer

DLT Buffer

PP Buffer

Number of steps

At

Output Interval

,i

Load ID's + Scale factors for current

DL_AD

List of unique table ID's referenced by
loads (NTABL id's)

Table data used PRETAB/TABby

} LUSETD I These are repeated for asmany times as core will hold.

Gone when loads are in core

2 GIN_ Buffers

Repeated for each time step change

There must be enough core to assemble one time step load.

4.65-18 (8/I/72)

FUNCTIONALMODULETRD(TRANSIENTANALYSIS- DISPLACEMENT)

2. OpenCoreat /TRDIX/ is illustrated as follows:

C_N/TRDIX/

Open Core
for DECAMP
and ADD

Number of steps

At

Output Interval

Repeated for each time step change

4.65-19 (8/1/72)

MODULEFUNCTIONALDESCRIPTIONS

This table is at the bottom of open core through the module.

3. Open Core at /TRDCI/ is illustrated as follows:

C_MM@N/TRDCl/

u1

u2

u3

P1

P2

P3

P4

Type

Table ID's

Table's for TAB

Tab Buffer

C Buffer

D Buffer

ULL Buffer

LLL Buffer

Solution Buffer

Load Buffer

Utility Buffer

}
}
}

}
}
}
}
}

NR_W

NR_W

NROW

NR(_W

NROW

NR_W

NROW

5 words for each non-linear load card
selected.

Table ID's selected on N_LIN cards.

Used only if non-linear loads are
selected.

GIN_ Buffers

4.65-20 (711/70)

FUNCTIONAL MODULE TRD (TRANSIENT ANALYSIS - DISPLACEMENT)

4. Open Core at /TBDEI/ is illustrated as follows:

C_M_NITRDEI/

MHH

BHH

Each section is of length H

KHH

F

G

A

B

F'

G'

A !

B'

Cj

_j+l

C'j+l

fj

fj+l

PH Buffer

UHV Buffer

2 GIN_ buffers

4.65-21 (71117N)

MODULEFUNCTIONALDESCRIPTIONS

4.65.10 Diagnostic Messages

TRD may issue the following messages

3001, 3002, 3003, 3005, 3007, 3008, 3031, 3044, 3045, 3046.

4.65-22 (7/I170)

FUNCTIONALMODULEGKAM(GENERAL K ASSEMBLER MODAL)

4.66

4.66.1

4.66.2

FUNCTIONAL MODULE GKAM (GENERAL K ASSEI_LER MODAL)

Entry Point: GKAM

Purpose

To assemble the modal mass, damping and stiffness matrices.

4.66.3 DMAP Ca!lin9 Sequence

GKAM USETD,PHIA,MI,LAMA,DIT,M2DD,B2DD,K2DD,CASECC/_H,BHH,KHH,PHIDH/V,N,N_UE/C,Y,

4.66.4 Input

USETD -

PHIA -

MI

LAMA -

DIT -

M2DD

B2DD

K2DD

CASECC -

Notes:

I.

2.

3.

4.

5.

6.

7.

8.

9.

LM_DES/C,Y,LFREQ/C,Y,HFREQ/V,N,NOM2PP/V,N,N@B2PP/V,N,NgK2PP/V,N,N@NCUP/V,N,

FM@DE $

Data Blocks

Displacement set definitions table dynamics.

Eigenvectors matrix giving the eigenvectors (displacements) in the a set.

Modal mass matrix.

Real Eigenvalue Table.

Direct input Table.

Direct input mass matrix - d set.

Direct input damping matrix - d set.

Direct input stiffness matrix - d set.

Case Control Data Table.

USETD may be purged if NgUE < O.

PHIA cannot be purged.

MI cannot be purged.

LAMA cannot be purged.

DIT cannot be purged if SDAMP # 0 in CASECC.

CASECC cannot be purged.

M2DD cannot be purged if N¢_|2PP_ O.

B2DD cannot be purged if N_B2PP _ O.

K2DD cannot be purged if N_K2PP > O.

4.66-I

MODULE FUNCTIONAL DESCRIPTIONS

4.66.5 Output Data Blocks

MHH

BHH

KHH

PHIDH

Note:

Modal mass matrix - h set.

Modal damping matrix - h set.

Modal stiffness matrix - h set.

Transformation matrix from d set to modal coordinates.

No outout matrix can be purged.

4.66.6 Parameters

N_UE

LM_DES

LFREQ

HFRE_

NOM2PP

NOB2PP

NOK2PP

N_NCUP

FM_DE

- Input-integer-no default. NBUE indicates presence and number of extra points.

- Input-integer-default = O. LMODES selects the first LM_DES eigenvectors (or all

if there are less than LM_DES) to use for the modal coordinates,

- Input-real-default = 0.0. If LMODES = O, eigenvectors with eigenvalues between

LFREQ and HFREQ are used in the modal formulation.

- Input-real-default = 0.0.

- Input-integer-no default.

- Input-integer-no default.

- Input-integer-no default.

- Output-integer-no default.

See LFREQ.

If N_M2PP < O, M2DD will not be used.

If N@B2PP < O, B2DD will not be used.

If NOK2PP < O, K2DD will not be used.

If no direct input matrices exist the nroblem is

considered uncoupled and N@NCUP is set to -I.

Output-integer-no default. The mode number of the first selected eigenvector

is stored in FM_DE.

4.66.7 Method

The general system assembly module for the modal method is used when the real eigenvalues

for the structure have been determined. With this method, it is possible to decrease the order

of the problem without sacrificing accuracy. The module forms the conversion matrix between

modal displacements and all free physical displacements of the system. It then forms the general

matrices in terms of displacements of the modes and the extra points.

4.66-2

FUNCTIONAL MODULE GKAM (GENERAL K ASSEI,_LERMODAL)

CASECC is read, and the selected structural damping table "id" is stored.

LAMA is read and the selected eigenvalues are stored in core. If an eioenvalue is

selected, the corresponding column of PHIA is copied onto PHIDHI, a scratch file.

If extra points are not present (N_UE < 0), PHIDH = PHIDHI. If extra points are present:

[_dh] = Lo!F_'a LO-I " (I)

This is accomplished in subroutine GKAMIB.

The "H" matrices are formed:

[Mhh] = --i "0] [@dh]T [M_d] [@dh] ' (2)

k_i.... OoiLo
[Khh] :

where mi = diagonal terms of MI, and

+ [@dhIT [K_d] [@dh] ,

bi

(4)

: mi _i g (_°i)' (5)

k i = mi _ (6)

_i is the frequency for the mode from LAMA and g (mi) is the tabular structural damping table

selected in CASECC. If no selection is made g (mi) _ 0.0. The "H" matrices are formed using

subroutines GKAMIA, SSG2B, PRETAB, TAB, CALCV, MERGE.

4.66.8 Subroutines

4.66.8.1 Subroutine Name: GKAMIB.

I. Entry Point: GKAMIB.

2. Purpose: To construct [@dh] if extra points are present.

4.66-3

MODULEFUNCTIONALDESCRIPTIONS

3.

4.66.8.2

I.

2.

3.

Calling Sequence: CALL GKAMIB

USETD - GIN_ file number of

SCRI - GIN_ file number of

SCR2 - GINB file number of

PHIDH -

PHIDHI

MODES

C_RE

LHSET

N@UE

(USETD,SCRI,SCR2,PHIDH,PHIDHI,M_DES,C_RE,LHSET,N_UE)

USETD - integer - input.

Ist scratch file - integer - input.

2nd scratch file - integer - input.

GINB file number of PHIDH - integer - input.

GINO file number of PHIDHI - integer - input.

Number of modes selected - integer - input.

Array of open core.

Length of h set - integer - output.

Extra point flag N_UE _0 indicates presence of extra points - integer - input.

Subroutine Name: GKAMIA.

Entry Point: GKAMIA.

Purpose: To form [Mhh], [Bhh], or [Khh].

Calling Sequence: CALL GKAMIA (MI,PHIDH,DIT,SCRI,SCR2,1_PT,IHH,N_I2DD,C_RE,M_DES,

SDITD,LHSET,12DD,IMSKIP,SCR3)

MI GINO file number of MI - integer - input.

PHIDH - GINB file number of PHIDH - integer - input.

DIT - GINO file number of DIT - integer - input.

SCRI - GINO file number of scratch l - integer - input.

CR2 - GIN file number of scratch 2 - integer - input.

SCR3 - GINO file number of scratch 3 - integer - input.

IHH - GIN_ file number of HH file (M, B, or K) being constructed - integer - input.

12DD - GIN_ file number of 2DD file being used with IHH (K2DD, M2DD or B2DD) -

integer - input.

I(_PT - Flag for equation to use

1 -----> MHH

2 _>BHH

3 :>KHH

4.66-4

FUNCTIONALMODULEGRAM(GENERALK ASSEMBLER MODAL)

N_I2DD

M_DES

SDTID

LHSET

IMSKIP

C(_RE -

4.66.9 Desi9n Requirements

Three scratch files are necessary. Open core at /GKAMIX/is used for mode storage.

packed eigenvector must be held in core.

4.66.10 Diagnostic Messages

Fatal error messages 3007 and 3008 may be issued by GKAM.

- integer - input.

- NgI2DD < 0 implies 12DD purged - integer - input.

- Number of modes selected - integer - input.

- Id of structural damping table to be used for BHH - integer - input.

- Length of H set - integer - input.

- Number of records to skip in MI before extracting diagonal terms - integer -

input.

Array of modes selected.

One

4.66-5

4.67

4.67.1

4.67.2

FUNCTIONALMODULEDDRI(DYNAMICDATARECOVERY- PARTl)

FUNCTIONALMODULEDDRI(DYNAMICDATARECOVERY- PARTl)

Entry Point: DDRI

Purpose: To transform modal solutions to physical solutions:

{ud} = [_dh] {uh} .

4.67.3 DMAP Calling Sequence

DDRI UHV,PHIDH/UDV $

4.67.4 Input Data Blocks

UHV

PHIDH

- Solution set displacement vectors.

- Transformation matrix from d set to modal coordinates.

4.67.5 Output Data Blocks

UDV - Displacement vectors - d set.

4.67.6 Parameters

None

4.67.7 Method

Subroutine SSG2B is called to compute {ud} as in Equation I.

4.67.8 Subroutines

DDRI has no auxiliary subroutines.

4.67.9 Design Requirements

(i)

See section 3.5.13 for a description of SSG2B.

One scratch file is needed.

4.67-I

4.68

4.68.1

4.68.2

FUNCTIONAL MODULE DDR2 (DYt&VIICDATA RECOVERY - PART 2)

FUNCTIONAL MODULE DDR2 (DYNAMIC DATA RECOVERY - PART 2)

Entry Point: DDR2

To compute mode acceleration displacements.

4.68.3 DMAP Callin9 Sequence

DDR2 _ETD_DV_PDF_K2DD_B2DD_MDD_FRL_LL_LLL_DM/UD_E_F_PAF/V'N,TYPE/V,N,NgUE/V,N,REAcT/

V,N,FRQSET $

4.68.4 Input Data Blocks

USETD

UDV

PDF

K2DD

B2DD

MDD

FRL

ULL

LLL

DM

- Displacement set definitions table dynamics.

- Displacement vectors - d set.

- Dynamic load matrix for frequency analysis - d set.

- Direct input stiffness matrix - d set.

- Direct input damping matrix - d set.

- Dynamic mass matrix - d set.

- Frequency Response List.

- Upper triangular factor of KLL - _ set.

- Lower triangular factor of KLL - _ set.

- Rigid body transformation matrix.

Notes:

I. USETD must not be purged.

2. UDV must not be purged.

3. PDF must not be purged.

4. FRL must not be purged if TYPE = FREQ.

5. MDD must not be purged.

6. ULL, LLL must not be purged.

7. DM must not be purged if REACT > O.

4.68-I

4.68.5 Output Data Blocks

4.68.6

UDVI

UEVF

PAF

MODULE FUNCTIONAL DESCRIPTIONS

- Displacements after mode acceleration - d set.

- Displacements at the extra points.

- Equivalent load vector for mode acceleration computations - a set.

Parameters

TYPE -

NOUE -

REACT -

FRQSET -

4.68.7 Method

Input-BCD-no default. TYPE determines the type of mode acceleration which will be

used, TRAN for transient or FREQ for frequency response.

Input-integer-no default. N@UE _ 0 indicates presence of extra points.

Input-integer-no default. REACT _ 0 indicates presence of supports.

Input-integer-no default. FRQSET chooses the frequency list if TYPE = FREQ.

The equivalent load vector is computed:

{P_} : {Pd} - [K_d]{ud} - [B_d]{_d} - [Mdd]CUd}.

For a transient analysis problem {Ud}, {Gd}, and {U d} are given explicitly.

Response Analysis:

{6 d} = i_ {u d } ,

(1)

For Frequency

(2)

{Ud} = _m2 {Ud} ' (3)

where m is the forcing frequency and {u d} is the complex response vector, m comes from FRQSET

in FRL. The vector {P_} is the sum of applied loads and inertia loads due to the motion of the

system approximated by its lower modes. The static solution using these loads will provide a

better answer for displacements.

4.68-2

FUNCTIONAL MODULE DDR2 (DYANMIC DATA RECOVERY - PART 2)

If extra points are present (N_UE _ 0), then

(4)

[u e)

{ue} is placed in data block UEVF. Subroutines CALCV and SSG2A perform this calculation.

If supports are present (REACT >__0), then

(5)

%} =) _r-

(6)

(7)

Solve for {u_}:

[L_] [U_] {u_} : {P_} . (8)

This is accomplished in subroutine SSG3A.

If supports are present, then

otherwise, {u_} : {u_}.

{uaa} = _'{u_} + [D] {Ur} _
(......_r.......)'

Subroutine SDRIB performs this calculation.

(9)

4.68-3

MODULEFUNCTIONAL DESCRIPTIONS

Note:

4.68.8

If extra points are present, then

<-I:tl
t ue)

u a
If the problem type is transient, { d } must be merged with {6d} and { d}.

Subroutines Called

CALCV - See section 3.5.5.

SSG2A - See section 3.5.7.

SSG2B - See section 3.5.13.

SSG3A - See section 3.5.18.

SDRIB - See section 3.5.8.

4.68.8.1

(lO)

Subroutine Name: DDRIA.

I. Entry Point: DDRIA.

2. Purpose: To construct the equivalent load vector {P_}.

3. Calling Sequence: CALL DDRIA(PDF,K2DD,B2DD,MDD,UDV,PAF,FRL,FRQSET,SCRI,SCR2,SCR3,SCR4,

TYPE,SCR5).

PDF

K2DD

B2DD

MDD

UDV

PAF

FRL

SCRI-5

GIN_ file number of appropriate data block - integer - input.

FRQSET - Frequency set list id - integer - input.

TYPE Problem type -BCD - input.

FRQSETwill be used only if TYPE = FREQ.

4.68-4

FUNCTIONALMODULEDDR2 (DYNAt41CDATA RECOVERY - PART 2)

4.68.8.2 Subroutine Name: DDRIB

I. Entry Point: DDRIB.

2. Purpose: To merge displacements with previously computed velocity and acceleration in

a transient problem.

3. Calling Sequence: CALL DDRIB (UDV,UAD,UADV).

UDV - GIN_ file number of displacement, velocity and acceleration file - inteoer - input.

UAD - GIN_ file number of equivalent displacements - integer - input.

UADV - GINg file number of new displacements, velocity and acceleration - integer - input.

4.68.9 Design Requirements

Open core for DDR2 begins at /DDRIX/. Open core for DDRIA begins /DDRAI/. Open core for

DDRIB begins /DDRBI/. Six scratch files are needed.

4.68.10 Diagnostic Messages

None.

4.68-5

OUTPUTMODULEXYPLgT(X-Y DATA PLOTTER)

4.69 OUTPUT MODULE XYPLCT (X-Y DATA PLOTTER)

4.69.1 Entry Point: XYPL_T

4.69.2 Purpose

To process information supplied by r,mdule XYTRAN through a single data block and output

to either PLTI (BCD plot tape) or PLT2 (binary plot tape) for labeling and plotting X-Y data

on an off-line plotter.

4.69.3 DHAP Callin9 Sequence

XYPL_T XYPLTT// $

4.69.4 Input Data Blocks

XYPLTT - Plotting Control Values Table. Note if XYPLTT is purged, XYPL_T returns

control without action.

4.69.5 Output Data Blocks

None. (All output consists of physical tapes produced for off-line plotters and

possibly user warning messages to the installation output unit for printing).

4.69.6 Parameters

/,lone.

4.69.7 Method

XYPLCT initially determines open core size and assigns buffers for its input file and

output file. The remaining core is used to store data points read in for each plot. The

input file is then opened and spaced forward over the header record containing the data block

name. Should the system not be able to locate this file, a warning message is output and

X?PLCT returns control to the calling program without further action. Otherwise XYPL_T reads

in the first I.D. record from the input file. A check is made to determine if the word count

of this record is correct. If not, the following records are checked until either the correct

4.69-I

MODULEFUNCTIONALDESCRIPTIONS

wordcountis foundor the error countreachesa specified limit. If the specified limit is

reached,XYPL_Tassumesthe input file is invalid andreturnscontrol to thecalling program

after printing awarningmessage.

If the I.D. recordhadthe properwordcount,XYPLOTchecksif newaxesare necessary.

If not, the nextdatarecordis read,andthe datapairs areplotted on the previousaxes. When

newaxesarenecessary,a checkis madeto determineif theygoonthe lowerhalf of a plot. If

not, XYPL_Tmakesa numberof I.D. datavalidity checks. Wheneverpossible,whereI.D. dataare

questionable,defaultvaluesareassignedandprocessingcontinuesfollowinga warningmessage

that this particular plot maybeinvalid.

After the validity checks,XYPL_Tterminatesthe previousplot andinitializes the plotting

parametersfor theNASTRANplotting software. This is donefor eachnewplot so that it is

possibleto producealternateplots ontwodifferent plotters. Normally,however,plots will be

donefor only oneplotter onanysingle entry to XYPLOT.If required,a newplot is initiated,

andcurveandaxestitles arepreparedfromthe I.D. dataandgenerated.If not a newplot, only

the axestitles aredone.

At this timeXYPL_Tcomputestheconstantswhichwill beusedto transformthe curvedata

into actualplotter counts. Theseconstantsaresavedanduseduntil newaxesaredrawn.

Followingthis, XYPL_Tdeterminesif anytick marksare to beplacedalongthe X axis and

at the XmaximumandXminimumlines. If thereare to be tick marks,the numberandspacing

(linear or logarithmic)is computedfor themandplotted. Asthe X direction tick marksare

prepared,a checkis madeto determineif Y grid lines are requested. If so, a grid line is

preparedat eachtick markandplotted. Logarithmictick marklabelsarepreparedandplotted

at the sametimeasthe tick marksandXgrid lines, if any.

After the tick marksarecompleted,the X andY axesare plotted if requested.Finally

the linear tick marksare labeledin boththe X andY directions if requested.

Oncethe curvetitles, tick marks,andlabelinghavebeenaccomplished,XYPL@Treadsin

the next recordfromthe input datafile. Normallyall the datapairs for anyI.D. recordcanbe

broughtinto corememorywith a single read. However, provision is made for additional reads if

the open core space is not sufficient to contain all the data on the initial read. A check is

made to determine if there are an even number of data values (i.e., an X and Y value for each data

4.69-2 (12-I-69)

OUTPUT MODULE XYPL_T (X-Y DATA PLOTTER)

point). If not, a warning message is printed and the last value ignored. The data are then

checked against the previously defined X and Y minimums and maximums. Any data outside these

limits are ignored and not plotted.

and plotted in one of three modes.

plot; combination of the first two.

The remaining data points are then converted to plotter counts

The three modes are: point plot with choice of symbol; line

After finishing the data, XYPLgT reads in the next I.D. record and continues as before until

an end-of-file is reached. At this point it closes the input file, terminates the current plot

and returns control to the calling program.

4.69.8 Subroutines

XYPLgT calls the following plotter utility subroutines: AXIS, LINE, PRINT, SgPEN, PLTSET,

STPLgT, SYMBOL, TIPE, TYPFLT, and TYPINT. The descriptions of these subroutines may be found in

section 3.4.

4.69.9 Design Requirements

4.69.9.1 Allocation of Core Storage

XYPLgT uses open core for two GINg buffers and the remainder as one large buffer for data

points. It appears as follows:

4.69-3 (12-1-69)

MODULE FUNCTIONAL DESCRIPTIONS

Normally the data pairs buffer will be sufficiently large to hold all the data pairs for

a single curve at one time. However, this is not necessary and XYPLBT could operate if the data

pairs buffer were only two words long, although not efficiently. As an output module, XYPLOT

has been programmed to avoid any system fatal errors. The worst condition that should occur is

that no plots are produced. In all cases XYPLOT returns to the calling program so that other

system functions may be continued.

4.69.9.2 Environment

The beginning of open core for XYPL_T is defined by /XYPLXX/. XYPLOT uses no scratch

files. Common storage requirements consist of /XXPARM/ and /PLTDAT/ which are defined in the

block data deck PL_TBD which must be loaded with XYPLOT. /CHAR94/ and SYMBLS/ are also defined

in PLOTBD and are necessary for the subroutines called by XYPL_T. See section 2.5 for a

description of these common blocks.

When XYPLOT is called, there must be at least one physical tape set up to receive the

plotted output, otherwise XYPLOT returns to the calling program without further action.

4.69.10 Diagnostic Messages

Diagnostic messages 991 through 997 may be output on the installation printer device as

a result of XYPL_T operation. Generally they are self-explanatory and usually point out

particular plots which are questionable rather than giving the user a precise method of

solving the problem. This is not possible since XYPLOT receives all its information

through a series of other modules rather than from the user directly. See section 6 of the

User's Manual for details.

4.69-4

4.70

4.70.I

4.70.2

OUTPUT MODULE _FP (OUTPUT FILE PROCESSOR)

OUTPUT MODULE @FP (OUTPUT FILE PROCESSOR)

Entry Point: _FP

Purpose

_FP outputs to the system output file, in user-orierted, self-explanatory formats, data

blocks prepared for output by other functional modules.

4.70.3 DMAP Calling Sequence

@FP DBI,DB2,DB3,DB4,DB5,DB6//V,N,CARDN@ $

4.70.4 Input Data Blocks

One to six input data blocks in the output order desired. Any or all input data blocks

may be purged.

4.70.5 Output Data Blocks

None

4.70.6 Parameters

CARDN@

4.70.7 Method

- Input and output - integer - default = O. CARDN_ is incremented by one

and punched in columns 73-80 for each card punched by _FP.

4.70.7.1 Overall Logic Flow

The _FP logic consists of defining one GIN_ buffer and then entering one overall loop of

six passes (one pass for each data block). All input data blocks are then handled identically

one at a time.

Within each data block, each odd numbered (Identification) record and its respective

immediately following even numbered (Data) record _re considered as a pair, and is a completely

separate entity. There is, and need be, no corres o)Idencebetween these two records and the

previous two records, or between these two records ind the following two records.

4.70-I

MODULE FUNCTIONAL DESCRIPTIONS

r
Thus, within the loop for a given data block, after the file on which the data block resides

is opened and its header record is skipped, _FP reads an Identification record, defines various

pointers and descriptors, and then, if any data are present in the Data record, processes this

data line by line until the end-of-record is reached. This process continues for all Identifica-

tion-Data record pairs.

4.70.7.2 Defining Descriptors and Pointers

Because _FP was confronted with outputting a vast array of data classes having many data

format and heading format configurations, it was decided that in order to keep _FP from be-

coming a mammoth module of format statements, a system of pointers would be used in conjunction

with all the different micro-format elements required.

Information in the Identification record is sufficient to select an initial class pointer.

This class pointer, with the addition of a subclass pointer, points to an array of six pointers,

five of which define five micro-line formats (from the master set of micro-line formats), and one

of which points to a string of micro-data format pointers. These micro-data format pointers then

each point to a micro-data format capable of outputting a single variable.

This design is such as to make possible the definition of macro-formats and to allow for

easy modification and addition of more output data classes.

4.70.8 Subroutines

4.70.8.1 Subroutine Name: _FPPUN

I.

2.

3.

Entry Point: @FPPUN

Purpose: To write output on the system punch unit.

Calling Sequence: CALL _FPPUN (BUF,NWDS,I_PT,IDD,PNCHED)

BUF Array to be output.

NWDS - Number of words in BUF to output.

I_PT . II = Vector output.
!2 = General output.

0 = S@RTI (Ist word Integer).

IDD " t
1 = S_RT2 (Ist word Real).

4.70-2

4.70.8.2

I.

2.

3.

4.70.8.3

OUTPUT MODULE gFP (OUTPUT FILE PROCESSOR)

I.FALSE. = Punch heading c_rds.PNCHEO I

I
t.TRUE. = Do rot punch heading cards.

Subroutine Name: gFPl

Entry Point: gFPl

Purpose: To call PAGE and write five micro-line formats.

Calling Sequence: CALL pFPI

Subroutine Name: pFPIA

I. Entry Point: gFPIA

2. Purpose: An auxiliary routine to pFPI. Called by gFPI only.

3. Calling Sequence: CALL PFPIA(LIhE)

LINE - Integer - Branch to format pointer.

4.70.8.4 Block Data Subprogram Name: gFPIBD

gFPIBD defines common block /@FPBDI/.

4.70.8.5 Block Data Subprogram Name: CFP2BD

_FP2BD defines common block /_FPBD2/.

4.70.8.6 Block Data Subprogram Name: gFP3BD

_FP3BD defines co_n block /_FPBD3/.

4.70.8.7 Block Data Subprogram Name: _FP4BD

_FP4BD defines co.,or block /OFPBD4/.

4.70.8.8 Block Data Subprogram Name: gFP5BD

gFP5BD defines con_on block /gFPBD5/.

4.70-3

MODULEFUNCTIONALDESCRIPTIONS

4.70.9 Design Requirements

The common blocks listed above interface between the main subroutines OFP and _FPIA. In

addition C_MM_N/_FPXXX/ is used to define open-core which contains the following.

Ll
L2
L3
L4
L5

ID

Five words which indicate the five format numbers

defining the heading for the current data being output.

A fifty word buffer for storage of the first fifty words
of an identification record from the data block to be

output.

BUFF - A GIN_ buffer.

The pointer system required by the design operates as described below. The arrays B,C,D,E,

and ESINGL, referenced in the discussion below appear in subroutine OFP.

I. The variable I is set equal to the Data type specified in the data block. The variable

J is set equal to the class of data: l = Real - SORTI, 2 = Complex - S_RTI, etc. Then the

base pointer, CPOINT = B(I,J), is found.

Data type l

Data type 2

Data type N

B array

S_RT 1

Real Complex

0 130

2 134

4 138

SORT 2

Real

120

122

124

Complex

132

136

140

For Future_Expansion

4.70-4

Example:
For I = 2, J = 4.

CP_INT = B(I,J)
= 136

OUTPUTMODULEgFP(OUTPUTFILEPROCESSOR)

2. CPgINTis a indexinto the Carray. Define: DPgINT = C(CPgINT). DPglNT is an index

into the D array. Also

and

LI = C(CP_INT + l),

L2 = C(CP_INT + 2),

L3 = C(CP_INT + 3),

L4 = C(CP_INT + 4).

L5 = C(CP@INT + 5).

These are the 5 line format numbers which make up the heading format for the type of data

currently being processed.

C array

25

I0

12

8

136

137

138

139

140

141

DP_INT

Ll

L2

L3

L4

L5

A A

Future Expansion

4.70-5

MODULEFUNCTIONALDESCRIPTIONS

3. WordDP_INTof the Darraydefinesthebeginningof a string of pointersinto the E array.

Thisstring is terminatedby the first wordcontaininga zero. Eachwordof this string thus

definesa string of wordsin the E arraywhichcontainsHollerith datafor constructionof

a format. Shoulda wordin the Darraybenegative,the absolutevalueis usedto point into

the ESINGLarraywhichcontainsHollerith dataalso.

DP@INT-I

DP_INT

DP_INT+I

D array

5

2

6

9

-4

10

20

0

Future Expansion

4.70-6

OUTPUTMODULE_FP(OUTPUTFILEPROCESSOR)

4. The E array contains Hollerith data pertaining to the output of a variable; the ESINGL

array contains Hollerith data pertaining to spacing and carriage control only.

E array

IPEl

6.6,

IPEl

7.6,

FIO.

,^^

E21.

4^^^

E22.

5^^^

ETC.

_-_uture Expansion

J

I_ote ^ implies BCD
blank

ESINGL array

IX^^

/15X

/IHO

ETC.

Future Expansion

4.70.I0 Diagnostic Messages

If, during some phase of outputting a data block, gFP encounters an error condition, work on

that data block will cease, a warning message will be printed, and a call to the NASTRAN table-

printer for table printing of this data block will be made. _FP will then continue processing the

remaining input data blocks.

4.7O-7

OUTPUTMODULEMATPRN(GENERALMATRIXPRINTER)

4.71 OUTPUTMODULEMATPRN (GENERALMATRIX PRINTER)

4.71.1 Entry Point: MATPRN.

4.71.2 Purpose

To print general matrix data blocks.

4.71.3 DMAP Calling Sequence

MATPRN KGG,PL,PG,B2PP,UPV// $

4.71.4 Input Data Blocks

KGG - Any matrix data block.

PL - Any matrix data block.

PG - Any matrix data block.

B2PP - Any matrix data block.

UPV - Any matrix data block.

Notes:

I. Any or all input data blocks can be purged.

2. If any data block is not a matrix, the TABPT routine will be called.

4.71.5 Output

The non-zero band of each column of the input matrix is unpacked and is printed in single

precision format on the system output file.

4.71.6 Parameters

None.

4.71.7 Method

Subroutine MATDUMis called for each non-purged input file.

4.71.8 Subroutines

MATDUM - See subroutine description, section 3.4.28.

4.71-I

OUTPUT MODULE MATGPR (DISPLACEMENT METHOD MATRIX PRINTER)

4.72

4.72.1

4.72.2

OUTPUT MODULE MATGPR (DISPLACEMENT METHOD MATRIX PRINTER)

Entry Point: MATGPR

Purpose

To print displacement method matrices, identifying values with external grid point nuni_ers.

4.72.3 DMAP Callinq Sequence

MATGPR GPL,USET,SIL,A_IYMAT//C,N,C_LSET/C,N,R_WSET

4.72.4 Input Data Blocks

GPL -

USET -

SIL -

ANYMAT-

Notes:

I.

2.

4.72.5

Grid Point List (This may also be GPLD if extra points are present.)

Displacement set definitions table (This may also be USETD if extra points

are present.)

Scalar Index List (This may also be SILO if extra points are present.)

Any displacement method matrix.

Unless C_LSET = R_WSET = 'H', GPL, USET and SIL must be present.

If ANYMAT is purged, MATGPR will return.

Output Data Blocks

The non-zero terms of @d_Y_T are given external identification and printed on the

system output file.

4.72.6 Parameters

C@LSET - Input-BCD-no default. C_LSET indicates the set to which the columns of ANYMAT

belong. If C_LSET is not one of the following: M,_,R,SG,SB,L,A,F,S,N,G,E,P,NE,FE,D,H then MATGPR

will return.

RffWSET Input-BCD-default = X. R@WSET indicates the set to which the rows of ANYMAT

belong. If RgWSET is not a legal set name, R_WSET = C_LSET.

4.72-I

MODULEFUNCTIONALDESCRIPTIONS

4.72.7 Method

TheBCDparametersC_LSETandR_WSETart convertedto bit positions in USET.COLSETmust

beoneof the following17symbols:M,O,R,SG,SB,L,A,F,S,N,G,E,P,NE,FE,D,Hor elseMATGPRwill

return. If ROWSETis not a legitimatesymbolROWSET= C_LSET.

GPL, USET, and SIL are placed in core. Each column and non-zero row element is identified

according to the following scheme:

I. USET is searched for the number of members belonging to the g set (p set if USETD is

used) before the current member of the matrix set.

2. This number is looked up in SIL to obtain the internal grid point number and type of

point (scalar, grid, or extra).

3. The internal grid point number points into GPL for the external ID.

4.72.8 Subroutines

FtATGPRhas no auxiliary subroutines.

4.72.9

I.

2.

Design Requirements

Open core is defined at /MPRTX/.

Layout of open core is as follows:

C@MM@N/MPRTX

GPL

USET

SIL

Buffer

LGPL

LUSET

LSIL+I

GINO buffer

4.72-2

OUTPUTMODULEMATGPR(DISPLACEME_TMETHOD_4ATRIXPRINTER)

4.72.10 Diagnostic 14essaBes

I_ATGPRmay issue the following diagnostic messages:

3007 and 3008.

4.72-3

4.73

4.73.1

4.73.2

OUTPUT MODULE MATPRT (MATRIX PRINTER)

OUTPUT MODULE MATPRT (MATRIX PRINTER)

Entry Point: PRTINT

To print a matrix data block.

4.73.3 DMAP Callin9 Sequence

MATPRT X//C,N,RC/C,N,Y $

4.73.4 Input Data Block

X - Matrix data block to be printed.

4.73.5 Output Data Blocks

None.

4.73.6

RC

Y

If X is purged, then nothing is done.

Parameters

Indicates whether X is stored by rows (RC = l) or columns (RC = O) - integer - input.

Indicates whether X is to be printed (Y < O, do not print X; Y > O, print X)

- integer - input - default value = -l.

4.73.7 Method

Each column (or row) of the matrix is broken into groups of 6 terms (3 terms if complex)

per printed line. If all the terms in a group = O, the line is not printed. If the entire

column (or row) - O, it is not printed. If the entire matrix = O, it is not printed.

4.73.8 Subroutines

4.73.8.1 Subroutine Name: INTPRT

I. Entry Point: INTPRT

2. Purpose: To print a matrix data block using subroutine MATPRT.

3. Calling Sequence: CALL INTPRT (A,CR,9,NAME)

4.73-1

MODULEFUNCTIONALDESCRIPTIONS

where:

A - Storagefor 1 column(row)of the matrix+ 1GIN_buffer.

CR _{ 0 if the matrix is storedby columns.1 if the matrix is storedby rows.

_{ 0 if the matrix is not to beprinted.1 if the matrix is to beprinted.

NAME- 8 characternameof the matrix (2 words,4 charactersperword).

3. Method:SubroutineMATPRTis called to print the matrix. WheneverHATPRT returns

for a matrix name or column/row id to be printed, the name of the matrix (NAMEI,NAME2)

or the column or row id (as indicated by 'CR'), is printed.

4.73.8.2 Subroutine Name: MATPRT

I. Entry Points: MATPRT, PRTMAT

2. Purpose: To print a matrix data block.

3. Calling Sequence: CALL MATPRT($NI,$N2,A,_PT,C_LNUr, I)

CALL PRTMAT($NI,$N2)

C_MM_N/XXMPRT/MCB(7)

where:

N1

N2

A

I_PT

C@LNUM

- F_RTP_ANstatement number defining the return executed whenever a new page

has been started (the calling program is expected to print the matrix and

column id. COLNUM= current column number).

- F_RTRANstatement number defining the return executed whenever the column

id must be printed in the middle of a page (C_LNUM = current column number).

- Storage for 1 column of the matrix + one GIN@ buffer.

- See subroutine description for VECPRT, below, for the explanation of

this argument.

- Current column number being printed (output).

MCB - Matrix control block.

4.73-2

OUTPUT MODULE MATPRT (MATRIX PRINTER)

3. Method: The matrix is unpacked and printed one column at a time. Whenever either of

the nonstandard returns ($NI,$N2) is executed, the calling program must call PRTMAT to

continue the printing of the matrix.

4. Additional Subroutines Called: VECPRT.

4.73.8.3 Subroutine Name: VECPRT

I. Entry Points: VECPRT, PRTVEC

2. Purpose: To print a vector.

3. Calling Sequence:

where:

Nl

N2

p

N -

A -

_PT -

CALL VECPRT ($NI,$N2,P,N,A,_PT)

CALL PRTVEC ($NI,$N2)

F_RTR#J_statement number defining the return executed whenever a new page

has been started (the calling program is expected to print the vector id and

any other subtitles desired).

F_RTRAN statement number defining the return executed whenever the vector

id is to be printed in the middle of a page.

Vector type and precision.

Number of components in the vector.

Location of the vector.

0 if all the vector components are to be printed, regardless of its
sparsity, and if it is to be printed starting on a new page if it
will not fit on the current page.

+l if only the printed lines which would have at least one non-zero
component are to be printed, and if the vector is to be printed starting
on a new page if it will not fit on the current page.

-I if only the printed lines which would have at least one non-zero
component are to be printed, and if as much of the vector as possible
is to be printed on the current page.

3. Method: The vector will be printed as a single precision real or complex vector. The

components will be printed 6 per line if real, 3 per line if complex. In addition, the

first and last components of each line will be identified on each side of the line by

their respective component members. In addition whenever either of the nonstandard

4.73-3

MODULEFUNCTIONALDESCRIPTIONS

returns($NI,$N2) is executedthe calling programmustcall PRTVECto continuethe printing
of the vector.

4. AdditionalSubroutinesCalled: F_RMAT.

4.73.8.4 SubroutineName:F_RMAT

I. EntryPoint: F_RMAT

2. Purpose:Toprint a line of l to 6 real numbers(optionally centered)precededand

followedby integer id's of the first andlast numberprinted.

3. CallingSequence:CALLF_t_T (A,NI,N2,N3,LI,L2)

where:

A

Nl

N2

Arrayfromwhichthe l to 6 real numbersare to beprinted.

Indexof the Ist numberin the array to beprinted.

Indexof the last numberin the arrayto beprinted.

N3 - Incrementto beusedin extractingthe 2rid, 3rd, etc., numbersin the

array to beprinted.

Ll - Integerid of the Ist numberto beprinted.

L2 - Integerid of the last numberto beprinted.

3. Method:If Ll andL2arebothpositive, the numberswill becenteredon the page.

If either Ll or L2 is not positive, the numberswill beprintedbaseduponthe

centeringof 6 numbers.

4.73.9 Design Requirements

Open core is defined at /XXPRTI/. Open core contains one GIN_ buffer followed by one

unpacked real or complex single precision column of the matrix.

4.73-4

OUTPUT MODULE SEEMAT (PICTORIAL MATRIX PRINTER)

4.74 OUTPUT MODULE SEEMAT (PICTORIAL MATRIX PRINTER)

4.74.1 Entr_,Point: SEEMAT

4.74.2 Purpose

To show nonzero matrix elements on printer or plotter output positioned pictorially by

row and column within the outlines of the matrix.

4.74.3 DMAP Calling Sequence

SEEMAT MI,M2,M3,M4,M5//C,N,{_}/V,N,PFILE/V,N,PACK/C,N,PL,TTER/C,N,MgDELNI/C,N,

M_DELBI/C,N,M(_DELN2/C,N,M(_DELB2$

Note that parameters PL(_TTER,M_DELNI, M_OELBI, M_DELN2 and M(_DELB2are all described in

paragraph 4 in section 4.74.6.

4.74.4 Input Data Blocks

Ml
M2

M3 Matrix Data Blocks, any of which may be purged.
M4
M5

4.74.5 Output Data Blocks

None. The formatted matrix picture is output on the system output file or on a plot tape

depending on the value of the first parameter.

4.74.6 Parameters

I. PRINT implies use of the system output file. (Any value other than PLtT implies PRINT).

PL(_Timplies use of one of the plotters. Either of the plotter tapes PLTI or PLT2 will be

used, depending on the type of plotter requested.

2. PFILE is the plot number (Used only if first parameter is PL(_T).

Input/output variable integer parameter. Frame or sheet number. The value of this

parameter will be incremented by one (1) for each frame (sheet) created by SEEMAT.

The default value for this parameter is O.

3. PACK is reserved for a future modification that will allow the representation of a nonzero

block of the matrix with a single character. This parameter may be specified as C,N only.

(see example in paragraph 4 below)

4.74-I (12-I-6g)

MODULEFUNCTIONAL DESCRIPTIONS

4. Plotter Name and Model Identification (Used only if parameter 1 = PL_T.)

Each plotter name has associated with it two model identifiers. Each of these model

identifiers may either be an integer (M_DELNi) value or BCD (M_DELBi) value. If model

identifier "i" (i = I, 2) is an integer, insert its value for M_DELNi; if model identifier

"i" (i = I, 2) is BCD, insert its value for MODELBi. In either case, specify the other

value for model identifier "i" (MODELBi and M_DELNi, respectively) as C,N only.

Below is a list of model identifiers allowable for each plotter name. A detailed

explanation of this list can be found in section 4 of the User's Manual. Each plotter has

associated with it a default model and several optional models. The model underlined is the

default model. To access this default model, do not specify any of the last four DMAP

parameters. For example to specify the CALC_MP 765, 205 (see section 4 of the User's Manual)

the following DMAP statement may be used:

SEEMAT MI,M2,M3,M4,M5//C,N,PLOT/V,N,PFILE/C,N/C,N,CALC_MP $

Plotter Name Model Identifiers

BL LTE,30
tSTE,30!

EAI _3500,300_
_3500,45

sc 4020,0

CALC@MP

/ 765.205\

765,105

765,110

763,205

763,210

763,105

763,110

565,205

565,210

565,105

565,110

565,305

565,310

563,205

563,210

4.74-2 (12-I-69)

OUTPUTMODULESEEMAT(PICTORIALMATRIXPRINTER)

where:

Plotter Name

DD

NASTRAN

BL is a Benson-Lehner plotter

EAI is an Electronic Associates plotter

SC is a Strond_ergCarlson plotter

CALC_MP is a California Computer plotter

DD is a Data Display plotter

NASTRAN is the NASTRAN general purpose plotter

Model Identifiers

563,105

563,110

563,305

563,310

BOB

D

DO

M1

T1

D1

4.74.7 I_tethod

The matrix is partitioned into blocks which can be printed on a single sheet of output paper

or plotted on a single frame or sheet of plotter output media. Only blocks containing nonzero

elements will be printed. Row and column indices are indicated. The user of this module is

cautioned to make sure that his line count limit is large enough. A default of 20,000 lines is

provided by NASTRAN. This may be changed via the statement "MAXLINES = value" in the NASTRAN

Case Control Deck. The transpose of the matrix is always printed.

The columns of the matrix are examined for nonzero terms. Let the matrix be partitioned

into blocks, where a block consists of NL columns and lO0 rows, where NL is the number of data

lines per page obtained from /SYSTEM/. For each block containing nonzero terms, a BCD block

image is stored in open core in packed bit format. Only blocks containing nonzero terms are

stored. When NL columns have been passed, the blocks containing nonzero terms are printed on

4.74-3 (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

the system output file or plotted. Note that since NASTRAN matrices are stored by column, the

transpose of the matrix is what actually appears on the printed or plotted output. Blocks used

for the first NL columns may now be re-used for subsequent groups of NL columns. This process

is continued until all columns of the matrix have been processed. As many as five matrices may

be handled during a single call to SEEMAT.

4.74.8 Subroutines

The plotter environment subroutines are utilized by SEEMAT. See section 3.4 for descriptions

of the plotter utility routines.

4.74.8.1

I.

2.

3.

Subroutine MAPSET

Entry Points: MAPSET, MAP

Purpose: Converts physical units to plotter units for module'SEEMAT.

Calling Sequence: CALL MAPSET (XI,YI,X2,Y2,KII,KJI,KI2,KJ2,L)

CALL MAP (X,Y,KI,KJ)

X,Y,Xi,Yi = Physical coordinates

KI,KJ,KIi,KJi : Plotter coordinates

L = Output Format Flag, input

1 : KI,KJ are integer

2 = KI,KJ are real

The meaning of i follows:

i = 1

i = 2

i = blank

point is lower left corner of frame

point is upper right corner of frame

point is an arbitrary point on frame.

4.74-4 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.74.9 Design Requin_nts

4.74.9.1 O_n Con I_sign

C_N S_X/
block 1

block 2

block 3

l

I block i

s

#J
#

sS

eS

\

block n

unused o_n con

GIN@ buffer

SGIN@ buffer
(if needed)

\

\
\

/ Word I
#

• Word 2

\

\
\
\
\

Word 3

Word 6

e

Word lO

Typical Block

Ist r_ no. - l

Ist col no. - l

Col l (lO0 bits @ 32 bits/word

_JCol 2 (lO0 bits @ 32

bits/word

J

Col NL (lO0 bits @32 bits/word

i not used

4.74-4a (8/I/72)

OUTPUTMODULESEEMAT(PICTORIALMATRIXPRINTER)

4.74.9.2 DataRequirementsandRestrictions

I. All nonpurgedinput datablocksmustbematrices. Error diagnosticswill occurin the

unpackingroutinesif anattemptis madeto input a table datablockto SEEMAT.

2. If the numberof blocksneededoverflowsthe availableoperlcore (e.g., a large full

matrixcando this), a nonfatal diagnostic message will be output on the System Output File

and processing for that matrix will bE terminated. The user may decrease NL by adding a

Case Control Card LINE = NL as a means of overcoming this restriction (printer only). Since

the type of matrix for which one is interested in seeing the topology is usually sparse and

at least partially banded, this restriction should not prove serious.

4.74.10 Diagnostic Messages

Diagnostic conditions detected by SEEMAT are nonfatal and result in appropriate error

messages and termination of the processing of the current input matrix data block. The one

exception is the condition of no open core for GIN_ buffers, which should not occur in practice.

4.74-5 (12-I-69)

OUTPUT MODULE TABPT (TABLE PRINTER)

4.75 OUTPUT MODULE TABPT (TABLE PRINTER)

4.75.1 Entry Point: TABPT.

4.75.2 Purpose

To print table data blocks.

4.75.3 DMAPCallin 9 Sequence

TABPT TAB1,TAB2,TAB3,TAB4,TAB5// $

4.75.4 Input Data Blocks

TAB1 - Any NASTRANdata block.

TAB2 - Any NASTRANdata block.

TAB3 - Any NASTRANdata block.

TAB4 - Any NASTRANdata block.

TAB5 - Any NASTRANdata block.

Not___ee:Any or all input data blocks can be purged.

4.75.5

Each word in a data block is identified as real, BCD, or integer and printed on the system

output file. The trailer data is also printed.

4.75.6 Parameters

None.

4.75.7 Method

Subroutine TABPRT is called for each non-purged input file.

4.75.8 Subroutines

TABPRT - See subroutine description, section 3.4.29.

4.75-I

OUTPUT MODULE PRTMSG (MESSAGE WRITER)

4.76 OUTPUTMODULEPRTMSG(MESSAGEWRITER)

4.76.1 Entry Point: PRTMSG

4.76.2 Purpose

To process a data block of user-oriented messages.

4.76.3 DMAP Calling Sequence

PRTMSG MSG// $

4.76.4 Input Data Blocks

MSG - Messages to be printed (if purged, nothing is done).

4.76.5 Output Data Blocks

None

4.76.6 Parameters

None

4.76.7 Method

In addition to messages, the MSG data block may contain titles and subtitles. Before

the first message is printed, a new page is started. From then on, a message count is main-

tained so as to start another new page when the maximum number of lines per page is exceeded.

messages are assumed to be only one line long. However, there is logic included to provide

for messages of more than one line, forcing a new page at any time, and the alteration of

titles and subtitles at any time. The description below of subroutine WRTMSG details all the

included logic capability.

4.76.8 Subroutines

PRTMSG uses the utility routines EJECT and FREAD (see sections 3.4.62 and 3.4.15).

4.76.8.1 Subroutine Name: PRTMSG

All

4.76-I

MODULE FUNCTIONAL DESCRIPTIONS

I. Entry Point: PRTMSG

2. Purpose: To print the user messages in the MSG data block.

3. Calling Sequence: CALL PRTMSG

C_MM@N/_UTPUT/TITLE(32,6) - See _UTPUT miscellaneous table description in secticn 2.5.

Where:

TITLE

4. Method:

4.76.8.2

I.

2.

3.

= NASTRAN title, subtitle, label, and three extra subtitles.

Open the MSG data block, and skip record O. If the MSG data block does not

exist, nothing else is attempted. Otherwise, the three extra subtitles are set to all

blanks, and WRTMSG is called.

Subroutine Name: WRTMSG (General purpose subroutine)

Entry Point: WRTMSG

Purpose: To process a data block of user-oriented messages.

Calling Sequence: CALL WRTMSG (HSG)

C_MM_N/SYSTEM/ - See SYSTEM table description in section 2.4.1.8.

Where:

MSG = GIN_ file name of the rISG data block.

and in /SYSTEM/

MAXLIN = Maximum number of lines permitted per page.

COUNT = Number of lines thus far printed on the current page.

4. Method:

a. Save the current NASTRAN title, subtitle, and label. Force the first message

to start on a new page (COUNT=MAXLIN).

b. Read one word (N) from MSG. If an end-of-record condition occurs, force the

first message in the next record to start on a new page (C_UNT=MAXLIN). Then

repeat this step.

c. If N < O, the next 32 words are assumed to be a replacement for TITLE (I-32,N).

Force the next message to start on a new page (COUNT=MAXLIN). Repeat step b.

4.76-2

OUTPUTMODULEPRTMSG(MESSAGEWRITER)

d. If N > O, a list and format follow. The next N items are assumed to be

the list items. If IC= O, only a format follows.

e. Read one word (NF) from MSG. If HF < O, NF = number of lines to be generated

by this message (repeat this step). If NF = O, this message will be printed starting

on a new page (C_UNT=MAXLINo repeat this step). Unless otherwise instructed, this

subroutine assumes that each message will generate only l line of output. In either

case, integer function EJECT is called to maintain the page line count. If this

message will not fit on this page, any extra title(s) explicitly specified are printed

below the NASTRAN title, subtitle, and label.

f. If NF > O, NF = size of the format (the format must be a continuous string of

characters, contrary to the usual r_STRAN method of specifying at most 4 characters per

word). The next NF words are assumed to be the format to be used with the list

items read in step d, in one the following F_RTRAN statements:

W_ITE (M_,F_R) [if no list is specified].
or

WRITE (M_,F_R) (LIST(1), I = I,N)

Repeat step b.

g. When the end of the MSG data block is encountered in step b, the NASTP_N title,

subtitle, and label are restored, and the MSG data block is closed with a rewind.

5. Design Requirements:

a. The message data block (HSG) must be opened before calling WRTMSG.

b. In general, a set of messages is one record of the data block. Each set of

messages will start on a new page.

4.76.9 Design Requirements

Open core is defined at /XXPMSG/, and is used only for one GIN_ buffer which is defined

at the beginning of open core.

4.76-3

OUTPUT MODULE PRTPARM (PARAMETER AND Dt&_PMESSAGE PRINTER)

4.77 OUTPUT MODULE PRTPARM (PARAMETER AND DMAP MESSAGE PRINTER)

4.77.1 Entr_ Point: PRTPRH

4.77.2 Purpose

To print parameter values and DMAP messages.

4.77.3 DMAP Callin9 Sequence

PRTPARM //C,N,_/C,N,B $

4.77.4 Input Data Blocks

None

4.77.5 Output Data Blocks

None

4.77.6 Parameters

- Integer value (no default value)

B - BCD value (default value = XXXXXXXX)

4.77.7 Method

As a parameter printer, use _ = O. There are two options:

I. B = parameter name will cause the printout of the value of that parameter.

Example: PRTPARM //C,N,O/C,N,LUSET $

2. B = XXXXXXXX will cause the printout of the values of all parameters in the

current XVPS. Since this is the default value, it need not be specified.

Example: PRTPARM //C,N,O $

As a DMAP message printer, use _ _ O. There are two options:

I. _ > 0 causes the printout of the jthmessage o2 category B where j = I_I and B is one

of the values shown below. (The number of me_sages available in each category is also

shown).

Example: PRTPARM //C,N,I/C,N,DV_P $

4.77-I

MODULE FUNCTIONAL DESCRIPTIONS

2. _ < 0 causes the same action as _ > 0 with the additional action of program

termination. Thus, PRTPARM may be used as a fatal message printer.

Example: PRTPARM //C,N,-2/C,N,PLA $

4.77.8 Remarks

I. _ is _ a value.

2. TABLE OF _ CATEGORY VALUES

Rigid Format

Static Analysis

Static Analysis with Inertia Relief

Normal Mode Analysis

Static Analysis with Differential Stiffness

Buckling Analysis

Piecewise Linear Analysis

Direct Complex Eigenvalue Analysis

Direct Frequency and Random Response

Direct Transient Response

Modal Complex Eigenvalue Analysis

Modal Frequency and Random Response

Modal Transient Response

DMAP

Number of

Value of Beta Messages

STATICS 4

INERTIA 4

M_DES 4

DIFFSTIF 6

BUCKLING 7

PLF_ 6

DIRCEAD 5

DIRFRRD 6

DIRTRD 5

MDLCEAD 6

MDLFRRD 7

MDLIRD 7

DMAP 1

3. For details on error messages for the i th Rigid Format see section 3.(i + I).2

in the User's Manual.

4.77.9 Subroutines

PRTPRM has no auxiliary subroutines.

4.77-2

OUTPUT MODULE PRTPARM (PARAMETER AND DMAP MESSAGE PRINTER)

4.77.10 DiaBnostic MessaBes

Values of _ and B inconsistent with the above under "Method" will result in diagnostic

messages from PRTPARM.

4.77-3

4.78

4.78.1

4.78.2

4.78.4

MATRIX MODULE ADD (ADD'TWO MATRICES)

MATRIX MODULE ADD (ADD TWO MATRICES)

Entry Point: DADD

Purpose

To compute [C] = _[A] + B[B].

4.78.3 DMAP Calling Sequence

ADD A,B/C/C,Y,#LPHA=(I.O,2.0)/C,Y,BETA=(3.0,4.0) $

Input Data Blocks

A - Any matrix _ B

B - Any matrix # A

Not____ee:A and/or B can be purged.

4.78.5 Output Data Blocks

C - Matrix.

The type of C is maximum of the types of A, B, 6, B.

is present. Otherwise it is that of B.

Note: C cannot be purged.

4.78.6 Parameters

ALPHA - Input-complex-no default value.

BETA - Input-complex-no default value.

Note: If Im(_) or Im(B)

4.78.7 _thod

The shape of C is the shape of A if A

This is the scalar multiplier for A.

This is the scalar multiplier for B.

= 0.0, the parameter will be considered real.

If [A] is not purged, the number of columns, rows, and form of [C] = number of columns, rows,

and form of [A]. Otherwise the [B] descriptors are used. The tyDe of [C] is the maximum

compatible type of [A], [B], ALPHA and BETA. ALPHA and BETA are assumed to be real if their

imaginary parts are zero.

4.78-I (8/1/72)

MODULEFUNCTIONALOESCRIPTIONS

4.78.8 Subroutines

ADD- Seesubroutinedescription,Section3.5.10.

4.78.9 DesignRequirements

Opencore is definedat /DADDA/.

4.78.10 Diagnostic Messages

None.

4.78-2 (8/I/72)

MATRIX MODULE MPYAD (MULTIPLY ADD)

4.79 MATRIX MODULEMPYAD (MULTIPLY ADD)

4.79.1 Entry Point: DMPYAD

4.79.2 Purpose

MPYAD performs the multiplication of two matrices and, optionally, addition of a third

matrix to the product: [D] = [ALIBI _[C]

4.79.3 DMAP Calling Sequence

MPYAD A,B,C/D/C,N,T/C,N,SIGNAB/C,N,SIGNC/C,N,PREC

4.79.4 Input Data Blocks

A - Left hand matrix in the matrix product [A][B]

B - Right hand matrix in the matrix product [A][B]

C - Matrix to be added to [A][B]

,,ut:s.

I.

2.

3.

4.79.5

D

Note: D may not be purged.

4.79.6 Parameters

If no matrix is to added, C must be purged.

A, B, C must be physically aifferent data blocks.

A and B must not be purged.

4. Either A or B (but not both) may be a NASTRAN diagonal matrix.

C must be purged.

Output Data Block

- Matrix resulting from the MPYAD operation.

- Integer-input-no default.

In this case,

I, perform [A]T[B]
= O, perform [A][B]

4.79-I

SlGNAB

SlGNC

PREC

MODULEFUNCTIONALDESCRIPTIONS

Integer-input-no default.

Integer-input-no default.

SIGNAB

SIGNC

PRECInteger-input-no default.

+ll, perform [A][B]= - , perform -[A][B]

I+ll' add [c]= - , subract [C]

Cl, elements of[D] will be output in

: _single-precision.

2, elements of[D] will be output in
double-precision.

4.79.7 Examples

I. [D] : [A][B] + [C] (D double precision)

MPYAD A,B,C/D/C,N,O/C,N,I/C,N,2 $

2. [D] = [A]T[B] - [C] (D single precision)

MPYAD A,B,C/D/C,N,I/C,N,I/C,N,-I/C,N,I

3. [D] = -[A][B] (D double precision)

MPYAD A,B,/D/C,N,O/C,N,-I/C,N,O/C,N,2

4.79.8 Method

DMPYAD reads the trailers for the data blocks A, B and C. /MPYADX/ is initialized. If

neither [A] nor [B] is diagonal, MPYAD is called, the trailer for D is written, and the module

exits. Otherwise, /DMPYX/ is initialized, and DMPY is called to perform the diagonal

multiplication. If the matrix [C] is present, /ADDX/ is initialized, and ADD is called to perform

the matrix addition. The trailer for D is written and the module exits.

4.79.9 Subroutines

DMPYAD calls the following matrix operations:

MPYAD (see section 3.5.12 for details)

DMPY (see section 3.5.21 for details)

ADD (see section 3.6.10 for details)

4.79.10 Design Requirements

4.79.10.I Allocation of core storage

4.79-2

MATRIXMODULEMPYAD(MULTIPLYADD)

Seedescriptionsfor MPYAD,DMPYandADD.

4.79.10.2 Environment

The module MPYAD consists of one subroutine, DMPYAD. One scratch file is used. Three

common blocks define open core, one for each of the three overlay segments containing the

matrix operations:

/MPYAID/ included at end of segment containing MPYAD.

/MPYA2D/ included at end of segment containing DMPY.

/MPYA3D/ included at end of se§ment containing ADD.

4.79-3

MATRIX MODULES_LVE (SOLVES THE MATRIX EQUATION [A][X] = [B])

4.80 MATRIX MODULE S_LVE (SOLVES THE F,_TRIXEQUATION [A][X] : [B])

4.80.1 Entry Point: S_LVE

4.80.2

To solve the matrix equation,

[A][X] : ± [B]

4.80.3

A

B

Not__ee:

DMAP Calling Sequence

4.80.4

S_LVE A,B/X/V,Y,SYM/V,Y,SIGN/V,Y,PREC/V,Y,TYPE

Input Data Blocks

- A square real or complex matrix.

- A rectangular matrix.

4.80.5

4.80.6

If B is purged, the identity matrix is assumed.

Output Data Blocks

X A rectangular matrix.

Parameters

SYM - Input-integer-default = 0

SIGN - input-integer-default = l

PREC - Input-integer-default : 1

TYPE - Input-integer-default = l

l i - use unsymmetric decomposition

use symmetric decomposition.

- try symmetric decomposition, use

unsymmetric if [A] is singular.

I i - solve [A][X] : [B]
- solve [A][X] -[B]

I l - use single precision arithmetic
2 - use double precision arithmetic

l - output type of matrix [X] is real

single precision

2 - output type of matrix [X] is real

double precision

(i)

4.80-I

MODULE FUNCTIONAL DESCRIPTIONS

3 - output type of matrix [X] is complex

single precision

4 - output type of matrix [X] is complex

double precision

4.80.7 Method

Depending upon the SYH flag and the type of [A], either SDC_MP CDC_MP, or DECAMP

is called to form

FBS or GFBS is called to solve

and

4.80.8 Subroutines

[A] = [L][U] .

[L][Y] : _ [B] ,

[U]EX] = [Y]

The above mentioned subroutines are the only ones called by S_LVE and are documented

in section 3.5.

4.80.9 Design Requirements

The appropriate subroutines should be referenced for the design requirements peculiar

to each routine.

4.80.I0 Diagnostic Messages

The individual routines should be referred to for diagnostic messages.

(2)

(3)

(4)

4.80-2

MATRIXMODULEDECAMP(_ATRIXDECOMPOSITION)

4.81 MATRIXMODULEDECAMP(MATRIXDECOMPOSITION)

4.81.1 Entr_ Point: DDC_MP

4.81.2 Purpose

To decompose a square matrix [A] into lower [L] and upper [U] triangular factors.

4.81.3 DMAP Calling Sequence

DECAMP A/L,U/V,Y,KSYM/V,Y,CH_LSKY/V,N,MINDIAG/V,N,DET/V,N,P_WER/V,N,SING $

4.81.4

4.81.5

Input Data Blocks

A - A square matrix.

Output Data Blocks

L - Lower triangular factor of [A].

U - Non-standard upper triangular factor of [A].

4.81.6 Parameters

KSYM - Input-integer-no default, l, use symmetric decomposition. O, use

unsymmetric decomposition.

CH_LSKY - Input-integer-default = O. l, use Cholesky decomposition. O, do not use

Choleskydecomposition.

- Output-real-no default. The minimum diagonal term of [U].

- Output-complex single precision-no default. The scaled value of the

determinant of [A].

Output-integer-no default. Integer P_WER of lO by which DET should

be multiplied to obtain the determinant of [A].

Output-integer-no default. SING is set to -I if [A] is singular.

MINDIAG

DET

P_WER

SING

4.81.7 Method

Depending upon the type of [A] and the KSYM flag, a calling sequence is set up, and either

4.81-I

MODULE FUNCTIONAL DESCRIPTIONS

CDCOMP, DECAMP, or SDC_MP is called.

4.81.8 Subroutines

The major subroutines used are DECOMP, CDCOMP and SDC_MP. Descriptions of these sub-

routines can be found in sections 3.5.15, 3.5.16, and 3.5.14 respectively.

4.81.9 Design Requirements

The individual subroutine writeups should be consulted for the particular restrictions

of each routine.

4.81.10 Diagnostic Messages

See the appropriate subroutine descriptions.

4.81-2

MATRIXMODULEFBS(FORWARD-BACKWARDSUBSTITUTION)

4.82 MATRIXMODULE

4.82.1 Entry Point: DFBS

4.82.2

To solve the equation,

FBS (FORWARD-BACKWARD SUBSTITUTION)

[L] [U] [X] : ± [B] (I)

where [L] and [U] are the upper and lower triangular factors obtained via matrix module DECAMP.

4.82.3 DMAP Calling Sequence

FBS L,U,B/X/C,N,A/C,N,B/C,N,C/C,N,D

4.82.4 Input Data Blocks

$

L,U - Matrices output from module DECAMP.

B - Rectangular matrix.

4.82.5 Output Data Blocks

X Rectangular matrix.

4.82.6 Parameters

D

4.82.7 Method

default._l matrix [L][U] is symmetricInput-integer-no
• _0 matrix [L][U] is unsymmetric

default" 1 l solve [L][U][X] = [B]
Input-i nteger-no

-l solve [L][U][X] -[B]

default.i l - use single precision arithmeticInput-integer-no

2 use double precision arithmetic

Input-integer-no default.ll - output [X] in single precision
i
K2 output [X] in double precision

Depending upon the value of the parameter A, either FBS or GFBS is called.

4.82-I

MODULEFUNCTIONAL DESCRIPTIONS

4.82.8 Subroutines

The above routines are the only ones called by DFBS. Their descriptions are given in

sectiot_ 3.5.17 for FBS and 3.5.19 for GFBS.

4.82.9 Design Requirements

The appropriate routines should be referenced for their individual requirements.

4.82.10 Diagnostic Messaqes

The individual subroutines should be referred to for the messages.

4.82-2

4.83

4.83.]

4.83.2

MATRIX MODULE PARTN (PARTITION A MATRIX)

MATRIX MODULE PARTN (PARTITION A MATRIX)

Entry Point: PARTNI

Purpose

To partition [A] into [All], [Al2], [A21] and [A22]:

LAI 2 , A22_J

4.83.3 DMAP Calling Sequence

PARTN A,RP,CP/AII,Al2,A21,A22/V,Y,SYM/V,Y,TYPE/V,Y,FORMl/V,Y,F9RM2/V,Y,F_RM3/V,Y,F_RM4 $

4.83.4 Input Data Blocks

A - Matrix to be partitioned.

RP - Row partitioning vector - single precision column vector.

CP - Column partitioning vector - single precision column vector.

Notes:

I.

2.

If A is purged, PARTN returns.

If RP is purged, A is partitioned as follows:

LA123

3. If CP is purged and SYM> O, A is partitioned as follows:

[A] ==> [Alli A21].

4. If CP is purged and SYM (O, A is partitioned as follows:

LAI2 ' A22_I

where RP is used as both the row and column partitioner.

5. RP and CP cannot both be purged.

(2)

(3)

(4)

4.83-I (811/72)

4.83.5 Output Data Blocks

All - Partition of A.

Al2 - Partition of A.

A21 - Partition of A.

A22 - Partition of A.

Notes:

MODULE FUNCTIONAL DESCRIPTIONS

4.83.6

SYM

I. Any or all output data blocks can be purged.

2. For the shape of outputs (number of rows and columns) see section 4.83.7 below.

Parameters

Input-integer-no default. SYM chooses between a symmetric partition and an

unsymmetric partition. If SYM _ O, CP is used as RP.

distinct.

TYPE - Input-integer-no default. TYPE of output matrices.

F_RMI - Input-integer-no default. Form of All.

F_RM2 - Input-integer-no default. Form of AI2.

F_RM3 - Input-integer-no default. Form of A21.

F_RM4 - Input-integer-no default. Form of A22.

4.83.7 Method

Let N1 = number of non-zero terms in RP.

Let N2 = number of non-zero terms in CP.

Let NR_WA = number of rows in A.

Let NC_LA = number of columns in A.

CASE:I RP purged.

All is a (NR@WA-N2) x NC_LA matrix.

AI2 is a N2 x NC_LA matrix.

A21 is not written.

A22 is not written.

If SYM > O, CP and RP are

0 < TYPE _ 4.

4.83-2 (311/71)

r_TRIX MODULE PARTN (PARTITION A MATRIX)

CASE 2: CP purged and Sy_! > O.

All is a NR_WA x (NCOLA - NI) matrix.

AI2 is not written.

A21 is a NR_JA x N1 matrix.

A22 is not written.

CASE 3: CP purged and SYM _ O.

All is a (NR_WA - NI) x (NCBLA - NI) matrix.

AI2 is a N1 x (NC_LA - NI) matrix.

A21 is a (NROWA - NI) x N1 matrix.

A22 is a N1 x N1 matrix.

CASE 4: Neither RP nor CP purged.

All is a (NR_WA - N2) x (NC_LA - NI) matrix.

AI2 is a N2 x (NC_LA - NI) matrix.

A21 is a (NR_WA - N2) x N1 matrix.

A22 is a N2 x N1 matrix.

In general if a.. _ [A], then:
13

aij _ [All] if RP(J) = CP(1) = 0

aij E [AI2] if CP(1) t O, RP(J) = 0

aij c [A21] if CP(1) = O, RP(J) # 0

aij E [A22] if CP(1) _ O, RP(J) # 0

4.83.8 Subroutines

4.83.8.1 Subroutine Name: PARTN2

I. Entry Point: PARTN2

2. Purpose: Initialization routine for PARTNI and MERGE1. It calls PARTN3 to build

the bit strings from the partitioning vectors CP and RP and sets default options based

on SYM.

4.83-3 (811172)

MODULEFUNCTIONALDESCRIPTIONS

3, Cal ling Sequence:

CP =

RP =

CORE =

BUF :

CALL PARTN2 (CP,RP,C_RE,BUF)

GINO file name of column partitioning vector

GINO file name of row partitioning vector

Location of first word open core

Location of GIN_ buffer.

4.83.8.2 Subroutine Name: PARTN3

l •

2.

3.

Entry Point: PARTN3

Purpose: Builds bit strings as directed by PARTN2.

Calling Sequence: CALL PARTN3 (FILE,SIZE,ONES,IZ,NZ,HERE,BUF,CORE)

FILE = GINO file name

SIZE = Length of partitioning vector

_NES = Number of non-zero terms in vector

IZ = Pointer to working core

NZ = Length of working core

HERE = Logical Flag

BUF = Location of GIN_ buffer

CORE = Location of open core

4.83.9 Design Requirements

Open core is defined at /PARTNI/.

4.83.10 Diagnostic Messages

Messages 2166, 2167, 2168, 2169, 2170, 2171, 2172, 2173, 2174, 2175, 2176, 3002, and 3008 may

be issued.

4.83-4 (8/I/72)

4.84

4.84.1

4.84.2

MATRIX MODULE)_ERGE(FIERGEMATRICES TOGETHER)

MATRIX MODULE MERGE (MERGE MATRICES TOGETHER)

[A] <: LAI2 -A_]"

Entry Point: MERGEI

P r ose

To form

4.84.3 DMAP Calling Sequence

MERGE All,A12,A21,A22,RP,CP/A/V,Y,SYM/V,Y,TYPE/V,Y,FBRM

4.84.4 Input Data Blocks

4.84.5

All

Al2 -

A21 -

A22 -

RP -

CP -

Notes:

I.

2.

3.

A

;_otes :

Matrix _ AI2, A21, A22.

Matrix _ All, A21, A22.

Matrix # All, AI2, A22.

Matrix _ All, Al2, A21.

Row partitioning vector - single precision vector.

Column partitioning vector - single precision vector.

Any or all of All, Al2, A21, A22 can be purged which implies [AIJ] = [0].

RP and CP cannot both be purged.

See method section for meaning when RP or CP is purged.

Output Data Blocks

- Merged matrix from All, AI2, A21, A22.

A cannot be purged.

(1)

4.B4-1 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

4.84.6 Parameters

SYM

TYPE

F_RM -

4.84.7 Method

Input-integer-no default. SYM _0, CP is used as RP. SYM > O, CP and RP are

distinct.

Input-integer-no default. Type of A. 1 implies A is rea] single precision,

2 implies A is real double precision, 3 implies A is complex single precision,

4 implies A is complex double precision.

Input-integer-no default. Form of A (see section 2.2).

MERGE is the inverse of PARTN in the sense that if All, AI2, A21, A22 were produced by

PARTN using RP, CP, F_RM, SYM, and TYPE from A, MERGE will reproduce A. See PARTN (section

4.83) for options on RP, CP and SYM.

4.84.8 Subroutines

Subroutines PARTN2 and PARTN3 are used.

4.84.9 Design Requirements

Open core is defined at /MERGE1/.

These routines are described in Section 4.83.

4.84.10 Diagnostic Messaqes

Messages 2161, 2162, 2163, 2164, 2!70, 217l, 2172, 2173, 2174, 2175, 2176, 3002, and 3008

may be issued.

4.84-2 (8/I/72)

MATRIX MODULE TRNSP (TRANSPOSE A MATRIX)

4,85 MATRIX MODULE TRNSP (TRANSPOSE A MATRIX),

4.85.1 Entry Point: DTRANP

4.85.2 Purpose

To form [A]T given [A].

4.85.3 DMAP Calling Sequence

TRNSP A/AT $

4.85.4 Input Data Blocks

A - Any matrix data block.

Note: If [A] is purged, TRNSP returns.

4.85.5]utput Data Blocks

AT - The matrix transpose of [A].

Note: AT cannot be purged.

4.85.6 Parameters

None.

4.85.7 Method

Subroutine TRNSP is called.

4.85.8 Subroutines

TRNSP - See subroutine description, section 3.5,25.

4.85.9 Design Requirements

Open core is defined at /DTRANX/. Eight scratch files are used.

4.85-I

4.86

4.86.1

4.86.2

MATRIX MODULE SMPYAD (STRING MULTIPLY ADD)

MATRIX MODULE SMPYAD (STRING MULTIPLY ADD)

Entry Point: SMPYAD

Purpose

To multiply a series of matrices together.

4.86.3 DMAP Calling Sequence

SMPYAD A,B,C,D,E,F/G/C,N,N/C,N,SIGIIX/C,N,SIGNF/C,N,PG/C,N,TA/C,N,TB/C,N,TC/C,N,TD$

4.86.4 Input Data Blocks

A
B
C
D
E

F -

Notes:

Up to 5 matrices to be multiplied together, from left to right.

Matrix to be added to the above product.

I. If one of the five multiplication matrices is required in the product (see

parameter "N" below) and is purged, the multiplication will not be done.

2. If the F matrix is purged, no matrix will be added to the product.

4.86.5 Output Data Blocks

G - Resultant matrix (may not be pre-purged).

4.86.6 Parameters

N

SIGNX

SIGNF

PG

- Number of matrices involved in the product - integer - input.

- Sign of the product matrix (e.g., [A][B][C][D][E]) - integer - input.

l for plus, -1 for minus.

- Slgn of the matrix tc be added to the product matrix - integer - input.

l for plus, -I for minus.

- Output precision of the final result - integer - input.

l for single precision, 2 for double precision.

4.86-I

MODULEFUNCTIONALDESCRIPTIONS

TA1TB -
TC
TD

Note :

l .

2.

3.

4.

Transpose indicators for the [A][B][C] and [D] matrices (I if transposed
matrix to be used in the product; 0 if untransposed) - integer - input.

All the parameters except "N" have default values. They are these:

SlGIIX = 1 (sign of product is plus)

SIGNF : 1 (sign of added matrix is plus)

PG = 1 (single precisior_ result)

TA1TB =
TC
TD

0 (use untransposed [A], [B], [C], and [D] matrices in the product)

4.86.7 Method

The method is the same as for the MPYADmodule with one exception and one addition:

I. None of the matrices may be diagonal.

2. Except for the final product, all intermediate matrix products are generated

in double precision.

The matrices are multiplied together from right-to-left, i.e., the first product calculated

is the product of matrix n-I anG matrix n.

4.86.8 Subroutines

MPYAD is called (see section 3.5.12 for details).

4.86.9

l°

2.

Design Requirements

Two scratch files are required.

Open core is the /MPYADX/ common block, the same one as used by the MPYADmodule,

(see section 4.79).

4.86-2

STRUCTURAL ELEHEt_T DESCRI PTIONS

4.87 STRUCTURAL ELDiENT DESCRIPTIONS

The finite structural element subroutines used in HASTRAN have a number of different calcu-

lations associated with them. These subroutines are found in the modules DIAl, S_IA2, SSGI, SDR2,

DSHGI, PLA3 and PLA4.

All modules excluding IFP having anything to do with the NASTRAN structural elements, their

geometry, or associated data blocks, use the basic element data found in common block /GPTAI/.

/GPTAI/ is set in its own block data subprogram, and/or by (in the presence of dummy-user-eleraents)

the routine DELSET. Refer to Section 2.5.2.1 for further information regarding /GPTAI/.

The element subroutines in the SHAI (Structural Hatrix Assembler - Phase I) module generate

elen._nt stiffness matrix partitions. The stiffness matrix, [K], for a structural element consists

of a 6 by 6 partition for each combination of the connected grid points. For e>ample, a R_D

element is connected to two grid points, "a" and "b". The stiffness matrix partitions are" [I(a],

[Kab], [Kba] and [Kbb]. A triangular element (e.g., TRrlEM) is connected to three points. It ',Jill

generate nine partitions: [Kaa], [Kab], [Kac], [Kba], [Kbb], [Kbc], [Kca], [Kcb] and [Kcc]. In

order to generate a particular partition, [Kij], it is often necessary to generate [K]. However,

only those partitions [Kij], where i is the pivot point (see section 1.8) and j = 1,2 n (n

beinq the number of grid points associated with the element), are output by an elehent stiffness

matrix generation subroutine, e.g., KRI_D. These partitions are output from an elenent subroutine

in the form of calls to the "insertion" subroutine SI'IAIB (see Section 4.27). There is one call

for each 6 by 6 partition if the element is a structural element, and one call for each 1 by 1

"partition" if the element is a scalar element. The unused partitions are recalculated and used

when j # i appears as a pivot point in a subsequent ECPT record. An alternate procedure for

matrix generation, which is not used, would be to calculate all of the element matrices once and

store them on an auxiliary storage unit for use when needed. The alternate procedure is less

efficient for large problems, where efficiency really counts, because the recalculation time is

less than the time required to recover element matrices from the auxiliary unit.

Element structural damping matrices, [K4], are proportional to the element stiffness matrices,

the proportionality constant being ge' the structural damping coefficient input on a material

(e.g., MAT1) bulk data card. An element stiffness matrix generation routine, e.g., KRfSD, of

module SMAI will output, through the calling sequence to subroutine SMAIB" I) an element stiffness

4.87-] (8/1/72)

MODULEFUNCTIONALDESCRIPTIONS

matrixpartition, 2) the structural dampingcoefficient, and 3) a flag, whichwill signal SMAIB

that the scalar multiplication of the matrixbythe structural dampingcoefficient is to take

place.

Theelementsubroutines(e.g., MR_D,MC_NMX)in the SMA2(StructuralMatrixAssembler- Phase

2) modulegenerateelementmassmatrixpartitions. Theremarksin the third paragraphabove

concerningelementstiffness matrixpartitions applyherealsowhenthe readermakesthe substi-

tutions: "mass"for "stiffness", "[M]" for "[K]", "MR_D"for "KR_D",and"SMA2B"for "SMAIB".

Onlythe elementVISCandDAMPigenerateviscousdampingtermswhichcontributeto the

dampingmatrix, [Bgg], andconversely,theonly elementswhichcontributeto [Bgg]are the VISC
andDAMPielements.Thesetermsarecalculatedin moduleSMA2.Thedampingmatrix partitions

arepassedto subroutineSMA2Bin a fashionsimilar to that for massmatrixpartitions.

Elementstatic loadingfunctionsdueto temperatureandenforceddeformationsaregenerated

in the SSGI(Static SolutionGenerator- PhaseI) module,andthemathematicaldescriptionsfor

thesefunctionsaregivenin this Section(4.87). (Seethe ModuleFunctionalDescriptionfor

SSGI,Section4.41, for the equationsgoverningdirect appliedloadsandgravity loads.) The

outputof anelementroutine are loadvectorswhichareplacedin the {Pg} loadvector(see
Section4.41).

Elementstressesandforcesdueto displacementsarecalculatedin the SDR2(StressData

Recovery- Phase2) module.Thesecalculationsare performedin twophases. Phase1 generates

elementstress matricesfor eachelementfor whichthe userhasrequested element stress and/or

force output. These element stress matrices are written on a scratch file for use in phase 2.

In phase 2, the displacement vector for the current subcase is read into core, and, for each

element for which stress and/or force output is requested, the corresponding element stress matrix

is read and passed to the phase 2 element subroutine. The phase 2 element subroutine then

calculates element stresses and forces. A list of the stresses and forces output in phase 2 for

each element is given in Sections 2.3.51 and 2.3.52 respectively.

Differential stiffness matrix partitions are calculated for some elements. These are calcu-

lated in module DSMGI (Differential Stiffness Matrix Generator - Phase I) for large displacement

analysis and buckling problems. The output of an element routine of the DSMGI module are the

6 by 6 differential stiffness matrix partitions, [K_j], where i is the pivot point. The "insertion"

subroutine for module DSMGI, similar to subroutine SMAIB of module SMAI, is DSIb.

4.87-2 (8/I/72)

STRUCTURALELEMENTDESCRIPTIONS

Nonlinear,plastic effects in the structuremaybedeterminedbysolving for the element

stressandmodifyingthe elastic propertiesof anelementin an i terative loop. Elementstresses

are calculatedin the PLA3(PiecewiseLinearAnalysis- Phase3) module,andelementstiffness

matriceswith modifiedelastic propertiesarecalculatedin the PLA4(PiecewiseLinearAnalysis-

Phase4). Theoutputsof anelementsubroutineof the PLA3moduleare: I) elementstresses,

whichhavethe sameformatsas the elementstressesoutputfroma phase2 elementsubroutineof

moduleSDR2,and2) updatedincrementalstress datain the ESTNLIdatablock,whichareusedas

input to the PLA3modulein the nextpassof thePiecewiseLinearAnalysis(PLA)RigidFormat

DMAPloop. Theoutputsof anelementsubroutineof the PLA4moduleare: I) elementstiffness

matrixpartitions (the remarksonelementstiffness matrixpartitions in the secondparagraph

applyhereaswell, exceptthat the "insertion" subroutineis PLA4B)and 2) updatedincremental

stress datain the ECPTNLIdatablock,whichareusedasinput to the PLA4modulein the nextpass

of the PLARigidFormatDMAPloop.

Thefollowingdataareneededto generatethe elementmatricesin the abovemodules.

I. ElementConnectionandPropertiesTable(ECPT)Data.

2. Transformationmatrices,[Ti], fromthe globalcoordinatesystemto the basiccoordinate
system.

3. MaterialPropertyData.

4. ElementDeformationData(usedonly in modulesSSGI,SDR2andDSGMI).

5. Grid PointTemperatureData(usedonlyin modulesSSGI,SDR2andDSGMI).

TheECPTdataare input to anelementsubroutinebya moduledriver fromthe ECPTdatablock

or the EST(ElementSummaryTable)datablock. Thedatain eachof thesedatablocksare identical,

froman individual elementsubroutinepoint of view. TheECPTdatablockis usedin modulesSMAI,

SMA2andDSGMI;the ESTdatablockis usedin modulesSSGIandSDR2.Forthe specialcaseof

PiecewiseLinearAnalysis,the ECPTNL(ElementConnectionandPropertiesTablefor Nonlinear

Elements)datablockis usedin modulePLA4,andthe ESTNL(ElementSummaryTablefor Nonlinear

Elements)datablockis usedin modulePLA3.TheECPTandESTdatablocksare generatedin the

TableAssembler(TAI)module(seeSection4.26)fromthe followingdatablocks: ECT(Element

ConnectionTable,Section2.3.4.1), EPT(ElementPropertyTable,Section2.3.2.5), BGPDT(Basic

GridPoint Definition Table,Section2.3.3.5), andGPTT(GridPointTemperatureTable,Section
2.3.7.2).

4.87-3(8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

TheECPTdatafor anelementconsistof four separate parts: I) connection data 2) property

data, 3) basic grid point definition data and 4) the element temperature for material properties.

The connection data consists of data on a connection bulk data card (e.g., CR_D), except for the

property identification number (the property identification number on the connection and property

cards is used only to relate the two cards during the assembly of the ECPT and EST data blocks,

and it does not appear in either the connection data or property data). Note also that grid point

identification numbers have been converted to internal numbers, Scalar Index List (SIL) numbers,

which correspond to degrees of freedom numbers. Property data consist of data on a property bulk

data card (e.g., PROD) with the above noted exception. Basic grid point definition data consist

of, for each grid point connecting the element, l) the identification number of the coordinate

system in which displacements are defined at the grid point and 2) the coordinates of the grid

point in the basic coordinate system. The element temperature for material properties is the

average value given for each element in tile GPTT data block. This temperature is placed in the

ECPT/EST data in the Table Assembler module from the element temperatures in the GPTT data block

and the set identification number, n, from the TEMPERATURE(MATERIAL) = n card in the User's Case

Control Deck. Note that n is transmitted to the Table Assembler via the tenth word of /SYSTEM/

(see Section 2.4.1.8).

The transformation matrices, [Ti], from the global coordinate system to the basic coordinate

system, are supplies to an element subroutine by the utility routines TRANSD and TRANSS. These

utility routines use the CSTM (Coordinate System Transformation Matrices, Section 2.3.3.4) data

block in conjunction with the basic grid point definition data at a point i to compute [Ti].

Hence all modules which deal with element calculations require the CSTM data block as input.

TRANSD returns, to an element subroutine, a double precision matrix, [Ti], used by element

routines in the following morl_jlrs w!lich use double precision arith_letic: SMAI, SMA2, DSGMI and

PLA4; TRANSS returns, to arl element subroutine, a single precision matrix, [Ti], used by elenlent

routines in the following modules which use single precision arithmetic: SSGI, SDR2 and PLA3.

I,laterial property data are contained in the MPT (Material Properties Table, Section 2.3.2.6)

and the DIT (Direct Input Tables, Section 2.3.2.7) data blocks. Both of these data blocks are

output from the IFP (Input File Processor) Preface module. The utility routine MAT (see Section

3.4.36) fetches required material property data for element routines. Tllese data are returned

in single precision form.

4.87-4 (8/I/72)

STRUCTURALELErIENTDESCRIPTIONS

Elementdeformationdataarecontainedin theEDT(ElementDeformationTable,Section2.3.2.8)

datablockwhichis outputby the IFPPrefaceModule.Elementdeformationdatais admissibleonly

for the R_D(includingC_NR_D),TUBEandBARelements.

Elementtemperaturedataare containedin theGPTT(Grid PointTemperatureTable,Section

2.3.7.2), whichis outputby the GP3(GeometryProcessor- Phase3) module.Thetemperaturedata

containedin this datablock areusedfor static loadingfunctionsdueto temperature.

Table1 onthe followingpagegivesreferenceto the TheoreticalandUser'sManualswhere

moreinformationonthe elementscanbe found.

4.87-5(811172)

MODULEFUNCTIONAL DESCRIPTIONS

Table I. Structural Element References.

Bulk Data Connection
Card Mnemonic

Programmer's Manual
Reference

User's Manual
Reference

Theoretical Manual
Reference

CAXIF2 4.87.15
CAXlF3 4.87.15
CAXlF4 4.87.15
CBAR 4.87.2
CC_NEAX 4.87.9
CDAMPI 4.87.7
CDAMP2 4.87.7
CDAMP3 4.87.7
CDAMP4 4.87.7
CELASI 4.87.7
CELAS2 4.87.7
CELAS3 4.87.7
CELAS4 4.87.7
CFLUID2 4.87.15
CFLUID3 4.87.15
CFLUID4 4.87.15
CMASSI 4.87.7
CM#_SS2 4.87.7
CMASS3 4.87.7
CMASS4 4.87.7
CMFREE 4.87.15
C_NMI 4.87.8
C_NM2 4.87.8
C_NR@D 4.87.1
CQDMEM 4.87.4
CQDPLT 4.87.5
CQUADI 4.87.6
CQUAD2 4.87.6
CR_D 4.87.1
CSHEAR 4.87.3
CSL_T3 4.87.16
CSL_T4 4.87.16
CT_RDRG 4.87.12
CTRAPRG 4.87.11
CTRBSC 4.87.5
CTRIAI 4.87.6
CTRIA2 4.87.6
CTRIARG 4.87.10
CTRMEM 4.87.4
CTRPLT 4.87.5
CTUBE 4.87.1
CTWIST 4.87.3
CVlSC 4.87.13

1.8
1.8
1.8
1.3.2
1.3.6
1.3.8
1.3.8
1.3.8
1.3.8
1.3.8
1.3.8
1.3.8
1.3.8
1.7
1.7
1.7
1 3.8
1 3.8
1 3.8
1 3.8
1 7
1 2.3
12.3
13.3
1 3.5
1 3.5
1 3.5
1 3.5
1 3.3
1 3.4
1 8
1 8
13.7
1 3.7
1 3.5
1 3.5
1.3.5
1.3.7
1.3.5
1.3.5
1.3.3
1.3.4
1.3.3

17.1
17.1
17.1
5.2, 7.2
5.9
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
16.7
16.1
16.1
5.6
5.6
5.6
5.6
16.1
5.5
5.5
5.2, 7.2
5.8, 7.3
5.8
5.8, 7.3
5.8, 7.3
5.2, 7.2
5.3
17.1
17.1
5.11
5.10
5.8
5.8, 7.3
5.8, 7.3
5.8
5.8, 7.3
5.8
5.2, 7.2
5.3
5.2

Note: The bulk data connection and property card descriptions in Section 2 of the User's Manual
should also be consulted.

4.87-6 (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONs

4.87 .l

4.87.1.l

I.

SILa, SILb

Na' Xa' Ya' Za}
Nb' Xb' Yb' Zb

Mat I. D.

A

J

C

t

2.

The R_D, C_NR_D and TUBE Elements

Input Data for the R_D, TUBE, C_NR_D Elements

The ECPT/EST entries for the R_D and C_NR_D are:

S_xmbol Description

Scalar indices for grid points a and b

Local coordinate system number and basic
coordinates of grid points

Material identification number

Cross-section area

Polar inertia

Nonstructural mass per unit length

Shear stress coefficient

Temperature for material properties

The TUBE element has the same characteristics as the RBD except for different

input properties. The TUBE has d, the outside diameter, and t, the thickness, given.

The conversion to R_D properties is:

3. Coordinate system data

A = _(d - t)t

J = _A ((d - t)2

d
C =

+ t2)

Given Na, Xa, Ya' Za' Nb' Xb' Yb and Zb and the CSTM (Coordinate System Transformation

Matrices) data block, the 3 by 3 global-to-basic coordinate transformation matrices [Ta] and

[Tb] are calculated using the utility routine TRANSU or TRANSS.

4.87-7

MODULE FUNCTIONAL DESCRIPTIONS

4. Material data

Given the "MAT I.D." and t , the material routine, I,_T, returns the following data:

].87.1.2

E

G -

p

T -
o

Qe -

o t -

c_C

Crs

Modulus of Elasticity

Shear Modulus

Poisson's ratio

Density

Thermal expansion coefficient

Reference temperature

Structural damping ratio

Stress limit, tension

Stress limit, compression

Stress limit, shear

Stiffness Matrix Calculation (Subroutines KR_D and KTUBE of Module SMAI)

l • Calculate the length of member, (4):

= V(Xa - Xb)2 + (Ya - Yb)2 + (Za " Zb)2 (1)

2. Calculate a normalized direction vector {n} in basic coordinates:

InlllIXa-Xbln2 = _ Ya Yb

n3 Za Zb

(2)

3. Form the extensional stiffness matrix, [DL]:

n_ nln 2 nln31

: AE in n2n3i

[Dp] _-- I n2 n_

k_nl n3 n2n 3 n_]

(3)

4.87-8

STRUCTURAL ELEMENT DESCRIPTIONS

4. Form the torsional stiffness matrix [Dr]:

[D r]

I w

n_ nln 2 nln 3

= --_i 1n2

n_ n2n 3

In3 n2n 3 n 2

(4)

5. [Ta] and [Tb] are tbe matrices which transform displacement components in the global

coordinate system to the basic system.

6. Transforming to global coordinates and combining the results give the partitions of the

element stiffness matrix:

[kaa] ' IF T I

Ta D_ Ta i 0

!

| T
0 l Dr Tn Ta a

!

. (_-)

[kab]

T i
Ta D£ Tb 0 0

l

T
0 i Ta Dr Tb

!

(6)

[kbb] F !;!O Tqo , (7)

[kba] = [kab IT . (8)

The element damping matrices are equal to the stiffness matrices times ge' the structural

damping coefficient.

4.87.1.3 Lumped Mass Matrix Calculation (Subroutines MROD and MTUBE of Module SMA2)

The total mass of the element, m, is

m : pA_ + _ (g)

4.87-9 (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

The partitions of the element mass matrix are:

m

[Maa] : [Mbb] 2

m

l

l 0

l
..... |

Io
0 i 0

_ I o_

(lO)

[Mab] = [Mba] : [0] (ll)

4.87.1.4 Element Load Calculations (Subroutine EDTL of Module SSGI)

The element loading calculations are calculated using the EST data, the element loading

temperature, i, and the enforced deformation 6.

I. Calculate _, {n}, [Ta] and [Tb] as in section 4.87.1.2.

2. Calculate:

= (ta + tb)/2 - TO , (12)

r[Ta]T" l

_ EA L._o__j(n>(_+ _Z___To),{Pa } _, (13)

1.....{n} (6 + _ZT - _ZTo).

3. {Pa} and {Pb} are placed in the load vector in positions corresponding to points a

and b,

(14)

4.87.1.5 Element Stress Calculations (Subroutines SR_DI and SR_D2 of Module SDR2).

The stress functions calculated in phase l (Subroutine SR_DI) are:

= E
[S_] _ {n} T [Ta] , (Ix3);

(15)

4.87-I0 (lllll70)

STRUCTURALELEMENTDESCRIPTIONS

E {n}T[Tb]' (Ix3); (16)[s_] -

[S_] = GC_ {n}T.[Tb], (Ix3)', (17)

[S_] - GC_{n}T [Tb], (Ix3). (18)

ST = - mE, (19)

Sa - E4" (20)

The miscellaneous constants A, _, To, ot, oc and os are also saved for phase 2 calculations.

Note J/C is set to zero if C = O. The superscripts t and r denotes translational and

rotational stress matrices respectively.

The stress and force values are calculated in phase 2 (Subroutine SR_D2) using the

displacement vectors {ua} and {Ub}, the loading temperature, T, and the enforced deformation _.

that {uI} and {uT} (i = a, b) denote the 3 by l translational and rotational components ofNote

{ui}.

I. Partition

I I
2. The stresses are:

The margins of safety in tension or compression, M.S.t or M.S.c respectively, are calculated

as follows:

If o > 0 then:

4.87-11 (3/1/71)

MODULE FUNCTIONAL DESCRIPTIONS

If a < O, then:

MIS+ -:

define a_

M,S° =

|

ora=O

= -lacl.

Ic i
0

-1,a _0

t

Integer "l , a = 0 or a c
-=0

(25)

(26)

The margin of safety for torsion

!a s
1,

= l_F ,,

I

M.S. /Integer 1"

as > 0 and T _ 0

a <OorT=O
S --

(26a)

The forces are:

P : Aa, (27)

J (28)
T = _-T.

4.87.1.6 Differential Stiffness Matrix Calculation (Subroutine DR(_D of Module DSMGI)

The data input from the ECPT, MPT and CSTM data blocks are as listed in section 4.87.1.I.

The following variables are calculated in the same manner as those for the stiffness matrix

variables (section 4.87.1.2)

In2

n3

[Ta], [T b]

length of rod

The direction cosines of the rod axis (+ from b to a)

in the basic coordinate system

The transformation matrices from global coordinates to
the basic coordinate system at the grid points.

4.87-12 (3/I/71)

STRUCTURAL ELEMENT DESCRIPTIONS

Only the linear translational displacements at the grid points are extracted from the

displacement vector. Call these {u_} and {u_} (3xl single precision vectors.)

I. Calculate the axial load in the element (+ implies tension):

Fx- AEI_ _2 {n}T[[Ta]{Uta}- [Tb]{U_}]- 6- _T- To 1
(29)

2. A pair of axes perpendicular to the rod axis is constructed. Select the smallest

component of {n}. Define ni as the component of {n} which is the smallest; let j

and k be the other two components. Construct {m} such that

Let

mi = l, mj = mk = O.

{m} x {n}
{y} =]{m} x {n}l '

(3O)

(31)

and

{n} x ,{X}
{z} = l{n} x {y} l ' (32)

where x denotes the cross product.

The actual partitions of the differential stiffness matrix relating to displacements

in global coordinates are:

[K_a]
F x

_ _[Ta]T [{y}{y}T + {z}{z}T] [Ta]

[K_b] -F_ x [Ta]T [{y}{y}T + {z}{z}T] [Tb]

[K_b] _ Fx [Tb]T [{y}{y}T + {z}{z}T] [Tb]

[K_a] d T= [kab]

(33)

(34)

(35)

(36)

4.87-I3 (811172)

MODULEFUNCTIONALDESCRIPTIONS

Theactual 6x6partitions are formedby expanding:

etc. (37)

4.87.1.7 PiecewiseLinearAnalysisCalculations(SubroutinePSR_Dof ModulePLA3and

SubroutinePKRODof ModulePLA4)

TheadditionalECPTNLandESTNLentries are:

_r

Eo The previously computed strain value once removed.

E* - The previously computed strain value.

_c

E - The previously computed modulus of elasticity.

T* - The previously computed torsional moment (present in the ESTNL entry only).

All of the above values are initially zero with the exception of E*, which is initially the

original modulus of elasticity present on a MATI card.

For both stress calculation and stiffness matrix generation, the quantities _ and {n}

are generated as in section 4.87.1.2.

A t{Aut} and { Ub}, the 3xl translational displacement vectors, calculate theUsing

increment of strain:

z_E =-_ {n}T _T a] {Aut}- [Tb] {Au_}] , (38)

AE_ : E _ . E _ro • (39)

Define the following terms:

El = E* + AE, (current strain); (40)

E2 c1 + y(AE) ,

(estimated next strain);

(41)

4.87-14 (3/I/71)

STRUCTURALELEMENTDESCRIPTIONS

wherey is the ratio of the next loadincrementto the presentloadincrement.

Wecalculate:

oI = f (El),

o2 = f (_2),

(42)

(43)

where f is the tabular stress-strain function. (When c* = O, define oI = Eo¢l)

For stiffness matrix generation, the new material properties are:

E =

o2 -oI
, if E2 _ El

e2 -El

E*, if e2 = eI

(44)

and

G = (45)

where E
o

MAT.

and Go are elastic meduli obtained from the MATI bulk data card via subroutine

For plastic element stresses and forces the values are:

(46)

(47)

T - JG* {n}T (CTa]{Au_} _ [Tb] {Au_}) + T*

CT (_ = 0 if C = 0 or J = 0),
= 3-

(48)

(49)

where

(50)

4.87-15

MODULEFUNCTIONALDESCRIPTIONS

The new ESTNL and ECPTNL entries are:

on (51)

_"k = _lFI :'

o2 - oI
E* -

n e2- el '

T* = T
n

(52)

(53)

(54)

4.87-16

MODULE FUNCTIONAL DESCRIPTIONS

4.87.1.8 Coupled Mass Matrix Calculation (Subroutine MCR_D of Kodule SMA2)

I. The length of the element, 4, the normalized direction vector, {n}, and the mass of the

element, m, are calculated as in Equations l and 2 in section 4.87.1.2 and Equation 9 in section

4.87.1.3 respectively.

2. The 3 by 3 matrix

is calculated.

[Z_4] m= T_

m

n_ nln2 nln3

nln2 n_ n2n3

nln3 n2n3 n_
w

3. The 3 by 3 element mass matrices in basic coordinates are

and

[maa] = [mbb] ImI2°= 0 m/2

L 0 0 m/

[AM]

[mab] = [mba] = [AM] .

4. In global coordinates the 6 by 6 mass matrix partitions are:

TiTmijT j 0

[Mij] :

0 0

m

for i=a or b, j = a or b and where [Ti] is the global-to-basic coordinate transformation

matrix for point i.

(55)

(56)

(57)

(58)

4.87-16a (12-I-69)

MODULEFUNCTIONALDESCRIPTIONS

4.87.1.9 Thermal Analysis Calculations for the RBD Elements (Subroutine KRBD of Module sMAI)

If a "stiffness" matrix for thermal analysis is to be generated, the first word, HEAT, in

C_MM_Ndata block SMA2HTis .TRUE. The length, _, of the element is calculated as in Section

4.87.1.2. The thermal material coefficient, k, is obtained by calling subroutine HMAT, rather

than MAT. The 6 x 6 matrix partitions are:

For the pivot point,

For j _ i,

kA
Kii -

kA
Kij -

o ol

0 1 OI 0

o o 11

o I o

1 o ol

0 1 OI 0

0 0 11

o I o

4.87-16b (8/I/72)

STRUCTURALELEMENTDESCRIPTIONS

4.87.2 The BAR Element

4.87.2.1 Input Data for the BAR Element

I. The ECPT/EST entries for the BAR are:

Symbol Descriptions

SILa, SILb Scalar indices of grid points a and b

Na' Xa' Ya' Za

Nb' Xb" Yb' Zb

Local coordinate system number and location
in basic coordinates of the grid points

xI, x2, x3 Orientation vector (see Figure l in section 1.3
of the User's Manual)

Flag for orientation vector definition

Pa' Pb Pin flags for either end

Mat I. D. Material property identification number

Cross-sectional area

iI, 12

If2

Bending inertials in element coordinates about
axes normal to reference planes l and 2 respectively

Cross-product bending inertia

J Torsional Inertia

Nonstructural mass per unit length

ax, ay, azl
bx, by, bz

Vectors defining offset distances between

BAR ends and grid points (see Figure 1 in section
1.3 of the User's Manual)

Kl, K2

cI c2, dI d2

flI f2' glI g2

Shear factors

Positions on cross section of four points for
stress calculations (see section 1.3.2 of the
User's Manual)

t

2. Coordinate system data

Temperature for material properties

The location (Xi, Yi' Zi) and local coordinate system number (Ni) of each

grid point (i = a or b) are used to calculate the 3 by 3 global-to-basic coordinate

transformation matrices, [Ta] and [Tb].

4.87-17

MODULEFUNCTIONAL DESCRIPTIONS

3. Material data

The material identification number "Mat I.D." and t

fol lowing:

are used to select the

E - Modulus of elasticity

G - Shear modulus

- Poisson's ratio

p - Density

- Thermal expansion coefficient

T - Reference temperatureo

ge - Structural damping ratio

o t - Stress limit, tension

_c - Stress limit, compression

o s - Stress limit, shear

4.87.2.2

l °

coordinates :

Otherwise,

Stiffness Matrix Calculation (Subroutine KBAR of Module SMAI)

If the orientation flag F is nonzero, transform the given vector to basic

Ixll{v o} = [Ta] x2 .

x3

{v o} = x2 •

_x3

2. Transfer the relative beam end locations to basic coordinates:

6al
6a2

6a3

= [Ta]

ax I
ay

(I)

(2)

(3)

4.87-18

STRUCTURAL ELEMENTDESCRIPTIONS

I I xl_b2 : [Tb] by .

6b3 bz

(4)

3. The center axis of the beam, defined as {i} is calculated as:

{Vi}

Xa - Xb + _al - _bl

Ya - Yb + _a2 - ab2

Za - Zb + _a3 - 6b3

' (5)

2 2 2 I/2 (6)= (Vil+ Vi2 + Vi3) ,

{i} : _{Vi}. (7)

4. The bending axis of the beam in plane 2 is:

{k} = {i} x {vo}

l{i} x {Vo}I

(8)

5. The bending axis of the beam in plane l is:

{k} x {i}
{j}=

({k} x {i}((9)

6. The 6x6 matrix for transforming element displacements in the element coordinates to

basic coordinate displacements is:

[Teb] = _:_ {_j}.,_ {_k} 00 ,-CiTi-Tj3-T-{k-)
t

7. The 6 by 6 matrices for transforming global coordinate displacements to basic

coordinate displacements are:

(lO)

F-'-7Ta_ _0

[Ca] : [--0 I- Ta] ' (II)

4.87-1g (3/I171)

MODULE FUNCTIONAL DESCRIPTIONS

[cb] : _-
I

(12)

8, The 6 by 6 matrices for transforming displacements of the _rid points to displacements

of the element ends are:

[Ea] =

I
1 0 0 I 0 a z -ay

0 1 0 -a z 0 ax

0 0 1 ay -a x 0

1 0 0

0 0 1 0

0 0 1

(13)

[Eb] =

I _b z 0 bx0 1 0 1

I

0 0 1 I by -b x 0
I

I

i 1 0 0
I

0 i 0 1 0
I
i 0 0 1

(14)

4.87-20

STRUCTURAL ELEMENT DESCRIPTIONS

9, The 6 by 6 partitions of the element stiffness matrix in element coordinates

are:

[Kea]

- AE
i-- 0 0 0 0 0

0 RI _ 0 -_8 ,_R1

0 B R2 0 -_R2

0 0 0 GJ
_- 0 0

_ £2o -_ -_ o _ _
_2

0 _R1 _ 0 -_ kI

(]5)

[K_b]

p

AE

0

0

0
=

0

0
D

0 0 0 0 0

._ __ o + _

o o _GJ 0 o
£

£2
_ o _ -_

42
._ + o -_ _

I

(16)

[K_a]: [K_b]T, (17)

4.87-21 (311/71)

I"IODULEFUNCTIONAL DESCRIPTIONS

[K_b] :

- AE
m 0 0 0 0

0 R1 B 0

0 B R2 0 _R2

0 0 0 G__JJ 0

0 _ t3 _R2 0 k2

o "_1 -_ o 3_

0

- &Rl2

0

_2
--_ _

k1 _

(18)

The terms are defined as:

If 112 = 0 :

= 0

R1 =
12Eli I l 12EII I-I
JL3 KIAG_2

(19)

(20)

R2 - [I +

3 K2AG,2]
(21)

Note: If Ki A G = O, set
KiAG

= O, i = 1 or 2

If 112 _ 0

R1 -
12El I

9.,3 (22)

R2 = 12El 2

_3

12El1
_ 2

_3

(23)

(24)

4.87-22

STRUCTURALELEMENTDESCRIPTIONS

Note: In this casenoshearingdeforRBtionsarecalculated.

For both cases

._2 El 1
kl = 4RI + T '

_2 El 2
k2 = _'R2 + T '

£2 El l
k3 = _ R1 _ ,

(25)

(26)

(27)

_2 El 2
k4 : _ R2 - T "

(28)

lO. Process the end condition ("pin") data.

integers Pa and Pb specify the following:

The nonzero digits of the "pin flag"

1 implies no forces are transmitted to the element in the x-direction at the pinned end

2 implies no forces are transmitted to the element in the y-direction at the pinned end

3 implies no forces are transmitted to the element in the z-direction at the pinned end

4 implies no forces are transmitted to the element in the Ox-direction at the pinned end

5 implies no forces are transmitted to the element in the Oy-direction at the pinned end

6 implies no forces are transmitted to the element in the Oz-direction at the pinned end

l) Nonzero digits of the number P specify the unconnected degrees of freedom

on the end of the BAR.

2) Construct the overall element matrix and perform the following operations:

a)

eelkaa kab

e e
kba kbb

kll

= k21

k12

kl2,12

(29)

4.87-23

MODULEFUNCTIONALDESCRIPTIONS

b) Convertthe pin numbersto rownumbersin the [k] matrix. If a pin numberrefers to

end"a", it correspondsto the rownumber.If it refers to end"b", the rownumberis

obtainedbyaddingsix to the pin number.

c) Foreachrowof the [k] matrixperformthe followingoperationto obtainthe new

stiffness matrix [k']

' ki_k'i I j : l 12, j # i (30)kj_ = kj_ - _i 1 _ = I,...12, _ # i '

k Iand j_ = 0 for j = i or _ = i, where i is the row number obtained from the pin number

as in b).

This operation causes the ith row and column to be zero, and disconnects

that degree of freedom from the matrix. Repeat for each pin index.

d) Repartition the matrix into the four original sections, carrying

the zero rows and columns along.

If. The equations to convert the partitions to global coordinates are:

T T [k_a] {T_bCaEa} (31)[kaa] = {TebCaEa}

[kab] {T_bCaEa}T e T (32)= [kab]{TebCbEb} ,

[kbb] = {T_bCbEb}T [k_b] {T_bCbEb} , (33)

[kba] = [kab]T (34)

4.87-24

STRUCTURALELEMENTDESCRIPTIONS

4.87.2.3

where:

LumpedMassMatrixCalculation(SubroutineMBARof Module SMA2)

[Ma] = [Mb]

"m/2

m/2 o 0

m/2 1
I

!
!

0 t 0
!

, (3s)

m = _ (pA + p) , (36)

and:

T T
[Maa] = {Teb Ca Ea}T [Ma] {Teb Ca Ea} , (37)

T T
[Mbb] = {Teb Cb Eb}T [Mb] {Teb Cb Eb} , (38)

[Mab] : [Mba] : [0] (39)

The equations for the generation of the "consistent" or coupled mass matrix for the BAR are

given in section 4.87.2.8.

4.87,2.4 Element Load Calculation (Subroutine BAR of Module SSGI)

a) Form _, {i}, [Ca], [Cn], [Ea], [Eb], and [k'] as in Equation 30.

b) Partition the 12 x 12 matrix into four 6 x 6 matrices

[k']

Ke : Ke 7,e iKel
'l)a , bb]

(4O)

4.87-25 (9/I/70)

c) Form the vector

-_(T - TO) - 6

- _-_ [T_a + 2T_b]

-[T_a + 2T']
2b

0

,_ , + T2b l.[T2a

_[T_a + T_b]

where T is the average of
a

gradients.

and Tb, 6 is the enforced deformation and T_ are the• 1

d) The load vectors in global coordinates are:

{Pa } : [ET][cT][Teb][K_a]{U_}

(41)

(42)

4.87-25a (9/I/70)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.2.5 Element Stress Calculations (Subroutines SBARI and SBAR2 of Module SDR2)

The stress and force data are calculated in two phases. The first phase (subroutine SBARI)

calculates unique stress versus displacement, temperature and enforced deformation functions for

each element. The second phase (suBroutine SBAR2) applies the various subcase displacement

vectors to product the element forces and stresses.

Phase 1 calculations are as follows:

I. Using the algorithms given in the description of the stiffness matrix calculations

for the element (Section 4.87.2.2), calculate the following data:

2.

[kaa] and [kab].

[Teb] = 6x6 element coordinate transformation

[Ea],[Eb] - Offset transformation matrices (6x6)

[Ca],[Cb] - 6x6 global to basic coordinate transformations

K'[e] - 12x12 stiffness matrix in element coordinates with
pin joint effects

- Length of BAR

I

Partition the stiffness matrix [K e] saving only the upper 6x6 matrices,

K I[e] --> l aa: kabI (43)

3. The stress matrices are:

[Sa] = [kaa][Teb]T[Ca][Ea] ,
(44)

[Sb] = [kab][Teb]T[Cb][Eb]
(45)

4.87-26 (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

4. The temperature and enforced deformation matrix is:

[St] = [Kaa]

_ 0 0

o

0 0 0

0 0 0

O 0 0

O _ _
2 2

0 0

0 0

6

0 0

2 2

0 0

(46)

Phase 2 element force calculations are as follows:

I. The static element forces are calculated by the equation:

{P} = [Sa]{Ua} + [Sb]{Ub} + [St]

Tz

Tla

Tlb

T2a

T2b

• (47)

where [Sa] and [Sb] are the displacement-stress matrices, {ua} and {ub} are the displacement

!

vectors• and Tz' Tla' etc. are the element thermal resultants. In terms of the given tempera-

tures at the ends, Ta and Tb' the equation for Tz is:

Tz Ta + Tb
= 2 - TO (4B)

2. The element axial force is:

Fx = [Pl + $6 6] , (49)

4.87-27 (911170)

MODULEFUNCTIONALDESCRIPTIONS

3. The element shear loads are:

V1 = -P2 , (51)

4. The torque and moments are:

V2 = -P3

T = -P4 ,

Mla = -P6,

M2a = P5 ,

Mlb = Mla - VI_ ,

M2b = M2a - V2C .

Phase 2 element stress calculations are as follows:

(52)

(53)

(54)

(55)

(56)

(57)

I. The stresses due to bendinq are:

kla =
M2a 112 Mla 12

2
I 1 12 - 112

(58)

Mla 112 - M2a I 1
k2a =

I 1 12 - I_2
(59)

aca = kla c I + k2a c2, (60)

Oda = kla dI + k2a d 2, (61)

_fa : kla fl + k2a f2' (62)

Oga = kla gl + k2a g2'

For _cb' Odb' Ofb' °gb use the above equations interchanging the subscripts for b and a.

(63)

Equation 50 is intentionally missing.

4.87-28 (11/I/70)

MODULE FUNCTIONAL DESCRIPTIONS

The stresses calculated at points c, d, e, and f on the cross section will be modified by the

element temperatures Tac, Tad, ... Tbc if at least one of the T values is nonzero, at end a:

_a c = _ Ee(Tac

Aad = _ E_(Tad

etc.

I !

- Tla cI - T2a c2 - Ta)

I I

- Tla d 1 - T2a d 2 - Ta)

At end b:

AoC

Aod =

etc.

E_(Tbc - T'Ib Cl - T2b c2 - Tb)

I I

- E_(Tbd - Tlb dI - T2b d2 - Tb)

(63a)

(Ta and T b are the given average temperatures at the ends.) The above stresses are added to the

stresses calculated in Equations 60 - 63.

2. The axial stress is:

Fx (64)
Oax : --_

3. The maxima and minima are:

aa max = aax + max (aca, ada, afa, ag a) ,
(65)

°b max = aax + max (acb, adb, afb, Oab) ,
(66)

aa min = aax + min (aca, ada' afa' aga)
(67)

ab min = aax + min (acb, adb, afb, ag b) •
(68)

4.87-2Ba (9/I/70)

STRUCTURAL ELEMENT DESCRIPTIONS

no The margins of safety in tension, M.S.t, and compression• M.S.c, are as follows:

- 1 , ot > 0min ax ' °bmax

M'S't = I Integer "l" ()<o• _t <0 or max °a max' Ob max --

(69)

Define o'
c

M.S.
c

I°Cl" Then:

°')
I min c - l , oc # 0_°a min ' °b min

(Inte r"l" O' = 0 or min (Oamin, C_bminl>0, !• C

(70)

4.87.2.6 Differential Stiffness Matrix Calculation (Subroutine DBEAM of Module DSMGI)

Many of the equations used in this calculation routine are identical to the stiffness

matrix and element force calculations. Refer to sections 4.87.2.2 and 4.87.2.5 for details.

I. Calculate [Teb], [Ca], [Cb], [Ea], [Eb] and [K], the matrices used in the BAR

stiffness matrix generation• section 4.87.2.2.

2. Calculate the forces in the element using the equations in section 4.87.2.5.

3. The number 2, 3, 4, 5• 6, 8, 9, lO, II and 12th rows and columns of the

12 by 12 differential stiffness matrix are given in Figure I. The first and

seventh rows and columns are zero. The terms are identical to the element forces

calculated for output (Equations 51, 52 and 54 through 57 of section 4.87.2.5) with the

following notational changes:

May = M2a Mby = M2b

Maz = Mla Mbz = Mlb

Vy = Vl Vz = V2

4.87-29 (3/I/71)

MODULEFUNCTIONAL DESCRIPTIONS

LLX

i
LL x

i ° °
1 i

i o

×I° S>_

I_b0 0

I

£bxo

I !

C

! m

o

!

i

i

i,,x_

i !

,ii'_l_[,,xio

' I

O 0

!

! : !

]

0 0

i

m [!

!

! !

I _×__I_
! m i

!

0

i

I
i

.... f......

i

°

N i._C) [

o !

_I°
!

_,X

°

E

%

0

E

,-,,..

0

X

T_
4-_

E

e"

"5

%

c

t,..

4-

N
!

f,.
..-,i

o_

II

x/

4.87-30

STRUCTURAL ELEMENT DESCRIPTIONS

4. The effects of "pin joints" are added by aoplying the elastic stiffness

constraints. The elastic stiffness matrix, [Ke], with no pin joints is equivalent

to the matrix [k] in Equation 29. If coordinate number i is released by a oin flag

the differential stiffness matrix must be modified as follows:

a. If i # j and Z # j, i = l, 2 12 and z = l, 2..... 12:

K_ " d*-_ K_. d* K_j K_. d*(K£j)m_l e +d* d* _j {Kvi}m-I _I 31 (Kjj)m-I

(Ki_)m = (Kiz)m-l - K_. K_. + e
33 33 (Kjj)a

(71)

where m is the (row) index of the pin joint number, l < m < 12.

d _

(Ki_)o : (K_c)

For m = O, define

(72)

b. Ifi orj =

d*
Kij = 0

d*
Kj_ = 0

i = 1 12 ,

j = l..... 12

5. The 12 by 12 matrix [Kd*] is now partitioned into 6 by 6 matrices related

to each grid point

--d* i d*-I

Kaa i Kabl
[Kd*]

I---_--- -J
I d* l d*l

LKba I Kbb]

6. If point "p" is the pivot point (p = a or b), the matrices generated in global

coordinates are:

[K_a] : ([Teb]T[Cp][Ep]) T [K_:] ([Teb][Ca][Ea]) ,

(73)

(74)

(75)

(76)

d _

[K_b] : ([Teb]T[Cp][Ep])T [Kpb] ([Teb]T[Cb][Eb]) (77)

4.87-31

MODULEFUNCTIONALDESCRIPTIONS

4.87.2.7 PiecewiseLinearAnalysisCalculations(SubroutinePSBARof ModulePLA3and

SubroutinePKBARof _dule PLA4)

TheadditionalECPTNLandESTNLdatablockentries for a BARelementare:

C
0

E

_c

E

Vl

_k

V2

T

Mla

"k

M2a

The previously computed axial strain value once removed.

The previously computed axial strain value.

The previously computed modulus of elasticity.

The previously computed element forces and moments.

All of the above values are initially zero with the exception of E , which is initially the

original modulus of elasticity present on a MAT1 bulk data card.

For both stress (subroutine PSBAR) and stiffness matrix (subroutine PKBAR) calculations,

the following data are generated:

4, [Teb], [Ca], [Cb], [Ea], [Eb], [k_a], and [k_b] as in Equations 6, I0, II, 12, 13, 14 and

30 in section 4.87.2.I. Note that: a) [k_a] and [k_b] are the partitions of the stiffness

matrix with pin joint effects taken into account; b) for stress calculations, E is used

keto compute [k_a] and [ab]; and c) for stiffness matrix calculations El (see Equation 84

below) is used to compute [k_a] and [k_b].

Using the incremental displacement vectors, {&ua} and {AUb}, calculate the incremental

strain:

AE : _I{TebI}TI[cb][Eb]{Aub} - [Ca][Ea]{AUa}]
(78)

where {Tebl} is the first column of [Teb]. If coordinate "l" of either Pa or Pb (the pin flags)

is "on", the element is treated as linear. This determination is made in the Piecewise Linear

4.87-32

STRUCTURALELEMENTDESCRIPTIONS

Analysis pre-processor module, PLAI.

Calculate the extensional strains:

A_ = C - CO i

CI = C + AE i

(79)

(80)

E2 = El + y(AE) , (8])

where y is the ratio of the next load increment to the present load increment.

The stresses

oI : f(El),

02 = f(E2),

(_2)

(83)

are confuted, where f is the tabular stress-strain function. (When c

01 = EoEI, where Eo is the modulus of elasticity on the MATI card)

For stiffness matrix generation the new material properties are:

= O, define

El

02 - oI

E2 - El

E

, if c2 f El

, if _2 = El

(84)

and

El

GI = E_O GO '
(85)

where E0 and GO are elastic moduli obtained from the MFTI bulk data card via subroutine MAT.

Note that El is calculated in PSBAR only to predict the next value of E, i.e., to update

the ESTNL entry.

4.87-33 (311/71)

MODULEFUNCTIONAL DESCRIPTIONS

For plastic element stresses and forces, the values are calculated in a fashion similar

to that found in the phase 2 subroutine, SBAR2, (see section 4.87.2.5) of the SDR2 module.

They are:

{AP} : [kaa][Teb]T[Ca][Ea]{SUa } + [kab][Teb]T[Cb][Eb]{SUb }, (86)

= AdFx I' (87)

Vl = - _P2 + Vl ' (88)

V2 = . AP3 + V2 , (89)

T : - AP4 + T , (90)

Mla : . Z_P6 + Mla , (91)

"A"

M2a : AP5 + M2a, (92)

Mlb : Mla Vl_, (93)

M2b = M2a - V2_. (94)

The stresses due to bending, the axial stress, the minimum and maximum stresses, and

the margins of safety are computed as in Equations 58 through 70.

The new ESTNL and ECPTNL entries are:

(95)

_* = el' (96)

E : El , (97)

4.87-34

STRUCTURAL ELEMENT DESCRIPTIONS

(98)

(99)

T = T , (loo)

Mla : Mla , (ioi)

M2a : M2a • (I02)

4.87-35

4.87.2.8

MODULE FUNCTIONAL DESCRIPTIONS

"Consistent" Mass Matrix Calculation (Subroutine MCBAR of Module SMA2)

I. Generate the 12 by 12 matrix:

where

[Me]

m

175

m
420

0 0

156 0

156

SYM

0 0

0 0

0 -22C

0 0

4_2

0

22C

0

0

0

I

4_2 I

35 0 0 0 0 0

0 54 0 0 0 -13_

0 0 54 0 13_ 0

0 0 0 0 0 0

0 0 -13Z 0 -3_ 2 0

0 13_ 0 0 0 -3_ 2

175 0

156

0 0 0 0

0 0 0 -22Z

156 0 22_ 0

0 0 0

4_ 2 0

4_ 2

(I03)

m : (pA + _)_ (104)

2. If "pin joints" exist (Pa or Pb nonzero), generate the "unpinned" 12 by 12 stiffness

matrix in element coordinates, [Ke], as in Equation 29, _ection 4.87.2.2.

For each pin joint of index j, perform the operations for i = l 12 and

= l, ..., 12:

Ke Me Ke Me Ke Ke. M_.
e __ _+ £j jl J3

M_C = Mi£ - K_. K_. (e 2
jj JJ Kjj)

After each pin joint j operation, replace [Me] by the "pinned" matrix [MP].

4. Partition the matrix into 6 by 6 submatrices:

(105)

4.87-36

STRUCTURALELEMENTDESCRIPTIONS

[M] = Maa I Mab 1I

.... I - ------

5. The matrices are converted to global coordinates by the equation:

[M?j] = [[Teb]T[ci][Ei]] T[Mij] [[Teb]T[cj][Ej]]

where i is the pivot point (a or b) and j is used twice (for both a and b).

(I06)

(107)

4.87.2.9 Thermal Analysis Calculations for the BAR Element (Subroutine KBAR of Module S_l)

If a "stiffness" matrix for heat transfer analysis is to be generated, the first word,

HEAT, in CBMMBN data block SMA2HT is .TRUE. The length, _, of the element is calculated with the

structure analysis code, described in Section 4.87.2.2.

is obtained by calling subroutine HMAT, rather than MAT.

For the pivot point i,

kA
Kii -

The thermal conductivity coefficient, k,

The 6x6 matrix partitions are:

"I 0 0 1

0 1 0 I 0

0 0 l I

o I o

Forj # i,

kA

Kij = _ -_-

] o ol

0 1 Ol 0

0 0 II

o I o

4.87-37 (8/1/72)

4.87.3

4.87.3.1

Io

MODULE FUNCTIONAL DESCRIPTIONS

The SHEAR Panel and TWIST Panel Elements

Input Data for SHEAR and TWIST Panels

The ECPT/EST entries for shear (SHEAR) and twist (TWIST) panel elements are:

2.

S_xmbol

SIL i, i=1,2,3,4

Ni 'Xi 'Yi 'Zi }i = 1,2,3,4

Mat I.D.

t

t

Coordinate system data

Description

Scalar indices for the connected Doints

Local coordinate system number and basic co-

ordinate location for each of the connected

points.

Material identification number

Panel thickness

Nonstructural mass per unit area

Temperature for material properties

Using Ni, Xi, Yi' Zi' i = 1,2,3,4 the program constructs [Ti], i = 1,2,3,4, the 3 by 3

global-to-basic transformation matrix for each point.

3. Material data

MAT I.D. and t are used, by utility routine MAT, to produce the following terms from the

MPT and DIT data blocks:

Symbol

E

G

P

T
0

ge

°t' °c' _b

Description

Modulus of elasticity

Shear modulus

Poisson's ratio

Density

Thermal expansion coefficient

Reference temperature

Structural damping coefficient

Stress limits

4.87-38

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.3,2 Definition of Element Geometry

A mean plane is defined as parallel to the two diagonal lines and halfway between them. The

projections of the points at the corners of the element onto the plane and the normal to the plane

define the element coordinate system. Using standard vector algebra, the steps are:

I. Define:

IxII{Vol} = Yl ' {V02}

Zl

X2

Y2 ,

Z2

etc. (I)

2. Define diagonal vectors:

{Vdl} = {V03} - {VoI} , (2)

{Vd2} = {V04} - {V02} • (3)

3, Define normal vector (x denotes cross product):

{k n} = {Vdl} x {Vd2} , (4)

{k n}

{k} = TT_ '

A : ½ l{kn}I (the projected area of the element),

4. Define the vectors along the side of the element (see Figures 2 and 3)

(5)

(6)

{v12} = {Vo2} - {Vol} , (7)

{v41} = {Vol} - {V04} (8)

4.87-39

MODULEFUNCTIONALDESCRIPTIONS

5o

nates, using unit vectors:

Define transformation matrix [Te], which transforms element coordinate to basic coordi-

{vP2} = {v12} - ({Vl2}T {k}){k} , (9)

{v_2}
{i} = (lO)

l{v 2}l '

{j} : {k} x {i} , (ll)

6m

system:

I il J3]

[Te] = i2 J2

i3 J

Transform the four corner point of the element from basic coordinates to the element

{r I } =

(12)

(13)

{r 2}
(14)

I x3 I [Te]T
{r 3} : : £Vdl } ,

Y3

(15)

Ix41{r 4} = : _ [Te]T {v41} .

Y4

(16)

The four corners of the element are now projected onto the mean plane.

4.87-40

STRUCTURALELEMENTDESCRIPTIONS

7. The following conditions should be met. Otherwise, the interior angle at the

indicated point is not valid.

x4

Y3 > 0

Y3

x3>_4 x4

Y4 >0

Y4

< X2 - (x2 - x3)_3

(If not, the interior angle at point 2 > 180°) , (17)

(If not, the interior angle at point 4 > 1800) , (18)

(If not, the interior angle at point 1 > 1800) , (19)

(If not, the interior angle at point 3 > 180°) • (20)

4.87.3.3 Coefficient Generation

The shape of the panel may be a parallelogram, a trapezoid, or a general quadrilateral, and

the equations will be different for each case. The slopes of the opposite sides are checked for

parallel effects, and the correct routine is used for each possibility.

I. Check for parallel effects:

If

I

I Y3 - Y4 <x3 x_ E,

sides l and 3 of the panel are parallel (E = 10-1).

(21)

If

Iy4(x3-x2) - Y3X4 I < _' (22)
x4(x3-x2) + Y4Y3

sides 2 and 4 are parallel. If both terms are less than _, (i.e., the panel is a

parallelogram), go to step (4). If both terms are greater than E, go to step (5). If the

one pair of parallel sides is l and 3, go to step (2); if the one pair of parallel sides is 2

and 4, go to step (3).

4.87-41 (3/1/71)

MODULE FUNCTIONAL DESCRIPTIONS

2. In this case the line connecting points 3 and 4 is approximately parallel to the line

connecting points l and 2, The equations are:

x2Y3Y4 (23)
Yp = Y3x4_Y4(X3_X2) '

Pi = Yp - Yi (i = 1,2,3,4) , (24)

x2Y3X 4

Xp - (25)Y3x4-Y4(x3-x2) '

(26)

x I - Xp) ,c = yp
(27)

PlP2 A 2 (a2 + ac + c2)} • (28)
Z - P3P4 _ {l +T_

3. In this case the line connecting points l and 4 is approximately parallel to the line

connecting points 2 and 3. The equations are:

d = - _- + "Y3 ' (29)

x 3 - x 4

Xq = x 4 Y3 - Y4 Y4 ' (30)

4.87-42

STRUCTURAL ELEMENT DESCRIPTIONS

Pi = [(Xq - xi) -yi d] 1 (i : 1,2,3,4) (31)

b = (x9 - x4)d + Y4

(Xq - x4) - Y4 d

(32)

PlP2 A 2 d2
Z - p3P4 _ {l + 3-_7_-6_-(b2 + bd +)}.

(33)

4. In this case the panel approximates a parallelogram. The equations to solve

are:

Pi = l, (i = 1,2,3,4), (34)

x3-x2 Y3-Y4 1
l x4+_+

d = - _ Y4 Y3 x3-x4 ! '
(35)

A 2d2 .
Z : _ (I + I+_' (36)

5. In this case no parallel effects exist. The equations are:

(x3-x4)

Xq = x4 - _ Y4 '
(37)

4.87-43

MODULEFUNCTIONALDESCRIPTIONS

x2x4Y 3

Xp - (x3_x2) ,Y3x4-Y4
(38)

x2Y3Y4

yp - (x3_x2) 'Y3x4-Y4

(39)

= y(Xq Xp)2 + yp2 (40)

Yp
(41)

Pi = YP[(Xq_ - xi) - yi d] (i : 1,2,3,4) , (42)

£
c = ---d,

Pl
(43)

b : ---c,
P4

(44)

a = --- d.
P2

(45)

4.87-44

STRUCTURAL ELEMENT DESCRIPTIONS

Let:

F PlP2P3P4 {[Ca'H)) + _ (a3+b 3) + _ (a5+b5)] log e la+bl
242

+ [(c+d) +_ (c3+d 3) + _ (c5+d5)] log e [c+dl

[(b+c) + _ (b3+c3) + _ (b5+c5)] l°ge Ib+cl
(46)

- [(d+a) + _ (d3+a3) + } (d5+a5)] loge Id+al

+_[(a2-c 2) (b3-d3) + (b2-d2) (a3-c3)]

I •

- [[(a-c) (b4-d4) + (b-d) (a4-c4)]}

Then:

Z ----
PlP2 l _A +

i
(477

4.87-45

MODULEFUNCTIONAL DESCRIPTIONS

4.87.3.4 Stiffness Matrix Formulation For a SHEAR Panel (Subroutine KPANEL of Module SMAI)

I. Calculate the lengths of the diagonals:

_13 = "_x32 + Y32 ' (48)

_x4-x2)2 + y42_24 = (49)

2, Calculate the unit vectors along the diagonals:

x3

Ul = u3 - &13 '

Y3

Vl = v3 - &13

x4-x 2
u2 = u4 - _24

(50)

(51)

(52)

Y4
v2 = v4 =

_24
(53)

3. The loads along the diagonals in terms of the average shear stress along

side 1 are:

A1
x2Y4_l 3

2(x4Y 3 - x3Y4)
(54)

4,87-46

STRUCTUP4_LEL£MENT DESCRIPTIO_IS

x2Y3_24
A2 =

2Cx4Y3 - x3Y4 - x2(Y3 - y4))
(55)

A3 =-A l , (56)

A4 = -A2 . (57)

4. The loads at grid point i in terms of the displacements at grid point j may be

expressed in terms of a (3x3) matrix [kij] where

AiA"]T
[kij] : _ [Ti [Te]

ui

vi

{ujvj}T [Te]T [Tj] (58)

i = 1,2,3,4 ,

i : l, 2.... i .

5. The 3x3 matrices are related only to deflections and forces. The terms in the

6x6 matrices, [Kij], corresponding to rotations are zero. Expand the matrices to 6x6:

Ooi[Kij] = I-
f

The element structural damping matrix is equal to ge' the structural damping

coefficient, multiplied by the stiffness matrix, [Kij].

4.87.3.5 TWIST Element Stiffness Matrix Generation (Subroutine KPANEL of Module SMAI)

(59)

The following data for the SHEAR panel element are used for generation of the

element stiffness matrix for the TWIST panel.

4.87-47

MODULEFUNCTIONALD_SCRIPTIONS

[Te] The3x2transformationmatrix (Equation12).

x2,x3,x4,Y3,Y4 Thelocationsof the cornersin the element
system(Equations14, 15and16).

Theenergycoefficient (Equation28, 33, 36,
or 47).

UlU2U3U4
VlV2V3V4

Unit vectorcoefficients at the corners
(Equations50through53)

AI,A2,A3,A4 Loadcoefficients for the corners(Equations
54through57)

ETI],ET2],[T3],[T 4] 3x3 global-to-basic transformation matrices

I. Generate the three by three matrices relating the moments at point i to the

rotations at point j:

AiA.t2 -vi

[qij] : _-_ [Ti]T[T e] {-vjuj}T[Te]T[Tj] •
ui

(60)

These are generated only for one point i (the pivot point) and j = 1,2,3 and 4.

2. The 3x3 matrices [qij] are expanded to 6x6 matrices [Kij] having zeros in the

translational displacement rows and columns.

[Kij]

I} FO 1

= I

_qqij

(61)

4.87.3.6 Mass Matrix Generation (Subroutine MASSTQ of Module SMA2)

The mass at each point is determined by cutting the quadrilateral into four overlapping

triangles. Each triangle is defined by three of the four points as follows:

4.87-48

STRUCTURALELEMENT DESCRIPTIONS

Triangle No. Connected Points

K _Z j2 13

I 4 - l - 2

II l - 2 - 3

III 2 - 3 - 4

IV 3 - 4 - 1

The area of each triangle is determined by the equation :

AK : II({Voj2}-{Vojl}) x ({Voj3}-{Vojl})I , (62)

where {Vojl} is the location vector of the first point definina the triangle,

{Voj2} the second point, and {Voj3} the third ooint.

The mass of each triangle is divided equally among its connected points. The mass

at each point is:

ml ('p + pt)= 3 (A4 + Al + A2) '

: + pt)
m2 _ 3 (AI + A2 + A3) '

m3 (p + pt) (A2 + A3 + A4): 3 t

m4 = (-_ (A3 + A4 + Al).

(63)

(64)

(65)

(66)

4.87-49

MODULEFUNCTIONALDESCRIPTIONS

For eachpoint a six by six diagonalmassmatrix is constructed.Thematrix is:

[Mii]

mi

mi

m.

l

I

I

i 0

I
I

-I - - -

i o
I
I 0
I

i 0
I

(67)

4.87.3.7 SHEAR Element Stress and Force Calculations (Subroutines SPANLI and SPANL2 of Module SDR2)

The stress and force calculations are performed in two phases: phase l in SPANLI;

phase 2 in SPANL2.

PHASE 1

I. Calculate the 1 by 3 matrices [Si], i : I, 2, 3, 4 :

Ai
[Si] = - Z_'Z_- {ui : vi} [Te]T [Ti]' (68)

where Ai, Z, t, ui, vi, [Te] and [Ti] are as given in sections 4.87.3.2 and 4.87.3.3,

2, The [S] terms and the following parameters:

P2 PIP2 PIP2

are saved on a scratch file for phase 2 calculatior:s. Pi' where i = l, 2, 3 and 4 are

calculated using the equations in section 4.87.3.3.

4.87-50

STRUCTURAL ELEMENT DESCRIPTIONS

PHASE 2

I. The average stress along side l is:

4

Tl = r,
i=l

are the translational vectors where:

{Ugi}:':>

[si]{ut}. (69)

(70)

2. The stresses on the corners are :

P2

_l - Pl S-l '

D_tl-
T2 = P2 Sl '

(71)

(72)

m3 PlP2- _-- Tl'
P3

(73)

PlP2
T4 = ---2-- S-l

P4

(74)

3. The average and maximum stresses are defined as:

l
Tavg = 7r (Tl + T2 + T3 + T4)' (75)

mmax = max (l_ll,IT21, IT31, IT4]). (76)

4.87-51

MODULEFUNCTIONALDESCRIPTIONS

4. Themarginof safety in shearis definedby:

M.S.s

C_s

F_-i -l , if Os > 0

Integer "l", if gs <--0 or _max

5. The net loads on the corners in the diagonal direction are:

=0

(77)

Pl3 = Al Tit ' (78)

P24 = A2 S-lt " (79)

4.87.3.8 TWIST Element Stress and Force Calculations (Subroutines SPANLI and SPANL2 of Module

SDR2)

The stress and force calculations are performed in two phases, as for the SHEAR

panel element,

PHASE 1

I. Calculate for i = l, 2, 3, 4

Ai , ui}[Te]T[Si] = _ 7_-E{-vi: [Ti].

2. The [Si] terms and the following data:

P2 PlP2 PlP2
A1 A2, t,-•

are saved on a scratch file for phase 2 calculations.

PHASE 2

I. The mean outer fibre shear stress along side l is:

4

T1 : _ [Si] {ur},
i=l

(80)

(81)

4.87-52 (3/I/71)

STRUCTURALELEMENTDESCRIPTIONS

where {u_} are the three rotational displacements:

2. The stresses are :

(82)

TlPl
o 2 =_ P2 '

(83)

o3

_4

PlP2
= ---Z-._I,

P3

PlP2

= p-_4 TI,

(84)

(85)

1
°avg = 4 (°l + _2 + _3 + o4)' (86)

Omax = mx(loiI , Io21,Io31,Io41). (87)

3. The margin of safety in shear is defined by"

u S

F_-I ,Os>0

M.S.s =

Inteoer "l", os _<0 or Omax
=0

(88)

4. The moments are :

(89)

4.87-53 (3/I/71)

MODULE FUNCTIONAL DESCRIPTIONS

4,87.3.9

A2t2 (90)
M24 = --C--_I

SHEAR Panel Differential Stiffness Calculations (Subroutine DSHEAR of Module DSMGI)

I. Data

The data necessary for analysis are included in the ECPT, CSTM, MPT and UGV

data blocks. The following data are generated as in sections 4.87.3.2, 4.87.3.3,

and 4.87.3.4.

a. [Ti] , i = 1,2,3,4, the 3x3 transformation matrices between global and

basic coordinates, at the four corners of the shear panel.

b. [Te], the 3x2 transformations between basic and element coordinates.

c. {k}, the unit vector normal to the plane in basic coordinates.

d. ui, vi, i = 1,2,3,4, the unit vectors along the diagonals in element

coordinates.

e. A i, i = 1,2,3,4, the load coefficients for the corners.

f. Z, the energy coefficient for the p_nel.

g" _13 and L24' the lengths of the diagonals.

2. Algorithm

a. The load in the diagonal between points 1 and 3 is:

A1 4 }T [Te]T[Ti] I lli (91)

tx, J

4.87-54

STRUCTURAL ELEMENT DESCRIPTIONS

where {xi} is the vector of the three translations in global coordinates for point

(i).

b. The load in the other diagonal is :

A2

F24 = _ _13 • (92)

c. Construct a perpendicular, which is defined in basic coordinates, to each diagonal

vector in the plane of the panel.

I vl1
{Jl} = [Te] , (93)

ul

I{J2} = ITe] . (94)

u2

d. The nonzero partitions of the overall differential stiffness matrix for

the displacements are:

= -F_3[TI]T [{Jl}{Jl }T + {k}{k}Tl [T3],[k_3] (96)

[kd3] : F_3[T3]T

[k_l] : [k_3]T,

[{Jl}{jl}T + {k}{k}T] [T3] , (97)

(98)

[kd22] : F_4[T2IT [{J2}{J2}T + {k}{k}T][T2], (99)

[k_4] : -F_4[T2]T I{J2}{J2 }T + {k}{k} T] [T4], (I00)

4.87-55

MODULEFUNCTIONAL DESCRIPTIONS

where:

FI3

Fl3 - _13 '

F24
I

F24 _24

(1oi)

(1o2)

(103)

(I04)

5. The actual 6x6 partitions are

r- -_ 1' d ik.. , 0 I

LO : o__1

(I05)

and

(106)

4.87-56

STRUCTURALELEMENT DESCRIPTIONS

SIDE 3

FI3

SIDE 4 SIDE 2

x,, ®-,,,,
FI3 F24

SIDE]

Figure 2. Shear panel element coordinate system and element forces,

MI3

SIDE 2

H24

SIDE 4

SIDr't13

Figure 3. Twist panel element coordinate system and element forces.

4.87-57

MODULE FUNCTIONAL DESCRIPTIONS

4.87.4 TRMEM and QDMEM Elements

4.87.4.1 Input Data for the TRMEN and QDMEM Elements

I. ECPT entries for the TRMEM and QDMEM are:

Symbol Descripti on

TRMEM

SIL l

SIL 2

SlL 3

Ni

X i

i = 1,3

Yi

Zi

e

Mat I.D.

t

t

QDMEM

SIL l

SIL 2

SIL 3

SIL 4

N.
1

Xi

i = 1,4

Yi

Zi

Scalar indices of the connected grid points,

Local coordinate system numbers and location

coordinates in the basic system for the

connected grid Doints.

Anisotronic material orientation angle

Material identification number

Thickness

Nonstructural mass per unit area

Temperature for material properties

2. Coordinate system data

The numbers Ni, Xi, Yi and Zi are used to calculate the 3 by 3 global-to-basic coordinate

transformation matrices [Ti] for points i = I, 2, 3, and 4.

4.87-58

STRUCTURAL ELEMENT DESCRIPTIONS

Material data

S_xmbol

[Ge]

P

_x'_y'_xy

To

ge

_t,_c,Os

Basic Equations For TRMEM

Descriotion

3x3 stress-strain matrix

Mass density

Three thermal expansion coefficients

Reference temperature

Structural damping coefficient

Stress limits for tension, compression and shear

l. The element coordinate system is defined by the following equations (see Figure 4)

{V12}
X2 - Xl I

= Y2 Y1 ' (1)

{V13}

X3 - Xl

Y3 - Yl

Z3 - Zl

C2)

{VI2}
{i} =

I{v12}l
C3)

{k} =
{i} x {Vl3}

l{i}x {v13}I
(4)

{j} = {k} x {i}. (5)

2. The displacement transformation matrix from basic coordinates to in-plane

coordinates is :

4.87-59

MODULEFUNCTIONALDESCRIPTIONS

[E]T
I i2 i31

: j

1 J2 J3

(6)

3. The coordinates of the points in the element coordinate system are:

Xl = Yl = Y2 = 0 ,
(7)

x2 : l{Vl2}l, (8)

X3 = {V13}T {i} , (9)

Y3 = l{i}x {v13}I. (lO)

The area is:

A = ½ x2 Y3" (II)

4. The transformations from displacements at the points to strains are:

[c I]

_ ! 0
x2

I Ix3-I)o _3_

l/'x3 -l) _z_3_ x2
m

(12)

4.87-60

STRUCTURAL ELEMENT DESCRIPTIONS

[C2]

m

l
-- 0
x2

x3

x2Y3

x3 l

x2Y3 x2
w

(13)

[C3]

0 0

l
0

Y3

l
- 0

_Y3

(14)

4.87.4.3 Stiffness Matrix Calculation for TRMEM (Subroutine KT_MEM of Module SMAI)

I. The equation used in the stiffness matrix generation in global coordinates is:

[kij] = At([Ci][E]T[Ti])T[Ge]([Cj][E]T[Tj]), (15)

where "i" is the pivot point number, and j = l, 2, 3 are the three connected

points, [kij] is a 3x3 matrix,

2. For use in the overall structural matrix, the matrices are expanded to 6x6 to

form:

[Kij] L_ I°]"
(16)

4.87-61

MODULEFUNCTIONALDESCRIPTIONS

@.87.4.4 Mass Matrix Calculation for the TRMEM Element (Subroutine MASSTQ of Module SMA2)

The mass is generated by the following algorithm.

The vectors defining the sides are:

{VI2}

X2 - Xl

Y2 - Yl

Z2 - Zl

(17)

{V13}

X3 - Xl

Y3 " Yl

Z3 - Zl

(18)

The area is •

A = ½1{Vl2 } x {Vl3}j . (19)

The mass at each point is:

= _(pt + _), (20)

which is one-third of the total mass.

For each point the diagonal mass matrix is:

[Mii]

m I
i

m I 0
I

m i

i0
!

0 , 0
I

I
I

B

, i = 1,2,3.

0
m

(21)

4.87-62

STRUCTURALELEMENTDESCRIPTIONS

4.87.4.5 Element Load Calculations For TheTRMEM Element (Subroutine TRIVEM of Module SSGI)

Using the loading temperature on the element, T, given in the GPTT data block, the triangular

membrane routine generates force vectors by the equation:

{Pi} = At[TilT[E] [ci]T[Ge]{a}(T - To)

4.87.4.6

I.

• i : 1,2,3 (22)

where {Pi} is a 3xl vector.

The forces are placed in the PG load vector data block.

Element Stress Calculations For The TP_I_.|Element (Subroutines STRMEI and

STQME2 of Module SDR2)

Calculations performed in STRMEI (Phase l calculations).

a. Using the formulae given in section 4.87.4.2, calculate the following terms:

[Ci] i = a, b, c (3x2)

[Ti] i = a, b, c (3x3)

[E] (3x2)

[Ge] (3x3)

The transformations from displacements to stress are :

[Si] : [Ge][Ci][E]T[Ti_]. _24)

Equation 23 is intentionally missing.

4.87-63 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

The temperature to stress relation is:

where

for isotropic materials.

for material angle by

{S t } = [Ge]{_} (25)

 III,o 12oi
{_} is input by the user for anisotropic materials and corrected

= [v]{C_m} .

2. Calculations performed by STQME2 (Phase 2 calculations)

The equation for stress is:

[lay = Z
i=a,b,c [Si]{Ugi }

_xy

+ {s t} [T - TO]
(27)

where T is the loading temperature obtained from the GPTT data block.

The principal stresses are:

o I
+"= + 0 2

xy
(28)

\ 2 / - °xY '
(29)

0 = ½ arctan b_2°xy I (in degrees) ,

_x- _y /

where 0 is limited to : -90 o < 0 < 90o

(30)

4.87-64 (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.4.7

l ,

21

3o

The maximum shear is :

_fferential Stiffness Matrix Calculations for the TRMEM Element (Subroutine

DTRMEM of Module DSMGI)

Input Data.

ECPT for element

i - Pivot point scalar index

{Ul}, {u2}, {u3}- Displacements of pivots on triangle (UGV)

- Average loading temperature of the grid points of the element (GPTT)

CSTM - coordinate systems

MPT - Material properties table

Output Data.

[K_I], [K_2], [K_3] - partitions of the differential stiffness matrix.

Solution Algorithm.

a. The planar stresses in the element, Ox, _y and _xy' are calculated as in

the SDR2 (Stress Data Recovery) module. The following data are saved for use

in the differential stiffness calculatioh :

{i}, {j}, {k} - Unit vectors defining the element coordinate

system.

A, t - Area and thickness

x2' x3' Y3 - Locations of the points, element coordinates

[Tl], [T2], [T3] - Global-to-basic coordinate transformations

_x' Oy, Oxy - Stresses in _lemer_tsystem

(31)

4.87-65 (ll/I/70)

MODULEFUNCTIONAL DESCRIPTIONS

b. The differential stiffness matrix in terms of the six generalized coordinates

(mx, my, mz, Exx, _yy, and Exy) is:

[K_] = At

- Oy -Oxy 0 0 0 0

-Oxy °x 0 0 0 0

0 0 (°x+Oy) -Oxy Oxy (Ox-°y)

0 0 -Oxy 0 0 0

0 0 _xy 0 0 0

_ 0 0 (Ox-_y) 0 0 0 _

(32)

If the subroutine is called from the DTRIA or DQUADroutines the following terms are set

to zero:

d
Kdg12] Kdg21] d[K ll]y = [= [: [Kg22] = 0

C.

coordinates are:

The transformation matrices from displacements at the points to generalized

0 0 y3-Y2

0 0 Y1

Y2-Y3 Y1
2 -T 0

-YI 0 0

0 y3-Y2 0

Y2-Y3 Y1
2 2 0

(33)

4.87-66 (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

[cI] :

m

0 0 -Y3

0 0 -Yl

Y3 Yl
-E T o

Yl 0 0

0 -Y3 O

Y3 Y1
T T o

(34)

[CI] =

0

Y2
-T

0

0

Y2
2

0

0

Y2

Y2

0

(35)

4.87-66a (8/I/72)

STRUCTURALELEMENT DESCRIPTIONS

where

l

YI - x2 '
(36)

l
Y2 -

Y3 '
(37)

X3
Y3 = x2Y3

(38)

d. The partitions (3x3) of the differential stiffness matrix in global

coordinates are :

[Kij] : ([C_] [Ed]T [Ti])T [K_] [C_] [Ed]T [Tj] , (39)

i = pivot point

j = l, 2 and 3

where

led]T

i}T]

= {j}T (3x3) .

{k}T

(40)

4.87.4.8 General Calculations for the QDMEM by the QDMEM Driver Routines (Subroutines

KQDMEM of Module SMAI, SQDMEI of Module SDR2, DQDMEM of Module DSMGI).

I. The quadrilateral is divided into four triangles as shown in the figure below:

4.87-67 (811172)

I,iODULEFUNCTIONALDESCRIPTIONS

= +

1 2 1 1

The thickness used for each triangle is one-half that qiven for the quadrilateral.

Since no special calculation time is saved by generating a unique element coordinate

system, the basic locations of the points are used to calculate individual coordinate

systems for the triangles.

An integer mapping matrix [M] containing the quadrilateral point numbers is

used to convert point numbers for the triangles to point numbers for the quadrilateral.

[M]

Triangle Point No.

-a b c-

l 2 4

2 3 l

3 4 2

4 l 3
D

Triangle No.

(1)

(II)

(Ill)

(IV)

(41)

The data corresponding to the point numbers in each row of the matrix are transferred to

the triangular membrane routine. The pivot grid point i is also transferred.

2. Material orientation for subtriangles.

The material orientation angle for the QDMEM element must be transformed to a set

of angles related to the base of each subtriangle. This requires the following

steps:

4.87-68

STRUCTURALELEMENTDESCRIPTIONS

1. Theelementcoordinatesystemis definedasfollows:

{Vi} = xiiYi
Zi

i = l, 2, 3, 4,
(42)

{d21} = {V2}- {VI}

{dzl}
{i} = _ ,

t{d21}l

{d41} = {V4} - {Vl}

(43)

(44)

(45)

{i} x {d41}
{k} =

I{i} x {d41}l

(46)

{j} = {k} x {i} .
(47)

The material is oriented for each triangle as follows:

sI = sin (e) ,

cI : cos (O) ,

{p} = cI {i} + Sl{J} ,

{V_I} = {V3} - {V2},

(48)

(49)

(50)

(51)

{V_lI} : {V4} - {V3} ,
(52)

{V_v} : {VI} - {V4} ,
(53)

4.87-69

MODULE FUNCTIONAL DESCRIPTIONS

ci -
I{v }1

- cos (8i)

({V_} x {p})T{k}

s i =
I{v }I

i = II, III and IV

(54)

= sin (@i) . (55)

The values s i

of the angles 0..
I

and c i may be passed to the triangular memhran_ _uSroutines in lieu

4.87.4.9 Stiffness Matrix Calculations for the QDMEM.

Three stiffness matrices, which the triangular membrane routine calculates for eachsub-

triangle, are added to the four matrices which will be output. (Note: only three triangles are

needed for each pivot point.) For example, consider the case where point 2 is the pivot grid

point. (i.e., the second SIL value in the grid point connection list equals the pivot grid point

SIL value). Triangle I is calculated by entering the geometry and property data for the l, 2 and

4 points on the quadrilateral, with number 2 as the pivot point. The outputs from the stiffness

matrix generation routines for the TRMEM are:

[K21], [K22], [K24]

Data for triangles II and Ill are also entered, and their corresponding matrix partitions are

added. Triangle number IV is not connected to point 2.

4.87.4.10 Flement Stress Calculations for the QDMEM(Subroutine SQDMEI and STQME2of

Moc_e SDR2).

The solution for stress in the quadrilateral involves two phases. In the first

phase (SQDMEI) the triangular membrane partitions are solved for their stress-displacement

matrices. These matrices are modified to correspond to the element coordinate system. They

4.87-7O

STRUCTURAL ELEMENT DESCRIPTIONS

are added together to form four 3x3 matrices relating displacements in global coordinates to

element stress. A vector is also calculated which transforms temperature to stress.

The second phase (STQME2) involves the acquisition of the displacement and temperature

data and the calculation of the net stress.

The following steps are used to set up an element coordinate system and obtain triangle

to element stress transformations.

Phase l

I. The following quantities are calculated:

Ixil{Vi} = Yi i = l, 2, 3, 4

Z i

(56)

{d I} : {V 3} - {V I} , (57)

{d 2} : {V 4} - {V 2} , (58)

{k}
{d I } x {d 2}

I{d I} x {d2} j '
(59)

{a12} = {V 2} - {V 4} , (60)

{a23} = {V 3} - {V 2} , (61)

{a41} = {V I} - {V 4} , (62)

{a34 } = {V4} - {V3} , (63)

4.87-71

MODULE FUNCTIONAL DESCRIPTIONS

h = {al2}T {k} (64)

h is the perpendicular distance between the diagonals. The mean Diane of the element

lies halfway between the diagonals.

2. The unit vectors along the edges of the four triangles, projected on the mean plane,

are calculated from:

x2 = l{a12} - h{k} I ,
(65)

{al2}- h{k}
{i} : m

x2
(66)

{j} = {k} x {j} ,

Lif] (2x3),
: L 3;T!

(Vl2} : 0 _'

{vii} = [R]{aij} ij = 23, 34, 41

l
{wII} = TT_ {v23} ,

(67)

(68)

(69)

, (70)

(71)

(72)

{will} = l
I-C;_TF {v34} ' (73)

{wIV} _ l
l{v41}I {v41} , (74)

3. For each triangular membrane, B = I, II, Ill, IV, of the quadrilateral, the subroutine

STRMEI is called to calculate the three stress functions [Si] where

4.87-72

STRUCTURALELEMENT DESCRIPTIONS

°'I
_12

triangle

3

Z [Si] {Ugdi} ,
i=l

(75)

where {Ugdi} are the displacements in global coordinates of the noints on the triangle.

[S_] is calculated using the full thickness of the oanel for triangle B.

4. The stress functions, Equation 24, are transformed to the element coordinates by the

matrix [TB]:

where

ITB]

SB = [TB][S_],[i]element

w_

-- w_

WlW2
m

w_ -2WlW2

w_ 2WlW2

2 2
-WlW2 w2-wl

a

(76)

, (77)

and

for triangle B = I, II, III, IV.

I wl I =
w2

{wB} (78)

5. Using the mapping matrix [M], Equation 41, the matrices are added. The actual equations

are :

IS1] =_{[S_]+[SIclJ+[s_V]). (79)

4.87-73

MODULEFUNCTIONALDESCRIPTIONS

where [S_] i

Equation 25.

= a, b, c, are the stress matrices in Equation 76 and {S_t} is the vector in

Phase 2

I. In phase 2 the stresses are calculated from:

xII C_xy

_y
4

: {Tt}T + z [_i] {%di } , (84)
i=l

where

4
1

t- : T _ (t i - To) , (85)
i:l

and t i are the loading temperatures at the grid points, obtained from the GPTT data block.

2. The principal stresses and the angles are calculated in exactly the same manner

as for the TRMEMelement.

4.87.4.11 Mass Matrix Generation for the QDMEMElement (Subroutine MASSTQof Module SMA2).

The mass is generated by the following algorithm.

The vectors defining the sides and the diagonals are:

{Vij} : Yj Yi '

Zj Zi

ij : 12, 23, 34, 41, 13, 24 (86)

4.87-74

STRUCTURAL ELEMENT DESCRIPTIONS

The area of the subtriangles defined by the integer mapping matrix [M], Equatien 41, is:

l
AI = -2 {v]4}x {v]2}I ,

{Vl2}x {v23}I ,

(87)

(88)

l
AllI :

1
AIV : _-

{V23} x {V34}j

{V34} x {Vl4}j

(89)

(90)

The area of the quadrilateral is:

l
Aq : {V13} x {V24} j (91)

The mass at each point is:

(Ai + Aq)
ml = 3

(All + Aq)
m2 = 3

(AllI + Aq)
m3 = 3

(AIv + Aq)
m4 = 3

(p + pt)

(p + pt)

(_ + pt)

(IJ+ pt)

(92)

(93)

(94)

(gs)

For each point, the diagonal mass matrix is:

[Mii]

m
!

I

mi !
m' I 0

II
,0

0 !' 0
I

i 0
I

i : I, 2, 3, 4 (96)

4.87-75

NODULE FUNCTIONAL DESCRIPTIONS

4.87.4.12 Thermal Load Computation For The QDMEM.

The thermal loads are calculated using the triangular membrane routine. The EST

data are rearranged to correspond to each of the four subtriangles, and each triangle produces

a load in global coordinates.

4.87.4.13 Differential Stiffness Computations For The QDMEM (Subroutines DQDMEM and DTRMEM

of Module DSMGI).

The differential stiffness matrices for the QDMEM element are generated by rearranging

the ECPT data into four sets of TRMEM data. The TRMEM differential stiffness routine

calculates the stresses, generates the differential stiffness matrix partitions in global

coordinates and inserts them in the overall matrix.

4.87-76

MODULE FUNCTIONAL DESCRIPTIONS

4.87.4.14 Piecewise Linear Analysis Calculations (Subroutines PSTRM and PSQDM of Module PLA3 and

Subroutines PKTRM and PKQDM of Module PLA4)

The additional ECPTNL and ESTNL entries are:

_k

co - The previously computed strain value once removed.

_k

E - The previously computed strain value.

E - The previously computed modulus of elasticity.

"I0 x

,k

C_y The previously computed membrane stresses

Ik

exy

All of the above values are initially zero with the exception of E , which is initially the

original modulus of elasticity present on a HATI card.

For both PLA3 and PLA4, the element stress matrix calculations are generated in the same

manner as Equation 24 of section 4.87.4.6 (Equations 79 through 82 of section 4.87.4.8 for

the QDMEM), with the exception that for all DMAP loops (of the Piecewise Linear Analysis Rigid

Fo_Inat)after the first, the 3 by 3 material properties matrix [Gel is replaced by a stress-

dependent 3 by 3 material properties matrix [Gp] defined as follows

[Gp] = Eo

m

l+s_F

(sym)

-V+SxSyF

l+s2F

2_xySxF

2axySyF

2 (l +v) +4FC_xy2

-1

(97)

where

T o Eo *2 *2] I/2
*2 a*_*+ +
x - x-y _y 3°xy

g(Eo - E*)
F =

4_E*

(98)

(99)

4.87-76a (12-1-6g)

MODULEFUNCTIONAL DESCRIPTIONS

2c_x - C_y
SX : - 3

(too)

2oy - ox
Sy : 3

gc

and Eo and _ are the linear type 1 material properties. If E

Calculate the incremental element stresses:

(_Ol)

: O, or to = O, then [Gp] = [0].

box

boy

b°xy

[Si]{AUgi}l
(I02)

where [Si] is given in Equation 24 of section 4.87.4.6, and {bUgi} are the 3 by 1 translational

displacement vectors.

Define the element stresses for output and for updating the ECPTNL and ESTNL:

Oxl = ox + AOx (I03)

@c

OyI = oy + t,Oy

Oxy I : Oxy + AOxy

(io4)

(Io5)

In PLA3, using the element stresses above, the principal stresses are calculated in the same

manner as in Equations 28 through 31 in section 4.87.4.6.

Estimate the next elastic coefficients as defined by the following equations:

2 2 + 30
TI = axl - axl_yl + ayl yl '

El : f-I(T l) ,

(I06)

(I07)

where f is the tabular stress-strain function.

define E 1 = O, E1 = c , and _ = CO).

(When _l is outside the range of the function,

4.87-76b (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

Calculate:

AC : C1 - C (io8)

A£ = c - C O
(109)

c2 = cI + y(_) , (llO)

where y is a load ratio parameter calculated by the module driver (PLA3 or PLA4).

Calculate:

z2 = f(c2) , (Ill)

where f is the tabular stress-strain function.

Then the estimated next modulus of elasticity, El, is given by:

El
I 2 "I , for c2 # c1

c2 - c1

0 , for c2 = cI .

(If2)

The new ESTNL and ECPTNL entries are:

E o

C

"k

E

= C

= c 1

= E 1

ax = axl

Oy = _yl

axy = axyI

(I13)

(I14)

(I15)

(I16)

(i17)

(118)

In module PLA4, the element stiffness matrices are calculated in the same manner as

Equations 15 and 16 of section 4.87.4.3 (or as in section 4.87.4.9 fcr the QDMEM), with the

4.87-76c (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

exception that [Ge] matrix is replaced by the [Gp] matrix (Equation 97). In the calculation for

[Gp], El (Equation 112) is used for E*, and the newly calculated membrane stresses (Equations 103,

104 and 105) are used in placed of Ox' Oy and _xy "

4.87.4.15 Thermal Analysis Calculations for the Membrane Elements (Subroutine KTRMEM and

KQDMEMof Module SMAI)

If the subroutines are to be used for thermal analysis, the logical word, HEAT, in labeled

COMMON SMAIHT is .TRUE. The geometry of the element is processed, as with a structural analysis

problem, to produce the parameters x2, x3, Y3' A, and t. For thermal analysis, the 2 x 2

material conductivity matrix [G_] is obtained by calling subroutine HMAT. The transformation

matrices (2 x I) between temperatures at the connected grid points and thermal gradients are:

[c_] =

[c_] =

1 x3 - 1

x 3

[C_] :

The scalar heat conduction terms are:

Ecj IJ

where i corresponds to the pivot grid point, and j : l, 2, and 3.

4.87-76d (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

The 6x6 partitions of the stiffness matrix are:

l 0

[Kij] = kij

ol

0 1 OI 0

o o II

o I o

The basic differences which exist in subroutine KQDMEM for thermal analysis are that no

transfomations between global and element coordinates are performed.

4.87-76e (811172)

STRUCTURALELEMENTDESCRIPTIONS

0,0

Figure4. Triangularmembraneelement.

4.87-77

4.87.5

4.87.5.1

Io

MODULE FUNCTIONAL DESCRIPTIONS

The TRBSC, TRPLT and QDPLT Elements

Input Data for the TRBSC and TRPLT Elements.

The ECPT/EST entries for the TRBSC and TRPLT are:

Symbol Description

SIL l, SIL 2, SIL 3

Ni' Xi' Yi' Zi [

i:I,2,3

I

t

Mat Id. b

Mat. Id. s

8

Z1 , Z2

t

2.

Scalar indices for the connected grid points

Reference numbers for local coordinate system
and _ _^ . L___ _ .. _ ____,o_o_,un_ in ua_,c uoord,n_L_ of the three
connected grid points

Bending moment of inertia per unit width

Effective thickness for transverse shear

Material property identification number for bending

Material property identification number for shear

Material orientation angle

Nonstructural mass per area

Fiber distances for stress calculations

Temperature of element for material properties

ECPT entries for the QDPLT.

The entries are the same as those for the TRPLT excent that four points are used.

Coordinate system data

Using Ni, Xi, Yi' Zi and the CSTM data block the 3 by 3 global-to-basic coordinate trans-

formation matrices [Ti] are produced for each point i via subroutines TRANSD or TRANSS.

4. Material data

Using the material property identification numbers, the orientation angle, the element

temperature and the MPT and DIT data blocks, the following data are calculated:

4.87-78

STRUCTURAL ELEMENT DESCRIPTIONS

Symbol Description

[Gb] 3x3 elastic property matrixfor Mat Idb
ge Structural damping coefficient

for Mat Ids Gs Shear coefficient

For the TRPLT and the QDPLT, the orientation of the material relative to each sub-

triangle must be calculated from the geometry and the orientation given for the

whole element. The details of this calculation are given in the next section.

4.87.5.2 General Calculation for the TRBSC Element

I. The coordinate system is defined by the three connected points a, b and c.

{i}, {j} and {k} are the unit vectors along the x, y and z axis in basic coordinates.

Xi' Yi and Zi are the location coordinates of the three Points, i=a, b, c. (The element

coordinate system for the basic bending triangle is shown in Figure 2 of section 5.8 of

the Theoretical Manual).

{Vab}
I xb Xa I'

= Yb Ya

Zb Za

(1)

{Vac}

Xc Xa 1

= Yc - Xa '

Zc - Za

(2)

The x axis is defined by the unit vector"

{i} -
{Vab}

l{Vab}]
(3)

Calculate:

{i} x {Vac}

{k} : iyi} x {Vac}I '
(4)

4.87-79

MODULE FUNCTIONAL DESCRIPTIONS

The y axis is defined by the unit vector,

{J} = {k} x {i} • (5)

2. The locations of the points in element coordinates are:

Xa Ya Yb = 0 (6)

Yc

x b = I{Vab} [,

x c = [Vac }T {i} ,

{Vac }T {j} = l{i} x {Vac}]

(7)

(8)

(9)

3. The 3 x 6 transformation matrix from the six displacements in element coordinates

to the three degrees of freedom used in the plate is:

[El T 11 Ik2 k 3 0 0 0

0 0 i I i 2 i 3 .

0 0 Jl J2 J

(lO)

4. The coefficients used for the plate are:

[D]

[G2] :

: IEGb]

ts[Go s

(11)

(12)

4.87-80

STRUCTURAL ELEMENT DESCRIPTIONS

where [Gb] is the 3 x 3 material matrix for bending and G_ is the coefficient for
m

transverse shear. The area of the triangle, A, the locations of the c.g., _and y,

2
and the radii of gyration about the origin, p_, p_ and Pxy are given by:

A = ½ Xb Yc ' (13)

: ½ (Xc + xb) ,

-- l
Y = _Yc '

Px : T (+XbXc+X) ' (16)

[Kx]

2 1 2
Py = TYc '

2 Yc
Pxy = T_ (Xb + 2Xc) "

5. The stiffness matrix in generalized coordinates {q} is:

Dll J D13

J_ _

J D33

L__
= 4A

I I
J D12 3x'DI1

-F-A--

-I- -- V--
L D22

SYMMETRICAL

J _DI2 J

x-D23

l+2y-D33 J 3_D23

I
+6PxyD13

2
J4PxyD23 J

2
+ +6pyD23

14/._°33
J';_022

(17)

(18)

• (Ig)

4.87-81

MODULEFUNCTIONALDESCRIPTIONS

6. Thetransformationfromgeneralizedcoordinatesto grid point displacements(relative

to point "a" of the triangle) with notransverseshearis:

[_]

m

I

Xb2 0 0 Xb3 0 0

0 xb 0 0 0 0

_" 0 0 -3x2
-:'_b 0 0b

2
Xc XcYc yc2 Xc3 2XcYc Yc3

0 xc 2yc 0 2XcYc 3 2Yc

2 0-2Xc -Yc 0 -3x# "Yc

where {q} = [_]{u} (no transverse shear)

7. If transverse shear effects are to be calculated (Gs ts # 0), the followina

steps are followed:

a. Define

(2O)

[Hyq]

b,

_ 0 J0 J 6(JliDll+Jl2Dl3) JJll(2D12+4D33)+6JI2D23

L_O JO J 6(Jl2Dll+J22Dl3)ljJ12(2D12+4D33)+6J22D23

[G2]-l. (21)[J]

Calculate the transformation matrix of the shear coordinates:

4.87-82

where

C6

STRUCTURAL ELEMENT DESCRIPTIONS

Yx : [Hyq] {q} •

 Yy!

The stiffness matrix of the shear terms is added to the bending stiffness matrix.

[Kq] = [K×] + Ats[Hyq]T [G2] [Hyq] i

d. The effects of shear deflection on the transformation from general to displacement

0 0 XbHyql4 XbHyql5 XbHyql6

0 0 0 0 0

0 0 0 0 0

coordinates is calculated:

0

0

0

[HI: [7] -

0

0

0

If no shear exists, [H] = [H]

The matrix [H] is inverted:

0 0

0 0

0 0

Bo

go

XcHyql4 XcHxql5 XcHyql6

+YcHyq24 +YcHyq25 +YcHyq26

0 0 0

0 0 0

[Hqu] : [HI-l .

The rigid body effects are given bv the matrices [Bb] and [Bc] defined as follows:

(23)

(24)

(25)

(26)

4.87-83 (8/I/72)

MODULEFUNCTIONAL DESCRIPTIONS

[B b]

[Bc]

L]1 0 -x b

= 1 0 ,

0 1

Yc -Xc 1

= 1 0

0 1

(27)

(28)

I0. The 3x3 stiffness matrix partitions in element coordinates are calculated as

fo I 1ows:

[K] : [H-I]T [Kq] [H-l] , (29)

r"_=>L_c_i _ccJ _o_

[kca] : _[kcb] EBb] - [kcc] [Bc] , (31)

[kba] = _[kbb] [Bb] _ [kbc] [Bc] , (32)

[kaa] = _[Bb]T [kba] _ [Bc]T [kca], (33)

4.87,5.3

[kac] : [kca]T, (34)

[kab] : [kba IT (35)

Stiffness Matrix Calculations for the TRBSC Element (Subroutine KTRBSCof Module SMAI).

l •

are:

I! I iliT [E] [kij][E]T _0

[Kij] = IT i /
I J iTi]

If the basic triangle is used by itself as a TRBSC element, the stiffness matrices

' (36)

4.87-84

STRUCTURAL ELEMENT DESCRIPTIONS

where

i : a, b and c

j = a, b and c

2. The structural damping matrices are calculated using ge' the structural damping coeffi-

cient, for the referenced bending material. The 6 by 6 damping matrix partitions are:

[K_/] : ge [Kij] " (37)

4.87.5.4 Stress Calculations for the TRBSC Element.

The stress calculations involve two phases. The first phase is used to calculate the

matrix relations between element forces and grid point displacements.

I. The relation between element forces and generalized coordinates is:

[ks] =

2DlI

2D12

2Dl3

0

Lo

2X-Dl2+

2D13 2D12 6XDll 4)D13 6yDI2

2xD22+

2D23 2D22 6RDI2 4yD23 6y-I)22

2xD23+

2D33 2D23 6_Dl3 4.vD33 6yD23

-2D12-
0 0 -6DlI -6D23

4D33

0 0 -6D13 -6D23 -6D22

(38)

where

I Mx

Mxy I

Vx

Vy

= [Ks] {q} .
(39)

4.87-85

MODULE FUNCTIONAL DESCRIPTIONS

Note: When the basic triangle routine is used for stress recovery in the TRPLT or

QDPLT, the values x and # in the above matrix are replaced by xc and Yc or Xq and Ya"

2. The matrix [HI is calculated and inverted. The [B] matrix is calculated ([B] is a

6x3 matrix, the [B b] matrix (Equation 27) comprising the first three rows and tile [B c]

matrix, Equation 28, comprising the last three rows). The [E] matrix and the global-to-

basic transformation [Ta], [Tb] , [Tc] are generated. [H] "I is partitioned.

[H] -I : [Hlb ! Hlc]. (40)

The element force - global displacement matrices are:

p]
[Sa] = _[ks][H]-I[B][E]T --,---a"0 , (41)

LO: Tel

I i°b][Sb] =

{S t } : [D]{m} (43a)

where m is the vector of thermal expansion coefficients for the bending material.

3. The second stage of stress calculations involves the use of the displacement vectors

{Ua}, {u b} and {Uc}. The element forces are:

Mx

My

Mxy

Vx

Vy

[Si]{u i} - {M e } , (44)
i=a,b,c

4.87-86 (9/I/70)

MODULEFUNCTIONALDESCRIPTIONS

where{Me} is the vectorof thermalmomentsgivenona TEMPP2datafield or if the gradient
is given:

!

{Me} : - T {S t}

With no thermal loads the stresses are:

(_xi

°yi

_xyi

Z°

1

I

MX

Mxy

• i : I, 2 (45)

With direct thermal bending moments, {Me}, given• the stresses are:

°xi

°yi

°xy

Z°

1
I

Mx

Mx

+ {Me} -

!

With thermal gradient data, T , the stresses are:

(Ti - T){S t} ,

i=l,2

(45a)

°xi

(_..j t =

Zi

i

Mx

M..

y

Mxy

1 !

_- (T: - Z.T T)(S.} , (45b)
1 " i I L

i =1,2

Ti is the given temperature at point i and T is the average temperature of the element. If

no T i values are given, Equation (45) is used.

4.87-86a (911170)

STRUCTURAL ELEMENT DESCRIPTIONS

The principal stresses and their orientation are calculated in the same manner as those for

the TRMEM element, Section 4.87.4.6.

Thermal loads are generated for this element in the SSGI module. See Section 4.87.5.12 for

the equations.

4.87.5.6 Stiffness Matrix Calculations for the TRPLT Element (Subroutine KTRPLT of Module SMAI).

The NASTRAN bending triangle (triangular plate element, TRPLT) is fabricated from three basic

bending triangles. The geometry and notation are shown in Figure 5. The general approach is to

calculate the stiffness matrices for all three subtriangles or basic triangles and use the con-

straint equation of equal slope at the midpoints of the connected edges to calculate a reduced

stiffness matrix. Since only the partitions of the stiffness matrix related to one noint

(the pivot grid point) are used for each calculation, the extra partitions are not used.

In the NASTRAN system, the basic bending triangle calculations are in subroutine form,

and the variables necessary to call 'it are: Xb' Xc' Yc' the property and material

coefficients, and the transformations for o_enting the anisotropic materials. The

following steps are used to calculate the overall stiffness matrix for the composite triangle.

I. The element coordinate system is defined by the location of the three grid points

in basic coordinates, {x(1)}, {x(2)} and {x(3)}:

{V2} : {x(2)} - {x(1)} , (46)

{V3} : {x(3)} - {x(1)} , (47)

X2 : I{V2} I ,

{v 2}

{i} : T2 ,

Y3 : l{i} x {V311

(4S)

(49)

• (so)

{k}
{i} ": {V3}

Y3

(51)

4.87-87 (9/I/70)

MODULE FUNCTIONAL DESCRIPTIONS

{J} = {k} x {i} ,

: LO- ':{i} II

(6 x 3)

(52)

(53)

The locations of the points in this coordinate system are:

I°l{R(1)} : 0 '

{R(2)} = . ,
t

(54)

(55)

X3 : {v3}T {i}, (56)

Ix31{R(3) } =

Y3

_R(4)}= _ {X2Y3+

(57)

(58)

2. For use in transferring points to the subtriangles, the integer matrix [M] is

formed:

Point a Point b Point c Subtriangle

[H]

I 1 2 4 1 I

= 2 3 4 II

3 1 4 III

(59)

The Roman numerals I, II and III indicate the subtriangle numbers. Points I, 2 and 3 are

the corners of the whole triangle whose centroid is denoted by 4. Points a, b, and c are

the corners of the subtriangles. Point c in the subtriangles is always the center point, 4.

(see Figure 5).

Note: Steps 3 through 7 are Derformed for each subtriangle.

4.87-88

I

STRUCTURAL ELEMENT DESCRIPTIONS

3. The location of the three points for each subtriangle, B, is defined by the

vectors {ri(a)}, {ri(b)}, {ri(c)}. In terms of the original vectors these are:

ri(a) = Ri(M(B,I))

ri(b) : Ri(M(B,2))

ri(c) : Ri(4)

i=l, 2,

(60)

(61)

(62)

where M(B, i) is the (B, i) element of the [M] matrix.

4. The variables necessary to calculate a basic bending triangle are Xb, xc and Yc since

the local coorGinate system for each subtriangle is chosen such that the "a" point lies on

the origin and the "b" point lies on the x Bxis.

For each triangle the following are calculated:

= V[rl(b) - rl(a)]2 + [r2(b) - r2(a)]2 (length of base), (63)

l
wI = _ (rl(b) - rl(a)), (64)

w2 = _ (r2(b) - r2(a)) (65)

5. The matrix [T] used for transforming the element coordinates to subtriangle

coordinates is formed:

I 0 0 i

IT] = 0 wI w2 • (66)

0 -w2 wI

The material orientation angle, em, is calculated for each subtriangle. The equations are:

sin (0m) : wI sin (0) - w2 cos (_), (67)

cos (0m) = wI cos (0) + w2 sin (0). (68)

4.87-89

MODULEFUNCTIONALDESCRIPTIONS

Thedisplacementsin the subtrianglesystemareequalto [T] timesthe displace-

mentsin theoriginal system(notedet [T] is unit length, xb = Rl(2), xc = Rl(4) and

Yc = R2(4) for subtriangle I).

6. The parameters xb, xc and Yc are then computed:

Xb = wl[rl(b) _ rl(a)] + w2[r2(b) _ r2(a)] , (69)

Xc : wl[rl(c) _ rl(a)] + w2[r2(c) . r2(a)] , (70)

Yc = -w2[rl(c) - rl(a)] +wl[r2(c) - r2(a)]" (71)

7. The stiffness matrices are formed as in the basic bending triangle (Equations 30 through

35) and give:

[kia], [kib], [kic], [kca] [kcb], [kcc] i = pivot grid point.

They relate forces and displacements in the subtriangle coordinate system and are trans-

formed to the overall element cooYdinate system (i.e., the same system as subtriangle I).

Since the stiffness matrices for each pivot grid point are calculated separately,

not all of these partitions are used. For each pivot grid point, i, the following

partitions are used:

[Kil], [Ki2], [Ki3] ,

and

[KI4], [K24], [K34], [K44] •

The integer mapping matrix [M] is used to determine if and where to add the nartitions.

The steps used for pivot point i and triangle B are:

4.87-90

STRUCTURALELEMENTDESCRIPTIONS

a) [T]T [kac] [T] is added to [Km,4], m = M(B,I)

[T]T [kbc] [T] is added to [Km,4], m : M(B,2)

[T]T [kcc] IT] is added to [K4,4]

b) If M(B,I) = i:

IT]T [kaa] LT] is added to [Kii]

IT]T [kab] [T] is added to [Kiwi, _ = M(E,2)

or if M (6,2) = i

IT]T [kbb] IT] is added to [Kii]

IT]T [kabIT [T] is added to [Kic], _ = M(B,l)

c) The above is repeated for each of the three subtriangles.

8. The number 4 point inthe middle is a dummy point, and since the displacements at point

4 are functions of the other Cisplacements, it will be removed from the problem by including

the calculations for the point 4 displacements in the calculations for the corner displace-

ments, as shown in steps 8a, 8b, 8c and 8d.

a. Calculate the following geometric constants:

_l = (x2+c yc2)I/2 , (72)

I 2 1 I/2_2 = (Xb - Xc)2 + Yc ' (73)

xC

Sl : _-T ' (74)

xb - xc

S2 = _2 ' (75)

Yc

Cl - _l ' (76)

4.87-91

MODULEFUNCTIONALDESCRIPTIONS

Yc
c2 - _2

b. The formulas for the locations of the midpoints are:

(77)

1
xI : _ Xc

(78)

1
Yl = 2 Yc

(79)

xb + xc
x2 = 2

1
Y2 = _ Yc

(80)

(81)

C. The [H_] matrix is calculated as follows:

[Hu/]

-2xI cI (XlSl - YlCl) 2YlSl -3x_cl

2x2 c2 (x2s2 + Y2C2) 2Y2S2 3x_c2

yl(2XlSl- ylCl) 3y Sl1
y212x2s2+y2c213y s2

(82)

The slopes in terms of the deflections of points a, b and c are defined by the

matYices:

[H--b ! H_/C] : [Hu/][H]-I (83)

[H-a] : [H_/][H]-I [B] + [00 Sl ClIs2 c2 (84)

where [H] -I and [B] are calculated while generating the stiffness matrices. [H] -I

is the inverse of the 6x6 matrix in Equation 25, and [B] = is a 6x3 matrix

where [Bb] and [Bc] are calculated in Equations 27 and 28 respectively.

These are transformed to element coordinates by:

[H_m] = [H_m] [T] (85)

d. Each row of the matrix corresponds to the slope angle of the mid-point of the sides.

4.87-92 (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

The first row defines the slope of the normal to the line connecting point "a" to the

center point. The second row defines the slope of the normal to the line connecting

point "b" to the center point. Using the [H_] matrices, four 3 by 3 matrices, [GM],

are formed as follows:

The [M] matrix is now used:

a b c

[M] = 2 3 4 II = B , (86)

3 1 4 III

For the [H_] B matrix, (_ = a, b and c; 8 : I, II or llI), the number M(8,_) which identifies

the matrix [GM] is found. The three terms in the first row of [H_] 8 are added to the

M(B,I) row of the [GM] matrix. The three numbers in the second row of [H_] B are added to

the M(_,2) row of the [GM] matrix. This procedure is repeated for the three [H_] _ matrices

for each triangle 8.

The stiffness matrix partitions of the whole plate are computed from:

[K_j] : [Kij] - ([G4]-I[Gi])T[Kj4]T - [Ki4][G4]-I[G_]

+ (LG4]-l[Gi])T[K44][G4]-l[Gj] for i = l, 2, 3
j = l, 2, 3

where [Kij] are computed as in step 7.

9. Using the locations of the three grid Points in basic coordinates, the 3x3

transformation matrices [Tj], j = l, 2, 3, are calculated. The 6x6 matrices [Cj]

are formed as:

__[Tj] _ _[Cj] _-0 I IT j : l, 2, 3

lO. The stiffness matrix partitions in global coordinates for Divot point i are

computed from:

(87)

(88)

4.87-93

MODULE FLiNCTIONAL DESCRIPTIONS

where:

[K_j] = [ci]TEE][KTj][E]T[cj]

[KTj] was calculated in step 8

[E] was calculated in step 1

[Ci], [Cj] were calculated in step 9

(6x6) , (89)

Q

Figure 5. The triangular plate element, TRPLT.

I, 2, 3 = GIVEN GRID POINTS

4 = CENTROID OF TRIANGLE

I, II, III = BASIC SUBTRIANGLES

a, b, c = ORDERED VERTICES OF SUBTRIANGLES

4.87-94

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.5.6 Structural Damping Matrices for the TRPLT Element.

The structural damping matrices are:

[K14.,i] : ge[Kgi], (90)

where ge is the structural damping coefficient for the bending material referenced.

4.87.5.7 Stress and Element Force Calculations for the TRPLT Element (Subroutines STRPLI

and SBSPL2 of Module SDR2).

For stress recovery, the relationship between the center point and the corner ooints

is used to describe the stress functions for each subtriangle. The stresses in each sub-

triangle at the center point are averaged to provide the final element stress and forces.

I. STRPLI is used to calculate the phase l stress-displacement relations.

The following data are calculated using the sa_e equations as those for the stiffness

matrix generation routines.

[Ci] - i = l, 2, 3 - Global-to-basic transformations

[E] - element to basic coordinate transformation

Xb' Xc' Yc - subtriangle point locations

sine, cosO - material orientation

Values computed for

each subtriangle w l, w2 - element-to-subtriangle coordinate
transformation

- [g, - Ig_lUll-- BO_II_I _IQI.X_ gll_l_ T'_

\ [H_a]' b]' [H_c] ship matrices

For each subtriangle, 8 = I, II, III, the following matrices are formed:

4.87-95

MODULE FUNCTIONAL DESCRIPTIONS

EV_] =

0

w1

-w 2

m

o o
2

w2 w# 2WlW2 0 0

2 2
WlW2 -WlW2 Wl-W2 0 0

0 0 0 wI -w2

_ 0 0 0 w2 wI _

li o]IT _] : w2 , (91)

wI

(92)

For each subtriangle B, three 5x3 transformations are calculated, [S], a = a, b, c.

These are transformed and added to the corresponding matrices for each point with the equation:

[V_][S][T_] , (93)

where the _, which denotes points on the subtriangle, corresponds to the grid point M

on the overall triangle.

[H_] : [H_] [T] _ : a, b, c

The [H_] matrices are added to t.h_ corresponding [GM] matrix with the appropriate

row interchanges. When the data for all three subtriangles have been generated, the

following operations are performed:

(94)

rs] * * 1
= [SM] - [$4][G4]" [Gi]

for M = I, 2, 3;

[SM] = [S_4][E]T[ci]

for M = I, 2, 3 .

(95)

(96)

4.87-96 (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

2. Phase 2

a) The vector of forces is computed first.

M
X

M
Y

Mxy

V x

V Z

3

i!l [Si] {ui} - {Mt}
(97)

where {Me} is the thermal moment vector.

{M e} =

If a thermal gradient is given:

!

{St}T

b) With no given temperatures at the stress points, the stresses are then calculated

from the equations

or

M x Zi

°xi - I

°yi :

M 7

Oxyi = I

(98)

i : I, 2 (99)

(ioo)

If temperature values T i at the stress points are given the following eauations are used.

°xi I Zi

°yi = - T

Oxyi

IMy
Mxy

+ {Me} (Ti - T){S t} , i : 1 or 2

4.87-97 (9/I/70)

STRUCTURALELEMENTDESCRIPTIONS

Oxi

Oyi

°xy

4.87.5.8

MX

Zi
= --_- My _ 1 (Ti _ ZiT __)_St} • i : l or 2

Mxy

whereT' is the gradientor {Me} is the thermalmomentvector. T is the averagetempera-

ture for the element. Theprincipal stressesandanglesarecalculatedusingthe same

formulaas thosefor themembraneelement(seeSection4.87.4.,_,Equations28, 29and30).

Thermalloadsaregeneratedfor this elementin the SSGImodule.SeeSection4.87

4.87.5.11for the algorithm.

Stiffness MatrixCalculationsfor the QDPLTElement(SubroutineKQDPLTof ModuleSMA1)

Thequadrilateralplate elementusestwosetsof overlappingtriangles as shownin

Figure6. Thelogic is the sameas that for thequadrilateralmembraneexceptthat the orderof

the points of the triangles is chosen to place the triangle coordinate systems along the

diagonals.

I. The following equations are used to calculate the three unit vectors, {i}, {_}

and {k}, which define the elen_nt coordinate system.

4.87-g7a(9/l/70)

MODULEFUNCTIONAL DESCRIPTIONS

{V i } :

Xi

Yi

Zi

, i = I, 2, 3, 4. (101)

The diagonals are:

{d I} = (V3} - {V I} , (102)

{d 2} = {V4} - {V2} (103)

The area is calculated from:

A = ½1 ({d I} x {d2})l . (104)

The normal to the plane is calculated from:

{d I } x {d 2}
{k} =

I{d 1} x {d2} I

(105)

{a I} : {V 2} - {V I} , (106)

h : ½ {al }T {k} ,
(I07)

The vectors lying in the new plane are computed from:

{i} =
{a I } - 2h{k}

I{a 1} - h{k}l

(IO8)

{,i} = {k} x {i} . (I09)

The nonzero positions of the points in the plane are computed from:

4.87-98 (811/72)

STRUCTURALELEMENTDESCRIPTIONS

X2 = {ai}T {i} ,

X3 = {di}T {i} ,

Y3 = {di}T {j} '

X4 = X2 + ({d2}T {i})

Y4 = {d2}T {j} '

{R(i)} =

(llO)

(Ill)

(I12)

(I13)

(114)

(llS)

2. Element interior angle tests.

The interior angles of the quadrilateral must be less than 180o. The followina

checks accomplish this task.

Test Point with angle greater than 180°

If Y4 < 0 1

If Y3 < 0 2

Y4

If x4 > x2 - (x2 - x3)_ 3

Y3

If X3 <V_4 X4 4

3. The relative data for each subt_angle must be calculated and passed to the

matrix calculation subroutine. The integer mapping matrix [M] denotes which points,

l, 2, 3, and 4 of the quadrilateral, are used in the subtriangle. The row position

indicates the subtriangle to which the point belongs, and the column position

indicates the corresponding point in that subtriangle.

4.87-99

MODULE FUNCTIONAL DESCRIPTIONS

[M]

Point a Point b Point c

m

2 4 1

3 1 2

4 2 3

1 3 4
B

Triangle
No.

I

II

III

IV

4. For each triangle the stiffness matrix is calculated in its own coordinate

system. This system has its origin at point a, point b lies on the x axis,

and point c has a positive y component. {R(i)} values are transferred to {r(_)} values

(_ = a, b, c), and the following calculations are performed:

{v(b)} : {r(b)} - {r(a)}, (116)

{v(c)} = {r(c)} - {r(a)}, (117)

wllw2

_ {v(b)}

l{v(b)}l
(118)

x b = l{v(b)}l, (llg)

xb, x c and Yc

{v(c)} .

are the point locations needed by the subroutine.

[T]

I 0 0 1

0 wI w2 .

0 -w 2 wI

(120)

(121)

4.87-I00

STRUCTURALELEMENTDESCRIPTIONS

wI is the x componentof the newx axis andw2 is its y component,[T] transforms
the z displacementandthe twoanglesfromthequadrilateral systemto the triangle

system.

In orderto calculatethe materialmatricesin the basictriangle routine, the material

orientation angle,em, is :

sinOm = w I sine - w2 cos8 , (122)

cosO m = w I cosO + w 2 sine .

w I and w2 are the cosine and sine of the angle made between the base of the triangle

and the material orientation axis.

(123)

5. The output of the basic bending triangle routine are the 3x3 matrices:

[kaa], [kab], [kbb], [kac], [kbc], [kcc]

To transform these to the quadrilateral system the following equation is used:

[K_j] = ½[T]T[kij][T] .

These matrices are added to the current positions in the quadrilateral matrix

partitions using the [M] matrix in step 3.

5. Fer each pivot point i the following 3x3 partitions are forn_d:

(124)

[kej], for j = l, 2, 3, 4.

7. Using the geometry data, the 3x3 global-to-basic transformations [Tj]

are formed for j = l, 2, 3, 4. These are expanded to the 6x6 matrices [Cj]'.

4.87-I01

MODULE FUNCTIONAL DESCRIPTIONS

[Cj] Tj o0 Tj
(125)

8. The stiffness matrix partitions in global coordinates are found from:

[K_j] :

where [E] is defined in Equation 53.

[ci]T[E][kTj][E]T[c j] , (126)

4.87.5.9 Stress and Element Force Calculations for QDPLT Element (Subroutines SQDPLI and

SBSPL2 of Module SDR21

I. SQDPLI calculates the phase 1 stress-displacement relations. A coordinate system

matrix [E], the subtriangle base vectors {Wl, w2}T and the global-to-basic trans-

formation matrices are calculated with the same equations as those used in the plate element

stiffness matrix calculations. For each subtriangle, B, the following matrices are formed:

I 0 0 i

IT B] = 0 wI w2 , (127)

0 -w 2 wI

[v _]

2
wI w_ -2WlW 2

2 2
w2 wI 2WlW 2

2 2
WlW2 -WlW 2 (Wl-W 2)

0 0 0

0 0 0

0 0

0 0

wI -w 2

w2 wI

9

(128)

4.87-102

STRUCTURAL ELEMENT DESCRIPTIONS

For each subtriangle the stresses must be calculated at the intersection Point of the

diagonals. In the quadrilateral system:

x2 x3 Y4 (12g)
x5 +

x3Y4 (x 2 - x4)Y 3

Y3

Y5 - x3 x5 • (130)

For each subtriangle:

ixsi{V 5} : {r(a)} - ; Xq _ J{V5}]; J_ : O; (131)

Y5

where Xq and yq denote the location of the intersection of the diagonals of the quadrilateral in

the subtriangle coordinate system. The stresses are calculated at this point.

ITB] transforms the translation and two rotations in the element system to the sub-

triangle system. [VB] transforms the three moments and two shears of the subtriangle to the

element system. For each subtriangle B, three 5x3 transformations are calculated, [S_],

= a, b, c. These are transformed and added to the corresponding matrices for each

point with the equation:

[se], # Z IVY]IS]ITB] , (132)
P

where the m, which denotes points on the subtriangle, corresponds to the grid point M on the

quadrilateral .

2. Using the basic-to-element and global-to-basic transformations, the stress

matrices [SM] in global coordinates are formed from:

(133)

4.87-I03 (ll/I/70)

MODULE FUNCTIONAL DESCRIPTIONS

3,

The thermal load vector is:

{S t } : [D]{m}

The additional data for phase 2 calculations are

I, ZI, Z2 from the ECPT data.

4. Phase 2 (Subroutine SBSPL2)

The 5 by 6 [S M] matrices are used in the same manner as the TRPLT elements (see Equations

97 through I00).

4.87.5.10 Lumped Mass Matrix Generation for the TRBSC, TRPLT, and QDPLT Elements (Subroutine

MASSTQ of Module SMA2).

The lumped mass matrices are calculated in the same manner as the triangular or quadrilateral

membrane except that the material density is not used (see Equations 86 through 96 in section

4.87.4.10). The only contribution to the mass matrix from these elements is the nonstructural

mass, _.

4.87-104 (ll/I/70)

MODULE FU_CTIOtIALDESCRIPTIONS

4.87.5.11 Coupled _ss Matrix Calculations for the TRBSC Element (Subroutine MTRBSC of Module

SMA2).

The mass properties of the two-dimensional elements are defined by their geometry, the mass

density given by the material, the thickness of the element and the nonstructural mass. The

normal execution of NASTRAN will result in the calculation of the total mass of the element and

distribute it as lumped masses at the connected grid points (subroutine MASSTQ of module SMA2).

If the parameter C_UPBAR is set by the user, the elements with bending properties will have their

mass distributed according to their elastic properties. This results in element mass matrices

with directional properties and coupling terms between points in an element. Since the thickness

of the TRBSC element is zero, a coupled mass matrix for this element does not exist. The _._RBSC

subroutine is used exclusively by subroutines MTRPLT and MQDPLT.

I. The mass matrix [M] in generalized coordinates is calculated in the following steps.

a. Integral values Iij used in the mass matrices are calculated from the formulas:

xb xb - xc] "AOj = _ - _ YcJ+l , j = O,l6 (134)

(Xc)i+l (Yc)j+l ixb i = 1,26

Aij = (i+l) (i+j+2) + T_Ai-l,j ' j = 0,I,...6 (135)

(Xc)i+l
= (yc)i+j+2 i = O,l6

Bij (yc)_l (i+l)(i+j+2) ' J = O,l6 (136)

li Aij Bij i = O,l6j = m[+] ' j = O,l6 (137)

where m is the nonstructural mass, and where Xb, xc and Yc are computed in Equations 7,

8, and 9 respectively.

4.87-I04a (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

b. Partition [M] into submatrices.

-- I
I

Maa 'I Mar

[M] _

1Tl'ar Mrr

m

where [Maa] is a 3 by 3 matrix, [Mar] is a 3 by 6 matrix and [Mrr] is a 6 by 6 matrix.

(138)

c. The mass matrix [_Taa] is given by:

[Maa]

I00

= I01

-Ii0
m

I01

I02

-Iii

-Iii

120
m

(139)

d. The other matrices, [Mar] and [Mrr], are less simple. The algebraic expressions for

the elements of these matrices are given in Tables la and Ib below.

Table la. Elements of the 3 by 6 Matrix [Mar].

Notes:
Hyqij is contracted to Hij, where [Hyq] is computed in Equation 22.

Mar.. is contracted to Mik, where Mik represents an element of [M] given1j

in Equation 138.

MI4 = 120

MI5 = Iii

MI6 = 102

MI7 = 130 + HI4110 + H24101

4.87-I04b (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

Table la (con'd). Elements of the 3 by 6 Matrix [Mar].

Ml8 = I12 + HlsIlo + H25101

M19 = 103 + Hl6Ilo + H26101

M24 = 121

M25 = If2

M26 = I03

M27 = I31 + H14Ill + H24102

M2B = If3 + Hl5Ill + H24102

M29 = I04 + Hi6111 + H26102

M34 = -130

M35 = -I21

M36 = -I12

M37 : -140 - Hi4120 - H24111

M38 = -I22 - Hi5120 - H25Ill

M39 = -ll3 - HI6120 - H26111

4.87-I04c (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

Table lb. Elements of the 6 by 6 Matrix [Mrr].

Notes: Hyqij is contracted to Hij; Mrrij is contracted to Mik, where Mik represents

an element of [M] given in Equation 138; Mij = Mji.

M44 : 140

M45 = 131

M46 = 122

M47 = 150 + H14130 + H24121

M48 = 132 + H15130 + H25121

M49 = 123 + H16130 + H26121

M55 = 122

M56 = 113

M57 = 141 + H14121 + H24112

M58 = 123 + H15121 + H25112

M59 = 114 + H16121 + H26112

M66 = 104

M67 = 132 + H14112 + H24103

M68 = 114 + H15112 + H25103

M69 : 105 + H16112 + H26103

M77 = 160 + 2H14140 + 2H24131 + (H14)2120 + 2HI4H24111 + (H24)2102

4.87-I04d (12-I-69)

D

M78

M79

M88

M89

M99

MODULE FUNCTIONAL DESCRIPTIONS

Table Ib (con'd). Elements of the 6 by 6 Matrix [Hrr].

142 + H15140 + H25131 + H14122 + Hl4HlsI2o + H14H25111 + H24113

+ H24H15111 + H24H25102

I33 + Hi6140 + H26131 + Hl4113 + Hl4Hl612O + H14H26111 + H24104

+ H24H16111 + H24H26102

124 + 2H15122 + 2H25113 + (H15)2120 + 2H15H25111 + (H25)2102

ll5 + H16122 + H26113 + Hi5113 + Hl5Hl6120 + HlsH26111 + H25104

+ H25H16111 + H25H26102

Io6 + 2Hl6Il3 + 2H26104 + (H16)2120 + 2H16H26111 + (H26)2102

4.87-I04e (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

2. The mass matrix [Mmass] in element coordinates is calculated from the following equation:

[Mmass]

ir I 0 T Maa i Mar I 'i 0
I I

: I_- Mr _-1_i ,--H-IB i ITar
, I

where [I] is a 3 x 3 identity matrix, [H] -I is calculated as in Equation 25, [B]

calculated as in Equations 27 and 28.

(14o)

[cl= is

The calculations are broken down into the following steps where:

m

Maa

[Mmass] : Mba

Mca

I I --

iMab L..."a=___
I

Mbb I Mbc

blcb i Mcc
I
I

and [;,lij], i = a, b, c and j : a, b, c are 3 by 3 matrices.

a) Compute:

[M] = [H -lIT [Mrr] [H-I]

(141)

(142)

b) Partition:

c) Compute:

Mcc]

[Mail : [Mar] [H -I]

(143)

(144)

d) Partition:

[Mail _> [Mab i Mac] (145)

4.87-I04f (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

e) Calculate:

[Mab] = [Mab] - [Bb]T[Mbb] - [Bc]T[Mcb] , (146)

[Mac] = [_c] - [Bb]T[Mbc] - [Bc]T[Mcc] , (147)

[Maa] = [Maa] - [Bb]T[MabIT - [Bc]T[MacIT (148)

[Mab] [B b] - [Mac] [B c]

[Mba] : [Mab IT , (149)

[Mca] = [Mac IT (150)

4.87.5.12 Mass Matrix Calculations for the TRPLT Element (Subroutine MTRPLT of Module SMA2)

I. The general calculations for the mass matrix of the triangular plate element, TRPLT, are

the same as those for the stiffness matrix calculations (See Equations 46 through 71).

2. For each subtriangle the output from the basic bending triangle subroutine are the nine

3 x 3 matrices given in Equation 141:

m

I I
I I M

a I Mab I ac

l__ I ._ _

'_ I Mbb I Mbc

1 !
I I
I I M

ca I Mcb l c

I I

They relate forces and accelerations in the subtriangle coor6inate system and must be trans-

formed to the overall element coordinate system (i.e., the same system as subtriangle I).

The matrix partitions in the subtriangles are added to the correct matrix partition for

the whole triangle. For example, for subtriangle number II, [Maa] is transformed and added

to [M22], [Mab] is transformed and added to [M23], [Mac] is transformed and added to [M24],

[Hba] is transformed and added to [M32], etc.

4.87-I04g (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

Since the mass matrices for each pivot grid point are calculated separately, not all of

these partitions are used. For each pivot grid point, i, the matrices which are used will be:

and

1

, i = point I, 2 or 3 of composite triangle

[M--14], [M24], [M34], [M44]

The number 4 point in the middle is a dummy point and is removed from the problem in the

same manner as in the computation of the stiffness matrix (see Equations 72 through 86).

The mass matrix partitions of the whole plate are:

[M_j] = [Mij] - (EG4]-I[Gi])T[_4]T - [Mi4][G4]-I[Gj] (151)

+ ([G4]'I[Gi])T [M44] [84]'I [Gj] j : I, 2,3i: I, 2, 3

Notice that if i and j were interchanged the matrix would be transposed; this indicates

that the whole mass matrix is symmetric.

4. Using the locations of the three grid points in basic coordinates, calculate the 3 x 3

transformation matrices [Tj], j : I, 2, 3. Form the 6 x 6 matrices:

5.

coordinates using the logic:

Lo!Tj]
The 3 x 3 mass matrix partitions are expanded to 6x6 size and transformed to global

(152)

m
M3 = _ X2 Y3 ' (153)

where m is the nonstructural mass, and X2, Y3 are the x-coordinate and y-coordinate of points

2 and 3 respectively.

4.87-I04h (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

I

M3

0

0 0 0 0

M3 0 0 0

0 Mll Hi2 Ml3

0 M21 M22 _23

0 M31 M32 M33

0 0 0 0

for i = j = I, 2 or 3; and

[_iij]:

u

0

for i _ j.

0
m

B

0 0 0 0 0 0

0 0 0 0 0 0

0 0 MlI M12 Ml3 0

0 0 M21 M22 M23 0

0 0 M31 M32 M33 0

0 0 0 0 0 0

The mass matrix partitions in global coordinates are:

[M_j] = [ci]T[E][_ij][E]T[cj]

where

Io
[ci] :

S

(154)

(155)

(is6)

(1.57)

4.87-I04i (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

is the global-to-basic transformation matrix,

and

[E]

I

{k} 0 : 0

0 {i} ll{j}
I

is the 6 x 6 element-to-basic transformation matrix.

(158)

4.87.5.13 Mass Matrix Calculations for the QDPLT Element (Subroutine MQDPLT of Module SMA2).

I. The general calculations for the mass matrix of the quadrilateral plate element, QDPLT,

are the same as those for the stiffness matrix calculations (see Equations I01 through 123).

2. For each subtriangle, the output from the basic bending triangle subroutine are the

nine 3 x 3 matrices:

Maa Mab Mac

Mba Mbb Mbc

Mca Mcb I Mc c
I

These are transformed to the quadrilateral system by the following equation:

[Hij] = ½ IT] T [Mij] [T] ,

wher_ [T] is given in Equation 121.

These matrices are added to their corresponding positions in the quadrilateral matrix

partitions [M_j], in the same manner as that for the stiffness matrix partitions of the

quadrilateral (See step 3 of Section 4.87.5.8).

(159)

3. For each pivot point i, the following 3 x 3 partitions are formed:

[M_j],. for j = I, 2, 3, 4

4. The mass at each point in the plane of the element is due to the mass of the attached

triangles. The masses of the triangles are:

4.87-I04j (12-I-69)

MODULEFUNCTIONALDESCRIPTIONS

m x_ BmE = 4 b Yc ' B = I, II, I!l and IV ,

where m is the nonstructural mass, and x and Yc

points b and c respectively of subtriangle B.

The masses at the points are:

are the x-coordinate and y-coordinate of

mI : ½-[m I + mII + mIv] ,

m2 : ½ [ml + mII + mllI] ,

m3 = ½ [mII + mIll + mIv] ,

m4 = ½ [ml + mIII+ mIv]

(160)

5.

effects are added using the logic:

(161)

(162)

(163)

(164)

The 3 x 3 mass matrix partitions are expanded to 6 x 6 matrices and the in-plane mass

i mih
mz = T

mih2
i i =
z 4

(165)

(166)

4.87-I04k (12-I-69)

MODULEFUNCTIONAL DESCRIPTIONS

[_ii j] :

for i = j = 1 or 3; and

[_ej] =

0 0 0

°

0 mi 0 mlz

i
-mz

0 0 M11 M12 M13

i +i i
0 mz M21 M22 z M23

i 0 M31-mz M32

0 0 0 0

0 0 0

m

mi

0

0 mi 0 -miz

M33

mi
z

0 0 M11 M12 M13

i M22 + i0 -mz M21 I z M23

i 0mz M31 M32

0 0 0

M33

+ ii
z

i
+ Iz

w

0

0

m

0

0

(167)

(168)

for i = j = 2 or 4; and

4.87-I04_ (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

m

0 0 0 0 O 0

0 O O 0 0 O

0 0 MII MI2 MI3 0

0 0 M21 M22 M23 0

0 0 M31 M32 M33 0

0 0 0 0 0 0

, (169)

for i _ j.

6. Using the geometry data, the 3 x 3 global-to-basic transformations [Tj] are formed for

j = l, 2, 3, 4. These are expanded to 6 x 6 matrices:

[cj]

Tj I 0I

I Tj0 I
I

7. The 6 x 6 element-to-basic transformation matrix is:

(170)

[El

i ' ' ' ' Io___
: , i , } I_

I I I i]o Io, ,I o ,l _i_ : _J_i_,
8. The 6 x 6 matrices are transformed to global coordinates using the equation:

(171)

[M_j] : [Ci]T [El [_iij][ElT [Cj] (172)

4.87-104m (12-1-69)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.5.14 Thermal Load Equations for the Bending Elements (Subroutines TRBSC,TRPLT, and ODPLT of

Module SSGI).

I. The phase I SDR2 routines for all bending elements generate for connected points gl' g2'

g3' (and g4) the 5x6 matrices [Sl], [S2], [S 3] (and [S4]). These matrices are generated in

the SSGI module with a minor change in the basic triangle routine.

2. The matrix [Ks] is described on page 4.87-85. In the SDR2 routine the values x and y

depend on which element is actually being used. For SSGI module, calculate the matrix:

[K_] = A[Ks(x,y)] , (173)

the definition of [K s] is:

F DHXq]

where A is the area of the basic triangle and (x,y) is the center location of the basic

triangle. The lower partition will not be used.

3. For each type of element the vector, {X}, is generated where:

{X e}

l

ml 2T \

0

0

or {Xe} =

[D]-I{Me} 1
0
0

(175)

I

where T is given on a TEMPPI data card or calculated from a TEMPP3 card, ml' m?' _12 are the

material thermal coefficient vector components, [D] is the 3 by 3 material matrix, and {M e}

are the thermal moments given on a TEMPP2 card.

4.87-I04n (11/I/70)

MODULE FUNCTIONAL DESCRIPTIONS

4. The 6xl thermal load vectors in basic coordinates are:

{Pj} : N[Sj]T {Xe} , j : I, 2, 3 (and 4) (176)

where N = l: TRBSC

N = 3: TRPLT, TRIAl, TRIA2

N = 2: QDPLT, QUADI, QUAD2

The [Sj]T matrix is calculated from the [Ks] matrices of the various basic triangles

forming the element. These [Ks] matrices are transformed and combined to produce relations

[Sj] between the average element moments and the displacements of the connected grid points,

j.

4.87-104o (IIII170)

STRUCTURALELEMENT DESCRIPTIONS

J

v

a) Definition of plane

l 2

4 3 4 3

1 2 1 2

b) Subtriangles

Figure 6. Geometry of the quadrilateral plate element, QDPLT.

4.87-I05 (8/1172)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.6 The TRIAI_ TRIA2 t qUADI and qUAD2 Elements

These elements have the properties of both membranes and bending plates. The TRIAl

and QUADI elements are triangles and quadrilaterals which may use separate thicknesses

and materials for membrane, bending and transverse shear action. The TRIA2 and nUAD2

elements are triangles and quadrilaterals which use one thickness and one material to

simulate a homogeneous plate with consistent membrane, bending and transverse shear

properties.

If these elements use anisotropic materials (defined on a MAT2 bulk data card), the

material is oriented with respect to the element coordinate system. The definition of the

coordinate system is as follows: the vector from the first point to the second point defines

the base or x axis. The z axis is normal to the average plane of the elements, and the third

and fourth points have positive y values.

Mass matrices, thermal loads, and differential stiffness matrices for these elements

use only the membrane properties.

4.87.6.1 Input Data for the TRIAl, TRIA2, QUADI and QUAD2 Elements

I. The ECPT/EST entries for the TRIAl or QUADi elements are:

Symbol Description

SILi, i = 1,2,3 _ Scalar indices of the connected grid points.

or i = 1,2,3,4

N i

Xi

Yi

Z i

i = 1,2,3 or

i = 1,2,3,4

Referenced local coordinate system and location
in basic coordinates of connected grid points.

@

MAT ID m

t m

MAT ID b

Material orientation angle.

Material identification number for membrane

properties.

Membrane thickness.

Material identification number for bending

properties.

4.87-I06

STRUCTURAL ELEMENT DESCRIPTIONS

S bol

I

MAT IDs

ts

P

Zl, Z2

t

Description

Bending inertia

Material identification number for transverse
shear properties.

Transverse shear thickness

Nonstructural mass per area

Outer fiber distances for stress calculations.

Temperature for material properties

2. ECPT Entries for the TRIA2 or QUAD2 Elements.

S bol

SILi i = 1,2,3 or

i = 1,2,3,4

Ni

Xi

Yi

Zi

0

MAT ID

t m

t
p

4.87.6.2

Description

Scalar indices of connected grid points.

i = 1,2,3, or

i = 1,2,3,4

Referenced local coordinate system and location
vector in basic coordinates of connected
grid points.

Material orientation angle.

Material identification number

Element _L_.,.._

Nonstructural mass per area.

T_mperature for material properties

Stiffness Matrix Calculations (Subroutine KTRInD of Module SMAI).

The TRIAl or QUADI element ECPT data are rearranged to correspond to the (TRMEMor QDMEM)

membrane ECPT form, and the routine of the TRMEMor QDMEMelement is used. The ECPT data are

then rearranged to correspond to the ECPT data of a TRPLT or QDPLT element and the respective

plate routine is used. Each routine is entirely independent.

4.87-107

MODULEFUNCTIONALDESCRIPTIONS

properties of the type "I" element.

thickness of the type "2" element.

The TRIA2 and QUAD2 elements are treated in the same manner except that the arrangement of

the ECPT data is different. The type "2" element uses the single material for all three material

The membrane and transverse shear thickness equal the single

The bending inertia, Ib, for the plate property is:

t3
Ib : _ (I)

4.87.6.3 Lumped Mass Matrix Generation (Subroutine MASSTQ of Module SMA2)

The bending properties are disregarded for the lumped mass matrix calculations, and the

element mass matrices are computed exactly as the ones for the TRMEM and QDMEM elements.

4.87.6.4 Thermal Load Calculations (Subroutine of Module SSGI)

The TRPLT and QDPLT element routines are used to generate loads due to thermal gradients or

moments. The TRMEM and QDMEM routines are used to calculate in-plane loads due to uniform thermal

expansion.

4.87.6.5 Element Stress and Force Calculations (Subroutines STRQDI and STRQD2 of Module SDR2)

As with the stiffness matrix calculations, the data are rearranged and the stresses for both

the membrane and plate deformations are calculated. The element forces are calculated for the

plate only.

I. For the TRIA2 and QUAD2 elements the outer fiber distances Zl and Z2 are:

t
Zl = _ (2)

t
Z__ : - _ (3)

The membrane and plate stresses are added together as follows for Zl:

°xl

°yl

_xyl

+

I OX

= C_y

°xy

°xl

°yl

°xyl

, (4)

composite membrane bending

4.87-108 (911170)

STRUCTURAL ELEMENT DESCRIPTIONS

and for Z2,

Ox2

_y2

°xy2 composite membrane

_x

= Oy

°xy

°x2

+ °y2

Oxy2 bending

(5)

2. The principal stresses and their orientation are calculated from the above results, as

in Equations 28, 29 and 30 of section 4.87.4.6.

4.87.6.6 Coupled Mass Matrix Calculations (Subroutine MTRIQD of Module SMA2)

In the lumped mass case these elements are processed using the membrane mass calculation

routines (subroutine MASSTQ of module SMA2). When coupled mass is requested, the plate mass

calculations will be used instead. The ECPT data are rearranged to the appropriate TRPLT or

QDPLT for_t, and the respective plate routine is used. The mass per area is now calcuated

using the material mass density p and the thickness tm for the membrane definition of the

element and added to the nonstructural mass:

m = p+ ptm ,

and m is now used instead of u for the plate calculations.

(6)

4.87-I09 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.6.7 Piecewise Linear Analysis Calculations (Subroutines PSTRII, PSTRI2, PSQADI, and

PSQAD2 of Module PLA3 and PKTRII, PKTRI2, PKQADI and PKQAD2 of Module PLA4).

The additional ECPTNL and ESTNL entries are:

Eo - The previously computed strain value once removed.

The previously computed strain value.

E The previously computed modulus of elasticity.

0 x

Oy The previously computed membrane stresses.

°xy

"k

Mx

_k

My

-k

Mxy

Vx

Vy

The previcusly computed element forces (ESTNL only).

All

original

of the above values are initially zero with the exception of E , which is initially the

modulus of eiasticity H,...........,t on a MAT1 card.

In module PLA3, the incremental element stress matrix is calculated by first rearranging

the ESTNL data to correspond to the ESTNL data for a TRMEM or QDMEM, and then the membrane

stresses are calculated in the same manner as Equations I03 through I05 of section _.87.4.14.

Then the ESTNL data are rearranged to correspond to the EST data for a TRPLT (or QDPLT) and

the incremental ber!ding forces for the TRPLT (or QDPLT) element are calculated in the

same manner as in Equation 97 of section 4.87.5.7. However, if the bending material properties

are the same as the membrane material properties, then the 3 by 3 bending material properties

matrix ([Gb] in Equation II of section 4.87.5.2) is replaced by the matrix given in Equation 97

of section 4.87.4.14. In addition the displacement vector {u i} in Equation 44 of section

4.87-I09a (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.5.4 (or Equation 97 of section 4.87.5.7) are replaced by an incremental displacement vector

{Aui}.

Tie results are incremental stresses and forces for the men_braneand bending properties

defined as follows

_xl = ax + AOx

ayI = Oy + Aay

axyl = Cxy + Aaxy

Membrane stresses ,

(7)

(8)

(9)

Mxl : Mx + AMx

Mxl = My + AMy

MxyI : Mxy + AMxy

Vxl = Vx + AVx

"k

VyI = Vy + AVy

(lO)

(ll)

Bending forces (12)

(13)

(14)

The total bending stresses are calculated using the total bending forces given in Equations lO

through 14 in conjunction with Equations 98 through lO0 of section 4.87.5.7.

The membrane and bending stresses are added together as follows for Zl:

axl

axyl composite membrane bending

l axl

= i a_l

k axyl

t axl

+ I ayl

_axyl

; (15)

4.87-I09b (12-I-69)

STRUCTURALELEMENTDESCRIPTIONS

andfor Z2:

! ax2 Iay2

axy2. composite bending

axl

ayl

O'xy1

+

membrane

ax2

°y2

°xy2

(16)

Tke principal stresses and their orientation for output are calculated from the above results,

as in Equations 28 through 30 of section 4.87.4.6.

In module PLA4, the bending properties are disregarded, and the ECPTNL data are rearranged to

correspond tc the ECPT data for the TRMEM or QDMEM, and the stresses are calculated exactly as the

ones for the TRMEM or QDMEM elements (see section 4.87.4.14).

Ip modules PLA3 and PLA4, after the above stress calculations have been completed, the next

elastic coefficients are calculated in the same manner as Equations I06 through If2 of section

4.87.4.14.

The new ESTNL and ECPTNL entries are:

E0 = ¢ , (17)

= E1 , (18)

"k

E = El , (Ig)

ax = axl , (20)

°y = °yl ' (21)

°xy = °xyl ' (22)

_k

Mx = Mxl , (23)

My = My1 ,

Mxy = Mxy I ,

(24)

(25)

4.87-I09c (12-I-6g)

STRUCTURAL ELEMENT DESCRIPTIONS

Vxl : Vxl , (26)

VyI = Vy I , (27)

In module PI_A4, the ECPTNL data are rearranged, and the element stiffness matrices are

calculated in the same manner as for the TRMEM or QDMEM elements in section 4.87.4.14.

4.87.6.8 Differential Stiffness Matrix Calculations for the TRIAl and TRIA2 Elements

(Subroutine DTRIA of Module DSMGI)

This subroutine uses the displacement vectors and thermal load temperature from a static

solution to produce a differential stiffness matrix. The DTRMEM subroutine is used to calculate

in plane-stresses and in-plane differential stiffness. The triangle is subdivided into three

subtriangles and the DTRBSC routine is used to calculate out-of-plane differential stiffness for

each of the three subtriangles. The matrices are combined and the center point is removed in the

same manner as the KTRPLT subroutine (section 4.87.5.5). The basic steps are as follows:

I. The TRIA2 data from the ECPT is converted to TRIAl format while in both cases the data

is moved to a protected location.

TRIAl DATA

MATID m = MATID b

The conversion is:

TRIA2 DATA

= MATID s = MATID (28)

t m = t s = t m (29)

3

I - tm (30)
12.0

2. The ECPT data are rearranged to the TRMEM format (the same as the TRIA2 format).

3. The material property orientation angles are established and subroutine DTRMEM is called.

This routine will insert the in-plane differential stiffness terms in the KDGG matrix and

will return the stress values Gx' Gy' and _xy"

4. The element coordinate system and geometric coefficients are calculated as follows

where the three location vectors are {x(1)}, {x(2)}, and {x(3)}.

{V 2} = {x(2)} - {x(1)}

{V 3} = {x(3)} - {x(1)}

(31)

(32)

4.87-I09d (8/I/72)

MODULEFUNCTIONAL DESCRIPTIONS

X2 : l{V2} I (33)

{V2}

{i} - X2 (34)

Y3 : I{i} x {v3} I (35)

{i} x {V3}

{k} - Y3 (36)

{j} = {k} x {i} (37)

X2 + X3
X4 - 3 (38)

Y3
Y4 - 3 (39)

The locations of the four points in this coordinate system are defined by the matrix [R]

where each row defines one point

[R]

m

0

X2

X3

X4
m

l

0

0

Y3

Y4_

(40)

5. For use in transferring points in the element to points in the subtriangle, the integer

mapping matrix [M] is used.

Point a Point b Point c

[M] : 2 3 4 (41)

3 1 4

Each row of the matrix corresponds to the three points connected to each subtriangle.

6. A major loop is now performed with one cycle for each of the three subtriangles.

Corresponding to points a, b, and c Of the M matrix, the location vectors {ra}, {rb}, and

{r c} are extracted from the corresponding rows of the R matrix. For each triangle the

4.87-I09e (811172)

STRUCTURALELEMENTDESCRIPTIONS

following are calculated:

= _)2 ra2)2V(rbl ral - (rb2 -

W1 = _ (rbl - ral)

W2 = _ (rb2 - ra2)

The transformation between subtriangle coordinates to element coordinates is:

[T]

I 0 0 1

= 0 W1 W2

0 -W2 W1

The material orientation data are

sin (8m) = W1 sin (@) - W2 cos .(8) I

cos (em) = W1 cos (0) + W2 sin (e)

7°

coefficients xb, Xc, Yc where

xb = Wl(rbl - ral) + W2(rb2 - ra2)

xc = Wl(rcl - ral) + W2(rc2 - ra2)

Yc = -W2(rcl - ral) + Wl(rc2 - ra2)

8. The stresses are transformed to the subtriangle system by the equations:

(42)

(43)

(44)

(45)

The locations of the three points of each subtriangle are transformed to geometric

(46)

Oy = w_Gx + ._Gy - 2wiW2_xy

xy=-wIW2Gx+ wIW2Gy+ (w-w_)_xy

(47)

(48)

(49)

(5O)

(51)

(52)

4.87-I09f (811172)

k

MODULE FUNCTIONAL DESCRIPTIONS

9. The differential stiffness matrix for each subtriangle is formed in subroutine DTRBSC

(Section 4.87.6.10). The input to this routine consists of the ECPT property data; the

location parameters xb, Xc, and Yc; and the in plane stresses Ox' _y and Txy. The output

from this routine consists of the following matrices:

_ Ii : piv°t p°int[K j] j I, 2, and/or 3

[K_4] j = l, 2, and/or 3

[HI, IS]

lO. The above matrices are combined and transformed in exactly the same manner as the

triangular plate equations. The differential stiffness matrices replace the elastic stiff-

ness matrices in the equations. See section 4.87.5.5, steps 7 thrDugh lO.

4.87.6.9 Differential Stiffness Matrix Calculation for the QUADI and QUAD2 Elements (Subroutine

DQUAD of Module DSMGI)

The differential stiffness matrix for the QUADI and QUAD2 elements is constructed from the

matrices produced by four subtriangles. The method used to subdivide the quadrilateral is shown

in Figure 6. The stress is calculated for each triangle using the DTRMEM subroutine. The out-of-

plane differential stiffness for each triangle is calculated using the DTRBSC subroutine. The

element geometry and the manipulation of the matrices is done in the same manner as the elastic

stiffness equations for the quadrilateral plates.

The steps followed by the subroutine are:

I. If a QUAD2 element is used, its property data is converted to the QUADI equivalent and

the ECPT is expanded to the QUADI format. The property conversion is:

QUADI DATA qUAD2 DATA

MATIDm = MATID6 = MATID5 = MATID

tm = ts

I

= tm

t3
_ m

T_.O

(53)

(54)

(55)

4.87-I09g (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

With both cases the data is stored in a protected location.

2. The element coordinate system and the location of the grid points are calculated as

follows:

\

{dl} : {V3} - {VI} I

(

{d 2} = {V 4} - {V 2})

where {VI}, {V2}, {V3}, and {V 4} are the location vectors of the connected grid points.

{k}

(56)

: {d I} x {d 2} (57)
l{d I} x {d2} I

{a I} : {V2} - {Vl} (58)

h : {a I} • {k} (59)

{a I } - h{k}
{i} : (60)

l{a I} - h{k} I

{j} = {k} x {i} (61)

The locations of the points in the element plane are stored in the [R] matrix where each row

corresponds to the x and y location of a point.

3. At this stage the four triangles are processed in a loop.

element is set to zero and the results for each triangle are added in.

4 - 8 describe this loop.

RII = RI2 : R22 : 0.0 (62)

R21 : X2 = {al}.{i} (63)

R31 : X3 : {dl}.{i} (64)

R32 = Y3 = {dl}'{J} (65)

R41 = X4 = X2 + {d2}-{i} (66)

R42 = Y4 = {d2}'{J} (67)

The matrix partition for the

The following steps

4.87-I09h (8/I/72)

MODULEFUNCTIONALDESCR!PTIONS

4. Thethreepointsfor eachtriangle areselectedusingthemappingmatrixM. Thedata

correspondingto thesepoints areput into the ECPTformatfor a TRMEMelement.

5. Thegeometryof the triangle is calculatedusingthe three rowsof the Rmatrix

correspondingto the threepoints of the triangle a, b, c. Theserowscorrespondto vectors

{Va}, {Vb}, and{Vc}.

{V} = {Vb} - {Va} (68)

{Vv} = {Vc} - {Va} (69)

xb : l{V}] (70)

lWll {V} (71)
w2 xb

xc = WlVvl + W2Vv2 (72)

Yc = -W2Vvl + WIVv2 (73)

The transformation matrix between element and triangle coordinates is:

I 0 0]

IT] = 0 W1 W2 (74)

0 -W 2 W1

" +_,-i _I i_
6. The orientation angle 0m for the subtriangle is computed in case Lf,_ ,.........

ani s otropi c.

sin @m = W1 sin e - W2 cos g (75)

cos @m = W1 cos 0 + W2 sin @ (76)

7. The triangular membrane subroutine DTRMEM at this point will calculate and insert the

in-plane differential stiffness terms and will produce the stress values o x, Oy, and Txy in

the triangle coordinates. The basic triangle subroutine will use the in-plane stresses and

the basic locations x b, x c, and Yc to produce the out of plane differential stiffness terms.

The output of the differential stiffness subroutine, DTRBSC, is the 3 by 3 matrix

4.87-I09i (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

partitions [Kia], [Kib], and [Kic], where i is the pivot point. These are transformed to

quadrilateral coordinates with the [T] matrix.

[K_j] = [T] T [Kij][T] (77)

8. The matrices for each triangle are added into the running sum for the quadrilateral and

steps 4 - 8 are repeated.

9. The differential stiffness matrix partitionsare transformed to global coordinates and

inserted into the overall differential stiffness matrix in a manner identical to steps 7 and

8 of section 4.87.5.8.

4.87.6.10 Differential Stiffness Matrix Calculations for the Basic Bending Triangle (Subroutine

DTRBSC of Module DSMGI)

Unlike the case of elastic stiffness matrix generation, the basic triangle (TRBSC) may not be

used by itself to produce differential stiffness matrix terms. This subroutine, however, is used

for the calculation of differential stiffness for the TRIAl, TRIA2, QUADI, and QUAD2 elements.

Its purpose is analogous to the way the KTRBSC subroutine is used in the calculation of elastic

stiffness matrices.

The necessary inputs to this subroutine are passed to it via the labeled common blocks DSIAET

and DSIADP. The input data used are xb, xc, Yc (the basic geometry), _x' _y' Txy (the in-plane

stresses), and the element property data.

The basic algorithm used by the routine is as follows:

I. The presence of transverse shear is tested and the subroutine selects the method of

calculating the element coordinate-to-generalized coordinate transformation matrices [Hb] and

[Hc].

2. If no transverse shear flexibility exists, the matrices [H b] and [Hc] are calculated by

the following equations:

4.87-I09j (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

l
r --

xb

l
s -

Yc

X c

t -
Yc

(78)

[Hb]

X c

u - 2 _ = r2st

XbYc

3r2 0 r

0 r 0

-3r2t2 -rt -rt2

-2r3 0 -r2

-6ru(Xb-Xc) -rs u(3Xc-2Xb)

_2rtu(3xb-2Xc) rst 2tu(xb-Xc2

(6x3) (79)

[Hc] =

L

0 0 0-

O 0 0

3s2 -S st

0 0 0

0 0 -S2

-2s3 S2 0

(6x3) (80)

3. If both shear material and shear thickness exist, then the [Hyq] and [HI-l matrices are

generated as with the existing equations for the TRBSC element. See pages 4.87-82, 83. The

6x6 [H]"l matrix, is partitioned as follows:

[H]-l => [Hb : Hc] (81)

and is used instead of Equations (79) and (80).

4.87-I09k (8/1/72)

STRUCTURAL ELEMENT DESCRIPTIONS

4. In order to form the differential stiffness matYix [Kdq], referred to generalized

coordinates, the following integral must be evaluated over the triangular area.

Inm = h (×nym dA

The results are:

hXbYc hA
I00 = hA = 2 ll0 = T (Xb + Xc)

hAy c hAy c
I01 = 3_ III = _ (Xb + 2Xc)

hAy2c hAy2c

102 = 6 112 = _ (Xb _ 3Xc)

hAy_ hAy_
103 - I0 113 = _ (Xb ÷ 4Xc)

(82)

hA 2 2
120 : T (Xb + XbXc + Xc)

hAycIx_+2XbXc• 3x_l121 = 30

hAy_ 2
122 = 90 (Xb + 3XbXc + 6x_)

(83)

"A x X c,' Ic

hAy c
131 60 I x_ 2 2 3- + 2XbX c + 3XbX c + 4x c I

140 15 XbXc Xc

4.87-109_ (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

5. The elements of the (8x8) differential stiffness matrix [Kdq] are listed below. The

matrix is symmetric so only the upper triangle terms are given. The superscript (dq) is

omitted for convenience.

KII = ox I00

KI2 = TI00

KI3 = 2a x Ii0

KI4 = ox I01 ÷ _Ii0

Kl5 = 2_I01

Kl6 = 3o x I20

Kl7 = ox Io2 + 2_lll

Kl8 = 3TI02

K22 = Oy 100

K23 = 2TIl0

K24 = TI01 + Oy ll0

v = 2_
"25 y I01

K26 = 3T120

K27 = TI02 _ 2Oy Iii

K28 = 3Oy 102

K33 = 4e x 120

K34 = 2(o x III + TI20)

K35 = 4_111

K36 = 6o x 130

4.87-I09m (8/I/72)

(84)

STRUCTURAL ELEMENT DESCRIPTIONS

K37 = 2(o x 112 + 2T121)

K38 = 6TIl2

K44 = Ox I02 + 2Till + ay 120

K45 = 2(TI02 + ay Iii)

K46 = 3(a x I21 + _130)

K47 = ax I03 + 3TIl2 + 2Oy 121

K48 = 3(TI03 + ay I12)

K55 = 4Oy I02

K56 = 6TI21 (84)

K57 = 2(TI03 + 2Oy If2)

K58 = 6ay I03

K66 = 9a x I40

K67 = 3(a x 122 + 2_I31)

K68 = 9_122

K77 = ax I04 + 4TIl3 + 4Oy I22

K78 = 3(TI04 + 2Oy ll3)

K88 = 9ay I04

6. In order to transform the matrix to the displacements of points at the corners of the

triangle, the following matrices are generated.

[Ha] = [Hb][Sb] - [Hc][Sc] (6x3) (85)

4.87-I09n (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

iiLoo 1H qH a 0 1

[Ca] + - - (8x3)

LHa] 0

(86)

I H qHbl[Cb] (8x3)

LHb_]

(87)

I H qHcl[cc] (8x3)

LHc]

7. The output matrix partitions depend on the type of element using this subroutine.

the element type is a QUADI or QUAD2 the three output matrix paritions [K de] are:

(BB)

If

[K_el = [Ci IT [Kdq][cj] (89)lj-

where i is the pivot point and j = a, b, and c.

If the element type is a TRIAl or TRIA2 the output differential stiffness matrices are

calculated using equation 89 above. They are:

[Kia] = [Ci IT [Kdq][Ca] (90)

[Kib] = [Ci IT [Kdq][Cb] (91)

if i is the pivot point and i = a or i = b.

In addition, for the TRIAl and TRIA2, elements the following matrices are output:

de
[Kac] = [Ca IT [Kdq][Cc] (92)

de
[Kbc] = [Cb IT [Kdq][Cc] (93)

[K_] : [Cc IT [Kdq][Cc] (94)

The matrices [HI -l and [S], previously calculated are also output for the TRIAl and TRIA2

elements.

4.87-I09o (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.6.11 Thermal Calculations for the Combination Elements (Subroutine KTRIQD of Module SMAI)

If the heat transfer parameter, HEAT, is true, the elements are treated exactly like the

membrane elements QDMEM and TRMEM. The bending calculations are bypassed and subroutines

KQDMEM or KTRMEM are used for calculation of the conductivity matrix terms.

4.87-I09p (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

4.87.7 The ELASi, MASSi and DAMPi Elements

The scalar elements (ELASi, _SSi and DAMPi, i = 1,2,3,4) are connected to scalar

components of grid points or to scalar points. The ELASi elements contribute only to:

a) the stiffness matrix, [K_g],_ for i = 1,2,3,4; and b) to the structural damping matrix,

F] for i = 1,2,3. The MASSi elements contribute only to the mass matrix, [Mgg] and the.gg-,

DAMPi elements contribute only to the viscous damping matrix, [Bgg].

The scalar elements do not require material or geometric properties in their calculations.

Only the ELASi elements are used for stress or force calculations.

4.87.7.1 Input Data for the ELASi, MASSi and DAMPi Elements

The ECPT/EST entries for the scalar elements are:

Symbol

SIL l , SIL 2

Cl , C2

K

ge

S

B

m

Description

Scalar indices of connected grid or
scalar points

Component numbers corresponding to

SIL l and SIL 2,

Spring constant

Damping factor 1
Stress coefficient

Viscous damping coefficient

Mass coefficient

4.87.7.2

I.

Elements

All

Types 1 and 2

All ELASi elements

ELASI, 2 and 3

All DAMPi elements

All MASSi elements

ELASi Stiffness Matrix Generation (Subroutine KELAS of Module SMAI)

The two connected scalar indices are iI and i2 _iven by:

iI

SIL l + (cI - I), if Point 1 is a grid point

SILl, if Point 1 is a scalar point

4.87-110

STRUCTURAL ELEMENT DESCRIPTIONS

= _ SIL2 + (c2 - l), if Point 2 is a grid pointi2
!

SIL2, if Point 2 is a scalar point

Kx
2. The following terms are added to the [,gg]matrix:

+K in position (il, il) and in position (i2, i2),

-K in position (i2, il) and in position (il, i2).

3. If point 2 is not defined, add +K to position (il, il)-

4. The damping terms are:

K4 = K ge "

These are added to [K4gg]in the same manner as the stiffness terms were added to [K_g].

4.87.7.3 MASSi Mass Matrix Generation (Subroutine MASSD of Module SMA2)

These elements are treated like the ELASi elements except the "m" term is added to the

four positions in [Mgg].

4.87.7.4 DMAPi Damping Matrix Generation (Subroutine MASSD of Module SMA2)

These elements are treated like the ELASi elements except the "B" term is added to the

four positions in [Bgg].

4.87.7.5 ELASi Stress and Force Recovery (Subroutines SELASI and SELAS2 of Module SDR2)

The element force is:

where uI

F = K(u2- Ul),

and u2 are the displacements at scalar index numbers iI and i2.

(i)

(2)

4.87-III (8/I/72)

MODULEFUNCTIONAL DESCRIPTIONS

The element stress is:

o = SF. (3)

4.87-112

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.8 Concentrated Mass Lie_e.Ls CBNMI, C_NM2

Two types of grid point mass data are available. C_NMI defines the mass matrix directly

at the point, with the axes defined by a given local coordinate system. C_NM2 defines the

same matrix for a body with a mass and three inertias with a center of gravity offset from

the grid point.

4.87.8.1 ECPT Entries for the C_NMI Mass Element

Nm

Ng, X, Y, Z

mll

m21, m22

m31 ,m32,m33

m41,m42,m43,m44

m51,m52,m53,m54,m55

m61,m62,m63,m64,m65,m66

Description

Local coordinate system number in which the
mass matrix is defined.

Local coordinate system number and basic
coordinates of the point.

Terms of mass matrix given in row form (out
to the diagonal term).

4.87.8.2 Mass Matrix Calculations for the C_NMI Element (Subroutine MC_NMX of Module SMA2)

I. Using the symmetrical relationships, fill out the remainder of the 6x6 matrix,

[m]:

mij : mji (I)

2. Using the basic coordinates of the point and the local coordinate system definition,

the 3x3 transformation matrices [Tg] and [Tm] are generated, and the mass matrix in global

coordinates is:

4.87-I13

MODULE FUNCTIONAL DESCRIPTIONS

]FT:,!o ,o
[M] = --'-I g _"_- - _-1 [m] ! -T _- :q'TJ

(2)

where [Tg] is the transformation from global-to-basic coordinates at the point, and

[Tm] is the transformation from the coordinates defined by the mass local system to

the basic coordinate system.

4.87.8.3 ECPT Entries for the C_NM2 Mass Element

Symbol Description

Nm

Ng, X, Y, Z

x,y,z

III

121, 122

131, 132, 133

Local coordinate system number in which the
mass terms are defined.

Local coordinate system number and basic
coordinates of the point.

Concentrated mass

Offset of center of gravity in mass coordinate
system

Inertias about the center of gravity aiven in
row order out to the diagonal term

4.87.8.4 Mass Matrix Calculations for the C_NM2 Element (Subroutine MCONMX of Module SMA2)

I. The transformation from the offset to the grid point is:

[D]

1 1 O z -y
i

1 _-z 0 x

1 J y -x 0
...... L

1
, 1

0 _ 1
I

i

(3)

4.87-114

STRUCTURAL ELEMENT DESCRIPTIONS

2. The mass matrix referenced to the offset point is:

[mo] =

m
I

!

_ o
I

t-
!
I Ill -I21 -I31

!
0 !-121 122 -132

i

I-I31 -I32 I33

(4)

3. The mass matrix about the grid point along the g=ven coordinates is:

[m] : [D]T[mo][D].

The actual nonzero terms of matrix [m] are calculated directly from the equations:

(5)

mll = m22 = m33 : _ , (6)

ml5 = m51 = -m24 = -m42 -- +zm , (7)

ml6 = m61 = -m34 = -m43 = -_ ' (B)

m26 : m62 = -m35 = -m53 : xm , (9)

m44 : iiI + (y2 + z2)_ , (lO)

m55 = 122 + (x2 + z2)_ , (ll)

m66 = 133 + (x2 + v2)_ (]2)

m45 = m54 : -121 xym , (13)

4.87-I15

MODULEFUNCTIONAL DESCRIPTIONS

m46 = m64 = -131 - xzm , (14)

m56 = m65 = -132 - yzm (15)

4. The matrix [m] is transformed back to global coordinates using Equation 2.

4.87-116

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.9

4.87.9.1

l°

The C_NEAX Element

Input Data for the C_NEAX Element

The ECPT/EST entries for the C_NEAX element are:

Symbol

SILa, SILb

n

ra, rb

Za_ zb

tm

MAT IDm

I

MAT IDb

ts

MAT IDs

Zl, Z2

_i' i = l to 14

t

4.87.9.2

Description

Scalar indices of the nth harmonic of the

connected rings

Harmonic index

Radii at points a and b

Projected distances along the axis

Membrane thickness

Membrane material identification number

Bending coefficient

Bending material identification number

Shear thickness

Shear material identification number

Outer fiber distances for stress calculations

Angles defining points around element

Temperature for material properties

Nonstructural mass

Stiffness Matrix Calculations (Subroutine KC_NE of Module SMAI).

I. The shell orientation is given by:

= _/(r b - ra)2 + (zb - Za)2

rb - ra
sin_ -

zb - za
cos_ -

(1)

(2)

(3)

4.87-I17

MODULE FUNCTIONAL DESCRIPTIONS

2. The transformation matrix [E] from element coordinates to ring cylindrical

coordinates is:

[E]

-0 sin _ cos _ 0 0 -

1 0 0 0 0

0 cos _ -sin _ 0 0

0 0 0 0 sin

0 0 0 1 0

0 0 0 0 cos

(4)

3. The serial steps for the balance of the stiffness matrix computations unique to the

axisymmetric conical shell element are explicitly described in the NASTRAN Theoretical

Manual section 5.9.5.7 (Summary of Procedures).

4.87.9.3 Mass Matrix Computation (Subroutine MC_NE of Module SMA2)

[Mii]

-m i 0 0 0 0 0

0 m i 0 0 0 0

0 0 m i 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

O 0 0 0 0 0

i=aorb (5)

where

rh r e

ma = _(_ + _--) (pt + V)

ra
mb = _L(_-_b + _--) (pt ÷ p)

(6)

4.87.9.4 Element Load Calculations (Subroutine C_NE of Module SSGI).

The Fourier coefficients of the temperatures are stored in the GPTT data block. The loads

are generated by the elements, which reference the connected rings and harmonics indirectly by

the grid point scalar indices. The scalar indices are used with the SIL (Scalar Index List) data

block to obtain the temperatures. The following steps are used to generate the loads:

I. The data for a logical element are read from the EST data block. The harmonic

4.87-118 (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

number, n, is extracted from the element ID, Ne, by the equation:

Ne = lO00N + (n + l) , {7)

where N is the total number of harmonics plus one in the problem.

The temperatures for this particular element and harmonic (Ta and Tbn) are extracted from

the GPTT data block. (No default nonzero temperatures are allowed).

2. The following data are generated in the same manner as in the stiffness matrix routine,

KC(_NE:

ra, rb, za, zb - Ring locations

- Linear distance

sin_, cos_ Inclination functions

[El Element-to-global transformation matrix (6x5)

t - Element thickness

[Em] - Material matrix (3x3)

as = _¢ = _ - Temperature coefficient

The geometry coefficients, Imn, are calculated as in the stiffness matrix routine by the3.

equation:

Imn = _ smrl-nds = _? sm rl-n dr , (8)
r_

a

rb - ra
where r = a + bs, a = ra, b =

4. The loads are generated in generalized coordinates, {PR}, with the equations:

{Pln} = n(IoiAn + IIIBn) , (9)

4.87-I19 (12-1-6g)

MODULEFUNCTIONALDESCRIPTIONS

{P2n } = n(lllA n + 121Bn) , (10)

{P3n } = sin_ (loiAn + IIIB n) , (11)

{P4n } = sin_(lllA n + 121Bn) + IooC n + IIOD n , (12)

{P5n } : cos_(loiA n + IIIB n) , (13)

{P6n } = cos_(lllA n + 121Bn) , (14)

{P7n } = cos@(121An + 131Bn) , (15)

{P8n } = cos#(131An + 141Bn) , (16)

{P9n } : 0 , (17)

{PlO,n } = 0 , (18)

where

E a a
An : t 12(_sTn) + tE22(_qbTn),

t(T_ Ta) + ,Bn = T - (E12as E22a @)

(19)

(2o)

Cn = tEll(asTan)+ tEl2(a@Ta) (21)

Dn = t (T_ - TaT n)(Ell_s + EI2_@)" (22)

4.87-120

STRUCTURAL ELENENT DESCRIPTIONS

5. The transformation from generalized coordinates to element coordinates, [Gqu], is

calculated if no transverse shear material or thickness is given (i.e., MAT IDs = 0

or ts = 0).

[Hqu] : [H]-l, (23)

where Ill]is given explicitly in the stiffness matrix calculations.

6. If transverse shear exists, the shear matrix, [B], is generated.

material terms are:

Additional

[D] = Ib[Eb], where [Eb] is the bending material 3x3 matrix.

Gll = G = Shear coefficient of transverse shear material.

The nonzero terms of [B] are:

l (_ . 1 103
B4,l = B9,l = _ [Dl2n cos@ rb r--a) - _cos_ sin_-T-(D33 + 2D22)] , (24)

B4,2 = B9,2 1 [D _- In sin_ cos_ Il3 (3D33
12 r b T

E½B4,3 = B9,3 - Q _T- '

I021
+ D22) + _ nD33cos@TJ, (25)

(26)

B4,_ B_ _ 1 _ n2DRqcos_ 113= _,_ = _ [_ __ -T-] ' (27)

1 2 l Z) 2 I03
B4,5 : B9,5 : _ [n DI2(Tb - ra - n sin_-_-(2D33 + D22)] , (28)

1 n2_ 113 102 (2n2D33 sin2_D22)], (29)
B4,6 + B9,6 : Q [DI2 r--b-" n2sin@--_(2D33 + D22) +T +

n2C2 2112
l [2Dl + + _ (2n2D33 + sin2_ D22)(30)B4,7 = B9,7 = Q- l (ra - rb) Dl2 rb

2 123
- n sin_ T (2D33 + D22)]'

4.87-121

MODULEFUNCTIONALDESCRIPTIONS

n2_3 3122 (31)
= = lB4,8 B9,8 _ [-Dll6_rb+ Dl2 rb + -T-- (2n2D33+ sin2_bD225

133 D22)]. n2sin_ _ (2D33 +

B4,10

l [_, sin_ I02 D33)], (32)
B4,9 : B9,9 : _ -_- (D22 +

ll21n + D335]
l [nC(Dl2 + D335 . n sin_-_ _u22

= Bg,lO =

(335

where

Q =

io2 n2D33 + sin2_bD22] .ra + rb

Cts GlI _ [l + _ _tsGllrar

(345

7. The transformation [HI transforming displacements in the element coordinate system to

displacements in generalized coordinates of the power series is:

[HI

l 0 0 0 0 0 0 0 0 0

0 0 l 0 0 0 0 0 0 0

0 0 0 0 l 0 0 0 0 0

0 0 0 0 0 l 0 0 0 0

c°-9_ o o o n__. 0 o o
ra ra

1 _ 0 0 0 0 0 0 0

0 0 l _ 0 0 0 0 0

0 0 0 0 1 _ _2 _3 0

0 0 0 0 0 1 2_ 3_3 -I

_ 0 0 n n_ n_2 n____3 l

rb rb rb rb rb rb

0

0

0

0

0

(35)

4.87-122

STRUCTURALELEMENTDESCRIPTIONS

8. Thetransformation[Hqu]for nonzerotransverseshearis:

[Hqu] = ([H--]- [B])-l (lOxlO) (36)

9. [Hqu] is partitioned into two fox5 matrices

[Hqu] : EHal Hb] (37)

lO. The loads in global coordinates are calculated with:

{Pa} : [E][Ha]T{P_} , (38)

{Pb} : [£][Hb]T{P_} . (39)

4.87.9.5 Element Stress Calculations (Subroutines SC_NEI, SC_NE2, SCONE3 of Module SDR2)

1. For each element the following quantities are calculated as in section 4.87.9.2:

r + rb
£, sin_, cos_, [E], [Ha], [Hb], [H q] [H_q], [Hxq] (using s = _ r - a)" ' 2 "

2. Using the material properties, the following matrices are calculated:

El
[Em] :

(I - _)

l ""I 0

"_I 1 0

0 0
1 - _l
2

(4o)

4.B7-123 (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

E2 1
[Db] =

(I - _)

1 -_2 0

-v 2 1 0

0 0 1 - v 2

o][Gs] =
G3

where [Em], [Db] and [Gs] are computed for membrane, bending and shear materials

respectively.

3. The stress matrices are then calculated:

(41)

(42)

[K S]

[E m] [Hq]

[D] [H×q]

ts[Gs] [H q]

[Sa] = [Ks][14a][E],(8x6)

(8xlO) (43)

(44)

[Sb] = [Ks][Hb][E]

St I = _IEII + _2E12

St 2 = _IEI2 + _2E12

, (8x6) (45)

(_l=e2 for type 1 materials)

th
4. Each entry in the EST data block contains data pertaining to the n harmonic motion

of the CBNEAX element. The elements in the EST are ordered by harmonic and C_NEAX I.D.

number. All harmonic elements for each C_NEAX are grouped together.

a. When the harmonic, n, of an element is zero, this indicates it is the first

of a group of elements. Storage space is allotted for fourteen 8 by 1 vectors

defining the element forces at points. Two UGV vector data blocks must be used

to calculate stresses on points. These data blocks correspond to the two subcases

"C" and "S" and are solved simultaneously using the same data.

4.87-124 (8/I/72)

STRUCTURALELEMENTDESCRIPTIONS

b. Usingthe [Sa]and[Sb] matricesandthe6 by 1 displacementvectors, {u},
bytheir SILnumbers,stress andforcevectorsare computed.

Ifn#O:

-C

asn

-C

a@n

_cq_n

Mc
sn

Mc
@n

Mc
s_n

Vc
sn

Vc
,n

: [San] {U_n} + [Sbn] {U_n}, (46)

_S
sn

-S

O_n

--S

Os_n

Ms
sn

Ms
_n

Ms
s@n

Vs
sn

Vs
_n

: [San] _ruSans_ + [Sbn] {U_n}. (47)

4.87-125 (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

If n = O:

C6

(T c and TSc_)

where

OSO

m

_o

m

Os_o

Mso

M_o

Ms_o

Vso

V@o

: [Sao] ({U)o} + {uCo})-[Sbo] ({U_o} + {U_o}).

The temperature effects are added using the GPTT data for the two subcases,

C I

= C +(°sn) _sn Stl '

C'

(o n) : o c +@n St2

C'

(Us@n) = c°s@n

n+T_) -T n:O= (Ta o'

n

= ½ (T n + Tb) n # 0

The same equations are used for the "S" set and when n = O.

(48)

(49)

(50)

(51)

4.87-126 (811172)

MODULEFUNCTIONALDESCRIPTIONS

d. The harmonic stresses are calculated by the equations

for i = 1,2,3:

c c' Mc ci
°sni : (Osn) + snl (52)

MC

@n I

c = c ' M_. n ci
s@n (as@n) + _I

(53)

(54)

4.87-126a (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

The equations are repeated for the S set and when n = O.

e. Principal stresses (_l' _2' e, Tmaxetc.) are calculated as with the

TRIAl or QUADI element, except that when n _ 0 the data are calculated

for both the S and C sets.

f. The incremental element stresses or forces for the points on the cone are

calculated from the following equations for j = 1,214:

For n _ O:

= I S I
_Osj (__) cos (n,j) +(asn) sin (n,j) (55)

i S I

6_j = (_n) cos (n_j) + (a_n) sin (n_j) , (56)

C i

6as@j = (_s@n)

_Msj = Mcsn

s I

sin (nqbj)- (Os@n) cos (n@j) ,

cos (n_j) ÷ Ms sin (nCj)sn '

(57)

(58)

_M¢i = Mc Ms sin (n@j) (59)@n cos (n@i) + @n

= M c MS
_Ms@j s@n sin (n_j) - s@n cos (n@i) , (60)

c Vs sin (61)_Vsi : Vsn cos (n@j) + sn (n@j),

' -- V _" (n@j) -v s ,-n< (n@j) (621'@j n chn - -

g. The incremental stress and force values are added to the running sums for the

points. After the last element is calculated (n = N), the forces and stresses

for the points are calculated and output. The equations are identical to steps d

and e of this section except that l) the "S" and "C" sets are not used and 2) up to 14

points may be calculated for output for each physical element.

Since the user may leave some spaces blank on the property card for this element,

only one of the ¢i = 0 points is used in the calculation.

4.87-127

STRUCTURALELEMENTDESCRIPTIONS

4.87.9.6 Differential Stiffness MatrixCalculations(SubroutineDCONEof ModuleDSMGI)

Thedatainput fromthe ECPTto the DC_NEsubroutineare the sameas thosegivenin section

4.87.9.1. Additionaldatafor the generationof the differential stiffness matrixareasfollows:

{u_}, {u_} - Displacementvectorsof the zeroharmonic(extractedfromthe UGVdatablock)

o o
Ta, Tb - Element loading temperatures of the zero harmonic (extracted from the GPTT

data block)

The first part of the calculations involves calculation of the element force components. The

following steps are performed with harmonic num6er n = O.

I. The lO by IO transformation matrix [H_q] is computed from:

[H_q] = [Huq] + {Huy} {Hysq}T (63)

where [Huq], a lO by IO matrix, and {Huy}, a column vector, are derived in the NASTRAN

Theoretical Manual, section 5.9.5.3, and {Hysq}T, a row vector, is explicitly written out in

Equation 85 of section 5.9 of the NASTRAN Theoretical Manual.

2. The lO generalized displacement quantities qi are

{q} = [H_q]-I [E]T _i (64)

...........w,,:,: lUaJ°_:,,,--__..o_t,b,..:_o_+ho............._ by I HiRplac_ment vectors, and [El is calculated as in

Equation 4 of section 4.87.9.2.

3. The strain coefficients are

Z_Es¢

: {_} _. (65)

4.87-127a (12-I-69)

STRUCTURAL ELEMENT DESCRIPTIONS

Es

o {_}
_@ = Ta

Cs@

o and o
where Ta Tb are the loading temperatures at the grid points, the {_} vector is obtained

from the MPT data block via subroutine MAT and _ is calculated as in Equation 1 of section

4.87.9.2.

4. The force coefficients are calculated:

a° = t m GI2 (sin _ q3 + cos _ q5) ,

(66)

(67)

a I = t m GI2 (sin _ q4 + cos _ q6) (68)

a2 = t m GI2 cos _ q7

a 3 = t m GI2 cos _ q8

(69)

(70)

bo = t m G22 (sin _ q3 + cos _ q5) , (71)

b I = t m G22 (sin _ q4 + cos @ q6) , (72)

b2 = t m G22 cos _ q7 ' (73)

b 3 = t m G22 cos _ q8 ' (74)

Co : tm GII (q4 - Cs) - tm GI2 c@

c I = _t m GII Ac s t m GI2 6_@ ,

(7_)

(76)

do = tm GI2 (q4 c s) - t m G22 c@

d I = -t m GI2 Ac s t m G22 _c@ ,

(77)

(78)

4.87-127b (12-I-69)

STRUCTURAL ELEMENT DESCRIPTIONS

where Gll, Gl2 and G22 are elements of the 3 by 3 symmetric material properties matrix, [G].

5. The geometry coefficients are calculated:

Imn = fo sm rl-n ds Im = O, 1.....9n = O, I, 2, 3 ; (79)

where

rb ra)r = ra + _ s (80)

An explicit formula for the evaluation of Imn is given in the NASTRAN Theoretical Manual,

section 5.9.5.8.

6. The following coefficients for the computation of the differential stiffness matrix are

calculated:

Amn = ao Im, n+l + al Im+l, n+l + a2 Im+2, n+l

+ cl+ a3 Im+3, n+l + Co Im, n Im+l, n ' (81)

Bmn = bo Im, n+l + bl Im+l, n+l + b2 Im+2, n+l

+ dl+ b3 Ira+3,n+l + do Im, n Im+l, n ' (82)

Cmn = Amn + Bmn , (83)

where m = O, l....6; n = O, l, 2.

Note: The index n used above is a dummy index and is not the harmonic number.

The second part of the calculations involves generating the differential stiffness matrix.

The remaining steps use n as the harmonic number of the element.

I. The nonzero elements of the symmet_°icdifferential stiffness matrix [Kqd], in generalized

coordinates, are given in Table Ic below.

4.87-127c (12-I-69)

STRUCTURALELEMENTDESCRIPTIONS

TableIc. NonzeroElementsof the Differential Stiffness.Matrix, [Kqd].

Kllqd = cos2_B02+ ¼sin2_C02

K12qd= Cos2_BI2 + ¼ sin_Col + ¼ sin2_Cl2

K13qd= ¼ nsin_C02

qd = _.KI4 nsin_Cl2

K15qd: ncos_B02

qd ncos_B 1KI6 = 2

K17qd= ncos_B22

K18qd= ncos_B32

K22qd= cos2_B22 +¼Co0 +½sin_Cll +¼sin2_C22

K23qd= ¼ nCol + ¼ nsin_Cl2

K24qd= 41nCll + ¼ nsin_C22

K25qd= ncos_Bl2

K26qd= ncos_B22

K27qd= ncos_B32

K28qd= ncos_B42

K33qd= _.n2C02

qd = ¼ n2ClK34 2

4.87-127d (12-I-69)

STRUCTURALELEMENTDESCRIPTIONS

TableIc (con'd).

qd
K44 =

Elementsof the Differential Stiffness Matrix, [Kqd].

n2C22

qd n2Bo2K55 =

qd n2Bl2K56 =

K57qd= n2B22

K58qd= n2B32

qd + n2B22K66 = AO0

qd + n2B32K67 = 2Alo

K68qd= 3A20 + n2B42

K77qd= 4A20 + n2B42

K78qd= 6A30 + n2B52

K88qd= 9A40 + n2B62

The formulas for n = 0 are the same as in Table Ic except that they are all multiplied by 2.

The nonzero terms for n = 0 fall into two uncoupled sets which are

(ll) (12) (66) (67) (68)

(22) (77) (7B)

(88)
Effect on "_

Twisting Effect on Axisymmetric Deformation

2o

coordinates, for the nth harmonic is computed as in Equation 63.

partitioned into two lO by 5 matrices:

The lO by lO transformation matrix, [H_q], from generalized coordinates to element

The matrix is inverted and

4.87-127e (12-I-69)

STRUCTURAL ELEMENT DESCRIPTIONS

[H_q]-l_-> [Hal Hb] (84)

3. The 6 by 6 differential stiffness matrices in global coordinates are:

Kd IT T[ij] = [E] [H i [K qd] [Hj] [E] , (85)

where i = pivot grid point; j = a, b; and [E] is computed as in Equation 4 of section 4.87.9.2.

4.87-127f (12-I-69)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.10 The TRIARG Element

4.87.10.I Input Data for the TRIARG Element

I. The ECPT/EST entries for the axisymmetric triangular ring (TRIARG) element are:

Symbol Descriptions

SILI,SIL2,SIL3 Scalar index numbers for the three grid points.

Y

Mat I.D.

Nl'Xl'Yl'Zl)

N2,X2,Y2,Z2

N3,X3,Y3,Z3

Material property orientation angle (degrees)

Material property identification number.

Local coordinate system number and location

in basic coordinates of the three grid points.

t Element temperature for material properties.

For this element, Yi must equal zero for i = l, 2 and 3 and, we define:

I}

{Zs}
zsl /: Zs2

ZS3)
zlI= Z2

Z3

(2)

2. Coordinate system data

The location (Xi,Yi,Zi) and local coordinate system number (Ni) of each grid point are

used to calculate the 3 by 3 global-to-basic coordinate system transformation matrices,

[Ti], i = l, 2, 3.

3. Material data

The material property identification number, Mat I.D., and the element temperature for

material properties, t , are used to select the followina data items. For this element,

material properties may be defined on a MAT1 or MAT3 but not a MAT2 bulk data card.

4.87-128

STRUCTURAL ELEMENT DESCRIPTIONS

s__

Er,Es,Ez

VrO,VOz,Vzr

Description

Young's moduli in the radial, tangential
and axial directions respectively.

Poisson's ratios in the three directions
indicated.

P

GrB,GBz,Grz

_r,_O,_z

To

ge

4.87.10.2 General Geometric Calculations

Mass density

Shear moduli in the three directions indicated.

Coefficients of thermal expansion in the three
directions indicated.

Thermal expansion reference temperature.

Structural element damping coefficient.

I. Local coordinate calculations are:

Zmin = minimum of (Zsl,Zs2,Zs3), (s)

{RL) = {Rs}, (4)

20

given by (RLi and ZLi are the ith components of {RL} and {ZL} respectively):

Zmin)

{ZL} = {Zs} - !ZminZmin_!

The transformation from field coordinates to grid point degrees of freedom is

RLI ZLI 0 0 0 -

0 0 l RLI ZLI

RL2 ZL2 0 0 0

0 0 l RL2 ZL2

RL3 ZL3 0 0 0

0 0 1 RL3 ZL3 _

-l

0

l

Ff_q] = 0

l

-0

(5)

, (6)

6x6

4.87-129

MODULEFUNCTIONALDBSCRIPTIONS

[rBq] : [TBq]-l (7)

3. The transformation matrix from two to three degrees of freedom per point is:

[Fqs]

-I 0 0 0 0 0 0 0 O"

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 I 6x9

(8)

4.87.10.3 Integral Calculations

I. The integrals over the area of the cross-section are of the form:

for the values:

5ij = rlzJdzdr, (9)

6-10'6-11 '600' 610'620'_30'601 '611 '_21 '602'612'6-12

To accomplish this we integrate in two parts:

a. From line Z = Kl2r + m12 to line Z = Kl3r + m13

where

and

Kij - ZLj - ZLi
RLj -RLi

mij =
RLiZLj - RLjZLi

RLj - RLi

(lO)

(ll)

4.87-130

STRUCTURAL ELEMENT DESCRIPTIONS

and from polnz l_i-t-o-paintRL3.

b. From line Z = Kl2r + ml2 to Z

For the case where

= K32r + m32 and from point RL3 to RL2.

RLI = RL2 or JRL2- RLIJ < lO-5
RL2

we must integrate differently, that is, from line Z = K32r + m32 to Z = K13r + m13

and from RLI to RL3.

2. After the integrals are computed, a check is made to determine if an excessive

amount of round-off error occurred. If round-off was excessive, an approximate

integral can be calculated.

These tests are:

If any 6ij<O, then approximation must be used.

If al2 _ 002, or 6_i2 _ 612, or 612 > 602, then approximation must be used.

If Ar _ r or AZ _ Z, then approximation must be used. The terms Ar, AZ, _ and Z are:

_r = max.(JRLl - RL2J, JRL2 - RL3J, [RL3 _ RLIJ),

^

r = [min.(RLl, RL2, RL3)]/IO,

(12)

(13)

&Z = max.(JZLl - ZL2J, JZL2 _ ZL3J' JZL3 _ ZLIJ), (14)

= [min (ZLI, ZL2 , ZL3)]/IO . (15)

4.87-131

MODULEFUNCTIONALDESCRIPTIONS

Theapproximationis:

where

oij : (ra)i(Za)j A,

ra : _ [RLI + RL2 + RL3],

(16)

(17)

Za = _ [ZLI + ZL2 + ZL3], (18)

A = ½ [RLI (ZL2-ZL3) + RL2 (ZL3-ZLI) + RL3 (ZLI-ZL2)]. (19)

3. Form the matrix of integrals:

li ooo0 610 601 0 0 O0

0 0 0 0 6

0 610 0 610 4x6

(20)

4,87.10.4 Elastic Constants Matrix Calculations

I. Generate the transformation from material axis to element geometric axis:

[Teo]

m m

cos2y 0 sin2y sinycosy

0 1 0 0

sin2y 0 cos2y -sinycosy

-2sinycosy 0 2sinycosy cos2y-sin2y

m

4x4

2. Generate the matrix of elastic constants for an orthotropic body with

respect to cylindrical coordinates:

(21)

4.87-132

STRUCTURALELEMENT DESCRIPTIONS

[Em]
=l

-Er(l-VezVze)

Er(Ver+VzrVez)

Er(Vzr+VerVze)

0

Ee(l-VrzVzr)

Ee(Vze+VrBVzr)

0

(Symmetric)

Ez(l-VrOVOr)

0 GrzA _ 4x4

(22)

where

Ver = Vre Ee/Er , (23)

Vze = Vez Ez/E e , (24)

Vrz = Vzr Er/Ez , (25)

= 1 - Vre Ver-Vez Vze - Vzr Vrz - Vre Vez Vzr - Vrz Ver Vze . (26)

3. Calculate the elastic constants matrix in element geometric axes:

leg] = [Teo]TEEm][Teo] • (27)

4.87.10.5 Stiffness Matrix Generation (Subroutine KTRIRG of Module SMAI)

I. Generate the element stiffness matrix in field coordinates:

4.87-133

MODULE FUNCTIONAL DESCRIPTIONS

2_T

E226_I0

(EI2+E22)600

[_]

(ElI+2EI2+E22)610

E22__II+E24500 (EI2+E22)601+(EI4+E24)610 E22__I2+2E24_01+E44_I0

0 0 0

E24800 (EI4+E24)610 E24601+E44510 0 E44510
E23500 (EI3+E23)610 E23601+E34610 0 E34810 E33a10

28)

6x6

where Eij is an element of [Eg].

2. Transform the element stiffness matrix from field coordinates to grid point

degrees of freedom:

[K] : [rsq]TEK]ErBq]. (29)

3. Transform the element stiffness matrix from two to three degrees of freedom per

point.

[K] = Lrqs]T[K][?qs]. (3O)

K3
4. The 3 by 3 partitions [pj] of [K] corresponding to the pivot point p are

transformed:

K3 IT ITrK3
[pj] = _ p. L pjj[Tj], j = 1,2,3

(31)

5. Finally these 3 by 3 partitions are expanded to 6 by 6 partitions:

4.87-134

STRUCTURALELEF_NT DESCRIPTIONS

P3 :

LKpj] = O- ."-
(32)

4.87.10.6 Mass Matrix Calculations (Subroutine MTRIRG of Module SMA2)

I. Generate the consistent mass matrix in field coordinates:

where

[M] : 27

--_I 1610

_I1620 _I1630

_I1611 n_ll 621 mI1612

0 0 0

0 0 0

0 0 0
m

_22610

m22620

m22_I1

(Symmetric)

m22630

_22621 m22_12

i

6x6

,(33)

[_] = = .
L 0 m22

(34)

2 Transform the mdss reaL, ,^ ,,u,,, fleld coordinates to grid point degrees of freedom:

[M] : [rBq]T[M][rBq]. (35)

3. Transform the mass matrix from two to three degrees of freedom per point:

[M] : [?qs]T[M][Fqs]. (36)

4.87-135

MODULE FUNCTIONAL DESCRIPTIONS

4. The 6 by 6 partitions, [Mpj], are calculated as in Equations 31 and 32.

4.87.10.7 Thermal Load Calculations (Subroutine TTRIRG of Module SSGI)

I. Form the vector of thermal strains:

{_} = (Tavg - To) Iir_e

z

(4xl).
(37)

where Tavg is the average loading temperature at the grid points.

2. Compute thermal load vector in grid point degrees of freedom:

{FT } = [FBq]T[D]T[Eg]{_} (6xl). (38)

3. Transform thermal load from two to three degrees of freedom per Doint

{FT} = [Fqs]T{_T } (9xl). (39)

1

Each partition,{F_}, of length 3 of {FT} is transformed to global coordinates by

{F3}g = [Ti IT {FT3}
(40)

5. These vectors are added to the overall load vector, {Pg}.

4.87.10.8 Element Force and Stress Calculations (Subroutines STRIRI and STRIR2 of Module SDR2)

Element stress and force data items are calculated in two phases. The first phase

(subroutine STRIRI) calculates the element stiffness and stress matrices. The second phase

(subroutine STRIR2) calculates the actual element forces and stresses from the various

subcase displacement vectors.

4.87-I 36 (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

Phase l calculations are as follows:

I. Form the element stiffness matrix, [K], as in section 4.87.10.5.

2. Compute the constants:

3
1

ro : _- i=_lRLi'
(41)

l 3

zo = _ i=_lZLi"
(42)

3. Form the [Do] matrix:

[DO]

n

0 1 0 0 0

l_ 1 Zo 0 0

ro

0 0 0 0 0

0 0 l 0 l

0

0

l

0 4x6

(43)

4. Compute the stress matrix

m

IS] = [Eg][Do][FBq]. (44)

5. Transform the stress matrix from two to three degrees of freedom per point:

[s] : [T][rqs] . (45)

6. Transform the stress matrix from basic to local coordinates:

[S]_ : rSj[Tl23] , (46)

4.87-I37

MODULEFUNCTIONALDESCRIPTIONS

where

[TI23]
IT__o2

Lo !o : T_j

(47)

7. Compute the thermal stress vector

{T s} = [Eg]{&}.
(48)

Phase 2 calculations are as follows:

I. Extract the displacement vector, {A}, at the three translational components of the

grid points from the global displacement vector.

2. Calculate the element forces:

3. Calculate the element stresses:

{P} = LK]{_}. (49)

{o} : [S]c{_} - Td{T s} (50)

where

Td = Tavg - To (51)

4.87-138

MODULE FUNCTIONAL DESCRIPTIONS

4.87.10.9 Thermal Analysis Calculations for the TRIARG and TRAPRG Elements (Subroutine HRING of

Module SMAI)

If a heat transfer problem is being solved, this routine is used insteadof subroutines

KTRIARG and KTRAPR. The following checks are made on the geometry:

y=O

xi>O

If these conditions are not met, a fatal error exists.

checked. The following equation must be true: -

(x s - x r) (z t - z_) (x t -

I i = I, 2, 3 (or 4).

t
The order of the grid points is also

°

x s) (z s - z r) > O,

where the indices r, s, t correspond to three grid points in the element where

or

r, s, t = I, 2, 3 for triangles,

s, t = I, 2, 3

2, 3, 4

3,4,1

4,1=2

for trapezoids.

The conduction matrix for TRIARG is compuLeo by calling for a TRMEM, whose thickness is

calculated from

t = 2_(x i + x 2 + x3)13.

To compute the conduction matrix for TRAPRG, it will be divided into overlapping triangles.

The mapping is exactly the same as the mapping of quadrilaterals into triangles. The material

orientation angles for the triangles must be computed as was done for QDMEM. The thickness of

each of the triangles is given by

t : _(x r + x s + xt)/3,

where r, s, t, are the three vertex indices used from the mapping matrix.

subroutine is then called four times.

The KTRMEM

4.87-138a (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.11 The TRAPRG Element

4.87.11.I Input Data for the TRAPRG Element

I.

SILl,SIL2,SIL3,SIL4

Y

Mat. I.D.

Nl'Xl'Yl"Zl

N2,X2,Y2,Z2

N3,X3,Y3,Z3

N4' X4'Y4'Z4

t

The ECPT/EST entries for the axisymmetric trapezoidal ring (TRAPRG) element are

Description

Scalar index numbers for the four grid points.

Material property orientation angle (degrees).

Material property identification number.

Local coordinate system number and location in basic

coordinates of the four grid points.

Element temperature for material properties

For this element Yi must equal zero for i = l, 2, 3 and 4, and we define:

{Rs}

Xl

X2

X3

X4

(I)

Z
s zslI= Zs2

Zs3

Zs4

Zl

Z2

Z3

Z4

(2)

4.87-139

MODULE FUNCTIONAL DESCRIPTIONS

2. Geometry Input

The location (X i, Yi' Zi) and local coordinate system number (Ni) of each grid point

are used to calculate the 3 by 3 global-to-basic coordinate system transformation

matrices, [Ti], i = 1,2,3,4.

3. Material Property Input

The material property input for the TRAPRG element is the same as that for the TRIARG

element (see section 4.87.10.1).

4.87.11.2 General Calculations

I. Local coordinate calculations are:

Zmi n = minimum of (Zsl, Zs2, Zs3, Zs4), (3)

{RL} = {Rs} , (4)

I Zmin !

{ZL} = {Zs}-)Zmin_ (5)

.)Zmin _

Zmin

Let RLi and ZLi be the i th component of {R L} and {Z L} respectively. To insure the user

has input his grid points in accordance with the restrictions set down in section 2 of the

User's Manual, the following tests are made:

If RLI _ RL2 or RL4 _ RL3 or ZL4 S ZLI, then the user has violated the restriction that the

grid points be ordered in a counterclockwise manner and a user fatal error occurs.

If IZLI - ZL21 > .001 or IZL3 - ZL41 > .001, then the restriction that the line joining grid

points 1 and 2 and the line joining grid points 3 and 4 be parallel to the r-axis has been

violated and a user fatal error occurs.

2. Test for a rectangle. Define:

RMI 4 = (RLI + RL4)/2,
(6)

4.87-140 (3/I/71)

sT oc o ,ELE ,E.TOESCRIPTIO.S

RM23= IR,2+R,3 12

I
If RM14 < 0 005 then RLI = RL4 : RMI4.

IRL2 - RL31If
RM23 t < 0.005 then RL2 = RL3 = RM23.

If RLI = RL4 and RL2 = RL3, then the element is rectangular.

If RLI = RL4 : O, then the element is a core element.

3. Generate the transformation matrix from field coordinates to grid point

degrees of freedom:

1 RLI ZLI RLIZLI 0 0 0 0

0 0 0 0 1 RLI ZLI RLIZLI

1 RL2 ZLI RL2ZLI 0 0 0 0

0 0 0 0 1 RL2 RLI RL2ZLI

1 RL3 ZL4 RL3ZL4 0 0 0 0

0 0 0 0 1 RL3 ZL4 RL3ZL4

1 RL4 ZL4 RL4ZL4 0 0 0 0

0 0 0 0 1 RL4 ZL4 RL4ZL4

m m

[H] : [_]-I

[R] :

8x8

4. Generate the transformation matrix from two to three degrees of freedom per point:

[?qs] :

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 8x12

(7)

(8)

(9)

(lO)

4.87-141 (3/I/71)

MODULEFUNCTIONAL DESCRIPTIONS

5. If the element is a core element, then:

hlj : h3j : 0 j = 1,2 8

hil = hi7 = 0 i = 1,2 8

(II)

where hij is an element of [H].

4,87.11.3 Integral Calculations

a. Compute the integrals over the cross-section of the trapezoid that

are of the form:

Ipq = ff rPz q drdz
rz

(12)

for the values:

I_10,1_11,1.12,100,101,102,110,111,112,120,121,122,130,131,132 •

The limits of integration are chosen depending on the geometric shape of the

trapezoid.

¢ z z3 : z4
4 3

rabz//rcdz
1

z I = z2 2

If the lines between points 1 and 4 and between points 2 and 3 are defined

by the equations

r : a + bz_ (13)

r = c + dz, (14)

4.87-142 (3/I/71)

STRUCTURAL ELEMENT DESCRIPTIONS

respectively, then:

(R,4-R,lla = RLI - ZL4 ZLIJ ZLI,
(15)

RL4 - RLI
b =

ZL4 - ZLI '
(16)

lRL3 - RL2\

c = RL2- _ZL3 ZL2J ZL2,
(17)

RL3 - RL2

ZL3 - ZL2
(18)

In general, the integration takes the form:

Ipq

z4 c+dz

=fI
zI a+bz

rPzq drdz. (19)

For the case with the side r = c + dz parallel to the axis of symmetry (the

z axis) we have:

Ipq

zI a+bz

rPzq drdz. (20)

For the case with the side r = a + bz parallel to the axis of symmetry we

have:

z4 c+dz

zI a

rPzq drdz. (2])

And finally for the rectangle, the integration takes the form

4.P_o143 {311/71)

4,87,11.4

MODULE FUNCTIONAL DESCRIPTIONS

z 4

Ipq = rPz q drdz.

Elastic Constants Matrix Calculation

(22)

The elastic constants matrix in element coordinates, lEg], for the TRAPRG element

is calculated identically to the elastic constants matrix for the TRIARG element (see

section 4.87.10.4).

4.87.11.5 Stiffness Matrix Generation (Subroutine KTRAPR of Module SMAI)

I. Generate the terms of the symmetric element stiffness matrix in field coordinates as

shown in Table 2. Each term must be multiplied by 2_ to form [K].

2. Transform the element stiffness matrix from field coordinates to grid point

degrees of freedom:

[K] = [H]T[K][H]. (23)

3. Transform the element stiffness matrix from two to three degrees of freedom

per point:

[K] = [Fqs]T[K][Fqs]. (24)

4. The 3 by 3 partitions LKpj] of [K] corresponding to the pivot point p are

transformed:

5.

[K 3pj] : [Tp]T[K_j]LTj], j = 1,2,3,4.

Finally, these 3 by 3 partitions are expanded to 6 by 6 partitions:

(25)

[Kpj] r3 ' I
L

(26)

4.87-144

Table 2.

STRUCTURAL ELEMENT DESCRIPTIONS

Elements of the 8 by 8 Symmetric Stiffness Matrix for the TRAPRG Element.

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Col. 1 Col. 2 Col. 3 Col. 4

E221-I0

(E22+E12)Io0 (Ell+2E12+E22)Ilo

E22I.ll (E12+E22)Iol E221.12+E44110

(E12+E22)Iol (Ell+2E12+E22)Ill (E12+E22)I02 (Ell+2El2+E22)Il2

+ E44120 + E44130

0 0 0 0

0 0 E44110 E44120

E32100 (E13+E23)Ilo E23101 (E13+E23)Ill

E32110 (E31+E32)I20 (E23+E44)Ill (E13+E23+E44)I21

Row 5

Row 6

Row 7

Row 8

Col. 5 Col. 6 Col. 7 Col. 8

0 E44110

0 0 E33Ilo

0 E44Ill E33120 E33130+E44II2

4.87-145

MODULEFUNCTIONALDESCRIPTIONS

[M] = 27

4.87.11.6 Mass Matrix Calculation (Subroutine MTRAPRof Module SMA2)

I. Form the coupled mass matrix in field coordinates:

Symmetric

M2110

M2120 M2130

M2Ill M2121

M2121 M2131

-M1Ii0

M1120 M1 130

MIll1 MII21 MIll2

M1121 M1131 M1 122 M1132

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

M2112

M2122

where

Ml = M2 = p .

2. Transform the mass matrix to grid point degrees of freedom:

!

M2132 8x8

[M] : [H]T[M]LH].

3. Transform the mass matrix from two to three degrees of freedom per point:

no

[M] : [?qs][M][?qs].

The 6 by 6 partitions, [Mpj], are calculated as in Equations 25 and 26.

(27)

(28)

(2g)

(30)

4.87-146

STRUCTURALELEMENTDESCRIPTIONS

4.87.11.7 Thermal Load Calculations (Subroutine TTRAPR of Module SSGI)

I. Form the temperature gradient vector:

{AT} = {T}-

T o

To

TO

TO

,

where {T} is the vector of loading temperatures at the grid points.

Form the thermal expansion coefficient vector:

(31)

_r

%

{=} = =z

0

3. Multiply the elastic constants matrix by the thermal expansion coefficient

vector:

4. Form the [q] matrix:

[Q]

w

AB2Io0

(ABI+AB2)IIo

AB2IoI

= (ABI+AB2)II1

0

0

AB3110

AB3120

{AB} : [Eg]{_} °

AB2110 AB2IOl AB2111

(ABI+AB2)I2o (ABI+AB2)Ill (ABI+AB2)I21

AB2111 AB210Z AB2II2

(ABI+AB2)I21 (ABI+AB2)Il2 (ABl+AB2)I22

0 0 0

0 0 0

AB312O AB3111 AB3121

AB3130 AB3121 AB3131 8x4

4.87-147

(32)

(33)

(34)

MODULE FUNCTIONAL DESCRIPTIONS

5, Partition the transformation matrix [HI to form [H']:

where

[H'] = [h'ij] 4x4, (35)

h'ij = hik for i = 1,2,4; j = 1,2 4; and k = 2j-I

and hik are the elements of [H].

6. Compute the thermal load in field coordinates:

{F T} : 2_[Q][H']{ZIT}.

7. Transform the thermal load to grid point degrees of freedom:

(36)

8,

{i T} : [H]T{FT }.

Transform the thermal load from two to three degrees of freedom per point:

(37)

go

{F T} = [£qs]T{FT }.

Each partition, {F_}, of length 3 of {F T} is transformed to global coordinates by:

(38)

{F_}g : [Ti]T{F_}.

lO. These vectors are added to the overall load vector, {Pg}.

4.87.11.8 Element Force and Stress Calculations (Subroutines STRAPI and STRAP2 of

Module SDR2).

Element stress and force data items are calculated in two phases. The first phase

(subroutine STRAPI) calculates the element stiffness and stress matrices. The second

phase (subroutine STRAP2) calculates the element forces and stresses from the various

subcase displacement vectors.

(39)

4.87-148

STRUCTURAL ELE_NT DESCRIPTIONS

Phase l calculations are as follows:

I, Form the element stiffness matrix, [K], as in section 4.87.11.5.

2. Define a fifth "grid point" to be the average of the other four points:

RL5 = _(RLI + RL2 + RL3 + RL4), (40)

ZL5 = _{ZLI + ZL2 + ZL3 +ZL4). (41)

3. Form the matrices [D(1)],[D(2)],[D(3)],[D(4)],[D (5)]

where

[D(i)]

0 1 0 ZLi 0 0 0 0 -_

ZLi 0 0 O O
l l _ ZLi

RLi RLi

0 0 0 0 0 0 0 RLi

0 0 1 RLi 0 1 0 ZLi

4x8

(42)

where i = 1 to 5 denotes the five grid points.

4. Compute the stress matrices for each of the five grid points in field coordinates:

[_(i)] = [Eg][D(i)]. (43)

4.87-149

MODULEFUNCTIONALDESCRIPTIONS

5. Transform each stress matrix to grid point degrees of freedom:

[_(i)] : [_(i)][H]" (44)

6. Transform each stress matrix from two to three degrees of freedom per point:

[S (i)] = [s(i)][?qs].

7. Form the master stress matrix:

8t

"s(1)

s(2)

[s] = s(3)

S(4)

s(5)
B

Transform the stress matrix from basic to local coordinates:

20 x 12

(45)

(46)

where

[T1234]

[S_] : [S][T1234] ,

-T1 ' 0 ! 0 ' 0 "n
_ _ I I- -_ L.

I I --I

0, T2 ? . O_ .

--' O! T_' 0 I
o_J
0 J 0 , 0 ', T4_1-- i

(47)

(48)

9. Compute the thermal stress vector:

{T s} : [Eg]{_} • (49)

Phase 2 calculazions are ar #olIc.is:

Io Extract the displacement vector, {A}, at the three translation coordinates of each of the

four grid points from the global displacement vector.

4.87-150

STRUCTURALELEMENTDESCRIPTIONS

2. Calculatethe elementforces:

{P} : [K]{A} . (50)

3. Calculatethe elementstresses:

{0} = [Sc]{A}- Td {Ts} , (51)

where

Td

Ti - To, if i # 5 (T i is the temperature at the

i th point)

Tavg - To , if i = 5 (Tavg is the average temperature

over the four grid points)

(52)

4.87.11.9 Thermal Analysis Calculations for the TRAPRG Element (Subroutine HRING by Module SMAI)

The calculations are described in the preceding description for the TRIARG element; see

Section 4.87.10.9.

4.87-151 (8/I172)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.12 The T_)RDRG Element

4.87.12.1 Input Data for the TORDRG Element

I. The ECPT/EST entries for the axisymmetric toroidal ring (TORDRG) element are:

Symbol Description

SILl, SIL 2 Scalar index numbers for the two grid points

_l' _2 Angles of curvature at the t_D grid points (degrees)

y Material property orientation angle (currently not used)

Hm, Hf Membrane and flexure thickness

NI'XI'YI'ZI t Local coordinate system number and location in basic

N2,X2,Y2,Z 2 _ coordinates of the grid points.

t Element temperature for material properties

For this element Yi must equal zero for i = 1 and 2, and we define:

Ix}{R} : , (I)

X2

{Z} : (2)

Z2

2. Coordinate system data

The location (Xi,Yi,Zi) and local coordinate system number (Ni) of each grid point are

used to calculate the 3 by 3 global-to-basic coordinate system transformation matrices,

[Ti], i = I, 2.

3. Material data

The material property input for the T_RDRG element is the same as that for TRIARG

element (see section 4.87.10.1) with the following notational changes:

4.87-152

STRUCTURAL ELEMENT DESCRIPTIONS

Ep = Er, ET = EO, vPT = VrO

{ALF} = I_rl

c_e "

4.87.12.2 General Calculations

I. Compute the following constants used in stiffness matrix generation:

C = Ep/E T , (3)

DM = Ep Hm/(C - V_T) , (4)

OB = EpH /(12(c- (5)

2a

or a shell cap:

(I) if c_1

(2) if c_1

(3) if c_1

(4) if c_1

3.

Determine if the element is a toroidal ring, a conical ring, a cylindrical ring,

_2' then the element is a toroidal ring.

= _2 = 90o , then the element is a cylindrical ring.

= _2 # 90° , then the element is a conical ring.

= O, then the element is a shell caD.

Compute the local coordinate constants for a toroidal element:

¢8 = _2 - al '
(6)

Rp
[(R 2 - Rl)2 + (Z2 - Zl)2] I/2

(7)

l

_I = Rp
(B)

4.87-153

MODULEFUNCTIONAL DESCRIPTIONS

S = (m2 " ml)Rp' (9)

BB = R1 + Rp [sin(mI + _-_)- sin (ml)], (I0)

RT =
BB

sin(_l + ¢_B_B)
2

(11)

_Pl = c°s(c_l + _-')' (12)

_)2 = -
Rp

(13)

4. Compute the local coordinate constants for a conical or cylindrical ring

S : [(R2 - RI)2 + (Z2 . Zl)2]I/2 , (14)

S cos _l
BB = Rl + 2 ' (15)

B_
RT =

sln _I
(16)

Rp = 0 , (17)

kI : 0 , (18)

_1 : cos _1 , (19)

_2 : 0 . (20)

4.87-154

STRUCTURALELEMENT DESCRIPTIONS

5. Generate the transformation matrix from field coordinates to grid point degrees

of freedom:

[rsq]

m

0

0

0

0

0 l 0 0 0 0 0 0 O

0 0 l 0 0 0 0 0 0

l
0 0 0 0 _- 0 0 0 0

0 0-

0 0

0 0

l

T_

-I

o 7

l (21)
o 2s-_"

0

0

-1
--g o

0 10x12

-l0 -6 -3 l0 -4 0
o sT_ o _ o o _ 7

0 15 8 0 3 O 0 -15 7
_ s_ _ sT

0 -6 -3 -I 6 -3
s-_ _ o m o o2S3 7 7

l 0 0 0 0 0 0 0 0 0 0

0 0 0 0 l 0 0 0 0 0 0

-3 0 0 0 -2 0 3
s-_ -_ _ o o o

2 l -2 l

o o o 7 o _ o o o _

4.87-155

MODULEFUNCTIONAL DESCRIPTIONS

Errs]

6. Generate the transformation matrix from local to system coordinates:

-cos _I

0

sin _I

0

0

0

= 0

0

0

0

0

0

0 - sin _I 0 0 0 0 0 0 0 0 0-

0 0 0 0 0 0 0 0 0 0 0

0 cos _I 0 0 0 0 0 0 0 0 0

0 0 -I 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 cos _2 0 - sin _2 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 sin _2 0 cos _2 0 0 0

0 0 0 0 0 0 0 0 -I 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 I_ 12x12

(22)

7. Rearrange the transformation matrix [C6q] such that the membrane and flexure

terms are reversed.

?_q(2) I0 x 12

rBq(1)

(23)

(2)
where [F_q(1)] is the first six rows of [?Bq] and [FBq] is the last four rows of

[rBq].

4.87.12.3 Integral Calculations

The method used to compute the integrals depends on the geometric shape of the element.

I. Toroidal ring - basic integrals

There are six basic integrals to be computed, of which the first three can best be

evaluated by series expansion, but the last three require numerical integration,

4.87-156

STRUCTURALELEMENTDESCRIPTIONS

llJ _0@B Rpj+I@Bj+I= Rpj+l @Jd@ - j+l ' (24)

0 _)i@ j+l+2i+l12J = RpJ+l _ _Jsin@d_ = Rpj+l Z (-Ii=O (j+i+2i+l) (2i+I)[(25)

_0 co
13J = Rpj+l @BqbJcos@d@ = Rpj+l £

i=O
(-I)i¢Bj+l+2i

(j+l+2i) (2i)!
(26)

• = Rpj+l _B _ d@
14J Jo B

(27)

• /0• @B _J2sin@cos@ dqb,15J = Rpj+I '' B (28)

• "16J : Rpj+I B (29)

where

B : R1 Rpsin_ 1 + Rpsin_icos @÷ Rpcos_isin@,

and j = O, 1..... I0.

The summations in 12J and 13J are carried out until the truncation error is in-

significant.

(3o)

4.87-157

MODULE FUNCTIONAL DESCRIPTIONS

2. Toroidal ring - required integrals

The actual integrals required can now be defined in terms of basic integrals.

81J = (Rl Rpsin_l)llJ + RpCOS_iI2J + Rpsin_iI3i ,\ (31)

• • °

823 = cos_I123 + sin_I133 ,

63J = cos2_iI4j + sin_icos_iI5j + sin2_iI6j ,

64J = cosmll3J - sinmll2j ,

85J = sinmlcOSml(16j - 14J) + _-(l- 2sin2ml)I5j ,

66J = cos2mII6j - sinmlcosmiI5j + sin2miI4j ,

(32)

(33)

j=O,llO (34)

(35)

(36)

3, Conic ring - basic integrals

J _roS Sj+lIl = _Jd_ : _, j = O,l....,lO (37)

123" : 4 S (Rl+#jcosml)d_, j : O,l....,lO
(38)

Rl+SCOSml
120 = 1 In(),

cosmI R1
(39)

R1 Rl+SCos_1
121 l IS - _ In()],

= cos_----_ cosoI Rl
(40)

123

ScOS_l 1
sj+I _ (-I)i I-RT---_

s
= TI i=o (j+l+i)

, j = 2,3,lO • (41)

4.87-158

STRUCTURALELEM£NTDESCRIPTIONS

4. Conicring - requiredintegrals

61J = RIIlj + 4II1j+l,

623 = sin_III3 ,

63J

64J

= sin2_ll2j ,

= _lllj ,

65J : sinc_1 4 I12j ,

66J = _1212j ,

j =.O,l,...,10

(42)

(43)

(44)

(45)

(46)

(47)

5o Cylindrical ring - basic integrals

I13 = _Jdc j : 0,1,...,10 (48)

• /oS :12J : R1

6. Cylindrical ring - required integrals

SJ+1
l (_j__.T)' j : 0,I ,10
_l)°°e

(49)

61J : RIllj + _IIij+l

62J = sin_lllJ ,

63J : sin2_ll2j ,

64J : 65J : 66J : 0,

j = 0,I,...,I0

(50)

(51)

(52)

(53)

4.87-159

MODULEFUNCTIONALDESCRIPTIONS

4.87.12.4 Elastic Constants Matrix Calculations

Form elastic constants matrix

P
[E] - 1 U EP ET_PT . (54)ET ,O_T) ET 2x2(I - Fpp TvPT

4.87.!2.5 Stiffness Matrix Calculations (Subroutine KT_RDRof Module SMAI)

I. Define the constants

A : Rp , (55)

V = vpT , (56)

C : Ep/E T . (57)

2. Form the stiffness matrix terms in field coordinates as shown in Tables 3. 4 and 5.

3. Transform the stiffness matrix from field coordinates to grid point degrees of freedom:

4_

[K] : [r6q]T[K][FBq].

Transform the stiffness matrix from local to system coordinates:

(58)

[K] : [rrs]T[_][Frs].

5. The global-to-basic coordinate system transformation matrices [T i] are expanded

to 6 by 6 matrices:

(59)

i-, L- :LT] = , i 1,2.

Lo
(60)

4.87-160

STRUCTURALELEMENTDESCRIPTIONS

Table 3. Columns I, 2 and 3 of the SynT_etricI0 by !0 Stiffness Matrix for the T_RDRG Element.

Column 1 Column 2 Column 3

A

+ 6°)

+ 2_62

Row 6 DM(_ 6l

3C 5

4.87-161

MODULEFUNCTIONALDESCRIPTIONS

Table4. Columns4, 5, and6 of the SymmetriclO by lO Stiffness Matrix for the T_RDRGElement.

Column 4 Column 5 Column 6

Row 4 DB9(4C_ + 4V_ + 64)

C

Row 9 DM(_ 6_ + _S_ DM(_ 6_ + _ _ DM(_ _ + _ 6_

4.87-162

STRUCTURAL ELEMENT DESCRIPTIONS

Table 5. Columns 7, 8, 9, and I0 of the Symmetric I0 by I0 Stiffness Matrix for the TORDRG Element.

Col. 7 Col. 8 Col. 9 Col. lO

Row 7 DM6_

+ 6_)

+ 6V65

4.87-163

MODULEFUNCTIONALDESCRIPTIONS

6. Thestiffness matrix, [KJ, is partitioned into 6 by6 matrices:

K 2

(61)

7. These 6x6 partitions are transformed to local coordinates:

[K6.]C -- rT61Tr_6 irT6,PJ L pJ L_pjJL jJ,

where j = l, 2, and p is the pivot point, p = l or 2.

(62)

4.87-164

STRUCTURALELEMENTDESCRIPTIONS

4.87.12.6 Mass Matrix Calculations (Subroutine MT_RDR of Module SMA2)

I. Form the mass matrix in field coordinates:

[M] = 2_pHm

-0

61

Symmetric

0 0 0 0 6_

0 0 0 0 61 6_

o o o o _ _ _
o o o o _ _ _

i

o o o o _ _ _o o o _ _ {

(63)

10xl0

2. Transform the mass matrix to grid point degrees of freedom:

[M] : [_Bq]T[M][_Bq] (64)

3. Transform the mass matrix from local to system coordinates:

[M] : [rrsJT[M][rrs] .

4. The mass matrix, [M], is partitioned into 6x6 matrices, and these 6x6 partitions

are transformed to local coordinates (see Equations 61 and 62).

(65)

4.87-165

MODULE FUNCTIONAL DESCRIPTIONS

4.87.12.7 Thermal Load Calculations (Subroutine TTORDR of Module SSGI)

I. Compute the temperature gradient constants:

ATI(m) : Tl(m) _ To , (66)

AT2(m) = T2(m) _ Tl(m) , (67)

ATI(f) : 0 , (68)

_T2(f) : 0 ,

where Ti(m) are the membrane temperatures at point i.

2. Compute the thermal strain vectors:

(69)

{ET(O) } = ATi(m){ALF } , (70)

{ET(1)} : Z_T2(m){ALF } , (71)

{HT(O) } = ATI(f){ALF } , (72)

{HT(1)} : AT2(f){ALF } , (73)

where {ALF} is a vector of length two; the first component is _r and the second _e"

3. Form the matrices of integrals

[_ME(O)] = 2_Hm FO 6_ 2611 36_ _.1_ _1611 _16_ _.1_ _16_ XI_I

L
(74)

4.87-166

STRUCTURAL ELE!.ENTDESCRIPTIONS

x1_ j

J
(75)

2xl 0

(76)

2xl0

[FFE(1)]=ITZ_H3 [0 0 0 0 0 0 -261-66#-12670 0 0 0 0-_-'_-_-_
(77)

2xlO

4. Compute the thermal load vector in field coordinates

5.

{FT } : [FME(O)]T[E]{CT (0)} + [FME(1)]T[E]{ET (I)}

+ [FFE(O)]T[E]{HT (0)} + [FFE(1)]T[E]{HT (0)} .

Transform the thermal load vector to grid point degrees of freedom:

(78)

{F T} : [?Bq]T{FT } • (79)

6. Transform the thermal load vector from local to system coordinates:

{F T} = [rrs]T{FT } • (80)

7. Transform the thermal load vector to basic coordinates:

{FT} b : [TI2]T{FT }, (81)

4.87-167

MODULE FUNCTIONAL DESCRIPTIONS

where

[TI2]

'0 lO ' O-
"TI i i

- - "I - -I- - ;- -

I 0
0 11 iO i
-..,I--I

0 T21 00 i L-

IO i0 Io , '1
I

, (82)

and [Ti] and [I] are 3 by 3 matrices.

8. These vectors are added to the overall load vector, {Pg}.

4.87.12.8 Element Force and Stress Calculations (Subroutines STORDI and ST_RD2 of Module SDRI)

Element stress and force data are calculated in two phases. The first phase (subroutine

ST_RDI) calculates the element stiffness and stress matrices. The second Dhase (subroutine

STORD2) calculates the element forces and stresses from the various subcase displacement

vectors. Stresses are evaluated at both ends and at the mid-span of the element.

Phase l calculations are as follows:

I. Form the element stiffness matrix, [K], as in section 4.87o12.5.

2. Set up the coordinates of the three stress points:

{X} : (83)

3. Compute the constants X2' X3' _4 as a function of the stress points coordinates.

a. If the element is a toroidal ring, then:

_2

cos (_l + X(i))
(i) : Rp

R1 - Rp[sin _I - sin (_I + XXp_)]

(84)

4.87-168

STRUCTURALELEMENT DESCRIPTIONS

sin (_I + XXp_)

X3(i) : i : 1,2,3, (85)

Rl Rp[sin _l - sin (_l + Xp_)]

L4(i) = - _3(i)/Rp . (86)

b. If the element is a cylindrical or conical ring, then:

k2(i) = cos _l
Rl + X(i) cos _l ' (87)

_3(i) = cos _l

Rl + X(i) cos _l

i = 1,2,3, (88)

_4(i) = 0 . (89)

c. If the element is a shell cap, then:

_2(i)

cos (_1 + XXp'i_)

RI Rp [sin _l - sin (_I + XXp_)] i = 1,2,3 (90)

L3 (i) : 1/Rp , (91)

_4(i) = - I/(Rp2) (92)

4. Compute the stress matrix in field coordinates for the three stress points

as shown in Tables 6 and 7. Note that the factors H and H3/12 have been omitted for [Sl(i)]

and [_2(i)] respectively.

If the element is a shell cap, then modify [_(i)] b/:

S12 = El2 Ell ' (93)

4.87-169

MODULEFUNCTIONALDESCRIPTIONS

$22 = E22 + El2 , (94)

$37 = -2 (El2 + Ell) , (95)

_47 = 2 (E22 + El2) , (96)

$58 = 3(E22 - 4 EII) (97)

5. Form the master stress matrix in field coordinates:

Es]=

I_(i) i
_(3)

15 x lO (98)

4.87-170

Col. l

_2(i)El 2

_2(i)E22

Table6.

STRUCTURALELEMENT DESCRIPTIONS

Terms in Columns l Through 6 of the 2 by lO [El

3 by lO IS2(i)] Matrix,

The [Sl(i)] Matrix

(i)] Hatrix and the

Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Ell 2ElIX(i) 3EllX2(i) Xl(i)Ell

+_2(i)El2X(i) +x2(i)El2X2(i) + x2(i)El2X3(i) + _3(i)El2

El2 2E12X2(i) 3E12X2(i) _l(i)El2

+ _2(i)E22X(i) + _2(i)E22X2(i) + _2(i)E22X3(i) + _3(i)E22

(Xl(i)Ell

+ _3(i)El2)X(i)

(_l(i)El2

+ _3(i)E22)X(i)

The [$2(i)] Matrix

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

- k2(i)El2

k2(i)E22

g(i)

where g(i) (%2(i))2 - (i)E
= E22 4 12

I si(i)I[_(i)] : s2(i) 5xlo

and

4.87-171

MODULEFUNCTIONALDESCRIPTIONS

Table7. Termsin Columns7 ThroughlO of the 2 by lO [Sl(i)] Matrixandthe

3 by lO [_2(i)] Matrix.

The[SI(i)] Matrix

Col. l Col. 2 Col. 3 Col. 4

Rowl

Row2

Rowl

Row2

Row3

(xI(i)EII (Xl(i)Ell (Xl(i)Ell (_l(i)Ell

+ x3(i)E1 (i) i)El2)X3(i) + _3(i)El2)X4(i) i)2X2 + _3(+ X3(El2)X5(i)

(_l(i)El2 (_l(i)El2 (_I(i)El2 (_I(i)El 2

+ _3(i)Ez2)X2(i) + _3(i)E22)X3(i) + _3(i)E22)X4(i) + x3(i)E22)X5(i)

The[$2(i)] Matrix

-2_2(i)El2)X(i) - 3_2(i)El2X2(i) - 4_2(i)El2X3(i) - 5_2(i)El2X4(i)

- 2Ell - 6EliX(i) - 12EllX2(i) - 20Ell X3(i)

2_2(i)E22X(i) 3_2(i)El2X2(i) 4_2(i)E22X3(i) 5_2(i)E22X4(i)

+ 2E12 + 6El2X(i) + 12El2X2(i) + 20El2X3(i)

2g(i)x(i) 3g(i)x2(i) 4g(i)X3(i) 5g(i)x4(i)

- 2_2(i)Eii - 6_2(i)EliX(i) - I2_2(i)EllX2(i) - 20_2(i)EliX3(i)

- 6Ell - 24EllX(i) - 60EliX2(i)

where g(i) (_2(i))2 (i and= E22" _4)El2

4.87-172

STRUCTURALELEMENTDESCRIPTIONS

6. Transformthe stressmatrix to grid point degreesof freedom

7,

[_] : [_][_q] i

Transform the stress matrix from local to system coordinates

(99)

o

[S] : [S] [rrs] .

Transform the stress matrix to global coordinates

(lOO)

[S]g : [S] [Tl2] .

9. Compute the thermal stress vector for the three stress points:

ATl(m)Hm(Ell_l + E12_2) + AT2(m)Hm _-_ (Ell_1 + EI2_2)

Xi
ATI(m)Hm(E21_1 + E22_2) + AT2(m)Hm_- (E21_1 + E22_2)

_Tl(f) _ (Ell_l + E12a2)+ AT2(f) H_Xi,F2-g-(Ellal + E12_ 2)

{Ts(i)} : i _ATl(f) _ (E21_l + E22_2) AT2(f) H_Xi- _ (E21_l + E22_2)

aTl(f) H_ _2(i)[(EllT2- - E12)_I + (El2 - E22)_2]

+ AT2(f) H3 1T_'S x2(i)xi[(Ell - El2)_l

+ (El2 - E22)_2] + [EII_1 + E12_2]1

where ATl(m), AT2(m), ATl(f) and AT2(f) are as given in Equations 66 through 69.

(I01)

(Sx l)

(102)

4.87-173

MODULE FUNCTIONAL DESCRIPTIONS

I0, Form the master thermal stress vector

{T s} =

Ts(1)

Ts(3)

(103)

Phase 2 calculations are as follows:

!. Extract the displacement vector, {A}, at the two grid points from the global

displacement vector.

2. Calculate the element forces:

3,

{P} = [K]_A}

Calculate the element stresses without regard to thermal loading:

(I04)

{a'} = [S]g {A} (12 x I) •

4. If there is no thermal loading, then

(105)

{a} : {a'} • (106)

5. If there is thermal loading, then

aj : a! - - To) TS. - (T 2 - T I)3 (TI 3 TSj + 15
(107)

for j = 1 and 2 and

for j = 3, 4, 5.

(1o8)

4.87-174

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.13 The VISC Element

The viscous element, VISC, has the same properties as the ROD element (see section 4.87.1)

except that instead of generating a contribution to the stiffness matrix, the element generates

a contribution to the damping matrix, [Bgg].

4.87.13.1 Input Data for the VISC Element

I. The ECPT/EST entries for the VISC are:

S__mbol Descriotion

SILa, SILb

Na,Xa,Ya,Za

Nb,Xb,Yb,Zb

Cl

C2

Scalar indices for grid Points a and b

Local coordinate system number and basic
coordinates of grid points.

Extensional damping coefficient

Torsional damping coefficient

Given Na, Xa, Ya" Za' Nb' Xb' Yb and Zb and the CSTM (Coordinate System Transformation

Matrices) data block, the 3 by 3 transformation matrices, [Ta] and [Tb], are calculated

using utility routine TRANSD (see section 3.4.37).

4.87.13.2 Damping Matrix Calculations (Subroutine BVISC ef Module SMA2)

I. Generate {n} as in Equation 2, section 4.87.1.2, and generate the transformation

matrices [Ta] and [Tb].

2. Calculate:

[bt] : CI

'-n_ nln 2 nln 3-

nIn2 n2 n2n3

Lnl n3 n2n3 n_

(i)

4.87-175

MODULEFUNCTIONALDESCRIPTIONS

[br] : C2

-n_ nln2

nln2 n_

nln3 n2n3

nln3TM

n2n3]n_

(2)

3. The 6x6 damping matrices are:

[Baa]

[Bab]

VT:_Tai o
L- "0- -!-T_brTa I

TTb.T. i 0 3
B_D i].... _-_--

0) TabrTb
m

(3)

(4)

[Bbb]

i TTbrT.I D D

(B)

[Bba] T 1_t_! o
.... i-T--

L 0 ,,TbbrTa

(6)

4. These matrices are added to [Bgg].

4.87-176

STRUCTURALELEMENT DESCRIPTIONS

4.87.14 Integral Calculations for the TRIARG_ TRAPRG Elements

Integrals of the form

R Ri f Zk rPzq dzdr (I)
Ipq = J Zmn

J

must be calculated for the TRIARG and TRAPRG elements (see sections 4.87.10._ and 4.87.11.3).

The integration may be performed for any integer values of p and q. The area of integration

is defined by the two lines r = Ri and r = Rj, and by the two lines z = bkcr + ak_ and

z = bmnR + amm.

This integration is performed by the integration "driver" suhroutine0 F_RTRAN function qKI

in module SMAI, F_RTRAN function DMI in module SMA2, and F_RTRAN function AI in module SDR2.

The following input data are necessary for these routines:

p - an integer that defines the power of the r variable.

q - an integer that defines the power of the z variable.

{R} - a vector of the r coordinates of all points used to describe the area

of integration.

{Z} - a vector of the z coordinates of all points used to describe the area of

integration.

k,_ the subcripts of R, Z defining one of the lines of the limit of

integration (i.e., the line between points (rk, zk) and (r_, z_)).

m,n - the subscripts of R, Z defining the second line on the limit of

integration.

i,j - the subscripts of R defining the other two lines on the limit of

integration.

In the following paragraphs F_RTRAN names of functions auxiliary to DKI are given. The

corresponding F_RTRAN function names auxiliary to functions DMI and AI can be found in sections

4.28.8 and 4.46.8 respectively.

4.87-177

MODULE FUNCTIONAL DESCRIPTIONS

The following slopes and y-intercepts are calculated in functions DKK and DKM

R£Z k - RkZ £
ak£ - R£ Rk

(2)

Z£ - Zk
bk_" = R£ Fkk

(3)

RnZm - RmZn

amn = Rn - Rm

Z Zm
b n

mn Rn Rm

(4)

(5)

A test for a vanishing area of integration is made:

if ak£ = amn and bk£ = bmn, then Ipq = O.

if Ri = Rj, then Ipq : O;

The formulas for evaluation of the integrals are dependent upon the values of p and q

as given in the following sections.

4.87-178

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.14.1 Integral Calculation for q > 0 and any p. (Function DKINT)

Define the function

1 q+l xtC yq+l-tD
fl(x'y) = q+-Tl"t=O

(_)

where

t q+l-s+l

: i s:l s

(l

for t # 0 ,

for t = 0 ,

(7)

Rj (q+l+p+l-t) _ Ri (q+l+p+l-t)
D : [q + 1 + p+ 1 - t

In (RJRi)

C and D are calculated in functions DKEF and DKJ respectively.

The integral is

] for (q+l+p+l-t) # 0

for (q+l+p+l-t) = 0

(8)

Ipq : fl(amn'bmn) - fl(ak_'bkc) (9)

4.87.14.2 Integral Calculation for p _ 0 and q < - l (Function DK89)

: 1 P

f2(_'x'y) yp+l s=OZp!(-x)s D ,
(IO)

where

and _ = i or j.

D =

(x+yR)P+l+q +1-s

(p-s)!s!(p+l+q+l-s)

lnlx+yR:l
(p+l+q+l)!(-q'2)!

for (p+l+q+l-s) # 0

for (p+l+q+l-s) = 0

(ll)

4.87-179

MODULEFUNCTIONALDESCRIPTIONS

The integral is

1 [f2(i, a f2(i)Ipq : 2-_ k_'bk_) " 'amn bmn

- f2(J,akc,bkc) + f2(J,amn,bmn)]

(12)

4.87.14.3 Integral Calculation for p< 0 and q< - 1 (Function DKIO0)

Define the function

-I -p-q-3
- _ (-p-q-3) ! D

f3(_'x'Y) x(-p-q-2) s:O
(13)

where

D =

(x+yR)(-p-l-s) (_y)S

(-p-q-3-s)!s!(-p-l-s)R_'P-l's)

for (-n-l-s) # 0

for (-p-l-s) : 0

(14)

and _ = i or j.

The integral is

1 ,bk_) . f3(iIpq : +_[f3(i,akC ,amn,bmn)

- f3(i,ak_,bk_) + f3(i,amn,hmn)]

(15)

4.87-180

STRUCTURALELEMENT DESCRIPTIONS

4.87.14.4 Integral Calculations for p > - l and q = -l (Function DKJAB)

Define the function

R P+lln(Ix+yRJ)

f4(_'x'y) - p+l o+--ZTf2(_'x'y) ' (16)

where f2 is given in Equation lO.

The integral is

Ipq = f4(i,ak_,bk£) - f4(i,amn,bmn)

- f4 (J'ak£'bk£) - f4(J'amn'bmn)

(17)

4.87.14.5 Integral Calculations for p < - l and q = -l (Function DK219)

Define the function

In(Ix+yR l)
f5(_,x,y) - + -_ f3(_,x,Y)

(_p_l)R (-p-l) • ,

(18)

where f3 is given in Equation 13.

The integral is

Ipq = f5(i,ak£,bk£) - f5(i,amn,bmn)

- f5(J'ak£'bk£) -f5 (J'amn'bmn)

(19)

4.87-181

_40DULE FUNCTIONAL DESCRIPTIONS

4.87.14.6 Integral Calculations for p = -I and q = -I (Function DK211)

Define the function

f6(_,x,Y)

0 , for yR x

½ [In(12 y R I)] 2 , for (yR) 2 = x2

and yR # x

co

_ F'YR_I t
Inlx I InlR I Z 1 -_--- , for (vR) 2

t=l

co

1 [in(lyR i)]2 + Z 1 _]tt=l _ [Y ,for (vR) 2

2
< x

< x 2

(2n)

The summation term is calculated until its value becomes less than 1.0 x 10 "6.

The integral is

Ipq = f6(i,akc,bk&) - f6(i,amn,bmn)

- f6(i,akL,hk_) - f6(i,amn,bmn)

(21)

4.87-182

STRUCTURALELEMENTDESCRIPTIONS

4.87.15 The FLUID2, FLUID3, FLUID4, AXIF2, AXIF2, AXIF4, and MFREE Elements

4.87.15.1 Input Data for the Fluid Elements

I. The ECPT/EST entries for the FLUID2 element are:

SIL l , SlL 2

Ni = O, r i, z i, 0

i=l,2

p

B

n

Description

Scalar indices for the connected scalar points

Reference number for the basic coordinate system and locations
in the fluid coordinate systems.

Fluid density

Fluid bulk modulus

Harmonic number

2. The ECPT/EST entries for the FLUID3 and FLUID4 elements are identical except that three

and four points are used respectively.

3. The ECPT/EST entries for the MFREE element are identical to the FLUID2 element except that

a weight factor, y, is used instead of p and B.

4. No other material or coordinate system data is necessary.

5. The AXlF elements are identical to the FLUID elements at this stage.

4.87.15.2 Matrix Calculations for the FLUID2 Element (Subroutine KFLUD2 of Module SMAI and

Subroutine MFLUD2 of Module SMA2)

The FLUID2 element is intended to model a fluid in the region adjacent to and including the

axis of symmetry. The volume is defined by two circular ring points in the fluid. The shape is

that of a disc having a conical or cylindrical outer boundary.

I. The integral parameters, for the stiffness matrix, 12n,O, 12n,l, 12n,2, and 12n+2,0 are

calculated according to the following equations:

12n, 0 = 12n, 1 = 12n,2 = 0 , I

l _ Zl)(r_ + rlr 2 + r_)
I2n+2,0- 6 (z2

n : o (I)

4.87-183 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

r2-r I

I2n,O = -- k 2--fff--]

I2n,O

I2n,1 - 2 (z2 + Zl)

12n,2 = 3 +

2n 2
12n+2,0 : 12n,O (2-'n-+-2)rl

n>0 • (2)

__ 10 -6 :
if Ir2-rli >

z2-z I l

D - z2-zl

r2-r I

D (2n+l 2n+I\
12n,0 : 2n2--n-C_TT) _r2 - rI)

D , D _fr2n+2. r_n+2)]12n,l -- 2n2--_)[r2n+Iz2 - r_n+Izl -\2n--n-+_-J_2

D _ 2n+l 2 2n+l 2 / 2D \F 2n+2 2n+2

12n,2 - 2n 2n(2nTT)_ r2 z2 - rl Zl - _2--nT2)Lr2 z2 - rl Zl

D (r;n+3 _ r_n+3)]}2n+3

D

12n+2,0 = (2n+2)(2n+3)[r_ n+3 r_ n+3]

(3)

(4)

n>O

2. The integral parameters for the mass matrix, 12n+2,0, 12n+2,1, and 12n+2,2 are calculated

with the same equations as above except the value k = 2n+2 is substituted for k = 2n.

3. The transformation matrix [H_p] is defined as:

4.87-184 (ll/I/70)

STRUCTURAL ELEMENT DESCRIPTIONS

l
[H;q] =

z2-zI

z2 zl

n n
rI r2

l l

n
r; r2

(5)

4. The stiffness matrix is:

pn[K_] = _ [H;q]T I2n'O)

P L(2n2 12n,l)

n>O

if n = o, a factor of 2 is used.Note:

(2n2 I2n'l) _H;q]

(2n2 I2n,2 + I2n+2,0_ (6)

5. The mass matrix is:

I2n+2,0

[M_] = 7T[H;q]TI
LI2n+2,1

12n+2'I]
[H_q]

I2n+2,2_J

• n > 0 . (7)

Note: if n = 0 a factor of 2 is used.

6. Various tests are performed for the element.

If Iz2 - Zll = 0 , the calculations are skipped,

if rI = 0 or r2 = O• a fatal error exists,

if p = O, a fatal error exists,

if B = O, the mass calculations are skipped.

4.87-185 (ll/1/70)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.15.3 Matrix Calculations for the FLUID3 Element (Subroutines KFLUD3 of Module SMAI and

Subroutine MFLUD3 of Module SMA2)

The FLUID3 element is used to model a volume of fluid defined by three connected fluid ring

points.

I. The three connected points are arranged in the order such that the area factor, R, is

positive. The area factor is defined by the equation:

R = (r 2 - rl)(Z 3 - Zl) - (r 3 - rl)(Z 2 - Zl) . (8)

2.

3.

The transformation matrix, [Hpq], is calculated as:

[Hpq] :

m

(r2z 3 - r3z2) (r3z I - rlz3) (rlz 2 - r2zl)

(z 2 - z3) (z 3 z I) (z I z 2)

(r 3 - r2) (r I r 3) (r 2 - rl)

(9)

The integral parameters, Ikc, for the stiffness matrix are the sum of the integrals, Gk&,

for each of the three sides. The points defining each side are:

SIDE POINTS - a,b

1 1,2

2 2,3

3 3,1

The following parameters are used to generate the integrals, Gk_:

ar
= r b - r a

Az = zb za

az

= Za ra Tr

(10)

4.87-186 (11/I/70)

STRUCTURAL ELEMENT DESCRIPTIONS

The integrals for each side are:

r
a

G00 = B log_-_b - Az

Glo Az (r2a_r 2)- - BAr +

l BCr2a_ 2 (r_ r_)G20 = 2- rb) + 3_r -

= l B2 raGOl)- log b- +¼ Az2 2Ar2 (ra - r_

l(Az C 3 r3b)_ l B2 Az 2 _ r_) + -Gll 2 Ar + 1 _ A-r (ra 6_r/ (ra

ra
l B3 Iog _ B2AZ + 1 B(L_r)2 2 r2) + l__Az_3 3 r_)

GO2 - 3 _ (ra- 9_r/ (ra-

(ll)

4. The stiffness matrix is:

[K_] : P [Hpq] T

n2100

n2Ii0

n2Iol

n2Ilo n2101

(n2+l)I20 n2Ill

n2Ill (n2102+120)

The matrix terms are multiplied by two if n = 0.

[Hpq] . (12)

5. The mass matrix terms are simply:

Mn. _ _A
13 60B (rl + r2 + r3 + ri + rj) cij

(13)

where

and

cij = 2 , i=j,

cij = 1 , i }_ j,

A = _ is the area.

4.87-187 (ll/I/70)

MODULE FUNCTIONAL DESCRIPTIONS

6. The tests performed are:

if r i = 0 a fatal error exists,

if R = 0 the routine exits,

if p = 0 a fatal error exists,

if B = 0 the mass routine exits.

4.87.15.4 Matrix Generation for the FLUID4 Element (Subroutine KFLUD4 in Module SMAI and

Subroutine MFLUD4 in Module SMA2)

This element describes an axisymmetric volume of fluid defined by four fluid ring points. It

is actually solved by subdividing the quadrilateral cross section into four triangles and calling

the appropriate FLUID3 subroutine for each of the triangles. The parameters p and B are multiplied

by two in order to account for the overlapping volumes and reduce the matrix terms.

I. A test is made in the stiffness routine to check the interior angles which must be less

than 180 ° . For each of the four triangles, the area factor K is calculated which will be

positive if the order of the points is counterclockwise. If K is negative for one or

three out of the four triangles, a fatal error exists.

2. The triangles and their three connected points are:

Triangle Connected Points

a b c

I 1 2 3

II 1 2 4

III 1 3 4

IV 2 3 4

(14)

3,

The ECPT data is moved to a temporary storage space and the original ECPT is used for the

data for each triangle.

Since matrix terms are only created if one of the connected points is the "pivot point",

a test is made and the FLUID3 subroutine is not called if the "pivot point" is not one

of the three points.

4.87-188 (IIII170)

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.15.5 Matrix Calculations for the MFREE Element (Subroutine MFREE in Module SMA2)

The data for this element is generated by subroutine IFP4 from the free surface information

and is not available as a user-input element. The element describes the effect of gravity on a

surface in between two fluid ring points. In a special case, the surface is interior to a circle

defined by one fluid ring point.

I. If the two connected points are identical (SILl = SIL2), the special case exists and the

equations are:

_r2

Mii = 2y(2n + 2) ' n > 0

_r2
Mii = 2y , n = 0

(15)

A factor of two is included in the denominator because the terms will be calculated

twice.

2. If the connected points are unique, the equation for the mass matrix is:

[M_] _(r2- rl) 13rl + r2 rl + r21- _ n>O.

12y Lrl +r2 3r2 + rlj

(16)

The values are multiplied by two for n = O.

4.87.15.6 Stress Calculations for the AXIF Elements, Phase I.

The SDR2 calculations for these elements are actually the calculations of the velocity of the

fluid passing through a fluid element.

The data placed on the ESTB file are:

I. Id - Element Id
e

2. SILl, SIL2,__(SIL3,SIL4) - Scalar indices of connected points

3. [Sv] - the velocity-pressure matrix

The [Sv] matrix for the CAXIF2 element is a four by two matrix given as follows:

4.87-18g (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

(17)

where

VrclIIVzc = [Sv] Pl

P2

Vse 1
V_e

(18)

Vrc and Vzc are velocities at r = O, Vse and Vse are velocities at the midpoint of the outer edge,

along the edge and circumferential.

The two by two matrix [Sc], for the center, is:

o]-I

z2-z I

n : o (19)

r I r 2
1

[S2c] =

[$2c] : [0]

The two by two [$2c] matrix, for the outer edge is:

[S_] : (_)n-I
pA

I]
rl+r 2

0

n> 1

n : 1 (20)

(nzAr + rAz) l

[H nqp]

nz_ J

(21)

(22)

4.87-190 (8/I/72)

STRUCTURALELEMENTDESCRIPTIONS

where
A r = r2 - rI ,

Az = z 2 - z I ,

1
= _ (r2 + r I) •

: 1 (z 2 + Zl) ,

JL : 7Ar 2 + Az 2 ,
(23)

H n
[qp]

IT;
z2 z1

n

r 2

-_ ! n

r7 r2

t
The nine by three [Sv] matrix for the CAXIF3 element is calculated with the following

equations

resell
f A,2_)

The three by three [S_] matrix relates three pressures to the three velocities in the basic

coordinate system V r, V¢, Vz.

o o1
t 1 n nZc

[S] : - ; _Co no Tic [H p]

(25)

where [H_p] is a three by three transformation matrix between pressures and generalized

coordinates defined in Section 4.87.15.3.

t
The six by three matrix, [S_], which defines the velocities at each edge, tangential and

circumferential, is:

4.87-191 (8/I/72)

MODULEFUNCTIONAL DESCRIPTIONS

[s_] =

m

l _ l__ o
£12 £12

n n 0
r I +r 2 r I +r 2

1 1

£23 £23

n n
0

r2+r 3 r2+r 3

1 0 1
£13 £13

n 0 n
r I +r 3 r I +r 3

/
)2)2

where £ij _/ (rj ri -: - + (zj z i

The CAXlF4 element is composed of four overlapping triangles.

or IV the connected points I, 2, 3, 4 are allocated as follows:

(26)

For each triangle I, II, III

Triangles Connected points a, b, c

I 123

II 124

III 1 3 4

IV 234

For each triangle calculate the 3x3 [S_] matrix from Equation 9 and add each column to one of

four columns corresponding to the connected point. The results are divided by 4 to provide an

average [S_] matrix for the quadrilateral.

The [S_] matrix for the quadrilateral is:

4.87-192 (8/I/72)

STRUCTURALELEMENTDESCRIPTIONS

where J_ij

l
rQLS_1 = -

e_

1 1

J_12 _12

n n

rl+r2 rl+r2

1

_41

nrl

= /(rj - ri)2 + (zj - zi)2

l l

_23 _23

n n

r2+r3 r2+r3

l

_34

n

r3+r4

l

_34

n

r3+r4

l

_41

nIr4+rI

(27)

The resulting [Sv] matrix for the quadrilateral CAXIF4 element is:

[sv] (28)

4.87-193 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.15.7 Stress Calculations for the AXlF Elements, Phase 2.

The element identification number, the indices of the connected points, and the [S v] matrices

are given in the ESTB table. The pressures at the connected points, {Pi }, are given in the UGV

matrix data block. Depending on the rigid format, the pressure values are either real or complex

numbers and associated with each vector of pressures is a real eigenvalue, _; a frequency, f, or

a complex eigenvalue, P. The equation for velocity is

l [Sv] Pi (29){v}} :

where {V}

= 2_f

co=p

_= 1.0

and [S v]

is the vector of velocities in the element.

(real) in Rigid Format 3 ({Pi } is real)

(real) in Rigid Formats 8 and II ({Pi } is complex)

(complex) in Rigid Formats 7 and I0 ({Pi } is complex)

in all other Rigid Formats ({Pi } is real)

is dimensioned 4x2, 9x3, or llx4

for the CAXIF2, CAXIF3, and CAXIF4 elements respectively.

4.87.16 The SLBT3 and SLOT4 Fluid Elements

4.87.16.1 Input Data For the SL_T3 and SLOT4 Elements

I. The ECPT/EST entires for the SLOT3 are:

S_xmbol

SIL l , SIL 2, SlL 3

ri, zi, w i, i = 1,2,3

Description

Scalar indices for the connected grid points

Radius and axis location and slot width of connected

grid points, i.

Density

Bulk Modulus

Number of Slots

Harmonic Number

2. ECPT/EST entries for the SLOT4 are the same as for the SL_T3 except four points are used.

4.87-194 (811172)

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.16.2 General Calculations for the SL_T Elements

I. The overall factor for the number of slots is:

.

F = M , 2N = O, M, 2M, 3M...... (1)

M
F = _ , 2N t O, M, 2M, 3M...... (2)

The SL_T4 element is composed of four overlapping triangles. If the SL_T4 element is used,

its data is rearranged to the SL_T3 format and the following operations are carried out for

all four subtriangles. A test is made on the direction of the vector normal to the surface

of all four triangles if the number of negative normal vectors (NNEG) is one or three, a

valid quadrilateral is impossible and a fatal error is set.

4.87.16.3 Stiffness Matrix Generation for the SL_BT3Elements

I. For each triangle the following terms are calculated:

2-A = A2 -- [rl(z2 - z3) + r2(z3 - zl) + r3(zI z2_ (3)

2. The stiffness matrix terms are:

where

F

\

= - / (1,2,3)

Fir (rk rj) I (i,j,k) = I_,I,2)'3"I)
Fiz = (zj zk)

(5)

Kij = Co[Fij Fir + Fiz Fjz] (6)

i = the "pivot point"

j = 1,2,3

4.87-195 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.16.4 Mass Matrix Generation for the SL_T3 Elements

I. The following coefficients are generated:

2.A = A2 = (r 2 - r I) (z 3 - z I) - (r 3 r I) (z 2 - zI) (7)

where i is the "pivot point"

2. The mass matrix terms are:

= wI + w2 + w3 + wi

FIA2I
Co - 120 B

Mij = Co(W + wj) j = 1,2,3 # i

Mij = 2Co(G + wj) j = i

where i is the "pivot point".

(8)

4.87.16.5 Stress Matrix Calculations in the SL_T Elements (Phase I)

The velocities in the SL_T elements are calculated in the same manner as stresses in a

structural element. Phase 1 involves calculating pressure field - velocity matrices of the fluid

passing through the element.

I. The data placed on the ESTB file are:

Id - element identification number
e

SILl, SIL 2 , SIL i - scalar indices

[Sv] - matrix relation between pressure and velocity.

2. The [Sv] matrix for the CSL_T3 element is a five by three matrix given as follows:

4.87-196 (8/I/72)

STRUCTURALELEMENTDESCRIPTIONS

l
__LSvJ: -

m

z2-z 3 z3-z I z l-z 2

A A A

r3-r 2 rl-r 3 r2-r 1
A A A

1 1

£12 _12

1 1

£23 £23

1 0 1
L23 _I 3 _

:Is;_l
Lse]

(9)

3.

where

: v_rj ri)2 _)2ij - + (zj zi

A : ½ [rl(z 2 - z 3) + r2(z 3 - Zl) + r3(z l - z2)]

(lO)

The five rows of the matrix correspond to the velocities Vrc and Vzc at the centroid in the

r and z direction and V l, V2, V3 corresponding to velocities along the three edges.

The CSL_T4 element is composed of four overlapping triangles. The velocity at the inter-

section of the triangles is calculated to be the average of the velocities in each sub-

triangle. The subtriangles I, II, III and IV are each given three of the four points l, 2,

3, 4 as in the following chart:

Triangle Number Connected Points

a b c

I l 2 3

II l 2 4

Ill l 3 4

IV 2 3 4

The [S_] matrix for each triangle is calculated and each of the three columns is inserted in

one of the four corresponding columns in the [S_] matrix for the quadrilateral. For instance

the first column of [S_] for triangle IV is inserted in column 2 of the [S_] matrix. Rows

four through seven of the [S_] matrix are recalculated to correspond to the sides of the

4.87-197 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

quadrilateral. The resulting matrix for the CSL_T4 element is:

where

[sqv]

First2rows: ZEStvI

1 1

PLI2 PC12

1 1

P_23 PC23

1 1

PC34 P_34

1 1

P_41 P_41

: _/(rj - r i)2 + (zj - z i)2
ij

4.87_16.6 CSL_Ti Element, Phase 2

The data calculated above are extracted from the ESTB data file and the corresponding

pressures, Pi' are extracted from the UGV data block. Associated with each vector is a real or

complex number. The general equation for velocity in the element is:

(II)

where {V }

and

= 2_f

co=p

w=l.O

Isv]

l (12)
{V} = _ [Sv]{p i}

is the vector of velocities in the element

(real) in Rigid Format 3 ({pi } is real)

(real) in Rigid Formats 8 and II ({pi } is complex)

(complex) in Rigid Formats 7 and lO ({pi } is complex)

(real) in all other Rigid Formats ({pi } is real)

has dimensions 7x3 or 8x4 for the CSL_)T3 and CSLOT4 elements respectively

4.87-198 (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.17 Solid Polyhedra Elements, TETRA, WEDGE, HEXAI, HEXA2

These elements define three-dimensional shapes with four points defining a tetrahedron

(TETRA), six points defining a wedge (WEDGE), and eight points defining a hexahedron (HEXAI or

HEXA2). Constant strain and stress is assumed in each tetrahedron. The wedge and hexahedron

elements are automatically fabricated from tetrahedron elements.

4.87.17.1 Input Data for the Solid Polyhedra Elements

I.

2.

.

The ECPT entries for the solid elements are:

S_bol Description

Id Element identification number

M Material identification number

SILi, i = I, N Scalar indices of connected grid points.

N = 4, 6, or 8

CSi' Xi" Yi" ZiI Coordinate system identification nu_er and

i = l, N } location in basic coordinates of connected

grid points

T Average element temperature

Coordinate System Data

The numbers CSi, Xi, Yi' and Zi are used to calculate 3 x 3 global-to-basic transforma-

tion matrices [Ti] for the connected points. Subroutine TRANSD or TRANSS is used.

Material Data

Subroutine MAT is used to generate the following material coefficients:

E

G

P

TO

Modulus of elasticity

Shear modulus

Poisson's Fatio

Mass density

Thermal expansion coefficient

Reference temperature

4.87-199 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.17.2 Basic Equations for the TETRA Element

I. The matrix which transforms generalized displacements to grid point displacements is

[Hqu] where

2,

-I X1 Y1 Z1 -

1X 2 Y2 Z2

[Huq] = (I)

1X 3 Y3 Z3

1X 4 Y4 Z4

matrix is inverted to produce the matrix [Hqu] = [Huq] -I and the determinant, D,This

of [Huq].

The value of the determinant is checked to see if it is consistent with the determinants

of the other tetrahedra being used in a single element.

The material coefficients E, G, and v are used to generate the 6 x 6 matrix [G] where

the nonzero terms are:

E (I - v) (2)
GII = G22 = G33 =

(1 + v) (1 - 2v)

GI2 = G21 = GI3 =

E v (3)
G31 = G23 = G32 = (I + v) (I - 2v) '

G44 : G55 = G66 : G. (4)

3. The four 6 x 3 matrices [C i] which transform displacements at points to strains are

generated using elements of the Hqu matrix: HI1, HI2, etc. The equation is:

4.87-200 (8/I172)

4.87.17.3

STRUCTURALELEMENTDESCRIPTIONS

[C i] :

H2i 0 0

0 H3i 0

0 0 H4i

0 H4i H3i

H3i 0 Hli

H2i Hli 0

(5)

Stiffness Matrix Generations for the TETRA Element (Subroutine KTETRA of Module SMAI)

The 3 x 3 partition of the element stiffness matrix (in global coordinates) connecting

points i and j is:

[Kij] = [TilT [ci]T [G] [Cj] [Tj] ,

where [Ti] and [Tj] are the 3 x 3 global-to-basic transformation matrices. The matrices are

produced for point j corresponding to the pivot point in the matrix assembly process.

4.87.17.4 Mass Matrix Generation for the TETRA Element (Subroutine MS,LID of Module SMA2)

The mass matrix for each point of the tetrahedron is formed as a 6 x 6 matrix and inserted

on the diagonal of the overall mass matrix. Its equation is:

Mi i

&14

m14

-0-

m/4

-0-

0

0

O_

(6)

where m = I/6 pIDI. (D is the determinant of the [Huq] matrix.)

4.87.17.5 Thermal Load Generation for the TETRA Element (Subroutine TETRA of Module SSGI)

The 3 x l thermal load vector {Pi} for point i of the tetrahedron is:

4.87-2ni (811172)

MODULE FUNCTIONAL DESCRIPTIONS

{Pi } = [Ti]T [Ci IT [G] {E t} , (7)

where {E t} = (T - TO) , (8)

and T = I/4 (T 1 + T2 + T3 + T4) is the average temperature of the four connected points, given

in data block GPTT.

4.87.17.6 Stress Calculations for the TETRA Elements (Subroutines SS_LIDI and SS_LID2 of

Module SPR2)

The stress is calculated in two phases. Phase I is used to calculate the transformation

matrices between displacements and temperatures to stresses. Phase II uses the actual displace-

ments and temperatures to calculate stresses.

I. In Phase I, the following calculations are performed:

[Si] : [G] [Ci] [T i] i = I, 2, 3, 4,

where

{S t } = [G] {_} ,

{_} =

(9)

(lO)

(11)

2, In Phase II, the 3 x 1 displacement vector, {ui}, for each point, i, is extracted from

the {Uq} displacement vector and the average temperature, T, is extracted from the GPTT

data block. The stresses are calculated as follows:

4.87-202 (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

c_x

oZ

Tyz

T×y]

4

: X [si]{ui}
i=l

- {St} (T- TO). (12)

The hydrostatic pressure, P, and the octahedral shear stress, tO, are calculated by

the equations:

P = - I/3 (ox + _y + Oz), (13)

tO = I/3 [2ox (_x - oy - Oz) + 2Oy (Oy - Oz) + 2Oz2 + 6 (Tyz2 + Txz2 + Txy2)]I/2 (14)

4.87.17.7 Basic Equations for the WEDGE, HEXAI, and HEXA2 Elements

The wedge element is connected to six grid points and is divided into four tetrahedron sub-

elements. The connected points assigned to each tetrahedron are:

TETRA Nu_er Connected Points

I 1 2 3 6

II l 2 6 5

III l 4 5 6

The HEXAI and HEXA2 elements are connected to eight grid points and are subdivided into

five tetrahedra for the HEXAI element and ten overlapping tetrahedra for the HE)CA2element.

The connected points original to each tetrahedron are:

4.87-203 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

Subelement Number Connected Points

HEXAI HEXA2

I I 1 2 3 6

II II 1 3 4 8

III III 1 3 8 6

IV IV 1 5 6 8

V V 3 6 7 8

VI 2 3 4 7

VII 1 2 4 5

VIII 2 4 5 7

IX 2 5 6 7

X 4 5 7 8

The basic procedure used with these elements is to extract the data associated with each

tetrahedron subelement and go to the tetrahedron calculations. In subroutine KS_LID of Module

SMAI, the tetrahedron calculations and matrix insertion is done by calling subroutine KTETRA.

In subroutine MSOLID of Module SMA2, the tetrahedron calculations and insertion are done in an

internal subroutine. In subroutine S_LID of Module SSGI, the tetrahedron subroutine STETRA is

used to calculate and invert the thermal loads. In subroutines SS_LIDI and SS_LID2 of Module

SDR2, the tet_ahedron calculations are done with an internal subroutine and the results are

summed together to produce average stresses.

4.87.17.8 Stiffness Matrix Calculations and Geometry Checks for the WEDGE, HEXAI, and HEXA2

Elements (Subroutine KS_LID of Module SMAI)

With these elements, the order of the connections and the resulting geometry is critical

for reasonable results. Three basic criteria must be met:

I. If the connections are correct, the calculated volumes for all tetrahedron subelements

will be consistent. When the subroutine is called for the first time for each element,

all of the tetrahedra are processed to produce the signs of the determinants of the

[Huq] matrices. The signs must be either all positive or all negative, or an error

is indicated.

4.87-204 (8/I/72)

STRUCTURALELEMENTDESCRIPTIONS

2. Theorderof the connectedpoints is checkedby calculatingthe normalvectorsto the

top andbottomfacesassuminga right-handrule. Thenormalvectorsmustnot havea

negativescalar product.

3. Thewedgehasthreequadrilateral facesandthe hexagonalelementshavesix quadrilateral

faces. SubroutineKPLTSTis usedto checkthesefaces. Thepoints mustnot deviate

frombeinga planebymorethan I0 percent.

Wedge

Face Number Points on Face

1 1,2,5,4

2 1,4,6,3

3 2, 3, 6, 5

Hexahedron

Face Number Points on Face

1 1,2,3,4

2 1,2,6,5

3 2,3,7,6

4 3: 4, 8, 7

5 4, l, 5, 8

6 5, 6, 7, 8

In the KS_LID subroutine, each element is tested for geometric consistency when the pivot

point equals the first connected point. In any event, the ECPT data is converted to the TETRA

format for as many times as necessary, and subroutine KTETRA is called each time. If a HEXA2

element is being processed, a flag is set, so the KTETRA subroutine will divide the stiffness

of each tetrahedron by two.

4.87.17.9 Mass Matrix Generation for the WEDGE, HEXAI and HEXA2 Elements (Subroutine MS,LID of

Module SMA2)

The mass calculations involve the calculation of the total mass of each tetrahedron in the

element and assigning one-fourth of the mass to each of the four points. If a HEXA2 element is

used, the mass of each tetrahedron is divided by two.

4.87-205 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.17.10 Thermal Load Generation for the WEDGE, HEXAI and HEXA2 Elements (Subroutine SOLID of

Module SSG2)

This subroutine arranges the ECPT data into the TETRA format for each tetrahedron in the

element. Subroutine TETRA is called each time to calculate the thermal loads and insert them

in the load vector. If a HEXA2 element is used, a flag is set, so that the TETRA routine will

divide the results by two.

4.87.17.11 Stress Data Recovery for the WEDGE, HEXAI and HEXA2 Elements (Subroutines SSOLIDI and

SS_LID2 of Module SDR2)

The first phase of stress recovery involves the calculation of displacement-stress matrices

[Sie] and the temperature stress vector {Ste}.

connected point. Its equation is:

A 6 x 3 [Sie] matrix is generated for each

[Sie] = _- Z [Si] _ , (15)

c_= 1

where [Si] _ is the matrix corresponding to tetrahedron number _ associated with point i, and N

is the total number of tetrahedra in the element. The [Si] _ matrices are described in Section

4.87.17.6. As each tetrahedron is processed, the four [S i] matrices and tile {S t } vector are

added to the appropriate [Sie] matrices for the whole element. The TETRA element is also pro-

cessed by this code with N = I. The thermal stress vectors are added by the equation:

{Ste} = _ N {St} _ (16)
(_:l

In Phase II of stress recovery, the logic is given in Section 4.87.17.6. The code is

identical for all elements, with the only difference being the number of connected grid points.

4.87-206 (8/I/72)

STRUCTURAL ELEMENT DESCRIPTIONS

4.87.17.12 Thermal Analysis Calculations for the Solid Elements (Subroutine KTETRA of

Module SMAI)

All of the solid elements (TETRA, WEDGE, HEXAI, and HEXA2) use the KTETRA subroutine to

calculate and insert the final matrix terms. For thermal analysis, the following operations

are performed:

I. The geometry is processed and the matrix [Huq] and the determinant, D, are produced

for either structure or thermal analysis. See Section 4.87.17.3.

2. For thermal analysis, subroutine HMAT is used with INFLAG = 3 to produce the following

data:

Kxx Kxy Kxz Kyy Kyz Kzz

3. The material matrix [Ge] is calculated where:

M

0 0 0 0

Kxx Kxy Kxz

Kxy Kyy K z

Kxz Kvz Kzz

0

[Ge] =
0

0

4. The matrix terms associated with the pivot point (j) are:

{Kjl Kj2 Kj3 Kj4}T

D _q}T= _ {H [Ge] [Huq]-

The vector {H_q} is the column of the [Huq] matrix associated with point j.

5. Each scalar term Kji is expanded to a 6 x 6 matrix and inserted. The terms in each of

the four matrix partitions are:

[Kij] = Kij

1 0 O]

0 1 O[0

o o II

o I o

4.87-207 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.87.18 The HBDY Elements

4.87.18.1 Input Data for the HBDY Elements

The boundary condition element HBDY produces matrix terms only for the heat conduction option.

The following data will be needed from the ECPT table.

Symbol

IFLAG

H

AF

SIL i

xi

Yi

z i

i=l,N

Description

Flag for element type (I through 5)

Thermal convection coefficient

Geometric property

Scalar indices and location in basic

coordinates of the grid points

The meaning of the data for various values of IFLAG are:

IFLAG

1

2

3

4

5

Element Type

point

line

revolution

triangle

quadrilateral

N = Number of
Grid Points

AF

area

thickness

4.87.18.2 Stiffness Matrix Calculations (Subroutine HHBDY of Module SMAI)

For the revolution elements x i > 0 and Yi = O, otherwise there is illegal geometry. The

matrix produced will be N x N, which must be expanded to put terms into the first three degrees

of freedom at each connect grid point. The [C] matrix for each element type is given in the

following table:

4.87-208 (8/I/72)

STRUCTURALELEMENTDESCRIPTIONS

IFLAG

!

D

2(a 2

H
48

I

or

where

C

H (AF)

H(2_)_ F(3Xl + x2)

12 / (x 1 + x2)

(x I + x2)

(xI + 3x2)-

2 1 1

Ha
2-'_ I 2 l

!' I 1 2

+ a 3 + a 4) (a 3 + a 4) (a 2 + a 4)

2(a ! + a3 + a 4) (a] +" a 4)
SYM

2(a] + a 2 + a 4)

(a 2 + a 3)

(a] + a 3)

(a] + a 2)

2(ai + a 2 + a 3)

c.. . [-(° +oj]IJ = 4"8 (i + _ij)(a I + a 2 + a 3 + a 4) i

ij i#j

The length _ appears only when N = 2:

= [(x2 - Xl)2 + (Y2 - Yl)2 + (z2 - Zl)2]

The factor a is twice the area of a triangle (N = 3).

Let

÷ I ×i

ri = Yi

z i

l/2

4.87-209 (8/I/72)

MODULEFUNCTIONAL DESCRIPTIONS

a : l(_2 - _l) x (_3 - _2)I

The factors ai are two times the area of the triangle which does not touch vertex i of a

quadrilateral.

aI = I(_3 - _2) x (_4 - _3)I

a2 = r(r4 - r3) x (rI - r4) I

a3 = l(rl - r4) x (r2 - rl) I

an = I(_2 - _l) x (r3 - r2) I

4.87.18.3 HBDY Element Thermal Loads (Subroutine HBDY of Module SSGI)

When the option HEAT is chosen, only the HBDY element will produce thermal loads. When the

option is STRUCT, the HBDY element produces no loads. The heat conduction matrix [C] must be

The thermal loads arerecomputed, exactly as in Section 4.87.18.2.

{P}

where the grid point temperature vector is

: [c] {T} ,

Tl

{T}' = •

Each value, Pi' goes into the three translation degrees of freedom corresponding to gridpoint i.

4.87-210 (8/I/72)

DETERMINANT METHOD OF EIGENVALUE EXTRACTION

4.88 DETERMINANT METHOD OF EIGENVALUE EXTRACTION

NASTR_I contains two double precision versions of the determinant method. One version

is for the solution of real eigenvalue problems; and one version is for the solution of complex

eigenvalue problems. The specifications for both versions are discussed in this document. Real

arithmetic is used for the real problem, complex for the complex problem.

4.88.I Fundamentals of the Determinant Method

The basic notion employed in the determinant method of eigenvalue extraction is very simple.

If the elements in a matrix [A] are functions of the operator p, then the determinant of [A] can

be expressed as:

D([A]) = (p-p_) (p-p2) ... (p-pn), (1)

where p , P2' P3 ""Pn are the eigenvalues of the matrix. The value of the determinant

vanishes for p = Pi' i = 1,2,....n.

In the determinant method, the determinant is evaluated for trail values of p, selected

according to some iterative procedure, and a criteria is established to determine when D([A])

is sufficiently small or when p is sufficiently close to an eigenvaiue. The eigenvector is

then found by solution of the equation:

[A] {u} -- O, (2)

with one of the elements of {u} set to unity.

4.88.2 Evaluation of Determinant

The most convenient procedure for evaluating the determinant of a matrix employs the

triangular decomposition of the matrix: [A] = [L] [U] where [L] is a lower unit triangle

(unit values on the diagonal). The determinant of [A] is equal to the product of the

diagonal terms of [U]. The matrix [A] may be expressed as

[A] = -p[M] + [K], (3)

for real eigenvalue problems and as

4.88-I

MODULEFUNCTIONAL DESCRIPTIONS

[A] : p2EM] * pEB] + [K],

for complex eigenvalue problems.

4.88.3 Iteration Al_orithm

(i), D(i) _i)Consider a series of determinants Dk. 2 k-l' D evaluated for trial values of the

eigenvalue p = Pk-2' Pk-l' Pk" Then a better approximation to the eigenvalue is obtained

from the following calculations:

Let

Then

where

hk = Pk " Pk-l'

Xk = hk/hk_ 1,

5k = 1 +X k.

hk+ 1 = Xk+1 h k,

Pk+l = Pk + hk+l'

-2 D_i) 6k

Xk+l :
+ 2 4D_i) L(i) .(i) Sk D_i))] I/2 'gk -[gk " Sk Xk (Uk-2 Xk - Uk-I +

gk D!i) (i) + D_i): K-2 Xk2 - Dk-1 6k2 (Xk + _k)'

The (+) or (-) sign in Equation I0 is selected to minimize the absolute value of Xk+I.

In the case where Pk' Pk-I and Pk-2 are all aribitrarily selected initial values (starting

points), the starting points should be arranged such that IDkl_IDk.iI_IDk.21 and the (+) or

(-) sign in Equation I0 should be selected to minimize the distance from Pk+l to all 3

starting points.

In a real eigenvalue analysis it is possible to calculate a complex Xk+I. In order to

(4)

(5)

(6)

(7)

(8)

(9)

(lO)

(11)

4.88-2

DETE_IRANT METHOD OF EIGENVALUE EXTRACTION

preclude the use of complex arithmetic in a real eigenvalue analysis problem, only the

real part of the Xk+l should be used to estimate a Pk+l'

4.88.4

In calculating the determinant of [A], the determinant is scaled by powers of lO since

the accumulated product will rapidly overflow or underflow the floating point size of a

digital computer. All operations using the determinant are calculated in scaled arithmetic.

4.88.5 Sweepin9 of Previously Extracted Eiqenvalues

Once an eigenvalue has been found to satisfactory accuracy, a return to that eigenvalue

by the iteration algorithm can be prevented by dividing the determinant by the factor (p-pi')

where Pi' is the accepted approximation to p in all subsequent calculations.

Thus:

D(1) ([A]): D([A])

P-PI'

should be used in place of D([A]) after the first eigenvalue has been found.

reduced determinant used for finding the i+lst eigenvalue is:

D(i-l)([A]) D(EA])
D(i)([A]) = =

(p-pi') (p-pl')(p-p2')---(p-pi ')

(12)

In general, the

(13)

This sweeping procedure is quite satisfactory provided that all Pi' have been calculated to an

accuracy that is limited only by round-off error.

For problems in which zero is an eigenvalue, the number of such eigenvalues is specified

by the user. In using the determinant method, zero eigenvalues should be eliminated from the

determinant by a preliminary operation,

D(o)([A]) = D([A]) , (14)
m
P

where m is the multiplicity of the zero eigenvalue.

4.88-3

MODULE FUNCTIONAL DESCRIPTIONS

For problems wit}_ conjugate complex eigenvalues (complex eigenvalue analysis with real

matrices) the conjugates of extracted eigenvalues should also be swept from the determinant.

Thus

D(i)([A]) = D(i_l)([a]) , (15)

(P-pi')(p-_i')

where Pi' is the conjugate of Pi' It should be noted that the sweeping equations are in-

determinant for p = Pi' This situation will occur when a root coincides with a starting

point or a new estimate with a root already extracted. When the first situation occurs, the

starting point should be moved away fro[_ the root. When the second situation occurs, Dk+ 1

should be set equal to Dk.

4.88.6 Convergence Criteria

Convergence criteria are based on successive values of the increment h k in the estimated

eigenvalue. No tests on the magnitude of the determinant or any of the diagonal terms of the

triangular decomposition are necessary or desirable. Wilkinson (1) shows that for h k sufficiently

small, the magnitude of h k is approximately squared for each successive iteration when using

Muller's method. This is an extremely rapid rate of convergence. In a very few iterations

the "zone of indeterminacy" is reached within which h k remains small but exhibits random

behavior due to round-off error. Wilkinson states that if it is desired to calculate the

root to the greatest possible precision, the convergence criterion for accepting Pk as a root

should be:

lhk+ll > lhkl. (16)

The determinant method accepts this advice, tempered by practical considerations. The first

of these is that Equation 16 may be falsely satisfied during the first few iterations while the

root tracking algorithm is picking up the "scent". Thus it must, in addition, be required that

lhkl, lhk.iIand lhk_21 be reasonably small, The second practical consideration is that we may

waste a few iterations within the zone of indeterminacy while waiting for Equation 16 to bc

satisfiec. This is avoided by accepting Pk if lhkl is sufficiently small. Finally, if the

number of iterations becomes excessively large without satisfying a convergence criterion,

the Determinar_t Kethod assumes the existence of or_e iteration loop, gives up and proceeds to

4.88-4

DETERMINANT METHOD OF EIGENVALUE EXTRACTION

a new set of starting points.

Figure l is a flow diagram of a set of tests which meet the requirements discussed above

for real eigenvalue problems.

which are defined as:

The tests are based on calculated values of HI, H2, and H--3

HI = lhk-111'_'T'PKI' (17)

H2 = lhkll_'IPkl,

H3 = lhk+111_" IPkl,

where Pk = kth estimate of an eigenvalue and hk : Pk - Pk-l"

A similar set of tests is described in Figure 2 for complex eigenvalue problen_.

this case HI, H2 and H3 are defined as:

In

(18)

(lg)

_l = lhk_ll, (20)

_2 = lhkl, (21)

_3 = lhk+ll. (22)

The magnitude of the convergence criterion _ should be selected as a compromise between

running time and accuracy. Currently E = !0-11. If failure occurs because the number of

iterations exceeds the iteration limit, NIT, for two successive sets of starting points,

is increased by a factor of lO. If successive pairs of failures still occur, _ is again in-

creased until the number of permissible changes in _ is exceeded. The user is informed of the

reduced precision of the calculations.

Since eigenvalues are swept out after they are found, all sets of starting points will

eventually lead to failure by the preliminary range checks or through successive iteration

failure. When this occurs it is presumed that all eigenvalues within the range of interest have

been found and the calculations are halted. If for some reason this does not occur the

calculation must still be halted. The one remaining avenue for the computer to continue

calculations indefinitely is if it continues to find roots. To block this avenue, the calcula-

4.88-5

MODUI.EFUNCTIONALDESCRIPTIONS

tions arestoppedif the numberof roots foundexceedsthe maximumnumberof NEVM. Asa
safeguardthe orderin whichthe rootsare foundis indicatedto the user.

4.88.7 Extraction of Eiqenvectors

Once an approximate eigenvalue pj has been accepted, the eigenvector is determined by

back substitution into the previously computed triangular decomposition of [A(pj)]. Now since

[A(pj)]{u} = [L(pj)][U(pj)]{u} : O, (23)

we work only with [U(pj)]. Because partial pivoting (row interchanges) have been used, the last

diagonal term in [U(pj)] will normally be the only term with a very small value. The normal

appearance of [U(pj)] is as follows, for n = 7:

X X X 0

X X X X

X X X

X X

0 X

o

0 0

x 0

X X

X X

X x

= {0} . (24)

The terms in the upper right corner are zero due to bandwidth. 6 is a very small number. The

eigenvector may be extracted by assigning an arbitrary value (such as l.O) to u7 and solving

successively for u6, u5 etc., from the preceeding rows. Note that this is equivalent to

placing a load vector {F} on the right-hand side that is null except for the last term which

is set equal to 6.

Situations may occur in which Unn is not the smallest diagonal term. Let Uii be the

smallest diagonal term with i < n. The most common reason for this occurrence is that the

degrees of freedom Ui+l, ui+2 un are, for some reason, uncoupled to the preceeding degrees

of freedom. In this case all of the elements in the iTM
row of [U(pj)] will be very small

as shown for i = 4, n = 7:

4.88-6

DETERMINANT METHOD OF EIGENVALUE EXTRACTION

X X X 0 0 0

X X X 0 0

X X X X 0

0 X X X

X X

X

: {0}. (25)

In the event of multiple or pathologically close eigenvalues two or more rows of [U(pj)]

will consist of very small values, exhibited below for the very exceptional case where the nth

row is not very small:

X X X

X X

X

X 0

X X

X X

6.. 6.s

X

0 0

0 0

X 0

6_6 _4_

X X

_66 161

ultu2

u3

iu5

u6

u7

: {0} . (26)

In order to accommodate the exceptional cases described above with the more general case

of 6 = Unn, a full load vector {F} is used for the eigenvector calculations. The load vector

will also contain elements of the same order of magnitude as the smallest diagonal element of

the triangularized matrix [U(pj)] in order to prevent digital overflow when the eigenvector

is calculated. In addition, a distinct load vector is formed for each eigenvalue to ensure

that independent eigenvectors are calculated for multiple or pathologically close eigenvalue

problems. The following equations are used for {F}. For real eiaenvalues, we have

Fi = 6(-I)ij

l + (I - _) j ;

(27)

4.88-7

MODULEFUNCTIONAL DESCRIPTIONS

For complex eigenvalues,

Re(Fi) :]61 (-l)ij

1.0 + (l.O - _) j

, (28)

Im(Fi) : 0.0, (29)

where _ = smallest Uii, j : eigenvalue count, i = ith element of {F} and n = number of rows.

There is a possibility that the smallest diagonal element of [U] may be exactly zero for

some eigenvalue. This will be the case when the accepted eigenvalue (pj) is exactly equal

to an eigenvalue of the problem. When this occurs, 6 = l.O x lO-8. The calculated

eigenvectors are normalized to a unit maximum real element value.

REFERENCE

I. Wilkinson, J.H., "The Algebraic Eigenvalue Problem", Clarendon Press, Oxford, 1965.

4.88-8

UETEI_.;I!?'ANT_IETHODOFEIGENVALUF EXTRACTION

Begin Convergence Tests_

[This test forces the routine]

/4_to complete two iterations J
/

Is K > 2? ___ Continue
K = K + 1 ---_IterationsJ

Yes

2x104
?

No

;I K=K+I

Yes

;eje_teSrt_Tt_nga;_:nt_

E = lOc

IC = IC+l

c- Convergence Criterion

K - Iteration Counter

IC - Criterion Change Counter

R1 : lhk.ll/_/IPkl

R2 = Ihkl / I,/-/_kl

= lhk+11,/]Pkl

Figure I. Real eigenvalue problems convergence tests

4.88-9

MODULE FUNCTIONAL DESCRIPTIONS

Begih Convergence Tests)

_// _This test forces the routine]

"Lto complete two iterations]

.... on ,nue
_K = K + I "--_Iterations)

Is No
H2-< 104 _Rma x •

?

Yes

H3>H2

Yes

K=K+I

K<N

No

K> N

Continue "_

Itera tions_/

Yes

Is

H2 <I0 _Rma x

?

Aaccept P
n

Yes

,ept Pk as Did Last

an Eigenvalue Starting Point

Set Have an

No Failure and is

IC < il

Reject Starting Point-_

Set Iteration Failure j/

= IOG

IC = IC+l

_- Convergence Criterion Ill : lhk.ll

K - Iteration Counter Fi2 = [hk]

IC - Criterion Change Counter H3 = lhk+11

Figure 2. Complex eigenvalue problems convergence tests

4.88-I0

EXECUTIVE PREFACEMODULEIFP4 (INPUT FILE PROCESSOR- PHASE 4)

4.89 EXECUTIVE PREFACEM_DULE IFP4 (INPUT FILE PROCESSOR- PHASE4)

4.89.1 Entr X Point: IFP4

4.89.2

I.

Pu__r_pose

To convert the data card images related to fluid and hydroelastic analysis into conven-

tional data card images as output from the IFP module.

2. To calculate data related to the boundaries and the harmonic degrees of freedom of the

axisymmetric fluid and append this data to the MATP_L data block.

4.89.3 Calling Sequence

CALL IFP4. IFP4, an Executive Preface Module, is called only by the Preface driver SEMINT.

4.89.4 Input Data Blocks

AXIC - Bulk Data Deck cards related to the hydroelastic problem as output from IFP.

GE_MI - Grid Point and Coordinate System Data.

GERM2 - Scalar Point and Element Connection Data.

GE_ Constraint n_-- UQ _a.

MATPB_L - Direct Input Matrix Data.

4.89.5 Output Data Blocks

Same as the Input Data Blocks.

4.89.6 Parameters

Not applicable to IFP4.

4.89.7 Method

IFP4 allocates the available core as it proceeds. Each type of data card image on the AXlC

data block is read and used to form tables or new data card images. The new data and any existing

data on the Input data blocks are merged and written on one of two scratch files. After the

scratch file data are complete the data are then copied back on the Input/Output data files. (This

is not normally allowed. The preface modules, however, have the privilege of writing on an input

file.)

4.89-I (ll/I/70)

EXECUTIVE PREFACE MODULE IFP4 (INPUT FILE PROCESSOR - PHASE 4)

Data cards as referenced below refer to card images as found on the AXIC input data block.

The actual data cards are read and first processed by the IFP. The fluid data card types found

on the AXlC data block, and used by IFP4, are listed below along with a list of the output card

images produced as a result of their presence, and the data blocks effected.

IFP4 Input IFP4 Output Data Block
Card Image Card Image Effected

AXlF none all below

BDYLIST data MATP_OL

CFLUID2 CFLUID2 GEOM2

CFLUID3 CFLUID3 GEOM2

CFLUID4 CFLUID4 GEBM2

DMIAX DMIG MATPO_L

FLSYM data (header) MATPOBL

FREEPT SPOINT GERM2
MPC GERM4

FSLIST CMFREE GERM2
SPC GEOM4

GRIDB GRID GEOMI

PRESPT SP_INT GEOM2
MPC GEOM4

RINGFL GRID GEOMI

SEQGP GEOMI

It should be noted that the output card images may be a function of several types of input

card images as detailed in the following.

4.89.7.1 Data values found on the AXIF card are first stored in core for subsequent use. They

are:

I.

2.

3.

4.

5.

CSf, the coordinate system number for the fluid system

g, the value of gravity

Pd' the default value of fluid density

Bd, the default value of the compression coefficient

NOSYM, an integer 0 or 1 indicating whether the unsymmetric (*series) terms are used in

the computations.

4.89-2 (lllll70)

MODULE FUNCTIONAL DESCRIPTIONS

6. A list of harmonic numbers nj, j = 1,2J, indicating the harmonics to be formulated.

If none are supplied by the user, it is implied that the fluid is not to be solved, how-

ever the processing of the boundary points (GRIDB) may be necessary as discussed later.

The list of harmonic numbers (nj) are converted to an in core list of index numbers (lj) as

follows.

If N_SYM=O, implying only the symmetric series:

lj = 2nj + 2 , nj _ 0

for j : 1 to J.

If N_SYM=I, implying the symmetric and unsymmetric (*) series:

Ij = 2nj + 2 , nj > 0 ,

for j = l to J, plus the additional indices:

for j = 1 to J.

(I)

(2)

lj = 2nj + l , nj > 0 , (3)

The list of indices as formed above is sorted and held in core for subsequent use. The

complete list of indices may thus be up to 2J in length. Henceforth the number of indices in the

list is referred to as N.

GE_MI Data Block Processing

The GE_MI file is read and the coordinate system as specified by CSf is located among the

C_RDIC, C_RD2C, C_RDIS, or C_RD2S card images. Its type (cylindrical or spherlcal) i_

saved as a flag for use in later processing. If the coordinate system is not located

among the above card types a fatal error is indicated to the user and a cylindrical type

is assumed to permit further checking of data.

GRIDB card images are read and stored in core, 5 words per image. A GRIDB card image

defines a normal grid point except that it's location is fixed to a fluid (RINGFL) point.

If any GRIDB card images are present IFP4 at this time forms a boundary list table in

core.

.

.

4.89-3 (ll/1/70)

4.

5.

EXECUTIVE PREFACE MODULE IFP4 (INPUT FILE PROCESSOR - PHASE 4)

For each fluid point, IDFj, contained in a BDYLIST card image, a seven word entry is

placed in the boundary list table. The contents of this entry are, using data from the

BDYLIST card image:

I. IDF.
J

2. 1 I

3. 1

4. 1

5. IDFj_ 1

6. IDFj+ 1

7. o b

Integer l's (temporary flags)

where j indicates the respective IDF in the BDYLIST list of IDFs.

If IDFj_ 1 or IDFj+ 1 does not exist a zero (0) is entered.

If IDFj_ 1 or IDFj+ 1 is designated to be AXIS then a minus one (-I) is entered.

Should Pb as specified in the BDYLIST card image be missing, the default Pd' as specified

on the AXIF card image, is used for position 7 of the entry. If both are missing, a user

fatal error results. Missing is denoted by an integer -I.

After all BDYLIST card images have been processed and the entries added to the boundary

list table, a sort is performed such that the entries are in sort by the primary IDF

(found in the first position of each entry).

An initial "pass" of RINGFL card images is now made. The meridinal angles (x 2 for a

cylindrical coordinate system or x 3 for a spherical system) must be zero and are checked.

A binary search is performed to find one or more entries whose primary IDF matches the

IDF of each RINGFL card image. When found the values XI, X2, and X3 of the respective

images replace the three integer ones in position 2, 3, and 4 of that entry. If an

entry is not found, a user fatal error is indicated.

If after all RINGFL card images have been hassed, any of the entries in the boundary list

table (residing in core) still contain the three integer ones in positions 2, 3, and 4,

a user fatal error message is indicated for those particular BDYLIST identification

numbers (IDFjs).

4.89-4 (11/I/70)

6.

7.

MODULE FUNCTIONAL DESCRIPTIONS

At this time a normal GRID card image is created from each GRIDB image and merged along

with existing GRID card images on GE_MI. Additional GRID card images will be added to

GE_MI in subsequent manipulations.

For each GRIDB card image now residing in core (note 4.89.7.2-2) a normal GRID card is

created and consists of the following eight values.

Field SS_vmbol

l ID
g

2 CS_

3-5 x I , x2, x3

6 CSd

7 PS

8 0

Description

ID given on GRIDB image.

CSf from the AXIF image.

These values are formulated by finding Xl, X2, X3 in
the boundary list table entry whose primary identifica-
tion number matches the reference identification number
(IDF) given on the GRIDB card image, and then:

xI = Xl

x2 = @ if CSf is cylindrical, or X2 if CSf

x3 = X3 if CSf is cylindrical, or @ if CSf

Where @ is supplied by the GRIDB card image.

CD from the GRIDB image.

PS from the GRIDB image.

Not used.

is spherical.

is spherical.

The resulting GRID data card images are merged with the existing GRID cards on data blocks

GEBMI. If no harmonics exist for the fluid, the module processing is complete.

To generate the nonsymmetric connection tables for the boundary, the boundary list table

is further altered at this time to result in a table listing the geometry and related

grid points for each boundary fluid point.

a. For each fluid point entry now in the boundary list table the values Xl, X2, and X3

are converted to r and z values which are stored respectively in place of Xl and X2.

If CSf is cylindrical then:

4.89-5 (ll/I/70)

EXECUTIVE PREFACEMODULEIFP4 (INPUT FILE PROCESSOR- PHASE 4)

r = Xl

z : X3

X2 must be zero.

(4)

If CSf is spherical then:

r = Xl sin(l-_O X2)

= cos(i
X3 must be zero.

(5)

b° For each set of three fluid point identification numbers (position I, 5, and 6 of

each entry), the three pairs of coordinates are extracted. The primary values rj and

zj are given with each entry. The secondary values rj_ I, zj_ I, rj+ I, zj+ 1 must be

found by finding the entries which have the same primary identification number as the

secondary identification numbers (IDFj_ 1 or IDFj+ I) in question. If "axis" (-I) is a

secondary identification number, then:

raxi s

Zaxis

= 0

= Z.
J

(6)

If "not available" (0) is a secondary identification number, then:

r : rj

z : zj

(7)

The values _, c, and s are calculated and replace the 4th, 5th and 6th word of each

entry in the boundary point list at this time such that each entry will now contain:

4.89-6 (11/I/70)

C.

d°

MODULE FUNCTIONAL DESCRIPTIONS

Field S_bol

l IDFj

2 r.
J

3 z.
J

4

5 c

6 s

7 Pb

Description

Fluid point identification

Radial location

Vertical location

Length and associated angle components of a
conical section

Fluid density

where:

= _/Ar 2 + Az 2 (8)

c - Az (9)

Ar
S - (10)

+ 1
and: Ar = l{rj+ l rj_ l _ [(rj+l - rj)2 - (rj_l - rj)2]} (ll)

,z , IAZ : _{ j-l - Zj+l + 4Tj [(rj+l - rj)(zj - Zj+l) - (rj - rj_l)(Zj_ l - zj)] 2)

This list, now referred to as the "boundary point geometry table", remains in core.

The values _, s, and c correspond to the cross section length, and the sine and

cosine of the angle _b as given in Equation 14, Section 16.1.5 of the Theoretical Manual.

As any number of GRIDB points may be connected to a fluid point, the GRIDB card images

are now sorted on the referenced fluid point identification (the fifth word of each

GRIDB entry). For each set of GRIDB points with the same referenced fluid point the

sort is further made on the angle (¢).

The boundary point geometry table, generated above, is used at this time to form the

boundary matrix part of the MATP_L data block. For each entry in the table, all

GRIDB points which reference it are appended to form a new entry of the following

form.

4.89-7 (ll/I/70)

EXECUTIVE PREFACEMODULEIFP4 (INPUT FILE PROCESSOR- PHASE4)

Field Symbol

1 Idf

2-7 r,z,_,c,s,Pb

8 Idg(1)

9 ¢l

Description

Fluid point identification

Fluid point properties

GRIDB identification

Angular position of GRIDB point

8.

6+2M Idg(M)

7+2M _M

8+2M -I
9+2M -l

GRIDB identification

Angular position of GRIDB point

End of entry flags

where M equals the number of GRIDB points that reference Idf. Each new boundary fluid

point entry is then placed in the MATPO_L data block. The list of harmonic indices

nj, the gravity G, the NOSYM flag, the fluid coordinate system CSf, and the symmetric

boundary information (from the FLSYM card image) are placed in the first record of

the boundary list data in the MATP_L data block. If DMIG data card images resulting

from DMIAX data cards are present on the I_tATPOOLdata block, they are merged to the

existing DMIG card image data. Matrix names are checked for uniqueness.

The RINGFL data cards define a ring (fluid point) with its axis coincidental with the

axis of the fluid coordinate system. Its degrees of freedom are the harmonics of the

pressure around the circle. Special GRID point card images corresponding to the RINGFL

data cards are generated at this time and added to the GRID card images now on GEOMI.

Each RINGFL card image is read and N GRID card images are created containing the following

data.

4.89-8 (ll/I/70)

MODULEFUNCTIONALDESCRIPTIONS

Field Value

l Idf + 5-I05-(Ii)

2 CSf

3-5 Xl,X2,X3

6 -1

7 0

8 0

DesCription

Point identification

Fluid coordinate system number

Location coordinates

Fluid point flag

Permanent Single point constraints

Not used

where i goes from l to N for each RINGFL card image read.

SEQGP card images are created for each RINGFL card image and merged with SEQGP cards on

GE_MI. The contents of the entry are:

Field Value

l Idf + 5-I05-(Ii)

2 Idf-lO 3 + (Ii-1)

where i goes from 1 to N for each RINGFL data card image.

Description

Grid identification

Sequence number

GEgM2 Data Block Processing

The fluid element connections as specified by the CFLUID2, CFLUID3, and CFLUID4 card

images are now operated upon. Each input card image is used together with the harmonic

indices to define N "structural elements". The data given by the input card image is:

Field Value

l Ide

2 thru j+l Idj

j+2 p

j+3 B

Description

Element identification number

Where j = 2, 3, or 4 fluid point
connections

Fluid density

Fluid bulk modulus

For each input card image, connection card images are created for all harmonics in the

problem. Their format is:

4.89-9 (II/I/70)

2.

EXECUTIVE PREFACE MODULE IFP4 (INPUT FILE PROCESSOR - PHASE 4)

Field Value

1 Ide-103 + I i

2 thru j+l Idj + 5-105(I i)

j+2 p

j+3 B

j+4 n

Description

Converted element identification

Where j = 2, 3, or 4 connected fluid points

Fluid density

Fluid bulk modulus

Harmonic number

where i = I, 2 N and n is an integer such that,

I i - 3 I i 1
< n < (13)

2 2

The harmonic element connection card images are merged into the GERM2 data block as they

are generated.

FSLIST card images each define a sequential list of fluid (RINGFL) points on a free

surface. The FREEPT card images input to IFP4 each define a point on the free surface

where a displacement may be output. The following operations are a result of FSLIST and

FREEPT card images data.

For each fluid point (IDFj) defined in a FSLIST card image, a three word entry is placed

in core containing IDFj, IDFj+ I, and p. The subscript j indicates the respective IDF in

the FSLIST card image list of IDFs. if IDFj or IDFj+ 1 is represented by "AXIS" in the

FSLIST card image, a minus one (-I) is used. If IDFj is the last point in the list,

IDFj+ 1 is set to -2. If the fluid density (p) is not present (an integer -I) in the

FSLIST card image, the default fluid density (pd) from the AXIF image is used. If both p

and Pd are missing a user fatal error results.

A set of structural mass elements are generatea for each of the entries just added to

core. Each set represents all harmonics in the problem. Connection card images called

CMFREE elements are created such that each element consists of the following:

4.89-10 (11/I/70)

MODULE FUNCTIONAL DESCRIPTIONS

Field _ Description

l Id Element Id = 106k + Ii

2 IdgI IDFk,l + 5.105 Ii

3 Idg2 IDFk,2 + 5.105 li

4 Yj (p times G) the weight density, where G
gravity from AXIF image

5 n Integer harmonic number such that;

Ii - 3 Ii - l
---T-- < n < --_--

where Ii represents the ith entry in the harmoric index list, and k is the index of the

entry in the FSLIST table of entries. If IDFk,l = -l, IDFk,l is set to IDFk,2. If

IDFk,2 = -l, then IDFk,2 is set to IDFk,I. Both can not be -l initially. Thus for each

entry, k = l thru K (the total number of entries), CMFREE images are created for all

harmonic indices (Ii), i = l thru N. These CMFREE element entries are merged into the

GERM2 data block as were the CFLUID2, CFLUID3, and CFLUID4 card images.

GERM4 Data Block Processing

If FREEPT (free surface displacement point) card images are present, and gravity as

specified in the AXIF card image is nonzero, a multipoint constraint (MPC) is generated

at this time along with a scalar point (SP_INT) having the same identification number

(Idp) as specified by each FREEPT card image. As each FREEPT card is read an SP_INTcard

image is placed in core and the following MPC card image is merged into the MPC data of

GERM4:

4.89-II (IIII170)

Repeatsfor
i:l to N

EXECUTIVEPREFACEMODULEIFP4(INPUTFILEPROCESSOR- PHASE4)

Field Symbol Value

l SID I02

2 GID Id
P

3 Comp 0

4 A1 -IpGI

2+3i GIDi Idf+5-105(Ii)

3+3i Comp 0

4+3i Ai+ 1 Ci

Description

Set identification number

FREEPT identification number

Component

Density times gravity

Fluid point harmonic identification

Component

Harmonic coefficient

5+3N Flag -I

6+3N Flag -I

7+3N Flag -I

End of mage flag

Ii is a harmonic index, and n equals an integer such that;

I i - 3 I i 1
T < n _<T ' (14)

then: Ci = cosine _-_0 if Ii is even,

Ci = sine _ if I i is odd,

(15)

where: @ is the angle given in the FREEPT card image.

2, Additional MPC card images are created if PRESPT card images are present. For each

PRESPT card image read, an SP_INT is added to the in-core list of SPOINTs, and the follow-

ing MPC card image is merged onto GEBM4.

4.89-12 (IIII170)

MODULEFUNCTIONALDESCRIPTIONS

Repeatfor
i=l to N

Field Symbol Value

l SID I02

2 GID Id
P

3 Comp 0

4 Al -I.0

2+3i GIDi Idf+5.105(li)

3+3i Comp 0

4+3i Ai+ 1 Ci

Description

Set identification

PRESPT identification

Component

Coefficient

Connected fluid harmonic identification

Component

Harnonic coefficient

5+3N Flag -l

6+3N Flag -l

7+3N Flag -l

End of image Nag

Ii is a harmonic index, and n equals an integer such that,

I. - 3 I= - l
l , (16)T < n _--'2-

n_¢ if I. is even.
Ci : cosine 180 1

Ci = sine i-_6 if I i is odd.

is the angle given in the PRESPT card image.

(17)

3. If any SP_INTs were placed in core as a result of the presence of FREEPT or PRESPT card

data, they are merged with the existing scalar point data on a scratch file.

4, At this time, if any harmonics are specified, an MPCADD card image is generated for each

unique set identification present in the MPC anI MPCADD card images on GERM4. This

MPCADD card image will then contain the in:ern_,lset identification and include the user

set identification. Thus as the MPC and) >CADD card images are read from GE@M4, a list of

the set identifications present is created in core. An MPCADD card is then generated for

4.89-I3 (ll/I/70)

5,

EXECUTIVE PREFACE MODULE IFP4 (INPUT FILE PROCESSOR - PHASE 4)

each unique set identification (Id) present.

Field Value

1 2"108 + Id

2 Id

3* 102

3 or 4* -I

Its format is:

Description

Internal set identification

User set identification

Generated MPC set identification

End of image flag

If any MPCADD card images are present on GERM4, as a result of the user's specifications,

their set identification (Id) in field one is modified to an internal set identification

(2-108 + Id), and if any MPC card images have been internally generated for set 102, the

102 set identification is added to the list of included set identifications therein.

If any MPC card images have been created for set 102, the following MPCADD card is gener-

ated in any event so as to assure that the 102 set be included in the solution. The set

identification used here (2"108), will be referenced in later computations if the user

has not referenced any MPC constraint set.

Fiel d Value

1 2 "I08

2 102

3 -I

Description

Set identification

Generated MPC set to be included

End of image flag

Should the user specify gravity G to be zero (0) on the AXIF card, it is assumed that the

effects of gravity on the free surface are to be removed. To accomplish this, a single

point constraint (SPC set 102) set is created at this time by IFP4.

For each fluid point Idf not equal to minus one (-I) or minus two (-2) in the free

surface list, an SPCl card image is merged onto GERM4 containing the constraint informa-

tion for all harmonics of this point. Its format is the following:

*Set identification 102 is inserted only if any MPC card images have been generated for set
102. If Id = 102 a user fatal error is indicated.

4.89-14 (11/I/70)

MODULE FUNCTIONAL DESCRIPTIONS

Field Value

l I02

2 0

2+I Idf + 5"I05 Ii

Description

Set identification

Component to be constrained

Point to be constrained

2+i Idf + 5"I05 Ii Point to be constrained

6.

4.89.8

4.89.8.1

I.

2.

3.

4.89.8.2

I.

2.

2+N Idf + 5"I05 IN Point to be constrained

3+N -l End of image flag

Ii is the ith entry in the list of harmonic indices.

Analogous operations to those described in paragraph (4) of this section are performed at

this time for existing SPC, SPCI and SPCADD card images. The data is merged onto a

scratch file and when complete, the scratch file is merged onto the GERM4 data block.

Subroutines

Subroutine Name: IFP4A

Entry Point: IFP4A

Purpose: To write the first line of the user fatal error messages.

Calling Sequence: CALL IFP4A(NUM)

NUM - Message number minus 4030.

Subroutine Name: IFP4B

Entry Point: IFP4B

Purpose : To copy data from IFP data files up to and including a given record onto a

scratch file. On option the data on the scratch file may be copied onto the original

data block.

4.89-15 (fill/70)

3.

4.89.8.3

I.

2.

3.

4.89.8.4

I.

2.

EXECUTIVE PREFACE MODULE IFP4 (INPUT FILE PROCESSOR - PHASE 4)

Calling Sequence:

CALL IFP4B(FILE,SCRT,ANY,SPACE,LSPACE,RECID,EOF)

where:

FILE

SCRT

ANY

SPACE

LSPACE

RECID

- File Number

- Scratch File Number

- Flag = .TRUE. if RECID is found on FILE,

= .FALSE. if record is missing

- Area of core for working space

Length of working space

Record Number of FILE where the copy process stops. If -l is

used the copy process proceeds to the end of FILE and the data

on SCRT is copied back onto FILE.

Flag = .TRUE. if end of record is encountered on return.EBF -

Subroutine Name: IFP4C

Entry Point: IFP4C

Purpose: To open an IFP generated file and a scratch file and to copy the header record

from the IFP file onto the scratch file.

Calling Sequence:

CALL IFP4C(FILE,SCRT,BUFI,BUF2,EBF)

where:

FILE File number

SCRT - Scratch file number

BUFI - Buffer area in core for reading FILE

BUF2 - Buffer area in core for writing SCRT

EOF - Flag = .TRUE. if FILE is null

Subroutine Name: IFP4E

Entry Point: IFP4E

Purpose: To check identification numbers of fluid points for possible difficulties with

large numbers.

4.89-16 (II/I/70)

3.

4.89.8.5

I.

2.

3.

4.89.8.6

I.

2.

3.

Calling Sequence:

where:

MODULE FUNCTIONAL DESCRIPTIONS

CALL IFP4E(ID)

ID - Identification number

Subroutine Name: IFP4F

Entry Point: IFP4F

Purpose: To test if a bit in a trailer record word is on or off.

Calling Sequence: CALL IFP4F(IBIT,FILE,BIT)

where:
IBIT - Position of bit in trailer

FILE - File number

BIT - Flag = .TRUE. if bit is on

= .FALSE. if bit is off

Subroutine Name: IFP4G

Entry Point: IFP4G

Purpose: To turn on a bit _n a trailer record.

Calling Sequence: CALL IFP4F(IBIT,FILE)

where:

IBIT - Position of bit in trailer

FILE - File number

4.89-17 (ll/I/70)

4.90

4.90.I

4.90.2

FUNCTIONALMODULEBMG(BOUNDARYMATRIXGENERATORFORHYDROELASTICPROBLEMS)

FUNCTIONALMODULEBMG(BOUNDARYMATRIXGENERATORFORHYDROELASTICPROBLEMS)

Entry Point: BMG

Purpose

The MATPOOL data block may contain data related to fluid boundaries which is generated by the

IFP4 preface module. The purpose of this module is to combine these data with the geometry data

(EQEXIN, BGPDT, and CSTM data blocks) to produce matrix terms which describe fluid-structure con-

nection forces. These matrix terms are produced in the form of internal DMIG data card images.

module MTRXIN must always be used in conjunction with module BMG to produce NASTRAN matrices.

4.90.3 DMAP Callin9 Sequence

BMG MATPOOL,BGPDT,EQEXIN,CSTM / BDPO_L / V,N,NOKBFL / V,N,NOABFL / V,N,MFACT $

4.90.4 Input Data Blocks

MATPOOL - Direct Input Matrices and Hydroelastic Boundary data.

BGPDT - Basic Grid Point Definition Table.

EQEXIN - Equivalence between External and Internal Grid Point numbers.

CSTM - Coordinate System Transformation Matrices.

4.90.5 Output Data Blocks

BDPOOL - Boundary Matrices ABFL and KBFL in DMIG Format.

4.90.6 Parameters

NOKBFL - Existence of KBFL Matrix Data = O,
No KBFL Data = -l, output parameter.

NOABFL - Existence of ABFL Matrix Data = O,
No ABFL Data = -l, output parameter.

MFACT Complex Factor for Symmetric Structures, output parameter.

4.90.7 Method

The fluid boundary data, contained in the MATPOOL data block, is grouped by the fluid points

on the boundary. For each fluid point the geometric parameters of the surface and the positions

of the associated grid points are listed. The input data read for each fluid point are operated

4.90-I (8/I/72)

The

FUNCTIONAL MODULE BMG (BOUNDARY MATRIX GENERATOR FOR HYDROELASTIC PROBLEMS)

on to produce matrix terms. The output matrix data are written on two files.

are written on the BDP_L file. The KBFL data are written on a scratch file.

of the input file is complete, the KBFL data is appended to the BDP_L file.

During the processing the core is allocated for the geometry data blocks. For each fluid

point, tables are also created which must fit in the remaining core. The following description

lists the form of the input data and the various steps used in the process.

4.90.7.1 Form of the Boundary Data Record on the MATP_L Data Block

Three levels of data are contained within this record. The first level is a list of the over-

all definition parameters of the fluid and the boundary. The second level consists of fluid points

and their associated data. Attached to each fluid point is a third level consisting of a list of

the connected structural grid points and their angular position on the fluid circle. The actual

data in the record are:

The ABFL matrix terms

After the processing

I. Header data:

S_xmbol

CSf

M

Sl
$2

g

N_SYM

k

nl,n 2 nj n k

DescriDtinn

Fluid coordinate system identification

Number of symmetric sections

Symmetry definitions of first and second boundary

Value of gravity

Flag for n* series

Number of harmonic indices below

List of harmonic indices

4.90-2 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

2. Fluid point data

S_bol

Idfl

r,z,J_,C,S,p

N
g

Id 1

Id 2

02

Id.
1

Id
g

*g

Idf2

ei;c.

Description

First fluid point (RINGFL) identification

Fluid point properties

Number of connected grid points below

Grid point identification

Angular position of First grid point

(grid point data)

Second fluid point

etc.

4.90.7.2 Selection o_ Uarmonics to Match Boundary Conditions

The Header Record for the boundary data is read and a list of harmonics (nj and n_) to be

included in the matrices are precalculated. If N_SYM = YES, the indices for the sine series will

be included. A test is made on each value of n and n using the values of Sl and $2 in the header

data.

I. If M = 0 or l accept all values of n and n*.

2. If Sl = $2, Calculate:

a°

b.

2n
K = --

M

_r

If K is not an integer reject n or n

If K is an integer:
accept n if Sl = S

accept n if Sl = A

(1)

4.90-3 (8/I/72)

FUNCTIONAL MODULE BMG (BOUNDARY MATRIX GENERATOR FOR HYDROELASTIC PROBLEMS)

3. If S1 # $2, calculate:

K =

a. If K is not an integer reject n or n*

b. If K is an integer:

accept n if S1 = S

accept n if Sl = A

A list of allowable values of n and n* is built in core. If the final list is null, only the

KBFL matrix is generated. The parameter MFACT is the complex number (M,O) if M is nonzero. The

value (I,0) is used if M is zero.

4.90.7.3 Formation of Geometry Table for Internal Use

The core is allocated for the BGPDT data block and an extra word for each of its entries.

The data is read in groups of four words and stored in five word entries, reserving the first word

for the external identification number. The EQEXlN data contains a paired list of external and

internal numbers. The EQEXIN is read and the external numbers are placed in the corresponding

BGPDT entries in core. The resulting BGPDT data are sorted on the external identification numbers.

The referenced coordinate system number and the basic location vector for any grid point are now

available by using a single binary search.

I 4.90.7.4 CSTM Processing

The CSTM data block is now read and stored in core. The fluid coordinate system identifica-

tion number, CSf. is found and the 3 by 3 transformation matrix, [Tof], is extracted directly from

the data.

I 4.90.7.5 File Initialization

The processing of the matrix data may now begin. The files for the ABFL and KBFL output data

are opened and the matrix header data is written. The boundary data on the MATPO_L data block are

read and one fluid point at a time is processed.

4.90-4 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.90.7.6 Calculations of Areas Associated with Boundary Grid Points I

The first set of the parameters Id, r, z, Ck' Ck" Sk' and Pk are read for the fluid point

where k = l if the fluid point has only one entry or k = l, 2, 3... if the fluid point is connected

with multiple boundaries. The connected grid point numbers (Idi) and angles (@i) are read and placed

in core. Twenty-six words are allocated for each grid point.

For each connected grid point the calculated data are:

(1) Idi

(2) @i

(3) ¢0i

(4) eli

(5-22) [Vi]

(23-26) {Wi}

Identification number

Azimuthal angle (radians)

Angle midway to previous point

Angle midway to next point

3x3 double precision transformation

3xl vector

The midway angles are defined in general as:

¢i + ¢i-I
@Oi = 2

@i + qbi+l
¢Ii - 2

(3)

The angles for the first point are:

The angles for the last point are:

¢01 = ¢I ' M > 2

¢I + @N - 27
COl - 2 , M=O.

@IN = @N ' M > 2

@N + @l + 2_
¢IN = 2 , M = 0

(4)

(5)

All of the grid point data are sorted on the grid point numbers before the transformations [Vi] and I

{Wi} are calculated.

4.90-5 (8/I/72)

FUNCTIONAL MODULE BMG (BOUNDARY MATRIX GENERATOR FOR HYDROELASTIC PROBLEMS)

The equations for the transformation matrices are:

[Vi] = [Ti]T [Tof]

]T{Wi} = [T i [Tof]

(6)

Where [T i] is the 3 by 3 global-to-basic transformation matrix for grid point i.

I 4.90.7.7 Calculation of Matrix Terms

The matrix terms corresponding to one fluid point are generated for the ABFL and KBFL data

tables at this stage. The ABFL matrix terms are generated as follows:

I. For each allowable value of n or n a matrix column is generated in the ABFL table.

internal numbers, Gj, for the fluid point identification number, Idf, are:

Idf + (n + I)106 cosine seriesGj =

Gj Idf + 2n + 1 106= 2 sine series

The

These numbers label the column of the matrix.

2. Each row position in the matrix is labeled by a grid point, Id i, and its three components:

The values corresponding to these positions are the values of the vectorC : I, 2, 3.

{Ain} where:

Ck cos ¢il
{Ain} : _ A_k[Vi] Ck sin _i (7)

S

The vector {Ain} is similar. The coefficients are:

A° = r_k (@li - ¢0i) n = 0ik

An r_k
ik - n [sin(n@li) - sin(n¢oi)] '

n>O

n* r_k * * *
Aik - n [cos(n @li) - cos(n @Oi)] , n > 0

(8)

4.90-6 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

3.

where k = l, 2, 3.... is an index if the fluid point occurs more than once in the

boundary list tables.

If gravity, g, is nonzero the KBFL matrix terms are calculated. Each grid point, Idi,

connected to the fluid point is used to produce three columns of the matrix corresponding

to the three components, Cj = l, 2, 3. The three rows for each column are the same three

components, Ci = l, 2, 3, of the grid point. The equation for the three terms in each

column is:

where:

{Ki}j I Ck cos ¢i
k [Vii Ck

I Bii Wij sin ¢i

Sk

(9)

Wij is the jth component of {Wi} and:

B_. = r_k Pk (¢il - ¢i0)g "
ll

k is the index used if the points are included in more than one boundary list entry.

_.90.7.8 Wrapup Operation

(10)

The final operations involve rewinding the scratch file containing the KBFL data and appending

that data to the BDP@_L data block output file.

4.90.8 Additional Subroutines

BMGTNS - This routine is a slightly modified version of utility subroutine PRETRD so as to

have only one entry point.

4.90.9 Design Requirements

The major core requirements are that the BGPDT data must fit and that twenty-six words for

each boundary grid point converted to one fluid point must fit in core.

4.90-7 (8/I/72)

FUNCTIONAL MODULE BMG (BOUNDARY MATRIX GENERATOR FOR HYDROELASTIC PROBLEMS)

4.90.10 Diagnostic Messages

The following system fatal messages may be issued by BMG:

***SYSTEM FATAL MESSAGE 2148, C_RDINATE SYSTEM = XXXXX CAN N_T BE FOUND IN CSTM DATA.

***SYSTEM FATAL MESSAGE 2149, C_NNECTED FLUID P_INT ID = XXXXX IS MISSING BGPDT DATA.

4.90-8 (8/I/72)

EXECUTIVEPREFACEMODULEIFP5(INPUTFILEPROCESSOR- PHASE5)

4.91 EXECUTIVEPREFACEMODULEIFP5(INPUTFILEPROCESSOR- PHASE5)

4.91.1 Entry Point: IFP5

4.91.2 Purpose

I. To convert the data card images related to acoustic analysis into conventional grid

points and elements.

2. To calculate slot-cavity interface matrix terms and generate corresponding scalar

elements.

3. To generate plot elements describing the sides of the acoustic elements.

4.91.3 Callin 9 Sequence

CALL IFP5. IFP5, an Executive Preface Module, is called only by the Preface driver SEMINT.

4.91.4 Input Data Blocks

AXlC - Contains Bulk Data Cards related to the acoustic parameter, points, and boundaries.

GERM1- Grid point and coordinate system data

GEOM2- Element Data, including acoustic elements.

4.91.5 Output Data Blocks

GERM1 - Same format as input, acoustic points are merged in as GRID points.

GE_)M2 - Same format as input, scalar elements and plot elements are added.

4.91.6 Parameters

Not applicable to IFP5

4.91.7 Method

IFP5 converts the data on the AXIC data block into conventional grid points and elements.

The GERM1 and GEOM2 data are read and merged with the new data on scratch files. The complete

data sets are copied back onto the GERM1 and GEOM2 files. (This is not normally allowed in a

NASTRAN Module. The preface modules, however, have the privilege of writing on an input file.)

The data cards listed below are processed by IFP5. The corresponding output card image and

its data block are given for each card.

4.91-I (8/I/72)

EXECUTIVE PREFACE MODULE IFP5 (INPUT FILE PROCESSOR - PHASE 5)

IFP5 Input
Card Image

AXSL@T

CAXlF2
CAXlF3
CAXlF4

CSL@T3
CSLOT4

GRIDF }GRIDS

BDYLIST

Data Block IFP5 Output Data Block
In Card Image Out

AXlC (all below) (all below)

(CAXIF21
_CAXlF3#

JCAXlF4\ GERM2
GEOM2 ICSLBT3_

CSL@T4
_PLOTEL)

AXlC GRID GE@MI

AXlC CELAS2 GERM2

It should be noted that the formats of the CAXiFi data cards are exactly the same as the CFLUIDi

data cards as generated by IFP4, Section 4.89. The following steps are followed to process the

data:

I. The AXSLOT card is read from the AXIC file, its data are:

2.

Pd default density

Bd default bulk modulus

N harmonic number

wd default slot width

M Number of slots

The GRIDS data card images are read and stored in core. The contents of each card are:

3.

Id s - identification number

r - radius
(

z - axial coordinate

w - slot width

Idf - identification of assoicated GRIDF

The GRIDF data card images are read and stored in core.

Idf - identification number

r - radius

z - axial coordinate

The contents of each card are

4.91-2 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

.

5.

If the value in field 5 of GRIDS card is nonzero an IDF card is generated with the

values Idf, r, z as given on the GRIDS card. These cards are added to the GRIDF images

and the complete list of GRIDF cards is sorted.

Data blcok GE_MI is copied onto the first scratch file up to the first GRID card. The

GRIDF and GRIDS cards are merged with the GRID cards in the GRID card format as follows:

GRID Field Value GRIDF Value GRIDS

l Idf Ids

2 0 0
3 r r
4 z z
5 0 w
6 -l -l
7 0 0

6. The remainder of GE_MI is copied onto the scratch file. The scratch file is then copied

back onto GE_MI, starting from the beginning.

7. The SLBDY data card images are read from the AXIC data block. For each entry, Idi on a

logical card, five words are alocated in core and the following is stored.

Idi, Idi_l, Idi+l, RH_, M

where Idi is a point number in the list

Idi_1 is the previous point number in the list

Idi+l is the next point number in the list

RH_, M are given on the logical card

If Idi is the first entry on a logical card, Idi_l = -l. If Idi is the last entry on a

logical card, Idi+l = -l.

8. After all SLBDY cards are processed the above list is sorted on the first entry in each

group of 5.

9. Plot elements (PL_TEL) are generated and placed on the first scratch file. The GERM2

data block is read and for each (AXIFi) data card a series of PL_TEL cards are generated

and written on the first scratch file (SCRTI).

4.9]-3 (8/]/72)

EXECUTIVE PREFACE MODULE IFP5 (INPUT FILE PROCESSOR - PHASE 5)

CAXIF2 Data PLOTEL Data

Id Id + 106
G1 G1
G2 G2
P
B
N

CAXIF3 Data PLBTEL Data

Id Id + 2-106
G1 G1
G2 G2
G3
p Id + 3-106
B G2
N G3

Id + 4.106
G3
G1

CAXIF4 Data PLBTEL Data

Id Id + 5-106 Id + 6-106
G1 G1 G2
G2 G2 G3
G3
G4 Id + 7-106 Id + 8-106
p G3 G4
B G4 Gl

N

I0. A second scratch file (SCRT2) is opened and the GERM2 data is copied onto SCRT2 to the

CELAS2 data card position. The boundary list data is processed and CELAS2 data cards are

generated and appended to SCRT2. For each five word entry in the Boundary Table search

the GRIDS data card images for the following data

r i , z i , w i , IDF

ri_ I, zi_ I, wi_ 1

ri+ I, zi+ I, wi+ 1

from GRIDS card "IDS."
1

from GRIDS card "IDSi_I"

from GRIDS card "IDSi+I"

where r = r i, z = z i if the corresponding identification number IDS is -I. If a GRIDS

card can not be found a fatal error exists. The following data is calculated for each

entry:

4.91-4 (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

41 = /(zi+ 1 - zi)2 + (ri+1 - ri)2 ,

_2 = _(zi-I - zi)2 + (ri-I - ri)2 '

_)2 + ri)2: 1 _(Zi+l Zi_l (ri+l - -l '

_ = 4(_I+_2)I [_l ri+l + _2 ri_l] +3ri

The coefficients for slot interaction are:

6 - 2_r
M_

(If B -> ! a fatal error exists)

F 1 _+I
: L l°ge(B_--_) + 21_c _ (6 + _) oge (6+I)(6-I)]6r

and

_e : Max (_c' .OIW)

where Fi = M if N : 0 or N : _, Gi : _otherwise.

II. For each entry in the Boundary Table, corresponding GRIDF data card with ID : IDF is

found in core. For the corresponding GRIDF point IDFj calculate the following:

sin Nw
2F

_=

N_

ZF

4.91-5 (811172)

EXECUTIVE PREFACE MODULE IFP5 (INPUT FILE PROCESSOR - PHASE 5)

12.

13.

CELAS2 elements are now generated for the slot point IDS i and the corresponding axisym-

metric fluid point IDFj. The format of this data is:

Id K G1 C1 G2 C2

Ide + 1 (l-m)Kf IDS i "I" blank blank

Id e + 2 _Kf IDS i "I" IDF i "I"

Id e + 3 _(l-_)Kf IDF i "I" blank blank

The element identification numbers Id e are sequential starting with I0,000,001. With

each new point on the boundary list, IDF i, the value Id e is incremented by 3.

When all points on the boundary list are processed, the remainder of GERM2 is copied onto

SCRT2. If CSL_T3 and/or CSL_T4 elements are encountered, they will produce PLBTEL data

card images which are written on SCRTI in the following format:

CSL_T3 Data PLBTEL Data

Id Id + 9"106
G1 G1
G2 G2
G3

p Id + 10"106
B G2
M G3

N
Id + II-I06

G3
G1

CSL_T4 Data PLOTEL Data

Id Id + 12"106
G1 G1

G2 G2

G3
G4 Id + 13"106

p G2
B G3

M
N Id + 14"106

G3

G4

Id + 15"106
G4
G1

4.91-6 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

14. When GERM2 has been completely copied onto SCRT2, the files are rewound and the data from

SCRT2 (containing the new CELAS2 elements) and the PL_TEL data from SCRTI are merged and

copied back onto GERM2.

4.91.8 Subroutines

4.91.8.1 IFP5A

I. Entry Point: IFP5A

2. Purpose: Prints formal part of messages for IFP5.

3. Calling Sequence: CALL IFP5A (NUM)

NUM = IFP5 message number.

4.91.9 Desi9n Requirements

Discussed under Method.

4.91 .lO Diagnostic Messages

Many user messages relevant to the acoustic cavity modeling data may be issued.

4.91-7 (8/I/72)

FUNCTIONAL MODULE PLTTRAN

4.92 FUNCTIONAL MODULE PLTTRAN

4.92.1 Entry Point: PLTTRA

4.92.2 _ose

To modify the SIL and BGPDT tables for the purpose of plotting special scalar grid points.

Each grid point with one degree of freedom is given six degrees of freedom in the modified SIL

data block. These points are identified in the BGPDP data block by the value (-2) in the first

entry for each point.

4.92.3 DMAP Callin 9 Sequence

PLTTRAN BGPDT,SIL / BGPDP,SIP / V,N,LUSET / V_N,IUSEP $

4.92.4 Input Data Blocks

Data Block BGPDT - Four entries per grid or scalar point as follows:

I. Local coordinate system number or -I if point is a scalar point.

2-4. X, Y, Z location in basic coordinate system.

Data Block SlL - One entry per grid or scalar point. The value of the entry is the location

of the first degree of freedom of the point in the vector containing all degrees of freedom.

4.92.5 Output Data Blocks

Data Block BGPDP - Same format as BGPDT. If a point is determined to have one degree of

freedom and is not a scalar point, the value (-2) is placed in the first entry for that point.

Data Block SIP - Same format as SIL. All points except time scalar points are given six (6)

degrees of freedom. A true scalar point has the value (-I) in the first slot of its BGPDT entry.

4.92.6 Parameters

LUSET - Total number of degrees of freedom

LUSEP - New value for LUSET taking into account the change in the number of degrees of

freedom when the special scalar points are expanded to six degrees of freedom.

4.92-1 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

4.92.7 Method

The SIL is read l word at a time; the BGPDT is read 4 words at a time. If the difference

between the new SIL number and the previous SIL value is 1 and the first entry in the BGPDT is

zero a fluid scalar grid point exists. In this event the new SIP increment is 6 and the value -2

is placed in the first word of the BGPDP entry.

4.92.8 Subroutines

None.

4.92.9 Design Requirements

Open core is defined at /PLTRNI/ and must be sufficient to hold four (4) GIN_ buffers.

4.92.10 Diagnostic Messages

Messages 3001, 3002, 3003, 3008, 5011 and 5012 may be issued.

4.92-2 (8/I/72)

MATRIXMODULEUPARTN

4.93 MATRIXMODULEUPARTN(PARTITIONSA MATRIXBASEDONUSET)

4.93.1 Entry Point: DUPART

4.93.2 Purpose:

To compute a partitioning vector based on the displacement sets as defined by USET and create

the symmetric partitions of the input matrix.

For example this module will perform

EKnnKffKsfKssKfSl
4.93.3 DMAP Callin 9 Sequence

UPARTN USET,KNN / KFF,KSF,KFS,KSS / C,Y,MAJ_R=N / C,Y,SUBO=F / C,Y,SUBI=S $

4.93.4 Input Data Blocks

USET Displacement set definitions table (This may also be USETD if extra points are
present).

KNN Any square displacement matrix. The associated set of KNN (N) must be given in
the first parameter.

Note: I. USET may not be purged.

2. If KNN is purged, UPARTN will return.

4.93.5 Output Data Blocks

KFF - Matrix. It will have SUBO rows and columns.

KSF - Matrix. It will have SUBI rows and SUBO columns.

KFS - Matrix. It will have SUBO rows and SUBI columns.

KSS - Matrix. It will have SUBI rows and columns.

Note: Any purged or omitted output data blocks will not be written.

4.93-I (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

4.93.6 Parameters

MAJOR

SUBO

SUB1

Note: I .

2.

Input - BCD - No default value. This is the set of KNN.

Input - BCD - No default value. This is the first subset of MAJOR.

Input - BCD - No default value. This is the second subset of MAJOR.

MAJOR, SUBO, and SUBI must be selected from the following list: M,_,R,SG,SB,L,

A,F,S,N,G,E,P,NE,FE, and D.

The set equation MAJOR = SUBO + SUB1 should be satisfied.

4.93.7 Method

The module driver, DUPART, checks the compatibility of the parameter data and directly calls

UPART and MPART (an entry point in UPART). All work is then accomplished in the UPART routine.

4.93.8 Subroutines

UPART See subroutine description, section 3.5.9.

4.93.9 Design Requirements

One scratch file.

4.93.10 Diagnostic Messages

UPARTN may issue one of the following diagnostic messages:

3007 or 3059

4.93-2 (8/I/72)

MATRIX MODULE UMERGE

4.94

4.94.1

4.94.2

MATRIX MODULE UMERGE (MERGES TWO MATRICES BASED ON USET).

Entry Point: DUMERG

Purpose:

To merge two matrices into a third based on the displacement sets.

module will perform:

4.94.3 DMAP Callin9 Sequence

UMERGE USET,PHIA,PHIO / PHIF / C,Y,MAjOR=F / C,Y,SUBO=A / C,Y,SUBI=O $

4.94.4 Input Data Blocks

For example, this

USET

PHIA
PHIO

Note:

- Displacement set definitions table (this may also be USETD if extra points are

present.)

Any two matrices except that their rows must be associated with degrees-of-freedom

specified by USET and the parameter list. PHIA's degrees-of-freedom are specified

by SUBO and PHIO's by SUBI.

Either matrix may not be present and its respective degrees-of-freedom will be filled

with zeros.

4.94.5 Output Data Blocks

PHIF

Note:

- Matrix. Its terms will be associated with degrees-of-freedom in the set specified

by MAJOR.

PHIF must be present.

4.94.6 Parameters

MAJOR

SUBO

SUB1

- Input - BCD - No default value.

Input - BCD - No default value.

- Input - BCD - No default value.

This is the set of PHIF.

This is the set of PHIA.

This is the set of PHIB.

4.94-I (811172)

MODULE FUNCTIONAL DESCRIPTIONS

Note: I. MAJOR, SUBO, and SUB1 must be selected from the following list: M,_,R,SG,SB,L,A,

F,S,N,G,E,P,NE,FE and D.

2. The set equation MAJOR = SUBO + SUB1 should be satisfied.

4.94.7 Method

The module driver, DUMERG, checks the compatibility of the parameter data and directly calls

SDRIB. All work is then accomplished in the SDRIB routine.

4.94.8 Subroutines

SDRIB - See its subroutine description, section 3.5.

4.94.9 Design Requirements

One scratch file.

4.94.10 Diagnostic Messages

UMERGE may issue one of the following diagnostic messages:

3007 or 3059

4.94-2 (8/I/72)

MATRIX MODULE VEC

4.95 MATRIX MODULE VEC (CREATES PARTITIONING VECTOR BASED ON USET)

4.95.1 Entry Point: VEC

4.95.2 Purpose:

VEC creates a partitioning vector based on USET that may be used in PARTN and MERGE.

4.95.3 DMAP Calling Sequence

VEC USET / V / C,N,SET / C,N,SETO / C,N,SETI $

4.95.4 Input Data Blocks

USET - Displacement set definition table (this may be USETD if extra points are present).

Note: USET must be present.

4.95.5 Output Data Blocks

V - Partitioning vector.

Note: V may not be purged.

4.95.6 Parameters

SET - Input-BCD-no default.

SETO - Input-BCD-no default.

SETI - Input-BCD-no default.

4.95.7 Method

The BCD parameters SET, SETO, and SETI are converted to bit positions in USET. They must be

one of the following 17 symbols: M,O,R,SG,SB,L,A,F,S,N,G,E,P,NE,FE,D,H or else a fatal error will

result.

USET is read into core and the file closed. The output file is then opened and each entry is

compared with the three converted parameters as follows:

I. USET is searched for members of SET. If the entry is not a member of SET, it is checked

that it is not a member of SETO or SETI before going to the next entry.

SET indicates the set to which the partitioning vector applies.

SETO indicates the upper partition of SET.

SETI indicates the lower partition of SET.

4.95-I (811172)

4.95.8

MODULE FUNCTIONAL DESCRIPTIONS

2. The entry that belongs to SET is then checked if it is also a member of SET1. If it is,

the entry is also checked if it is a member of SETO, which is fatal, before replacing the

entry with 1.0.

3. If the entry is a member of SET and not a member of SET1, the entry is checked to verify

that it is a member of SETO before replacing it with a 0.0.

4. After all entries have been successfully processed, a check is made to insure that a

vector exists and that the entries are not all zeros or ones (fatal error).

5. The rewritten entries are then written onto the output data block as a matrix consisting

of one (I) column.

Subroutines

VEC has no auxiliary subroutines.

4.95.9 Design Requirements

I. Open core is defined at / VECXXX /

2. Layout of open core is as follows:

Unused Icore

/ VECXXX /

USET

GIN_
Buffer

Open core

4.95-2 (811172)

4.96

4.96.1

4.96.2

To compute [X]

4.96.3

ADD

MATRIX MODULE ADD5 (ADD MATRICES)

MATRIX MODULE ADD5 (ADD MATRICES)

Entry Point: DADD5

Purpose

= _[A] + B[B] + y[C] + aID] + _[E].

DMAP Callin 9 Sequence

A,B,C,D,E/X/C,Y,ALPHA=(I.O,2.0)/C,Y,BETA=(3.0,4.0)/C,Y,GAMMA=(5.0,6.0)/

C,Y,DELTA=(7.0,B.O)/C,Y,EPSLN=(9.0,O.O) $

4.96.4 Input Data Blocks

A, B, C, D, and E must be distinct matrices.

Note: Any of the input matrices may be purged.

4.96.5 Output Data Blocks

X - Matrix.

The type of X is maximum of the types of A, B, C, D, E, _, B, Y, 6, a. The shape of X is

the shape of A if A is present.

Note: X cannot be purged.

4.96.6 Parameters

Otherwise it is that of the first non-purged input.

ALPHA - Input-complex-no default value.

BETA - Input-complex-no default value.

GAMMA - Input-complex-no default value.

DELTA - Input-complex-no default value.

EPSLN - Input-complex-no default value.

Note:

This is the scalar multiplier for A.

This is the scalar multiplier for B.

This is the scalar multiplier for C.

This is the scalar multiplier for D.

This is the scalar multiplier for E.

If Im(_), Im(B), Im(y), Im(_) or Im(E) = 0.0, the parameter will be considered real.

4.96.7 Method

If [A] is not purged, the number of columns, rows, and form of [X] = number of columns, rows,

and form of [A]. Otherwise the descriptors of the first non-purged input are used. The type of

4.96-I (8/I/72)

EPSLN.

zero.

MODULEFUNCTIONALDESCRIPTIONS

[X] is themaximumcompatibletypeof [A], [B], [C], [D], [E], ALPHA,BETA,GAMMA,DELTAand

ALPHA,BETA,GAMMA,DELTAandEPSLNare assumedto be real if their imaginaryparts are

4.96.8 Subroutines

SADD - See subroutine description, Section 3.5.26.

4.96.9 Design Requirements

Open core is defined at /DADDA/.

4.96.10 Diagnostic Messages

None.

4.96-2 (8/I/72)

FUNCTIONALMODULEINPUT(INPUTGENERATOR)

4.97 FUNCTIONALMODULEINPUT(INPUTGENERATOR)

4.97.1 Entry Point

INPUT

4.97.2 Pu__u__pose

Generates the bulk data input for a large number of academic test problems.

4.97.3 DMAP Callin 9 Sequence

INPUT 11,12,13,14,15 / BI,_2,_3,B4,B5 / C,N,_ / C,N,B / C,N,_ $

4.97.4 Input Data Blocks

li - As required by the execution of the module*.

4.97.5 Output Data Blocks

Bi - As required by the execution of the module*.

4.97.6 Parameters

- Problem Type Selector* (Input, integer, default value = -I (an illegal value for
execution))

- Problem type option selector* (Input, integer, default value : O)

6 - Problem type option selector* (Input, integer, default value = O)

4.97.7 Method

Based on the values of the parameters, INPUT reads, via FBRTRAN, one or more data cards from

the input stream. Since the data deck has already been processed through the ENDDATA card at this

point, these data cards always follow the ENDDATA card. Since FBRTRAN I/_ is used, integer data

on these cards must be right-justified. Once the data cards are read and checked, INPUT generates

the table data blocks that would have been generated if the equivalent actual cards had appeared

in the bulk data deck. These generated records are merged in with any coming from the correspond-

ing input data block (generated by IFP) and are written onto the appropriate output data block.

4.97-I (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

4.97.8 Subroutines

IUNI_N - Integer function which computes the union of constraint codes.

INPABD - Initializes the common block /INPUTA/

4.97.9 Design Requirement s

Open core is defined at /INPUTX/ and must be sufficient to hold two GINB buffers.

4.97.10 Diagnostic Messages

Many user messages are generated by INPUT. These are mostly related to improper or incon-

sistent data presented by the user and are usually self-explanatory. The messages generated

internally within INPUT arc 1738 through 1745. In addition, INPUT writes an echo of all data read

from the input stream and certain informational output related to the processing that occurs while

generating the user's problem data.

*The workings of INPUT are described from the user's point of view in Section 2.6 of the NASTRAN
ll_r'_ Manual. NASA SP-222.

4.97-2 (8/I/72)

FUNCTIONAL MODULE INPUTTI

4.98 FUNCTIONAL MODULE INPUTTI

4.98.1 Entry Point

INPTTI

4.98.2 Purpose

Recovers GINO-written data blocks (tables or matrices) from User Tapes designated for that

purpose (NASTRAN permanent GINO files INPT, INPI, INP2, ---, and/or INP9). Normally, these tapes

would be written by the companion module OUTPUTI (see Section 4.100) in a previous run.

4.98.3 DMAP Calling Sequence

INPUTTI / 01,02,03,04,05 / V,N,PI / V,N,P2 / V,N,P3 $

4.98.4 Input Data Blocks

None.

4.98.5 Output Data Blocks

0i - Any data block which is to be recovered from the User Tape. Purged outputs (either

implicit or explicit) are ignored.

4.98.6 Parameters

Pl - Tape positioning option (Input, integer, default value = O)

P2 - User Tape code (Input, integer, default value = O)

P3 - User Tape Label (Input, alphanumeric, default value = 'XXXXXXXX')

4.98.7 MethoG

INPTTI examines the first parameter and positions the User Tape designated by the second

parameter (checking the User Tape Label defined by the third parameter if appropriate). INPTTI

then copies the next data blocks from the User Tape and writes them on the non-purged output data

blocks in the DMAP instruction. The User Tape is left positioned wherever it is when the DMAP

instruction requirements are satisfied. In this way, multiple calls can be made.

4.98-I (8/I/72)

MODULE FUNCTIONAL DESCRIPTIONS

The configuration of files and records on the User Tape is shown in the sketch below.

File I#0

File

#I

File

#2

File

#n

End of File

\

Bin-

Load Point

12-word id record

2-word header rec

7-word trailer rec

One or more

logical records

2-word header rec

7-word trailer rec

One or more

loqical records

2-v,ord header rec

7-word trailer rec

One or more

loqical records

4.98-2 (8/I/72)

FUNCTIONALMODULEINPUTTI

4.98.8 Subroutines

None.

4.98.9 Design Requirements

Open core is defined at /INPIXX/ and must be sufficient to hold two GIN_ buffers plus one

word of working core. Since blast I/0 techniques are used, efficiency is enhanced by any additional

core up to the longest logical record to be read in any one data block.

The User Tapes must be physical tapes.

4.98.10 Diagnostic Messages

Messages 3008, 4105, 4106, 4107, 4108, 4109, 4110, 4111, 4112, 4113, 4127, 4132, 4133, 4134,

4135, 4136, 4137, 4138, 4139, 4140, 4141, and 4142 may be issued.

In addition, when a file table of contents is requested, printout is generated giving the

file number and the value of the first two words of the header record for each 'file' on the tape.

4.98-3 (8/I/72)

FUNCTIONAL MODULE INPUTT2

4.99 FUNCTIONAL MODULE INPUTT2

4.99.1 Entry Point:

INPTT 2

4.99.2

Recovers F_RTRAN-written data blocks (tables or matrices) from User Tapes. Any legitimate

F_RTRAN unit number not already utilized by NASTRAN may be used for this purpose. On the CDC

machines, these unit numbers must also be compiled into the system in deck NASTRAN. Normally,

these files would be written by the companion module _L'TPUT2 (see Section 4.101) in a previous run.

It is intended that files also be easily generated by external FBRTRAN programs, however.

4.99.3 DMAP Callinq Sequence

INPUTT2 / 01,B2,03,_4,_5 / V,N,PI / V,N,P2 / V,N,P3 $

4.99.4 Input Data Blocks

None.

4.99.5 Output Data Blocks

_i - Any data block which is to be recovered from the User Tape. Purged outputs (either

implicit or explicit) are ignored.

4.99.6 Parameters

Pl - File Positioning Option (Input, integer, default value = O)

P2 - User Tape Code (Input, integer, default value = 0). This is the F_RTRAN unit
number for the file.

P3 - User Tape Label (Input, Alphanumeric, default value = 'XXXXXXXX'.)

4.99.7 Method

INPUTT2 examines the first parameter and positions the User Tape designed by the second

parameter (checking the User Tape Label defined by the third parameter if appropriate). INPTT2

then copies the next data blocks from the User Tape and writes them (via GIN_) on the non-purged

output data blocks in the DF_P instruction.

4.99-I (811/72)

MODULE FUrlCTIONAL DESCRIPTIONS

The User Tape is left positioned wherever it is when the DrIAP instruction requirements are

satisfied. In this way, multiple calls may be made.

A description of the file configuration is given below for those F_RTRAN programmers who may

wish to generate User Tapes with their own external programs for input to NASTRAN.

NASTRAN File Rec

Format of INPUTT2/_UTPUT2 File

1 1 KEY > 0

Data } IKEY

KEY > 0

{Data I IKEY

KEY < 0 E_R

KEY > 0

{Data} IKEY

KEY < 0 E_R

KEY = 0 E_F

2 1 KEY > 0

KEY < 0 E_R

KEY = 0 E_F

3 KEY = 0 E_F = E_D

FORTRAN Rec

1

2

3

4

5

6

7

8

9

lO

II

12

13

14

Restrictions :

I. Enough core must be available to hold the longest record segment.

2. A F@RTRAr4 unit must be available. On the CDC, this means that the PROGRAM

Deck (NASTRAH) must be re-compiled and Link 0 re-done.

ken_

1

KEY

1

KEY

1

1

KEY

1

1

1

KEY

1

1

1

4.99-2 (8/I/72)

FU!_CTIONALMODULEI:_PUTT2

Thelogic by which the NASTRA;I logical 'records' are interrogated is given in the sketch

below :

End of Record

for Record IKI

Read

K

>0 Next K words are

part of Logical Rec

End of File

Condition

=0

NO

Another filefol Imvs

4.99.8 Subroutines

None.

4.99.9 Desi 9n Requirements

Open core is defined at /INP2XX/ and must be sufficient to hold two GINO buffers plus the

longest F_RTRAN logical record on the User Tape. The 'User Tape' files may be on any F_RTRAN

readable device.

4.99.10 Diagnostic Messages

Messages 2187, 2190, 3008, 4105, 4106, 4107, 4108, 4109, 4110, 4111, 4112, 4113, 4132, 4133,

4134, 4135, 4136, 4137, 4138, 4139, 4140, 4141, and 4142 may be issued.

4.99-3 (8/I/72)

FUNCTIO,'IALrlODULE(_UTPUTI

4.100 FUNCTIONAL MODULE _UTPUTI

4.100.I Entry Point:

_UTPTI

4.100.2 Purpose

Creates GIN_-written User Tapes containing data blocks (tables or matrices) as requested by

the user via the D_P instruction. These tapes are written on NASTRAN permanent GIN_ files INPT,

INPI, INP2, ---, and/or INP9. It is anticipated that these tapes will be read by the companion

module INPUTTI in a subsequent run.

4.100.3 D_AP Callin9 Sequence

OUTPUTI II,I2,13,14,15 / V,N,PI / V,N,P2 / V,N,P3 $

4.100.4 Input Data Blocks

li - Any data block which the user desires to be written on a User Tape. Purged inputs

(either implicit or explicit) are ignored.

4.100.5 Output Data Blocks

None.

4.100.6 Parameters

Pl - Tape positioning option (Input, integer, default value = O)

P2 - User Tape Code (Input, integer, default value = O)

P3 o User Tape Label (Input, Alphanumeric, default value = 'XXXXXXXX')

4.100.7 Method

)UTPTI examlnes the first larameter and positions the User Tape designated by the second

)arameter (checking or writing the User Tape Label defined by the third parameter if appropriate).

BUTPTI then writes onto the User Tape all non-purged input data blocks in the DMAP instruction.

The User Ta :ionedwherever it is when the DMAP instruction requirements are satis-

fied. In this wa_ multi_le calls may be made to write as much material as desired on each User

4.100-1 (811172)

MODULE FUNCTIONAL DESCRIPTIONS

The configuration of files and records on the User Tape is shown in the sketch below.

File I#0

File

#I

File

#2

File

#n

End of File_

Load Point

12-word id record

2-word header rec

7-word trailer rec

One or more

logical records

2-word header rec

7-word trailer rec

One or more

logical records

' __

o

2-word header rec

7-word trailer rec

One or more

logical records

4.100-2 (8/1/72)

FUNCTIONALMODULEBUTPUTI

4.100.8 Subroutines

None.

4.100.9 Design Requirements

Open core is defined at /_UTIXX/and must be sufficient to hold two GINB buffers plus one

word of working core. Since blast I/_ techniques are used, efficiency is enhanced by any additional

core up to the longest logical record to be read in any one data block.

The User Tapes must be physical tapes.

4.100.10 Diagnostic Messages

Messages 3008, 4114, 4115, 4116, 4117, 4118, 4119, 4120, 4127, 4128, 4129, 4130, and 4131

may be issued.

In addition, when a file table of contents is requested, printout is generated giving the

file number and the value of the first two words of the header record for each 'file' on the tape.

4.100-3 (8/I/72)

FUNCTIONALMODULEOUTPUT2

4.101 FUNCTIONALMODULEOUTPUT2

4.101.1 Entry Point:

OUTPT2

4.101.2 Pu_uLoose

Creates FORTRAN-written User Tapes containing data blocks (tables or matrices) as requested

by the user via the DMAP instruction. Any legitimate FORTRAN unit number not already utilized by

NASTRAN may be used for this purpose. On the CDC machine, these unit numbers must also be compiled

into the system in deck NASTRAN. Normally, it is anticipated that these files will be read by the

compansion module INPUTT2 in a subsequent run. It is expected, however, that users will want to

generate their own User Tapes with external programs completely unrelated to NASTRAN. Towards

this end, a scheme has been implemented by which _IASTRAN-Iike logical files and records can be

simulated by unformatted FORTRAN I/0 calls.

4.101.3 DMAP Callin_ Sequence

OUTPUT2 11,12,13,14,15 / V,N,PI / V,N,P2 / V,N,P3 $

4.101.4 Input Data Blocks

li - Any data block which the user desires to be written on a User Tape file. Purged

inputs (either implicit or explicit) are ignored.

4.101.5 Output Data Blocks

None.

4. I01.6 Parameters

P1 - File positioning option (Input, integer, default value = O)

P2 - User Tape Code (Input, integer, default value = O)

P3 - User Tape Label (Input, Alphanumeric, default value = 'XXXXXXXX')

4.101-1 (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

4.101.7 Method

_UTPT2examinesthe first parameterandpositionsthe UserTapedesignatedby the second

parameter(checkingor writing the UserTapeLabeldefinedby the third parameterif appropriate).

@UTPT2thenwritesonto the UserTapefile all non-purgedinput datablocksin the DMAPinstruc-

tions. TheUserTapefile is left positionedwhereverit is whenthe DMAPinstruction requirements

aresatisfied. Ir_this way,multiplecalls maybemadeto write asmuchmaterialas desiredon

eachUserTapefile.

A descriptionof thefile configurationis givenbelowfor thoseF_RTRAHprogrammerswhomay

wishto generateUserTapefiles with their owninternal programsfor input to NASTRAN.

NASTRANFiI e Rec

Format of INPUTTI/_UTPUT2 File

1 1 KEY > 0

{Datal $ KEY

KEY > 0

IDatal I KEY

KEY < 0 E_R

KEY > 0

{Datal I KEY

KEY < 0 E_R

KEY = 0 E@F

2 1 KEY > 0

{Datal I KEY

KEY < 0 E_R

KEY = 0 E_F

KEY = 0 EOF = E_D

F_RTRAN Rec

1 1

2 KEY

3 1

4 KEY

5 1

6 1

7 KEY

8 1

9 1

I0 1

11 KEY

12 1

13 1

14 1

Restrictions :

I. Enough core must be available to hold the longest record segment.

2. A F_RTRAH unit must be available. On the CDC, this means that the PR_GRAI.I deck

(NASTRA_I) must be re-compiled and Link 0 re-done.

4.101-2 (8/I/72)

FUNCTIONALMODULEINPUTT2

Thelogic bywhichthe NASTRANlogical

below:

I Endof Recordfor RecordIKI
.<0

'records'are interrogatedis givenin the sketch

Read JK

<>
=0

>0

I
Next K words are

Dart of Looical Rec

4.101.8 Subroutines

End of File

Condition

YES

f

NO -_ Another file

| follows

None.

4.101.9 Design Reouirements

Open core is defined at/OUT2XX/ and must be sufficient to hold two GINO buffers plus the

longest FORTRAN logical record on the User Tape. The 'User Tape' files may be on any device

accessible to the FORTRAN I/0 routines.

4.101.10 Diagnostic Messages

Messages 2187, 2190, 3008, 4114, 4115, 4116, 4118, 4119, 4120, 4128, 4129, 4130, and 4131

may be issued.

4.101-3 (8/I/72)

OUTPUT MODULE OUTPUT3

4.102 OUTPUT MODULE OUTPUT3

4.102.1 Entry Point:

BUTPT3

4.102.2

Punches onto DMI cards the contents of matrix data blocks. Single-precision values are

output on double-field cards. If full square matrices are considered, a maximum order of 196 is

imposed since a maximum of lO000 cards (including the header card) are allowed.

4.102.3 DMAP Callin 9 Sequence

_UTPUT3 11,12,13,14,15 // V,N,PRINTOPT / V,N,NI / V,N,N2 / V,N,N3 / V,N,N4 / V,N,N5 $

4.102.4 Input Data Blocks

li - Any real matrix data block. Only sufficiently small non-purged data blocks will

be punched onto DMI cards.

4.102.5 Output Data Blocks

None.

4.102.6 Parameters

PRINT_PT - Print echo option (Input, integer, default value = O)

If this parameter is negative, an echo of the DMI card images
generated will be printed on the F_RTRAN unit given by -PRINT_PT.

Ni Continuation string - (Input, alphanumeric, default values: NI,NO

default; N2-N5, default value = 'XXX'). Used to form a unique

continuation string for the DMI cards.

4.102.7 Method

OUTPT3 reads each matrix, non-zero term by non-zero term (by column), and passes these items

to the DMI card-punching subroutine PHDMIA.

4.102-I (811172)

,_IODULEFUNCTIOHALDESCRIPTIO,_S

4.102.8

4.102.8.1

] ,

2.

3.

4.

Subroutines

Subroutine Hame: PHDMIA

Entry Points: PHDMIA, PHDMIB, PHDMIC, PHDMID

Purpose: To collect and punch DMI card images.

Calling Sequence:

CALL PItDHIA

CALL PHDMIB

CALL PHDHIC

CALL PHDHID

- Initializes matrix.

- Initializes non-null column.

- Collect each non-zero term of column.

- Wraps up column.

C@MM_N / PHDMIX / N(2),C,IF_,TIN,T_UT,IR,IC,N@,KPP,NLP,ERN_,IC@L,IR_,XX

Communication area for PHDMIA.

Method: A single call is made to PHDMIA for each matrix data block to be punched.

A call is made to PHDMIB for each non-null column, followed by a call to PHDMIC for

each non-zero term in the column, followed by a wrap-up call to PHDMID.

4. 102.9 Desi _n_ Ree_qui rements

Open core is defined at /_UT3XX/ and must be sufficient to hold a single GI!,I_ buffer.

4.102.10 Di a___nosti c Messaqes

I.lessages 3008, 4100, 4101, 4102, 4103, and 4104 may be issued.

4.102-2 (8/I/72)

OUTPUTMODULETABPRT(FORMATTEDTABLEPRINTER)

4.103 OUTPUTMODULETABPRT(FORmaTTEDTABLEPRIr_TER)

4.103.1 Entry Point:

TABF_

4.103.2 Purpose

To print selected table data blocks with format for ease of reading.

4.103.3 DMAP Calling Sequence

TABPRT TDB // V,N,KEY / V,N,OPTI / V,N,OPT2 $

4.103.4 Input Data Blocks

TDB - Table Data Block having a format which is processable by the routine.

4.103.5 Output Data Blocks

None.

4.103.6 Parameters

KEY - Keyword (Input, alphanumeric, no default value)

The value of KEYW_RD identifies the format to be used in printing the table.

_PTI - Option (Input, integer, default value = O)

_PT2 - Option (Input, integer, default value = O)

4.103.7 Method

TABFMT examines the parameters and selects a fon_at for printing the contents of the input

data block. The input data block is then read record by record and the contents printed according

to the selected format. A line of printout may contain part of a logical record, a complete

logical record, or more than one logical record. Coding or decoding of the data items encountered

may be done as the programmer wishes. The trailer data are also printed.

4.103.8 Subroutines

TABFBD - Block Data routine to set tables for TABFMT in common block /TABFTX/ .

4.103-I (8/I/72)

MODULEFUNCTIONALDESCRIPTIONS

4.103.9 Design Requirements

Open core is defined at /TABFTZ/ and must be sufficient to hold one Glil_ buffer plus a

small number of words of data, the number of which depends on KEY.

4.103.10 Diagnostic Messa eges

Fatal message 3008 may be issued.

Warning messages 2094, 2095, 2096, 2097, 2098, and 2099 may be issued and will cause

termination of the module but not of the program.

4.103-2 (8/I/72)

I_,rIRODUCTION

5.1 INTRODUCTION

NASTRAN operates on: I) the IBM 7094/7040(44) Direct Couple System under the IBSYS operating

system; 2) the IBM System/360 under Operating System (_S); 3) the Univac ll08 under the Exec

8 operating system; and 4) the CDC 6600 under the SC_PE 3 operating system. This section dis-

cusses the interfaces between NASTRAN and these operating systems with respect to: l) input/

output; 2) link switching; 3) overlay considerations and implementation of the open core concept;

4) the setup of the operating system control cards preceding (and, in the case of the Univac ll08,

following) the NASTRAN data decks; 5) generation of an executable NASTRAN system; and 6) machine

dependent routines.

The vocabulary used in each subsection is the one used by systems programmers familiar with

the particular operating system being discussed. It is to these system programmers that each

subsection is addressed.

5.1-I (12-I-69)

NASTRAN ON THE IBM 7094/7040(44) DCS (IBSYS)

5.2 NASTRAN ON THE IBM 7094/7040(44) DCS (IBSYS)

This section has been deleted since the IBM 7094 is no longer an active NASTRAN machine.

5.2-I (8/I/72)

NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEM (_S)

5.3 NASTRAN ON THE IBM SYSTEM 360-370* OPERATING SYSTEM (_S)

5.3.1 Introduction

NASTRAN operates as a single job step on the IBM System 360-370 class of computers under _S

(Operating System). The NASTRAN executable is created as a Partitioned Data Set (PDS) with each

NASTRAN functional link comprising a member of the PDS. In addition to the fourteen (14)

functional links, the executable PDS has one member unique to the IBM 360 configuration that con-

trols the execution of the other links. This additional member is referred to as the Super-link.

The PDS member name for the super-link is NASTRAN, and the member names for the fourteen functional

links are LINKNSOI thru LINKNSI4.

NASTRAN execution cn the IBM 360-370 involves two links in core at a time, the Super-link

(NASTRAN) and a currently operating functional link (LINKNSxx). The super-link is always core

resident and contains the NASTRAN driver routine (NASTRAN), NASTRAN I/_ package (PACKUNPK, GINO,

NASTIO, IOMSG), and the FBRTRAN I/0 packages. The functional links are located and loaded as

required during execution. Within each functional link, a 360 dependent control routine with the

same name as the link (LINKNSxx) provides the intermediate entry point for that link, as well as

the communication vector between links. The Super-link is always loaded and entered first; it

in turn always calls LINKNSOI (the preface link). From that point on the link execution sequence

is determined by SEARCH calls from the currently operating functional link which returns control

to the Super-link when another functional link is needed. This sequence continues until a CALL

EXIT within a functional link returns control to 0S. The downward calls from the super-link to

the functional links are accomplished via the _S link macro and all intra-link calls are accom-

plished via standard FORTRAN call statements.

5.3.2 Input/Output

Within the NASTRAN program all data transfer operations between primary and secondary storage

with the exception of card, print, plot and special input/output are performed through the General

Input/Output Routine (GINO).

*The terms SYSTEM 360-370, IBM 360, SYSTEM 360, etc. will be used synonymously in this discussion
as NASTRAN execution is identical on both the IBM 360 and the IBM 370 computers.

5.3-I (811172)

NASTRAN - OPERATING SYSTEM INTERFACES

A_I non-GIN9 I/9 is performed through normal FgRTRAN I/9 statements. Printed output is

generated by formatted output statements to FORTRAN logical units 4 and 6 (DDNAME=FTO4FO01 and

DDNAME=FTO6FO01). This output may be routed as desired although it normally appears as a system

output (SYSgUT) class. The usual output for the NASTRAN execution appears on FTO6FO01 while the

Run Log appears on FTO4FO01. Data card input is read by formatted input statements, a card (record)

at a ti_e, from FORTRAN logical unit 5 (DDNAME=FTO5FO01). Again, the input source may be designated

as desired although it normally appears as the system input (SYSIN) unit. Punched cards are

written on FTO7FO01 which normally appears as a system output (SYSgUT) class.

The transliteration routine writes its output on FTOIFO01 in a form as indicated in the PRgC

given in Section 5.3.5. Other FORTRAN data sets may be needed by users who use utility modules

INPUTT2 or 9UTPUT2 (see Section 5 of the User's Manual).

The SGINO (Special GINO) plotter output routines within the S/360 NASTRAN system function

independently of other I/0. Unique DD cards within the Execution Deck Setup (see Section 5.3.5)

describe the required output tape file formats. Two separate plotter files may be generated, one

on FgRTRAN unit 13 and the other on unit 14.

GINg, which is written in assembly language, uses the Basis Sequential Access Method (BSAM) to

read and write blocks of a fixed size that may be adjusted to fit hardware and problem requirements

by using the NASTRAN control card. GIN9 input/output operations result in calls to GINglO which

calls entry point 19360 in NASTIO to do the physical reads or writes.

In addition to the use of the Standard BSAM READ and WRITE macros, NASTRAN uses the NgTE and

POINT macros. The use of the NgTE and PglNT macros, along with fixed block sizes permits the use

of the disk secondary storage in a direct access form, and through use of properly kept locators

permits NASTRAN to accomplish backspacing across disk boundaries. It should also be noted that use

of BSAM I/9 processing permits I/0 operations to be accomplished directly in the GIN9 buffer areas.

As a result, no data transfers take place (as opposed to FgRTRAN I/0 which does transfer the data)

and a considerable savings of both core storage and CPU time is effected.

The way in which temporary storage (scratch files) are allocated in NASTRAN is a by-product

of the I/9 method used. NASTRAN uses three classes of temporary files: primary files, secondary

files, and tertiary files.

5.3-2 (8/I172)

NASTRANONTHEIBMSYSTEM360-370OPERATINGSYSTEM(_S)

Thefollowingexampledepictsthewayin whichthis spaceis managed.AssumeNASTRANdata

blocksA, B, C, DandEareof the followingsizes:

A I0 blocks(records)
B I00 blocks
C 210blocks
D 625blocks
E 72blocks

Furtherassumethat eachprimaryunit haspreallocatedspaceof I00 blocksandthat eachsecondary

unit haspreallocatedspaceof 400blocks(e.g., 4 blocks/trackand25tracks allocatedto

primariesandI00 tracks allocatedto secondaries).

primaryunit 2

u
0

0
0

secondary unit

U

°I
0
C_

1

unused

m

l--

unusedl

_._i

3 4 5

2T

unused

4 5

avail-
able

avail-
able

Figure I. Space Allocation Diagram on the IBM 360

In the previous example, data blocks A, B, and E are contained in their initial primary

allocations. Data block C is continued from primary unit 3 to secondary unit I. Data block D is

5.3-3 (811172)

NASTRAN- OPERATINGSYSTEMINTERFACES

continuedfromprimaryunit 4 to secondaryunit 2 to secondaryunit 3. Notethat sincedatablock

Bexactly fills primaryunit 2, anyadditionalwrite operationwill causeanextent. In this case,

secondaryunit 4 will beattachedto primaryunit 2. "BackspacingacrossDisks", for examplefrom

blocknumberI01 in datablockCto blocknumberI00, is accomplishedby recognizingthat block

numberI00 is in primaryunit 3 andissuinga P_INTto that block.

In this exampleno tertiary files areused. Tertiary files are for the mostpart reserved

for extremelylargedatablocksandall secondaryspaceis exhaustedbeforetertiary files are

attached. Unlikethesecondaryfiles whichmaybeattachedto a datablockandthendetachedwhen

the datablockis purged,the tertiary files remainattachedoncetheyareattachedfor the dura-

tion of the job. Onlyafter the tertiaries areexhaustedis _Spermittedto obtainextentson

the dataset it recognizes.Throughefficient useof this primary,secondary,andtertiary file

conceptof allowingNASTRANto allocate andattachfiles as needed,the amountof scratchstorage

spacecanbegreatly reduced, and the system abend B37 can be controlled.

5.3.3 Link Switchin 9

NASTRAN link switching on the 360 is performed by the Super-link and directed by the SEARCH

entry within the control routine, LINKNSii, ii : 01, 02 13. When the XSEMii subroutine

within an operating functional link determines that the next module to be operated resides in a

link other than its own, the required link is requested through a call to SEARCH. The SEARCH call

carries an argument naming the link requested. SEARCH branches back to the Super-link with the

new link name. The Super-link executes the LINK macro to load the proper member and transfer

control into this new NASTRAN link. Only one functional link at a time will occupy the 360 memory

below the Super-link. Since the functional links are individual members of the NASTRAN Partitioned

Data Set, the number of links is essentially open ended.

5.3.4 Overlay Considerations and Implementation of Open Core

Each NASTRAN functional link is created by the _S Linkage Editor during the generation

(SUBSYS) procedure (see Section 5.3.6). Each link contains a zero level or root segment and the

series of overlay segments necessary to NASTRAN operating logic. The specially named common blocks

which define the beginning of various open core areas are placed at their required location by

linkage editor INSERT directives. An _S overlay tree functions by automatically loading all

5.3-4 (8/I/72)

NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEM (_S)

segments in the branch between the calling segment and the called segment. Local FBRTRAN variables

and common blocks residing within segments are not cleared at load time.

Several NASTRAN links contain a special type origin for the overlay tree. This origin is

created by declaring a particular segment boundary to be at a region boundary. This region

boundary automatically begins at the end of the longest branch in the previous region. Since many

links contain a series of small functional module drivers of different lengths followed by a

structure of matrix routines used by these drivers, a region boundary is usually utilized follow-

ing the drivers. The following sketch illustrates a link structure with regions.

J4A ITA
l;;l..........

/_c2/

T

Regiin A

--- Region Boundary

l
Region B

!
Figure 2. A tree diagram for a NASTRAN link on the IBM 360

Note that since segment IB was requested to be begun at a region boundary, the _S Linkage Editor

placed its origin following the longest segment (7A) of the previous region.

Special cautior,must be exercised when operating within open core under a region structure.

Operations within each region are independent of o_ler regions. Thus, if a branch of segments

within region B, say IB and 3B, is in core because of previous calls, a call from region A to

region B, say 5B, will not reload segments IB anl 3B. Therefore, if an open core area starting

at _Cl/ were utilized, some of the programs within region B could be destroyed without the BS

loader's knowledge. Because of this possibility, all NASTRAN open core origins lie within a lower

level region. Therefore open core starting areas such as /_tl/ are not used in S/360 NASTRAN

overlay structures.

Because NASTRAN must operate on most models of System 360 with a variety of memory sizes and

_S operating modes, a flexible method of utilizing all memory available to the job is incorporated.

5.3-5 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

In both primary and multi-programmed environments, the OS loader requests storage from the core

memory available to the job through the _S GETMAIN macro. 0S storage-management routines make

sufficient core available, and the link is placed in memory. Core memory outside of that requested

for the link is storage protected by the 0S system. An attempt to store into these protected areas

causes an interrupt and job termination. The NASTRAN open core concept requires use of those areas

that are available but protected (ioe., the area between the link and the region boundary). To

remove this protected status, the NASTRAN initialization program within each functional link issues

a conditional GETMAIN for all remaining memory within the job region. The return from this GETMAIN

specifies the origin and the size of the block of core memory acquired. A small portion of this

block is returned (via the FREEMAIN macro) to 0S for use as FORTRAN 1/0 buffers and for other OS

functions. The remainder of this memory is made, available to NASTRAN by adjusting the upper core

address used by the NASTRAN CORSZ function. All NASTRAN modules may thus utilize the maximum core

memory provided to the job.

5.3.5 Execution Deck Setup__

Running or executing the NASTRAN system on a System 360 computer once the generation procedure

(see Section 5.3.6) is complete requires some basic knowledge of the type of structural problem

being solved and the type of output requested. In addition, the hardware configuration and

capacities should be known in order to most adequately match the problem being solved to the

computer.

The following procedure should provide the basic Job Control Language (JCL) necessary for all

NASTRAN runs.

5.3-6 (811172)

NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEM (BS)

Table I. Basic Job Control Language (JCL) for NASTRAN Runs

I.

II

II

II

II

II •

II_-

PROC PU_,!TS=TFK,Pl=.:_5,P2:.,2.,

StJNI TS=TRK , $I=C'7 _', $2=C2-,,

TU;,!I TS=C YL t T _=:?06 , T2=?C:_,

D_CK:Dg;- 31 3, _i_ ME =h, STNL M;J[_,

DLNPLT=I

llm---

II_--- = PEE]C_D. UK_; _,'A S T P A F_

II_---

II_

II_

2. II_S t<EC

3. IIST.=PLI_ {)l!

4. II_TOI¢_,CI 30

Ill

5. IIFTC4F_:,I DL'.

II

6. //FT,15F_,}OJ. OL'

7. / / FT.3_. F $.r.,1 r)D
II

8. //FTOTFG_:I DD

II

9. //FTIJFO_ DO

10. / / FTI'*FU,., 1 _1.',

]]. //INPT _C_,

12. IIINP_. 0:,'

13. llihP2 DF_..

14. /IINP_ C_

15. IIIN_4 [;_

16. IIItlP5 CZ,

17. IIINP6 [:_)

18. //INP7 O_

19. //INP p, OD

20. //INP_ CD

2l. //NPTP O.C

22. I I NU u'y- DO

23. II3PTP C',;

24. I/PLT! CI;

I/

25. //PLTZ L.)

/!

26. / ! DL),iL C,C.

27. //U_F _r_

28. //PRI(i Ob

29. I/PPI_2 [[?,

30. / I PR I',_3 '?-.,D

31. //PRI_ CD

32. l/meIJ5 3D

33. / / _"_ I -"_s OC_

34. //_QI"7 pr_

35. //P_:I :_ _'_

P r:_=Na S T_ _N, v,L GI C!N=3c, K,fl #E=2 Z

UqiT=2_L_,VCL=SSR=6DACK,[,ISP=SH_ ,DS_I=SNa"'[

U,XIT=SYSDA,SP_C_=(CYL,(5,I) l,

L;CB=(R ECF#=F_, L_ ECL=£; ,-_LKSI ZE=728f., .RUFf!O= I |

SYS__LJT---A,CCR=(RECF.V=V8A,LPECL=j37,RLKSIZE=l_II,

SPA.CE={CYL,(2,Z|)

DDNA"4E= SYS IN

SYSFHJT:&,DC_:(RECFN_=VP.A,LRECL=I37_r_LK£IZE=3 L2 °),

S_ACE=ICYL,(I_;,I) |

SY S:_UT= R, DC_=(P E CF._=FR, L_ EC L=_ n , _LK'_ I Z E=£C')) ,

SPAC_=(CYL_(?,I|)

DCN&_E=PLTI

O JN&'4E:PLT2

I)S_!=MJ[LFILE,L&BEL=(,NL),OISP=CL r_

OSL_=_!ULL =ILE,L&£EL=(,;'.!L) •][SP=CLt)

_S_4=i41JLL.--I[.£,L&BZL=(,.%LI,hISP=CLD

L)St4=,_:ULL = I [._ ,LAq EL=(, NL) ,-3 t SP=EL_J

bS_.=!,ULL F [[._:, L-_t" _L=(,NL) ,_I SP=CLO

CS_='-!ULLFILE,L;',P_L=(,r;L),JISP=CiLD

3.£:_=r'_ULLF II F ,L_P, tL={ ,NL) ,Ul SP=CLD

9£q:_';IJLL_ILk ,L'&u:L:(,NLI ,i_ISP=CL,)

3Ft.,=NUL LF I l t , L_q - L= (,NL) ,O I S o=C_L r)

CSN=_,'ULLFIL. r,L_RLL=[,_NLI ,CISP=CL.3

U.NIT=SYSO,L_Sp_CE=(rp,I._ITS_ (_ol,F, p2)),r:'IFP=(T_4,D;3_-)

)Sq=,'4ULLF I L-, L,# EL=(,_'4LI , £'ISP= (t,ZW, P_(_ .SI

OSq:_';tJLL, C II.S. ,L:_B TL=(, NL) ,.]I SP=SL_

[,S'q=NULLFILE , L-",;_EL=(,k'L) ,

DC4=(_ ECF't=U,SLKSIZ_=_-I >,4dF_,_J=I,T_TCH=! ,O:" ;'_=&._-r _LT)

[_SK=NULI r I 1E , L_P._.:L=(, ;_L| ,

I.'C_4= (K EC F:.'_=I/,,,3LK$ I _/_.=2e]:;, P'JCM =! , D_ N= F,I'_E".',PL "t" 1

Ut.'IT=SYS!_A_ SP;_C ==([PU,_.._ T S, (_P_L, _;D2))

OS',_=_'.ULLFIL£,L'-'PFL=(,NL|,r'ISF=CLO

UNIT=SYSbA,SPACE=(_PU:41T_, (CP] ,r,p_)

U."_IT:SYSD_SPCCE=(_P[Y41TS, | [,PI,Fn2)

!P; IT=SYS[_L _ SP_.C_= (F_.PI,J"_ I TS, (F.PI, F.,_2)

UNIT=SYSI2A,SP;Cc:!So[J:41TS, (£mi,£Pg)

!I'_IT=SYSgA_SP_CE=(CaU_'.IT_,(EPI,£P_)

El_, t T=SVb_", SP" C[= (£_l.J'-J I TS, (£F_! ,, ,';P£)

UNIT=SYSD;.,SP_C _=([#U:4I'S, (£PI, £P/)

ilblT=SYSC,_,SP'-L; =(Er>!JHi IS, (6Pi,F._2 }

5.3-7 (8/I!72)

NASTRAN - OPERATING SYSTEM INTERFACES

Table 1. Basic Job Control Language (JCL) for NASTRAN Runs (Continued)

El l UNIT=SYSdA,SP4Ck=(&PU%IT$,(EPl,&P2))
CD U N I T = S Y S C I a 9 S P A C E = (& P I I I \ I I T S , (G P l r C P Z I)
CD U % I T = S Y S D C , S P C C = (C P U I J I T S , I: & P i , & P 2))
ED UYIT=SYSD4,SP~CE=(&PUhITS,(EPI~&P2lI
ED U&IT=SYSOb,SPACE=(EPUNITS~(EPlt&PZI)
CG U N I T = S Y S D A r S P A C E = (E P U F J I T S 9 (E P 1 9 G p 2 1 I
DD U N I T = S Y S D A , S P A C E = (& D U N I T S 9 (& P i ~ & P 2 ~)
CD U N I T = S Y S D P , S P A C E = (K P U t J I T S , (E P l 9 G P 2) I
CD UNIT=SYSDA,SPGCF=(&PU?qi r S 9 (& P I , & P 2))

OD U N I T = S Y S D A , S P h C E = (E P U ! d I T S ? I E P l 9 C , P 2 I)
DD U N I T = S Y S C) A 9 S P A C E = I G P U I \ : I T S 9 (E P l r C P 2) I
C C U N I T = S Y S D A ~ S P k C E = (& P ~ J f * J I T S ~ (E P l o h P 2 f)
DO U Y IT=SYS9i9SPhCE=(CPUQITSt (E P l ~ E P 2 1 I
C D U N I T = S Y S ~ ~ ~ S P ~ C E = (& P ~ ~ ; \ J I T S V (& P ~ , ~ P ~))
I39 U N I T = S Y S O A v 5 P A C E = t CPUi 'J ITSt (& P I 9GPZ I 1
CD U N I T = S Y S D A * S P A C E = (E F L I I J I i S v (& P 1 9 E P L) 1
CD U h ~ I T = S Y S D A s S P & C t = (& P U I ~ I T S r (& P 1 ~ E P 2) l
CD UNiT=SYSD~.SPACE=(&VUNITSv(&Plq&P2)t
OD Uh!IT=SY5'9A,SP!iCk=(E P U % I T S , (F ;PL E P Z 1)
00 UNIT=SYSOAqSPCCE=IEVUUITS, (& P l o & P Z i)
CD U W I T = S Y S D ~ ~ S P A C F = (F P ~ ' I G I T S , (E P 1 v C P 7 I)
O'3 U P i I T = S Y S D C v S P h C E = (E P U h I T 5 9 (E P 1 9 L P Z I)
CO U ~ ! I T = S Y S D A 7 S P A C C = (F P U ~ ~ I TS, (E P l q C P 2 J f
DL I I Y I T = 5 Y S D b qSPACE.=('PlJUI T S q (& P I 7 & P 2) t
DL ~ J R ' I T = S Y S : J A * S P A C F = (F D l J Q I T 5 9 (& P i , & P 2) t
DO U ' Y I T = S v S D A , S P A C L = (t S U h I T S q (E S 1 9 F . 5 2))
D D L ~ ~ ~ I T = S ~ S D A V S P G C E = (E S U ~ ~ I T S ~ (F S i , t S Z) I
0 0 U h I T = S Y S 3 a , S D & C E = (& S U h ~ I T S * (E S 1 t E S 2) I
00 U h l I T = S Y S Q C , S P h C ' = (E 5 I I Y I 7 5 9 (E S 1 9 C S Z I I
D D U N I T = S Y S r) f i r S P L C E = (G S I J N I T S T (F S 1 9 ESZ j
3D U F J I T = 5 Y S ') ~ ~ S P G C F = (C S l J U I T S t (& S 1 , & S 2 ~ ~
CD U h I T = S Y 5 D ~ , S D 4 C i = (& S U N I T S 9 ~ E S i t K S 2) l
DD U k I T = S Y S 3 & r S f ' A C k = (& S U k I T S 9 (L S 1 r E S 2 t)
DD U W I T = S ~ S L) A , S P ~ C E = (& S U I ~ I T ~ , (& S ~ , ~ ~ ~ I)
OD U R , I T = S ~ S D A v S P 3 C ~ = (F , S U I \ ~ I T S ~ (& S l r h S Z ~)
110 Uh: I r=SYSSrkrSpr i iC=(CSUr41 i s 9 (6 5 1 , & S ?) 1
30 U h l I T = S Y S D A , S P C C i = (E S U Y ! T S 9 (G S l r & S 2) I
DD U N I T = S v S D A , S P k C F = (f ,SUhI TS. (E S I P & S Z I t
on u r ~ ~ ~ = s ~ s r ~ o ~ s ~ t . c ~ - = ~ c s u ~ ~ ~ r s , r ~ s ~ , ~ s z ~ ~
E D U N I T = S Y \ r ~ F , , S P ~ L t = (& S l l i \ l I T S ~ (& S 1 ~ E S 2 1 1
3D U Y I T = S Y S C A v S P I C E = (& T I J h l I T S 9 (& T I , & T 2)
DU U N I - T = S Y S ~) P , , S P A C ~ = ~ C T U N I T S , (E T ~ , E T Z I I
DO U W I T = S Y S ~ G I S P ~ C E = (& T U ~ I T ~ ~ ~ E T I ~ E T ~) ~
OD U ~ J I T = S Y S D A r S P ~ C E = (& T U t d I T S , (& T I e & T Z I I
30 S Y 5 1 b T = n c n C S = (a E C F M = V e . r t v L k E C L = l L 5 9 B L K , C I 7 F = I $?? 1
.--

E N 9 SF PP('1C tD~JKC - -- .--

NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEM (IBS)

Each card or group of cards within the NASTRAN procedure is discussed by item below. The

item numbers match those along the left margin of the preceding deck listing.

Item

I.

the symbolic parameters.

SYMBOLIC DEFAULT
PARAMETER VALUE

PUNITS TRK

Description

The PR_C card defines the name of the instream procedure and sets default values for

P1 15

P2 20

SUNITS TRK

Sl 7O

$2 20

TUNITS CYL

Tl 06

T2 5

PACK D00313

NAME NSTNLMBD

DENPL_T l

DESCRIPTION

Defines the space allocation units for the primary
files.

Defines the initial space allocation for the primary
files.

Defines the increment space allocation for the primary
files.

Defines the space allocation units for the secondary
files.

Defines the initial space allocation for the secondary
files.

Defines the increment space allocation for the second-
ary files.

Defines the space allocation uniss for the tertiary
files.

Defines the initial space allocation for tertiary files.

Defines the increment space allocation for tertiary
files.

Defines the Volume Serial number of the pack that the
executable is on.

Defines the data set name of the executable.

Defines the density of the plot tape.

2. The EXEC card defines the name of the program to be executed, NASTRAN, the region size

in which NASTRAN is to be executed, and the step time.

3. The STEPLIB card defines the data set name and the location of the executable.

4. The FTOIFOOI DD card defines the data set to be used as intermediate storage for

NASTRAN input. BCD or EBCDIC card images are read and converted to BCD card images and

written on unit l, then NASTRAN reads its input from unit I.

5.3-9 (811172)

NASTRAN - OPERATING SYSTEM INTERFACES

5. The FTO4FO01DD card defines the data set that will contain the run log. The NASTRAN

run log contains internal timing for NASTRAN and a trace of the modules that are executed in

an execution. It is usually assigned to a printer (SYS@UT=A); however, it may be assigned to

any device or set to dummy and thereby deleted as desired.

6. lhe FTO5FO01DD card is deferred by the use of the DDNAME=SYSIN parameter and will be

discussed in the example for follows.

7. The FTO6FO01DD card defines the printed output from the NASTRAN run. This printed

output is written in BCD. As with FTO4FO01, it can be modified at execution time by the

user as desired.

8. The FTO7FO01DD card defines the punched output from NASTRAN executions. It can be

modified as desired.

9, The FTI3FO01DD card is deferred by the use of DDNAME=PLTI (see Item 24).

I0. The FTI4FO01 DD card is deferred by the use of DDHAME=PLT2 (see Item 25).

II thru 20. These DD cards define data sets to be used as user tapes through the use

of INPUT2 and BUTPUT2 routines. All have the parameter DSN=NULLFILE which restricts _S

from allocating them unless they are supplied as override JCL.

21. The NPTP DD card is used to describe the new problem tape (checkpoint tape) to be used

by NASTRAN. It is set up as a temporary file and should be overridden if it is to be saved

for later use.

22. The NUMF DD card describes the new user master file that is to be created in the

current NASTRAH execution. It is set to DSN:NULLFILE, and must be overridden if needed.

23. The BPTP card defines the old problem tape (previous checkpoint tape) for the NASTRAN

run. It must exist prior to the NASTRAN run in which it is used, and in this procedure

DSN=_WLLFILE must be overridden before the OPTP could be used to retrieve data.

24. The PLTI DD card defines the output data set containing EAI or Benson Lehner plotting

data.

5.3-10 (8/I/72)

NASTRANONTHEIBMSYSTEM360-370OPERATINGSYSTEM(BS)

25. ThePLT2DDcarddefinesthe outputdataset containingthe SC4020,Calcompor DD80

plotting data.

26. TheP_L DDcardsdefinethe dataset to beusedas the DataPoolfile. It is always

presentandrefers to temporaryscratchdisk.

27. TheUMFDDcarddefinesthe dataset that containsthe usermasterfile datato be

input to NASTRAN.It mustbespecifiedif it is needed.

28thru 60. TheseDDcardsdefinethe primaryunits to beusedby NASTRANas temporary

workingfiles.

61 thru 75. TheseDDcardsdefinethe secondaryunits to beusedby NASTRANas temporary

workingfiles.

76 thru 79. TheseDDcardsdefinethe tertiary units to beusedby NASTRANas temporary

workingfiles.

80. TheSNAPSHOTDDcarddefinesthe dataset that containsthe diagnosticdumpif NASTRAN

takesa userabort. It is assignedto the printer.

81. ThePENDcardsignifies the endof aninstreamprocedure. It shouldbe removedbefore

the JCLis placedonthe PR_CLib.

A sampleNASTRANexecutionwith the instreamprocedurecouldbe:

// NASTRAN J_B

{Instream }
Procedure
Deck

// EXEC NASTRAN

// NS. SYSlN DD *

INASTRAN Input IDeck

/*

5.3-II (8/I/72)

NASTRAN- OPERATINGSYSTEMINTERFACES

Thefollowingrestrictions for Level15shouldbenoted: I) Onlyonetypedirect access

device(2314)is allowedfor primary,secondaryandtertiary storagefiles. 2) Plot tapesmustbe

7-track tapes;anyremainingtapes(problemtapes,UMF,etc.) maybe7 or 9 track as the user

desires.

TheNASTRANexecutiondecksetupis presentedasan instreamproceduresuchthat it maybe

verified beforeadditionto the installation procedurelibrary (PROCLIB)to permiteasyrecall and

reuse.

Theprocedureprovidedis intendedfor useonan IBM360computeroperatingunderstraight

_S. It shouldbereviewedfor eachinstallation prior to actual use. Amongthe itemsthat may

necessitatemodificationof the procedureare the following:

I. Anymodificationto the standardIBM_Soperatingsystemcouldmakemodification

of the PR_Cnecessary.Forexample,all SYS_UT=AandSYS_UT=Bdatasets are provided

with DCBinformationandspaceallocation. If a particular installation is usingH_SP

(HoustonAutomaticSpoolingSystem),it becomesnecessaryto removethe DCBparameters

andthe spaceallocation is no longerneeded.Similarmodificationswill benecessary

whenrunningunderASP(Auxiliary SupportProcessor)or related systems.

2. This procedureshouldbe reviewedandchangedfor anyinstallations that have

other than2314disk units definedfor SYSDAdatasets. Theprimary,secondaryand

tertiary files aresupportedonly for the 2314disk facility. Theresults of using

other typesof DASDunits areunpredictablebut usuallydisastrous.

3. Theprocedureas providedhastemporaryscratchfile spacesufficient for small

to mediumsizeproblems.Mediumto largeproblemswill require the initial space

allocation for primary and secondary files to be doubled (PI=030, SI=140), while very

large problems often tax the resources of the computer and must be dealt with on an

individual basis.

4. If the number of DD statements in the procedure is too great, it may be reduced

(at some cost in performance) as follows with the most expendable data sets listed

first:

5.3-12 (8/I/72)

a.

b.

c.

d.

5.3.6 Physical

5.3.6.1

NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEM (0S)

INPT,INPI,INP2,---,INP9,NUMF,_PTP,UMF,PLTI(and FTI3FO01), PLT2(and FTI4FO01).

These data sets are not used by NASTRAN unless requested by the user through

his data.

TEROI,TER02,---. Tertiary files may be eliminated if careful thought is

given to the selection of the space allocation parameters P1 and SI.

The secondary files (SECOI,SECO2,---SECI5) may be cut back to a single

one (SECOI) as long as enough space is pre-allocated for the primary files

(PRIOI,PRI02,---) to run the problem. It is recommended that at least

four or five secondary files be retained, however.

The number of primary files (PRIOI,PRI02,---) can be cut back to a

minimum number which will be problem-dependent. For static analysis this

number is around 25. This is not recommended because the program will be

forced to copy data blocks to and from the P_BL file in order to function

with a restricted number of primary files.

Items and Generation of NASTRA._IExecutable System

Description of NASTRAN Physical Items

The following eleven tapes represent the official NASTRAN Level 15 delivery to NSM_. They

are all 800 BPI, unlabeled, 9-track tapes prepared by standard IBM utilities (IEHMBVE, IEBGENER,

or IEHDASDR). All tapes other than the IEHDASDR tapes are single file tapes with a DCB of:

DCB=(RECFM:FB, LRECL=80, BLKSIZE=8OO,DEN=2). The IEHDASDR tapes contain two files spanning two

volumes with a DCB of: DCB=(RECFM=U, BLKSIZE=7294,DEN=2).

T_ape No. Created by Data Set Description

1 IEHM_VE DEM_DATA

2 IEHM_VE NSTNLMBD

Data set contains 50 members which are
the input for the 50 official demonstration
problems. The restored PDS that results
from this tape has the following DCB:
DCB = (DS_RG:P_, RECFM=FB, LRECL=80,
BLKSIZE:7280). It requires 44 tracks of
2314 disk storage and 3 directory blocks.

Data set contains 15 members. This con-
stitutes the NASTRAN executable. The

restored PDS that results from this tape has
the following DCB: DCB = (DS_RG=P_,
RECFM=U, BLKSIZE:7294). It requires 1028
tracks of 2314 disk storage and 3 directory
blocks.

5.3-13 (811172)

NASTRAN- OPERATINGSYSTEMINTERFACES

I0 & II

Createdby

IEHM_VE

IEHM_VE

I EHM_VE

IEHM_VE

IEHMOVE

IEBGENER

IEHM_VE

IEHDASDR

Data Set

OBJ

S_Ul

S_U2

S_U3

SUBSYS

UMFINDTA

UTILMODS

D00313

Description

Data set contains 843 members which are load
modules of each individual subroutine with
unresolved external references in the form of
a call library to be input to the Linkage
Editor. The restored PDS has the following
DCB: DCB = (DS@RG=PO, RECFM=U, BLKSIZE =
7294). It requires 567 tracks of 2314 disk
storage and 121 directory blocks.

Data set contains 808 members. It is the

NASTRAN machine-independent F@RTRAN source
code. The restored PDS has the following
CDB: DCB = (DS_RG=P_, RECFM=FB, LRECL=80,
BLKSIZE=7280). It requires 2015 tracks of
2314 disk storage and 29 directory blocks.

Data set contains II members. It is the IBH

360 machine-dependent F_RTRAN source code.
The restored PDS has the following DCB:
DCB = (DS_RG=P@, RECFM=FB, LRECL=80, BLKSIZE=
7280). It requires 7 tracks of 2314 disk
storage and l directory block.

Data set contains 25 members, which are the
Assembly Language routines used by NASTRAN.
The restored PDS has the following DCB:
DCB = (DS@RG=P_, RECFM=FB, LRECL=80,

BLKSIZE=7280). It requires II0 tracks of
2314 disk storage and 2 directory blocks.

Data set contains 15 members which are the

linkage editor control cards corresponding
to the 15 members of NSTNLM_D. The restored
PDS has the following DCB: DCB = (DS@RG=P@,
RECFM=FB, LRECL=80, BLKSIZE=3200). It re-
quires 26 tracks of 2314 disk storage and 1
directory block.

Data set is a sequential data set to be input
to NASTRAN to build a new UMF tape. The
data set may be input directly from tape or
stored on the NASTRAN pack. It has a DCB of
DCB = (RECFM=FB, LRECL=80, BLKSIZE=800,
DEN=2) as do the IEHM_VE tapes; however, it
may be blocked up to 7280 when placed on the
2314 disk pack. It will then occupy 141
tracks of 2314 disk storage,

Data set consists of 4 members. These are
programs used auxiliary to NASTRAN for check-
out and maintenance. The restored data set
has the following DCB: DCB = (DS_RG=P_,
RECFM=U, BLKSIZE=7294). It will occupy 16
tracks of 2314 disk space and 3 directory
blocks.

These two tapes _onstitute an 800 BPI IEHDASDR
pack dump and con ain the previous 9 data sets.
Where usable, this form will save 80% of the
computer time required for restore the nine
data sets from the IEHM_VE and IEBGENER tapes.

5.3-14 (8/I/72)

NASTRANONTHEIBMSYSTEM360-370OPERATINGSYSTEM(_S)

5.3.6.2 Installation of NASTRANPhysicalItems

Partitioneddatasets to be restoredby IEHM_VEshouldbepre-allocatedonthe pack. Todo

this, usethe followingJCL(NSTNLM_Dis usedhereasanexample):

//ALBCAT EXEC
//XXX DD
//
/*

PGM=IEFBRI4
UNIT=2314,VBL=SER=xxxxxx,DISP=(NEW,KEEP),DSN=NSTMLMBD,
SPACE=(TRK,(IO28,,3)),DCB=(DS_RG=P_,RECFN=U,BLKSIZE=7294)

The following JCL may be used to recreate the partitioned data sets unloaded by IEHMBVE.

This JCL can be used for data sets DEM_DATA, NSTNLM_D, BBJ, S_UI, S_U2, S_U3, SUBSYS, and UTILMBDS.

When using this JCL for SBUI and _BJ it will be necessary to increase the initial space allocation

to 80 tracks on the UNI DD card and add a PARM='POWER=2' option to the IEHMBVE EXEC card.

//ALL EXEC
//UNI DD
//MBV EXEC
//SYSPRINT DD
//SYSUTI DD
//DDI DD
//TAPE1 DD
//
//
//SYSIN DD

C_PY
/*

JCI_ FOR IFIIMI_VE

PGM=IEFBRI4
UNIT=2314,DISP=(NEW,DELETE),SPACE=(TRK,(40)),,CBNTIG)
PGM=IEHMBVE
SYS_UT=A
UNIT-2314,V_L=REF=*.ALL.UNI,DISP=_LD
UNIT=2314,VBL=SER=xxxxxx,DSN=NSTNLM_D,DISP=(_LD,PASS)
UNIT=2400,V_L=SER=zzzzzz,DISP=_LD,LABEL=(,BLP),
DCB:(RECFM=FB,LRECL=80,BLKSIZE=8OO,DEN=2),
DSN:NSTNLM_D

PDS=NSTNLM_D,FR_M=2400=zzzzzz,T_=2314=xxxxxx,FRBMDD=TAPEI

The following JCL may be used to restore the Level 15 archive pack which includes all of the

nine data sets previously described from the IEHDASDR pack dump tapes.

JCL FOR IEHDASDR

//RE313 EXEC PGM=IEHDASDR
//SYSPRINT DD SYS_UT=A
//TAPE DD UNIT=2400,V_L:SER=(bbbbbb,cccccc),DISP=_LD,
// DSN=DO0313,LABEL=(,BLP),DCB=DEN=2
//DISK DD UNIT-2314,VBL:SER=aaaaaa,DISP=_LD
//SYSIN DD *

RESTBRE FR_MDD=TAPE,T_DD=DISK,CPYV_LID=N_
/*

After preparation of the archive pack, either by processing the nine data sets individually

or by processing them through IEHDASDR as a pack dump, the NASTRAN program may be executed by

the instream procedure provided. Care should be taken to insure that the instream procedure

provided does not conflict with any requirements placed on the user by his particular installation.

5.3-15 (811172)

NASTRAN- OPERATINGSYSTEMINTERFACES

5.3.6.3 Generation of the NASTRANExecutable System (SUBSYSING)

The following Instream Procedure was used to produce the individual links of the NASTRAN

executable (NASTNLM_D) on the IBM 360:

Table 2. Basic Job Control Language (JCL) for NASTRANSUBSYSING

I. //JPRPLINK PR_C N=I,LM_D=NSTNLM_D,PACKI=DOO313,PAKLMOD=DO0313,
// PACKS=DO0313
//*
//*---LINKEDIT THE _VERLAY STRUCTUREFOR THE LINK SPECIFIED---
//*

2. //LLLL EXEC PGM=IEWL,PARM='MAP,LET,BVLY,LIST,SIZE:(230K,O62K) '
// REGI_N=3OOK,TIME=5

3. //SYSPRINT DD SYSOUT:A,DCB=(RECFM=FBM,LRECL=I21,BLKSIZE=I210),

4,

5.
6.
7.
8.

//
//SYSUTI
//SYSLIB
//LIB
//SYSLIN
//SYSLMOD
//*
//

SPACE=(CYL,(IO,I))
DD UNIT=SYSDA,SPACE=(7294,(80,20)),DCB=BLKSIZE:7294
DD DSN=SYSI.FORTLIB,DISP=SHR
DD UNIT=2314,VOL=SER=&PACKI,DISP=SHR,DSN:_BJ
DD UNIT=2314,VOL=SER=&PACKS,DISP=SHR,DSN=SUBSYS(&N)
DD UNIT=2314,VOL=SER=&PAKLMOD,DISP=_LD,DSN=&LMBD

PEND

Each card within the NASTRANprocedure is discussed by item below. The item numbers match

those along the left margin of the preceding deck listing.

Itern

I.

Description

The PROCcard defines the name of the instream procedure and sets the default values

for the symbolic parameters.

SYMBOLIC DEFAULT
PARAMETER VALUE DESCRIPTION

N 1 Defines the link to be created by this execution of
the linkage editor. The default value is set to 1
and will produce a JCL error unless it is supplied.

LMOD NSTNLM_D Defines the name of the preallocated data set to
contain the linkage editor output load module.

PACK1 DO0313 Defines the pack that contains the individual sub-
routine load module library (_BJ).

PACKLMOD DO0313 Defines the pack that contains the preallocated data
set that is to contain the output of the linkage
editor.

PACKS D00313 Defines the pack that contains the linkage editor
control cards for each link as members of a PDS such
that each member corresponds to a member of the LM_D
data set (NSTNLM_D).

5.3-16 (8/I/72)

NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEM (_S)

Item Description

2. The EXEC card defines the program to be executed, the linkage editor (IEWL) and the

options selected (PARAM), as well as the region (30OK) and the step time (5 Min.).

3. The SYSPRINT DD card defines the printer output data set.

4. The SYSUTI DD card defines the temporary work data set for IEWL.

5. The SYSLIB DD card defines the system library containing the F_RTRAN support modules

available to the F_RTRAN programs.

6. The LIB DD card defines the load module library where each subroutine has previously

been compiled and linked independently.

7. The SYSLIN DD card defines the linkage editor control data set (SUBSYS).

8. The SYSLM_D DD card defines the output load module for the linkage editor.

This procedure assumes that all necessary NASTRAN subroutines have been previously compiled

and linked individually as members of the partitioned data set _BJ. Also, the output partitioned"

data set (NASTNLM_D) for the completed executable system must be available. The linkage editor

control data set is assumed to be on the partitioned data set SUBSYS with one member correspond-

ing to each member of the executable NSTNLM_D PDS. These conditions will result if the NASTRAN

system is restored according to Section 5.4.6.2.

5.3.7 Machine Dependent Routines

The routines discussed in this section consist of those programs unique to the IBM 360 or

those routines which are implemented differently on the IBM 360. The language for each deck is

indicated by the letter F for the F_RTRAN decks or the letter A for the assembly language decks

following the deck name. GIN_ and GIN_ related routines are discussed in Section 5.3.8.

1 • EJDUM2 (A)

EJDUM2 initializes and establishes open core (see Section 5.3.4).

functional link except Link Io

It is used for each

5.3-17 (8/I/72)

NASTRAN- OPERATINGSYSTEMINTERFACES

2.

3.

MAPFNS (A)

In addition to the standard functions described in Section 3, the following were added:

a. TDATE(L_C)

Subroutine TDATE returns the date in a three word integer array L_C where:

L_C(1)=Month
L_C(2)=Day
L_C(3)=Year

b. WHEN(WCLOCK)

Subroutine WHEN executes the 0S TIME macro, which returns time in seconds
after midnight. The initial call saves the time which is then used to
calculate the elapsed time. WHEN returns the time in integer seconds after
the initial call.

Co

d,

e°

N_W(TTIME)

The N_W routine initializes and user the interval timer on S/360 configurations
with the timer option. NOW sets and interrogates the interval timer through
the STIMER and TTIMER _S macros. The STIMER macro is executed with the TASK
option which specifies that the timer is to operate only when the task is
active. This has the effect of measuring the CPU operation time for a particular
task. N_W returns the time in integer seconds from the initial call.

PDUMPX(SWITCH)

Subroutine PDUMPX through execution of the SNAP macro produces a problem
program memory dump or a trace table depending on the value of SWITCH.

SWITCH=I - Produces a complete problem program dump.

SWITCH=O - Produces only a trace table

The resulting dump or trace table is output on the SNA_3;:?T d_ta set.

TYPWRT(MESSAGE)

This subroutine will print up to eighty-character messages on the operator
console defined in the variable MESSAGE.

f. DUMPME

Subroutine DUMPME produces a dump of the problem area of core and terminates
the run.

TYP_UT (A)

The TYP_UT routine is used to print an eighty-character message on the typwriter.

4. ¸ WALTIM (A)

Subroutine WALTIM executes the _S macro TIME and returns the time of day in integer

seconds after midnight in the calling argument variable.

5. CDMPBD (F)

CDMPBD is a block data routine to initiate the common block /CDCHPX/.

5.3-18 (8/1/72)

NASTRANONTHEIBMSYSTEM360-370OPERATINGSYSTEM(BS)

6. C_NMSG(F)

This routinehasseveralentry points otherthan the primaryentry point C_NMSG.

Thedescriptionof the entry pointsfollow.

a. C_NMSG(BUF,N,K)
Theprimaryentry point for this routine, CBNMSG,is usedto write messages
on the operator'sconsoleandonunit four run log. Themessageis defined
by the input variableBUF,the lengthof themessageis definedby the
variable N, andK is usedasa switchto determinewhetherthe messageis
to bewritten to the operator'sconsolewhere:

K:ODonot write messageonconsole
K#OWritemessageonoperator'sconsole

b. DUMP
TheDUMProutine calls the DUMPME routine described under MAPFNS above
to terminate the run.

c. PDUMP

The PDUMP routine calls the PDUMPX routine described above under MAPFNS
and produces a dump or traceback depending on whether DIAG 1 is set or not.
If DIAG 1 is set a full dump is produced, otherwise only a traceback is
produced.

d. CL_CK, BPRMES, REWNLD

These three routines are dummy routines only. They are included here to
avoid having unresolved external references from the linkage editor, and
are not used in NASTRAN on the IBM 360.

e. KL_CK(ITIME)

The KL_CK routine uses the N_W routine described under MAPFNS above to return
the CPU time in integer seconds in the variable ITIME.

f. SECOND(TIME)

The SECOND routine uses the N_W routine described under MAPFNS above to

return the CPU time in the floating point variable TIME.

7. CORSZ (F)

The integer function C_RSZ calls the function XCBRSZ in MAPFNS and returns the length

of open core. The value of the function is printed on unit four if DIAG 13 is supplied.

8. DCMPBD (F)

DCMPBD is a block data routine to initialize the /DCBMPX/ common block.

9. I_MSG (F)

The I_MSG routine is used by the NASTIB routine, described in Section 5.3.8, to

write the messages needed by that routine.

5.3-19 (8/I/72)

NASTRAN- OPERATINGSYSTEMINTERFACES

I0. _PMESG(F)

The_PMESGroutine calls the TYPOUT routine described above to write messages on

the operator console.

II. PXIT36

The PXIT36 routine is executed at the end of each NASTRAN run in order to insure

the print buffers are flushed properly.

12. SEMTRN (F)

The SEMTRN routine is used to convert NASTRAN data cards that may be in either BCD

or EBCDIC to the BCD card images acceptable to NASTRAN and output them onto unit 1

where NASTRAN processing can read them.

13. TAPSWI (F)

The TAPSWI routine provides for multi-volume processing in NASTRAN. When processing a

tape and an E_V indicator is sensed, this routine writes a message to the operator,

unloads the first tape and pauses to permit the operator to mount the next tape.

5.3.8 GINB (Generalized Input/Output Processor for NASTRAN)

The GIN_ package for the IBM 360 consists of the following two decks with entry points as

indicated.

DECK

GIN_

ENTRY POINT

_PEN
CLBSE
READ
WRITE
BCKREC
FWDREC

E_F
SKPFIL

NASTI_ 10360

Documentation for GIN_ and the calling sequence for its entry points are essentially machine

independent and are discussed in Section 3 of the Programmer's Manual. The documentation for

NASTI_ is unique to the IBM 360 and is provided as follows:

5.3-20 (8/I/72)

NASTRANON THE IBM SYSTEM360-370 OPERATING SYSTEM(_S)

Pur_4rE_

To perform I/_ operations for NASTRANfiles using the Basic Sequential Access Method

(BSAM).

Calling Sequence

CALL I0360(BPC_DE,BL_CK), where

_PC_DE = the operation code for the operation to be performed according
to the followSng list:

I. - Rewind
2. - Write
3. - Read
4. - Backrec
5. - Forward rec
6. - Open
7. Close
8. - Reread

I0. - Unload

BL_CK = The GIN_ Reference Number of the file being processed.

Additional communication is accomplished through the use of the I_TABLE. The I_TABLE

is a table defined in NASTIO (like a common block) which is initialized by GNFIAT and use

by NASTIB. The contents are as follows:

I_TABLE DS H
DS H
DS H
DS H
DS H
DS H
DS H
DS H
DS H
DS H
DS H
DS H
DS H
DS A
DS A
DS A
DS A
DS A
DS H
DS H

This table is

BLKSIZE IN BYTES
IST UNIT REF NO. -- PERMANENT UNITS

PRIMARY UNITS
SECONDARY UNITS
TERTIARY UNITS

NUMBER BF UNITS -- PERMANENT
PRIMARY
SECBNDARY
TERTIARY

NUMBER _F BLOCKS °- IST ALLBC -- PRIMARY
SECONDARY

2ND ALL_C -- PRIMARY
SECBNDARY

NUMBER _F DECB'S
ADDR _F FILE C_NTRBL BL_CKS (FCB)
ADDR _F DATA CBNTR_L BL_CKS (DCB)
ADDR BF DATA EVENT C_NTRBL BL_CKS (DECB)
NUMBER _F BLBCKS PER TRACK
DCB LENGTH IN BYTES
DECB LENGTH IN BYTES

only referenced by NASTI_ and GNFIAT.

Method

The NASTI_ routine performs transfers of record blocks between main storage and

secondary storage and performs positioning of secondary storage devices. All I/_ operations

5.3-21 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

are performed using the macros of the Basic Sequential Access Method (BSAM) such as Open,

Close, Read, WRITE, CHECK, N_TE, and P_INT. Fields of the appropriate FCB are updated for

each operation. Some examples of call chains for NASTIO are:

Level 0 1 2 3 4

User_ ZBLPKI_ QWRITE_ I_360_ (BSAM)

User_ ZNTPKI_ QREAD--_ I_360_ (BSAM)

User_ INTPK_ READ _ 19360 _ (BSAM)

user_ WRITE_ I_360_ (BSAM)

Note: _1ost calls are serviced at levels 1 and 2.

Calls to level 3 occur when a block is to be transferred between main and secondary storage.

All calls to level 3 result in at least one call to level 4.

It should be noted that when a write operation is scheduled which would exceed the space

allocated to the unit, the pool of secondary units is examined to find an available unit. If

a unit is available, it is attached to the primary, and the write operation is made on the

secondary. Correspondingly, if a secondary unit fills, another secondary unit is attached.

Only when all secondary units are filled does NASTRAN attach a tertiary unit, if available,

and only when all tertiary units are used does _S request an extent. It should also be

noted that each time a file is opened to write with rewind, all secondary units previously

assigned to the file are released and made available for future assignment to other files

(data blocks).

5.3.9 S_pecial Error Codes from NASTRAN on the System 360

One of the following two types of error codes will accompany any abnormal end (ABEND) output

from NASTRAN operating under _S on the IBM System 360:

I. SYSTEM = XXX

Where XXX is an _S code described in the IBM System Reference Library (SRL), Form

628-6631, titled IB_,I _S_(stem/360 O__era_ting_g _ten_ Me s_saqe s and Coa_s_.

2. USER = YYY

Where YYY is a HASTRAN code described as follows:

5.3-22 (8/I/72)

NASTRANONTHEIBMSYSTEM360-370OPEP_TINGSYSTEM(_S)

USER
CODE SUBROUTINE

001 NASTRAN

002 GNFIAT

003 GNFIAT

004 GNFIAT

005 EJDUM2

009 GNFIAT

012 MAPFNS

401 NASTIB

601 GINB

602 GINB

603 GIN_

608 GINB

610 GINB

690 PACKUNPK

777 MAPFNS

900 NASTIB

901 NASTIB

902 NASTI_

904 NASTIB

905 NASTIB

906 NASTI_

907 NASTIB

984 GIN_

CAUSE

A link name has been requested that is beyond the range of
those available.

Insufficient core for NASTI_. Core requirement for NASTI_
equals 26 times the number of non-dunTny DD statements.

Insufficient core to release the core to _S that is necessary
for F_RTRAN.

Core is discontinuous.

Insufficient core.

The SPACE parameter in a DD statement for a primary or

secondary file was not coded CYL or TRK.

DUMP was called.

Space for Data Event Control Blocks has been exceeded.

Increase MAX_PN parameter on NASTRAN card.

Block number check failed.

Block number check failed.

Incorrect return from MESAGE.

Premature end of record segment.

Premature end of record segment.

Bad order of row descriptors.

SNAP macro failed.

Block number check failed.

Block nu_er check failed.

No unit associated with block nun_er.

Block number check failed.

No unit associated with block number.

I/_ output in progress at the wrong time.

No unit associated with block number.

User executed a CALL WRITE with a negative word count.

5.3.10 System 360 FBRTRAN Compilers used for NASTRAN

All NASTRAN Level 15 FBRTPJ_N subroutines, wit_ the following exceptions, were compiled using

the standard, IBM release 20, H level F_RTRAN compiler using option I.

5.3-23 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

SUBROUTINE COMPILER

CXL(_P H((_PT=2)

DLB(_P H((_PT:2)
LDOI G
LD02 G

LD03 G

LD04 G
LD05 G

LD06 G

LD07 G
LD08 G

LD09 G
LDIO G

LDll G

LDI2 G
LDI3 G

L_OP H(_PT=2)
PLOTBD G

The reason for selecting other compilers in the above were, in the case of the inner loop

routine. H(_PT=2) was selected to optimize the code as much as possible, while in the other

routines the G compiler was used to overcome deficiencies in the H level compiler.

5.3.11 IBM 360-370 Overlay Charts

5.3-24 (8/I/72)

NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEM (_S)

NASTRAN

I N_I_

.°

Figure 3. Overlay Structure for Link NASTRAN on the IBM 360-370.

5.3-25 (8/I/72)

L013

[I

IF'PRBO
IF'I'I
[FI'IB
IF'F'IC
IrPIB
I_'IE
Ifl'l_
[n'IG
[f'l'IX_'
SWIBRT
FN3PLT

,/'3[_ /
/IFP'IR I

Ill'IX

m

IFXIBO
IF'XlBO

EOIINT
/ IFI"XO #
/XOLOPT /
/ IF'P'X1 /
/UIIF-Z22 i

SolTr

IF'P,_I

i IFI_'2Z /

10840

IFI'_
II:'pIIC
II:'I'_
I_lllf"
IF'_

IF'P5

I_:"II;

Igl'_

X_ORT

,/_T /

FA60

In.o's
ISFT

Uift'13T

L'_ORT

AJ'_X_i I

E580

XitlI_

IVlI_ •

llll.ll_

XGPIm
XO'I
XGrIOG

,/'Am'l r" I
IXI_[O I
/XI_Jl2 I
IXg'|3 I
IJiGPIq I ,
IXGr'I5 /
IXG'I6 I
/Xll_'I7 /
/IIGI'lll /
,/XO'[2X /

NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEt':(_S)

LI 01

£

X IPFL

XGPI1

/X_I1 /

nn

/IFI_m /

IF'_P

IrPxx

/IFI_ /

IFX_O

IFX'mO
IFP

/lf'P_ /
/ IFPX'J /

/lnm'_ /
/IFP_ /
/ IFI_A'I I

If'd_
I I_ [f_ I O01

13BD8

i_[cm
irP3
iFr,_

i IFt'J_ /

nnn

O[NO

16918

Figure 4. Overlay Structure for Link Ol on the IBM 360-370.

5.3-Z7 (8/I/72)

NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEM (VS)

Figure 8 . Overlay Structure for Link 05 on the IBM 360-370.

rONnsG

k%
MPU3

Ee
U'Nm

kTOc
HRTTAL

w/
A

G m
mTRx

FNOPNT
BRsr+B
W L
PERlUT
BISRCn
sRxe

/Laps /
/ T W /
/XCSTN /

55628 m
FBYQ

sllCmP
COOP
FIXTOR El * x

9900

F I L S 1
/FBYROX / /wvm /

C090

FRETRX

SIX

1~~682 I

W R
mcv
PFRTN

/ M G /

SORB1

m
FRS
FeSSP
FBS1P

/FBSX /

/SSGR3 /

D40 8

LEYl

/SORBI /
/SS62X /

-

ZE
~ T C
GMWTS
PREI*)T
INVERS
5S6ETO
g M H 1
/FPT / /wrm /
/TRIPIEX /
 TIN /
m T W T /
/SSETRI /

D2A8

s s Q n

PBVX

/ssMRn /
/SSGETT /

S l R
EXTERN
CRRVCl
CRRVC3
FPONT
CQaIN
GRRV
ROAD
PREW
RFORCE
CRRVC2

E5A8
E598

MRGE
SORlB

-

- PFlRTX

E5AO
gGEL

1 OFCO HBDY TTRIRG CWE IMtl
mi? TTRFPR We
TRIttEN T T m Wf3

FQRL

/SSGFIlX /

(n~rr

SSGa

/Ssla /

SSGRlX

Ss la

REGION

PFlGE

EJECT 2w

Figure 11 . Overlay Structure f o r Link 08 on the IBM 360-370.

y Structure for L i n k 09 on the IBM 360-370.

[BM SYSTEM 360-370 OPERAT~NG SYSTEM (8s)

5.3-43 (8/1/72)

NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEM (OS)

F igure 13. Overlay S t ruc tu re f o r L ink 10 on t h e IBM 360-370.

_GI{]4

IIfXIT
I11llT36
I.IMg61
130RsZ

m_l"lllm

TmlEO

8JlTOI

l'l_kOl:
I_TTll

/gl:lll_ I
/1_1:111_/

IIs[m2

a
m

mSllr

m

g_lSl

JIOuIN

JIg_ilK

132F8
12FD8

III_ I

9498

TR

I_IIION

II,Jl_ I

NASTRAN ON THE IBM SYSTEM 360-370 OPERATING SYSTEM (_S)

ILINK 12

i FIBSm

W

C838

_B

FII._I

AIPIX I

m

D078
DO80

m

C858

C850

_R

BD20

_A

82E8

m

/_TLtP /

/VOI_ /

BBAO

W

OORtB

7DAO

Figure 15. Overlay Structure for Link 12 on the IBM 360-370.

5.3-49 (811172)

i ECBO
j
1
i

!
1
!

E X I T
PX I T36
L I NUNS1

RETURN
XEOT
I*PFNs
T N T W
mnsG

SSUTW
SOPEN

i
I

FlPRlE
PRELOC r n T TRL
xSEFI1q

NASTRAN ON THE UNIVAC ll08 (EXEC 8)

5.4 NASTRAN ON THE UNIVAC ll08 (EXEC 8)

5.4.1 Introduction

The purpose of this section is to describe the unique operating features of NASTRAN on the

UNIVAC If08 computer under the Exec 8 operating system.

This section contains much material of interest to both the serious user of NASTRAN and the

support programmer. Of particular interest to the user are the following sections:

Number

5.4.2

5.4.4

5.4.5

5.4.9.3

5.4.12

5.4.14

5.4.15

5.4.18

User

Mass storage estimates and maximum file sizes.

Control of open core sizes and the generation of smaller NASTRAN's.

Execution deck set-ups.

Catalog the executable procedure (or copy in each time).

External names of user tapes (QPTP, NPTP, PLT2, etc.).

Description of the UMF runs.

UMF times and problem numbers for the demonstration problems.

If08 time estimation.

The choice of Exec 8 over Exec II as the If08 Executive System was made due to the added

flexibility obtainable in the control language. The size and complexity of the NASTRAN system

necessitates the use of a system allowing open-ended expansion.

Much of the final checkout and validation of NASTRAN was done under Exec 8. The use of

catalogued files for the source, object, and absolute program files simplified the task of

modifying and updating the NASTRAN system.

NASTRAN operates as a single job on UNIVAC ll08 computers under Exec 8. NASTRAN is created

as 14 separate absolute programs, with each program containing the structure and content of a

NASTRAN link. These links are executed serially (usually) by the use of 'XQT° cards.

5.4.2 Input/Output

The machine dependent I/_ routines in NASTRAN can be classified into three categories:

l) obtaining the logical files, 2) performing the actual I/_ (other than plot output), and

3) generating the plot tapes.

5.4-I (8/I172)

NASTRAN - OPERATING SYSTEM INTERFACES

GNFIAT is the subroutine responsible for identifying the logical files available for use

by NASTRAN. For the UNIVAC 1108, it is written in FORTRAN. Its functional description can be

found in Section 3. Under Exec 8, GNFIAT operates in conjunction with the system routine NTAB$.

NTAB$ was reassembled for NASTRAN to allow access to logical units 1-40. Correspondingly, a table

is generated in GNFIAT to indicate the status of each of these units. The status code of 1 implies

the unit is unconditionally available for insertion into the FIAT Executive Table. A code of 2

means the unit can be used if it is not set up as a tape. A status code of 3 means the unit is

unavailable for the FIAT, but is available for XFIAT. A status code of 4 means the unit is not to

be assigned by NASTRAN. Any units with status codes of I, 2, or 3 will be dynamically assigned by

NASTRAN unless they have been previously assigned by user-supplied assign cards.

this table and inserts the available logical units into the FIAT.

The following table indicates the status of the 40 units:

F_RTRAN Unit No. Status Code External Name

GNFIAT searches

1 4 None

2 3 2

3 1 3

4 1 4

5 4 None (Input File)

6 4 None (Print File)

7 3 P_L

8 3 _PTP

9 3 NPTP

I0 2 UMF

II 2 NUMF

12 3 PLTI

13 3 PLT2

14 2 INPT

15 2 INPTI

16 2 INPT2

17 2 INPT3

18 2 INPT4

5.4-2 (8/I/72)

NASTRAN ON THE UNIVAC 1108 (EXEC 8)

F_RTRAN Unit No. Status Code External Name

19 2 INPT5

20 2 INPT6

21 2 INPT7

22 2 INPT8

23 2 INPT9

24 l 24

25 l 25

26 l 26

27 l 27

28 l 28

29 l 29

30 1 30

31 l 31

32 l 32

33 1 33

34 l 34

35 l 35

36 1 36

37 l 37

38 l 38

39 l 39

F_RTRAN unit numbers 7 through 23 are attached to their external names by the use of @USE

cards which are added internally. Note that this requires assignments be made by the external

name, rather than the F_RTRAN unit number, as was done in the past. Dynamic assigns for all

units not assigned by the user (up to MAXFIL units (System (29)) will be of the following form

@ASG,T XX,FI7//P_S/30. This assign card allows a maximum of 2,000 tracks, or approximately

3,500,000 words, for each file. The Fl7 requests mass storage as available from first FHl782's,

second FH880's, and third FASTRAND model II. P_S requests that 64 contiguous tracks be assigned

at once. 30 will terminate the run if more than 30 x 64 tracks of data are written on any one

file.

5.4-3 (811172)

NASTRAN - OPERATING SYSTEM INTERFACES

In addition to the expanded NTAB$, NTRAN$ was assembled with the number of packets increased

to 30. This was necessary, due to the number of files used in NASTRAN at any one time.

The actual I/0 on the UNIVAC 1108 is controlled through a blocked 1/0 package, consisting

of GIN_ and its associated routines. The physical I/_ directives are restricted to GINOIO.

Physical records of size BUFFSlZE-3 (System (I)) words are written on all units. BUFFSIZE is

currently set to 871. Under Exec 8, NTRAN is used exclusively for I/_. The reader should

consult the subroutine descriptions for GIN_ and GIN_I_ in Section 3 for more information.

The final I/_ dependent routine is SGINO, whose responsibility is to generate the unformatted

BCD and binary tapes for the plotters. The restriction in SGINO is that the output records must

be free of any NASTRAN or system control words. NTRAN satisfies these requirements and is used

to perform the I/_.

5.4.3 Link Switchinq

A link on the UNIVAC ll08 consists of a main program, MAINi, that calls subroutine XSEMi,

which in turn has calls to the subroutines corresponding to the modules residing in that link.

Thus, a link is, in itself, a complete executable program.

The problem of link switching reduces to the problem of selectively controlling the execution

of the various programs (links). This is accomplished under Exec 8 by virtue of the TEST control

card and by the executive request (ER) SETC$.

The option to either execute or skip a link is achieved by the following two system control

cards:

@TEST TNE/i/S6

@XQT *NASTRAN.LINKi

The right sixth of the condition word which is tested by the TEST command is set by an ER to SETS.

By setting this sixth of the word to the value i, LINKi will be executed. If the value of the

word is not i, the XQT instruction will be skipped.

A packet of these control cards consisting of TEST and XQT cards for each link gives the

user the flexibility he desires. However, due to the capability of looping in NASTRAN, many of

these packets are usually put on a catalogued file such that one ADD card can redirect the control

card stream to the proper file. Two such packets are supplied with the Level 15 NASTRAN: CONTRL,

5.4-4 (8/I/72)

NASTRAN ON THE UNIVAC If08 (EXEC 8)

which results in a NASTRAN user region of 65K decimal words and C_NTRL 42K, which results in a

NASTRAN user region of 42K decimal words.

The above description gives the external controls required for link switching. Internally,

NASTRAN uses subroutines ENDSYS and SEARCH to direct the link switch. Their functional descrip-

tions can be found in Section 3. ENDSYS is used mainly for saving information required across

links. SEARCH, however, is the routine which controls the link switch. Under EXEC 8, this

consists simply of setting the condition word to the value of the desired link, and terminating

the execution of the current link. SEARCH on the If08 will also free (after link one) the UMF,

the NUMF, or the _PTP if they are assigned to tape.

Upon initiation of a new link, BGNSYS is called to restore previous information. An addi-

tional function of BGNSYS on the UNIVAC If08, controlled by a branch on machine type, is to restore

drum pointers for all files off the load point. Since GIN_ maintains a table of file positions,

this table can be used to update the system drum pointers.

5.4.4 Overlay Considerations and Implementation of Open Core

The complex nature of the NASTRAN overlay picture and the pecularities of the Exec 8 loader

pose some special problems on the ll08. The loader under Exec 8 is a "block" or "segment" loader.

A segment is loaded only when a subroutine within that segment is called. Also, when a segment

is loaded, local data and common blocks are set to zero.

The implications of these features of the loader can be seen in the following overlay

example, given in Table l and Figure I. If common block /XX/ is initialized by the Block Data

subprogram E, and subroutine A calls D directly, then D cannot reference the data in /XX/, since

that segment has not been loaded. Also, if subroutine A stores data in /YY/, and subsequently

calls subroutine C, /YY/ will be reset to zero as it is loaded.

As seen in Table l and Figure l, some common blocks will have to be repositioned higher

(in lower order core) in the overlay on the UNIVAC ll08 than on the IBM _360or CDC 6600 to protect

NASTRAN from the loader.

The implementation of open core on the UNIVAC ll08 consists of defining a common block

(/DFC_R/) in subroutine DEFC_R and using the executive request (ER) to MC_RE$ to reserve core

from the first cell of the common block to 1777708. This will define a 65K NASTRAN system.

Smaller NASTRAN versions can be defined by shortening the length of open core as follows:

5.4-5 (811/72)

Tabl e I.

NASTRAN - OPERATING SYSTEM INTERFACES

Example of Input to the MAP Processor for a NASTRAN Overlay on the UNIVAC 1108.

@MAP,I Sam__

SEG AA

IN A

SEG BB*,AA

IN B,XX

SEG CC*,BB

IN C,YY

SEG DD*,(CC)

IN D

SEG CORE*,BB

IN DEFC_R,DFC_R

Segment C_RE---_-L DEFCOR

/DFC_R/

Segment CC------_--

Subroutine A

Subroutine C

/YY/

Segment AA

Subroutine B
Data Block E

/XX/

Segment DD_

Segment BB

Subroutine D

Figure I. Example of NASTRAN Overlay on the UNIVAC 1108

5.4-6 (8/I/72)

NASTRAN ON THE UNIVAC I108 (EXEC 8)

Open core can be shortened by two methods: (1) The number 1777708 in subroutine ZC_RSZ

(MPAFNS) can be changed to a smaller number with 40K being the minimum. This method requires

regenerating all the absolute elements. (2) Options can be added to the XQT cards. The options

will turn bits on corresponding to the letter in the alphabet (i.e., A = 26th bit - Z = 0th bit)

in a word. This word will then be subtracted from the number 1777708 in subroutine ZC_RSZ before

the ER to MC_RE$. Execute cards of the form @XQT,LM will make NASTRAN approximately 42K in length.

5.4.5 Execution Deck Set-Up

The following table gives a typical deck set-up for NASTRAN on the ll08.

5.4-7 (8/I/72)

Table 2.

@RUN

@ASG,T 2,F//P_S/30

@ASG,T 3,F//P_S/30

@ASG,T 4,F//POS/30

@ASG,T P_L,F//P_S/30

@ASG,T OPTP,F//P_S/30

@ASG,T NPTP,F//P_S/30

@ASG,T UMF,F//POS/30

@ASG,T NUMF,F//P_S/30

@ASG,T PLTI,F//P_S/30

@ASG,T PLT2,F//POS/30

@ASG,T INPT,F//P_S/30

NASTRAN- OPERATINGSYSTEMINTERFACES

Execution Deck Set-Up for NASTRANon the UNIVAC 1108

POOL

_PTP

NPTP

UMF

NUMF

PLTI

PLT2

001

002

003

004

OO5

006

OO7

OO8

009

010

011

012

@ASG,T 39,F//POS/30

@HDG,N

@XQT *NASTRAN.LINKI

NASTRANDATA DECKS (Executive Control Deck, Case
Control Deck, Bulk Data Deck)

@TEST TNE/I/S6

@XQT *NASTRAN.LINKI

@TEST TNE/2/S6

@XQT *NASTRAN.LINK2

037

038

039

O4O

041

042

043

@TEST TNE/14/S6

@XQT *NASTRAN.LINKI2

@TEST TNE/17/S6

@JUMP END

@END:PMD,EB

052

053

054

O55

056

5.4-8 (8/I/72)

NASTRAN ON THE UNIVAC If08 (EXEC 8)

The following comments explain particular cards or groups of cards:

I. Card OOl consists of the standard RUN card required by the installation.

2. Cards 002-037 assign the logical files to FASTRAND or some other auxiliary storage

device. These assign cards allow a maximum of 2,000 tracks or approximately 3,500,000

words for each file. This assignment can vary per run or per device used.

3. Cards O05-Oll have a dual usage and can be used as user tapes. If a checkpoint is

required, then card 007 must be replaced with

@ASG,T NPTP,T,TAPE#

4. Depending upon the devices available, the assign cards can reference FASTRAND,

drum, disk, or tape.

5. Card 038 turns off the standard system heading.

6. Card 039 initiates execution of LINKI.

7. The NASTRAN data decks are inserted between cards 039 and 040.

8. Cards 040 to 050 constitute a packet of NASTRAN control cards. Many of these packets

may be required for one run.

9. For user convenience, 002-037 are automatically generated by NASTRAN, except for any

assignment supplied by the user (usually just tapes). Cards 038-039 can be catalogued

as the file ASGCRDS, and lO0 packets of the cards 040-056 can be catalogued as the file

C_NTRL (or the file C_NTRL42K for the same cards, but with the L and M option on the

XQT cards).

The execution deck set-up can then consist of:

@RUN @ASG (option tape assignment)

@ADD ASGCRDS.

NASTRAN DATA CARDS

@ADD C_NTRL.

@FIN

or @ADD C_NTRL42K. (for smaller NASTRAN)

5.4-9 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

5.4.6 Description of NASTRAN Physical Items and Generation of the NASTRAN Executable System

I. Symbolic Tape

This physical item includes a physical tape and an element list (TOC). The UNIVAC 1108

NASTRAN source library tape consists of a 2-file, 800-BPI tape containing approximately 900

separate symbolic elements in FUR/PUR format. The elements are ordered on the tape alphabeti-

cally. The element names and the order are shown on the element list. File 1 consists of

the machine independent decks. File 2 consists of the 1108 machine dependent decks.

2. Relocatable and Demonstration Problem Tape

This physical item includes a physical tape and an element list (T_C). The tape is a

two-file, 800-BPI tape in FUR/PUR format which contains the relocatable elements from the

source compiles, 14 symbolic MAP decks, and FORTRAN source of locally modified decks. The

MAP decks were placed on the relocatable tape, so that an executable tape could be generated

with just the relocatable tape file catalogued. The names and order of the relocatable ele-

ments are shown on the element list. File 1 consists of the relocatable elements from the

machine independent and dependent libraries. File 2 contains run setups for executing

demonstration problems.

There are 50 NASTRAN demonstration problem decks. They have been set up with all the

control cards including the "RUN" card necessary to run the demonstration problems on the

UNIVAC 1108 Exec 8. A description of one of the decks is shown in Section 5.4.14. In

addition to being necessary for running the demonstration problems, they are useful as sample

problem decks for new NASTRAN users.

3. Executable and UMF Tape

This physical item is a five-file, 800-BPI tape in FUR/PUR format. The first file

contains the NASTRAN executable elements or absolute program, and the executable program

for PRTVEC. The second file contains a program file called ASGCRDS., the third file contains

a program file called C_NTRL., the fourth file contains a program file called CONTRL42K, and

the fifth file is the User Master File (UMF).

5.4-10 (8/I/72)

NASTRAN ON THE UNIVAC I108 (EXEC 8)

The NASTRAN absolute program consists of 14 executable elements. These elements appear

to the UNIVAC ll08 Exec 8 system as 14 separate programs. The execution sequence of these

programs, for any problem, is controlled by the file CONTRL. or CONTRL42K.

The file ASGCRDS is a control card file which contains the control card to turn off

the system heading and the control card to execute the first executable element. This file

as well as the CONTRL file are described in more detail in Sections 5.4.12 and 5.4.13,

respectively.

The UMF file must be copied to another tape as the only file. This single file is used

to store NASTRAN Bulk Data Decks so that the input card deck will be smaller. Each UMF tape

has a tape and problem number associated with each Bulk Data Deck; the numbers are used by

NASTRAN to retrieve the appropriate deck. The UMF tape file delivered contains the Bulk

Data Deck for the NASTRAN demonstration problems. The tape and problem numbers are given in

Section 5.4.15. The BUFFSIZE used to generate this tape was 871 (the default value).

4. Sample Utility Procedure Deck

This physical item includes a family of sample decks (procedures) which have been used

during the NASTRAN project. Included are decks to:

a. Copy the four system tapes (see Section 5.4.8).

b. Catalogue the source, relocatable, and executable tapes (see Section 5.4.9).

c. Update the system (see Section 5.4.10).

d. Regenerate the executable tape (see Section 5.4.11).

The tape copy procedure should be used to provide backup copies of the NASTRAN tapes

delivered.

The catalogue procedures should be used when doing system maintenance. In addition,

the catalogue procedure for the executable tape must be used before running a NASTRAN

problem.

The update shows one way of setting up a compile and executable regeneration for system

maintenance or temporary check out of updates.

The deck to regenerate the executable tape contains the cards necessary to make a new

executable tape from the relocatable tape.

5.4-II (811172)

NASTRAN - OPERATING SYSTEM INTERFACES

5.4.7 Machine Dependent Routines

The routines discussed in this section consist of those programs unique to the UNIVAC 1108

or those which are implemented differently from other machines. The language for each deck is

indicated by an F (F_RTRAN) or S (SLEUTH) following the deck name. GIN_ is discussed in Section

5.4.16, matrix packing is discussed in Section 5.4.17, and single precision decks are discussed

in Section 5.4.18.

I. MAINi (F)

NLAINi is the main program for LINKi. Its sole function is to call DEFC_R and XSEMi.

2. DEFCOR (F)

DEFC_R is responsible for calling ZCORSZ to reserve core for NASTRAN. The last

location of this segment is saved as the end of open core.

3. MAPFNS (S)

In addition to the standard functions described in Section 3, the following functions

were added:

a. SETC(1) - Sets the condition word to I.

b. FACIL(UNIT,ID) - Sets ID = 0 if UNIT is assigned to FASTRAND.

Sets ID = 1 if UNIT is assigned as a tape.

Sets ID = 2 if UNIT is not assigned.

c. XDATE(DATE) - Return the date in a four-word array DATE.

DATE(I) = MONTH

DATE(2) = DaY

DATE(3) = YEAR

DATE(4) = time in elapsed wall clock seconds from midnight

d. ZCORSZ(X(1),[ENGTH) - Reserves core between X(1) and the 65K (less if options on

the XQT card are used) and return the length in LENGTH.

e. SEC(t) - Return CPU time used in T.

f. LOGFIL(I(1),WORDS) - Writes the number of words in W_RDS starting with I(I)

on the run log file.

g. ELAPSE(T) - Return in T the wall clock time used.

h. TSWAP(ID) - Unloads a unit (ID) and mounts another tape on that unit.

5.4-12 (8/I/72)

NASTRANONTHEUNIVAC1108(EXEC8)

i. ADDCRD(IMAGE,LENGTH)- Adda control cardimageof lengthLENGTHto the

control stream.

j. COM(IMAGE,LENGTH)- Typeanimageof lengthLENGTHon the operatorconsole.

k. ZCORSZ- Performthe function of C_RSZ.

4. UTIL(F)

a. SECOND(T)- Returnsthe CPUtimein floating point secondsby calling SEC.

b. TDATE(II)- Returnsthe date in the first threewordsof II andzeroin the

fourth wordof II by calling XDATE.It also initializes STIME

(SYSTEM(32))to the elapsedwall clocksecondsfrommidnight.

c. KLOCK(1)- Returnsthe currentCPUtimeusedin integer seconds.

d. CONMSG(IX,IY,IZ)- Writesa messageof lengthIYwordsfromthe first IYwordsof

IX. Thismessageis displayedonthe operator'sconsoleif

IZ # 0 (controlledby DIAG5 and6). Themessagesarenormally

storedin the log file. Thenumberof messagespreviously

written is accumulatedin SYSTEM(7). If SYSTEM(7) > I00,

messagesare includedinto the normalprint file.

e. XTP_ACE- Is a print routine for a tracebackroutine.

f. WALTIM(1)- Returnsthe elapsedwall clocksecondsfrommidnight.

5. XEOT (F)

XEOT causes reels to be swapped for multireel old and new problem tapes.

6. NTRAN$ (S)

NTPJ_N$ is a standard 1108 NTRAN reassembled to include 30 packets. NTRAN$ varies from

Exec 8 release to release. If the NTRAN$ supplied with NASTRAN will not collect without

errors, the standard version may be obtained, the number of packets changed to 30, and used.

7. NTAB$ (S)

NTAB$ is a standard 1108 NTAB reassembled to allow up to 40 files.

5.4-13 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

8. RWUNLD (F)

RWUNLD will, given a GIN_ file name for a permanent entry, determine its internal (1108)

file name and call TSWAP to switch to another physical reel. It is used by XCHK to manipu-

late the _PTP and NPTP and by TPSWIT to manipulate the user tapes (INPT, etc.).

9. TPSWIT (F)

TPSWIT calls RWUNLD to obtain another user tape and prints a message.

I0. PEXlT (F)

PEXIT performs normal (machine dependent) termination procedures and also sets the

condition code (15) for final termination.

II. SEARCH (F)

SEARCH frees the _PTP, UMF, and NUMF at the conclusion of LINK1 if these files reside

on a tape. In addition, SEARCH sets the condition code for the next link to be executed.

12. SGIN_ (F)

SGIN_ performs physical I/0 on the plot tapes (PLTI and PLT2).

a. S_PEN ($N, PLTTP, BUF, BUFSIZ) - Establishes a buffer for PLTTP of length BUFSlZ at

location BUF. It also sets the parity of the file,

depending on whether PLTTP = PLTI or PLT2.

b. SWRITE (PLTTP,A,N,E_R) - Writes N characters from N words starting at A(1) into

the plot buffer.

c. SCLOSE (PLTTP) - Flushes the plot buffer, places a physical end-of-file on the

plot tape, and backspaces uv_r it.

d. SE@F (PLTTP) - Places a physical end-of-file on PLTTP.

]3. C_RSZ (F)

C_RSZ provides for the display of the open core length (on DIAG 13) obtained from the

SLEUTH subroutine ZCBRSZ.

14. MPYQ (S)

MPYQ is a SLEUTH deck written to increase the speed of MPYAD's inner loops. The docu-

mentation for MPYQ is machine independent, and is in Section 3 as an auxiliary routine to

MPYAD.

5.4-14 (8/I/72)

5.4.8

5.4.8.1

NASTRAN ON THE UNIVAC II08 (EXEC 8)

15. PPDUMP (F)

Supplies entry points DUMP, PDUMP, and PPDUMP.

PPDUMP was to capture control after a guard mode interrupt. This feature never was

implemented. DUMP and PDUMP dump open core beyond the allocated limit. DUMP will do this

unconditionally and PDUMP will do it if DIAG l was set by the user. Note that PDUMP will

force a trace back via YTP_ACEif NO dump is taken. An element dump is given via an illegal

computed goto statement to provide a "nicely" formatted dump and a trace back for normal

dumps. Since control cannot be recaptured after such dumps, any messages will have to be

decoded from common block /MSGX/ by the user.

16. YTP_ACE(S)

YTP_ACEprovides a walk back trace to XSEMi from the calling routine to aid in

subroutine debugging.

Procedure to Copy the Three System Tapes

Source Tape

I. Tape assign @ASG statement - assign the input source tape to a tape unit giving its

tape nu_er and a file name.

@ASG,T SIBURCE,T,XXXX

(file nanm, to tape, nu_ers)

2. Tape assign @ASG statement - Assign the output source tape giving it a file name

and nu_er.

@ASG,T NEWS(_U,T,XXXX

3. Tape copy @CI_PY,Mstatement - Copy the input source files to the output source files.

@C_PY,MS_URCE.,NEWS(BU.,2

4. Free file @FREEstatement - Release the input source file from the job stream.

@FREESBURCE

5.4-15 (811172)

5.4.8.2

5.4.8.3

NASTRAN - OPERATING SYSTEM INTERFACES

5. Free file @FREE statement - Release the output source file.

@FREE NEWSBU

Relocatable and Demonstration Problem Tape

I. Assign the input relocatable tape

@ASG,T OBJECT,Txxxxx

2. Assign the output relocatable tape.

@ASG,T NEW@BJ,T,xxxxx

3. Copy two files from the input tape to the output tape.

@C_PY,M _BJECT.,NEW_BJ.,2

4. FREE the input relocatable tape.

@FREE OBJECT

5. FREE the output relocatable tape.

@FREE NEW_BJ

Executable and UMF Tape

I. Assign the input executable tape.

@ASG,T ABSTAP,T,xxxxx

2. Assign the output executable tape.

@ASG,T NEWABS,T,xxxxx

3. Copy five files from the input tape to the output tape.

@COPY,M ABSTAP.,NEWABS.,5

4. Free the input executable tape.

@FREE ABSTAP

5. Free the output executable tape.

@FR[_ NEWABS

5.4.8.4 Demonstration Problem Input Data Tape (UMF)

I. Assign the input executable and UMF tape.

@ASG,T ABSTAP,T,xxxx

2. Position to the UMF file.

@MOVE ABSTAP.,7

5.4-16 (811172)

NASTRAN ON THE UNIVAC ll08 (EXEC 8)

3. Assign the output UMF tape.

@ASG,T NEWUMF,T,xxxxx

4. Copy one file from the input UMF to the output UMF tape.

@C_PY,M ABSTAP.,NEWUMF.

5. Free the input executable and UMF tape.

@FREE ABSTAP

6. Free the output UMF tape.

@FREE NEWUMF

5.4.9 NASTRANTapes (Files) Catalogue Procedure

5.4.9.1 Source Catalogue Procedure

I. Delete @DELETE statement - Delete a file if it exists, but proceed with the run if it

does not exist (C-option).

@DELETE,C SgU.

(name to be assigned to the machine independent source FASTRAND file)

@DELETE,C MDSgU.

(name to be assigned to the machine dependent source FASTIb_NDfile)

2. Assign a FASTRAND file @ASG statement - Assign a FASTRAND file name for the source

elements making it permanently assigned, regardless of the manner of termination of the

run (U-option), making it public (P - option), and making it read only (R - option).

@ASG,UPR SgU,F///1500

(file name, assign to FASTRAND with 1500 tracks as a maximum size)

@ASG,UPR MDSgU,F///50O

(file name assign to FASTRAND with 500 tracks as a maximum size)

3. Assign the input source tape.

@ASG,T SgURCE,T,xxxxx

4. Copy an element file from one unit to another @C9PY statement - Copy the input

machine independent and machine dependent source tape to a FASTRAND file.

@CgPY,G SgURCE.,SgU.

@CgPY,G SgURCE.,MDS9U.

5. Free the input source tape.

@FREE SgURCE

5.4-17 (811/72)

NASTRAN - OPERATING SYSTEM INTERFACES

5.4.9.2 Relocatable Catalogue Procedure

l •

@DELETE,C _BJ.

2. Assign a FASTRAND file for the relocatable tape.

if this file is to be updated.

@ASG,UPR _BJ,F///1500

3. Assign the input relocatable tape.

@ASG,T _BJECT,T,yyyyy

4.

Delete a file if it exists, but proceed with the run if it does not exist.

5,

processors can find the relocatable's entry points.

@PREP _BJ.

6. Free the input relocatable tape.

@FREE BBJECT

Note: do not use the R - option

Copy the input relocatable tape to the FASTRAND file assigned.

@COPY,G _BJECT.,_BJ.

Prepare an entry point table @PREP statement - Make a table of entry points so subsequent

5.4.9.3

l °

@DELETE,C NASTRANo

2. Assign a FASTRAND file for the NASTRAN executable elements.

R-option if this file is to be updated.

@ASG,UPR NASTRAN,F///1000

Executable Catalogue Procedure

Delete a file if it exists, but continue the run if it does not (C-option).

Note: do not use the

3. Delete a file if it exists, but continue the run if it does not exist.

@DELETE,C ASGCRDS.

4. Assign a FASTRAND file for the program file ASGCRDS.

@ASG,UPR ASGCRDS,F///IO

5. Delete file if it exists, but continue the run if it does not exist.

@DELETE,C C_NTRL.

5.4-18 (8/1/72)

NASTRAN ON THE UNIVAC ll08 (EXEC 8)

6. Assign a FASTRAND file for the program file C_NTRL.

@ASG,UPR C_NTRL,F///IO

7. Delete file if it exists, but continue the run if it does not exist.

@DELETE,C C_NTRL42K.

8. Assign a FASTRAND file for the program file C_NTRL42K.

@ASG,UPR C_NTRL42K,F///lO

9. Assign the input executable tape.

@ASG,T ABSTAP,T,zzzzz

lO. Copy the executable element file from tape to the FASTRAND file NASTRAN.

@C_PY,G ABSTAP.,NASTRAN

If. Copy a program file @C_PY,F statement - Copy the ASGCRDS file from tape to FASTRAND.

Note program files (files with control cards as part of the file) must be copied in a different

manner than element files. In addition, the @CBPY,F statement does not position a tape past

the tape end-of-file when used to read a file in.

@C_PY,F ABSTAP.,ASGCRDS.

12. Move a tape past an end-of-file mark @M_VE statement - Move the input tape past an

end-of-file so the tape will be positioned properly for the next file.

@M_VE ABSTAP.,I

13. Copy the program file CBNTRL from tape to FASTRAND.

@C_PY,F ABSTAP.,CBNTRL.

14. Move a tape past an end-of-file.

@M_VE ABSTAP.,I

15. Copy the program file C_NTRL42K from tape to FASTRAND.

@C_PY,F ABSTAP.,C_NTRL42K.

16. Free the input executable tape.

@FREE ABSTAP

5.4.10

I °

NASTRAN Update Procedure

Catalogue the executable tape (@ASG,UP NASTRAN,F///IO00).

5.4-19 (8/I/72)

5.4.11

NASTRAN - OPERATING SYSTEM INTERFACES

2. Catalogue the relocatable tape (@ASG,UPR _BJ,F///1500).

3. Catalogue the source tape.

@ASG,UPR SBU,F///1500

(@ASG,UPR MDS_U,F///500)

4. Add a heading for the compile. This makes the deck easier to find in the output.

@HDG deckname

5. Compile the deck (see note).

@F_R,S S_U.deckname,deckname

NOTE: If a machine dependent deck is to be compiled use

@F_R,S MDS_U.deckname,deckname

6. Adding a heading for the executable element to be updated.

@HDG LINKxx

7. Prepare an entry point table.

@PREP BBJ.

8. Map (regenerate) the executable element(s) in which the deck compiled resides. Note the

map symbolics are on the relocatable file.

@MAP,S BBJ.LINKxx,NASTRAN.LINKxx

9. Run a problem.

@ADD ASGCRDS.

Regenerate the Executable Tape

I. The relocatable tape must be catalogued.

2. The file ASGCRDS must be catalogued.

3. The file CBNTRL must be catalogued.

4. Delete a file, but continue the run if it does not exist.

@DELETE,C NASTRAN

5. Assign the name NASTRAN to a FASTRAND file.

@ASG,UP NASTRAN,F///IO00

5.4-20 (811172)

NASTRAN ON THE UNIVAC If08 (EXEC 8)

6. Add a heading for each executable element.

@HDG LINK/

7. Add a message for each link (only useful if you are attending the run)

@MSG LINK/

8. Map (regenerate) the executable element.

@MAP,S _BJ.LINKI,NASTRAN.LINKI

9. Repeat steps 6 through 8 for all links (I, 2, 3, 4, 5, 6, 7, 8, 9, I0, II, 12, 13, 14).

I0. Print the element list (TBC) for the NASTRAN file.

@PRT,T NASTRAN

II. Assign an output executable tape.

@ASG,T ABSTAP,T,xxxx

12. Copy the executable elements to tape.

@C_PY,GM NASTRAN.,ABSTAP.

13. Copy the ASGCRDS program file to tape.

used for output tape.

@C_PY,F ASGCRDS.,ABSTAP.

NOTE:

Note @C_PY,F writes an end-of-file when

14. Copy the C_NTRL program file to tape.

@C_PY,F C_NTRL.,ABSTAP.

15. Copy the C_NTRL42K program file to tape.

@CBPY,F C_NTRL.,ABSTAP.

16. Assign the input executable and demonstration input date tape (UMF).

@ASG,T _LDABS,T,xxxx

17. Position to UMF file on the executable tape.

@M_VE _LDABS.,7

18. Copy the UMF file to the end of the new executable tape.

@COPY,M _LDABS.,ABSTAP.

19. Free the output executable tape.

@FREE ABSTAP

Alters to the map symbolics may be made by placing the alter cards after the
appropriate MAP card.

5.4-21 (811/72)

NASTRAN - OPERATING SYSTEM INTERFACES

5.4.12 The ASGCRDS Proqram File

The ASGCRDS program file contains a card to turn the system heading off because NASTRAN

writes its own heading and an execute card for the first executable element LINK1 (the NASTRAN

preface).

The heading-off statement is as follows:

@HDG,N

The next card is a @XQT card for the first element:

@XQT *NASTRAN.LINKI

Note the use of the '*' before NASTRAN. This symbol is used because of the way the UNIVAC

1108 Exec 8 reference files (or elements). A complete element reference has the following form:

QUALIFIER*FILENAME.ELEMENTNAME

The qualifier is normally the name in the project field of the run card. If a user with a

different qualifier should want to run a problem and the executable tape was catalogued in a run

with the above qualifier, then the user would have to include a @QUAL statement as the first card

(after the run card) in this deck. The @QUAL card would have the following form:

@QUAL XXXXX (project field of run which catalogued the files)

With this card, all files that have a '*' before their name will reference files catalogued

with the above qualifier. Note the @ADD ASGCRDS. and @ADD C_NTRL. statements should be changed

to @ASG *ASGCRDS. and @ADD *C_NTRL. if the executable tape was catalogued under a different

qualifier.

The ASGCRDS file is added to the control card stream with an @ADD statement of the form:

@ADD ASGCRDS.

This statement causes the @ADD card to be replaced in the control stream with the file named

ASGCRDS.

Since all the files are assigned to FASTRAND by NASTRAN, some way of assigning a tape is

needed. Tape assignments are made by assigning a tape to a file before the @ADD ASGCRDS statement

is reached. For example, an assignment for file (unit) 30 @ASG,T 30,T,XXX will assign unit 30 to

tape. Matricies may be routed to this tape by the DMAP command FILE.

5.4-22 (811/72)

NASTRAN ON THE UNIVAC ll08 (EXEC 8)

In NASTRAN, any unit may be assigned to tape if the user thinks it is necessary, but some

units have specific functions. These specific functions and the units involved are as follows:

Unit Function

7 (P_L) NASTRAN P_L Tape (Temporary NASTRAN data block storage)

8 (_PTP) OLD PROBLEM Tape (Previous checkpoint tape restart)

9 (NPTP) NEW PROBLEM Tape (Checkpoint Tape)

lO (UMF) USER MASTER FILE Tape (Bulk data input from tape)

II (NUMF) NEW USER MASTER FILE Tape (Used when building a UMF)

12 (PLTI) PL_T Tape for the EAI and Benson Lehner plotters

13 (PLT2) PL_T Tape for the SC4020, CaIComp and DD80 plotters

14 23 (INPT) User tapes for substructuring

The most common tape assignments for NASTRAN problems are the checkpoint, restart, and/or

PLT2. Note all named files must be assigned by their external names.

5.4.13 The C_NTRL or C_NTRL42K Program File

The C_NTRL program file consists of a series of @TEST and @XQT cards. The @TEST card allows

the option of either skipping a control card or not skipping a control card, depending on the

value of the test control word. The lower sixth of this word is set by the executive request

SETC$. The NASTRAN executable element that is in core during a run will set the control word to

the element number which is to get control next (i.e., LINK2 = 2, LINKI4 = 14). The @TEST

TNE/i/S6 statements will cause the appropriate link to execute when the control word is equal

to i. The file contains the following cards:

@TEST TNE/I/S6

@XQT *NASTRAN.LINKI

@

@TEST TNE/14/S6

@XQT *NASTRAN.LINKI4

@TEST TNE/17/S6

@JUMP END'

5.4-23 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

the above stream repeated I00 times

@END:PMD,EB

To exit, the control word is set to 17 and the @JUMP instruction will be executed. This will

jump to the @END:PMD,EB statement for a possible post mortem dump.

The C_NTRL42K file differs from the C_NTRL file by having options on the @XQT cards (i.e.,

@XQT,LM *NASTRAN.LINKI). The options are LM. This will make a 42K NASTRAN system. Other size

systems can be made by varying the options used (i.e., making another control file).

5.4.14 Description of a Demonstration Problem Starter Deck

In order to obtain a listing of the demonstration problem starter decks the following is

executed:

I. Assign relocatable and problem demonstration tape.

@ASG,T OBJECT,T,xxxx

2. Position to the demonstration deck file.

@MOVE _BJECT.,I

3. Assign FASTRAND onto which demonstration problem starter decks are to be copied.

@ASG,CP DEM_RUNS,F///IO0

4. Copy demonstration problem starter decks.

@C_PY,G _BJECT.,DEM_RUNS.

5. Release relocatable and problem demonstration tape.

@FREE BBJECT

6. List demonstration problem starter deck.

@ELT,LD DEM_RUNS.X,,

@END

The following will describe in detail the necessary steps for executing demonstration problem

I-I on the UNIVAC 1108 using Exec 8.

5.4-24 (811172)

NASTRAN ON THE UNIVAC 1108 (EXEC 8)

I-5. Use first five steps of previous setup that was used to obtain a numbered listing of

driver decks.

6. Extract demonstration problem l-l by updating the demonstration problem starter deck,

placing the result in element Y.

@ELT,LD DEM_RUNS.X,.Y,

-1,7

-36,4287

@END

7. Assign the new problem tape (checkpoint tape) to a scratch tape on unit 9.

@ASG,T NPTP,T, SCRTCH . NPTP

8. Assign the demonstration problem input data tape (xxx) to unit lO.

@ASG,T UMF,T,xxx . UMF

9. Add the file containing the demonstration problem deck.

@ADD DEM_RUNS.Y

The following is a description of the control stream contained in the DEM_RUNS.Y element.

Add the file ASGCRDS. This will assign all the files except 9 and lO which have already

been assigned.

@ADD ASGCRDS.

The beginning of the NASTRAN data deck. The NASTRAN data deck has three parts --

Executive Control Deck, Case Control Deck, and Bulk Data Deck.

5.4-25 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

ID DEMIOI,NASTRAN

UMF 1972 II0101

CHKPNT Yes

TIME 5

(State of Executive Control Deck)

(Tape and problem number so the correct bulk
data will be processed from the UMF tape)

(Unit 9 must be assigned to tape when
checkpointing)

(Should be approximately two minutes less
than maximum time on job card)

CEND (End of Executive Control Deck and start of
Case Control Deck)

I0.

BEGIN BULK (End of Case Control Deck and start of
Bulk Data Deck)

(The Bulk Data Deck will be input from the UMF tape)

ENDDATA (End of Bulk Data Deck)

Add the file C_NTRL so that the other executable elements can be executed.

@ADD C_NTRL42K.

End of job.

@FIN

5.4-26 (8/I/72)

5.4.15

NASTRAN ON THE UNIVAC 1108 (EXEC 8)

Tape and Problem Numbers for the NASTRAN Demonstration Problem Input Data Tape

External ll08 Tape UMF Tape
Problem Numbers Run Time Number Problem Number

1-I 30

1-2 55

I-3 86

I-4 510

I-5 477

1-6 22

I-7 115

1-8 47

1-9 76

I-I0 18

I-I 1 83

2-I 24

3-I 422

3-2 405

3-3 354

4-I I02

5-I 287

6-I 1361

7-I 188

7-2 765

8-I ll5

9-I 24

9-2 318

9-3 422

lO-I 54

Il-l 70

ll-2 495

12-I 167

1972 lOlOlO

201020

2401030

2301042 (2601041)

301050

401060

501070

1301080

1401090

60110O

15011O

702010

2403011 (3103012)

1603020

1703030

1804010

805010

1906010

2707010

2007021

2208011 (2808012)

909010

2909020

2109030

lOlOOlO

llllOlO

3011020

1212010

5.4-27 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

The tape number and problem number go on the UMF card in the NASTRAN Executive Control Deck.

Note the name "tape number" used in the above table is not an external tape number, but is really

a label written by NASTRAN.

5.4.16 GIN_ (Generalized l__put/Output for NASTRAN)

5.4.16.1 GIN_ Data Flow

GIN_ provides a common internal format for all NASTRAN data blocks. It also provides an

increased set of I/9 commands over those usually available to the FORTRAN programmer. The

functions provided are:

I. _PEN($N,FILEA,BUFF,_P)

Opens GINB file named FILEA into BUFF according to _P.

2. CL_SE(FILEA,_P)

Closes FILEA according to OP.

3. READ($NI,$N2,FILEA,IZ,NA,EOR,LEN)

Reads NZ words from FILEA into IZ.

4. WRITE(FILEA,IZ,NA,EOR)

Writes NZ words onto FILEA from IZ.

5. EOF(FILEA)

Writes a logical end-of-file on FILEA.

6. REWIND(FILEA)

Rewinds FILEA.

7. BCKREC(FILEA)

Backspaces FILEA on record.

8. FWDREC($N,FILEA)

Forward spaces FILEA on record.

9. SKPFIL(FILEA,IN)

Forward or backward skip FILEA IN files.

5.4-28 (811/72)

NASTRAN ON THE UNIVAC If08 (EXEC 8)

The above entry points may be called by any NASTRAN programmer and their exact functions

are detailed in Section 3 of the Programmer's Manual. In addition, there is one executive

function:

lO. RWUNLD(FILEA)

Rewinds FILEA, dismounts the tape assigned to it, and requests a second reel to be

mounted. This function is unique to the 7094 and II08 versions of GIN_.

The manner in which these user-requested I/_ functions are performed is highly machine

dependent, but the basic strategy is similar on all machines. The programming language may

be computer dependent or all FORTRAN (as is the case on the If08, except for NTRAN$ functions).

The basic data flow can be traced as follows:

Write Data

The user calls _PEN, supplying a GIN_ file .name (201-299, 301-399) and a buffer allocated

from his subroutine's open core of length given by the first word (SYSBUF) in the common

block /SYSTEM/. OPEN searches the FIST (located in common block /XFIST/ to find a pointer

into the FIAT (located in common block /XFIAT/. The FIAT supplies the internal file name

(FILE). (On the ll08, this is a F_RTRAN logical unit number such as 21.) This number is used

as a file identification number. The buffer location is adjusted to the beginning of the

common block /XNSTRN/ and is stored in the array BUFADD(FILE). A check is made to insure

that this buffer does not overlap any other currently opened buffers. BPEN then initializes

the buffer area (it stores the word 'WRIT' in BUFF(1) and returns awaiting further commands).

It might be useful to review the naming conventions for data in NASTRAN. A collection of

data is being written by the current module on the first output file (known to the module

writer as 201). The DMAP compiler assigns to this collection of data the Data Block Name

EST as this symbol was the first Alpha string in the DMAP output section for this module. The

file allocator has allocated the internal FBRTRAN file 21 to this data block. Physically,

all writes will take place onto unit 21. On the ll08, this unit may also have an external

name attached via the @USE card. Thus the New Problem Tape, which is FBRTRAN unit No. 9,

has the external name NPTP.

The user now calls WRITE for this file. WRITE again finds the internal file number via

the FIST and FIAT. It checks to be sure the file is open to write and retrieves the buffer

address from BUFADD in common block /GIN_X/. Data is stored in the buffer by this and

5.4-29 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

perhaps subsequent WRITE calls until the entire buffer is filled. WRITE then calls GIN_IO

to cause the physical write to occur. GINOIO calls NTRAN in the synchronous mode. Finally,

the programmer calls CLOSE and the current buffer is flushed and a physical end-of-file is

placed at the end of the GINO blocks.

Read Data

The data read sequence is quite parallel to the data write sequence.

5.4.16.2 GINO Subroutine Organization

The GINO package consists of the following decks:

_PEN FWDREC XEOT

CLOSE EOF GINO

READ SKPFIL GINOIO

WRITE RWUNLD NTRAN$

BCKREC XGINO REWIND

The calling sequence for OPEN, CLOSE, READ, WRITE, FWDREC, BCKREC, REWIND, E_F, SKPFIL,

XGINO, GINO, and XEO are discussed in Section 3 of the Programmer's Manual. RWUNLD is described

in Section 5.4.16.1. XGIN_ is a GIN_ utility subroutine to perform the look-up associated with

the GIN_ file name to internal number conversion. XEOT is called by RWUNLD and communicates

with the operator in mounting and demounting multireel tapes.

The documentation for GIN_IO is as follows:

Purpose

To perform physical I/_ on the 1108.

Callin 9 Sequence

CALL GINOIO($N,OPCODE,BUFF), where $N is a statement number to return to if an I/0

error occurs. In this case, GIN_IO will set the ERROR word in /GINOX/ as follows ERROR = 6

ISTAT, where ISTAT is the NTRAN status word.

5.4-30 (811172)

NASTRAN ON THE UNIVAC 1108 (EXEC 8)

_PCBDE is an integer 1 through 5 where:

l is rewind file

2 is write one block

3 is read one block

4 is backspace one block

5 is forward space one block

BUFF is the address of the block to be written. The length of the block is given by

word NBUFF3 in /GIN_X/.

Method

NTRAN operations for Rewind (lO), WRITE (1), READ (2), Backspace (6,7), or forward

space (6,7) are given. Reads and writes are proceeded by and followed by waits (22).

Backspace and forward space are proceeded by waits. The forward space and backward space

operations depend on proper identification of the file type (tape or disk). To do this,

the TAPE flag (word NTAPE) of /GIN_X/ is considered. Disk files are positioned forward

or backward, according to the word N_SECT in /GIN_X/.

NTRAN documentation must be obtained from UNIVAC.

The GIN_ buffer for the ll08 is exactly as described in the Programmer's Manual in Section 3

(GINB). On the If08 subroutines READ and WRITE do not call XGIN_ and GIN_, but rather contain

within themselves this code to improve efficiency.

Most communication within the GIN_ routines is accomplished via the common block /GIN_X/.

C_F_M_N/GIN_X/LENGTH,FILEx,E_R,_P,ENTRY,LSTNAM,N,NAME,NTAPE,xYZ(2),UNITAB(75),BUFADD(75),

NBUFF3,ERR_R,N_SECT,DIAGI5,1FET,IMST,ISUB,NBUFF,CBP,CLR

where:

LENGTH is the

FILEX is the

E_R is the

_P is the

ENTRY is the

LSTNAM is the

N is the

length of GIN_X

internal file number

end-of-record flag

operation requested

entry type to GIN_

internal file number of the last GIN_ operation

number of words to transmit

5.4-31 (811172)

NASTRAN- OPERATINGSYSTEMINTERFACES

NAMEis theGINOfile name

NTAPEis the tapeflag for this file

XYZ(2)is not used

UNITABis the unit status table

Bits 1-16are the largest blocknumberon the file
Bits 16-32are the numberof logical recordson the file

BUFADDis the buffer addresstable

NBUFF3is the lengthof a physicalblock

ERRORis the GIN_I_error flag

NBSECTis the numberof 28wordsectors/record

DIAGI5is the DIAGI5switchstatus for OPEN/CLOSEtracer

IFET,IMST,ISUBare not used

NBUFFis the currentbuffer size from/SYSTEM/

CBP is the current buffer pointer from GIN_

CLR is the current record pointer from GIN_

Entry points QWRITE (in WRITE) and QREAD (in READ) are special entry points for matrix

packing/unpacking, and are discussed in Section 5.4.17.

5.4.17 Matrix Packin9 Routines

5.4.17.1 Introduction

Matrix packing is the most critical area to running times for most NASTRAN operations. The

basic operation is quite simple; take a term from the programmer and store it in packed format in

a GIN_ buffer, or more often, take a term from a GINO buffer and provide it to the programmer.

Functionally, the routines are:

BLDPK - Pack out a matrix one term at a time.

PACK - Pack out a matrix one column at a time.

INTPK - Unpack a matrix one term at a time.

UNPACK - Unpack a matrix one column at a time.

These routines are functionally documented in Section 3 of the Programmer's Manual. The

nature of a packed record is conceptually described in Section 3.5.1 of the Programmer's Manual.

5.4-32 (8/I/72)

NASTRAN ON THE UNIVAC ll08 (EXEC 8)

Prior to Level 15, data was retrieved via the following flow:

I. The programmer called UNPACK to unpack a column of the matrix.

2. UNPACK called INTPK for each nonzero term in the matrix.

3. INTPK called READ for each 50-word string.

4. READ called XGIN_ for each call.

5. XGIN_ called GIN_ for each call.

6. GIN_ called GIN_I_ for each block needed.

7. GIN_I_ called NTRAN for each block needed.

Thus, the following tree could be drawn:

UNPACK te__INTK P 50 termDsREAD 50 term_ XGIN_ 50 term_ GIN_ blo__ckGIN_I_ blo__ckNASTRAN

The result was a time to unpack per term that was ten times the time to read two words.

Level 14 imbedded XGIN_ and GIN_ in READ, reducing the time by 20 percent. Level 15 rewrote

the matrix packing routines, such that they are allowed direct access into the GIN_ buffer. In

particular, define a string of matrix terms as a string of consecutive nonzero terms. The ll08

matricies are packed as strings. Thus, our flow diagram now appears as follows:

UNPACK str_iNTPK str___REA D bloc_ GIN_I_ blo__ckNTRAN

This was done all in F_RTRAN (in contrast to IBM and CDC GIN_/PACK routines) for three

reasons:

I.

2.

(and not at all if the instructions and data are in separate banks, which is usually the

case).

3. Development and maintenance costs of F_RTRAN code are less than those for assembly

language code.

The FeRTRAN compiler produces reasonable code.

Register-to-register operations are only a factor of two faster than core-to-register

5.4-33 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

5.4.17.2 Format of a Packed Column

The format of a packed column on the 1108 is as follows:

Word Number Con_ents

Type of elements (I-4)

String descriptor (NS/R@W)

Floating point values

2+NS*NW_RDS

String descriptor

where:

NOTES:

Type of Elements

1 Real Single Precision NW_RDS = 1

2 Real Double Precision NW_RDS = 2

3 Complex Single Precision NW_RDS = 2

4 Complex Double Precision NW@RDS= 4

String descriptor is two packed half words.

Right 16 bits are the row number of the first element in the string (R_W).

Left bits are the number of elements which follow (NS).

I. No matricies written under pre-Level 15 NASTRAN's can be read by Level 15.

2. All strings are broken at the end of a buffer (i.e., a phoney string descriptor is

inserted in the packed column if needed).

3. Null columns are null records (i.e., GIN_ records which contain 0 words). Such a

record can be generated by CALL WRITE (FI,O,O,I).

4. Note 2 above implies that matricies may not be manipulated by READ and WRITE, except

for the trivial case of an exact copy (such as in P_Ling and checkpointing).

5.4-34 (8/1/72)

NASTRANONTHEUNIVAC1108(EXEC8)

5.4.17.3 ProgrammingMethods

Twonewcommonblocks/QREADX/ and /QWRITX/ were established to provide communication between

the matrix packing routines.

/QREADX/PTYPE,M,L,IS,_L_I,MM,I_PTI,NI,NS,IR_W,FILES,E_RI

Name Set B_

PTYPE INTPK

M INTPK

L INTPK

IS INTPK

_LDI INTPK

MM INTPK

I_PTI INTPK

N1 INTPK

NS INTPK/
QREAD

IR_W INTPK/

QREAD

FILES QREAD

EBRI QREAD

Content

Type of element.

Number of words per elements returned.

Computed goto for element conversion.

Number of terms used in the current

string.

Row number of first term in the string.

Number of words per element in the buffer.

Multifile version flag.

Pointer from /XNSTRN/ to the current
element in the buffer.

Number of elements in the current

string.

Row number of the first element in the

current string.

Internal GINB file number of this matrix.

End of record flag for the column.

/QWR_Tx/XD(6),PTYPE,TYPE,Lx,LY,_LD_,C_UNT,NNZ,LPR,F_LES,_BPT_,_R_W,N_,WR_TE,LZ,MK,MM

Name Set By

XD BLDPK

PTYPE BLDPK

TYPE BLDPK

LX BLDPK
LY

_LDI BLDPK/
PACK

CBUNT BLDPK/
USER

NNZ BLDPK/
QWRIT

Content

Term and row number to be packed.

Form of elements after packing.

Computed goto for type of element packin_

Computed goto's for type cf element
backing.

Row number of previously packed element.

Total number of elements packed.

Number of nonzero words to date in

current string.

5.4-35 (8/I/72)

NASTRAN- OPERATINGSYSTEMINTERFACES

Name Set__

LPR BLDPK/
QWRIT

FILES BLDPK/
QWRIT

I_PTI BLDPK

IROW BLDPK

N1 BLDPK/
QWRIT

NWRITE BLDPK/
QWRIT/
PACK

LZ BLDPK

MK BLDPK

MM BLDPK

Content

Pointerrelative to /XNSTRN/ to the

last string descriptor

Internal GINO file number for this
matrix.

Multiple version flag.

Row position of first term in string.

Pointer relative to /XNSTRN/ to the
current buffer position.

Number of words which can be written
in the buffer from now on.

First nonzero term computed goto.

Number of words per term after packing.

Number of words per term before packing.

In addition, four special entry points were provided to the GIN_ routines to facilitate

matrix work. These are as follows:

Deck

WRITE

Entry Point

QWRITE

Callin 9 Sequence

CALL QWRITE

Method

QWRITE moves the N words stored in XD into the GINO buffer specified by FILES, where N is

set in /GIN_X/. It also maintains NNZ, CBP, NI, NWRITE, and LPR.

Deck

OPNCOR

Entry Point

QWC_R

Callin 9 Sequence

CALL QWCOR(IZ,N)

5.4-36 (8/7/72)

NASTRAN ON THE UNIVAC If08 (EXEC 8)

Deck

READ

Method

QWC_R moves the N words stored in XD into the core buffer starting at IZ(1).

maintains NNZ, Nl, and LPR.

It also

Entry Point

QREAD

Callin9 Sequence

CALL QREAD

Method

QREAD returns the row position and number of elements in a string on file FILES. It also

maintains Nl, NS, IRBW, and E_RI in common block /QREADX/.

Deck

_PNC_R

Entry Point

QRC_R

Callin9 Sequence

CALL QRC@R(IZ)

Method

QRC_R returns the row position and number of elements in a string from the core file starting

at IZ(1). It also maintains Nl, NS, IR_W, and E@RI in /QREADX/.

Each of the four major functional routines (BLDPK, INTPK, PACK, and UNPACK) uses a slightly

lifferent strategy in utilizing the information available in /GIN_X/, /QREAD/, /QWRITX/, and the

new entry points into GIN_.

PACK

PACK provides a special option (in addition to successive calls to BLDPK) where the type

of the terms in core are the same as the type to be passed to GIN_. In this case, the first

term in each string is passed via BLDPK, but subsequent terms are stored directly in the

GIN_ buffer.

5.4-37 (811172)

I °

2.

3.

4.

5.

6.

7.

8.

5.4.19

NASTRAN - OPERATING SYSTEM INTERFACES

BLDPK

BLDPK provides for two options: I) If conversion of types must take place, each term is

converted and QWRITE is called; 2) if no conversion of types takes place, terms are stored

directly into the GIN_ buffer until the buffer is full, when QWRITE is called.

UNPACK

UNPACK provides two special options (in addition to successive calls to ZNTPK) when

the type of the terms in core is the same as the type to be passed to the user. I) if

INCUR = I, a tight (3 instruction loop) passes each string to the user core. 2) If

INCUR _ I, a special loop passes each string to the user core. In both cases, the first

and last terms in each string are obtained via a call to ZNTPK.

INTPK

INTPK calls QREAD for each string. All subsequent requests for terms within the string

use direct pointers into the GIN_ buffer.

5.4.18 1108 Time Estimation

In estimating running times for various operations in NASTRAN, several machine dependent

factors are critical. These include:

Buffer size (SYSBUF) = 871.

Basic double precision multiple and add tight loop time = 14.0 x 10 -6 sec.

Double precision multiply and add not tight loop time = 35

Pack or unpack 1D.P. term = 25 x 10 -6 sec.

INTPK or BLDPK 1D.P. term = 50 x 10 -6 sec.

Read or write 1 word = 6 x 10 -6 sec.

Open core available -- DIAG 13 on small problem.

Stiffness matrix formulation (QUADPIate) : .7 sec

Single Precision Routines

For the convenience of 1108 users, single precision versions of some critical routines have

been included on the 1108 tapes and placed properly in the overlay structure. It is not the

5.4-38 (8/I/72)

NASTRAN ON THE UNIVAC 1108 (EXEC 8)

intent to support a precision choice in Level 15 or to support single precision on the 1108, but

many problems can be successfully solved on smaller cores and faster by making use of these single

precision decks.

Single precision versions of the following decks are available on the If08 object tape:

Function

Real symmetric decomposition RSPSDC

Complex symmetric decomposition CSPSDC

Real inverse power FBS (symmetric) INVFSP

S.P. Name D.P. Name

SDC_MP

SCDCMP

FBSINV

The calling sequence to each single precision routine is identical to the call to the double

precision counterpart. Thus, the single precision version can be activated by adding an EQU card

to each link in which it is used and recollecting the executables.

5.4.20 UNIVAC Overlay Diagrams

Figures 2 through 15 on the following fold-out pages represent the NASTRAN overlay structure

for the UNIVAC ll08.

NOTES:

The following comments are included to aid the user in reading the overlay diagram.

I. Segments having 0000000 as the first routine are most likely not accurately represented.

This type of segment should follow the longest of several segments enumerated in a SEG state-

ment. Instead it can follow any one of these enumerated segments which is not necessarily

the longest. For such 0000000 flagged segments, the map processor input should be

referenced.

2. In order to meet restrictions imposed by printing overlay structures, some routine names

are omitted from the main segments of each of the fourteen links. The following fourteen

lists are of those routines omitted from each main segment.

5.4-39 (811/72)

NASTRAN - OPERATING SYSTEM INTERFACES

LINK 1

RWUNLD STAPID TW_ GIN_ READ
XE_T TIME NAMES XGINO PPDUMP
SKPFIL XLINK _UTPUT GIN_I_ MAPFNS
E_F SEM XVPS FNAME MESAGE
PAGE QREADX XPFIST PEXlT QWRITX
CBRSZ TYPE XXFIAT SSWTCH FWDREC
DESCRP XMDMSK XFIST UTIL WRITE

XCEITB @CLNT XFIAT _PEN REWIND
STIME GIN_X MSGX CLOSE BCKREC

SYSTEM

LINK 2

QWRITX STIME TYPE OUTPUT MSGX
_PNCBR STAPID XMDMSK XVPS XDPL
ZNTPKX TIME _CLNT XPFIST OSCENT
CORSZ XLINK GINOX XXFIAT XNSTRN
DESCRP SEM TW_ XFIST SYSTEM
XCEITB QREADX NAMES XFIAT

LINK 3

QREADX BUTPUT GIN_ OPEN FWDREC
TYPE XVPS XGIN_ CLOSE WRITE
XMDMSK XPFIST GIN_IO READ REWIND
BCLNT XXFIAT FNAME PPDUMP BCKREC
GINOX XFIST PEXlT MAPFNS XDPL
TW_ XFIAT SSWTCH MESAGE _SCENT
NAMES MSGX UTIL QWRITX XNSTRN

SYSTEM

LINK 4

CORSZ TYPE XXFIAT SSWTCH FWDREC
DESCRP XMDMSK XFIST UTIL WRITE
XCEITB OCLNT XFIAT OPEN XDPL
STIME GINBX MSGX CLOSE OSCENT
STAPID TWO GINO READ XNSTRN
TIME NAMES XGINO PPDUMP REWIND
XLINK OUTPUT GINOIO MAPFNS BCKREC
SEM XVPS FNAME MESAGE SYSTEM

QREADX XPFIST PEXlT QWRITX

LINK 5

C_RSZ TYPE XXFIAT SSWTCH FWDREC
DESCRP XMDMSK XFIST UTIL WRITE
XCEITB _CLNT XFIAT _PEN REQIND
STIME GINBX MSGX CLOSE BCKREC
STAPID TWO GINO READ XDPL
TIME NAMES XGINO PPDUMP OSCENT
XLINK OUTPUT GINOI_ MAPFNS XNSTRN
SEM XVPS FNAME MESAGE SYSTEM
QREADX XPFIST PEXlT QWRITX

5.4-40 (8/I172)

LINK 6

NASTRAN ON THE UNIVAC If08 (EXEC 8)

LINK 7

C_RSZ TYPE XXFIAT SSWTCH FWDREC
DESCRP XMDMSK XFIST UTIL WRITE
XCEITB _CLNT XFIAT _PEN REWIND
STIME GIN_X MSGX CLOSE BCKREC
STAPID TW_ GIN_ READ XDPL
TIME NAMES XGINO PPDUMP _SCENT
XLINK _UTPUT GIN_I_ MAPFNS XNSTRN
SEM XVPS FNAME MESAGE SYSTEM
QREADX XPFIST PEXIT QWRITX

LINK 8

C_RSZ TYPE XXFIAT SSWTCH FWDREC
DESCRP XMDMSK XFIST UTIL WRITE
XCEITB _CLNT XFIAT _PEN REWIND
STIME GINOX MSGX CLOSE BCKREC
STAPID TW_ GIN_ READ PATX
TIME NAMES XGINO PPDUMP PARMEG
XLINK _UTPUT GIN_I@ MAPFNS XDPL
SEM XVPS FNAME MESAGE _SCENT
QREADX XPFIST PEXIT QWRITX XNSTRN

SYSTEM

QREADX _UTPUT GIN_ _PEN FWDREC
TYPE XVPS XGIN_ CLOSE WRITE
SMDMSK XPFIST GIN_I_ READ BCKREC
_CLNT XXFIAT FNAME PPDUMP XDPL

GIN_X XFIST PEXIT MAPFNS @SCENT
TW_ XFIAT SSWTCH MESAGE XNSTRN

NAMES MSGX UTIL QWRITX SYSTEM

LINK 9

GINg PEXIT CLOSE MAPFNS _SCENT
XGINg SSWTCH READ MESAGE XNSTRN
GINOIg UTIL PPDUMP XDPL SYSTEM
FNAME _PEN

LINK lO

SKPFIL UNPAKX TYPE MSGX MAPFNS
PACK ZNTPKX XMDMSK GINO MESAGE
UNPACK ZBLPKX OCLNT XGINO QWRITX
PRELOC CORSZ GINOX GINOIO FWDREC
INTPK DESCRP TWO FNAME WRITE
BLDPK XCEII'B NAMES PEXIT REWIND
WRTTRL STIME OUTPUT SSWTCH BCKREC
CDCMPX STAPID XVPS UTIL XDPL
DCOMPX TIME XPFIST OPEN OSCENT
TMTOGO XLINK XXFIAT CLOSE XNSTRN
BITPOS SEM XFIST READ SYSTEM
PACKX QREADX XFIAT PPDUMP

5.4-41 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

LINK II

BLDPK UNPAKX XMDMSK GINO MESAGE
PRELOC PACKX OCLNT XGINO QWRITX
INTPK CORSZ GINOX GINOIO FWDREC
PACK DESCRP TWO FNAME WRITE
UNPACK XCEITB NAMES PEXlT REWIND
WRTTRL STIME OUTPUT SSWTCH BCKREC
BITPOS STAPID XVPS UTIL XDPL
TMTOGO TIME XPFIST OPEN OSCENT
CINVPX XLINK XXFIAT CLOSE XNSTRN
ZBLPKX SEM XFIST READ SYSTEM
ZNTPKX QREADX XFIAT PPDUMP
TRDXX TYPE MSGX MAPFNS

LINK 12

SEMDBD STIME TWO XGINO MAPFNS
XSEMI2 STAPID NAMES GINOIO MESAGE
MAIN12 TIME OUTPUT FNAME QWRITX
NTAB$ XLINK XVPS PEXIT FWDREC
NTRAN$ SEM XPFIST SSWTCH WRITE
PATX QREADX XXFIAT UTIL BCKREC
PARMEG TYPE XFIST OPEN XDPL
CORSZ XMDMSK XFIAT CLOSE OSCENT
DESCRP OCLNT MSGX READ XNSTRN
XCEITB GINOX GINO PPDUMP SYSTEM

LINK 13

BLDPK STIME NAMES GINOIO MESAGE
INTPK STAPID OUTPUT FNAME QWRITX
UNPACK TIME XVPS PEXlT FWDREC
WRTTRL XLINK XPFIST SSWTCH WRITE
ZBLPKX SEM XXFIAT UTIL REWIND
SORT QREADX XFIST OPEN BCKREC
ZNTPKX TYPE XFIAT CLOSE XDPL
UNPAKX XMDMSK MSGX READ OSCENT
CORSZ OCLNT OPNCOR PPDUMP XNSTRN
DESCRP GINOX GINO MAPFNS SYSTEM
XCEITB TWO XGINO

LINK 14

XXFIAT XGINO UTIL MAPFNS REWIND
XFIST GINOIO OPEN MESAGE XDPL
XFIAT FNAME CLOSE QWRITX OSCENT
MSGX PEXIT READ FWDREC XNSTRN
GINO SSWTCH PPDUMP WRITE SYSTEM

5.4-42 (8/I/72)

NASTRANON THE UNIVAC 1108 (EXEC 8)

3. Note that on the 1108, contrary to any other NASTRAN computer, there are really two

similarly shaped overlay pictures, one for the I bank (instructions), and another for

the D bank (data).

64,000

I XXX2

_ /ZZZl/

/YYY3/

I Bank

D Bank

Figure I. Overlay Sample

Several important points result from this figure. First, all modules are penalized by

long instruction banks in other modules. Second, a reasonable overlay tree derived from

total routine lengths may not be reasonable for the ll08. Thus, the ll08 overlay tends

to be more complex than the overlay for the other NASTRAN computers. Critical statistics

are the length of the I-bank, the length of the D-bank, the total length of each link,

and the smallest open core address possible (End of D-bank of the root segment).

5.4-43 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

The following table summarizes these statistics for each link:

Link Ii0 DIO T_T 8 _C 8

1 19051 13638 101505 62724

2 20280 10941 76274 65426

3 22172 10963 102322 71300

4 16423 11032 67427 56721

5 19799 11264 75777 65301

6 18056 10908 72233 61525

7 16779 11056 67457 56751

8 15107 10367 64176 53575

9 13604 10165 63664 53030

I0 16643 11012 67403 56704

II 20910 11170 77641 67107

12 15939 10523 65432 54724

13 21192 11547 101432 70076

14 14067 15068 75333 53655

Note that the same module may appear _n more than one link. The _ollowing table (Fi_ur_

17) shows which link each module occurs in on the 1108.

4.

5° Each link

LINK1 --

LINK2 --

LINK3 --

LINK4 --

LINK5 --

LINK6 --

LINK7 --

LINK8 --

LINK9 --

may have unresolved references. They are as follows:

LINK, SEMTRN, LD45, LD46, LD47, LD48, LD50, LD51, NCLOS$

NCL_S$, LINK, TAID, TAIE

NCLOS$, LINK, KBEAM, MBEAM

NCLOS$, LINK

NCL_S$, LINK

NCL_S$,RSTTVV, LINK

NCLBS$, LINK

NCL_S$, LINK

NCLOS$, LINK

5.4-44 (811172)

NASTRAN ON THE UNIVAC I108 (EXEC 8)

LINKIO -- NCLOS$, LINK

LINKII -- NCLOS$, LINK

LINKI2 -- NCLOS$, LINK

LINKI3 -- NCLOS$, LINK, SBEAMI, SBEAM2

LINKI4 -- NCLOS$, LINK

5.4-45 (811172)

NASTRAN ON THE UNIVAC 1108 (EXEC 8)

u't

XH W
XGP IfW
XGPL
XGPIDG , XGPIW
X6PI2
XGPf3
XGPIY
XGP I S

ore XGPIS XGP 17
XGPI8
XGPLC

014 XGPID

wm
XBSBD KB OSm M)56EN
XBPIBS MNIO
HPWftT X S P R
XLKSPC XPRRRti XSCNDn

owwoo
X6PI I

Figure 2. Overlay Structure fo r Link 1 on the UNIVAC 1108.

NASTRAN O N THE UNIVAC 1108 (EXEC 8)

Figure 3. Overlay Structure for Link 2 on the UNIVAC 1108.

/

_.D

_IsT

m

_t

_4

o5

TR

O2

O7

tt=Rl_

FB6
F_

F_
SSg_

H_

flEfl_[
S_Rm

9Di!!
U

RULER
CRLL_
RgR_

OIL

OtO

SSG_R

9t2

856R2

X_
aRg_
NTnO
PmW'F.G

XNi"F_

_L
(
mtl_g.
Ul_KX
THI"060

B[IlIOS

ze_(X
ZN11_X
O_COR

BI]COfiP
LOOP

gt3

O000OO0

FRCTOR

01_

FRClflX SSGm
EXTERN
Q'_WLt
6RRVL3
F'PONT
O.IBOY
COlIBIN
GRIN
PLOI_
PRE:m:]X

Or6

666RlX

NASTRAN ON THE UNIVAC If08 (EXEC 8)

LINK 5

xcsm

FI(FNT
8ASg.B
Y_YL
PERNJT
BISR_
SRXB

V £0

GPml
mllour
mTW
11tlltBX
FPT
mTL

ROD
BAR

f_E_Br
PRB_OC
GPTABO
DEL=_I
BSGEIg

88tuRK
s_-rr

1RFLT
1Rim
TRIrlB!
ODm_
GDI'f.T

1"El1_
SOLID

TTOAI_R
ffiBl
FaJffi_
FR
F'3
FlS

PRE11_

Or8

TTI_f'R

RI

m
m
IF_
COEF
FJAB
BINr
F88
fft_
1:_2tt
FSe_

TTR._G

OrS

CONE

OU_
DUm

DUff/
ourm

o1300ooo
SSGBtX

017

DE_COR
I]FCOR
D

Figure 6. Overlay Structure for Link 5 on the UNIVAC ll08.

5.4-55 (8/1/72)

NASTRAN ON THE UNIUAC 1108 (EXEC 8)

F igure 7. Overlay S t r u c t u r e f o r L ink 6 on the UNIVAC 1108.

NASTRAN ON THE UNIVAC 1 108 (EXEC 8)

NASTRAN ON THE UNIVAC 1 1 0 8 (EXEC 8)

N
A
S
T
R
A
N

-
O
P
E
R
A
T
I
N
G
S
Y
S
T
E
M

I
N
T
E
R
F
A
C
E
S

¢
¢CNCZU
l

0b
Jt_..J=>00_rar

Z-,III

),.

Z
_r

b
,_

,,cZ

k_..J
J--

O
C:[_

eL

|Ld
t,,._

,,I[
_)

7

0

s-.
o

|

_.J
_,<

::)
L,,

_r
:T

=r
_

_r
=r

=r
_r

Ir

0
f_

(_000000

N

N
m

_

¢
L

Q
_
¢
.
_
,

I
¢
,

_
"

¢
¢

¢
¢
.
¢
¢
,

•4
_

"
4
:

_
_

-
_

W
D

W
D

W
D

W
D

p
-

W
_

F
i
g
u
r
e

1
6
.

L
i
n
k
S
p
e
c
i
f
i
c
a
t
i
o
n
T
a
b
l
e
.

5
.
4
-
7
5
(
8
/
I
/
7
2
)

N
A

S
T

R
A

N
O

N
T

H
E

U
N

IV
A

C
1108

(E
X

E
C

8)

c

=
r

=
r

w0.J|

Z

F
igure

16.
Link

S
pecification

T
able

(C
ontinued)

5.4-76
(8/I/72)

N
A
S
T
R
A
N

-
O
P
E
R
A
T
I
N
G
S
Y
S
T
E
M

I
N
T
E
R
F
A
C
E
S

0

c_
r
f

Q
C

.
J

e
_
.

0z.
J|

Z

I|

F
i
g
u
r
e

1
6
.

L
i
n
k

S
p
e
c
i
f
i
c
a
t
i
o
n
T
a
b
l
e

(
C
o
n
t
i
n
u
e
d
)

5.4-77
(8/I/72)

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

5.5 NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

5.5.1 introduction

NASTRAN operates as a single job step on the CDC 6400/6600 computers under the SCOPE 3

Operating System. NASTRAN is created by the Linkage Editor (see Section 5.6), a special program

developed for the CDC 6400/6600 computers to provide compatibility with the other computing systems

for which NASTRAN has been developed.

The overlay structure for NASTRAN on the CDC 6400/6600 is somewhat different from the other

computing systems in that one link, Link O, remains in core at all times during program execution.

This link contains subroutines and Executive tables common to all links (e.g., GINB, RDTRL, FNAME,

/XXFIAT/, /XFIAT/, /SYSTEM/). Consequently, the primary functions of ENDSYS and BGNSYS (see

Section 3.3.5), which save and restore Executive tables, are not required. Link switching is

accomplished in a manner similar to the IBM 360 through a CALL LINK. LINK is an entry point in

the segment loader, which was developed in conjunction with the linkage editor.

The NASTRAN executable program normally exists as a sequential file on tape, although it may

exist as an indexed file on disk. The first few records of the file contain an initial load

program produced by the linkage editor. This program is written as a CDC main level overlay (0,0)

and set to reside on absolute overlay file PPPPP. The remainder of the file is comprised of the

NASTRAN links (one directory record per link plus one logical record per segment). To initiate the

NASTRAN program, a control statement such as NASTRAN, is executed. This causes the CDC overlay

loader to load the initial program load portion of the NASTRAN file and transfer control to XB_T

(see Section 5.6.1.I). The XBB_T program reads the remainder of the file, writes it on the disk

in indexed form, reads Link 0 into central memory and transfers control to Link O. Link 0 is

entered through a small main program called NASTRAN which in turn calls Link l (the Preface Link).

Execution continues until the program terminates through a call to PEXIT which in turn calls EXIT.

For Level 15 most of the matrix operations, other than the various matrix assemblers, have

been converted to single precision (60 bits) arithmetic. Since the packing routines in NASTRAN

will accept either single-precision or double-precision input and prepare either single-precision

or double-precision output on request, it is possible to change the arithmetic precision in the

matrix operations on a selective basis. The following routines are used in Level 15 to provide

single-precision matrix operations on the CDC 6000 series:

5.5-I (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

I. RSPSDC - Matrix decomposition for real, symmetric matrices.

2. RSPL00 - Inner loop for RSPSDC.

3. FBSSP - Inner loop for FBS.

4. MPYQ - Inner loop for real and complex multiply-add (MPYAD) operations.

5. CSPSDC - Matrix decomposition for complex, symmetric matrices.

6. CSPL00 - Inner loop for CSPSDC.

7. INVFSP - Equation solution for inverse power method of eigenvalue extraction.

5.5.2 Input/Output

NASTRAN input/output is performed in three ways: (I) card input, printed output, and punched

output is accomplished through standard FORTRAN formatted input and output statements; (2) all

other input/output except plots is accomplished through the GINO routines which in turn call

106600 (see Section 5.5.6.13) to perform reads and writes; and (3) plot output is accomplished

through SGINO (see Section 3.4.51).

The number of files available to GINO is a function of the MAXFILES parameter in the SYSTEM

common block (see section 2.4.1.8). All NASTRAN files which have not been assigned to tape are

treated as indexed files on the disk. A master index for each file is permanently maintained in

central memory near the end of the field length (see Figure 2). The master index contains a disk

pointer for each subindex record. The subindex records contain disk pointers for each of the

blocked NASTRAN records. 196600 maintains the position of each file in the common block GIN066.

Subindex records are read or written at open and close time and during reading or writing when a

subindex boundary is passed. Actual input/output is accomplished through XIORTNS (see Section

5.5.6.7), which is a COMPASS subprogram. XIORTNS communicates with the SCOPE Operating System

through calls to CPC.

SGINO on the CDC 6400/6600 functions independently of other I/0. Its point of commonality

with other I/9 routines is XIORTNS, which is used to perform the physical writing of data.

Figure 1 depicts a complete buffer as used by GINO, 106600 and XIORTNS.

5.5-2 (811172)

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

I BCW = "READ" or "WRIT"
t

0 CBP CLR

(not used)

NBL_CK

(not used)

number of words in record or segment

data "words

Control Word

see Section

3.4.12

t,
l,

Z

A

0
(=C

$

mm

C_

mm

number of words in record or segment

data words

t

Control Word

LLR

FET

÷

CIRCULAR BUFFER

SUBINDEX

SYSBUF

NBUFF+2

NBUFF+2+NBRCBU

= NBUFF+2+NBRCBU+NBRSUB

NBUFF3 = NBUFF-2

NBUFF = SYSBUF-2-NBRCBU-NRBSUB

SYSBUF, NBRCBU, and NSRSUB are defined in the SYSTEM common block (see Section 2.4.1.8)

Figure I. GIN_ buffer on the CDC 6400/6600.

5.5-3 (811172)

NASTRAN- OPERA!ING SYSTEMINTERF_,CES

5.5.3 Layout of Core Storage

Figure 2 illustrates the layout of core storage on the CDC 6400/6600.

638

768

1008

FL'

Field Length

FL'

FL'

Link 0

Current Link

"Open Core"

Storage for Master Indices

Communication area
for SCOPEOperating
System

NASTRANcode

NASTRANworking
storage

length = MAXFIL*
(NBRMST+I)

(see section 2.4.1.8)

Figure 2. Layout of core storage on the CDC 6400/6600.

5.5-4 (12-I-69)

NASTRANONTHECDC6400/6600(SCOPE3)

Theprimaryfunctionof GNFIAT(seesection3.3.4), whichoperatesin Link l, is to initialize

the XFIATandFIATExecutivetables. Asa secondaryfunction, GNFIATreservesanareaat theend

of core storage for storage of the master index pointers for each file. The length of this

reserved area is subtracted from the field length for the problem, and the available memory, FL',

is stored in words 638 and 768. The length of open core is returned to a calling program by the

CgRSZ function. CCRSZ subtracts the address passed to it from the contents of word 768. All

NASTRAN modules may then utilize maximum core storage provided to the job.

The discussion in section 5.3.4 regarding overlay considerations on the IBM 360 applies

equally to the CDC 6400/6600.

s.5-5 (12-1-_g)

NASTRAN - OPERATING SYSTEM INTERFACES

5.5.4 Execution Deck Setup

The following examples illustrate the control statements necessary to execute the NASTRAN

program once the generation procedure {see section 5.5.5) is complete. The numbers in parentheses

to the left of some of the control statements refer to notes, which follow the examples.

Problem Conditions

Example

A

B

C

D

E

F

NASTRAN

tape

tape

disk(common)

disk(common)

tape

tape

Bulk Data

Input Medium

cards

UMF

cards

UMF

OPTP

OPTP

Checkpoint

no

no

yes

yes

no

yes

Restart

no

no

no

no

yes

yes

DD80 Plot

no

no

yes

no

no

yes

Example A

(I) J_B.

MAP(_FF)

REQUEST NASTRAN,HI. reel#,R@L

NASTRAN.

RETURN(NASTRAN)

789

INASTRAN Data Deck 1

6789

Example B

J_B.

MAP(BFF)

5.5-6 (811172)

(2)

NASTRAN ON T_E CDC 6400/6600 (SCOPE 3)

REQUEST NSTRN,HI. reel#,R_L

REQUEST UMF,HI. reel#,R_L

NSTRN.CREATE(NASTRAN)

RETURN(NSTRN)

RETURN(UMF)

789

{NASTRAN Data Deck

6789

Example C

JBB.

MAP(_FF)

REQUEST NPTP,HI. SAVTP,RIL

REQUEST PLT2,HI. SAVTP,RIL

(3) C_MMI_N(NASTRAN)

NASTRAN.ATTACH

RETURN(NPTP)

RETURN(PLT2)

789

NASTRAN Data Deck }

6789

Example D

JBB.

MAP(_FF)

REQUESTUMF,HI. reel#,R_L

REQUESTNPTP,HI. SAVTP,RIL

C_MM_N(NASTRAN)

NASTRAN.ATTACH

5.5-7 (811172)

NASTRAN - OPERATING SYSTEM INTERFACES

RETURN(UMF)

RETURN(NPTP)

789

I NASTRAN Data Deck 1

6789

Example E

J_B.

MAP(_FF)

REQUEST OPTP,HI. reel#,ROL

REQUEST NASTRAN,HI. reel#,ROL

(4) NASTRAN.CATLOG(NASTDA)

RETURN(NASTRAN)

NASTDA.ATTACH

RETURN(_PTP)

NASTDA.ATTACH

789

789

NASTRAN Data Deck (including RESTART packet in the Executive Control Deck) 1

2nd NASTRAN Data Deckl

6789

Example F

J_B.

MAP(_FF)

REQUEST NASTRAN,HI. reel#,R_L

REQUEST NPTP,HI. SAVTP,RIL

REQUEST OPTP,HI. reel#,ROL

REQUEST PLT2,HI. SAVTP,RIL

5.5-8 (8/I/72)

(5)

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

NASTRAN(,,X)

RETURN(NASTRAN)

RETURN(NPTP)

RETURN(gPTP)

RETURN(PLT2)

789

_NASTRAN Data Deck (including RESTART packet in the Executive Control Deck)}

6789

Notes

(1)

(2)

(3)

(4)

(5)

The installation dependent JI_Bcard should specify sufficient resources to run

the job.

In addition to executing the NASTRAN program, this control statement will cause

the NASTRAN file to be declared a common file.

This control statement attaches the common file to the job. If NASTRAN is executed

as a common file, running time will be approximately 5-8 minutes faster in elapsed

time and 20 seconds faster in CPU time.

This control statement copies the sequential file NASTRAN to the direct access file

NASTDA which can then be executed repeatedly.

Any of the NASTRAN program files (INPUT, 9UTPUT, PUNCH) may be substituted for

such as X replaces PUNCH in this example.

5.5.5 Physical Deliverables and Generation of Executable System

The CDC 6400/6600 version of NASTRAN is delivered on four (4) multifile tapes recorded at

a density of 800 bpi in a binary (odd parity) format. These tapes are:

TAPEI - EXECUTABLE

This tape contains the executable versions of three programs plus the NASTRAN

overlay load map output from the linkage editor

5.5-9 (811172)

NASTRAN - OPERATING SYSTEM INTERFACES

File 1 - NASTRAN executable

File 2 - Linkage Editor executable

File 3 - Langley Run Compiler executable

File 4 - NASTRAN load map

TAPE2 - S_URCE

This tape contains source code for all 6000 NASTRAN decks, the 6000 linkage

editor, and control cards for the overlay structure all in sequential _LDPL

format for UPDATE Version 1.2.

File 1 - NASTRAN _LDPL

Machine-independent decks appear first in alphabetical order followed
by machine-dependent decks in alphabetical order.

File 2 - Linkage Editor OLDPL

Source for linkage editor routines is followed by source for LINKERR,
XL_ADER, XB_@T, and XE_F. On the C_MPILE file these four routines are
separated from the main body of linkage editor routines by a CWEOR after
the MAPFNS deck.

File 3 - Overlay Control Cards _LDPL

Several decks defining the NASTRAN overlay structure are followed by a
CWE_R and a single deck defining a linkage editor overlay structure.

TAPE3 - _BJECT

This tape contains object deck code on three files.

File 1 - NASTRAN object decks in alphabetical order (940 records)

File 2 - Linkage Editor object decks (26 records)

File 3 - LINKLIB object decks (105 records)

Object library from which the linkage editor satisfies external references.

TAPE4 - DEMONSTRATION ITEMS

File 1 - User Master File

File 2 - Demonstration Problem Driver Decks

(fifty records, one record per deck)

File 3-52 - Demonstration Problem execution output print files

File 53 - Data deck for generating the User Master File

The source may be compiled using the Langley RUN compiler which must reside on absolute

overlay file LRC. The compilation must be handled in parts since there are too many Block Data

5.5-10 (8/I/72)

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

programs for a single run.

JOB,PI,TIOOO,CMI40000.

REQUEST,TAPEI,HY.

CBPYBF(TAPEI,X,2)

CBPYBF(TAPEI,LRC)

RETURN(TAPEI)

REQUEST,_LDPL,HY.

UPDATE(Q,L=I,C=@NE)

UPDATE(Q,L=I,C=TWB)

RETURN(_LDPL)

LRC(S,,,_NE....ASA,XREF)

LRC(S,,,TWO....ASA,XREF)

EXIT.

UNLOAD(TAPEI)

UNLOAD(_LDPL)

789

*COMPILE,ADD.OUTPT4

789

*COMPILE,PAGE.XCBRSZ

6789

The following setup will compile the NASTP_ANsystem in two parts.

NASTRAN executable

TAPE2 - Source

Once a relocatable object file is created, it can be used with the linkage editor and

SUBSYS deck to generate an executable system as follows:

JOB,PI,T2OO,CMI20000.

REQUEST,TAPE2,HY.

COPYBF(TAPE2,SCRATCH,2)

COPYBF(TAPE2,_LDPL)

RETURN(TAPE2)

REQUEST,TAPE3,HY.

C0PYBF(TAPE3,NASTBBJ)

Source

SUBSYS Source

Object

5.5-II (8/I/72)

NASTRAN- OPERATINGSYSTEMINTERFACES

COPYBF(TAPE3,LINKEDT)

COPYBF(TAPE3,LINKLIB)

RETURN(TAPE3)

UPDATE(Q,L:I)

LINKEDT(COMPILE)

REQUEST,TAPE,HI.

COPYBF(NEWX,TAPE)

RETURN(TAPE)

EXIT.

UNLOAD(TAPE2)

UNLOAD(TAPE3)

UNLOAD(TAPE)

789

*IDENT,_VERLAY

*DELETE,LINKEDT.2

LINKEDIT LET,_UTFILE=NEWX(T),

PARAM(2)=I200 , PARAM(6)=I4000

LIBRARY NASTOBJ

*C_MPILE,LINKEDT.ENDLINK

6789

SAVE TAPE

5.5.6 Machine Dependent Routines

The following utility routines necessary to NASTRANoperation must, by their nature, be

implemented in a machine dependent manner. Certain of the routines have been written in COMPASS

language, and the remainder are in F_RTRAN language.

5.5.6.1 MAPFNS(C_MPASS)

The MAPFNSdeck embodies a set of 25 utility functions and routines. These are as follows:

Logical Functions

ANDF (logical product of two words)

5.5-12 (811172)

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

_RF (logical sum of two words)

XBRF (logical difference of two words)

C_MPLF (complement of a word)

LSHIFT (left shift of a word)

RSHIFT (right shift of a word)

Utility Functions

C_RSZ (returns length of "open core")

C_RWDS (returns difference of two addresses + l)

LW_RDS (returns difference of two addresses. CDC 6000 only)

L_CF (returns the value of an address. CDC 6000 only)

INSTAL (returns installation name, left justified, blank fill. CDC 6000 only)

Utility Routines (CDC 6600 only)

XST_RE (stores an array at an absolute position in core)

XFETCH (fetches an array from an absolute position in core)

XJUMP (transfers control to an absolute location in core)

ZAP (stores zeros between specified locations in core)

REC_VRY (initializes PP routine RCV)

LINI(20. (provides a special call to Link 20, the NASTRAN exit link)

XCIII_I_N(executes the C_MM_N macro and returns the status of a file)

FIELDLN (returns the field length assigned to the job)

FLUSH (makes a special call to SYSTEM. to empty output buffers)

TDATE (returns Bw)nth, day,year, time)

KL_CK (returns current value of CPU clock)

DAYTIME (returns current time on wall clock)

DMPXXXX (writes exchange register dump on output)

SET66 (stores installation name at designated location)

5.5.6.2 C_NMSG (F_RTRAN)

The C_NMSG routine enters messages in the DAYFILE denoting the times of the initiation and

completion of modules during NASTRAN execution.

5.5-13 (811172)

NASTRAN - OPERATING SYSTEM INTERFACES

5.5.6.3 GNFIAT (F_RTRAN)

GNFIAT initializes the XFIAT and FIAT tables and reserves storage for the master indices

(see Section 5.5.2).

5.5.6.4 DUMP and PDUMP (F_RTRAN)

A call to PDUMP produces a trace back listing and, if a DIAG 1 card appeared in the Executive

Control Deck, a memory dump is given. PDUMP returns to the calling program. DUMP operates

similarly except terminates with a CALL EXIT.

5.5.6.5 PEXIT66 (FORTRAN)

PEXIT66 is called from PEXlT only. It terminates activity on all NASTRAH files. Tapes are

unloaded. Space assigned to disk files is evicted. PEXIT66 terminates with a CALL EXIT.

5.5.6.6 SGINO (F_RTRAN)

SGINO is used by the plot routines to write plot tapes. Actual writes are accomplished by

SGINB through calls to XI_RTNS.

5.5.6.7 XI_RTNS (C_MPASS)

The XIORTNS deck embodies a set of utility routines which communicate with the SCBPE Opera-

ting System through CPC to accomplish various file operations. Portions of code in XCLOSE and

READX are installation dependent. They are modified after determining the installation name by

a call to SET66.

Entry Points

X_PEN (constructs FET and initiates activity for file)

XCL_SE (terminates activity for file)

XEVlCT (evicts space assigned to a disk file)

REINDX (resets index pointers in the FET)

XWRITE (writes a portion or a complete logical record)

XREAD (reads a portion or a complete logical record)

XREWIND (repositions file to load point)

XBKREC (repositions file one logical record backwards)

5.5-14 (811172)

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

XBKPREC (repositions file one physical record backwards)

XFRDREC (repositions file one logical record forwards)

XREQST (issues REQUEST macro)

READX (reads a complete logical record)

WRITEX (writes a complete logical record)

5.5.6.8 GIN_66 (F_RTRAN)

GIN066 is a BLOCK DATA subprogram which initializes the GIN066 common block with names of

each of the possible NASTRAN files.

5.5.6.9 NASTRAN (FBRTRAN)

NASTRAN is a small main program in Link O. It establishes FBRTRAN buffers for the files

INPUT, OUTPUT and PUNCH before calling the Preface in Link I.

5.5.6.10 MPYQ (COMPASS)

MPYQ is a compass routine written to increase the speed of MPYAD's inner loops (see

Section 3.5.12.5).

5.5.6.11 WALTIM (FORTRAN)

WALTIM calls DAYTIM for time of day and then calculates the elapsed time in seconds after

midnight.

5.5.6.12 XC_RSZ (F_RTRAN)

Calls to CORSZ are renamed to XCBRSZ on the CDC 6000 and open core length is printed if

DIAG 13 is on.

5.5.6.13 I_6600 (FORTRAN)

I_6600 is an interface routine between GINB and XI_RTNS. It maintains index and subindex

information for the block being operated on and issues open and close messages as required by

DIAG 15. The calling sequence is:

CALL 106600 (_PC_DE,BUFF),RETURNS(RETURNI)

5.5-15 (8/I/72)

NASTRAN - OPERATING SYSTEM INTERFACES

IB6600 formats calls to appropriate entry points in XIBRTNS according to _PC_DE.

and calls are:

OPCODE REQUEST CALL

1 rewind XREWIND

2 write WRITEX

3 read READX

4 backspace XBKREC

5 forward space REINDX/READX

6 open XOPEN

7 close XCLBSE

The requests

5.5-16 (811172)

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

ILINK 0 I
G_

n
I

IIITl

iTIAE7

WLRI

,¢6111_ i

I'6 LI_ /
/'Z_/

A,H_/

Figure 2. Overlay Structure for Link 0 on the CDC 6000.

5.5-17 (8/]/72)

Page intentionally left blank

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

LINK 20

I I'EXII I

1'I_IT6 I

Figure 3. Overlay Structure for Link 20 on the CDC 6000.

5.5-19 (811172)

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

- t

x m B D '
XGPIW
XGPI
XGP Ill6
XGPIM
xGP106Z

/ W I C /
/XGPIU /
/XWI2 / }
/XGP13 /
/XGP14 /
/XW15 /
/X6PI6 /
/XGPI7 /
/XGP18 /
/XGPIW /
/ZXP t DG/

XFLORD
XFLDEF 1 t m !@%!

x t m m

Figure 4. Overlay St ruc ture f o r L ink 1 on t h e CDC 6000.

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

Vlm1 /GPRl / pi-
/GPR2 /

7 ONE

Figure 5. Overlay St ruc ture f o r L ink 2 on the CDC 6000.

@i@J 6i5B DELSET G4'TFleD
/GPtAI /

6-iii@

*,

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

Figure 8. Overlay Structure f o r Link 5 on the CDC 6000.

5.5-29 (8/1/72)

I

EJECT
WRTPRTZ
VECPRT
PRTVEC
VECPRT Z

/ZrnTPRT/ / m r /
/NECPRT/

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

LINK 9

_6WRT
Um_B6

nemm

33043

xaot5

FIt6Et
rla6_
RIGEI_

/II'LI'RGE/
ABLR_..I

XCI4K

mIFISI

lXSr'nl /

51175

33447

31622

Figure 12. Overlay Structure for Link 9 on the CDC 6000.

5.5-37 (8/I/72)

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

Figure 13. Overlay Structure f o r Link 10 on the CDC 6000.

.I-
LL.

_ION

W
I

EN_

,_/]i
]

35742

f,mll

B_E222

XOEI

ILI

.C

6NFISI

54066

/II_ /

36334

IR

NASTRAN ON THE CDC 6400/6600 (SCOPE 3)

Figure 16. Overlay Structure f o r L i n k 13 on the CDC 6000.

THE CDC 6400/6600 LINKAGE EDITOR

5.6 THE CDC 6400/6600 LINKAGE EDITOR

5.6.1 Introduction

5.6.1.I Concept of the Linkage Editor

The linkage editor has been designed to provide an efficient and effective means of utilizing

core storage for medium to large programs. The existing loader for the CDC 6400/6600 systems has

the following disadvantages:

I. Only two levels of overlay are provided beyond the root segment.

2. An overlay segment must be explicitly called. Consequently, the overlay structure must

be known when the program is coded.

3. An overlay segment may be entered at one point only. Consequently, downward calls are

extremely limited.

4. No facility exists to explicitly position named common blocks.

5. Loading of overlay segments is accomplished from a sequential file, thus providing

unnecessary search time.

The CDC 6400/6600 Linkage Editor in conjunction with its partner, the Segment Loader, over-

comes these disadvantages in the following ways:

I. An unlimited number of overlay levels is provided.

2. The programmer describes the overlay structure to the linkage editor after the program

is coded. The linkage editor provides implicit segment loading.

3. Complete con_nunicationbetween all levels of overlay is maintained.

4. Linkage editor control statements may be used to explicitly position subprograms and

named common blocks.

5. The overlay segments are maintained in an indexed file. Consequently, every segment is

immediately available to the segment loader.

As may be seen from Figure l, the primary input sources to the linkage editor include:

I. Object decks (relocatable binary decks)

2. Control statements

5.6-1 (12-1-69)

NASTRAN - OPERATING SYSTEM INTERFACES

3. A call library from which unsatisfied external references are resolved.

Another source of input (not shown in Figure I) is a file containing executable links from a

previous linkage editor run. This feature allows changes or additions of links while not altering

previous links to which no changes are required.

The file produced by the linkage editor contains three portions:

I. A sequence of object decks suitable for loading by the CDC loader. The main program in

this sequence, named XBO_T, reads the remainder of the file containing the executable links

and writes it on the disk as an indexed file. XBOOT reads Link 0 into central memory and

transfers control to the entry point which initiates execution of the problem program. This

sequence of decks is terminated by a null record.

2. Three records:

(I) Link 0 directory record;

(2) Link 0 symbol dictionary containing entry points and common blocks in Link 0 and

their associated addresses;

(3) Link 0 executable record.

3. A directory record for each succeeding link and one logical record per segment containing

executable instructions and data.

This sequence of records is terminated by a directory record which contains the word ENDLINKS.

Link 0 remains in central memory at all times during program execution. Link 0 contains no

overlay segments. The linkage editor supplies a routine named XL_ADER when Link 0 is constructed.

XL_ADER accomplishes the loading of segments and links when requested. Segment load requests

are supplied automatically by the linkage editor through tables called ENTAB$ (see section

5.6.3.2) which a_'e written as a part of the text for each segment which may require additional

segment loading. An additional table, SEGTAB$ (see section 5.6.3.2), which is constructed by

the linkage editor as a part of the root segment of every link, is used by XLOADER to facilitate

segment loading.

Major divisions of a program are links. Each link consists of a self-contained overlay

structure and might be thought of as a complete program in itself. All routines in a link

communicate freely with Link 0 routines. Consequently, Link 0 may be thought of as logically

5.6-2 (12-I-69)

THE CDC 6400/6600 LINKAGE EDITOR

belonging to every link. For many programs, a single link in addition to Link 0 will be sufficient.

Because of its size, however, NASTRAN has been divided into 14 links.

5.6.1.2 Functions of the Linkage Editor

The basic function of the linkage editor is the linking of separately assembled or compiled

subprograms into a link. The link is in a format suitable for loading and execution.

Although this linking or c_ining of subprograms is its primary function, the linkage editor

also:

I. Incorporates subprograms from a library file to resolve undefined external references.

2. Constructs an overlay program in a format suitable for loading and execution.

3. Rearranges control sections and renames external references as directed by linkage editor

control statements.

4. Reserves storage for common control sections generated by C_MPASS and F_RTRAN.

5. Provides processing options and diagnostic messages.

5.6.1.3 Subprogram Linkage

Processing by the linkage editor makes it possible for the programmer to divide his program

into several subprograms which may be separately assembled or compiled. The linkage editor com-

bines these subprograms into a link with contiguous storage addresses. The link is written in an

indexed file. The linkage editor can process more than one link in a single job step. Each link

is written with a unique link number.

5.6.1.4 Input Sources

Input to the linkage editor consists of one or more sequential files (libraries) containing

subprograms in relocatable format as produced by C_MPASS or F_RTP4_N,and linkage editor control

statements contained in INPUT, the standard input file.

External references that are undefined after processing all subprograms cause the automatic

library call mechanism to search for subprograms that will resolve the references. When these

subprograms are found, they are processed by the linkage editor and become part of the link.

5.6-3 (12-1-69)

NASTRAN - OPERATING SYSTEM INTERFACES

5.6.1.5 Programs in an Overlay Structure

To minimize main storage requirements, the programmer can organize his program into an over-

lay structure by dividing it into segments according to the functional relationshp of the sub-

programs. Two or more segments that need not be in main storage at the same time can be assigned

the same storage addresses, and can be loaded at different times. The programmer uses linkage

editor control statements to specify the relationship of segments within the overlay structure.

5.6.1.6 Options and Diagnostic Messages

The linkage editor can produce a storage map and a cross-reference table that show the

arrangement of control sections in the link and how they communicate with each other. A list of

the linkage editor control statements that were processed can be produced. Additionally, pro-

cessing options that negate the effect of minor errors and specify the disposition of input and

output files can be specified by the programmer.

Throughout processing by the linkage editor, errors and possible error conditions are printed.

Serious errors cause a link not be written on the output file.

5.6-4 (12-I-69)

THE CDC 6400/6600 LINKAGE EDITOR

_0_revi°usly
mpiled) J
ject DecksL,,P I ObJect

Deck
Library

Call

Library

SourcePrograms

<Run>Compi1er

]FileI
Containing l

Object Decks I

LINKLIB

LINKAGE

EDITOR /

Indexed
File With
Links

Link 0
in Central

Memory

Editor Control

s_ttateeents

Load _.

File
Containing
Executable

Links

_r

<cDc>Loader

Figure I. Linkage editor processing.

5.6-5 (12-I-6g)

NASTRAN- OPERATINGSYSTEMINTERFACES

5.6.2 Preparing for Linkage Editor Processing

5.6.2.1 Object Decks

An object deck (relocatable binary deck), which is produced by the F@RTRAN compiler or

C_MPASS assembler, consists of the following tables:

I. Program Identification and Length (PIDL), which defines a) subprogram identification and

length and b) each of the common blocks referenced by the subprogram;

2. Entry Point (ENTR), which defines each of the entry points to the subprogram and its

relative location;

3. Text (TEXT), which defines instructions and data for relocation;

4. Fill (FILL), which contains information to relocate previously defined address fields

(in particular, references to common blocks);

5. Link (LINK), which indicates each external reference by the subprogram and its relative

location;

6. Replication (REPL), which permits the repetition of a block of data.

Any other tables which may be contained in an object deck are ignored by the linkage editor.

For a complete description of the format of these tables, see the SC_PE Reference Manual,

Appendix D.

5.6.2.2 Libraries

All object decks that are to be processed by the linkage editor are contained in libraries.

A library is a sequential file (which may r_side on tape or disk) consisting of one or more

logical records with one object deck per logical record.

A file named LINKLIB must always be defined for linkage editor processing. This file con-

tains object decks for automatic library call plus object decks which are required in construct-

ing the initial load portion of the output file.

There is no theoretical limit to the number of libraries which may be defined for linkage

editor processing. Subprograms of the same name may appear in more than one library.

5.6-6 (12-I-69)

THE CDC 6400/6600 LINKAGE EDITOR

5;6.3 Designing an Overlay Program

5.6.3.1 Overlay Tree Structure

In order to place a program in an overlay structure, the programmer should be familiar with

the following terms:

I. A control section consists of all instructions and data defined for a subprogram oi"a

common block.

2. A_is the smallest functional unit (one or more control sections) that can be

loaded as one logical entity during program execution.

3. A path consists of a segment and all segments ir the same _'egionbetween it and the root

segment (first segment). The root segment is a part of every path in every region. When a

segment is in main storage, all segments in its path are also in main storage.

4. A region is a continguous area of main storage within which segments can be loaded

independently of paths in other regions. An overlay program can be designed in single or

multiple regions.

5. A link is a collection of one or more segments which comprise a logical subdivision of

the program. Link 0 (consisting of one segment only) is in main storage at all times. It is

the first link to receive control when execution of the program is initiated. The root

segment of any other link resides in main storage at all times that that link is being

executed. An overlay program must consist of at least one link other than Link O.

6. A tree is the graphic representation that shows how segments can use main storage at

different times. It does not imply the order of execution.

The design of an overlay program requires the organization of the control sections of the

program in an overlay tree structure. The tree structure is developed considering:

I. The amount of available main storage.

2. The frequency of use of each control section.

3. The dependencies between control sections.

4. The manner in which control should pass w tLin a path, from one path to another, and

from one region to another.

5.6-7 (12-I-69)

NASTRAN - OPERATING SYSTEM INTERFACES

When the programmer has determined the overlay structure for a program, he prepares _VERLAY,

iNSERT and REGION statements that will segment the program in that manner. The use of these con-

trol statements is described in section 5.6.4.

5.6.3.2 Overlay Characteristics

During execution of an overlay program, the segment loader uses tables that were generated

by the linkage editor and incorporated into the text of applicable segments. Since these tables

are an integral part of the program, their size must be considered when planning the use of

available main storage. These tables are described as follows.

I. Input/Output Control Table

There is one Input/Output Control Table (LINKO$) in the root segment of Link 0 only

which contains a File Environment Table (FET), a circular buffer, a master index and a sub-

index. The LINKO$ table is used by the segment loader to read requested segments into

LINKO$ is the first control section in Link O. Its size is determined ascentral memory.

follows:

Length in words = PARAM(1) + PARAM(4) + PARAM(5) + 4

Section 5.6.4.2 contains definitions of the parameters.

2. Segment Table

There is one Segment Table (SEGTAB$) in the root segment of each link except Link O.

The segment table is used to keep track of: (I) the relationship of the segments in the

program; (2) which segments are in main storage or scheduled to be loaded; (3) the main

storage address and length of each segment; and (4) the entry address of the link.

SEGTAB$ is the first control section in the root segment of each link. Its size is

determined as follows:

Length in words = n + 2,

where n is the number of segments in the link.

3. Entry Table

There can be an Entry Table (ENTAB$) in each segment of the program. The loader

5.6-8 (12-I-69)

THE CDC 6400/6600 LINF_GE EDITOR

uses the entry table to determine the segment to be loaded when an external reference is

made to TM segment not in the path.

An entry table may be produced as the last control section of a segment. An ENTAB$ entry

is created for a sym_ol to which control is to be passed. The syTnbolis defined in a seg-

ment not in the path. The size of ENTAB$ is determined as follows:

n

Length in words = 3n + _ 6i,
i=l

where n is the number of unique external references not in the path and 6i = MAX(mi-6,O),

mi = number of arguments for each external reference not in the path.

4. Dump Control Word

In the text produced by the linkage editor for each segment, a uniquely formatted word

which identifies the control section is written immediately prior to each control section.

This word is recognized by the storage dump routine XDUMP in order to produce relative

addresses fer each control section.

5.6.3.3 Overlay Communication

There are two ways in which the programmer can have his program request the overlay facilities

of the segment loader:

I. By a CALL statement (F_RTPJ_Nlanguage) or RJ instruction (C_MPASS language) which

causes a segment to be loaded and control to be passed to the symbol defined in that segment.

2. By a CALL LINK(N) (F_RTRAN language) or the equivalent in the C_MPASS language, where N

is the link nu_er, which causes segment one (the root segment) of the requested link to be

loaded and control to be passed to the sjnnbolnamed on the linkage editor control statement

ENTRY.

5.6.3.4 Reserving Storage

In F_RTPJ_Nand C_MPf,SS the programmer can create coT_trolsections that reserve main storage

areas containing no data or instructions. Referred to as "common", these control sections are

produced by the language translator. These common areas are either named or blank (unnamed).

During processing, the linkage editor collects these common areas. If more than one blank

common area is found, the largest blank common area is contained in the link. If two or more

5.6-9 (12-1-69)

NASTRAN - OPERATING SYSTEM INTERFACES

common areas have the same name, the largest common area having that name is reserved in the link.

All references to a common area (named or blank) refer to the largest area defined. This largest

area is the one which is retained.

If the linkage editor encounters data or text for the same common area in more than one sub-

program, only data from the first subprogram encountered are retained and a diagnostic message is

generated for any subsequent data definitions.

When object decks which reference common areas are to be placed in an overlay structure, the

linkage editor automatically "promotes" the common areas te the root segment (unless otherwise

directed by an INSERT control statement, see section 5.6.4.8). The position of a promoted common

area in relation to other control sections in the root segment is generally unpredictable.

Note: Blank common is treated by the linkage editor as a named common block with the

special name BLANK.. and is listed on the storage map with this name. Consequently, it is possible

to position this control section with the statement INSERT BLANK...

5.6.3.5

l°

Processing Options

List of control statements

The linkage editor automatically produces a listing of all control statements unless

the programmer selects the NOLIST option in the LINKEDIT statement (see section 5.6.4.2).

In the latter case, only the LINKEDIT, LIBRARY and ENDLINKS statements are listed (see

sections 5.6.4.2, 5.6.4.3 and 5.6.4.12 respectively for details).

2. Storage map and cross-reference table

The linkage editor automatically produces a storage map of each link unless the programmer

selects the NOMAP option in the LINKEDIT statement. For each segment, the storage map lists

the control sections in ascending order according to their assigned address. Included with

each control section is a list of all entry point names and assigned addresses.

When the XREF option in the LINKEDIT statement is specified, the linkage editor produces

a table of all references to each entry point in the link. Additional options (PARAM(7)

parameter, see section 5.6.4.2) allow t_:e table to be extended to include all references from

the link to LINK 0 entry points and an additional table of all external references from each

subprogram to be produced.

5.6-10 (12-I-69)

THE CDC 6400/6600 LINKAGE EDITOR

The N_F_APand XREF options are mutually exclusive. Therefore, if XREF is selected, N_MAP

is ignored and a storage map is produced.

3. The LET optio_

When the LET option of the LINKEDIT statement is selected, the linkage editor disregards

all errors except two and writes the link on the output file. The two errors which preclude

the link from being written are: (1) an undefined entry point to the link; and (2) insuffi-

cient storage space to form the link to be written.

5.6-11 (12-1-69)

NASTRAN - OPERATING SYSTEM INTERFACES

5.6.4 Linkage Editor Control Statements

5.6.4.1 General Statement Format

All linkage editor control statements are coded from the following possible forms:

operation operand

VERB a, b(c), KEYWORD, KEYWBRD = a, KEYW_RD = b(c),

KEYW_RD(i) = n, a = a, b(c) = a,n

where

a is an unsubscripted symbol,

b is a subscripted symbol,

c is a subscript symbol,

KEYWORD is an explicit name or option,

i is an integer subscript,

n is an integer value.

The operation field must contain the name of the operation to be performed. The operand

field must contain one or more symbols or subscripted symbols (except REGION, END and ENDLINKS

which have no operands). Operands in the operand field are separated by a comma or blank (or both).

Two or more symbols within parentheses are similarly separated. A keyword must be written exactly

as shown.

The operation field begins with the first nonblank column on the card. The operand field is

separated fron: the operation field by at least one blank column.

The LINKEDIT and LIBRARY control statements may be continued on subsequent cards by coding a

comma as the last nonblank column. The continuation begins with the first nonblank column of the

succeeding card. These two control statements are the only ones which may be continued.

5.6.4.2 The LINKEDIT Statement

The LINKEDIT statement specifies input and output file names and status, processing options

and size characteristics of the link(s) to be link-edited.

5.6-12 (12-I-69)

THE CDC 6400/6600 LINKAGE EDITOR

operation

LINKEDIT

operands

INFILE = name(a),_UTFILE = name(b),

LET,N_LIST,N@MAP,XREF,PARAM(i) = n

INFILE

_UTFILE

LET

N_LIST

N_MAP

specifies the name of a file which was

previously produced by the linkage editor.

INFILE is named only when previously link-

edited links are to be updated.

must be coded T or C. T specifies that the

file is a sequential file on tape or disk.

C specifies that the file is an indexed file

on disk and, therefore, a common file as

defined by SC@PE.

specifies the name of the file on which the

initial load program and the links will be

written. _UTFILE must always be named.

must be coded T or C. The links are written

internally by the linkage editor on an indexed

file. If C is coded, the links are written

directly on the file specified by _UTFILE,

which must be a common file. If T is coded,

the initial load program and the links are

copied from the internal file to the specified

sequential file (tape or disk).

directs the linkage editor to ignore the effect of

most errors.

directs the linkage editor to suppress the

listing of control statements.

directs the linkage editor to suppress storage

maps.

5.6-13 (12-1-69)

K_evword

PARAM(1)

PARAM(2)

PARAM(3)

PARAM(4)

PARAM(5i

PARAM(6)

PARAM(7)

Placement:

Notes:

NASTRAN- OPERATINGSYSTEMINTERFACES

XREF directs the linkage editor to list a table of

external references to each entry point in each

link.

Description

Length of FET + circular buffer 530

for all files used by the linkage

editor

Maximum number of object decks in lO00

all libraries

Maximum size of any table in an 500

object deck

Maximum number of links 32

Maximum number of segments in any 128

link

Maximum length (in words) of any 5000

control section for which text is

defined

Additional options if XREF is 0

selected

=l: produce a table of references

from each subprogram

=2: list all references to entry

points in Link,O

=3: provide both of the above

Default Value

The LINKEDIT statement must be the first statement of the input record.

Only one such statement may appear in a job step.

(1) The files named on INFILE and _UTFILE may be the same; however, if so,

their status must be the same (i.e., both T or both C)

5.6-14 (12-I-69)

THECDC6400/6600LINKAGEEDITOR

Examples:

(2) If XREF is selected, N_FtAPis ignored

(3) If XREF is not selected, PARAM(7) is ignored

LINKEDIT

LINKEDIT

LINKEDIT

LINKEDIT

_UTFILE:LINKS(T),LET,XREF

INFILE=_LDLNKS(T),BUTFILE=NEWLNKS(T),N_LIST,PARAM(1)=I050

INFILE:ABS(C),_UTFILE=ABS(C),PARAM(6)=8000

_UTFILE=MYFILE(T)

5.6.4.3 The LIBRARY Statement

The LIBRARY statement names each file which may possibly occur on INCLUDE control statements

(see Section 5.6.4.5).

operation

LIBRARY

LIBRARY

or

operands

namel,name2,...

LIB=namel,name2....

Placement:

Example:

name specifies the name of a sequential fi|e
containing object decks.

LIB concatenated file containing object decks
from all named files.

The LIBRARY state_nt must appear immediately after the LINKEDIT statement.

Only one such statement may appear in a job step.

LIBRARY MASTER,NEWDCKS

5.6.4.4 The LINK statement

D

The LINK statement specifies the link number and directs the linkage editor to initiate

processing of a link.

LINKoperation o_erandn 1

is a nonnegative integer specifying the
link number.

5.6-15 (8/i/72)

NASTRAN- OPERATINGSYSTEMINTERFACES

Placement: The first LINK statement must appear immediately following the LIBRARY

statement. Subsequent LINK statements must appear immediately following

an ENDstatement. If Link 0 is being processed, it must be the first link

to be processed.

LINK 0

5.6.4.5 The INCLUDE Statement

The INCLUDE statement directs the linkage editor to include the named object deck from the

specified library in the link currently being processed.

operation operands IINCLUDE name(deck,BLKDATA(comname))

name specifies the name of a sequential

file which was previously defined

in the LIBRARY statement.

deck specifies the name of an object

deck contained in the file.

BLKDATA indicates that the deck to be

included is a BLOCK DATA sub-

program.

comname is the name of the first mentioned

common block in the BL_CK DATA sub-

program.

Placement: An INCLUDE statement may appear in any position between the LINK and END

statements. Subprograms will be included in the order in which

INCLUDE statements are encountered.

Examples:

INCLUDE

INCLUDE

INCLUDE

MASTER(MAIN)

NEWDCKS(MODI,M_D2,M_D3)

MASTER(BLKDATA(C_MI),BLKDATA(COM2))

5.6-16 (8/I/72)

THE CDC 6400/6600 LINKAGE EDITOR

5.6.4.6 The REGION Statement

The REGION statement indicates the beginning of a new region.

operation IREGION

Placement: The REGI@N statement follows statements which define the overlay structure

for a previous region, and it indicates the beginning of a new region.

5.6.4.7 The _VERLAY Statement

The OVERLAY statement indicates the beginning of an overlay segment.

I°perati°n °er-p-_-d-I_VERLAY name

name is the symbolic

origin of a segment.

The symbol is not

related to external

symbols in the link.

Placement: The @VERLAY statement may appear in any position between the LINK and END

statements. If a REGION statement is coded, an _VERLAY statement must

appear immediately following the REGION statement. An _VERLAY statement

may not be coded for Link O.

Examples:

I. Single region structure (no REGION statement necessary)

INCLUDE MASTER(SUBI)

INCLUDE MASTER(BLKDATA(C_MI))

_VERLAY ALPHA

INCLUDE NEWDCKS(M_DI)

_VERLAY BETA

INCLUDE NEWDCKS(M_D2,M_D3)

_VERLAY BETA

5.6-17 (12-I-69)

NASTRAN- OPERATING SYSTEMINTERFACES

INCLUDE MASTER(PROGA)

OVERLAY ALPHA

INCLUDE MASTER(PR_GB,PR_GC)

Figure 2 depicts a tree diagram for the above example.

BETA

M_D2

M_D3

ALPHA

SUB1

IC_Mll

M_DI

PR_GA

PROGB

PR_GC

Figure 2. Tree diagram of a single region overlay structure.

2. Multiple region structure

INCLUDE OBJ(A,B,C)

_VERLAY _NE

INCLUDE DECKS(AA,BB)

OVERLAY TW_

INCLUDE _BJ(D)

BVERLAY TWO

INCLUDE DECKS(CC,DD)

@VERLAY _NE

INCLUDE OBJ(E,F,G)

REGION

_VERLAY THREE

INCLUDE @BJ(I,j)

5.6-18 (12-I-69)

THECDC6400/6600LINKAGEEDITOR

_VERLAY THREE

INCLUDE DECKS(EE)

_VERLAY F_UR

INCLUDE DECKS(FF,GG)

_VERLAY F_UR

INCLUDE _BJ(K)

Region 1

Region 2

Figure 3 depicts a tree diagram for the above example.

ONE

TW@ BB

Io Icoo
Ii FOUR lEE

GG

THREE

K

Figure 3. Tree diagram of a multiple region overlay structure.

5.6.4.8 The INSERT Statement

The INSERT statement positions control sections in overlay segments.

operation

INSERT

name

name°perandsI

specifies the

name of a control

section that is to

be positioned.

5.6-19 (12-1-69)

NASTRAN - OPERATING SYSTEM INTERFACES

5.6.4.9

Placement:

Caution:

Examples:

The INSERT statement is placed in the control statement sequence following

an _VERLAY statement that defines the segment in which the control section is

to be placed.

A control section should be named only once on an INSERT statement since a

control section can appear only once within a link. If the same control

section appears on more than one INSERT statement, the last statement

encountered will control positioning and previous statements will be ignored.

INSERT COMI

INSERT C_M2,C_M3

The RENAME Statement

The RENAME statement changes external references to a symbol to a new symbol either globally

(throughout the link) or locally (within a subprogram).

Placement:

Notes:

operation o__perand

RENAME oldname=newname [global]

RENAME oldname(subprogram)=newname [local]

oldname is the symbol to which an external reference

exists.

newname is the symbol to which the external reference

is to be made.

subprogram is the name of the subprogram in which the

change is to be made.

The RENAME statement may appear in any position between the LINK and the END

statements.

(I) Only one rename may be coded on a single statement.

(2) No error occurs if no references are made to oldname. If reference

is made to oldname and newname is not specifically included, the automatic

call logic will be invoked.

5.6-20 (12-I-69)

THE CDC 6400/6600 LINKAGE EDITOR

5.6.4.10

Examples:

RENAME

RENAME

SQRT=SQRTXX

DUMP(M_DI)=RETURN

The ENTRY Statement

The ENTRY statement specifies the symbolic name of the entry point in the link to which

control will be transferred after thelink is loaded.

operationENTRY

name

operand

name

is the symbol defining the

entry point for the link. The

name must be defined in the root

segment of the link. For Link O,

name must be the name of a _in

program. For any link other than

Link O, name must be the name of a

subroutine.

Placement:

Examples:

The ENTRY statement may appear in any position between the LINK and the END

statements.

ENTRY MAIN

ENTRY SUBI

5.6-21 (12-I-69)

NASTRAN- OPERATINGSYSTEMINTERFACE_

5.6.4.11 TheENDStatement

TheENDstatementspecifiesthe conclusionof control statementsfor the current link being

processed.

Placement:

l operationEND

The END statement must appear following all statements which define the link.

There must be one END statement for each LINK statement.

5.6.4.12 The ENDLINKS Statement

The ENDLINKS statement defines the end of all processing by the linkage editor.

I°perati°n IENDLINKS

Placement: The ENDLINKS statement must immediately follow an END statement.

statement is required.

One such

5.6-22 (12-I-69)

THECDC6400/6600LINKAGEEDITOR

5.6.5 Exa_les of Linkage Editor Processin_

In the following examples, it is assumed that the file containing the call library (LINKLIB)

and a file containing the linkage editor program (LINKEDT) are contained on separate magnetic

tapes. These examples are intended to illustrate various deck setups.

Conditions of Problem

Example Source Program Previously Compiled Decks Execution

A

B

C

yes

no

no

in input stream

on tape

input stream
and on tape

yes

no

yes

Example A

JOB,PI,TIOO,CM60000.

MAP(OFF)

RUN(SNEW)

REWIND(NEW)

COPYBR(INPUT,OLD,n)

REWIND(OLD)

REQUEST LINKEDT,HI. reel#,ROL

REQUEST LINKLIB,HI. reel#,ROL

COMMON(LINKS)

LINKEDT.

RETURN(LINKLIB)

RETURN(LINKEDT)

LINKS.ATTACH

RELEASE(LINKS)

EXIT.

RELEASE(LINKS)

UNL_AD(LINKLIB)

5.6-23 (8/I/72)

NASTRAN - OPEP_ATING SYSTEM INTERFACES

(1)

UNL_AD(LINKEDT)

789

789

RTRAN or C_MPASS source programs I

n object decks 1

LINKEDIT _UTFILE=LINKS(C)

NEW,OLDLIBRARY

LINK 0

RENAME SYSTEM=SYSTEM.

{INCLUDE statements}

ENTRY entry point

END

LINK 1

RENAME SYSTEM=SYSTEM.

{INCLUDE,OVERLAY, etc. statements}

ENTRY entry point

END

ENDLINKS

789

{data for problem program}

6789

Example B

JOB,PI,TIOO,CM60000.

MAP(OFF)

REQUEST _BJECT,HI. reel#,R_L

REQUEST LINKLIB,HI. reel#,ROL

REQUEST LINKEDT,HI. reel#,ROL

REQUEST LINKFIL,HI. SAVTP,RIL

LINKEDT.

5.6-24 (8/I/72)

_ETURN(OBJECT)

RETURN(LINKLIB)

RETURN(LINKEDT)

RETURN(LINKFIL)

EXIT.

UNLOAD(OBJECT)

UNL_AD(LINKLIB)

UNLOAD(LINKEDT)

UNLOAD(LINKFIL)

789

LINKEDIT

LIBRARY

LINK 0

OUTFILE:LINKFIL(T),LET,XREF,PARAM(7)=2

_BJECT

THE CDC 6400/6600 LINKAGE EDITOR

RENAME SYSTEM = SYSTEM.

{INCLUDE statements for Link O}

ENTRY entry point

END

LINK l

RENAME SYSTEM=SYSTEM.

INCLUDE, OVERLAY, etc. statements for Link l

ENTRY entry point

END

ENDLINKS

6789

Example C

J_B,PI,T2OO,CM70000.

MAP(_FF)

C_PYBR(INPUT,OBJ,n)

REWIND(OBJ)

REQUESTMASTER,HI. reel#,ROL

5.6-25 (8/I172)

NASTRAN - OPERATING SYSTEM INTERFACES

REQUEST LINKLIB,HI. reel#,R_L

REQUEST LINKEDT,HI. reel#,R_L

REQUEST LINKFIL,HI. reel#,RIL

LINKEDT.

RETURN(MASTER)

RETURN(LINKLIB)

RETURN(LINKEDT)

LINKFIL.

RETURN(LINKEIL)

EXIT.

UNL@AD(MASTER)

UNL_AD(LINKLIB)

UNL_AD(LINKEDT)

UNL_AD(LINKFIL)

789

{n object decks}

LINKEDIT INFILE=LINKFIL(T),OUTFILE=LINKFIL(T),PARAM(6)=90000

LIBRARY MASTER,@BJ

LINK 2

RENAME SYSTEM=SYSTEM.

I INCLUDE, etc. statements for Link 21_VERLAY,

ENTRY entry point

END

ENDLINKS

789

{data for problem program}

6789

5.6-26 (8/I/72)

THE CDC 6400/6600 LINKAGE EDITOR

In Example A, the output of the linkage editor is written on a common file and executed from

that file. This method is most efficient for "compile-and-go" type code check runs.

In Example B, the output of the linkage editor is written on tape. This would be the most

common form of a run in which most of the coding errors have been eliminated and the executable

program is saved on tape for subsequent repeated executions.

In Example C, it is assumed that a previously link-edited file exits (created, for example in

Example B) and that it is desired to add a new link (or modify an existing link). In this case,

the input and output files are both the same (although this is not necessary). The output of the

linkage editor is written on tape and the problem program is executed from this tape file.

Note: (1) To avoid possible conflict with a user (viz. NASTRAN) named common with the name

SYSTEM, the CDC system routine has been reassembled with the name SYSTEM. and has

been placed on LINKLIB with the name SYSTEM.. In order that other library routines

may be properly linked, the statement RENAME SYSTEM=SYSTEM. is recommended for all

links.

In the example illustrated in Figure 4, the following linkage editor control statements will

produce the indicated overlay structure.

LINKEDIT OUTFILE=LINKS(T)

LIBRARY LIBA,LIBB

LINK 0

RENAME SYSTEM=SYSTEM.

INCLUDE LIBA(MAIN)

INCLUDE LIBB(UTILI,UTIL2)

INCLUDE LIBA(UTIL3)

ENTRY MAIN

END

LINK l

RENAME SYSTEM=SYSTEM.

INCLUDE LIBB(START,MODI)

OVERLAY A

INCLUDE LIBA(MOD2)

INCLUDE LIBB(M_D3)

IFiSERT COMI

5.6-27 (811172)

_VERLAYA

INCLUDELIBA(M_D4)

_VERLAYB

INCLUDELIBB(M_D5)

INCLUDELIBA(_!_D6)

INSERTC_M2

OVERLAYB

INCLUDELIBB(M_D7)

INSERTC_M3

ENTRYSTART

END

ENDLINKS

NASTRAN- OPERATINGSYSTEMINTERFACES

5.6-27a(811172)

NASTRAN- OPERATINGSYSTEMINTERFACES

Link 0

Link 1

A

MAIN

UTILI

UTIL2

UTIL3

START

MODI

M_D2

M_D3

IC_MII M_D5

LIBA LIBB

MAIN

UTIL3

M_D2

M_D4

M_D6

UTILI

UTIL2

START

M_DI

M_D3

M@D5

MOD7

Figure 4. Example of a two-link overlay structure.

5.6-28 (8/I/72)

THE CDC 6400/6600 LINKAGE EDITOR

5.6.6 Storage Requirements for the Linkage Editor

Figure 5 illustrates the layout of core storage for the linkage editor. For the discussion

below, it is assumed that the linkage editor has not itself been link-edited. A link-edited

version of the linkage editor is available. A memory saving of approximately 400010(I00008) words

results.

The principal open-ended table is the Symbol Chain Table. A three-word entry is created in

this table for each subprogram name, entry point, common block and unique external reference not

in the path. For a link other than Link O, a three-word entry for each entry point and common

block in Link 0 is also created. A conservative estimate for the requirements of this table is

as follows:

Link O: length in words =

Link # O: length in words =

4* (no. of entry points + con_nonblocks),

6* (no. of entry points + common blocks)

+3* (no. of entry points + common blocks in Link 0).

The largest table is likely to be the Working Storage Table. It must hold all instructions

and data for the largest control section for which text is defined. If this figure is not known,

a linkage editor run can be made. The storage map will be printed even if the link is not written.

A scan of the lengths listed (in octal) will identify the largest control section. Note that

common blocks for which no data are defined are not to be used in defining the maximum.

Field length for the linkage editor may be estimated from the following:

field lengthlo = 15000 + MAX(IO*N,2000) + MAX(T,2000) + 3*PARAM(1) ,

where

and

N

T =

number of subprograms defined on INCLUDE statements,

length of largest subprogram or common block for which

instructions or data are defined,

PARAM(1) is defined in section 5.6.4.2.

5.6-29 (12-I-69)

NASTRAN - OPERATING SYSTEM INTERFACES

If default values for the linkage editor are used, a program of less than 200 decks would

require a field length of 23,60010 = 60,0008 .

Efficiency of the linkage editor may be improved by increasing the buffer size (PARAM(1)).

For NASTRAN, PARAM(1)

storage (PARAM(6) =

as

5.6.7

= 2080 is used. Additionally, one deck requires 16,00010 words of text

16000). Consequently, for a link of 300 decks, the field length works out

field lengthlo = 15000 + 3000 + 16000 + 6240

Link-edited Linkage Editor

= 4024010 _ 1200008

The Linkage Editor object decks may be link-edited themselves.

Level 15 may be used to do this as follows:

Object Tape

J_B,PI,TIOO,CMI20000.

MAP(BFF)

REQUEST,TAPE3,HY.

C_PYBF(TAPE3,X)

COPYBF(TAPE3,LINKEDT)

C_PYBF(TAPE3,LINKLIB)

RETURN(TAPE3)

REQUEST,TAPE2,HY.

COPYBF(TAPE2,X,2)

C_PYBF(TAPE2,_LDPL)

RETURN(TAPE2)

UPDATE(Q,L=I)

REWIND(LINKEDT)

C_PYBF(LINKEDT,LKDT)

LKDT(COMPILE)

REQUEST,TAPE,HY.

C_PYBF(EDT,TAPE)

RETURN(TAPE)

EXIT.

UNLOAD(TAPE)

Source Tape

SUBSYS decks

The materials released with

SAVE TAPE for executable linkage editor

5.6-30 (8/I/72)

UNLOAD(TAPE2)

UNLOAD(TAPE3)

789

*CbMPILE,LKED

6789

THE CDC 6400/6600 LINKAGE EDITOR

5.6-30a (811/72)

THECDC6400/6600LINKAGEEDITOR

=1400010

Field Length

Instructions
andData

Bufferl

Buffer2

Buffer3

MasterIndex

SegmentIndex

Library Index

NamesTable

EntryPointTable

LibraryTable

RegionDefinitionTable

SegmentDefinition Table

SegmentChainsTable

RenameTable

S)_bolChainTable

WorkingStorage

Size

PARAM(1)

PARAM(l)

PARAM(l)

PARAM(4)

PARAM(5)
No.of decks in all

Libraries (_ PARAM(6))

No. of decks in all

Libraries (_PARAM(6))

No. of entry points in
LINKLIB (= 200)

No. of libraries

No. of regions + l

No. of segments + l
(_ PARAM(4) + l)

No. of segments + l
(_PARAM(4) + l)

3*(no. of RENAME
statements)

Remaining storage

PARAM(3) + PARAM(6)

Figure 5. Layout of core storage for the linkage editor.

5.6-31 (12-I-69)

INTRODUCTION

6.1 INTRODUCTION

Modifications and additions are continuously made to large programming systems. NASTRAN will

not be an exception to this rule. Section 6.2 presents the F@RTRAN IV language restrictions that

must be followed in order to produce equivalent object code across the computing machines on

which NASTRAN operates. The remaining sections discuss areas of the program which experience,

gained during program development, has shown to be those areas most subject to modifications and

additions.

6.l-I

FORTRAN IV LANGUAGE RESTRICTIONS

6.2 FORTRAN IV LANGUAGE RESTRICTIONS

NASTRAN was developed in the F_RTRAH IV programming language to the greatest extent possible

in order to simplify the task of conversion from the development machine, which, for the majority

of program development, was the IBM 7094/7040(44) DCS, to third generation computing systems. The

same FORTRAN IV code can execute differently across computing machines. This fact is all but too

well known to those who have labored through the task of conversion from one computing system to

another. For this reason, modifications and additions to NASTRAN must be accomplished with F_RTRAN

code that will produce equivalent object code across computing mLchines. The basic set of rules

governing programming in FORTRAN IV for NASTRAN is incorporated in the following manual in the

IBM Systems Reference Library: IBM 7090/7094 IBSYS Operating System, Version 13, FORTRAN IV

Language, File No. 7090-25, Form C28-6390-3. The following is a list of exceptions to the rules

set forth in this manual.

I. An integer constant may not be greater than 231-I.

2. Subscripted variables should contain no more than 3 subscripts.

3. A reference to the first variable in a subscripted array must contain the

subscript I, e.g., A(1) = 0.0 .

4. A CONTINUE statement requires a FBRTRAN statement number.

5. The PAUSE statement is not to be used.

6. The NAMELIST statement is not to be used.

7. Implied DO's in DATA statements are not allowed.

8. The last statement of a DO loop may not be a logical IF statement. It is recommended

that it be a CONTINUE statement. It is also reco_nended that each DO loop have

its own C_NTINUE statement.

9. BLOCK DATA subprograms may contain only type (e.g., REAL, INTEGER), DIMENSION, CO_ON,

DATA and comment statements.

I0. All Hollerith data should be defined in the form 4H

II. Do not use octal (0) or hexidecimal (Z) in DATA or F@RMAT statements.

12. Specification statements should precede any executable statement.

6.2-I (811172)

MODIFICATIONSANDADDITIONSTONASTRAN

13. Theorderof specificationstatementsshouldbeas follows:

C_MPLEX

D_UBLEPRECISION

REAL

INTEGER

L_GICAL

DIMENSI@N

C_MM_N

EQUIVALENCE

EXTERNAL

DATA

ArithmeticStatementFunctions

14. Thevariablesin blankCOMMONor a blockof C_MM_Nshouldbeorderedas follows:

complex,doubleprecision,real, integerandlogical.

15. Variablesstoredas single precisioncannotbe referencedasdoubleprecisionvariables

(via theF_RTRANEQUIVALENCEstatement)becauseof the different internal wordstorage

formatfor singleanddoubleprecisionwordson the Univac1108.

16. Cautionmustbeexercisedto insurethat types(REAL,INTEGER,etc.) of FORTRANfunction

valuesagreein the functionsubprogramandin the calling program.This agreement

betweentypesis necessaryfor machines(e.g., IBMS/360)onwhichREALandINTEGER

valuesof F_RTRANfunctionsare returnedin different registers.

17. Donot attemptto extendthe lengthof arraysthroughthe EQUIVALENCEstatement.

18. Cautionmustbeexercisedwhenusingthe EQUIVALENCEstatement. Oneshouldnot usethe

EQUIVALENCEstatementto give different variablenamesto the samecell, sincemodern

compilers,becauseof their optimizationtechniques,donot guaranteethat the values

of the equivalencedvariableswill be the same.HenceEQUIVALENCEshouldbeusedonly

betweenvariableswhichhavenon-intersectingusespansin a program.

6.2-2 (8/I/72)

FORTRANIV LANGUAGERESTRICTIONS

19. Nonstandardreturnsin a SUBROUTINEstatementmustimmediatelyfollow the left parenthesis

whichstarts the namesof the subroutine'sarguments,e.g. SUBROUTINEXYZ(*,*,A,B) is

the correct form;SUBRBUTINEXYZ(*,A,*,B) is not acceptable.Onthe CDCcomputers,use

SUBROUTINEXYZ(A,B),RETURNS(RETURNI,RETURN2).

20. Theremustbeagreementwith respectto the numberof argumentsandthe typeof each

argumentin the argumentlist of a calling programandthe subprogramcalled.

21. Forconsistencywith currentNASTRANpractice,deck(or member)namesfor subroutines

shouldagreewith the primaryentry point names.Decknamesfor BlockDatasubprograms
shouldendwith the characters"BD".

22. FUNCTIONsubprogramswhosetypeis not implicit mustbe typedin the FUNCTIONstatement.

Forexample,use

D_UBLEPRECISIBNFUNCTIONABC(X)

andnot

FUNCTIONABC(X)

D_UBLEPRECISIBNABC

23. Thenameof a FUNCTIONsubprogrammustappearsomewherewithin the subprogram.

24. All subscriptedvariablesappearingin EQUIVALENCEstatementsmustbesubscripted.

E.g., useEQUIVALENCE(A(1),X(1))insteadof EQUIVALENCE(A,B).

6.2-3 (811172)

THE EXECUTIVE CONTROL DECK

6.3 THE EXECUTIVE CONTROL DECK

The capabilities of the Executive Control Deck may be changed or increased by modifying

existing control card functions or addition completely new card types. Executive control cards

are processed within two modules of the Preface: XCSA, (Executive Control Section Analysis,

Section 4.2) and XGPI (Executive General Problem Initialization, Section 4.7). Some cards are

handled completely within XCSA, while others are only partially checked by XCSA and then passed

to XGPI, via the Executive Control Table (Section 2.4.2.5), for final processing.

To modify the content or function of an existing control card, first locate the proper

section within module XCSA. The block of F_RTRAN statements related to the processing of each

type of card is appropriately co_nnented. Also, it can be determined from these statements

whether part of the processing is being passed to module XGPI. The required modifications can

then be made within XCSA and/or XGPI.

To add a new control card type to those currently acceptable, the following steps should be

taken. First, add the card type name to the local F_RTRAN array ECTT (Executive Control Type

Table) within module XCSA, and increase the table length parameter (LECTT) by three for each

new entry. The three word entry consists of two BCD words (4 characters/word) for the card type

mnemonic and a one word integer flag indicating whether the card type is to be optional (=0) or

required (=I) within the NASTRAN Executive Control Deck. Second, add a statement number to the

computed-go-to branch vector. This branch vector transfers the XCSA logic to the correct card

processing section within the module. Third, create the processing code, and add it to the

module. If additional processing must be performed in XGPI, the Control Table format should be

modified and the necessary logic added to the XGPI module.

6.3.1 The NASTRAN Card

A facility is provided whereby the default values in /SYSTEM/, which are initialized by the

system Block Data subprogram, SEMDBD, or subroutine BTSTRP, can be altered at execution time.

The contents of /SYSTEM/ are described in Section 2.4.1.8. Other locally used values may also

be redefined.

The card which provides this capability is called the NASTRAN card. If this card is used,

it must be the first card of the data deck (i.e., the card must precede the Executive Control

6.3-I (8/I/72)

MODIFICATIONSANDADDITIONSTONASTRAN

Deck).

ControlDecks). Its formatis as follows:

TheNASTRANcardis a free field card(similar to cardsin the ExecutiveControlandCase

NASTRAN keywordl=Value,

wherethe list of allowablekeywordsis as follows:

keyword2=value,...

I. BUFFSIZE- Definesthe numberof wordsin a GIN_buffer. Note: fixed lengthrecords

written byGIN_areof lengthBUFFSIZE- 3. This keywordchangesthe first wordof

/SYSTEM/.

2. MAX_PEN - Defines the maximum number of files that may be open at any one point in the

program. This keyword changes the 30 th word of /SYSTEM/.

3. C_NFIG - Defines the computer configuration for use in the timing equations in the

matrix decomposition subroutines SDC_MP, DECAMP and CDCOMP. This keyword changes the

28 th word of /SYSTEM/.

4. MAXFILES - Defines the maximum number of files to be placed in /XFIAT/ by GNFIAT.

This keyword changes the 29 th word of /SYSTEM/.

5. SYSTEM(1) - I refers to the I th word of /SYSTEM/. This is a general form of altering

any word in /SYSTEM/. Note that BUFFSIZE and SYSTEM(1) are equivalent, and MAXFILES

and SYSTEM(29) are equivalent.

6. K_N360 - Defines the 31 st word of /SYSTEM/. Used only on the IBM 360-370 computers.

This value sets the number of words of four bytes each to be reserved from the region

for _S service routines needed during execution. If the user is going to use F_RTRAN

units for User Tapes or if local modifications are made to the program which require

additional service routines at execution time, this value will have to be increased.

7. NLINES - Defines the 9 th word of /SYSTEM/. This value sets the number of data lines

per printed page. For II" paper, an appropriate value is 50. For 8-I/2" paper, an

appropriate value is 35.

8. TITLE_PT - Defines a local variable within SEMINT which is passed to TTLPGE to control

the printing of the NASTRAN title page. See Section 3.3.13 for a description of

subroutine TTLPGE.

6.3-2 (8/I/72)

THEEXECUTIVECONTROLDECK

Examples of use of the NASTRAN card follow.

NASTRAN BUFFSIZE=878, SYSTEM(2)=3, MAX_PEN=IO

The above card changes the I st, 2 nd and 30 th words of /SYSTEM/. SYSTEM(2)=3 changes the system

output unit from 6 to 3.

NASTRAN SYSTEM(4)=4, MAXFILES=21

The above card changes the 4 th and 29 th words of /SYSTEM/. SYSTEM(4)=4 changes the system input

unit from 5 to 4 (which means that all subsequent data must be present on unit 4).

6,3-3 (8/I/72)

THE CASE CONTROL DECK

6.4 THE CASE CONTROL DECK

The Case Control Deck is processed by the IFPI module, whose Module Functional Description

can be found in section 4.3. A card can be added to the Case Control Deck by implementing the

following steps.

I. Assignment of a Word in the CASECC Data Block (see section 2.3.1.I).

If the card datum is to be passed on, a word must be assigned in CASECC. Several words are

currently empty in CASECC. If more space in the fixed portion of CASECC is needed, modules

which use CASECC to prepare data blocks for the Output File Processor (_FP) module (e.g.,

SDR2, VDR, PLA3), will need to be updated since they Bre sensitive to the length of CASECC.

Otherwise, just change the value of LENCC in /IFPIA/. Some Case Control Cards only change

cells in /SYSTEM/ and do not need space in CASECC.

2. Addition (or change of) a Key Word.

To add another key word simply lengthen /IFPIA/ by the nun_er of new words, changing the

IFPABD Block Data subprogram. The same procedure will allewyou to change the spelling of a

current keyword.

3. Identification of Card Type.

In IFPI there are approximately 30 logical IF statements in a rew. Simply add another one

modeled after the existing statements with the new key word.

4. Addition of Card Dependent Code.

Add a small internal subroutine to process the new card. The simplest form of such an

internal routine is to extract one integer from a card of the form SPC = I. In this case

set "IK" to the word assigned to the card in CASECC and transfer to the common code for this

purpose. There are many examples of more complex cards under each card type. Changing these

card dependent areas of code allows easy modification of existing card types.

5. Restart Implications

See the subroutine description for IFPIB in the Module Function Description for IFPI for a

description of the restart functions of IFPI.

6.4-I

THEBULKDATADECK

6.5 THEBULKDATADECK

Themodulewhichprocessesthe BulkDataDeckis the Input File Processor(IFP), whose

ModuleFunctionalDescriptioncanbe foundin section4.5. Thereare twoprimaryreasonsfor

addingor modifyinga bulk datacard. First, a newstructural elementor someother item is to

beaddedto the NASTRANsystem.Thiswill requireadditional codein severalothermodules

besidesthe InputFile Processor(IFP); however,only IFPchangeswill bediscussedhere.

Second,analternateformof userinput is desiredfor analreadyexisting item. Forexample,

the SPCIcardis analternateformof the SPCcard. In somecases,analternateformcanbe

accommodatedon the samecare. Anexampleof this techniqueis foundoF,the SP_INTcard. The

advantagegainedin this caseis that changesto the NASTRANsystemare isolated to the Input

File Processor.

Thereare threemajorreferencesfor the programmerwhodesiresto makemodificationsor

additionsto the InputFile Processor.Section2 of the User'sManualgivesa functional

descriptionof eachbulk datacard. Section2.3.2of the Programmer'sManualdescribesthe

formatof the outputdatablocksgeneratedbythe InputFile Processor,andsection4.5 of the

Programmer'sManualcontainsa descriptionof the processingflow whichoccurswithin IFP. Any

programmerresponsiblefor makingchangesto the Input File Processorwouldbewell advisedto

selecta cardwhichis similar to the onehe is changingor implementingand"follow it through"

the code,usingthe three referencesdescribedaboveto guidehim.

In mostcases,theworkrequiredto adda newcardwill amountto addingentries to already

existing tables in the IFF_BlockDatasubprograms.Thedetailedstepsfor addinga _ewcardto

the Input File Processorare listed below.

I. Addthe cardnameandcorrespondingtable datato the IFPdatatables containedin

BlockDataSubprogramsIFXIBD,IFX2BD,IFX3BD,IFX4BD,IFX5BD,IFX6BD,andif needed,

IFX7BD.Themeaningof theseentries is discussedin section4.5.7.

2. Addanentry in the IFPcodeto call oneof the IFPsecondaryroutinesIFSIP,IFS2P,

IFS3P,or IFS4P,whereinthe carddependentprocessingtakesplace,andaddthe necessary

c_rddependentcodeto the appropriatesecondaryroutine.

6.5-I

MODIFICATIONS AND ADDITIONS TO NASTRAN

3. If the new card is to be used in conjunction with a Rigid Format, appropriate entries

must be made in the restart bit tables in /IFXO/ and in the Rigid Format tables. See

section I.I0 for details.

6.5-2

6.6

RIGID FORMATS

RIGID FORFt_TS

The following steps will allow the addition of a new NASTR/_J_Rigid Format.

I. Compile and test the DMAP sequence throughly by running problems on it using APP DMAP

or by using the ALTER feature with an existing Rigid Format.

2. All Rigid Formats must be classified F_RCE or DISPLACEMENT. A call tc a subroutine which

stores the new Rigid Format must be added to subroutine XRGDFM of module XCSA (see section

4.2). The subroutines which contain current Displacement Rigid Formats are called LDi,

i = Of, 02.... , 12. Dumnlycalls are already setup for Displacement Rigid Formats LD45-LD50.

They correspond to solutions 13 through 19. By choosing to use solutions 13 through Ig and

creating the appropriate LDi routine, this step can be skipped.

3. An LDi routine must be written. The LDi routine must write the DMAP sequence, the

Decision Tables, the File Name Table, and the Card Name Table on the NPTP.

is as follows:

Record 1:

This record contains the coded DMAP sequence, 4 characters per word.

DMAP instruction must end with the character:

this record are stored in the RD array.

Record 2:

Number of
Words

l

l

NBIT*DI_P

The format

Note that every

$. In the existing LDi programs the data for

Contents

Number of DMAP instructions (NDMAP).

Number of words in the decision table for each DI_P
instruction (NBIT), l < NBIT < 5.

Decision table for each instruction with the entries for
irstructions not in this subset set to zero. The words

cannot be all zero. The zeroing of the subset entries
can be acco_lished by a call to XSBSET. (See XCSA MFD
write-up). In the existing LDi programs, this table is
stored in the ISl array.

Nuh_er oT entries In the File Name Table (NFILE). This
number may be zero if no File Name Table is desired.

6.6-I (8/I/72)

MODIFICATIONS AND ADDITIONS TO NASTRAN

Number of
Words

3*NFILE

3*NCARD

Contents

File Name Table - Each entry consists of 2 BCD
words giving the data block name of any data
block in the Rigid Format and one integer giving
its bit position in the Decision Table. In the
existing LDi programs, the File Name Table is stored in
the JNM array.

Number of entries in the Card Name Table (NCARD).
This number may be zero if no Card Name Table is desired.

Card Name fable - Each entry consists of 2 BCDwords
giving the card Name of any NASTRANData Card and
one integer giving its bit position in the Decision
Table. In the existing LDi programs, the Card Name Table
is stored in the INM array.

To modify an existing rigid format the appropriate tables (Decision, Card Name, File Name or

DMAP) should be changed. Their locations in the existing LDi routines are detailed above.

6.6-2

FUNCTIONAL MODULES

6.7 FUNCTIONAL MODULES

A functional module communicates with the NASTRAN Executive System, and hence indirectly with

other functional modules, only through its input data blocks, its output data blocks and its

DMAP parameters. Hence a modification to a functional module which disturbs neither its output

data blocks nor its DMAP parameters can be made without changing any other functional modules.

If a modification to a functional module affects its output data blocks or its DMAP parameters,

it must be determined (by referring to section 4, Module Functional Descriptions, of the Pro-

grammer's Manual and/or section 3, Rigid Formats, of the User's Manual) what modules use these

output data blocks and DMAP parameters as input. If these modules are numercus, or if the

changes to them are very extensive, it may be more profitable to write a new module(s) to

accomplish the task at hand.

To add a functional module to the system three changes must be made: l) update the Module

Properties List (HPL), the Executive table which contains the (DMAP) name of the module, the

number of input data blocks, the number of output data blocks, the number of scratch data blocks

and the DMAP parameter list (see the description of the MPL in section 2.4 for more details);

2) update the Link Specification Table (LHKSPC), the Executive table which contains the (DMAP)

name of the module, the module's entry point name and the link residence keys for the four machine

types (see the description of the LNKSPC table in section 2.4 for more details); and 3) update

one or more link driver routines, XSEMi, (see section 3.3.7) so that the module is called from

one or more links. Steps 2 and 3 have been automated within the NASTRAN system. These auto-

mated procedures are described in sections 6.11.3.1 and 6.11.3.2 respectively. 4) Add the modules

to the overlay structure for the appropriate link(s). The means of accomplishing this task is

machine dependent, but a basic picture of the module and its subroutines and their relationships

to other NASTRAN subroutines should be drawn. An updated Link Map such as those in section 5

should be made. 5) To actually add the module section 5 must be consulted for the particular

computer which NASTRAN is operating on.

In addition considerable number of docurmntation changes must be made. These are described

briefly for each manual.

l) Programmer's Manual:

A new subsection for section 4.0 must be written to describe the module. The various table of

contents and indexes must be updated including sections 4.1.2 and 4.1.3. The overlay maps in

6.7-I (311171)

FUNCTIONALMODULES

section 5 must be updated.

2) User's Manual:

If the module is to be a "user module" it should also be documented in section 5 of the User's

Manual. Any new error messages must be documented in section 6. The module name should be added

to the dictionary in section 7.

3) Theoretical Manual:

No additions are required here unless the module has some significant analytic developments which

need to be documented.

6.7-2 (3/I/71)

ADDINGA STRUCTURALELEMENT

6.8 ADDINGA STRUCTURALELEMENT

6.8.1 Introduction to the Problem

This section defines the programming interfaces necessary to add a new structural element

to NASTRAN. We assume the reader of this section has:

I. A good working knowledge of F_RTRAN IV

2. Experience in programming on a large-scale scientific computer, including use of

overlays. (Preferably this experience has been on one of the computers on which NASTRAN

is operational: IBM 360, BS; UNIVAC ll08, Exec 8; or CDC 6600, SCOPE 3.0)

3. A working knowledge of matrix algebra, viz., addition, multiplication and inversion

of matrices

We also assume the reader has had prior experience with neither structural analysis nor the

NASTRAN program. Furthermore, we assume that a structural analyst has written mathematical

specifications for a structural element, and that the reader must design, code, and checkout

NASTRAN FBRTRAN subroutines that conform to these mathematical specifications.

6.8.1.I Introduction to Structural Analysis

A scientific programmer must gain a minimal understanding of the physics and mathematical

techniques involved in the application at hand. The following paragraphs, condensed from

section 3 of the Theoretical Manual, give this minimal analytical background.

From a theoretical viewpoint, the matrix equation

[K]{u} : {P} , (1)

completely describes the formulation of a static (the most basic) structural problem. [K] is

called a stiffness matrix, {P} is called a load vector and {u}, the unknown of the equation,

is called a displacement vector. NASTRAN generates [K] and {P) from available information about

the structure. Once Equation l has been formed, it is solved for each specified loading condition.

Stresses in the structural elements and other desired results are then obtained from {u} by a set

of data recovery operations.

6.8-I (811172)

MODIFICATIONS AND ADDITIONS TO NASTRAN

NASTRAN embodies a lumped element approach, i.e., the distributed physical properties of a

structure are represented by a model consisting of a finite number of idealized substructures or

elements that are interconnected at a finite number of points. All input and output data pertain

to the idealized structural model.

The idealized structural model in NASTRAN consists of "grid points" (G) to which "loads" (P)

are applied, and at which degrees-of-freedom are defined, and "elements" (E) that are connected

between the points, as shown in Figure I. Two general types of grid points are employed. They

are:

I. Geometric grid point - a point in three-dimensional space at which three

components of displacement and three components of rotation are defined. The

coordinates of each grid point are specified by the user. Components of displacement

and rotation can be eliminated as degrees-of-freedom by means of "single-point constraints"

2. Scalar point - a point in vector space at which one degree-of-freedom is defined. A

geometric grid point contains from one to six scalar points. Scalar points may exist

that are not associated with grid points. Such points can be coupled to geometric grid

points by means of scalar structural elements and by constraint relationships.

The structural element is a convenient localizing concept for specifying many of the pro-

perties of the structure, including material properties, mass distribution and some types of

applied loads. Structural elements are defined on "connection" cards by referencing the grid

points to which they are interconnected. In a few cases, all of the information required to

generate structural matrices for the element is given on the connection card. In most cases,

the connection card refers to a "property" card, on which the cross-sectional properties of the

element are given. Adding a new structural element to NASTRAN necessitates designing and imple-

menting a new connection card and, if defined, a new property card.

There are four general classes of structural elements:

I. Metric elements connected between geometric grid points. Examples include rod,

plate, and shell elements.

2. Scalar (or zero-dimensional) elements connected between pairs of scalar points,

or between one scalar point and "ground". Since each geometric grid point contains a number

6.8-2 (8/I/72)

ADDING A STRUCTURAL ELEMENT

P4

G7

E1

P2

P5 _5

E3 E6

P3

E2

P w G6

E4

- G9

E7

Figure I. Topology of the idealized structural model.

6.8-3 (8!I!72)

MODIFICATIONS AND ADDITIONS TO NASTRAN

of scalar points corresponding to specific components of motion, scalar elements can be

connected between selected components of motion at geometric grid points.

3. General elements, whose properties are defined in terms of deflection influence

coefficients (i.e., compliance matrices), and which may be interconnected between any

number of geometric and scalar grid points. An important application of general

elements is the representation of large components of structure by test data.

4. Constraint elements (or Constraints). The existence of a constraint element implies

a linear relationship among the degrees-of-freedom to which it is attached. This

relationship is of the form

RcgUg = Yc

g

where Ug are degrees-of-freedom and Yc is an enforced displacement. A linear relationship

among the forces of constraint is also implied, since it is required that the forces of

constraint do no work.

The remainder of this section will concentrate on class I, metric elements, and, from this

point on, the phrase "structural element" or simply "element" shall mean metric structural ele-

ment as defined above.

(2)

6.8.1.2 General Problem Flow

NASTRAN consists of a number of subprograms, or modules, that are executed according to a

sequence of macro-instructions. The NASTRAN Executive System (NES) controls the flow of this

sequence. Twelve such sequences, called Rigid Formats, are permanently stored in NES and can be

selected by means of control cards. Each rigid format corresponds to a particular type of

structural analysis. Detailed explanations of each rigid format can be found in section 3 of the

User's Manual.

Since a stiffness matrix [K] must be generated for all rigid formats, structural elements

interact with all twelve rigid formats. However, if the reader has a minimal understanding of

rigid format I, Basic Static Analysis; rigid format 4, Static Analysis with Differential Stiffness;

and rigid format 6, Piecewise Linear Analysis; then he will have enough background to add a new

6.8-4 (8/I/72)

ADDING A STRUCTURAL ELEMENT

element. Rigid formats 4 and 6 are minor variations of rigid format I. Therefore, if all the

module changes for rigid format l have been completed, only a few additional modules must be

changed to add the new element to the differential stiffness and piecewise linear analysis ele-

ment libraries. With these points in mind, the following subsection discusses the Basic Static

Analysis rigid format in some detail.

6.8.1.2.1 Basic Static Analysis

Figure 2 shows a simplified flow diagram for Basic Static Analysis. Each block in the flow

diagram represents a number of NASTRAN modules. Not every module has to be changed to add an

element. Those that do have to be changed are called element-dependent; those that do not have

to be changed are called element-independent.

In block l of Figure 2, the Input Data Processor, as the name implies, reads and analyzes

the information on input data cards and reorganizes it into data blocks consisting of lists of

similar quantities. NASTRAN input data cards reside in three separate decks: the Executive

Control Deck, the Case Control Deck and the Bulk Data Deck. Section 2 of the User's Manual

describes the contents of each of these decks. The reader need only be concerned with the Bulk

Data Deck_ for it is in this deck that the new element's connection and property information will

be found. The Input File Processor (IFP) module analyzes each card of the Bulk Data Deck for

correctness of format and distributes the data in the Bulk Data Deck to various data blocks. The

primary function of the Executive Control Section Analysis (XCSA) module is to read and analyze

the cards in the Executive Control Deck. XCSA also contains tables necessary for problem restarts,

and it is in these tables that updates must be made. Detailed explanations of IFP and XCSA

changes will be found in Sections 6.8.3.1 and 6.8.3.2, respectively.

In block 2 of Figure 2, the Geometry Processor generates coordinate system transformation

matrices, tables of grid point locations, a table defining the structural elements connected to

each grid point, and other miscellaneous tables such as those defining static loads and tempera-

tures at grid points. The Geometry Processor consists of: Geometry Processor - Phase l (GPI);

Geometry Processor - Phase 2 (GP2); Geometry Processor - Phase 3 (GP3); and the Table Assembler

(TAI). Section 6.8.3.3 explains Geometry Processor interfaces which are minimal.

6.8-5 (811172)

MODIFICATIONS AND ADDITIONS TO NASTRAN

The Structures Plotter generates tape output for an automatic plotter that will plot the

structure (i.e., the location of grid points and the boundaries of elements) in one of several

available three-dimensional projections. The Structures Plotter is particularly useful for the

detection of errors in grid point coordinates and in the connection of elements to grid points.

The Structures Plotter may also be used at the end of the program to superimpose images of the

deformed and undeformed structure. The Structures Plotter consists of the Plot Set Definition

Processor (PLTSET) module and the Structural Plotter (PL@T) module.

The Structural Matrix Assembler generates stiffness and mass matrices referred to the grid

points from tabular information generated by the Input File Processor and the Geometry Processor.

NASTRAN uses the mass matrix in static analysis for the generation of gravity loads and inertia

loads on unsupported structures. The Structural Matrix Assembler consists of three modules:

Structural Matrix Assembler - Phase 1 (SMAI), which generates the stiffness matrix for structural

elements; Structural Matrix Assembler - Phase 2 (SMA2), which generates the mass matrix; and

Structural Matrix Assembler - Phase 3 (SMA3), which generates stiffness matrix contributions

from general elements. Since we are not concerned with general elements (see Section 6.8.1.1),

programming interfaces in SMA3 are not discussed. Sections 6.8.3.5 and 6.8.3.6 discuss SMAI and

SMA2 interfaces respectively.

In block 5 of Figure 2, the stiffness matrix is reduced to the form in which its matrix

equation is finally solved through the imposition of single-point and multipoint constraints, and

the optional use of matrix partitioning. No element-dependent code exists in block 5.

In block 6 of Figure 2, the Static Solution Generator - Phase 1 (SSGI) module generates

load vectors {Pi } from a variety of sources: concentrated loads at grid points; pressure loads

on surfaces; gravity loads; temperature loads; and enforced deformations. The only types of

loads that will concern the reader are thermal and enforced deformation loads, both of which

are calculated using the stiffness properties of the structural elements. However, thermal and

enforced deformation loads do not exist for all elements. The SSGI interfaces are discussed in

section 6.8.3.7. Module SSG2, which is element-independent, reduces the load vectors {Pi } to

final form by the application of constraints and matrix partitioning.

6.8-6 (8/1/72)

ADDING A STRUCTURAL ELEMENT

I 1 Input FileProcessor

i IProcessor

3 Structures]Plotter

I 4 Structural Matrix 1Assembler

$
5 Application of Constraints and

Partitioning to the Stiffness Matrix

$
6 Generation and Transformation

of Load Vectors

I 7 Solution for Independent 1Displacements

Recovery of _pendent Displacements
and Stresses

I 9 Output FileProcessor

I0 Deformed StructuresPlotter

l

I

Figure 2. Simplified flow diagram for basic staticanalysis.

6.8-7 (8/I/72)

MODIFICATIONS AND ADDITIONS TO NASTPJ_N

In block 7 of Figure 2, the solution for the independent displacements {u i} is accomplished

in two steps: decomposition of the stiffness matrix [K] into upper and lower triangular factors;

and solution for the {u i} corresponding to the specific load vectors, {Pi }, by means of successive

substitutions into the equations represented by the triangular factors of [K] (the so-called

forward and backward passes). Modules RBMG2 and SSG3, both of which are element-independent,

accomplish this solution.

In block 8 of Figure 2, module SDRI, which is element-independent, determines dependent

displacements. The internal forces and stresses in each element are then computed in the Stress

Data Recovery - Phase 2 (SDR2) module from knowledge of the displacement components at the grid

points of the elements and the intrinsic structural equations of the element. SDR2 programming

interfaces are discussed in Section 6.8.3.8.

Finally in block 9 of Figure 2, the Output File Processor (_FP) module formats the element

forces and stresses that were computed in SDR2 for printing on the system output file. _FP

interfaces are discussed in Section 6.8.3.9.

6.8.1.2.2 Static Analysis With Differential Stiffness

Figure 3 shows a simplified flow diagram for rigid format 4, Static Analysis with Differential

Stiffness. A comparison between Figures 2 and 3 shows that the first eight blocks of Figure 2

and 3 are identical.

Contributions to the differential stiffness matrix are not defined for all elements currently

in NASTRAN, and they may not be defined for a new element. The differential stiffness matrix,

which is a first order approximation to large deformation effects and which is directly propor-

tional to the level of the applied loads, is generated in block II of Figure 3 in the Differential

Stiffness Matrix Generator (DSMGI) module. Section 6.8.3.10 discusses DSMGI programming interfaces.

The differential stiffness matrix is reduced to final form in block 12 in precisely the same

way that the structural stiffness matrix is reduced to final form in block 5. It is then added to

the structural stiffness matrix, and the solution and data recovery portions of the program are

re-executed. Additional solutions may be obtained for conditions in which the differential

stiffness matrix and the applied load vector are multiplied by a sequence of constant factors,

6.8-8 (8/I/72)

ADDING A STRUCTURAL ELEMENT

13 Add the Structural and DifferentialStiffness Matrices

12 !plication of

Constraints and
Partitioning to the

Differential
Stiffness Matrix

II Form
Differential

Stiffness J _ _ _-
Matrix

i Input File
Processor

2 Geometry
Processor

3 Structures
Plotter

_
4 Structural Matrix

Assembler

7

5 Application of Constraints and
Partitioning to the-Stiffness Matrix

I

6 Generation an_dTransformation

of Load _ctors

Solution for Independent |
Displacements J

Recovery of Dependent Displacements
and Stresses

No

_¥es

9 Output File lProcessor

10 Deformed Structures IPlotter

]

Figure 3. Simplified flow diagram for static analysis with differential stiffness.

6.8-9 (811/72)

MODIFICATIONS AND ADDITIONS TO NASTRAN

corresponding to different levels of the same loading condition. All modules corresponding to

blocks 12 and 13 are element-independent.

6.8.1.2.3 Piecewise Linear Analysis

Figure 4 shows a simplified flow diagram for rigid format 6, Piecewise Linear Analysis. In

piecewise linear analysis, solutions are obtained for structures with nonlinear, stress-dependent,

material properties. The load level is increased to its full value by small increments, such

that stiffness properties can be assumed to be constant over each increment. After each increment

the combined strains in nonlinear elements due to all load increments are used, in conjunction

with stress-strain tabular functions, to determine the appropriate stiffnesses for the next load

increment. Piecewise linear analysis is not defined for all elements currently in NASTRAN and it

may not be defined for a new element.

Blocks I through 4 of Figure 4 are identical to blocks 1 through 4 of Figures 2 and 3.

Blocks 4A and 4B are performed by the Piecewise Linear Analysis - Phase l (PLAI) module. PLAI

classifies all elements as linear or nonlinear. An element is said to be linear if its modulus

of elasticity E, defined on a MATI bulk data card, is no__t_tdefined to be stress-dependent on a

TABLESI bulk data card. PLAI generates the linear stiffness matrix using the element routines of

the SMAI module, and the nonlinear elements comprise the ESTNL and ECPTNL data blocks. The ESTNL

and ECPTNL data blocks, used subsequently in modules PLA3 and PLA4 respectively, have the same

general formats as the EST and ECPT data blocks from which they are derived. PLAI reads the

EST and ECPT, and, for each element entry, appends stress information about the element. Modules

PLA3 and PLA4 update the appended stress information each time these modules are executed in the

loop that extends from block 5 to block 21 in Figure 4. Section 6.8.3.11 discusses PLAI interfaces.

Block 5 in Figure 4 is identical to block 5 in Figures 2 and 3 and is element-independent.

Block 6 contains module SSGI, which is no different in this rigid format from the two previously

discussed. Block 17 is element-independent, and block 7, identical to block 7 in Figures 2 and 3,

is also element-independent.

Block 8A denotes module SDRI which is, as indicated above, element-independent. Note that

the SDR2 module, block 8B, is outside the loop.

6.8-10 (8/I/72)

ADDING A STRUCTURAL ELEMENT

21 Add Linear and 1
NonIinear

Stiffness Matrices

I 1 Input FileProcessor

16 Identify the
_Ionlinear
Elements

!

I 2 Geometry IProcessor

3 Structures 1Plotter

4 (Linear} Structural
Matrix Assembler

Application of Constraints
and Partitioning to the

Stiffness Matrix

I

6 Generation and l
Transformation of iLoad Vectors

t
[2 nerateOeI 17S°lut°nf°Nonlinear Independent

Stiffness Matrix Displacements

I 17 Multiply Loads I
by Current Load

I Increment Factor

Deformed Structures IPlotter

I 8A Recovery of Dependent Displacements I

I 18 Form Accumulated Sum ofIncremental Displacements

Figure 4. Simplified flow diagram for piecewise linear analysis.

6.8-II (8/I/72)

MODIFICATIONS AND ADDITIONS TO NASTRAN

Block 18 denotes module PLA2 which is element-independent, and in block 19 the stresses in

the nonlinear elements are computed in the Piecewise Linear Analysis - Phase 3 (PLA3) module.

This module is similar to the element stress data recovery portions of the SDR2 module. PLA3

interfaces are discussed in Section 6.8.3.12.

In block 20 of Figure 4, the Piecewise Linear Analysis - Phase 4 (PLA4) module generates

the stiffness matrix associated with the nonlinear elements. PLA4 is very similar in structure to

SMAI, and PLA4 interfaces are discussed in Section 6.8.3.13.

Block 21 completes the Piecewise Linear Analysis rigid format loop. The module here adds

the linear stiffness matrix, which is constant throughout the loop, to the nonlinear stiffness

matrix, which varies each time through the loop.

6.8.1.3 Summary

Summarizing Section 6.8.1, we have seen that:

I. NASTRAN embodies a lumped element approach wherein the distributed physical properties

of a structure are represented by a model consisting of a finite number of idealized sub-

structures or elements that are interconnected at a finite number of points.

2. The reader, who is an experienced FORTRAN scientific programmer, who knows the basics

of matrix algebra but knows little or nothing about structural analysis, must design, code

and checkout subroutines that will add the capability of a new element to the NASTRAN

element library.

3. A major component of NASTRAN is an Executive System which controls the sequence of

module executions according to options specified by the user.

4. Certain of the modules in NASTRAN are element-dependent and hence must be changed.

5. Some element-dependent modules have to be changed substantially; other element-dependent

modules have to be changed only either to update tables, whose definitions are isolated to

Block Data programs, or to skip element-dependent data which will not be used in certain

modules (e.g., if differential stiffness and piecewise linear analysis are not defined for

the element, no substantial changes need be made to DSMGI and the piecewise linear analysis

modules). The modules that have to be changed substantially are: IFP, SMAI, SMA2, SDR2 and

6.8-12 (811172)

ADDING A STRUCTURAL ELEMENT

@FP. Those modules which are in the second category are: XCSA, the Geometry Processor

modules, PLTSET, SSGI, DSMGI, PLAI, PLA3 and PLA4.

6.8.1.3.1 Modules Which Must be Changed

The following summary lists the names of the modules that must be changed, the section of the

Programmer's Manual that describes the module, the purpose of the module, and the reason for the

change.

I. Name and Reference: Input File Processor (IFP); Section 4.5

Purpose: To read and analyze the information on input data cards that

define the mathematical model of the structure; and then to

distribute these data items to data blocks consisting of lists

of similar quantities.

Reason for Change: When adding a new element, the user must define a connection

card and, in most cases, a property card. He defines structural

elements on connection cards by referencing the grid points that

define the boundary of the element, (e.g., see the CR_D card in

section 2.4 of the User's Manual). In most cases, the connection

card refers to a property card, on which the cross-sectional

properties of the element are given (see the PRQD card in section

2.4 of the User's Manual). In a few cases, the connection card

gives all the information required to generate the structural

matrices for the element.

2. Name and Reference:

Purpose:

Reason for Change:

3. Name and Reference:

Executive Control Section Analysis (XCSA); Section 4.2

To read and analyze the Executive Control Deck; also it contains

tables for problem restarts.

The names of the new connection and property cards must be added

to the Card Name Tables, which are a subset of the restart tables.

Geometry Processor, consisting of modules GPI, GP2, GP3, and TAI;

sections 4.21, 4.22, 4.25, and 4.26, respectively.

6.8-13 (8/I/72)

Purpose:

Reason for Change:

4. Name and Reference:

Purpose:

Reason for Change:

5. Name and Reference:

Purpose:

Reason for Change:

6. Name and Reference:

Purpose:

Reason for Change:

MODIFICATIONS AND ADDITIONS TO NASTRAN

For GPI, to generate the coordinate system transformation

matrices; for GP2, to convert external grid point numbers on con-

nection cards to internal numbers; for GP3, to process static loads

and temperature data; for TAI, to process and collect element

connection data, element property data, element geometry data, and,

if applicable, element temperature data into two different data

blocks for later processing. One data block, the Element Connection

and Properties Table (ECPT), is used in matrix assembler modules

SMAI, SMA2 and DSMGI; the other, the Element Summary Table (EST), is

used in load generation and element data recovery modules SSGI and

SDR2.

Common block GPTAI must be updated. Descriptive information in this

common block completely describes element interfaces in these four

modules.

Structural Matrix Assembler - Phase 1 (SMAI); Section 4.27

To generate the stiffness matrix exclusive of general elements.

A subroutine, called an "element routine" which generates the

element stiffness matrix for the new element must be coded.

Structural Matrix Assembler - Phase 2 (SMA2); Section 4.28

To generate the mass matrix.

An element routine which generates the element mass matrix for

the new element must be coded.

Static Solution Generator - Phase 1 (SSGI); Section 4.41

To compute the static loads selected by the user

Element-dependent code which generates load vector contributions

due to thermal or enforced deformation loads must be added to SSGI.

6.8-14 (8/I/72)

ADDINGA STRUCTURALELEMENT

7. Name and References:

Purpose:

Reason for Change:

Stress Data Recovery - Phase 2 (SDR2); Section 4.46

To recover internal forces and stresses in each element using

the EST data block.

Two element routines which recover element stresses and forces

for the new element must be coded.

8. Name and Reference:

Purpose:

Reason for Change:

Output File Processor (OFP); Section 4.70

To format and print data p,'epared for output by other functional

modules.

To incorporate formats for the element stresses and forces

computed in SDR2.

9. Name and Reference:

Purpose:

Reason for Change:

Differential Stiffness Matrix Generator - Phase 1 (DSMGI);

Section 4.49

To generate the differential stiffness matrix

If the added element is to have contributions to the differential

stiffness matrix, a new element routine must be coded.

I0. Name and Reference:

Purpose:

Piecewise Linear Analysis - Phase 1 (PLAI); Section 4.52

To partition all elements into two classes, linear and nonlinear;

and to build the data blocks ESTNL and ECPTNL, which are similar

in form to the EST and ECPT, and which are used in modules PLA3

and PLA4 respectively.

6.8-15 (8/I/72)

MODIFICATIONS AND ADDITIONS TO NASTRAN

Reason for Change: If the new element is to be admissible to the class of elements for

which piecewise linear analysis is defined, data that will be

appended to the element's ECPT and/or EST entry to form its ECPTNL

and/or ESTNL entry must be initialized.

II. Name and Reference:

Purpose:

Piecewise Linear Analysis - Phase 3 (PLA3); Section 4.54

To compute element stresses for nonlinear elements; to update the

ESTNL data block with accumulated element stress information.

Reason for Change: To code a new element routine which will compute stresses and update

accumulated stress information for the element.

12. Name and Reference: Piecewise Linear Analysis - Phase 4 (PLA4); Section 4.55

Purpose: To generate the stiffness matrix for nonlinear elements; to update

ECPTNL data block with accumulated element stress information.

Reason for Change:

6.8.2 General Guidelines

To code a new element routine which will compute stiffness matrix

contributions and update accumulated stress information for the

element.

Before proceeding with the details (given in section 6.8.3) of coding in each of the modules

listed in section 6.8.1.3.1, this section gives general guidelines, some of which will be appli-

cable to all the modules to be changed, while some will be applicable to only a certain class of

modules.

6.8.2.1 F_RTRAN Rules

As indicated in section 6.2 NASTRAN is written almost entirely in FORTRAN IV. Since the

program operates on three machines (IBM 360, UNIVAC 1108 and CDC 6600), the NASTRAN

design team chose a subset of F_RTRAN IV to be the "language" for NASTRAN coding. To plan for

the possibility that an element added locally will be incorporated into the global NASTRAN system

6.8-16 (8/I/72)

ADDING A STRUCTURAL ELEMENT

Table 1 gives the classification of the modules listed in section 6.8.1.3.1.

Table I. Classification of Modules to be Changed

A. Data Processing Modules

NBB_

IFP

XCSA

GPTABD (I)

PLAI

9FP

Function

Processes the Bulk Data Deck

Describes the Card Name Table for problem restar:s

Describes connection/property characteristics of each

element used by modules GPI, GP2, GP3, TAI, etc.

Preprocessor for the Piecewise Linear Analysis rigid
format

Formats and prints answers

B. Structural Modules

Na_

SMAI

SMA2

SSGI

SDR2

DSMGI

PLA3

PLA4

Function

Generates the stiffness matrix

Generates the mass matrix

Generates load vectors

Computes element stresses and forces

Generates the differential stiffness matrix

Computes element stresses for nonlinear elements

Generates the stiffness matrix for nonlinear elements

(1)GPTABD is a Block Data subprogram

6.8-17 (8/1/72)

MODIFICATIONSANDADDITIONSTONASTRAN

(i.e., becomeoperationalonall NASTRANcomputers)withoutunnecessaryconversionproblems,

it is suggestedthat the programmerfollow the NASTRANF_RTRANrules givenin Section6.2 for all

modulechanges.

6.8.2.2 Classificationof Modules

Themodulesin NASTRANcanbeclassified in manydifferent ways. Forthe purposesof this

sectionweclassify themodulesthat mustbechangedto adda newelementinto twocategories:

dataprocessingmodulesandstructural modules.Thedataprocessingmodulesare thosewhose

outputdatablocksareusedeither as input datablocksto otherdataprocessingmodulesor as

input datablocksto the structural modules.OFPis also classified asa dataprocessingmodule.

Thestructural modulesare thosewhoseoutputdatablocksare the matricesandvectorsneeded

for the solutionof the structural problem.

6.8.2.3 DataProcessingModules

Wediscussthe dataprocessingmoduleswith respectto the datablocksoutputfromthem.

Adatablockis a set of data, a matrixor a table, occupyinga file, whichcanbe thoughtof as

a logical FORTRANunit. Section2 givesdetaileddescriptionsof the formatsof the datablocks

that areusedin the twelveNASTRANrigid formats. Theformatsare independentof rigid format.

Table2 givesthedatablocksneededfor elementgenerationalongwith their useasinput to the

structural modules.

6.8.2.4 StructuralModules

Thestructural modulesperformthe actualfloating-point arithmeticoperationsto generate

matricesandloadvectorsandto recoverelementstress andforcedata. Thestructural modules

containelementroutinesthat: a) receivetheir inputs fromthe moduledriver; b) performmatrix

operationsto generateelement-dependentmatricesor vectors; andc) transfer their outputsto the

driver or a moduleutility routine so theycanbe incorporatedinto a datablock.

Thestructural modulesare further classified into twoclasses: the matrixgeneration

modules,consistingof SMAI,SMA2,DSMGI,andPLA4;andthe loadvectorgenerationanddata

recoverymodules,consistingof SSGI,SDR2,andPLA3.

6.8-18(8/I/72)

Table 2.

ADDING A STRUCTURAL ELEMENT

Data Blocks Needed for Element Generation

Data Block Name Output From Module Input to Modules

MPT

DIT

EDT

CSTM

SIL

GPTT

ECPT

GPCT

EST

ESTNL

ECPTNL

IFP

IFP

IFP

GPI

GPI

GP3

TAI

TAI

TAI

PLAI

PLAI

SMAI, SMA2, SSGI ,
SDR2, DSMGI, PLAI ,
PLA3, PLA4

SMAI, SMA2, SSGI,
SDR2, DSMGI, PLAI,
PLA3, PLA4

SSGI, SDR2, DSMGI

SMAI, SMA2, SSGI ,
SDR2, DSMGI, PLAI
PLA3, PLA4

SSGI, SDR2, DSMGI

SSGI, SDR2, DSMGI

SMAI, SMA2, DSMGI,
PLAI

SMAI, SMA2, DSMGI,
PLAI, PLA4

SSGI, SDR2, PLAI

PLA3

PLA4

6.B-19 (8/I/72)

MODIFICATIONS AND ADDITIONS TO NASTRAN

The matrix generation modules have the following common characteristics:

I. They use double precision arithmetic.

2. They use the following data blocks: MPT, DIT, CSTM and GPCT.

3. They use the ECPT data block (or a variation, the ECPTNL, in the case of PLA4)

rather than the EST data block,

4. They use the utility routines GMMATD, INVERD, PREMAT and PRETRD.

5. They generate the matrices six columns (or rows since the matrices are symmetric)

at a time.

The load vector generation and data recovery modules have the following common characteristics:

I. They use single precision arithmetic.

2. They use the following data blocks: MPT, DIT, EDT (except PLA3) CSTM, SlL, GPTT

(except PLA3).

3. They use the EST data block (or a variation, the ESTNL, in the case of PLA3) rather

than the ECPT data block.

4. They use the utility routines GMMATS, INVERS, PREMAT and PRETRS.

6.8.2.4.1 The EST versus the ECPT

The Table Assembler module (TAI), the last of the data processing modules to be executed,

processes element connection data, element property data, element geometry data and, if applicable,

an element temperature datum. TAI merges these data into two different sorts for efficiency in

subsequent processing. The Element Summary Table (EST) contains one logical record for each

element type. For each element (record) in the EST, connection, property, geometry, and tempera-

ture data are grouped. The Element Connection and Prop6rties Table is essentially the EST in a

different sort. The ECPT contains one logical record for each grid or scalar point of the model.

Each logical record contains EST data for each element connection to the grid or scalar point

associated with the record.

6.8-20 (8/I/72)

ADDING A STRUCTURAL ELEMENT

The load vector generation and data recovery modules use the EST, and the matrix generation

modules use the ECPT. Section 6.8.2.4.2.1 more fully describes the use of the ECPT. Table 3

shows the EST/ECPT data for a rod element. The last two columns give respectively the data block

that contained the data and the bulk data card type where the user originally placed the data.

6.8.2.4.2 Matrix Generation Modules

The matrix [K] in Equation l of Section 6.8.1.I is a global or system stiffness matrix. It

is called global because it contains contributions from all structural elements of the mathematical

model. On the other hand, associated with each element is an element stiffness matrix. The

paragraphs below explain the relationship between element stiffness matrices and the global

stiffness matrix. Although the remarks are directed towards stiffness matrices, they apply

equally as well to mass and differential stiffness matrices.

The stiffness matrix [K] for a structural element consists of a six-by-six matrix partition

for each combination of the connected grid points. Each six-by-six partition relates the six

degrees-of-freedom of two connecting grid points. For example, a R_D element connects two grid

points "a" and "b". The element stiffness matrix partitions are [Kaa], [Kab], [Kba] and [Kbb].

A triangular element (e.g., TRMEM) connects three grid points, and the element stiffness matrix

consists of nine six-by-six partitions: [Kaa], [Kab], [Kac], [Kba], [Kbb], [Kbc], [Kca], [Kcb]

and [Kcc]. Figure 5 shows the position of these partitions in the overall element stiffness

matrix for triangular membrane and rod. Figure 6 shows the way in which six-by-six element

stiffness matrix partitions are related to a global stiffness matrix. It shows a structure con-

sisting of four grid points and two elements, a triangular membrane and a rod. The six-by-six

partition [K33] for the triangular membrane element is added to the six-by-six partition [K33]

for the rod element. The partitions [Kl4], [K41], [K24] and [K42] are zero since no element

connects either points l and 4 or points 2 and 4. In the program, an element routine in a matrix

generation module will pass a six-by-six partition to a module utility routine through the calling

sequence. The utility routine will add the partition to the proper cells in open core. The

module utility routine that performs this addition is called an "insertion" routine.

6.8-21 (811172)

MODIFICATIONS AND ADDITIONS TO NASTRAN

Table 3. EST/ECPT Data for a Rod Element

Word

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

Item

Element ID

Scalar Index for Grid Point A

Scalar Index for Grid Point B

Material ID

Area (A)

Polar Moment of Inertia (J)

Torsional Stress Coefficient

(c)

Nonstructural Mass (MU)

Coordinate System ID for
Grid Point A

X-Coordinate of Grid Point A

Y-Coordinate of Grid Point A

Z-Coordinate of Grid Point A

Coordinate System ID for Grid

X-Coordinate of Grid Point B

Y-Coordinate of Grid Point B

Z-Coordinate of Grid Point B

Element Temperature

Type

Integer

Integer

Integer

Integer

Real

Real

Real

Real

Integer

Real

Real

Real

Integer

Real

Real

iReal

Real

Data Block

ECT

ECT

ECT

EPT

EPT

EPT

EPT

EPT

BGPDT

BGPDT

BGPDT

BGPDT

BGPDT

BGPDT

BGPDT

BGPDT

GPTT

Card Type

CR_D

CR_D

CROD

PRBD

PROD

PR_)D

PRmD

PROD

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

TEMP

6.8-22 (8/I/72)

ADDING A STRUCTURAL ELEMENT

[K]18xl8 :>

Kaa

i i --
i i
I I
I Kab I Kac

1 I

I I
1 I

Kba I Kbb I ICoc
I t
t I

I I

Kca I II Kcb I Kcc
I I
I I

Triangular membrane element (3 grid points)

[K]12xl2 -->

Kaa Kab

Kba Kbb

Rod element (2 grid points)

Figure 5. Element stiffness matrix partitions for a triangular membrane and a rod.

6.8-23 (8/I/72)

MODIFICATIONSANDADDITIONSTONASTRAN

triangular membranc
element

w v

1 2

1 2 3 4

Figure 6. A simple structure and the associated global stiffness matrix.

6.8-24 (8/I/72)

ADDING A STRUCTURAL ELEMENT

6.8.2.4.2.1 Generation of Matrices Six Columns at a Time

Since a structural element will affect terms in the global matrices only in rows and columns

related to it_ interconnected grid points, each column i, say, (or row i since the global matrices

are symmetric) may be formed using only elements connected to the grid point associated with

column i. NASTRAN forms the global matrices six columns at a time. The data block that enables

this to be done is the Element Connection and Properties Table (ECPT), output from the Table

Assembler (TAI) module. Each record of the ECPT corresponds to a grid point (or scalar point)

of the model, and, conversely every grid point (and scalar point) of the model corresponds to a

record of the ECPT. The point to which a record of the ECPT corresponds is called the pivot

point of the record. Each record contains the connection, property, geometry, and temperature

data for all elements connected to the pivot point. Hence data for an element will appear n

times in the ECPT, where n is the number of points defining the element.

To generate a particular six-by-six element stiffness matrix partition [Kij], it is often

necessary to generate the entire element stiffness matrix [K]. However, only those partitions

[Kij], where i is the pivot point and j = l, 2..... n (n being the number of grid points

defining the element), are useful for the current ECPT record being processed, i.e., are useful

for the current columns (or column if the pivot point is a scalar point) being generated. The

unused partitions are recalculated and used when j _ i appears as a pivot point in a subsequent

ECPT record. An alternative procedure for matrix generation, which is not used, would be to

calculate all of the element matrices once and store them on an auxiliary storage unit for use

when needed. This alternative procedure is less efficient for large problems, where efficiency

really counts, because the recalculation time is less than the time required to recover element

matrices from the auxiliary unit.

Although the matrices generated by SMAI, SMA2, DSMGI and PLA4 are symmetric, NASTRAN

generates complete columns and retains them for efficiency in succeeding matrix operations. This

is necessary because all matrix operations are performed one column at a time (see section 2 of

the Theoretical Manual). Moreover, the availability of symmetric matrices by rows or columns is

advantageous in some of the matrix operations.

6.8-25 (8/I/72)

MODIFICATIONS AND ADDITIONS TO NASTRAN

6.8.2.4.2.2 Element Stiffness Matrix Partitions

Although the actual equations for the element stiffness matrices are different for each

element, they follow a definite pattern. The six-by-six element stiffness matrix partition,

[Kij], for the six columns related to point j and the six rows related to point i is given by

[Kij] = [Ti]T[Ke][Tj] , (3)

where [T i] and [Tj] are the global coordinate system orientation matrices associated with grid

points i and j, and [Ke] is an element stiffness matrix in a coordinate system that is element-

dependent. The matrices [Ti] and [Tj] are calculated from data in the CSTM data block, and [K e]

is calculated from: a) connection, property, geometry, and temperature data from the ECPT data

block; and b) material property data from the Material Property Table (MPT) and the Direct Input

Table (DIT) data blocks.

6.8.2.5 Utility Routines

A number of utility routines are available to all the structural modules. The matrix

generation modules use double precision versions of these routines; the load vector generation

and data recovery modules use corresponding single precision versions. These utility routines

are:

I. GMMATD - General Matrix Multiply and Transpose (Double Precision). Section 3.4.32

describes GMMATD. A particular restriction is that all matrices in the calling sequence

are stored by rows.

2. INVERD - In-core Matrix Inverse (Double Precision). Section 3.4.34 describes this

standard matrix inversion routine.

3. PREMAT (with secondary entry point MAT) - Material Property Utility (Single Precision).

PREMAT stores portions of the MPT and DIT data blocks in core, and MAT retrieves them when

called by an element routine. See _ection 3.4.36.

4. PRETRD (with secondary entry point TRANSD) - Utility for Modules that Use the CSTM

Data Block (Double Precision). PRETRD reads the CSTM data block into core, and element

routines call TRANSD to generate the matrices [T] in Equation 3. See Section 3.4.37.

6.8-26 (8/I/72)

ADDING A STRUCTURAL ELEMENT

Single precision versions of these routines exist for use in modules SSGI, SDR2, and PLA3,

all of which use single precision arithmetic. These single precision routines are: GMMATS,

INVERS, and PRETRS (with secondary entry point TRANSS), and they are documented in Section 3.4.33,

3.4.35, and 3.4.38 respectively. The outputs of the MAT routine are single precision, and the

element routines of the double precision matrix generation modules store them in double precision

cells or convert them to double precision via the DBLE function prior to arithmetic calculations.

6.8.3 Specific Checklists

This subsection contains specific checklists for the modules that must be changed to add a

new element to NASTRAN. These checklists should be used in conjunction with the program source

code and the NASTRAN documentation, particularly the Module Functional Descriptions in Section 4

and the Structural Element Descriptions in Section 4.87.

6.8.3.1 Input File Processor (IFP)

An element c_onnection(e.g., CNEWEL) bulk data card must be designed and added to the set of

admissible bulk data cards. An element property card (e.g., PNEWEL) may have to be added. IFP

processes both of these bulk data cards.

There are four major references for the IFP programmer: Section 2.4 of the User's Manual

gives a functional description of each bulk data card; Section 2.3.2 of the Programmer's Manual

describes the format of the output data blocks generated by IFP; Section 4.5 of the Programmer's

Manual contains a description of the processing that occurs within IFP; and the source listings

contain implemented element-dependent code.

6.8.3.1.I Card Design

Before proceeding with the actual coding interfaces in IFP, it is necessary to discuss some

aspects of the designs of the cards.

The element mnemonic, minus the "C" for "connection", must be no more than six characters,

so the entire mnemonic is less than or equal to seven characters. This restriction is necessary

because the card may be used as a double-field card (seeSection 2.4 of the User's Manual). A

6.8-27 (8/I/72)

MODIFICATIONS AND ADDITIONS TO NASTRAN

similar restriction of course holds for the property card. For consistency and ease of use,

follow the existing convention that the connection and property cards have the same mnemonic,

except for the leading "C" and "P".

On the connection card, field 2 must be the element identification number (a positive integer),

and field 3 must be, if a property card is defined, the property identification number (a positive

integer). The next fields are reserved for the grid point identification numbers (positive

integers) for the connecting grid points. The order of the grid points on the connection card

defines the positive orientation of the element. Other connection information follows. If no

property card is defined, the material identification number (again a positive integer) follows.

Before card design is initiated, the reader should study existing connection cards documented in

Section 2.4 of the User's Manual.

Field 2 of the property card must be the property identification number (a positive integer).

Field 3 is the material identification number (a positive integer) which will be used, during

program execution, to reference a material identification number on a MAT1, MAT2 or MAT3

material property card. The remaining fields are used for the element properties, which for the

most part are real numbers. Required element properties must be listed first. This is done so

that if a continuation card(s) is necessary to define all the allowed properties, it may be

possible to define all the required element properties for a particular application with only the

first card (e.g., see the PBAR card). Additionally, those properties that may lead to ill-

conditioned element stiffness matrices or to operating system interrupts (division by zero, for

example) should be restricted. Typical restrictions might be areas and thicknesses must be

positive.

6.8.3.1.2 Coding Changes

IFP is, for the main part, table-driven. Entries in common blocks control the card data

processing. These entries are initialized in seven Block Data subprograms, IFXiBD, i = I, 2

7.

After the reader updates the Block Data subprograms, he updates a computed-go-to statement

which performs a branch on internal card identification number (one of the entries in the tables).

6.8-28 (8/I/72)

ADDING A STRUCTURAL ELEMENT

The statement number to which the branch is made is a call to one of the subroutines IFSIP, IFS2P,

IFS3P or IFS4P, wherein card-dependent code must be added. Specific checklists follow.

6.8.3.1.2.1 Block Data Updates

I. The names (mnemonics) of the connection and property cards must be added to /IFPXI/,

which is initialized in Block Data subprogram IFXlBD. The position of the names in this

table defines the internal card identification nun_Der. Currently, over two-hundred (200)

cards are defined. For the purposes of this discussion, let us assume that exactly two-

hundred (200) cards are defined. The new connection and property cards will then have internal

card numbers 201 and 202 respectively. The names must be defined as the first words of the 15

array in IFXIBD.

2. /IFPX2/, initialized in Block Data subprogram IFX2BD, contains two words per card type

in the order of ascending internal card identification numbers. The first word of each pair

gives the GIN_ output file nuraber, and the second gives the approach acceptability flag

(see Tables 1 and 2 in section 4.5). All connection cards are output on the GERM2 data

block, which for IFP purposes is designated file number 8; and property cards are output on

the EPT data block, which for IFP purposes is designated file number 2. We make the

assumption for our present purposes that the element is acceptable for any problem approach:

force, displacement or DMAP. Hence, the four words to be updated are: 8, O, 2, O. These

four words should be added to words 41 through 44 of the array 13 in IFX2BD.

3. /IFPX3/, initialized in Block Data subprogram IFX3BD, contains two words per card type

in the order of ascending internal card identification numbers. IFP uses the first word

of each pair as the Conical Shell Problem flag; the second word contains the number of words

to be output to the GIN_ output file. No element connection or property cards other than

CC_NEAX and PC_NEAX are allowed for a Conical Shell Problem; all second words of the pairs

in /IFPX3/ are set to zero. Hence, the four words to be updated are: -I, O, -I, O. These

four words should be added to words 41 through 44 of the array 13 in IFX3BD.

4. /IFPX4/, initialized in Block Data subprogram IFX4BD, contains two words per card type

in the order of ascending internal card identification numbers. The first word of each pair

is the smallest multiple of 4 greater than or equal to the number of required data items on

the card, and the second wo_d is 4more than the smallest multiple of 4 greater than or equal

6.8-29 (811172)

MODIFICATIONSANDADDITIONSTONASTRAN

to the numberof alloweddataitemsonthe card. Mathematically,let r bethe required

numberof dataitems;let a be the allowednumberof dataitems(r _a); let Fbethe value

of the first wordof the pair; andlet Gbethe valueof secondwordof the pair. Then:

F= 4 [-_-_-] andG= 4 + 4 _]

where[x] is the greatestinteger_x. Forexample,on the CBARcard (seeSection2.4.2 of

the User'sManual),the data itemson the continuationcardarenot requiredsothat r = 8.

Clearly, a = 16. Hence,F= 8 andG= 20. Thefour wordsmustbeaddedto words41 through

44of the array I3 in IFX4BD.

5. /IFPX5/, initialized in Block Data subprogram IFX5BD, contains two words per card type

in the order of ascending internal card identification numbers. The first word of each pair

is an index into /IFPX7/, and the second word is the field-2-uniqueness-check flag. For

every bulk data card, each field except the first (the card mnemonic which is always BCD) is

defined as either blank, integer, real, BCD, or double precision. An internal code has been

established (0 = blank, 1 = integer, 2 = real, 3 = BCD, 4 = double precision, 5 = anything

is permitted). Hence, a string of integers each between 0 and 5 describes a card's format.

The length of the string is the number of fields allowed, including interior blank fields

(e.g., fields 2, 4 and 5 on a DARER card) but not including trailing blank fields. This

string is contained in /IFPX7/, and the first word of the pair in /IFPX5/ is an index to the

first word of this string. Before adding a new string, the reader should search /IFPXT/ to

see if an existing string corresponds to the strings needed for the new "C" and "P" cards.

We can make a check for duplicates in field 2 on both the "C" and "P" cards. We can do this

because: (a) no duplicates are permitted in the set of all element identification numbers

(similarly for the set of property identification numbers associated with an element type);

(b) the Bulk Data Deck is sorted prior to IFP processing; and (c) IFP "looks at" two suc-

cessive cards at a time.

6. /IFPX6/, initialized in Block Data subprogram IFX6BD, contains two words per card type

in the order of ascending internal card identification numbers. IFP uses the two words as

header information in the logical record associated with the card type (all the cards of one

type are written in one logical record). The first word defines a card-type identification

code, and the second word defines a bit position in a 96-bit "trailer." Modules that read,

6.8-30 (8/I/72)

ADDING A STRUCTURAL ELEMENT

via utility subroutine L_CATE, data blocks output by IFP use these two items. For the

connection card, all the assigned card-type identification codes and trailer bit positions

for GERM2, which are listed in Section 2.3.2.2 must be searched and new unique ones chosen.

The identification code can be any positive integer, but the trailer bit position must be

between l and 96. A similar search and choice must be made for the two similar numbers for

the property card that will reside on the EPT data block, documented in Section 2.3.2.5.

7. /IFPX7/, initialized in Block Data subprogram IFX7BD, contains format code strings.

See paragraph 5 above for details.

6.8.3.1.2.2 Main Program and Card-Dependent Code Changes

The Block Data subprograms having been updated, make the following changes:

I. Update, in subroutine IFP, the computed-go-to statement which branches on internal

card identification number. This statement follows the comment statement

C CALLS SECONDARY R_UTINE T@ EXAMINE EACH TYPE @F CARD

2. Add card-dependent code to one of the four card-dependent subroutines, IFSiP,

i = l, 2, 3, 4. IFSIP processes most of the connection and property cards. Therefore, for

consistency, the programmer will probably choose it. Observe that the same code is used for

card types which are similar in format. The Bulk Data Card Descriptions in section 2 of the

User's Manual in effect lay down the coding specifications. Observe that:

a. The reader must update one of the three computed-go-to statements at the

beginning of IFSiP (note that K is the internal card number, KX = K - lO0, and

KY = K - 200).

b. The integer array M does not contain the card mnemonic, so that M(1) contains field 2,

M(2) contains field 3, etc.

c. N is the number of words to be written on the output file. It must be set in the

card-dependent code.

d. M is EQUIVALENCEd to the real array RM which must be used for floating-point com-

parisons or operations.

e. If the new card(s) has a format identical to an existing one, the reader might choose

to use the existing code.

6.8-31 (8/I/72)

MODIFICATIONS AND ADDITIONS TO NASTRAN

6.8.3.2 Executive Control Section Analysis (XCSA)

XCSA is responsible for the transmission to the remainder of the program of the restart

tables associated with the rigid format selected by the user.

the Card Name Tables, of the restart tables must be updated.

restart tables are stored in a subroutine. For rigid format i

the routine name is LDi.

However, only a single portion,

Each rigid format and its associated

(i = 01, 02 09, I0, II, 12),

Two entries must be updated in LDi, one for the new "C" card and one for the new "P" card.

Assume the new "C" card is CNEWEL and the new "P" card is PNEWEL. Then the entries are:

and

4HCNEW, 4HELAA, 2

4HPNEW, 4HELAA, 3

where A denotes a BCD blank. The numbers 2 and 3 refer to bit positions of entries in a master

execution mask (see Sections 3.i + 1.3.1, (i = 1,2 12) of the User's Manual). These updates

must be made after the last entry in the DATA statement for the array INM. All 12 LDi subroutine

programs must be so updated.

The last three statements in each LDi subroutine are:

CALL WRITE (NPTP, INM, m, I)

RETURN

END

Change the argument m in the CALL WRITE statement. The CALL WRITE statement writes n words

of the INM array (onto the New Problem Tape, NPTP, with an end-of-record mark). The number m,

which varies with the LDi routine, must be incremented by 6.

6.8.3.3 Geometry Processor and Table Assembler Modules (GPI, GP2, GP3, and TAI)

Data in common block /GPTAI/ entirely controls processing of element data in GPI, GP2, GP3

and TAI. Block Data program GPTABD initializes these data. Section 2.5.2.1 contains a description

of /GPTAI/. When adding an element, the reader must change /GPTAI/ in the following ways:

6.8-32 (8/I/72)

ADDINGASTRUCTURALELEMENT

Words for Table Header Change

Increase this word, the number of entries,

by I. Call this new number of element

entries n.

Words for New Element Entry

1,2

4 thru 24

Increase this word, the pointer to the first

word of the last element entry, by the number

of words per entry, currently 24.

Change

Include the new element's connection card

mnemonic, e.g., CNEWEL.

Assign a new element-type identification

number (this number should be n for con-

sistency).

Complete these items in accordance with

definitions in Section 2.5.2.1.

NOTE WELL: Structural modules that read the ECPT, EST, ECPTNL and ESTNL data

blocks will use the new element-type identification number, n. Hence, this

number must be determined and communicated early in the development process

to all involved.

6.8.3.4 Plot Set Definition Processor (PLTSET)

This section has been deleted.

6.8.3.5 Structural Matrix Assembler - Phase 1 (SMAI)

A principal interface in adding a new element is to change SMAI, which generates element

stiffness matrix partitions and which, on option, generates element structural damping matrix

partitions. The changes are of two kinds: module Block Data and module driver changes; and

the addition of an element subroutine.

6.8-33 (8/I/72)

MODIFICATIONS AND ADDITIONS TO NASTRAN

648.3.5.1 Block Data and Module Driver Changes

At least two changes, and possibly a third, must be made to Block Data program SMAIBD.

the changes pertain to variables contained in /SMAICL/. These changes are:

All

I. Update the array NWBRDS, which defines the number of words in the element's ECPT entry.

The position in the array is dictated by the internal element-type identification number

defined in /GPTAI/ (see Section 6.8.3.3).

2. Update the array 10VRLY, which defines the overlay segment in which the new element

routine is to reside. (An explanation of 10VRLY can be found in Section 4.27.9.3, and the

SMAI overlay structure is illustrated in Section 5).

3. If the number of overlay segments for element routines must be increased, then the

variable NLINKS must be incremented by one.

The following two changes must be made to the module driver, subroutine SFtAIA:

I. Update the computed-go-to statement at FORTRAN statement number 180 which performs a

branch on internal element-type identification number. For some existing elements, that do

not contribute to the stiffness matrix, e.g., C_NMI, insert a transfer to read the next

element type. Most elements do contribute to the stiffness matrix, and for these elements

a transfer is made to an element routine call statement.

2. Insert a call to the new element stiffness matrix routine. This call must be followed

by a transfer (G_ T@) statement to read the next element type. This call statement has, in

general, no arguments. The element's ECPT entry is passed to the element routine via

/SMAIET/. The name of the element routine should begin with "K" followed by the connection

card mnemonic minus the initial "C", e.g., KNEWEL.

6.8.3.5.2 Coding the KNEWEL Subroutine

When coding the new element subroutine, follow this check list:

I. Document the element's ECPT entry at the beginning of the routine via comments.

6.8-34 (811172)

ADDING A STRUCTURAL ELEMENT

2.

3.

Maintain the order of FORTP_ANspecification statements given in Section 6.2.

Restrict the common block interfaces to the following:

a. /SMAIIO/. Only variables IFKGG and IF4GG are used.

b. /SV_ICL/. Only variables 1OPT4, K4GGSW and NPVT are used.

c. /SMAIET/. This block is I00 words in length and is the means of communicating

the element data from the ECPT data block to the element subroutines. Since the

data in /SMAIET/ are mixed (real and integer), an EQUIVALENCE must be used.

d. /MATIN/ and MATOUT/. These are input and output data common blocks for the

material property utility subroutine MAT (see Section 3.4.36). The outputs from

MAT in /MATBUT/ are single precision, and they must be stored in double precision

locations prior to arithmetic computations.

e. /SMAIDP/. This common block contains double precision variables which, for

most programs, would be subroutine local variables. It is used so that open core

(see Section 1.5) for SMAI can be as long as possible. The use of this common

block implies that element subroutines are not reentrant.

4. Make a test to insure that the scalar index number (internal nut,per for a grid

point) for one of the connecting grid points matches the pivot point, NPVT.

5. Perform all arithmetic operations in double precision.

6. Use the utility routines GMMATD, TPJ_NSD, INVERD and MAT.

7. Call SMAIB (Section 4.27.8.3) to "insert" the six-by-six matrix partitions. If 1OPT4

is nonzero, compute the structural damping matrix. Obtain six-by-six partition of the

structural damping matrix by multiplying a six-by-six stiffness matrix partition by a scalar.

viz., GSUBE (ge) obtained from MAT via /MATOUT/. SMAIB performs the actual scalar multi-

plication. If the structural damping matrix is computed, set K4GGSW equal to I. Use the

variables IFKGG and IF4GG in the calling sequence for SMAIB to signal the insertion of a

stiffness matrix partition and a structural damping matrix partition respectively.

6.8-35 (811172)

MODIFICATIONS AND ADDITIONS TO NASTP_AN

6.8.3.6 Structural Matrix Assembler - Phase 2 (SMA2)

SMA2 generates the mass matrix and the viscous damping matrix. Currently in NASTRAN, elements

contribute to one or the other but not both. However, from the point of view of an element-

routine writer, they are functionally the same. The structure of the SMA2 module is very similar

to module SMAI. We coded two modules because problem restarts can be handled more efficiently

with separate modules and because separate modules allow more efficient utilization of open core.

Like SMAI, the SMA2 module changes are of two kinds: module Block Data and module driver

changes; and the addition of an element subroutine.

6.8.3.6.1 Block Data and Module Driver Changes

At least two changes, and possibly a third, must be made to Block Data program SMA2BD. The

changes are the same as those outlined in the first paragraph of section 6.8.3.5.1, with the

exception that the common block that contains the three variables NW_RDS, 10VRLY and NLINKS is

/SMA2CL/ instead of /SMAICL/. However, the overlay structure for the SMA2 element routines is

different from that of SFtAI, so I_VRLY and NLINKS, although functionally the same as the variables

of the same names in SMAI, do have different values.

Make the following changes to the module driver, subroutine SMA2A:

I. Update the computed-go-to statement at FORTRAN statement number 180 which performs a

branch on internal element-type identification number. Some elements, e.g., ELASI, contri-

bute neither to the mass nor viscous damping matrix, in which case insert a transfer to read

the next element type. Most elements do contribute to either the mass matrix or the viscous

damping matrix, and for these elements insert a call to the element routine. For elements

for which both lumped mass and coupled mass routines are defined, test the variable ICMBAR

to determine which one to call. If ICMBAR is less than zero, call the lumped mass routine;

otherwise call the coupled mass routine.

2. Insert a call to the new element routine. Following this call, add a G_ T_ statement to

transfer program control to read the next element type. An element's ECPT entry is passed

to the element routine via /SMA2CL/. Begin the subroutine name for mass matrix routines

with "M" followed by the element mnemonic, e.g., MNEWEL.

6.8-36 (8/I/72)

ADDINGA STRUCTURALELEMENT

6.8.3.6.2 Addingthe NewElementRoutine

Therules whichmustbe followedin codinganelementroutinefor SMA2aresimilar to those

for codingSMAIelementroutinesgivenin Section6.8.3.5.2.

in the followingchecklist:

I. SameasNo.1 in Section6.8.3.5.2.

2. SameasNo.2 in Section6.8.3.5.2.

3. Restrict the commonblockinterfacesto the following:

a. /SMA21_/. Only variables IFMGG and IFBGG are used.

b.

References to this section are made

4.

5.

6.

7.

8.

/SMA2CL/. Only variables BGGIND and NPVT are used.

c. /SMA2ET/. This lO0 word block performs the same function as /SMAIET/ in SMAI.

d. /MATIN/ and /MAT_UT/. See comment in Section 6.8.3.5.2.

e. /SMA2DP/. The comments about /SMAIDP/ in Section 6.8.3.5.2 apply here also.

Same as No. 4 in Section 6.8.3.5.2.

Same as No. 5 in Section 6.8.3.5.2.

Same as No. 6 in Section 6.8.3.5.2.

Call SMA2B to perform the six-by-six partition insertions (see Section 4.28.8.3).

If the element routine contributes partitions to the viscous damping matrix, set BGGIND

to l at the beginning of the routine.

9. "Lift" as much code as possible from the element stiffness routine KNEWEL of module SMAI.

6.8.3.7 Static Solution Generator - Phase l (SSGI)

Subroutine EDTL (which has a secondary entry point, TEMPL) processes the EST data block one

element at a time to compute temperature and enforced deformation loads. When an element is added

to NASTP_AN, update EDTL whether or not temperature or enforced deformation loads are defined for

the ,_ew element. If the element has thermal or enforced deformation loading, the reader must code

an element routine.

6.8-37 (8/I/72)

MODIFICATIONSANDADDITIONSTONASTRAN

6.8.3.7.1 EDTLChanges

Makethe followingchangesto subroutineEDL:

I. Addanentry to the local arrayNECPT.NECPT(1)is the numberof wordsin the EST

entry for theelementwhoseinternal element-typeidentification numberis I (recall I is

set in GPTABD,seeSection6.8.3.3).

2. Changethe computed-go-toelementtypeto reflect the newelement. If the newelement

doesnot havethermalor deformationloadsdefined, insert a transfer (to FORTRANstatement

number610)to skip the entire ESTrecord;if it does,changethe computed-go-tostatement

so that it pointsto element-dependentcodein EDTL.

3. Addelement-dependentcodeto EDTLwhichwill:

a. Readthe ESTentry into /TRIMEX/.

b. Look-up the temperature at each grid point associated with the element. This look-up

is accomplished via a call to subroutine FGPTT (see Section 4.41.II.27).

c. Call the element routine, passing the temperatures at the grid points and the

beginning of the load vector array (at C_RE(1)) through the calling sequence.

6.8.3.7.2 Coding the Element Routine

When coding the element routine follow this checklist:

I. Same as No. l in Section 6.8.3.5.2.

2. Same as No. 2 in Section 6.8.3.5.2.

3. Restrict the common block interfaces to the following:

a. /TRIMEX/. This block is lO0 words in length and contains the element's EST entry.

b. /MATIN/ and /MAT_UT/. These are used as input and output blocks for subroutine MAT.

4. Perform all arithmetic operations in single precision.

5. Use subroutine MAT to fetch material properties; MPYL and MPYLT are module utilities

available for in-core matrix multiplication (subroutine GMMATS may alternatively be used);

BASGLB and GLBBAS are module utilities that compute coordinate system transformation

6.8-38 (8/I/72)

ADDING A STRUCTURAL ELEMENT

matrices (TRANSS may alternatively be used). See Section 4.41.11 for information on MPYL,

MPYLT, BASGLB and GLBAS.

6. The scalar index numbers (internal degree-of-freedom numbers) in the element's EST

entry are direct pointers into the load vector where the loading contributions should be

added, i.e., the element routine does its own "insertion".

7. "Lift" as much code as possible from the element stiffness routine KNEWEL of module

SMAI.

6.8.3.8 Stress Data Recovery - Phase 2 (SDR2)

The SDR2 module is divided into five stages. Two of the stages, stage III and stage V, deal

with recovery of stress and force data for elements. In the following paragraphs, we will call

these two stages phase 1 and phase 2, respectively.

Phase 1 computes and saves on a scratch file for phase 2 processing element stress matrices

along with element properties, which are dependent upon the element. Phase 2 uses the outputs

of phase 1 in conjunction with displacement vectors {u i} to compute final stress and force data

in the elements.

Make changes to a module Block Data program and the driver routines for phase 1 and phase 2;

also code two element routines, Sxxxxl and Sxxxx2, where "xxxx" are four letters of the element's

mnemonic, e.g., xxxx might be NEWL.

6.8.3.8.1 Driver Routine Changes

In subroutine SDR2B, the phase 1 driver, update the computed-go-to statement that performs

a branch on element type, and add a call to Sxxxxl.

In subroutine SDR2E, the phase 2 driver, update the computed-go-to statement, and add a call

to Sxxxx2. To output complex stresses and forces, increase the dimension of the CBMPLX array,

and add a pointer string for stresses and forces if one does not currently exist. If complex

stresses and forces are not permitted, set the two CBMPLX pointers in Block Data subprogram

containing /GPTAI/ to O.

6.8-39 (8/1/72)

MODIFICATIONSANDADDITIONSTONASTRAN

6.8.3.8.2 TheElementRoutines

Thefollowingset of rules applyto bothelementroutines:

I. SameasNo.1 in Section6.8.3.5.2.

2. SameasNo.2 in Section6.8.3.5.2.

3. Performall arithmeticoperationsin singleprecision.

4. Usethe utility routinesTRANSSandGMMATS.

6.8.3.8.2.1 ThePhase1 ElementRoutineSxxxxl

Thefollowingtwoitemsapplyto the phase1 elementroutine:

I. Restrict the commonblockinterfacesto the following:

a. /SDR2X5/. The EST entry is contained in /SDR2X5/. At the conclusion of Sxxxxl,

/SDR2X5/ contains the outputs of the routine: stress matrices and miscellaneous

element properties. Output the scalar index numbers of the EST entry for use in phase 2.

b. /SDR2X6/. Use for scratch storage.

c. /MATIN/ and /MAT_UT/. Used by MAT.

2. MAT is available to Sxxxxl, but not to Sxxxx2.

6.8.3.8.2.2 The Phase 2 Element Routine Sxxxx2

The following remarks apply to Sxxxx2:

I. The common block interfaces are:

a. /SDR2XX/. This block defines open core where the phase 2 driver stores the

displacement vector.

b. /SDR2X4/. Three words are used, the 36 th, 38 th, and 39 th. Word 36 is an index into

/SDR2XX/. It points to the first word of the displacement vector. Word 38 is an

element loading temperature, and word 39 is an element deformation. If thermal and

deformation loading were not defined in SSGI, do not use these latter two words.

6.8-40 (8/I/72)

ADDING A STRUCTURAL ELEMENT

c. /SDR2X7/. This block contains the computed element stresses. The element identifi-

cation number, the first word of the EST entry, must always be the first word of

/SDR2X7/.

d. /SDR2X8/. Computed element forces are stored here. The element identification

number must be the first word.

2. The scalar index numbers are indexes to those components of the displacement vector

needed for stress and force computations.

6.8.3.9 Output File Processor (OFP)

OFP prints, with headings, element stress and/or force output. Each new element needs a

unique heading and entries to describe the output format desired. This heading is in addition to

the standard title, subtitle, and label that will be printed from information in the Case Control

Deck. Page ejection is element-independent and automatic, with headings reprinted on each page

of output until all data records have been printed.

6.8.3.9.1 OFP Design

OFP is, like IFP, essentially table-driven. This technique allows OFP to avoid many lengthy

format statements. In OFP standard format statements contain the headings, and the formats for

the items data record are built from tables.

Before modifying OFP, the programmer should be familiar with the documentation references

for OFP, particularly those describing element stress and force output. Section 4.70 and the

source listings for the subroutines described in that section are where the general descriptions

for OFP can be found. Sections 2.3.51 and 2.3.52 describe the specific makeup for element stress

and force data blocks. OFP will expect any new element type identification record to have a

similar format as the other element types (see the description of record l in Section 2.3.28.15).

_FP also assumes that the number, order, and type of the new element's data record(s) have been

determined (see description for record 2 of Section 2.3.28.15). Normally, SDR2 has set these

data records for _FP depending on the required output. The coding changes for BFP will depend

on a) the headings desired and b) the number, order, and type of items in the data record.

6.8-41 (BII172)

MODIFICATIONS AND ADDITIONS TO NASTRAN

6.8.3.9.2 Adding the Headings

New elements may require many different headings, such as forces for the real case, forces

for the complex case, stresses for the real case, and stresses for the complex case. And then

all of these cases can be in SORT I or SORT II format. Changes have to be made for each case.

Each heading in _FP consists of five lines of output. Each line is printed by a separate

write statement, so if any two lines are the same, then the same statement can be used. Thus,

when the analyst and the programmer are deciding on wording and spacing of the headings, they

should lay them out in a consistent manner. They may be able to use existing formats for some

lines.

The basic heading pointer is contained in the doubly subscripted B array (see Section

4.70.9). The actual line pointers are in the C array, and format statements in subroutines _FPI

and _FPIA contain the output headings. The pointer to the B array is set in word 2 of each input

identification record (SDR2 has set this word correctly for the new element). The reader then

computes CP_INT, where CPOINT is an index into the C array. To do this, word 2 of record 1 and

the element-type identification number (see Section 6.8.3.3) are needed for each desired type of

output. CPOINT indexes from 0 to 1440 are in Block Data program _FP2BD, CPOINT indexes from

1441 to 2880 are in Block Data program OFP3BD, and CPOINT index from 2881 to 4320 are in Block

Data program _FP4BD. The value of C(CP_INT) is a pointer into the D array, which will define

the format string for the data record. The values of the next five entries in the C array,

(C(CPOINT + I) to C(CPOINT + 5)) are used as numbers in a computed-go-to statement in OFPI. Each

of these five numbers refers to a write statement, which prints one line of the heading. OFPI is

so large that the computed-go-to statement has been continued in _FPIA. Thus, new format state-

ments and write statements should be added to _FPIA. As new write statements are added, the

computed-go-to near the beginning of OFPIA and the test for the maximum number of write statements

must be updated.

6.8-42 (8/I/72)

ADDINGA STRUCTURALELEMENT

6.8.3.9.3 Addingthe DataRecordCode

C(CPOINT)is equalto DPOINTwhichis an indexto the nextavailablespacein the Darray.

TheDarray is containedin the BlockDataprogramOFPIBD.Thevalueof D(DPOINT)is a packed

four-digit number.Theright twodigits give thenumberof outputlines the datarecordwill

produce,andthe left twodigits give the numberof datarecordsusedper line. If the left two

digits arenull, thenonly onedatarecordis usedper line.

Valuesfor entries D(DPOINT+ I) to a D(DPOINT+ N), whosevalueis O,definepointersto

the E arrayor ESINGLarray. Positivevaluespoint to the Earraybythe formula(5*D(DPOINT+ I)

- 5), whereI varies from1 to N. Negativevaluesin the Darrayare usedas pointersinto the

ESINGLarrayby the formulaID(DPOINT+ I)I. Boththe Earrayandthe ESINGLarrayare contained

in the BlockDataprogramOFP5BD.Bothof thesearrayscontainpiecesof a formatstatement,

andthe programmerstrings the piecestogetherto spaceandplacethe data itemscorrectly under

the heading. Theprogrammercanusethe piecesthat are listed or addmere. Theonly rule is to

excludethe endingcommafromanypieceof a formatstatement. In general,all the necessary

formatpiecesto describea line of a data recordare includedin the E andESlNGLarrays.

6.8.3.10 Differential StiffnessMatrix Generator- Phase1 (DSMGI)

Theelementinterfaceswith DSMGIare in twophases. Phase1 readsthe ECPTdatablockand,

for eachelement,appendsdisplacementvectorcomponentsof the associatedgrid points, anaverage

elementloadingtemperature,andanelementdeformation.Phase1writes this appendedECPTentry

ontoa scratchfile whichhasthe samegeneralformatas the ECPT.Phase2 processesthe scratch

file in a fashionsimilar to ECPTprocessingin SMAI,so the differential stiffness elementroutines

reside in the phase2 portionof the module.

6.8.3.10.1 Phase1 Changes

Whenappendingthe componentsof the displacementvector to the ECPTelen_ntentry in sub-

routine DSI,either appendthe three translationalcomponentsof displacementat eachgrid point

or appendall six componentsof displacementat eachgrid point. Thetest for this determination

is madeimmediatelyafter FORTRANstatementnumber300.

If anelementtypeis not in thedifferential stiffness set (DSARY(1)=O),phase1 doesnot

write its ECPTentry onthe scratchfile.

6.8-43 (811172)

MODIFICATIONS AND ADDITIONS TO NASTRAN

6.8.3.10.2 Phase 2 Changes

Change the computed-go-to statement in subroutine DSIA that performs a branch on element-

type identification number, and insert a call to the new element routine. Name the new element

routine DNEWEL. The computed-go-to statement in DSIA need not be changed if the element is not

in the differential stiffness set.

6.8.3.10.3 Coding tile DNEWEL Subroutine

When coding the new element subroutine, follow this checklist:

I. Document the element's appended ECPT entry at the beginning of the routine via comments.

2. Same as No. 2 in Section 6.8.3.5.2.

3. Restrict the common block interfaces in DNEWEL to the following:

a. /DSIAAA/. The first word is the pivot point.

b. /DSIAET/. The appended ECPT entry from the scratch file is stored here. See

Section 6.8.3.5.2, paragraph 3(c).

c. /DSIADP/. This is the element "scratch" or local variable common block. See

Section 6.8.3.5.2, paragraph 3(e).

d. /MATIN/ and /MAT_UT/. Input and output blocks for MAT.

4. Same as No. 4 in Section 6.8.3.5.2.

5. "Same as No. 5 in Section 6.8.3.5.2.

6. Same as No. 6 in Section 6.8.3.5.2.

7. Use subroutine DSIB to perform the insertions (see Section 4.49.8.3). Insert only those

six-by-six partitions corresponding to the pivot point.

8. "Lift" as much code as possible for DNEWEL from KNEWEL in SMAI.

6.8.3.11 Piecewise Linear Analysis - Phase l (PLAI)

Make the following changes to module PLAI if the added element is to be admissible to the

set of elements for which Piecewise Linear Analysis is defined.

6.8-44 (811172)

ADDINGASTRUCTURALELEMENT

I. Changethe computed-go-tostatement(onelement-typeidentification number),which

reflects whetheranelementis in the set of elementsfor whichPiecewiseLinearAnalysis

is defined.

2. Addelement-dependentcodewhichinitializes stress informationappendedto the ECPT

andESTdatablocks. Thecommentedcodein PLAIalongwith the descriptionsin Sections

2.3.34.3and2.3.34.4for the ESTNLandECPTNLdatablocksrespectivelyserveasmodels
for the additionof this code.

3. Updatethe local array, PLAARY.PLAARY(1)= 1 if the I th elementtypeis anelement

for whichPiecewiseLinearAnalysisis defined,andPLAARY(1)= 0 otherwise.

PLAIusesthe SFL_Imoduleenvironmentso theSMAIelementroutinesmaybecalled to make

contributionsto the linear stiffness matrix. Henceall of the commonblocksof SMAImustbe

availableto PLAI. Alsothe majority of the subroutines,includingBlockDataprogramSFtAIBD,

of moduleSNLAImustbeavailableto PLAI. Theonly subroutinesof SMAInot neededareSMAI,SMAIA

andDETCK(seeFigure13in Section5.2).

6.8.3.12 PiecewiseLinearAnalysis- Phase3 (PLA3)

Theelementinterfaceswith PLA3are in twophases. PhaseI, accomplishedin subroutine

PLA31,readsthe ESTNLdatablockand,for eachelement,appendsdisplacementvectorcomponents

correspondingto the grid pointsof the elements.Theoutputof phase1 is a scratchfile of

appendedESTNLdata to beprocessedin phase2. SubroutinePLA32,the phase2 driver, readsthe

scratchfile andcalls elementroutineswhichcomputestressesandwhichupdatethe accumulated

stress data in the ESTNLentry.

6.8.3.12.1 PLA31Changes

Makethe followingchangesto subroutinePLA31:

I. Updatethe local arraysESTWDS,whichdefinesthe numberof wordsto be readfromthe

ESTNLdatablockfor eachelement,andNGPTS,whichdefinesthe numberof grid pointsfor

eachelement. Botharraysareorderedbythe internal element-typeidentification number

definedin /GPTABD/ (see Section 6.8.3.3).

6.8-45 (8/I/72)

MODIFICATIONSANDADDITIONSTONASTRAN

2. Whenappendingthe componentsof the displacementvectorto the ESTNLelemententry,

either appendthe three translational componentsof displacementat eachgrid point or append

all six componentsof displacementat eachgrid point. Thedefault valueis three. If six

componentspergrid point aredesired,updatethe logical IF statementbetweenstatement

numbers20and30.

6.8.3.12.2 PLA32Changes

Makethe followingchangesto subroutinePLA32:

I. Updatethe arrayESTWDS,asdefinedin Section6.8.3.12.1; the arrayNSTWDS,which

definesthe numberof wordsperelementwritten on the_NLESdatablock; andthe array

NWDSP2,whichdefinesthe numberof wordsperentry in the scratchfile. Thesearraysare

orderedbyelement-typeidentification number.

2. Changethecomputed-go-tostatementwhichperformsa branchonelement-typeidentifica-

tion number,andinsert a call to the newelementroutine, PSNEWL.

6.8.3.12.3 Codingthe PSNEWLSubroutine

WhencodingPSNEWL,follow this checklist:

I. Documentthe element'sappendedESTNLentry at the beginningof the routine via comments.

2. Sameas No.2 in Section6.8.3.5.2.

3. Thecommonblockinterfacesare:

a. /PLA32E/. Contains the element's appended ESTNL entry.

b. /PLA32S/. Scratch block for variables local to PLA3 element routines.

c. /PLA32C/. Contains two words GAMMA and GAMMAS, corresponding to y and y* defined

in Equations 2 and 3 of Section 4.54.

d. /SOUT/. Contains the computed element stresses in the order expected by OFP. The

first word of /SOUT/ must be the element identification number, which is always the first

word in the element's appended ESTNL entry.

e. /MATIN/ and /MATOUT/. Input and output blocks for subroutine MAT.

6.8-46 (8/I/72)

ADDINGA STRUCTURALELEMENT

4. Performall arithmeticoperationsin singleprecision.

5. Useutility routinesMAT,GMMATS,TRANSS,andINVERS.

6. After completionof the computationsandprior to returningto PLA32,updatethe element

routine, in the cells assignedto themin /PLA32E/, the new updated stress information. These

updated data are used the next time PLA3 is executed.

7. Some of the code in PSNEWEL might be taken from subroutine KNEWEL of SMAI and subroutines

SNEWLI and SNEWL2 of SDR2.

6.8.3.13 Piecewise Linear Analysis - Phase 4 (PLA4)

PLA4 has two phases. Phase I, incorporated in subroutine PLA41, reads the ECPTNL data block,

and, for each element, appends displacement vector components of the associated grid points. The

appended element ECPTNL data are written on a scratch file in a format that is the same as _t

of the ECPTNL. The phase 2 driver, PLA42, processes the scratch file in a way similar to ECPT

processing in SMAI, calling element routines which in turn generate stiffness matrix partitions of

the nonlinear stiffness matrix.

6.8.3.13.1 Phase 1 Changes

Make the following changes to subroutine PLA41.

I. Update the local arrays NWBRDS and NGPTS. NW_RDS(1) is the number of words read from

the ECPTNL data block for the Ith element type, and NGPTS(I) is the number of grid points

associated with the Ith element type.

2. When appending the components of the displacement vector to the ECPTNL element entry,

either the three translation components of displacement at each grid point or all six

components of displacement at each grid point can be appended. The default value is three.

If six are to be appended, then expand the logical IF statement:

IF (ELTYPE. EQ. 34) _WDS = 6

located between statement numbers 20 and 30.

6.8-47 (811172)

MODIFICATIONSANDADDITIONSTONASTRAN

6.8.3.13.2 Phase2 Changes

Makethe followingchangesto BlockDatasubprogramPLA4BDandsubroutinePLA42.

I. Changethe /PLA42C/ variables I_VRLY, NW_RDS, and possibly NLINKS in PLA4BD. The

explanations in Section 6.8.3.5.1 of the variables of the same names in /SMAICL/ apply

here as well.

2. In PLA42, update the local array NWDSP2, which defines the number of words per element

entry to be written on the ECPTNL output data block.

3. Change the computed-go-to statement in PLA42 which performs a branch on element-type

identification number, and insert a call to the new element routine, PKNEWL, following this

computed-go-to statement.

6.8.3.13.3 Coding the PKNEWL Subroutine

When coding PKNEWL, follow this checklist:

I. Document the element's appended ECPTNL entry at the beginning of the routine via comments.

2. Same as No. 2 in Section 6.8.3.5.2.

3. PKNEWL common block interfaces are:

a. /PLA42C/. The first word, NPVT, is the pivot point. The next twc words are the

same as GAMMA and GAMMAS in /PLA32C/ (see Section 6.8.3.12.2, paragraph 3(c)).

b. /PLA42E/. Contains the element's appended ECPTNL entry.

c. /PLA42D/. Scratch block for variables local to PLA4 element routines.

d. /MATIN/ and /MAT_UT. Input and output blocks for MAT.

4. Same as No. 4 in Section 6.8.3.5.2.

5. Same as No. 5 in Section 6.8.3.5.2.

6. Same as No. 6 in Section 6.8.3.5.2.

7. Subroutine PLA4B performs the insertions (see Section 4.55.8.3). Insert only those

six-by-six partitions corresponding to the pivot point.

6.8-48 (8/I/72)

ADDINGA STRUCTURALELEMENT

8. After completionof the computationsandprior to returningto PLA42,update,in the

cells assignedto themin /PLA42E/, the new updated stress information. These updated data

are used the next time PLA4 is executed.

9. Some of the code in PKNEWL might be taken from subroutine KNEWEL of SMAI and subroutines

SNEWLI and SNEWL2 of SDR2.

6.8.4 Updating the NASTRAN Manuals

Concurrent with coding and check out, update the NASTRAN manuals. Updating will apply to

the three principal manuals, Theoretical, User's and Programmer's. If demonstration problems are

formally devised, updates to the Report on the Demonstration ProLlems may be desired. However,

only the interfaces with the three principal manuals will be discussed here.

The NASTRAN manuals have been designed to accommodate future additions and modifications.

Each major section (e.g., Section 6 of the Progran_ner's Manual) stands alone with its own page

numbers, equation numbers, figure nun_)ers and table numbers, so that new sections can be added

without significant disruption. In the following paragraphs, each major section of each of the

three manuals will be examined to determine whether or not an update will be necessary.

6.8.4.1 The Theoretical Manual

The major sections in the NASTP_AN Theoretical Manual are numbered up to 16. However, some

of the sections have been reserved for future development. Although the structural analyst and

not the programmer will probably update the Theoretical Manual, the following paragraphs, preceded

by major section numbers, identify material that might be updated in that section.

2. No updates. The matrix operations discussed in this section are the system matrix

operations routines and not the in-core matrix subroutines used by element routines.

3. Only Section 3.8.4, Element Algorithms for Piecewise Linear Analysis, is an update

candidate. The new element may or may not (the membrane elements currently incorporated

in NASTRAN are not admissible to piecewise linear analysis) be analyzed in the piecewise

linear analysis rigid format.

5. This section is the primary candidate for updating. For existing elements, the dis-

cussion in this section falls short of a complete presentation of all the equations imple-

mented in the program. Section 4.87 of the Programmer's Manual contains the complete

6.8-49 (8/I/72)

MODIFICATIONSANDADDITIONSTONASTRAN

equationsfor eachelement. Notethat neither differential stiffness norpiecewiselinear

analysiselement-dependentmaterial is presentedin this section; the formeris discussed

in Section7, andthe latter in Section3.8.

7. If the newelementcontributesto the differential stiffness matrix, a newmajor

subsectionmustbewritten.

14. Thenewelementmayinvolvespecialmodelingtechniques. If this is the caseandthe

analystdecidesit is worthyof note, a newmajorsubsectionmightbeaddedto Section14

rather thanincorporatingthespecial techniquein Section3.8, 5, or 7.

15. Significanterror analysesperformedduringprogramdevelopmentmightbe incorporated

here.

6.8.4.2 TheUser'sManual

TheNASTRANUser'sManualcontainssevenmajorsections. Thefollowingparagraphs,preceded

bymajorsectionnumbers,identifies materialthat mightbeupdatedin that section.

I. Foreachelementin NASTRAN,Section1.3 givesthe mnemonicsfor the connectionand

(if defined)thepropertycard; definesthe basicstructural andinertia propertiesof

the element;describesthe elementcoordinatesystem;lists the stressesandforces in

the element;andgivesdiagramsfor the elementcoordinatesystemanddirection of element

forcesand/orstresses. Updatethis section.

2. Section2.4.2 documentseachNASTRANbulk datacardwith a one-pagedescription. The

connectioncardand,if defined, the propertycardmustbedocumented.Thedesignof these

cardsshouldbeoneof the initial tasksthat the analystandprogrammerperform.

3. Section3 has13subsections.Section3.1 is an introduction, andSections3.2 through

3.13documenteachof the NASTRANrigid formats. Section3.1 doesnot haveto beupdated.

Subsections3.i.I and3.i.2 (i = 2,3..... 13)donot haveto beupdated. Updatesubsections

3.i.3 (i = 2, 3..... 13) to documentthe "Bit Positionsfor the CardNameRestartTable"

for the connectionandpropertybulk datacardsassociatedwith the newelement. If the

newelementhasboth lumpedandcoupledmassmatrixoptionsin moduleSMA2,thenupdatethe

explanationfor the C_UPMASSparameterin Sections3.i.4 (i = 2, 3, 7, 9, I0) and3.j.5

(j = 4, 5, 6, 8, II, 12, 13).

6.8-50(8/I/72)

ADDINGA STRUCTURALELE_IEIIT

4. If the newelementcanbeplotted, thenupdatethe list of elementtypesthat canbe

specifiedona SETdefinition cardin the StructuralPlotter requestpacketto reflect the

newelement'sname.This list is in Section4.2.2.1. Additionally, updatethe list of

labels for elementtypesthat are for element-typeidentification. This list is in Section

4.2.2.3. Updatethe tablesof element-stressitemcodesandelement-forceitemcodeswhich

are keysto whatcanbeplotted with the XYPLBTmodule.Thesetables areat the endof
Section4.3.3.

6. If the programerandanalystfind that a generalusermessagerelatedto elements,such

asmessagenun_)er2026in Section6.2.3, doesnot fulfill their needs,theymaychooseto
adda newmessageto subroutineMSGWRTor USRMSG.

beupdated.

7. Assumethe newelementhasthe mnemonicNEWEL.

NASTRANDictionary:

CNEWEL IB

NEWEL IC

PNEWEL IB

If this is the case,Section6.2.3must

Thenaddthe followingentries to the

Newelementconnectiondefinition card

Requestsstructureplot for all NEWELelements

Newelementpropertydefinition card

6.8.4.3 TheProgrammer'sManual

TheNASTRANProgrammer'sManualcontainssevenmajorsections. Thefollowingparagraphs,

precededby majorsectionnunfoers,identify materialthat mightbeupdatedin that section.

2. Makethe followingchangesto Section2:

a. Addthe dataon the newelementconnectioncard, CNEWEL,to the datablock

descriptionfor GERM2,Section2.3.2.2.

b. Addthe dataon the newelementpropertycard, PNEWEL,to the datablock

descriptionfor ECT,Section2.3.2.5.

c. Updatethe datablockdescriptionfor EST,Section2.3.8.1.

d. If the newelementis definedfor piecewiselinear analysis,updatethe data

block descriptionfor ESTNL,Section2.3.34.3.

6.8-51(8/I/72)

MODIFICATIONSANDADDITIONSTONASTRAN

e. If the newelementis definedfor piecewiselinear analysis,updatethe datablock

descriptionfor ECPTNL,Section2.3.34.4.

f. Updatethe elementstress andforceoutputdatadescriptionsin Sections2.3.51and

2.3.52respectively.

3. If the materialpropertyoptionscurrently implementedin subroutinePREMAT_Section

3.4.36, are inadequatefor the newelementandPREMATis consequentlymodified,thenupdate

this section.

4. Section4 containsnumeroussubsectionsthat mustbeupdated,someextensively. They

are:

a. Updatethe indexin Section4.1.3 to includeall the newentry pointsfor element

routinescodedfor SMAI,SMA2,SSGI,SDR2,DSMGI,PLA3andPLA4.

b. UpdateTables1 and2 at theendof Section4.5.

c. Adda subroutinedescriptionfor the newstiffness matrixelementroutine, e.g.,

KNEWEL_ to Section 4.27.8.

d. Add a subroutine description for the new mass matrix element routine, e.g., MNEWEL,

to Section 4.28.8. (Of course add two descriptions if both a lumped mass matrix and a

coupled mass matrix routine are added.)

e. For some elements (e.g., a triangular ring), SSGI incorporates thermal loading in

an element subroutine; for others, entry point TEMPL of subroutine EDTL is used. If a

new element routine is coded, add a subroutine description to Section 4.41.11.

f. Add two subroutine descriptions for the new phase 1 and phase 2 stress data recovery

element routines, e.g., SNEWLI and SNEWL2, to Section 4.46.8.

g. For module DSMGI (Section 4.49):

(I) Update the first paragraph of Section 4.49.7.

(2) If necessary, update indented paragraph 6 in Section 4.49.7.

(3) Add a subroutine description for the new differential stiffness matrix

element routine, e.g., DNEWEL, to Section 4.49.8.

6.8-52 (8/1/72)

5°

ADDING A STRUCTURAL ELEMENT

h. For module PLA3 (Section 4.54):

(I) If necessary, update the second paragraph of Section 4.54.7.

(2) Add a subroutine description for the new piecewise linear analysis

stress data recovery element routine, e.g., PSNEWEL, to Section 4.54.8.

j. For module PLA4 (Section 4.55):

(I) If necessary, update the second paragraph of Section 4.55.7.

(2) Add a description for the new nonlinear stiffness matrix generation

element routine, e.g., PKNEWL, to Section 4.55.8.

k. In Section 4.87, Structural Element Descriptions:

(I) Update Table I.

(2) Add a new subsection, 4.87.15, to describe the equations used in the element

routines for all structural modules. This section's introduction stated that it

was assumed that a structural analyst has written mathematical specifications for

the structural element. The analyst should write these specifications in a format

similar to those in Section 4.87, that is, list the ECPT/EST input data; list

coordinate system data obtainable from the CSTM data block; define the material

property assumptions and data; list the equations common to all element routines;

list the equations specific to stiffness and mass matrix generation, thermal

and enforced deformation loading, stress and force data recovery, differential

stiffness matrix generation, and stress data recovery and stiffness matrix

generation for piecewise linear analysis.

Update the overlay diagrams in Section 5.2 as follows:

a. Change link 3 to reflect the new element routines in SMAI and SFtA2.

b. Change link 5 if a new subroutine was added to SSGI.

c. Change link 13 to reflect the new element routines added to SDR2, DSMGI, PLA3

and PLA4.

6.8-53 (8/I/72)

MODIFICATIONSANDADDITIONSTONASTRAN

6.8.5 Dumn_ User Elements (DUMI thru DUM9)

A capability exists within NASTRAN which permits a user to enter his own element subroutines

for purposes of generating stiffness and mass matrix contributions, thermal load contributions and

for computation of various stress, force, etc. outputs. Through the use of ADUMi, CDUMi, and

PDUMi bulk data cards (i = 1 to 9), he may enter geometry, property and connection data as is done

for any other NASTRAH structural element. The difference being that this input data is of a

dynamic nature based on the parameters he enters via the ADUMi card.

Thus a user who may have a structural element formulation not found within NASTRAN may

through the dummy element capability implement it into NASTRAN with a lot less difficulty than

would be the case of adding an entirely new element.

The procedure for utilizing a dummy element is:

I. Create an element stiffness routine KDUMi modeled after an existing routine (e.g.,

subroutine KROD) which will compute and output via insertion routines one 6x6 matrix for

each connecting grid point with respect to the connected pivot point. (Each connected

grid point becomes the pivot point independently, see Section 1.8).

2. If desired, generate a similar routine MDUMi to compute the MASS matrix based on an

existing routine (e.g., subroutine MR_D).

3. If desired, generate a routine DUMi similar to an existing routine (e.g., R_D) to

compute a thermal load or element deformation load. At present, the user must update sub-

routine EDTL by adding a call to SSGETD; this may change the parameters in the call to DUMi.

4. If stress and/or force outputs are desired, generate two routines SDUMil and

SDUMi2 similar to SR_DI and SROD2 to compute the stress and/or force outputs.

5. For any of the above routines prepared (KDUMi, MDUMi, DUMi, SDUMil, and SDUMi2), a

"Linkedit" run will be necessary to load these into the NASTRAN executable.

In the design of these element routines the "user programmer" needs to understand the

format of the EST table (see Sections 2.3.8.1 and 2.3.8.3).

Note also common block table /GPTAI/. (See Section 2.5.2).

Note also the above sections (see Section 6.8.1 through 6.8.12).

6.8-54 (8/I/72)

ADDINGA STRUCTURALELEMENT

All modulecodefor thebasicdummyelementshasbeenprovidedin modulesSMAI,SMA2,DSI,

SSGI,andSDR2.

Aselementroutinesdonot useNASTRANexecutivefunctions, the userprogrammershould,before

attemptinga linkedit of his elementroutinesinto the NASTRANexecutable,dothe following:

I. Preparea "loadandgo"environmentwhich,e.g., simulatesSMAI.Thisenvironmentwould

containa driver routinewhichwouldset upinterface commonblocksto the elementroutine

KDUMi.KDUMiwouldcall a dummySMAIBinsertion routinewhichmightonly print the matrices.

2. Preparesimilar environmentsfor thethermalandstressdata recoveryfunctions.

Whenthe user-programmerfeels hehaselementroutineswhicharemodeledcorrectlywith

respectto NASTRAN,a linkedit mightbeperformed.Linkeditsare in generalnon-trivial systems-

programmer'staskswith large overlayprograms,andthusall workpossibleshouldbeaccomplished

beforethis is attempted.

Dummyoutputformatsandheadingsareprovidedwithin NASTRAN.Theseencompassbothreal

andcomplex(seeSection2.3.52).

Referto subroutinedescriptionsin Section3 for the followingsubroutines:

I. GMFLATD

2. GMFtATS

3. INVERD

4. INVERS

5. PREMAT

6. PRETRS

6.8-55(8/I/72)

PRINTED OUTPUT

6.9 PRINTED OUTPUT

The _,]ority of the NASTRAN data scheduled for output are input to the Output File Processor

(_FP) module. This module performs the actual formatting and outputting of the data.

To implement additional output capability in the OFP, the following ground rules should be

observed in designin_ a data block intended to be input to _FP for output to the system printer

or punch unit.

I. The data block's name, for consistency, should begin with an "0".

2. There should be one or more repeating record pairs, where the record pair is of the

following form:

WORD MODE DESCRIPTION

i Available for Data

2 I Major ID

3 I Minor ID

4 I Subcase ID

5

Available for Data

9

lO I Number of words

per entry
II

5O

51

Available for Data

BCD

146 BCD

32 Words Title
32 Words Subtitle
32 Words Label

Ic'entification
Record

(An odd-
numbered

Record)

Repeating data entries of the length specified in the

preceding record. This record may be null but should
exist.

Data Record
(An even-
numbered Record)

6.9-I

MODIFICATIONS AND ADDITIONS TO NASTRAN

3. The Major ID is formulated depending on the data type as follows.

a. For a new data type an integer should be selected which equals I, where I is a value

one greater than the current number of accepted data types within _FP.

b. The Major ID then depends on the data classification

I = S_RTI - Real

I000 + I = S_RTI - Complex
Major ID

2000 + I : S_RT2 - Real

3000 + I : SORT2 - Complex

4. The Minor ID is optional to distinguish subclasses of the Major ID.

With the data block format outlined above, the NASTRAN systems programmer may implement the

new data formats within the current _FP procedure by modeling from any current data type now

handled by _FP. The current _FP has dynamic formatting for the outputting of entries of the

Data Record. However, if the programmer is not familiar with the five level pointer procedure

used for the dynamic formatting, it is recommended that he implement logic to explicitly output

the Data Record.

_FP will, without modification, output new data blocks via the table print routine, TABPT.

6.9-2

PLOTTER OUTPUT

6.10 PLOI-FEROUTPUT

Plotted output in _STRAN is restricted to three medules: I) the Structural Plotter (PL_T -

see section 4.24); 2) the XY Plotter (XYPL_T - see section 4.69); and 3) the Matrix Plotter

(SEEF_T - see section 4.74). Each of these modules uses the NASTRAN plotter software package of

utility routines, each of which is individually documented in section 3.4.

6.10.1 Changes to the Plotter Software

In order to add a new plotter to the NASTRAN plotter software, the following must be done:

l) up to four (4) new subroutines (AJ(ISi,LINEi, TYPEi, WPLTi) must be written, where "i" is the

internal index of the new plotter (see section 3.1 for the current values of i); and, 2) changes

and/or additions must be made to ten (lO) existing subroutines (AXIS, FNDPLT, LINE, PL_TBD, SELCAM,

SKPFRM, SYMB@L, TIPE, TYPFLT, TYPINT).

Initially, it should be decided which of the four possible new subroutines will be needed for

the new plotter. For the most part, three will be the minimum: LINEi, TYPEi, WPLTi. If the new

plotter has no typing capability, an existing subroutine, DRWCHR, will be used in place of TYPEi.

It is strongly recommended that the calling sequences of any new subroutines be the same as those

of their existing counterparts. None of the four possible new subroutines should present much

difficulty to the programmer if he uses their existing counterparts as models.

Subroutine AXISi need only be written if the following two conditions are true on the new

plotter: l) lines must be drawn generally as a series of short lines; and 2) there does exist a

special plotter instruction permitting the drawing of a horizontal or vertical line without repre-

senting it as a series of short lines. Both of these conditions do exist for plotter 3 and may

exist for plotter lO. If either one of these two conditions is not true for the new plotter, then

LINE should be used in place of AXISi.

Subroutine LINEi is always required. If the new plotter must be put into the line drawing

mode before any lines can be drawn, LINEI, LINE2, LINE9 and LINEIO should be used as models. If

the new plotter is an incremental plotter, LINE4 should be used as the model. Otherwise, use

LINE3 as the model. In addition, LINEI, LINE2 and LINE3 represent lines as series of short lines;

LINE9 and LINEIO use only one plot command to draw a line of any length.

6.10-I (12-I-69)

MODIFICATIONS AND ADDITIONS TO NASTRAN

Subroutine TYPEi should be written if there is a typing capability on the new plotter. If

the new plotter must be put into the typing mode before any lines can be drawn, TYPE1, TYPE2,

TYPE9 and TYPEIO should be used as models. Otherwise, use TYPE3 as the model. All characters

should be vertically oriented and miniature in size. Each of the model subroutines has three

important symbols initialized in a DATA statement: LSTCHR, NCHR and CHAR. LSTCHR is the index

of the last legitimate character in the CHAR94 table (see section 2.5) available on the new

plotter. NCHR is the number of characters for which the character code on the new plotter differs

from the corresponding character code in the CHAR94 t_ble. CHAR is a list of NCHR pairs of

indices into the CHAR94 table: CHAR1, j is the index value of the character code which will pro-

duce the wrong typed character on the plotter, and CHAR2, j is the index value of the character

code which will produce the correct typed character. One further note: some plotters have both

a "typewriter" and "single-character typing" mode. The existing TYPEi subroutines use only the

"single-character typing" mode. It is strongly recommended that this policy be continued for all

new plotters.

Subroutine _IPLTi is almost entirely dependent upon the structure of the plot commands for

the new plotter. The existing WPLTi subroutines will help the programmer only insofar as the over-

all logic is concerned. Once the plot command is constructed, it is written using subroutine

SWRITE. Some plotters also require special information at the beginning and/or end of each

record on the plot tape. If this is the case with the new plotter, WPLT3, WPLT4, WPLT9 and WPLTIO

contain the logic necessary to recognize the beginning and/or end of a plot tape record. In

addition, all the existing WPLTi subroutines, except for WPLT4, generate fixed-length plot commands.

This results in a simpler subroutine and also adapts easier to the computer-independent char-

acteristic of NASTRAN. It is therefore recommended that this policy be continued, if at all

possible, for all new plotters.

Of the ten (I0) subroutines to which changes and/or additions must be made, changes in six

of the ten subroutines are dependent upon a) the internal index of the new plotter; and b) which

of the four possible new subroutines have been written. These six (6) subroutines are: AXIS,

LINE, SY_IBOL, TIPE, TYPFLT and TYPINT. In each there are one or two computed-go-to statements

based upon the internal index of the new plotter which will have to be enlarged. Then coY'res-

ponding statements calling the new subroutines (AXlSi, LINEi, or TYPEi) will have to be added.

If an AXISi subroutine was not written for the new plotter, subroutine LINE should be called

6.10-2 (12-I-69)

PLOTTEROUTPUT

fromsubroutineA](ISinsteadof calling AXISi. If a TYPEisubroutinewasnotwritten for the new

plotter, thensubroutineDRWCHRshouldbecalled fromsubroutinesSYI,IBOL,TIPE,TYPFLTandTYPINT

insteadof calling TYPEi.

SubroutineFNDPLTrelates the externalplotter andmodelnameswith its internal plotter and

modelindices. Thereis a table within this subroutinewhichreflects this relationship. The

programmerneedonly appendtheexternalnameof the newplotter and/oranadditionalmodelname

to anexisting plotter, togetherwith the correspondinginternal plotter andmodelindices. In

addition, the valueof the variableNPLTRSwill haveto be incrementedby onewhenevera new

externalplotter nameis added.

SubroutinePLOTBDis a BlockDatasubprogram.Boththe PLTDAIandSYMBLStables (see

section2.5) mustbeexpandedto reflect theaddition of the newplotter. A new20-wordsection

mustbeappendedto the PLTDATtable reflecting the physicalcharacteristicsof the newplotter.

Thevaluesin this newsectionmustcorrespondona one-to-onebasiswith the valuesdefinedfor

the existing plotters. In addition, the buffer size definedfor the newplotter mustbea

multiple of 60charactersif computerindependencyis to bepreserved.A new20-wordsectionmust

beappendedto the SYi4BLSt_ble. Thefirst "NSYI_I"valuesin this newsectionare indices into

the CHAR94or CHRDRWtables (seesection2.5). Theseindices representthe special symbolsused

by the SYMBOLsubroutinefor the newplotter.

A newsectionmustbeaddedto subroutineSELCAM.Thefunctionof the newsectionvaries

dependinguponthe requirementsof the newplotter. If the newplotter is a table plotter, a

plot commandshouldbegeneratedto stopthe plotter sothat the operatorcanpreparefor the

nextplot. If the newplotter is a microfilmplotter, the requestedcameramustbeselected.

Someplotters requirea special "header"recordat the beginningof eachplot. If so, it must

begeneratedin this subroutine. Again,thefunctionof this subroutinevariesdependingupon

the requirementsof the newplotter, andasa result, the addedsectionis very likely to be

entirely plotter-dependent.In addition, thereare twocomputed-go-tostatements(basedupon

the internal indexof the newplotter) whichmustbeenlargedto reflect the newplotter.

Thelast subroutineto whichchangesand/oradditionsmustbemadeis SKPFRM.Its function

is to skip a variable numberof framesonamicrofilmplotter, or to skip overthe currentplot

ona drumplotter. If the newplotter is neithera microfilmnor a drumplotter, nonewsection

6.10-3(12-I-69)

MODIFICATIONSANDADDITIONSTONASTRAN

is needed.In either case,there is a computed-go-tostatement(baseduponthe internal indexof

the newplotter) whichmustbeenlargedto reflect the newplotter. If the newplotter is a

microfilmplotter, the commandsnecessaryto skip the frame(s)mustbeaddedto the subroutine

(e.g., plotters 3 and9). If the newplotter is a drumplotter, thenthe commandsnecessaryto

skipover the currentplot mustbeaddedto the subroutine(e.g., plotter 4). Aswith subroutine

SELCAM,anyaddedsectionis very likely goingto beplotter-dependent.

Finally, an importantwordof cautionto the programmermustbestated: if the computerand

installation independenceof the NASTRANplotter softwarepackageis to bemaintained,no existing

software provided for his computer or installation ought to be used to accomplish the task of

adding a new plotter to the NASTRAN plotter software package. This restriction prevents the

direct usage of on-line plotters. NASTRAN does provide however for the indirect usage of on-line

plotters as described in section 6.10.6.

6.10.2 Changes to the Pb_T Module_ the Structural Plotter

In order to add a new plotter to the NASTRAN structural plotter module, PL_T, only one

subroutine need be altered: PLT_PR. This subroutine generates messages to the plotter operator.

Probably the only message which should be added is one to identify the plotter for which the

structural plots are being generated. There is a repertoire of other messages in this subroutine

which should be general enough to apply to any plotter type. If additional messages are needed,

the programmer must remember that the plotter operator is not normally a "programmer type".

Hence he will be more apt to respond to messages written in his language than to messages written

in programming terminology. In addition, there are several computed-go-to statements based upon

the internal index of the new plotter. These will have to be enlarged to reflect the new plotter.

6.10.3 Changes to the XYPL_T Module, the XY Plotter

No changes are required within the XYPLOT module when adding a new plotter. However, a minor

change is required in subroutine IFPIXY of the IFP module if and only if the new plotter uses the

NASTRAN BCD plot tape, PLTI. If this is the case, the new internal plotter number which is gen-

erated by subroutine FNDPLT of the NASTRAN plotter software should be added to the F_RTRAN logical

IF statement directly after the following comment in subroutine IFPIXY:

6.10-4 (3/I/70)

PLOTTER OUTPUT

IF M_RE BCD PL_TTERS ARE ADDED EXPAND THE F_LLOWING TEST

6.10.4 Changes to the SEEMATModule_ the Matrix Plotter

No changes to the SEENtATmodule are necessary when a new plotter is to be added since the

plotter and model names are communicated to the module through the DMAP calling sequence (see

section 4.74).

6.10-5 (12-I-69)

MODIFICATIONS AND ADDITIONS TO NASTRAN

6.10.5 Use of the NASTRAN Plotter Software in a New Module

There exists in NASTRAN a self-contained computer-independent environment for creating plots

on a large number of plotters. Currently three modules use this environment: I) PLOT, the

Structural Plotter; 2) XYPLOT, the XY Plotter; and 3) SEEf,_T, the Matrix Plotter. In order for

another module to generate plots in this same environment, it is essential that the module writer

understand this environment.

The NASTRAN plotting environment can be understood most easily if viewed as being composed

of five parts: I) parameter definitions; 2) parameter initialization; 3) plot initiation; 4) plot

creation; and 5) plot termination.

There is one DMAP parameter (passed through blank common) and two named common blocks in the

parameter definition section of the NASTRAN plotting environment. The DMAP parameter is PLTNUM,

the plot number of the last plot created, and is both an input and output integer value. The two

named common blocks, with their symbolic contents, are as follows:

COMMON/XXPARM/PBFS I Z ,MED I UM,BFRAMS,SKIP (4) ,XPAPSZ,YPAPSZ

where:

PBFSIZ

MEDIUM

= size of the plot tape buffer (integer)

= medium output request (integer, default value = 2)

1 = film only

= 2 = paper only

3 = both

BFRAMS = number of blank frames (on film only) between plots (integer, default

value = I)

XPAPSZ : width of the paper (inches, for table plotters only) to be used (real,

default value = 8.5 inches)

YPAPSZ = height of the paper (inches, for table plotters only) to be used (real,

default value = II.0 inches)

C_MM_N/PLTDAT/I_DEL_PL_TER,REG_0N(4),AXMAX,AYMAX,_EDGE,YEDGE_SK_P(_),PCNT_N,_NTCHX,CNT_HY_

SKIP(4),PLTYPE,PLTAPE,SKIP(2),FCNTIN

6.10-6 (12-I-69)

PLOTTER OUTPUT

where:

M_DEL = model index of the plotter to be used (integer, default value = i)

PL_TER = plotter index of the plotter to be used (integer, default value = 3 - the

SC 4020 microfilm plotter)

REGION = the region of the plotting surface (Xmin, Ymin' Xmax' Ymax) in which a plot

is being created (real)

AXMAX = width of the plotting surface less any borders (real)

AYI_X = height of the plotting surface less any borders (real)

XEDGE = width of the border on the left and right side of the plotting surface (real)

YEDGE = height of the border on the top and bottom of the plotting surface (real)

PCNTIN = number of counts (plotter units) per inch of paper (real)

CNTCHX = the width (includes horizontal spacing between characters) of each printed

or drawn character (real)

CNTCHY = the height (includes vertical spacing between characters) of each printed

or drawn character (real)

PLTYPE = plotter type (integer)

+l = microfilm plotter

= +2 = table plotter

+3 = drum plotter

}<0 if no typing capability exists on tke plotter.

">0 if typing capability does exist on the plotter.

PLTAPE = GINO file name of the plot tape (BCD)

_PLTI for an even parity plot tape

PLT2 for an odd parity plot tape

FCNTIN = number of counts (plotter units) per inch of film (real, FCNTIN = PCNTIN if

the plotter is not a microfilm plotter)

The usage and initialization of each of the variables listed above are detailed in the following

descriptions of the four remaining sections of the NASTRAN plotting environment (see section 2.5

for a more detailed description of /XXPARM/ and /PLTDAT/).

6.10-7 (12-I-69)

MODIFICATIONS AND ADDITIONS TO NASTRAN

The parameter initialization section of the NASTRAN plotting environment involves initializing

all the variables listed above for the /XXPARM/ and /PLTDAT/ named common blocks, with the excep-

tion of MEDIUM and BFRAMS. First, the plotter and model indices (PL_TER, M_DEL) of the plotter

to be _sed must be set by using subroutine FNDPLT:

CALL FNDPLT (PLTTER,M_DELN,PLTID,MODID)

where:

PLTTER :

M_DELN =

PLTID(2) =

plotter index of the plotter specified in PLTID and M_DID (integer, output)

model index of the plotter specified in PLTID and MODID (integer, output)

8 character name (4 characters per word, left-adjusted, with all remaining

characters blank) of the plotter of interest (BCD, input).

M_DID(2) = model identification of the plotter of interest. M_DID i may either be

numeric or BCD, depending upon the way in which various models are identified

for the plotter of interest. If M_DID i is BCD, it must be 4 characters,

left-adjusted, with all remaining characters blank. (Integer and/or BCD,

input and output).

See section 3.1 for a list of current plotter and model names.

Subroutine FNDPLT will attempt to match PLTID with an internal list of plotters available in

the NASTRAN plotting environment. If no match is found, FNDPLT sets both PLTTER and M_DELN = 0

and immediately returns. Otherwise, FNDPLT will attempt to match M_DID with an internal list of

models for the plotter of interest. If no match is found, a default model for the plotter is

stored in M_DID. Then the corresponding plotter and model indices are stored in PLTTER and M_DELN.

Generally, PLTID and M_DID will be provided by the NASTRAN user. It is suggested that the module

writer set M_DID(1) and FI_DID(2) equal to zero before inserting the user supplied values for

M@DID. This provides the user with the capability of defaulting to a standard default model for

his specified plotter by supplying no values for M_DID or by supplying a value only for M@DID(1).

Having called subroutine FNDPLT to determine the plotter and model indices, the module writer

should then set PL_TER and M_DEL equal to PLTTER and M_DELN, respectively:

PL_TER = PLTTER

MODEL = MODELN

6.10-8 (12-I-69)

PLOTTER OUTPUT

Next, the remainder of the /PLTDAT/ named common block must be initialized. Subroutine

PLTSET must be used to do this. PLTSET sets all the variables in /PLTDAT/, except _,_DELand

PL_TER, to values dependent upon the plotter index (PLCTER). In addition, if the plotter is a

table plotter, AXMAX and AYI,_Xare also functions of the paper size (XPAPSZ, YPAPSZ). For this

reason, if the current or default paper size is to be changed, it must be done before calling

PLTSET. Finally REGIgN is initialized in PLTSET as follows:

REGI(/N(1) : O.

REGI@N(2) = O.

REGION(3) : AXMAX

REGICN(4) = AYMAX

and the plot tape buffer size (PBFSIZ) in the /XXPARM/ named common block is initialized.

This completes the parameter initialization section of the NASTRAN plotting environment.

The next step is plot initiation. Once this step is initiated, none of the parameters in either

the /XXPA_/ or /PLTDAT/ named common blocks may be changed, except for MEDIUM, BFRAMS and

REGICN, without repeating the parameter initialization step.

In the plot initiation step, the module writer must first ensure that the plot tape (PLTAPE)

is indeed a Physical tape. This can be done by using logical function TAPBIT. If the function

result is .FALSE., the plot tape is not a physical tape and hence no plotting should be attempted

by the module:

IF (.NOT.TAPBIT(PLTAPE)) "no physical tape setup"

Having verified the existence of a physical plot tape, an array of PBFSIZ words must be provided

for the NASTRAN plotting software as follows:

CALL SOPEN ($n,PLTAPE,BUFFER,PBFSIZ)

where:

BUFFER

= F_RTRAN statement number to which S_PEN is to return if PLTAPE has not been

correctly initialized.

= an array of PBFSIZ full words.

6.10-9 (12-I-69)

MODIFICATIONS AND ADDITIONS TO NASTRAN

Next, the plotter must be started. However, before doing this, the plot number (PLTNUM)

should be incremented by one. In addition, this is the modu]e writer's last opportunity to change

the medium request ([_IEDIUI4) and the number of blank frames between plots (BFRAMS). [o start the

plotter, the module writer must call subroutine STPL_T:

CALl.. STPL_T (PLTNUM)

Subroutine STPL_T will select the proper medium (if appropriate!, generate an identification plot

(if necessary), and insert the specified number of blank frames (on film only).

Having initiated a plot, the module writer must then create the plot. In the p!ot creation

section of the NASFRAN plotting environment, there are seven (7) subroutines provided for various

tasks: AXIS, LINE, PRINT, SYHBOL, TIPE, TYPFLT, TYPINT. An explanation of the calling sequence

and purpose of each of these subroutines exists in section 3. [t is essential that the module

writer familiarize himself with the calling sequences and purposes of these subroutines. In

addition, it is just as essential that he also understand a certain amount of the philosophy which

exists in these subroutines as a class. What follows is an attempt to explain this philosophy,

together with pertinent suggestions.

There are three operating modes defined in these seven subroutines: I) axis mode;

2) straight line mode; and 3) typing mode. These three modes are totally independent of each other

and are mutually self-exclusive. What this actually implies is that only one mode can be active

at any one point in time. Subroutine AXIS eperates in the axis mode; subroutine LINE operates

in the straight line mode; and subroutines PRINT, SYHB_L, TIPE, TYPFLT and TYPINT all operate

in the typing mode.

Each of these subroutines has a common argument_ which is always the last argument in each

of the ca]ling sequences. This argument (_PT) is used to initiate a mode (OPT=-1), operate within

a mode (_PT=O), or terminate a logical subset of plot commands within a mode (_PT=+I). Only

while operating within a mode (_PT=O) do any of the other arguments in a calling sequence have

any meaning. For this reason, it is usually a good practice to use zeros for the other arguments

when initiating a mode or when terminating a logical subset of plot commands.

It is strongly recommended that the set of all commands used to create a plot be grouped into

logical _ubsets of commands, with each subset operating in only one of the three possible modes.

6.10-10 (12-]-69)

PLOTTEROUTPUT

This does not mean that all axes or all lines or all typing be included in one subset of commands.

In many cases it is more logical to create several subsets of axis commands or straight line

commands. The module writer must call one of the subroutines which operates within the same mode,

with OPT=-I, se that the mode will be properly initiated. It is then recommended that, following

such a subset of commands, the module writer again call one of the subroutines which operates

within the same mode, with OPT=+I, to terminate the subset of plot commands. An example of these

recommendations is as follows:

CALL TIPE (O,O,O,O,O,-l)

CALL PRINT (.........O)

CALL TIPE (.........O)

CALL SYMBOL (.........O)

CALL TYPFLT (.........O)

CALL TYPINT (.........O)

CALL TIPE (0,0,0,0,0,+I)

Generally, the module writer should avoid constantly changing plot modes. This is suggested

for two reasons. First, some plotters operate very inefficiently in a mode switching environment•

Second, should an error exist in either tilesoftware or hardware, it might be necessary to dump

the generated plot tape. Interpreting this dump would generally be no easy task. However, if the

idea of creating subsets of commands was used in generating the plot tape, the task of locating

the command(s) causing the problem(s) would be eased considerably in most cases.

All the subroutines used in creating a plot require that at least one of the arguments be the

location of a point on the plotting surface• In each case, the point(s) must be specified as real

6.10-11 (12-I-69)

MODIFICATIONS AND ADDITIONS TO NASTRAN

numbers already scaled to the plotter units. There is no general recommendation as to when this

scaling should take place. In some cases, it would be more logical to perform all the scaling at

once. In other cases, it would be more logical to perform the scaling on each subset of plot

commands. While in other cases, it would be more logical to perform scaling only on an as-needed

basis. The choice is left entirely to the discretion of the module writer. Since AXMAX and AYMAX

in the /PLTDAT/ named common block define the width and height of the plotting surface in plotter

units, and since the plotter origin can always be assumed to be in the lower left corner of the

plotting surface, the required scaling ought to be a relatively easy task.

The lower left cerner of the plotting surface is always at (0.,0.), while the upper right

corner of the plotting surface is always at (AXMAX,AYMAX). These are also the default values of

REGION (see the /PLTDAT/ named common block) as set by the PLTSET subroutine. The purpose of the

REGION parameters is to define a rectangular plotting area, outside of which no plotting is to be

attempted. For this reason, each of the seven subroutines used in creating a plot always compares

the point(s) specified in the calling sequence with the REGION values. No portion of any line or

axis will be drawn outside the corresponding rectangular plotting area. Nor will any typing be

attempted outside this same area. The usage of these REGION parameters is left to the discretion

of the module writer and the requirements of the module design. In most cases, the default values

of REGION will not be altered by the module. One situation in which the REGI_N parameters will be

altered is when the user has the capability of specifying that a plot is to be drawn only within

a specific portion of the total plotting surface and that any part of the plot which appears

outside this area is not to be drawn. In any case, if the REGION parameters are altered within

the module, this can be done at any time on an as-necessary basis.

Having created the desired plot in the plot creation step, the only remaining task for the

module writer is terminating the plot. This is a very simple task, accomplished by calling

STPL@T:

CALL STPL_T (-I)

This subroutine, which was also used to initiate the plot, upon sensing a negative argument, will

terminate the current subset of plot commands, skip to a new frame (if appropriate), and write an

end-of-file mark on the plot tape (if necessary).

6.10-12 (12-I-69)

PLOTTER OUTPUT

If additional plots are to be created within the same module, the entire process just des-

cribed must be repeated, starting with step 3 (plot initiation). If, however, a new plotter is

specified for the succeeding plots, step 2 (parameter initialization) must also be repeated. If

a new paper size is specified, subroutine PLTSET must be re-executed prior to repeating step 3.

This concludes the description of the NASTh_ANplotting environ_mnt. There are t_'oother

sections in the NASTRAN Progran1_er'sManual which deal with this environment. It is suggested

that the module writer read these sections also so that he may acquire more of an understanding of

the NASTRAN plotting environment than this section affords him. These other sections are: Changes

to the Plotter Software, section 6.10.1, and NASTRAN General Purpose Plotter, section 6.10.6.

6.10-13 (12-I-69)

MODIFICATIONS AND ADDITIONS TO NASTRAN

6.10.6 NASTRAN General Purpose Plotter

One feature which the NASTRAN plotting software lacks is the capability of direct usage of

the plotting equipment attached on-line to a computer. This is due not to special purpose pro-

gramming, but rather to one of the basic characteristics of NASTRAN: computer independence. Te

access on-line plotters would not only make NASTRAN computer-dependent, but probably installation-

dependent also. This installation dependency would result from the necessity of using special

subroutines provided by the computer installation to access the on-line plotter, with no guarantee

that subroutines havin_ the same name and calling sequences would be available at any other

computer installation. Even so, there would almost certainly occur a subroutine naming conflict,

due to the great number of subroutines in NASTRAN.

An effort is made in NASTR/_N to partially overcome this deficiency. In general, NASTRAN will

produce a plot tape vJhich can be used directly by any one of several off-line plotters. In

addition, NASTRAN can be directed by the user to produce a so-calleG "General Purpose Plotter"

tape. Another program, completely external to NASTRAN, would then have to exist, its function

being to translate this "plot" tape for the on-line plotter so that it will produce the plots

intended by NASTRAN. This in, plies that in order to produce a NASTRAN plot, two programs must be

run: first, NASTRAN itself; and then the external translator program.

The purpose of this section is to explain the characteristics and construction of the

"NASTRAN General Purpose Plotter" tape, so that a programmer will be able to write a program to

translate this "plot" tape for the on-linG plotter. Understanding the overall logic used by the

NASTRAN plotter software package in producing a plot tape will simplify the task of writing this

translator program. It is therefore recommended that the progra_ner familiarize himself not

only with this section of the Programmer's Manual, but also with sections 6.10.1 and 6.10.5,

which describe the technique of adding a new plotter to the NASTR/_N plotting software package.

The "NASTRAN General Purpose Plotter" tape is composed of a simple set ef elementary plot

operations, which can easily be deciphered by a F_RTRAN program on any digital computer. As each

operation is deciphered, the translator program should direct the on-line plotter to appropriate

action. This would normally be done by using the installation software to interface between the

translate program and the on-line plotter. With the existence of this external translator pro-

gram, NASTRAN would then have the capability of indirectly referencing the corresponding on-line

6.10-14 (12-I-69)

PLOTTEROUTPUT

plotter. A by-product of this environment is the implied capability of indirectl X accessing any

plotter, whether on-line or off-line, assuming the appropriate external translator programs are

written.

The "NASTRAN General Purpose Plotter" tape is a seven-track, odd parity, fixed-iength record

tape. An end-of-file mark follows the last plot only. Each record is composed of 300 six-bit

unsigned integers (75 words on an IBM S/360, 50 words on an IBM 7094 or Univac II08, 30 words on

a CDC 6600) and is composed of I0 plot commands, each being composed of 30 six-bit unsigned

integers (15 half-words on an IBM S/360, 5 wor_s on an IBM 7094 or Univac ll08, 3 words on a

CDC 6600). Not all plot commands will have useful information in all 30 six-bit integers. Some

commands use only two of the 30 six-bit integers, while others use 22. The general format of each

command is as follows:

PCR4R3R2RIRoS4S3S2SISoT4T3T211ToU4U3U2UIUo00000000 ,

where:

P = plot command,

C = control index,

Ri = decimal digit of an integer called R,

S i = decimal digit of an integer called S,

T i = decimal digit of an integer called T,

U i = decimal digit of an integer called U,

0 : zero.

The plot command is a six-bit integer, any one of sever: (7) possible plot commands, as

follows:

0 = no operation,

1 = start new plot,

2 : select camera,

3 = skip to a new frame,

4 = t)pe a character (may also = 14),

5 = draw a line (may also = 15),

6 = draw an axis (may also = 16),

6.10-15 (12-I-69)

MODIFICATIONS AND ADDITIONS TO NASTRAN

The control index is also a six-bit integer. It may be a pen number, a line density, a camera

number, or a pointer into a list of characters and symbols. The four integer values (R,S,T,U)

specified in a command must be reconstructed by the external translator program. Each integer

value is represented in the command as follows:

d4d3d2dld 0 ,

where the original integer value is given by:

d4104 + d3103 + d2102 + dllO 1 + dolO0 .

The significance of each of the four integer values (R,S,T,U) may vary from one plot command to

another.

The no-operation (0) command is simply a padding for plot records which may otherwise have

been less than 300 characters long. All 30 characters of this command will be zero.

The start-new-plot (I) command will _ be the first command introducing each new plot.

The first integer (R) will be the plot number. The second and third integers (S and T) are the

maximum x and y values specified in any other command for this plot. The minimum x and y values

are always zero and are therefore not specified in the start new plot command. If necessary, the

translator program can use these maximum x and y values to scale subsequent integer values so

that the plot will not exceed the limits of the plotting surface. The plot number is included

because some plotters require the plot number as part of the first command for each new plot. In

addition, if the receiving plotter is a table plotter, the translator program should issue a

command to the plotter which will stop it so that the plotter operator can change the paper. If

the plotter is a drum plotter, the translator program must skip a sufficient amount of paper to

insure that the previous plot will not be over-plotted. And if the receiving plotter is a micro-

film plotter, nothing else need be done.

The select-camera (2) command uses only the control index (C). The remaining 28 characters

are always zeros. This command is meaningful only on a microfilm plotter having both film and

hardcopy output. The control index is the camera or medium request number: l = film only;

2 = hardcopy (paper) only; and 3 = both. Upon receiving this command, the translator program

should issue a command to the receiving plotter selecting the requested camera or output medium,

6.10-16 (8/I/72)

PLOTTER OUTPUT

then this command should be ignored.

The skip-to-a-new-frame (3) command also uses only the control index. The remaining 28

characters are always zeros. This command is meaningful only on a microfilm plotter. The

control index is the camera or output medium request number: l = film only; 2 = hardcopy

(paper) only; and 3 = both. The appropriate camera will have already been selected in a pre-

vious select-camera co_and. The only reason the camera number is included in this command is

because some microfilm plotters require the camera or output medium to be specified in both a

select camera and skip frame command. Upon receiving this command, the translator program should

issue a command to the receiving plotter to skip to a new frame. If the receiving plotter is not

a microfilm plotter, then this command should be ignored. Note: at least one skip-to-a-new-frame

command will appear after each start-new-plot command and before the next start-new-plot command.

The type-character (4), draw-line (5), and draw-axis (6) commands will always occur in sets,

i.e., a set of type-character commands, a set of draw-line commands, a set of draw-axis con_nands.

There may be more than one set of each type of command, but within a set the commands will all be

of an identical type. This is done because on some plotters it is very inefficient to frequently

change modes (e.g., typing mode, line drawing mode) of operation. The plot command of the first

command in a set will _= lO + the basic plot command value, i.e., type-character = 14;

draw-line = 15; and draw-axis = 16. In all subsequent plot commands in the set, the plot command

value will always equal the basic plot command value.

For a type-character command, the control index is a pointer into a specific list of charac-

ters and special symbols. The list of characters to which the pointer applies is Section I of the

CHAR94 table (see section 2.5), with the following exceptions: 48 = dot, 49 = circle, 50 = square,

51 = diamond, 52 = triangle (point up). The first two integer values (R and S) in the plot command

represent the x and y coordinates of the point on the plotting surface at which the center of the

character or symbol should be typed. The remaining 18 characters of the command are always zeros.

Upon receipt of a type-character command, the translator program should issue a command to the

receiving plotter to type the requested character or special symbol at the specified point. Of

course, there is no guarantee that all the possible characters and special symbols can be typed by

the receiving plotter. If any character or special symbol cannot be typed by the receiving

plotter, the translator program will then have to make a substitution or not type the character at

all.

6.10-17 (12-I-69)

MODIFICATIONSANDADDITIONSTONASTRAN

Fora draw-line command, the control index is either a pen number (for table and drum plot-

ters) or a line density (for microfilm plotters). If the receiving plotter is a microfilm plotter,

it is recommended that the translator program simply draw the line as many times as is indicated by

the line density value, rather than using any special density settings available on the plotter

hardware. The first two integer values (R and S) represent the x and y coordinates of the starting

point of the line. The next two integer values (T and U) represent the x and y coordinates of the

ending point of the line. The last 8 characters of the command are always zeros. Upon receipt of

this command, the translator program should issue a command to the receiving plotter to draw the

line. Note: some plotters require that a line be broken into a series of short lines. If this

is the case on the receiving plotter, the translator program will have to accomplish this task

unless the installation software makes provision for this automatically.

The draw-axis command is identical to the draw-line command. The only difference is in the

orientation of the drawn line. The line drawn by a draw-axis command will always be either hori-

zontal or vertical. For most plotters, the translator program will handle this command just like

a draw-line command. However, some plotters which would ordinarily require that lines be broken

into a series of short lines, may have a special command available to draw a horizontal or vertical

line of any length. For these few plotters only will this command have any special significance

in the translator program. If such is the situation, the translator program, upon receipt of

this command, should issue a command to the receiving plotter to draw the axis. Otherwise, the

translator program should simply issue a command to the receiving plotter to draw a line repre-

senting the axis.

6.10-18 (12-I-69)

ADDITION OF A NEW LINK

6.11 ADDITION OF A NEW IINK

Links can be added to _ne NASTPJ_Nsystem with little effort if the total number of links does

not excepH fifteen (15). There are at present thirteen (13) links. Links are numbered consecu-

tively, and this should be maintained. If the total number of links must exceed 15, Executive

System changes to increase the link limit will be required. These Executive System changes are

described in section 6.11.5.

It is assumed that the reader is familiar with the other alternatives for adding new material

to the system (section 6.2 through 6.10), and that a new link is normally needed only if the

addition of new modules to a present link makes that link non-executable because of an excess of

overlay structure or decks. In this case, the programmer generates a new link through the

following steps (assuming the link limit is not exceeded):

I. Decide what modules to include in the new link.

2. Add any new modules to the MPL Executive table (see section 2.4.2.2) in deck XMPLBD.

3. Generate a new Link Specification Table and a new link driver.

4. Subsys (create an absolute element of) the new link.

6.11.1 Modules to Include

The following entry points of Executive modules must be included in each new link: XCHK,

XCEI, XSAVE, XPURGE, XEQUIV, XSFA and QPARAM. The following non-root segment subroutines must

be included in each new link: F_GWRT, USRMSG, BTSTRP, ENDSYS and XE_T. The following DMAP

output modules should be included in each new link: TABPT, MATPRN and PRTPARM. Diagrams for

the IBM 7094/7040(44) DCS overlay structures for all these routines can be found in section 5.2.9.

The addition or use of any other module is at the discretion of the NASTRAN systems programmer.

Any existing NASTRAN module can be included in the new link if it is so desired.

6.11.2 Addition of New Modules

All new modules must be added to the MPL Executive table (see section 2.4.2.2). unce this is

done, the new MPL needs to be added to the present NASTI_ANsystem before proceeding to generate a

new Link Specification Table and a new link driver. The new modules need not be present in the

system, but their entry points in the MPL must be in the system.

6.11-I

MODIFICATIONS ANDADDITIONS TO NASTRAN

6.11.3 Generation of a New Link Specification Table and a New Link Driver

The addition of a new link requires that: a) the Link Specification Table, LNKSPC, (see

section 2.4.2.7) be updated; and b) a new XSEMi deck (see section 3.3.7), which will be the main

program for the new link, be generated.

The F_RTRANcode, in punched card form, necessary to accomplish both of the above tasks can

be produced automatically in a NASTRANrun using a LNKSPCupdate deck as indicated below.

6.11.3.1 Link Specification Table Update

To update the Link Specification Table the user must insert a LNKSPC update deck after the

Bulk Data Deck in a NASTRANrun. The processing of a LNKSPC update deck is initiated by logical

"sense switches" on a DIAG card in the Executive Control Deck (see explanation below); hence no

special header card is required in the LNKSPC update deck. The format of each card of the LNKSPC

update deck is as follows:

where

B L1..... Ln

_=

L I, ..,., Ln =

Module DMAP name (I to 8 characters)

I Entry point name (l to 6 characters)"(NONE)" (6 characters) if there is no entry point name

zero or more integers, specifying all links the module resides in.

The _, B and Li fields must be separated by at least one blank or one comma.

card in a LNKSPC update deck is

CHKPNT XCHK 1,2,3,4,5,6,7,8,9,10,11,12,13,14

An example of a

At present the Executive module CHKPNT with entry point XCHK is in links 1 to 13; the above card

will add it to a new link 14. Be sure to include all the other Executive modules in any new link.

Cards in this format are repeated until all the modules in the new link have been named. The end

of the LNKSPC update is specified by the following card:

ENDDATA

6.11-2

ADDITION OF A NEW LINK

The following logical sense switches, set by a DIAG card in the Executive Control Deck, must

be used to process the LNKSPC update deck:

I. Logical sense switch 29 allows the LNKSPC update deck to be processed.

2. Logical sense switch 28 causes the new Link Specification Table to be punched.*

3. Logical sense switch 31 causes the new Link Specification Table to be printed.

The following DIAG card within the Executive Control Deck

DIAG 28,29,31

accomplishes this result.

*This code is for the Block Data subprogram XBSBD, and may be compiled under that name as punched,

or altered into the present deck to retain the comments presently in that deck. The latter pro-

cedure is recommended.

6.11.3.2 Generating New Link Driver Decks

The F_RTPu_Ncode necessary to make a new link driver deck can be produced by setting logical

sense switch 30 and the logical sense switches corresponding to the desired link(s). For example

the Executive Control Deck card:

DIAG 30,2,14

wi|l punch the code for XSEM2 and XSEMI4. The F_RTP,AN code produced, when altered into the deck

"XSEMXX" (see section 3.3.8), will produce the desired XSEMi routine. XSEMXX is the model for the

link drivers.

This driver code may be produced in the same run as the code for the Link Specification Table,

or this coce may be produced by adding the new XBSBD deck to the user's system and then setting

the appropriate sense switches on a subsequent run.

If logical sense switch 30 is set, the program will automatically terminate after satisfying

all sense switch requests to punch XSEMi's. In essence, _.hestructural problem submitted is only

a dummy needed to start NASTRAN. The user is cautio._edio check his DIAG card(s) carefully when

logical sense switch 30 is set to be sure only the s n_e switches corresponding to the desired

links are set.

6.11-3

MODIFICATIONS AND ADDITIONS TO NASTRAN

6.11.4 Subsys the New Link

The subsys deck necessary to add a new link will vary with the computing machine (see section

5). The safest way for the NASTRAN systems programmer to develop the subsys deck for the new link

is to copy the overlay structure of the necessary routines, which are listed in section 6.11.1,

and then add the new functional module(s) to this base. The mechanisms for switching from one link

to another already exists in NASTRAN up to 15 links, so that, once the subsys of the new link has

been accomplished, NASTRAN will be able to assimilate it.

6.11.5 Increasing the Link Limit

To increase the link limit beyond 15, the following Executive System changes must be made.

I. Increase the size of the NAME array in the /SEM/ common block to the desired link limit.

Add the additional link names (e.g., NSI6, NSI7, etc.) to the NAME array via the DATA state-

ment. The /SEM/ common block is defined in the System Block Data subprogram, SEMDBD.

2. Items MAXLNK, DRVRNM, and LNKEDT, defined in subroutine XGPIBS of Executive Preface

module XGPI (see section 4.7), must be updated. Increase the value for MAXLNK in the /XLINK/

common block to the desired link limit. Add the additional XSEMi names (e.g., XSEMI6, XSEMI7,

etc.) to the local DRVRNM array via the DATA statement. Add the additional link numbers

(e.g., 16, 17, etc.) to the local LNKEDT array via the DATA statement.

6.11-4

WRITING A NEW MODULE

6.12 WRITING A NEW MODULE

The purpose of this section is to draw together material presented throughout the manual from

the point of view of the NASTPJ_N applications programmer (i.e., the programmer assigned to add a

new capability to NASTI_N). This section is provided as a guide for the general module writer,

and will conclude with a specific example of a simple module.

6.12.1 Summary of NASTRAN Coding Conventions and Terminology

The new NASTPJ_N applications programmer is typically overwhelmed by t!_e vastness of the

system into which he will inject his modifications and additio:_s In this section, a review of

commonly used terminology and coding conventions will be given in an attempt to assist the new

programmer and provide a review for the programmer who infrequently works vith the system.

A module in NASTRAN is a collection of subprograms which performs a logical set of data

processing tasks. A module is executed by the user by writing and executing a DMAP instruction.

Modules communicate with other modules and with the I_ASTRAN Executive System (EXEC) only through:

I. Data Blocks (Tables or Matrices existing as collections of data on a physical storage

device)

a. Input Data Blocks are referenced by the GINB file reference numbers lOl,102

corresponding to the position of the data block in the DMAP call statement.

b. Output Data Blocks are referenced by the GIN_ file reference numbers 201,202

corresponding to the position of the data block in the DMAP call statement.

c. Scratch Data Blocks are referenced by the GIN_ file reference numbers 301,302

corresponding to any arbitrary order the module writer desires.

d. Note that there are no data blocks which are used for both input and output except

the scratch data blocks which exist only internally within the module. An exception

is present when a output data block is APPENDed.

2. Parameters (single values)

a. Parameters may be input, output or bot_ _s desired by the module programmer.

b. Each parameter defined for the module his a type and a corresponding number of

computer words as follows:

6.12-I (811172)

MODIFICATIONS AND ADDITIONS TO NASTRAN

C.

Type Exam___ No. Words

(I) Integer -3 1

(2) Real 2.9 1

(3) BCD BX2 2

(4) Double Precision -3.2D0 2

(5) Complex (1.3, -4.9) 2

(6) Complex Double Precision (6.2DO,O.ODO) 4

Parameters are store(! in blank common (/ /) in the order defined by the

DMAP call statement.

3. Executive System Common Blocks

Several System Common Blocks are accessible to the module programmer. These include

parametric values used by various utility routines, F_RTRAN unit definitions, the GIN_

buffer length value, and numerous communication areas for various utility routines such

as the matrix packing routines. A description of these common blocks may be found in

Section 2.

4. Executive System Utility and Matrix Operation Routines

A large number of routines are directly callable by the module programmer. These vary

from elementary bit manipulation routines to extremely involved matrix operation

routines. Routines which are usable by module programmers are described in Section 3.

The characteristics or properties of all modules are prescribed by the Module Properties

List (MPL), a table used by the DMAP compiler XGPI and defined by the Block Data program XMPLBD.

The number of input data blocks, output data blocks, scratch data blocks, as well as the number

and type of the parameters is defined by the MPL and must be adhered to by both the user when

using the module and by the module writer. The properties of a module can be changed only by

recompiling XMPLBD.

The subprograms of a module may consist of SUBROUTINE subprograms, FUNCTION subprograms

and/or unnamed BLBCK DATA subprograms as desired by the programmer. The main subprogram for the

module, however, must be a SUBROUTINE subprogram without arguments. The name of this subprogram

is prescribed by the Link Specification Table which is defined by the BL_CK DATA program XBSBD.

6.12-2 (8/I/72)

WRITING A NEW MODULE

Labeled common blocks may be defined for the module as desired for intra-module communication

so long as unique names are chosen. Similarly, the names of all new subprograms must be unique.

It is extremely important to remember to close all open GIN_ files before executing a RETURN to

the Executive System.

The basic GINO file element is the logical record, which contains an arbitrary number of

words of data. A most important non-FORTRAN feature in NASTRAN is the ability to read and write

part of a logical record. An interesting and useful application is the "blast read/write"

illustrated below. Let NW be the number of words of working core (open core less GIN_ buffers

and any other pre-assigned areas) available to the module starting at X(K). If we wish to copy

the contents of GIN_ file Fl onto GIN_ file F2, the following represents the most efficient way

since the data is handled in as large as pieces as possible. Assume that both files are open and

rewound.

lO CALL READ($30,$20,FI,X(K),NW,O,M)

CALL WRITE(F2,X(K),NW,O)

GO TO IO

20 CALL WRITE(F2,X(K),M,I)

GO T_ IO

30 CALL CLOSE(F2,1)

CALL CLOSE(FI,I)

The DMAP name of a data block is not known a priori to the programmer since it is defined

at execution time by the user in his D_P sequence. If the programmer desires to obtain the

name of the data block he is processing, he may do so via

CALL FNAME(F,NAM)

where F is the GIN_ file reference identification number (I01,203, etc.), and NAM is a two

word array into which the name will be stored.

6.12.2 Module Design

Before a module can be written, it must be designed. While the general process of design

cannot be formalized, certain NASTRAN rules and conventions can be discussed and illustrated.

6.12-3 (811172)

MODIFICATIONS AND ADDITIONS TO NASTRAN

A module can obtain input data in three ways: I) through any of a fixed number of input data

blocks, 2) via parameters maintained by the EXEC, and 3) from system common blocks. Thus, the

first items to determine are the input data blocks required, their number, and the parameters.

A module can only create printed output, output data blocks, or parameters. It may not update

system tables. The second item to determine is the number of output data blocks. Only one matrix

can be written per output data block, and the format is prescribed. Table data blocks, on the

other hand, may be formatted as the module designer pleases. A module may require temporary

storage (other than central memory), and hence require scratch files. (These are often required

by NASTRAN utility subroutines, such as MPYAD, etc.)

A module can be completely described by the number of inputs, the number of outputs, the

number of scratch files, and an ordered list of parameters and their types (integer, real, BCD,

double precision, complex single precision or complex double precision). The total number of files

required should be less than 26. To be used, a module must be scheduled into a DMAP sequence

along with other modules. A primary module design consideration must be the DMAP sequence in

which it will function. Items to be considered include: I) Are all input data blocks available

prior to the running of this module? 2) Are the parameter types consistent? 3) Do the formats

of the output data blocks agree with the input formats for the modules which will process them?

While the flow of data within a module can be as desired, a few guidelines are given below:

I. Try to use existing utility routines. In other words, try to express operations to

be performed as tasks which can be solved by existing subroutines. For this purpose

the utility routines of Section 3 can be classified as follows:

Processin 9 Tables

READ

WRITE

FWDREC

BCKREC

REWIND

EOF

RDTRL

WRTTRL

_PEN

CLOSE

FNAME

SORT

BISRCH

GBPEN

FREAD

6.12-4 (8/I/72)

WRITINGANEWMODULE

Printin_ Output

CONMSG MATDUM

SSWTCH TABPRT

PEXIT DMPFIL

PAGE BUG

MESAGE EJECT

In-Core Matrix Operations

GF'#4ATD INVERS

GMMATS PRETRD

INVERD PRETRS

Processing Data Cards

PRELBC XRCARD

PRETAB PREMAT

Processing Matrices (General)

_PEN G_PEN

CLOSE FREAD

FWDREC BLDPK

RDTRL PACK

WRTTRL INTPK

FNAME UNPACK

Processing Matrices (Operations)

SSG2A SSG3A

SDRIB S_LVER

UPART FACTOR

SSG2B TRANPI

SSG2C

6.12-5 (BII172)

MODIFICATIONS AND ADDITIONS TO NASTRAN

2.

3.

Plotting

AXIS STPL_T

SKPFRM SYMB@L

SELCAM TIPE

IDPL_T TYPFLT

LINE DRWCHR

PRINT PLTSET

S_PEN FNDPLT

SCL_SE

Try to limit material held in the central memory to as few items as possible. Thus,

matrices should be processed a column at a time, if possible, and tables handled by

logical records.

Stay within the existing overlay structure. In NASTRAN, certain types of subroutines

are grouped together. The existing groupings can be determined by examining the overlay

maps in Section 5. In particular, each major matrix operation is grouped by itself.

This leads to the concept of a module driver and several subroutines which each call

only one major matrix routine. For example, assume a module called M_DA wishes to read

data cards, assemble a matrix, multiply this matrix by an input matrix, and decompose

the result. It should be organized as follows:

Matrix Driver:

SUBR_UTI_E M_DA

CALL MODAl(

CALL SSG2B(

CALL FACTOR(

RETURN

END

=--

===

===

===

Outputs new matrix.

Multiplies by input matrix.

Decomposes matrix.

Back to EXEC.

6.12-6 (811172)

WRITING A NEW MODULE

The overlay environment might be as follows:

IModule Driver 1 I

I NASTRAN 1EXEC

IModule Driver 2 I

MPYAD]

I L
SDCOMP

I MODAI

MODAl

Note that all matrix routines and all major areas of code are placed in core after all module

drivers; therefore, each module driver should be as short as possible. Note that no data

can be left in central memory between each part of the module; i.e., all data must be

transferred to scratch files, thus freeing a maximum of central memory for each major matrix

operation. Note also that the names of each user-generated subroutine should be related to

the module name, as indicated in the example.

6.12.3 Implementing the New Module

Actual implementation of the new module can be done in two ways. The simplest way is to pick

an existing dummy module (as documented in Section 5 of the User's Manual) which contains at least

as many inputs, outputs, scratches, and parameters as needed for the new module. Failing this,

the procedures described in Sections 6.11.2 and 6.11.3 must be followed. The new decks must be

added to the existing overlay structure through the overlay control language of each particular

machine.

The NASTRAN EXEC will (at the proper moment) call the specified entry point to the module.

Note that no arguments are allowed. Thus, the new module must start as SUBROUTINE _DA, if MODA

is its entry point. The module must conclude with a RETURN statement. Parameters will be placed

in BLANK C_MMON in the order specified in the DMAP calling sequence. Assume the module has three

parameters, a BCD value, an integer, and a complex single precision nun_Der. They could be

referenced as

C_MMON // BCD(2),INTGR,COMPLX(2)

6.12-7 (8/I/72)

MODIFICATIONS AND ADDITIONS TO NASTRAN

The parameter values may be changed by the module at will, and BLANK common used as the module

writer pleases. (Note that BLANK COMM@Nis usually in the root segment, and should be held to

300 words or less.)

6.12.4 Codin 9 a Module Subroutine

The remaining tasks should now be broken into coding individual module subroutines. (It may

be possible to code a module which only calls existing subroutines. SCEI is such a module.) Module

subroutines are normal F_RTRAN subprograms written in NASTRAN's limited FORTRAN subset. Note that

bit operations have been added to NASTRAN F_RTRAN via RSHIFT, LSHIFT, ANDF, BRF, etc. Two major

differences are noted by experienced FORTRAN programmers, open core and I/0 management. These are

treated in subsequent sections.

6.12.4.1 Open Core Coding

A module subroutine can, of course, have normal FORTRAN arrays and C_MMON blocks as it pleases,

but many items in NASTRAN, such as the size of a matrix or the length of a table, are open ended

or variable from run to run. These items must be held in a variable length storage space. Many

F@RTRAN programs simply DIMENSION an array as large as possible and work within this array. NASTRAN

chooses to view this array as starting in a particular COMMONBLOCK, the name of which is assigned

by each module. This CBMMON BL_CK is positioned at the first available location within the exist-

ing overlay (usually immediately after the particular module subroutine). The module subroutine

obtains the length of the array in this C_MM@NBL_CK by calling upon a NASTRAN EXECUTIVE function

CORSZ. The module writer may organize this array as he pleases, as long as he stays within its

specified length. Consider the following diagram, which shows a picture of the main memory of a

hypothetical computer.

6.12-8 (8/I/72)

WRITING A NEW MODULE

Module Origin

Sub-Module Origin

Open Core Origin

_S

RS

MD

MS

IMSXI

Length

NS

_Sl

Address

0

= NZ

(End of Computer)

_S represents the area reserved for the resident O_peratingSystem, RS represents the area reserved

for the Root Segment of NASTPJ_N,MD represents the area reserved for the M_oduleD_river,and MS

represents the area reserved for the Module Subroutine which is currently executing. /MSX/ is the

LABELED C_I_N BL_CK used by MS to delimit the beginning of the variable array (open core). NS

represents the area reserved for the NASTRAN EXEC, and _Sl represents the remainder of the machine

controlled by the operating system. The words of core from /MSX/ to the beginning of NS can be

used by module subroutine MS. There are NZ of them.

A typical module subroutine determines the length of open core as follows:

INTEGER CORSZ

C_MH_N /MSX/IZ(1)

NZ = CBRSZ(IZ,IZ)

6.12-9 (811172)

MODIFICATIONS AND ADDITIONS TO NASTRAN

This subroutine might organize the open core as shown below:

LENGTH

FIRST WnRK

AREA

SFCnNn WhRK

AREA

UNUSED

CORE

BUFFER

GZNB
B{IFFER

SYSBUF

SYSBUF

P_INTER

1

12

IBUF2

IBUFI

Such diagrams are indispensable to module programmers. The programmer would locate items

such as the first GIN_ buffer by IZ(IBUFI). Such locations can be computed by

IBUFI = NZ - SYSBUF + 1

IBUF2 : IBUFI - SYSBUF

The proper length of open core should be checked before any use is made by a statement such as

IF(2*NR_W+2*SYSBUF .LT. NZ) CALL MESAGE (-8, O, NAME)

6.12-10 (8/I/72)

WRITING A NEW MODULE

6.12.4.2 I/@ Management

Data blocks are se lec ted v i a t h e i r GIN@ f i l e names. The i n p u t data blocks have p o s i t i o n a l

numbers beginning w i t h 101. Thus, data f o r the f o u r t h i n p u t data block can be obtained by referenc-

i n g G I N @ f i l e number 104. Outputs have p o s i t i o n a l numbers beginning w i t h 201; scratches w i t h 301.

A module must c lose a l l o f i t s open f i l e s before r e t u r n i n g t o EXEC.

The module w r i t e r must supply a b u f f e r t o G I N @ f o r each f i l e as he uses it. Supplying t h i s

b u f f e r i s r e f e r r e d t o as opening the f i l e . This b u f f e r should e x i s t i n the module's open core.

During the t ime the f i l e i s open, t h i s area belongs t o GIN@. Do n o t s to re i n t h i s area. The area

may be reused a f t e r the GIN@ f i l e i s closed. The length o f t h i s area i s given by the value o f the

f i r s t word i n t he /SYSTEM/ common block.

A t y p i c a l module subrout ine might proceed as fo l lows:

SUBR@UTINE M@DAl(INPUT)

INTEGER SYSBUF,C@RSZ

C@MM@N / SYSTEM/SYSBUF ,N@UT

C@MM@N / MSX/IZ(l)

NZ = C@RSZ(IZ,IZ)

IBUFl = NZ - SYSBUF+l

IF(NZ .LT. SYSBUF) CALL MESAGE(-8 .
CALL GflPEN(INPUT,IZ(IBUFl) ,0)

Process f i l e

CALL CL~SE(INPUT,I)

RETURN

END

MODIFICATIONS AND ADDITIONS TO NASTRAN

P r i n t e d o u t p u t shou ld be w r i t t e n o n t o t h e FgRTRAN u n i t g i v e n b y t h e v a l u e o f t h e second word

o f /SYSTEM/.

A l l NASTRAN da ta b l o c k s have a header record , which can be s u p p l i e d by GgPEN o r FMAME, and a

t r a i l e r , which can be s u p p l i e d by RDTRL o r WRTTRL. Nonzero t r a i l e r s must be w r i t t e n f o r a l l o u t p u t

d a t a b l o c k s and shou ld be w r i t t e n on a l l s c r a t c h d a t a b l o c k s . These t r a i l e r s a re p a r t i c u l a r l y

i m p o r t a n t when p rocess ing m a t r i c e s .

6.12.5 Sample Module Coding

T h i s s e c t i o n wi 11 c o n t a i n t h e e n t i r e FflRTRAN code f o r a new NASTRAN module. The module i s t o

norma l i ze a m a t r i x t o a maximum magnitude o f 1.0 i n each column. The module w i l l a l s o o u t p u t t h e

number o f rows and columns o f t h e m a t r i x as o u t p u t parameters.

MgDULE NAME = NflRM

E n t r y P o i n t : NgRMM

I n p u t s : 1

Outputs : 1

Scratches: 0

Parameters: 2 - i n t e g e r - o u t p u t

DMAP C a l l i n g Sequence:

NgRM ANYMAT / NgRMMAT / V,N,NC@L / V,N,NR@W $

SAVE NCgL,NRgW $

The module w i l l be w r i t t e n as a s i n g l e s u b r o u t i n e (r a t h e r than as a module d r i v e r / s u b r o u t i n e

combinat ion) . Note t h e h a n d l i n g o f m u l t i p l e p r e c i s i o n and complex va lues i n open c o r e and t h e

l i b e r a l use o f comments.

WRITING A NEW MODULE

~ O ~ R I . I U T I NE NJRMM

THIS 15 THC UMAP MUDUL~ NORM &HOSE CALL INSThd:TIU.4 1 5

NL)At+l I I U / U J T / W,NerUCUL / V V ~ ~ N K C A $

irUMdtR u F INPUT UATA 6LJCkS 1

NUtJdER UF OJTPUT OATA dLJCI(S 1

NUMLitR OF SGKATCH OATA BLUCKS C

NUMBER u f I &PUT PAKAME TtRS 0

NU+lBER OF OUTPUT PAkAMETcRb 2--1NTC;;ER

IuU.IM A I L L IJOKMALILE fACd CCILUMIJ d F AV INPUT MATRIX

1rUiE;tk COKSL,SYbBUF,MCBt 7),NAt+EI 2)

R ~ A L L (1)

OUJbLE PRECISIUN D L l l) r O ~ A X , L O L I L , A) , L ~ M A K

COfiPLEX CLI 1)

U IAENSIDN Nw141

CU.'4MUN / S Y S TEN/ SYbBUFvNJUT

LU~MLIN /UNP AKX/ I TC I I I JJ I INLK

CO4MJN /PACKX / I T A g I T d r I I 1 t J J i o I N C R L

EUJIWAL~NCE 4 I L ~ A ~ ~ L ~ ~ ~ ~ ~ L ~ ~ ~ ~ C L L ~ ~ ~ C U L ~ A ~ A J)

EXTtRNAL K t AD,mKITE

DArA INPUT/ 1 0 1 / , IUUT/201 / 9 NAME/~HNUKMI~HY

DATA N H / L e L 9L 94/

C

L I%ORM WILL USE OPEN LUKE AT I L

C

C

MODIFICATIONS AND ADDITIONS TO NASTRAN

C

M i S i l) = I N P U T

LALL RdTKL I MCB)

I F i M C 6 i 1) e L E e U J bU TU 503

G

L UUTPJT PAKAMETERS

NCOL = MCBlZ)

C ALL3C4TE OP EN CORE

C

C LHECK kOK S U F F l C I t l V T CORE Ti) HilLLt AN U\IPAC&EU

C COLUMN LJF T H t INPUT M A T & I X AtW T # G G I h J adt-tEA3

L UPEN INPUT AND UUTPUT MATKICES

L

CALL G U P t N I I N P J T r l L L I B U F 1 I ~ O ~

LALL CUPEN (kOUT 9 IL(I B U F Z) r L 1

C

C I N I T I A L I LE M A l K I X T R A I L E g

WRITING A NEW MODULE

S E T UP FOK M A T R I X PACK/UNPACK

I T C = Kw

I N t R = I

I T A = I T C

I T S = I T 'C

I N C H 1 = 1

LOdP ON EACH CULUMk

CNLY B K i b G I N BAND TERMS

I I = 0

CALL UIJPALA L I N P U T $ 1 L , R k A U) rRtTclKNS(80)

i I 1 = 1 1

J J I = J J

b T t H M = J J - I I + 1

GO f O (2~930943950) ~ K H

FItliJ MAX -- REAL SiNGLE P K k C i S I O N

MOD1 F ICATIONS AND ADDITIONS TO NASTRAN

213 KMAX = 000

00 2.2 J = l p N T E R M

XMAX = A H A X l (A & S i L (J) B p X H A X)

LL C O N T I h d E

i F I X M 4 X e L E . O e O J GO TU 80

C

C N U R H A L I Z E

C

DO 25 J = I r c J T t K M

L I J) = L L J j / n M A X

25 C C i N i I h J E

CIU TO 90

C

i F I U O M A X -- K k A L DOUBLE P R E L I S l O N

C

30 UMAX = 3,OUO

DO 32 J = 1,MTEKM

DMAK = D M A X l (O A t l S L D L (J ~) ~ C I U I A X)

32 L O N T I N U E

I F (d M A X e L E e 3 e D O O A 60 TO dU

t

C NOKMALI LE

C

UU 35 J = 1 t N T E K M

U Z I J) = U L I J) / D M A X

35 L O N i I h U E

G O FLI Y O

L

L FIND MAX -- CtJMPLtA S I N G L E P & E L I S I U N

t

40 CMAX = 9.0

D U 42 J = 1 9 h T t k M

INTRODUCTION

7.1 INTRODUCTION

In section 3 of this manual, we described NASTRAN subroutines not an integral part of a

module. These subroutines were partitioned into three classes: Executive, matrix, and utility.

An Executive subroutine is one which is clearly part of the NASTRAN Executive System, i.e., no

functional module uses it; a matrix subroutine is one which is clearly dedicated to NASTRAN

matrix (data block) operations; all other subroutines are termed utility subroutines.

There exists another class of subroutines, better still, programs that while not actually

part of NASTRAN per se, are all important for the smooth functioning of NASTRAN. The programs

in this class are called support programs. NASTRAN together with its associated support programs

comprise the NASTRAN System of Computer Programs.

Clearly the most important of the support programs is the CDC 6400/6600 Linkage Editor.

development of this Linkage Editor was necessary to insure that there be just one version of

NASTRAN. The policy decision that there be just one version of NASTRAN was derived from the

criterion that NASTRAN be a day-to-day production tool. This criterion imediately implies a

one version, maintainable program. Section 5.6 of this manual describes the usage of the

Linkage Editor; section 7.2 describes the programming details of the Linkage Editor.

The

During the early stages of NASTRAN development, the design team chose a subset of FORTRAN IV

to be the "language" of the overwhelming majority of NASTRAN code (less than I% of the NASTRAN

System is in assembly language). Section 6.2 describes this subset. However, the FORTRAN RUN

compiler at Langley Research Center and other CDC 6600 series compilers have two major differences

in FORTRAN language specifications from the "NASTRAN FORTRAN language." First, NASTRAN FORTRAN

allows arguments on the ENTRY statement; CDC FORTRAN does not. Additionally, nonstandard returns

in NASTRAN FORTRAN have different formats from that in CDC FORTRAN. Table l illustrates this

major difference.

To overcome these language differences, the Source Conversion Program (SCP) was developed.

The SCP accepts a UNIVAC ll08 NASTRAN source tape and generates a CDC 6600 NASTRAN source tape

which, after compilation and link editing, produces an executable NASTRAN system tape that is

equivalent to its UNIVAC ll08 (and IBM S/360) counterpart(s). Section 7.3 describes the SCP.

7.1-I (3/I/71)

Table I.

NASTRAN SUPPORT PROGRAMS

Nonstandard return differences.

NASTRAN FORTRAN CDC FORTRAN

A. MAIN PROGRAM A. MAIN PROGRAM

B°

CALL SUBI($1OO,$2OO,A)

B=A+C

GO TO 300

I00 B=A+D

GO TO 300

200 B=A+E

300 .

CALL SUBI(A)RETURNS(IO0,200)

B=A+C

GO TO 300

I00 B=A+D

GO TO 300

200 B=A+E

300 .

SUBROUTINE SUB1

SUBROUTINE SUBI(*,*,A)

IF(A-3.5) 10,20,30

I0 RETURN1

20 RETURN2

30 RETURN

END

B.

I0

20

30

SUBROUTINE SUB1

SUBROUTINE SUBI(h)RETURNS(RETURNI,RETURN2

IF(A-3.5) 10,20,30

RETURN RETURN1

RETURN RETURN2

RETURN

END

7.1-2 (3/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

7.2 DESIGNOFTHECDC6400/6600LINKAGEEDITOR

This sectiondescribesthe designof the CDC6400/6600LinkageEditor that wasdevelopedto

insurethat the CDC6000versionof NASTRANwouldbeessentially the sameasthe IBM360and

UNIVACIf08 versions. It is assumedthat the readerhasalreadyread,andis familiar with,

section5.6, whichdiscussesthe linkageeditor froma user's point of view.

Theterm"linkageeditor" is not usedunequivocallyin the followingpages. In a global

sense,the linkageeditor systemconsistsof threeprograms:the linkageeditor programwhich

combinesandlinks objectdecksinto a {large) programin whichall externalreferencesare

resolved;the segmentloaderwhichloadsprogramlinks into coreasneeded(execution-timeloader);

andthe bootstrapprogramwhichis loadedby the CDCloaderat the beginningof programexecution

andthentransfers to the principal entry pointof the programlink-edited bythe linkageeditor.

In mostinstances,wedonot differentiate the systemfromthe program,but usuallywhichoneis

underdiscussionis clear fromthe context. Thelinkageeditor discussedin section5.6 is the

programandnot the system.

Section7.2 is dividedinto II subsections.Section7.2.1 is an introductiondescribingthe

purposeof the linkageeditor, its relationshipto SCOPE,majordivisions of the linkageeditor,

andlinkageeditor files andorganization. Section7.2.2 describesthe majordivisions of the

linkageeditor: the linkageeditor tablesarediscussed;a sampleproblemis introduced;linkage

editor processingis describedwith regardto the sequenceof operationsperformed(initial pro-

cessing,control statementprocessing,objectdeckprocessing,addressassignmentprocessing;

relocation processing,andfinal processing);then the bootstrapprogramandthe segmentloader

are discussed. Flowchartscomprisesection7.2.3. Descriptionsfor linkageeditor subroutines

are givenin section7.2.4 Section7.2.5 describesthe formatsof SCOPEobject decks,providing

the interface betweenSCOPEandthe linkageeditor via the tables in eachobject deck. Section

7.2.6 describesin tabular formthe principal linkageeditor variables. Section7.2.7 shows

linkageeditor output, describesdiagnosticmessagesandgivesa list of programsin LINKLIB.In

section7.2.8, improvementsto the Level2.0 Version(the currentVersion)of the linkageeditor

are recommended.Finally, section7.2.9givesa glossaryof termsuniqueto the CDC6400/6600

LinkageEditor.

7.2-I (6/I/71)

NASTRAN SUPPORT PROGRAMS

7.2.1 Introduction

7.2.1.1 Purpose of the Linkage Editor

The linkage editor is a service program designed to be used in association with the RUN

compiler to prepare an executable program from symbolic language programs written in F_RTRAN and

COMPASS. Linkage editor processing is a necessary step between source program compilation and

object program execution.

Linkage editor processing allows the programmer to divide his program into several parts,

each containing one or more control sections. Each part may then be coded in the programming

language best suited to it and may then be separately assembled or compiled.

The primary purpose of the linkage editor is to combine and link object decks (the output

of the RUN compiler) into a program in which all cross references between control sections are

resolved as if they had been assembled or compiled as one program. The program produced by the

linkage editor consits of executable machine language code in a format that can be loaded into main

storage by the bootstrap program (see section 7.2.1.4.7) and segment loader (see section 7.2.1.4.8).

The main design objective of the linkage editor/loader is to efficiently process and execute

unusually large programs that require extensive segmentation (a feature entirely lacking in the

existing CDC loader).

In addition to combining and linkage object decks, the linkage editor performs the following

functions:

I. Library Call Processing. If unresolved external references remain after the linkage

editor processes all input to it, an automatic library call feature retrieves subprograms

required to resolve the references.

2. Program Modification. Control sections can be rearranged during linkage editor processing

as directed by linkage editor control statements. Common control sections are collected.

References to entry points can be altered by control statements.

3. Overlay Processing. The linkage editor prepares programs for overlay by inserting tables

(SEGTAB$, ENTAB$, see section 7.2.2.7) to be used by the segment loader during execution.

7.2-2 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

7.2.1.2 Relationship to the SC_PE Operating System

The linkage editor is not an integral part of the SC_PE operating system. As a result, it is

executed as a normal "user" program, i.e., using the facilities of the CDC loader.

The object decks that comprise the linkage editor exist as a card, tape, or disk file and the

linkage editor is executed as a normal job step.

The executable program produced by the linkage editor may be in the form of a sequential file

on tape or disk or an indexed (random) file on disk. In either case, the initial records of the

file contain object decks that comprise the bootstrap program loads the initial portion (Link O)

of the executable program into main storage and optionally writes the remaining links of the

executable program. Thereafter, all loading of additional segments of the executable program is

controlled by the segment loader which was included in Link 0 by the linkage editor.

In the Level 2.0 version of the linkage editor (the current version), processing is limited

to object decks produced by the RUN compiler because of linkage conventions established by that

compiler. Reasonably extensive modification of the linkage editor/loader and LINKLIB (see below)

is required to process object decks produced by the FTN compiler.

Associated with SC_PE and the RUN Compiler are a number of subprograms which accomplish the

primary interface between the user and the resident monitor. These subprograms are a principal

input to the linkage editor and reside on a file named LINKLIB. Since the linkage editor is not

an integral part of SC_PE, modification of the LINKLIB subprograms is not automatically accomplished

with SCBPE updates and remains a maintenance task at each installation.

Linkage editor processing and subsequent execution time loading is dependent on the file

concepts and operations as defined and supported in SC_PE 3.1. In particular, changes to the

subfields of the File Environment Table (FET) or changes to the object deck format are likely to

require modification to the linkage editor and segment loader code.

7.2.1.3 General Description

Input to the linkage editor consists of: a) one or more sequential files (libraries) con-

taining subprograms in relocatable format (object decks) as produced by the RUN compiler, and

7.2-3 (611171)

NASTRAN SUPPORT PROGRAMS

b) linkage editor control statements contained in INPUT, the standard input file. The primary

function of the linkage editor is to combine these subprograms, in accordance with the require-

ments stated on the control statements, into a machine-language program suitable for loading into

main storage and executing. External references that are undefined after processing all subprograms

cause the automatic call mechanism to search for subprograms that will resolve the references.

When these subprograms are found, they become part of the executable program.

To produce an executable program, the linkage editor:

I. Assigns relative main storage addresses to the control sections to be included in the

program.

2. Resolves references between control sections (translates symbolic references to relative

main storage addresses)

3. Collects common sections and assigns a single relative machine address to all sections

of the same name. The length of the common section is taken to be the longest length of any

individual section.

Figure l illustrates an example of linkage editor processing. The executable program produced

by the linkage editor contains three portions:

I. A sequence of object decks suitable for loading by the CDC loader. The main program

in this sequence, named XBBOT (see section 7.2.2.9), reads the remainder of the program

and writes it on the disk as an indexed file (unless the program is already an indexed file).

XBOOT reads Link 0 in main storage and passes control to the entry point which initiates

execution of the problem program.

2. A sequence of three records which defines Link 0 - a directory record, a symbol dictionary

record, and the executabTe machine language code.

3. A sequence of records for each of the additional links - one directory record per link

plus one record containing executable machine language code for each segment in the link.

Link 0 remains in main storage at all times during program execution. Link 0 contains no

overlay segments. The linkage editor supplies the segment loader (named XL_ADER, see section

7.2.2.10) when Link 0 is constructed. XLOADER accomplishes the loading of segments and links

7.2-4 (6/I/71)

NASTRAN SUPPORT PROGRAMS

P//reviously

Compiled I I

Object Decks Ljl II Object
Deck
Library

Call

Library

Programs

Containing
Compiler/ _ Object Decks

LINKLIB

LINKAGE

EDITOR /

Indexed
File With
Links

Link 0
in Central

Memory

I L_inkage

IEditor Control

_ / Bootstrap_.

F _x-Pr°gram / TM

File

Containing
Executable
Links

p

\ Loade /

Figure I. Linkage editor processing.

7.2-4a (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

whenrequested.Segmentloadrequestsaresuppliedautomaticallybythe linkageeditor through

tables called ENTAB$(seeFigure29)whicharewritten asa part of the text (instructionsand

data) for eachsegmentwhichmayrequireadditionalsegmentloading. Anadditionaltable,

SEGTAB$(seeFigure28)whichis constructedbythe linkageeditor asa part of the root segment

of everylink is usedbyXL_ADERto facilitate segmentloading.

Majordivisions of a programare links. Eachlink consistsof self-containedoverlaystruc-

ture andmightbe thoughtof as a completeprogramin itself. All routines in a link communicate

freely with Link 0 routines. Consequently,Link0 maybethoughtof as logically belongingto

everylink.

7.2.1.4 MajorDivisionsof the LinkageEditor

7.2.1.4.1 Initial Processing

Initial processingbeginswhenthe linkageeditor receivescontrol fromthe CDCloader.

After control is received,the followingfunctionsareperformed:

I. TheLINKEDITcard is read,echoed,andconverted. Parametersareset basedonoptions

selected.

2. Initial allocationof workingstorageandbuffers is made.

3. If the programfroma previouslinkageeditor run is presentasa sequentialfile

(INFILE),it is readandwritten as anindexedfile.

4. Eachfile namedon the LIBRARYcardis read. Eachdeckis written ona local disk file

namedSYSUT2(indexedfile). Subprogramnamesaresavedin amainstoragetable. Forthe

file namedLINKLIB,eachof the entry point namesis savedin mainstorage.

7.2.1.4.2 ControlStatementProcessing

For a link, cardsfromLINKthroughENDarereadandconverted.Twopassesaremade.On

the first pass,eachcardis checkedfor properformat,content,andorder(if important).

Variouscountsare accumulatedsuchas the numberof segments,numberof regions,numberof

RENAMEcards,etc. Thecontrol statementsareechoedon_UTPUTunlessthis option is suppressed.

At the endof the first pass,allocationof workingstorageis completed.If the currently pro-

cessedlink is not Link O, the dictionarydefiningentry point andcommonblocknamesandaddress

7.2-5 (611171)

NASTRAN SUPPORT PROGRAMS

for Link 0 is read, and entries are made in the General Table (see section 7.2.2.1.9) for each

Link 0 name and address.

On the second pass of the control statements, each statement (having been saved in main stor-

age during the first pass) is again converted, and entries are made in various tables depending

on the control statement and its contents.

Following the second pass of the control statements, control is passed to LKED025 (see

Figure 35, section 7.2.3) to read each of the object decks named on INCLUDE statements plus those

subprograms required to satisfy undefined external references.

7.2.1.4.3 Object Deck Processing

The list of subprogram names in each of the named libraries is scanned. For each subprogram

which is marked for inclusion, the following processing occurs:

I. The deck is read from SYSUT2.

2. Subprogram (or common block) length is entered in the General Table (GT).

3. Each common block referenced by the subprogram is entered into the GT (if not already

present), and the length field is updated. If text (data) for the common block exists, a

reference to the defining subprogram is noted.

4. An entry in the GT is created for each entry point of the subprogram. The relative

address of the entry point is saved. The number of arguments associated with each entry

point is found by searching the TEXT tables (see section 7.2.5) for the conventional identi-

fication word. If not found, less than seven arguments is assumed.

5. The LINK table is processed. For each external reference by the subprogram, the GT

is checked for an existing entry. If present, a path analysis is made. If the call is not

in the path, a call chain entry is created in the GT. If the entry is not present, an entry

in the GT is created and a call chain entry is created.

When all object decks have been processed, the automatic call logic is invoked. For each

undefined external reference, the list of entry points to LINKLIB is searched. If found, the

corresponding subprogram from LINKLIB is included. If not found, an error message is issued.

7.2-6 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

When all object decks from LINKLIB have been processed, a pass through each of the entries in

the GT is made and various checks are made. Call chains are checked, and entries now resolved

(in the path) are removed. Remaining entries in the call chains will require facilities of the

segment loader, and these entries will form the ENTAB$ tables.

At this point, all information is available to perform assignment of final addresses for the

program. Control is passed to LKED050 (see Figure 36, section 7.2.3) for this task.

7.2.1.4.4 Address Assiqnment Processing

The program computes final storage addresses for all subprograms, entry points, and common

blocks in the program by executing the following steps:

I. Lengths for each segment are computed bv summing the lengths of each entry (subprogram

or common block) in the segment. This information is stored in the Segment Definition

Table (see section 7.2.2.1.7).

2. The lengths for each region are computed by finding the longest path in the region and

summing the length of all segments in that path.

3. Region lengths are converted to region addresses by summing the region lengths. This

information is stored in the Region Definition Table (see section 7.2.2.1.5).

4. Segment addresses are computed by following the paths in each region and summing the

previous segment lengths.

5. Finally, addresses for each entry in each segment are computed by tracing the order of

each entry in the segment and summing lengths of previous entries.

7.2.1.4.5 Relocation Processing

The final phase for each link consists of building the executable machine language code,

performing all necessary relocation of relative addresses.

This is accomplished by executing the following steps:

I. If the current link is Link O, object decks defining the bootstrap program are copied

from LINKLIB to the executable program file (either SYSUTI or _UTFILE). A directory record

containing link number, number of entries in the Link 0 dictionary, and total length of the

7.2-7 (6/I/71)

NASTRAN SUPPORT PROGRAMS

link is written followed by the Link 0 dictionary defining each of the entry points and

common blocks and their addresses in the link.

2. If the current link is not Link O, a directory record containing link number, number of

segments, and total length of the link is written as in I. above.

3. The first entry in the root segment of each link is a table (LINKO$ for Link 0 and

SEGTAB$ for any other link). This table is built and written.

4. Executable machine language code is built and written one logical record per segment.

Each entry (subprogram or common block) in each segment is examined. If text (for a sub-

program) or data (for a common block) is defined for the entry, the object deck containing

the text is read from SYSUT2. Address relocation defined in TEXT, FILL, LINK, and REPL

tables (see section 7.2.5) is performed, and the relocated text for the entry is written.

If no text is defined for the entry, zero words are written.

5. As the relocation of text is being performed, the storage map is printed on _UTPUT unless

N_MAP was selected.

6. Finally, if an ENTAB$ table is defined for the segment, the text for this table is

assembled and written as the last entry for the segment.

7. When all segments for the link are complete, the XREF option on the LINKEDIT card (see

section 5.6.4.2) is tested. If selected, LKED077 (Figure 37, section 7.2.3) is called to

produce a listing of all cross references in the link.

7.2.1.4.6 Final Processing

When processing for all links is complete (the ENDLINKS card has been read from INPUT), the

status of _UTFILE is tested. If BUTFILE = name(C) was coded, no further processing is required.

Otherwise, the executable program exists as a local indexed file (SYSUTI) and it is necessary to

write it as a sequential file on the user-requested file. This is accomplished by LKED080

(Figure 38, section 7.2.3). When the link has been copied to BUTFILE, a message is written on

_UTPUT indicating the event.

7.2-8 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

7.2.1.4.7 The Bootstrap Program

The bootstrap program is a computer program made up of relocatable routines which are

appended by the linkage editor to the beginning of the absolute output of the linkage editor.

These routines consist of: a) a dummy Block Data subprogram containing one labeled common block

of a length sufficient to hold Link O; b) the bootstrap program driving routine, XB_OT; c) an

input/output utility routine XlORTNS; and d) MAPFNS, a routine containing niscellaneous utility

routines for bit manipulation, field length determination, etc.

The bootstrap program is employed to permit the execution of the abs_l:_te output of the

linkage editor in a way that requires no special handlin_ of tFe job and _llows the job to appear

as any other batch job. It is a small program, loaded by _he CDC loader _vhich if necessary reads

and outputs to the disk the sequential linkage editor output in a direct _ccess (random) format.

The bootstrap program also reads into the locations 778+I through 778+N Link 0 (N being its length).

This core space is available because the CDC loader has placed the dummy Block Data subprogram

there.

Having completed its function, the bootstrap program calls C_MPASS routine XJUMP in, MAPFNS

which directs the central processor to jump to location 1018 in the jobs core, which is in Super-

main, and execution then continues from there. Figure 2 illustrates core through the bootstrap

process. It should be noted that for the completion of this particular job step, execution of

the bootstrap program is no longer required, nor is it available.

7.2.1.4.8 The Segment Loader

The bootstrap program is actually the initial loader of absolute object code as produced by

the linkage editor. It does in fact load "Supermain," Link O. After the bootstrap program

directs the central processor to branch into Supermain, and execution proceeds from there, any

calls for the loading of a link's root segment, results in an automatic transfer into the seg-

ment loader to the entry point LINK. Similarly, any calls to a segment lower in a tree or in

another region results in an automatic call into the segnent loader to the entry point LOADER..

This type of "downward" call is forced through an _try table ENTAB$ (see section 7.2.2.7) before

reaching the segment loader at entry point LOADER.

7.2-9 (6/I/71)

NASTRAN SUPPORT PROGRAMS

08

778

lO08

IO0+N!

Field Length

(Core after SCgPE 3
loads the bootstrap
program.)

1008 words for system
use.

IXB_TBDI

Dummy Block

Data Subprogram

XB_T

XIBRTNS

MAPFNS

SC(_PEroutines

(Core after execution

of bootstrap program.)

Es:entialI.!'mchanged.

Link 0

Segment 1

(now executing)

"Supermain"

loading of

Figure 2. Core before and af:er execution of the bootstrap program.

7.2-9a (611171)

NASTRAN SUPPORT PROGRAMS

Calls made to LINK from any segment, anywhere in core, result in the segment loader first

checking the link number for legitimacy. The indexes of relative disk addresses for the segments

of the link desired is then read from the disk. A link directory is then read from the disk and

further legitimacy checks are made along with a check to insure that sufficient core is available

for the loading of the lowest segment of the link.

After successfully completing these tasks, the root segment of the new link is read into core,

and a branch is made to its entry point and execution of the program continues.

Downward calls reaching the entry point L_ADER. via an ENTAB$ table result in a series of

conditional events by the segment loader. The loader first checks to see if the segment to which

the call is directed is in core. If the segment is not in core, it is loaded along with any

segments above and in its path as required. Once the segment is determined to be in core, any

argument addresses over six (which are assigned to B registers B1 through B6 by the RUN compiler

generated code) are moved from the ENTAB$ entry and placed in the actual subroutine being called

along with the actual branch return. A jump is then made to the desired entry point to complete

the automatic loading process. Returns from any called control section are always made directly

to the point from which the call was made.

7.2.1.5 Linkage Editor Files

7.2.1.5.1 Input Files

There are three types of files that may be input to the linkage editor. They are:

I. Libraries. All object decks that are to be processed by the linkage editor are con-

tained in libraries. A library is defined to be a sequential file (which may reside on tape

or disk) consisting of one or more logical records with one object deck per logical record.

The names of the library files are defined on the LIBRARY control statement (see section

5.6.4.2). A file named LINKLIB must always exist for linkage editor processing. LINKLIB

contains object decks for automatic library call plus object decks which are required in

constructing the initial load portion (bootstrap program) of the executable program. There

is no theoretical limit to the number of libraries which may be defined for linkage editor

processing. Subprograms of the same name may appear in more than one library or even in the

same library. In the latter case, the first such subprogram is included.

7.2-I0 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

2. Control statements. Statements which direct and control processing by the linkage

editor are contained as a single logical record on the file named INPUT. INPUT must be

positioned to the logical record containing the control statements prior to executing the

linkage editor. For a complete description of the linkage editor control statements, see

section 5.6.4.

3. Previously link-edited links. This input source is optional and is required only if the

user desires to modify an existing link (other than Link O) or add a new link to the program.

The name and status of this file is defined by the INFILE keyword on the LINKEDIT control

statement (see section 5.6.4.2). It may be a sequential file on tape or disk or an indexed

file on disk.

7.2.1.5.2 Local Files

These may be one, two or three local files generated by the linkage editor during processing.

A file named SYSUT2 is always generated. It is an indexed file and contains all object decks

from all defined libraries (including LINKLIB). When the file is being generated, a directory of

subprogram names as well as a list of all entry points in LINKLIB is extracted and maintained in

working storage. If either INFILE or _UTFILE is declared as a common (indexed) file, then a

second local file does not exist (note that if both INFILE and _UTFILE are declared common files,

they must be the same file). Otherwise, a local file named SYSUTI is generated as an indexed

file to contain each of the links as they are constructed. If the XREF option is selected on the

LINKEDIT control statement (see section 5.6.4.2), a sequential file named SYSUT3 is written by

LKED075 and read by LKED077 (see Figure 37, section 7.2.3). This file contains information

regarding calls made by each subprogram and is used by LKED077 to produce a cross reference

listing.

7.2.1.5.3 Output Files

There are two files output by the linkage editor. One is a file named _UTPUT which contains

a listing of control statements, messages, a storage map, and a cross reference dictionary. Most

items scheduled for OUTPUT are selectable (or suppressed) by options on the LINKEDIT control

statement. The second output file contains the executable program. It may be a sequential file

on tape or disk, or an indexed file on disk. Its name and status are defined by the OUTFILE key-

word on the LINKEDIT control statement.

7.2-11 (611171)

NASTRAN SUPPORT PROGRAMS

7.2.1.5.4 Input/Output Flow

The flow of information between the files of the linkage editor and the linkage editor phases

is illustrated in Figure 3. The general case is shown where both INFILE and _UTFILE are sequential

files. Data flow through SYSUT3 is not illustrated (XREF case only).

7.2.1.6 Organization of the Linkage Editor

7.2.1.6.1 Major Routines

The relationship of the six principal phases (major divisions) of the linkage editor discussed

in section 7.2.1.5 is illustrated in Figure 4. If symbol (e.g., a rectangular box) of the flow-

chart is identified by a symbolic name above and near the left-hand edge of the box, the box

represents a subroutine call and the symbolic name is the subroutine name. This convention is also

followed in section 7.2.3. Section 7.2.3 gives detailed flow within each of the principal phases of

the linkage editor. This processing is executed in FORTRAN routines whose names are of the form

LKEDxxx where 000 < xxx < 099. The "main" (in the FORTRAN sense) program of the linkage editor

is LKED. Buffers for F_RTRAN files INPUT and OUTPUT are located within this program. LKEDO00 has

two functions: a) provide the major flow of control; and b) process the control statements.

Communication between routines occurs through named common blocks (see section 7.2.1.6.3) and

tables in working storage (see section 7.2.1.6.4).

7.2.1.6.2 Subroutines

Subroutines of the linkage editor are classified in four categories:

I. Major subroutines. These are coded in F_RTRAN and are named LKEDxxx where I00 _ xxx _299.

In general, these subroutines perform various operations on the tables in working storage.

Detailed subroutine descriptions for major subroutines are given in section 7.2.4.1.

2. Linkage editor utilities. These routines are COMPASS routines whose names are related

to the function they perform. They are all entry points in subprograms whose names are of

the form LKEDxxx where 300 < xxx < 399. Most of these routines perform tasks directly related

to the linkage editor such as manipulating the various fields of a table entry. Detailed

subroutine descriptions for linkage editor utilities are given in section 7.2.4.2.

7.2-12 (611/71)

N
A
S
T
R
A
N
S
U
P
P
O
R
T
P
R
O
G
R
A
M
S

e
-

,
-
"
G

I
_

I
/
l

e
.
-
,

I
,
.
i
.
O$
.
,
.

t

I

,
-
-
4I

O
e
-

,_,
_I

0
U

,---
0

Q
J

S
-.

tI

I
u
,
)
r
-

r
-

,,::_
Ln

0

,,_:_
_),...

tI

e-

•.Q
_o

U
0

S
-

O
_

I
r

I
_V

°
_°J

L3
g_

I
-°"

I

I'.-

I--

0

e-
r,

Q
.I

0
G

J
_

X

W
e-

('-.I--

_0
fl

0Z

C
I_

0._-

0
-I-_

,_,-
e-

0

4-)

-'_
C

L
I

Q
._,-

=
_14.

0

J

0_
.

0G
J

7
.
2
-
1
2
a

(
6
/
I
/
7
1
)

NASTRAN SUPPORT PROGRAMS

LKEDO00

LKED

I Set Field Length For Step I

I
Read LINKEDIT Statement

LKEDOIO

I Copy INFILE to SYSUTI 1

LKEDOI5

Read LIBRARY Statement and

Copy All Subprograms to SYSUT2

i
l Read Next Control Statement]

n, Yes

Control Statement Processing For One Link I

LKED025

I Object Deck Processing I

LKED050

I I
LKED075 _I

i Relocation Processing i

Address Assignment Processing

LKED080

[Final Processing I

Figure 4. General flow of the linkage editor.

7.2-12b (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

3. General utilities. These routines are C_MPASS and FBRTRAN routines whose primary

functions are general in nature and not limited to linkage editor applications. Several of

these routines are also common with the NASTRAN program (e.g., XRCARD). No naming convention

exists. General utilities are described in section 7.2.4.3.

4. Miscellaneous. These are subroutines written primarily in FBRTRAN which perform auxiliary

tasks for the linkage editor. The naming convention is LKEDxxx, where 900 _ xxx _ 999. An

example is LKED990, a routine which abnormally terminates the linkage editor in the event of

a error in the logic (i.e., an "unplanned" event). Subroutine descriptions for miscellaneous

routines are given in section 7.2.4.4.

7.2.1.6.3 Named Common Blocks

There are seven named common blocks in the linkage editor which provide for communication of

parameters and fixed length tables between the various subprograms of the linkage editor. A brief

description of these common blocks follows:

I. LKEDCOI. Defines pointers to tables and parameters defining table sizes in open-ended

working storage (blank common).

2. LKEDC02. Defines fixed-size working storage areas.

3. LKEDC03. Defines linkage editor control parameters.

4. LKEDC04. Defines names, characters, masks, and miscellaneous data.

5. LKEDC05. Defines data for generating instructions, programs, etc.

6. LKEDC06. A scratch area for sharing storage of local variables between independent

programs in the linkage editor.

7. LKEDC07. Defines the names of subprograms on LINKLIB which comprise the bootstrap

program.

Section 7.2.6 gives definitions of the principal variables in these common blocks.

7.2.1.6.4 Working Storage

All open-ended (variable length) tables are stored in blank common. Since the CDC loader

loads blank common last, the dimension of blank common is, effectively, its origin to the field

length. Section 7.2.2.1 provides a complete description of the linkage editor tables.

7.2-13 (611171)

NASTRAN SUPPORT PROGRAMS

7.2.2 Discussion of the Major Divisions of the Linkage Editor/Loader

7.2.2.1 Linkage Editor Tables

7.2.2.1.I Introduction to the Tables

All open-ended working storage tables for the linkage editor are held in blank common. Since

the CDC loader loads blank common last, storage from the beginning of blank common to the field

length is available. The user may choose a field length for the link-edited step as a function of

the requirements of the problem. (For an estimate of storage requirements for the linkage editor,

see section 5.6.6). Figure 5 illustrates the arrangement of the tables in blank common. (Table

pointers are discussed later in this section).

The technique by which symbolic entries (e.g., entries in the Rename Table and General Table)

are located in a table involves "hashing." The hash number of a symbol is defined as the modulus

(remainder upon division) of the numerical value of the symbol of and (by) the number of entries

available in the table. For example, assume that there are 128 entries in a table. Then the hash

number of the symbol KREDNER is 1228 (note that KREDNER=132205041605228) at the entry to which

1228 points is stored a pointer to the beginning of a chain of entries with the hash number of

1228. That chain might contain only the entry corresponding to KREDNER, or there might be several

entries in the chain. To determine if an entry for KREDNER is already in the table, each entry

in the chain which begins at the entry to which 1228 points is checked.

Entries in the General Table are chained in many ways. Entries with identical hash numbers

is one example of chains. Another includes all entries belonging to the same segment. In this

case, a forward as well as backward chain is kept. A forward chain pointer points to the next

entry in the chain. A backward chain pointer points to the previous entry in the chain. By

convention, any pointer which has the value of zero indicates the beginning or end of a chain as

the case may be.

This paragraph defines the word "pointer." As previously mentioned, all working storage

tables are stored in blank common; the array name universally used in the linkage editor for blank

common is Z. The first word in the Segment Definition Table is Z (ISEGDEF). A pointer, P, to

the 5th segment would have the value 5. Thus the reference would be Z(ISEGDEF+P-I). Pointers

always have the range l < P < LASTENT, where LASTENT, a pointer, points to the last entry in the

7.2-14 (611171)

NASTRANSUPPORTPROGRAMS

Table
Pointer

ISYSUT1

ISYSUT2

IBUFI

IMASTER

ISEGNDX

ILIB

IINDEX

INAMES

IEPS

IREGDEF

ISEGCHN

ISEGDEF

IRENMO

ITABO

IDECK

ITEXT

ZEND

Table Name

Buffer l

Buffer 2

Buffer 3

Link Index

Segment Index

Library Table (LT)

Deck Index

Subprogram Names Table (SNT)

Entry Point Table (EPT)

Region Definition Table (RDT)

Segment Chains Table (SCT)

Segment Definition Table (SDT)

Rename Table (RT)

General Table (GT)

Object Deck Storage

Text Building Storage

Table Lenqth

PARAM(I)

PARAM(I)

See section
PARAM(I) 5.6.4.2

PARAM(4)

PARAM(5)

(Number of libraries

_(including LINKLIB) + l

Number of object decks
in all libraries

Same as Deck Index

Number of entry points
in LINKLIB

Number of regions

Number of segments + l

Number of segments + l

3 * (number of RENAMEs)

Remaining storage after
all other tables are
allocated

l2 * PARAM(3) at first,
largest object deck
table size later

Maximum text length

Figure 5. Arrangement of linkage editor tables in working storage (blank common).

7.2-14a (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

table. If the numberof wordsperentry is n, thenP-l is alwaysdivisableby n. Mosttablesare

referencedby the "zero"wordin the table, e.g., theentries in the SegmentDefinition Tableare

referencedrelative to ISEGO= ISEGDEF -l.

7.2.2.1.2 Library Table (LT)

no. of words per entry: l

no. of entries: one entry for each file named on LIBRARY control statements plus one.

first constructed by: LKEDOI5

description: each entry contains the file name of the library and a pointer to the entry in

the Subprogram Names Table which corresponds to the first subprogram in the library. LINKLIB

is always the first entry in the table. The additional entry in the table is so that any two

adjacent entries in the table will delimit a library.

format:

Library name

59 17 0

P : pointer to the entry in Subprogram Names Table for the first subprogram in this library.

7.2.2.1.3 Subprogram Names Table (SNT)

no. of words per entry: l

no. of entries: one entry for each subprogram in each library named on the LIBRARY control

statement plus one entry for each subprogram in LINKLIB.

first constructed by: LKEDOI5

description: each entry contains a subprogram name

format:

59

Subprogram name

17 0

7.2-15 (6/I/71)

7.2.2.1.4 Entry Point Table (EPT)

NASTRAN SUPPORT PROGRAMS

no. of words per entry: 1

no. of entries: one entry for each entry point in LINKLIB

first constructed by: LKEDOI5

description: each entry contains the name of an entry point and a pointer to the entry in

the Subprogram Names Table which defines the subprogram in which the entry point is defined.

format:

Entry point name

59

P = pointer in Subprogram Names Table

7.2.2.1.5 Region Definition Table (RDT)

no. of words per entry: 1

no. of entries: one entry for each region in the Link

first constructed by: LKEDO00

17 0

description: each entry contains the first and last segment numbers in the region and, after

LKED050 is executed, the initial address in the region.

format :

Segl [Segn

59 44

Seg I = first segment number in region

Seg n = last segment number in region

A = initial address in region

29 17

7.2-16 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

7.2.2.1.6 Segment Chains Table (SCT)

no. of words per entry: 1

no. of entries: one entry for each segment in the Link plus one

first constructed by: LKEDO00

description: each entry contains two pairs of pointers to entries in the General Table. The

first pair of pointers points to the first and last entries in the chain which defines all

sy_olic entries in the segment. The second pair points to the first and last entries in a

chain of calls which are not in the path. This latter chain will eventually become the

ENTAB$ table for the segment. The last entry in the Segment Chains Table is the "undefined"

segment. The undefined segment is a chain of entries which is generated by external references

to sy_ols not yet defined in the General Table. When a symbol in the undefined chain becomes

defined, it is removed from the undefined chain and linked to its appropriate segment chain,

consequently, when all decks have been processed, any sy_ols remaining in the undefined

chain, if they are to be defined, must be defined in LINKLIB. The automatic call logic

attempts to define all such undefined sy_ols from LINKLIB.

forn_t:

IPslIPs.I
59 44 29

PSl = pointer to first entry in segment chain

PSn = pointer to last entry in segment chain

PCl = pointer to first entry in call chain

PCn = pointer to last entry in call chain

PCl I PCn

14 0

7.2.2.1.7 Segment Definition Table (SDT)

no. of words per entry: l

no. of entries: one entry for each segment in the Link plus one

first constructed by: LKEDOOO

7.2-17 (6/I/71)

NASTRAN SUPPORT PROGRAMS

description: initially, the Segment Definition Table contains the name of the overlay seg-

ment as recorded on the _VERLAY control statement (see section 5.6.4.7) and the segment

number of the previous segment in the path, i.e., the "parent" of the current segment. After

address assignment processing in LKED050, each entry contains the initial address in the

segment, the length of the segment, the region number of the segment, and the segment number

of the parent of the segment. The Segment Definition Table in its second format becomes the

principal part of the SEGTAB$ table at execution time.

format:

Before address assignment processing:

59

Overlay name
////_PREV

17 II 0

PREV = segment number of previous segment in path (i.e., parent of segment)

After address assignment processing:

A L

59 53 35

A = initial address in the segment

L = length of the segment

R = region number of the segment

PREV = segment number of the parent of the segment

7.2.2.1.8 Rename Table (RT)

no. of words per entry: 3

no. of entries:

current link.

I R PREV I

17 II 0

one entry for each RENAME control statement (see section 5.6.4.9) in the

first constructed by: LKEDO00

7.2-18 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

description: each entry contains a description of the information coded on a RENAME control

statement plus information to chain the entries together. During processing, each external

reference appearing in a LINK Table (see section 7.2.5) is checked for possible rename in

this table.

format:

Old name P1

Subprogram name PN

New name PS

59 7 0

Pl = pointer to first entry in table with hash number of this entry

PN = pointer to next entry in hash chain

PS = pointer to next entry with same old name.

7.2.2.1.9 General Table (GT)

no of words per entry: 3

no. of entries: one entry for each subprogram, alternate entry point and common block in the

Link plus, if not Link O, one entry for each entry point and common block in Link O, plus one

entry for each "tentative" call in the path (calls which, at the time encountered, are either

not in the path or are undefined). The number of "tentative" calls not in the path usually

exceeds the actual number of calls not in the path.

first constructed by: LKEDO00

description: the General Table is the table central to all linkage editor processing. There

are two kinds of entries in the General Table: a) a symbol entry which includes subprogram

names, alternate entry points and common blocks and which describes various characteristics

such as length, number of arguments, segment number, chain pointers, etc., and b) a call entry

which describes characteristics about a call to a symbol. These characteristics include the

7.2-19 (611171)

NASTP_ANSUPPORTPROGRAMS

the segmentfromwhichthe call comes,chainpointers, etc. Symbolentries are generatedin

the followingways:

I. Subprogramnamesdefinedon INCLUDEcontrol statements(seesection5.6.4.5)

2. Alternateentry pointsdefinedin the ENTRTable(seesection7.2.5) of included

subprograms.

3. Commonblocknamesmentionedon INSERTcontrol statementsor definedin the LCTof a

PIDLTable(seesection7.2.5) of an includedsubprogram.

4. Externalreferencesdefinedin LINKTables(seesection7.2.5) of includedsubprograms.

5. Entrypoint or commonblocknamein Link Owhenprocessinga link _ O.

A call entry is generatedin oneof twoways:

(1) Whenthe symbolcalled is not in the path

(2) Whenthe symbolcalled is undefined.

Symbol Entry
format:

Symbol name]LA P1
SS

A

INDEX R L PC PN
G

SEG A PREV NEXT

59 47 29 17 14 0

Symbol name = name of subprogram or entry point or common block

CLASS = code defining entry

0 = Link 0 symbol when Link _ 0

l = Subprogram name (primary entry point)

2 = Common block

3 = Alternate (secondary) entry point

4 = Subprogram marked for inclusion on INCLUDE card

5 = Block data program marked for inclusion

7.2-20 (6/I/71)

Pl

INDEX

ARG

ARG

P
c

PN

SEG

A

PREV

NEXT

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

6 = Call entry (see below for format)

7 = undefined entry

= pointer to first entry with hash number of this entry

= Record number (index) of subprogram containing text (data) for this entry.

= Bit which defines Pc entry (before execution of LKED050)

1: P
c

0: P
c

= bit defining address assignment status (during and after execution of LKED050)

= number of arguments for primary or alternate entry point

= pointer to first entry in call chain.

for CLASS = l entries only

l: final address has been assigned

O: final address not yet assigned

= depends on CLASS

CLASS = l, 2: L = Length

CLASS = 3: L = pointer to CLASS = l entry

CLASS = 4, 5: L = pointer to library name in Library Table

= depends on ARG

ARG = l: P = number of arguments
c

ARG = O: Pc = pointer to first entry in call chain

= pointer to next entry in hash chain

= number of segment to which this entry belongs

= relative and then final address of this entry

= pointer to previous entry in this segment

= pointer to next entry in this segment

7.2-21 (611171)

Call Entry:

NASTRANSUPPORTPROGRAMS

PREV NEXT NBRARG

FROM PFR_M PNEXT

 JJJYJJJJ./'JY/Y/
59 44 29

PREV = pointer to previous entry in call chain

NEXT = pointer to next entry in call chain

NBRARG = number of arguments passed to symbol called

CLASS

P1

FROM

PFROM

PNEXT

PSYM

A

=6

= pointer to first entry in hash chain

SLA P1
SS

PSYM

17 14

= segment number of subprogram making call

= pointer to previous entry in 'FRBM' segment chain

= pointer to next entry in 'FROM' segment chain

= pointer to entry defining symbol called

= relative/final address of ENTAB$ entry (see section 7.2.2.7).

7.2.2.1.I0 XREF Table

no. of words per entry: 3 or 6 depending on CLASS

no. of entries: one 3-word entry for each entry point in the link plus one 6-word entry for

each eleven calls from a given subprogram to a given entry point.

first constructed by: LKED077

description: this table is generated only if the XREF option is selected on the LINKEDIT

control statement (see section 5.6.4.2). The origin of the table is the same as the Region

Definition Table (see section 7.2.2.1.5) and the table extends to the end of working storage

(ZEND). There are two types of entries in the table: (1) entry point entry which defines

7.2-22 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

anentrypoint andits addressandpointersto the chainsemanatingfromthe entry and,

(2) a call entry whichdefinesupto elevencalls froma subprogramto the entry point. A

call entry is a subserviententry to a entrypoint entry (i.e., eachentry point entry has

a chainof call entries linked to it). Informationto generatethe entries is createdfrom

the ENTRandLINKTables(seesection7.2.5) of eachof the subprogramsto beincludedduring

processingin LKED075.

format:

59

CLASS= class of entry = l

Pl

A

PN

PCl

PCN

PREV

NEXT

The information is passed to LKED077 on a scratch file.

Entry point name

PC1 PCN

47 44

= pointer to first entry in hash chain

= address of entry point

= pointer to next entry in hash chain

_'L P1

ASS

PREV NEXT

29 17 14

= pointer to first entry in call chain

= pointer to last entry in call chain

= pointer to previous entry in list chain (i.e., chain of entry points)

= pointer to next entry in list chain

7.2-23 (611171)

NASTRAN SUPPORT PROGRAMS

XREF Entry

Subprogram name

04
I//I/

Cl 0

59 53 35

C2

CL P1
ASs

PREV NEXT

C3

C5 C6

C8

Cl 1

29

C9

17 14 0

CLASS : class of entry = 2

P1

N

PREV

NEXT

Ci

= pointer to first entry in hash chain

= number of Ci in this entry (I < N < II)

= pointer to previous entry in this call chain

= pointer to next entry in this call chain

= relative location within subprogram named in this entry of a call to the entry

point to which this entry is chained.

7.2.2.2 Sample Problem for Discussion

To facilitate discussion of the major divisions of linkage editor processing, a sample

problem has been chosen. The particular problem illustrates most of the features of linkage editor

processing and was actually the principal test problem during initial checkout of the linkage

editor.

Figures 6 through 17 show listings of the main program and the subprograms.

7.2-24 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

20

123

PROGRAM MAIN(_UTPUT,TAPE6=gUTPUT)
CCMM_N/C_MO/JD
C_MM_N/C_M3/J3
LENGTH = 0
CALL FIELDLN(LENGTH)

CALL ZAP

F = 28,4
PRINT 2O,F,F
F_RMAT(*I*,E20,6,F2O,6)
PRINT 123
CALL LINK(l)
PRINT 123
F_RMAT(*DCALLING LINK l *)
ST_P
END

Figure 6. Sample main program.

BL¢CK DATA PRT
C_MM_N/CgMI/II
C_MM_N/C_M2/12
C_MM_N/C_M4/14
CBMM_N/CBM5/15,KEITH(4)
CgMM_N/CBM6/16
DATA ll,I2, I4,I5,16/71,72,74,75,76/
DATA KEITH/-I,-2,-3,-4/
END

Figure 7. Block data subprogram PRT.

7.2-25 (6/I/71)

NASTRAN SUPPORT PROGRAMS

SUBROUTINE PRTO
COMM_N/COMO/JO
COMM_N/COM3/J3
I:I
I=I+I

PRINT I00, l,JO
I00 FORMAT(*OPRTO CALLED *,2024)

CALL PRTI(I)
II = I001
12 = 1002
13 = 1003
14 = 1004
15 = 1005
16 = 1006
17 = lnn7
18 = 1008
19 = 1009
II0 = I010
III = I011
CALL PRT8(I,II,12,13,14,15,16,17,18,19,110,111)
PRINT 222, 11,12,13,14,15,16,17,18,19,110,111

222 FORMAT(1516)
CALL PRT2(I)
I = I + 1
PRINT I00, l,J3
CALL XDUMP(OB, IO0000B, 0)
IF(ao ,NE, 0) CaLL LINK(2)
JO = 7

CALL LINK(7)
STOP
END

Figure 8. Subroutine PRTO.

SUBROUTINE PRTI(1)
C_MMON/COMI/JI
I = I + 1
PRINT I00, l,Jl
Jl = I01

I00 FORMAT(*OPRTI CALLED *,2024)
CALL PRT7(I)
RETURN
END

Figure 9. Subroutine PRTI.

7.2-26 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

I00

SUBROUTINE PRT2(I)
COMMON/COM2/J2
I = I + l
PRINT lO0, I,J2
J2 = I02

FORMAT(*OPRT2 CALLED *,2024)
CALL PRT3(i)
CALL PRT5(!)
CALL PRT4(I)
RETURN
END

Figure lO. Subroutine PRT2.

SUBROUTINE PRT3(I)
COMMON/COM3/J3
I=I+l
PRINT lO0, I,J3
J3 = I03

lO0 FORMAT(*OPRT3 CALLED *,2024)
CALL PRT4(I)
RETURN
END

Figure II. Subroutine PRT3.

SUBROUTINE PRT4(I)
COMMON/COM4/J4
I=I+l

PRINT IO0, I,J4
J4 = I04

I00 FORMAT(*OPRT4 CALLED *,2024)
CALL PRT7(1)
RETURN
END

Figure 12. Subroutine PRT4.

lO0

SUBROUTINE PRT5(1)
COMMON/COM5/J5
I=I+l

PRINT IO0, I,J5
J5 = I05

F(BRMAT(*OPRT5CALLED *,2024)
RETURN
END

Figure 13. Subroutine PRT5.

7.2-27 (6/I/71)

NASTRANSUPPORTPROGRAM,S

SUBROUTINE PRT6(1)
COMMON/COM6/J6
I = I + l

PRINT lO0, I,J6
J6 = I06

lO0 FORMAT(*OPRT6 CALLED *,2024)
RETURN
END

Figure 14. Subroutine PRT6.

SUBROUTINE PRT7(1)
COMMON/COM3/J3
COMMON/COM7/J7
I = I + l

PRINT lO0, I,J7
I = I + l
PRINT lO0, I,J3
J7 = I07

lO0 FORMAT(*OPRT7 CALLED *,2024)
RETURN
END

Figure 15. Subroutine PRT7.

SUBROUTINE PRT8(I,II,12,13,I4,15,16,17,I8,19,110,111)
COMMON/COM6/J6
COMMON/COM8/J8
PRINT 222, ll,I2,13,I4,15,I6,17,I8,19,110,Ill

222 FORMAT(1516)
II = 2001
12 = 2002
I3 = 2003
I4 = 2004
15 = 2005
16 = 2006
17 = 2007
18 = 2008
19 = 2009
llO = 2010
Ill = 2011
I = I + l
PRINT lO0, I,J8

lO0 FORMAT(*OPRT8 CALLED *,2024)
CALL PRT9(I)
CALL PRT6(1)
I = I + l
PRINT lO0, I,J6
RETURN
END

Figure 16. Subroutine PRT8.

7.2-28 (611/71)

NASTRANSUPPORTPROGRAMS

SUBROUTINEPRT9(I)
C_M_4BN/C_M9/J9
I = I + l
PRINTlO0, I,J9
J9= I09

lO0 F_RMAT(*OPRT9 CALLED *,2_24)
RETURN
END

Figure 17. Subroutine PRT9.

Figure 18 illustrates the overlay tree for the example problem.

Each of the object decks for the sample problem is assumed to reside in a file named _BJ.

The linkage editor control statements to build an executable program corresponding to overlay tree

in Figure 17 are given in Table I.

7.2-28a (611171)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

Tablel(a). LinkageEditorControlStatementsfor SampleProblem.

LINKEDIT LET,_UTFILE:ABS(T),XREF,PARAM(7)=3

LIBRARY _BJ

LINK 0

RENAME XDUMP=XTRACE

RENAME SYSTEM=SYSTEM

INCLUDE _BJ(MAIN)

INSERT C_MO

INSERT C_M3

ENTRY MAIN

END

LINK l

RENAME XDUMP=XTRACE

INCLUDE _BJ(PRTO)

INCLUDE _BJ(BLKDATA(C_MI)

_VERLAY AOOOOOA

INCLUDE _BJ(PRTI)

INSERT CBMI

_VERLAY AOOOOOA

INCLUDE _BJ(PRT2)

INSERT CBM2

_VERLAY BOOOOOB

INCLUDE _BJ(PRT3)

INCLUDE _BJ(PRT4

INSERT C_M4

_VERLAY BOOOOB

INCLUDE 9BJ(PRT5)

INSERT C9M5

REGIgN

9VERLAY CO0000C

INSERT C9M6

7.2-29(6/I/71)

NASTRAN SUPPORT PROGRAMS

Table l(a). Linkage Editor Control Statements for Sample Problem.

INCLUDE PRT6

OVERLAY DOOOOOD

INCLUDE _BJ(PRT7)

INSERT C_M7

_VERLAY DOOOOOD

INCLUDE _BJ(PRT8)

INSERT C_M8

INCLUDE _BJ(PRT9)

INSERT C_M9

ENTRY PRTO

END

ENDLINKS

7.2-30 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Link 0

Link 1

AOOOOOA

PRTI

IC_MII

MAIN

IC_MOI

/C_M3/

PRTO

CO0000C (REGION)

DOOOOOD

PRT7

/CBM7/

BOOOOOB

PRT3

PRT4

/C_M4/

IC_M6/

PRT6

PRT2

IC_M2/

PRT8

/C_M8/

PRT9

/C_M9/

PRT5

/C_M5/

Figure 18. Overlay tree for sample problem.

7.2-31 (611171)

NASTRAN SUPPORT PROGRAMS

7.2.2.3 Initial Processing

The flow of the initial processing phase of the linkage editor is shown in Figure 31.

Not shown in Figure 31 is the program which receives initial control when the linkage editor

is executed. The functions of this program, LKED, are to establish buffers for INPUT and BUTPUT

(through SCOPE routine Q8ENTRY), set the field length for execution in words 638 and 768 (through

routine FIELDLN), and call LKEDO00. If the linkage editor has itself been link edited, then the

call to LKEDO00 is renamed to LINK and LKEDO00 becomes the entry point in Link I.

INPUT is assumed to be positioned at the beginning of a logical record which contains the

linkage editor control statements. A card is read from INPUT (via FORTRAN formatted read routines)

and converted by XRCARD. If this card is not the LINKEDIT control statement, or if the control

statement contains an error, execution of the linkage editor is terminated.

In the sample problem Table I, section 7.2.2.2, the variable LET is set to .TRUE., the name

ABS is stored in the variable OUTFILE, T is stored in the variable _UTSTAT, the variable XREF is

set to .TRUE., and the 7th word of the array PARAM is set to 3. Since INFILE is not defined,

LKEDOIO is bypassed and LKEDOI5 is called to process the object deck libraries.

Following conversion of the LIBRARY statement, the Library Table (LT), section 7.2.2.1.2,

appears as follows:

LINKLIB 1

OBJ 0

0 0

59 17 0

The object deck index, Subprogram Names Table (SNT) (section 7.2.2.1.3), Entry Point Table

(EPT) (section 7.2.2.1.4) and object deck storage table are allocated in working storage based

on: PARAM(2) for the object deck index and SNT; PARAM(3)+PARAM(6) for object deck storage table;

and all remaining storage for the EPT (see 5.6.4.2 for a discussion of the PARAM array). Working

storage at this point is as follows:

7.2-32 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

ISYSUTI

ISYSUT2

ISYSL_3

IMASTER

ISEGNDX

ILIB

INDEX

INAMES

IEPS

IDECK

ZEND

Buffer l

Buffer 2

Buffer 3

Master Index

Segment Index

Library Table

Object Deck Index

Subprogram Names Table

Entry Point Table

Object Deck Storage

-3*PARAM(1)

I PARAM(4)

PAR_M(5)

3 Words

PARAM(2)

PARAM(2)

Remaining Storage

I PARAM(3) + PARAM(6)

LINKLIB is opened to read. For each object deck in LINKLIB:

I. the PIDL Table is located (see section 7.2.5)

2. the subprogram name is extracted and stored in the SNT'

3. the ENTR Table is located (see section 7.2.5)

4. each entry point name is extracted and stored in the EPT with a pointer to the subprogram

name in the SNT.

When an end-of-file is encountered, LINKLIB is closed, _BJ is opened and processing similar to

LINKLIB occurs except that no entries are made in the EPT.

When _BJ has been processed, the tables will appear as follows:

7.2-33 (611171)

ILIB

IINDEX

INAMES

IEPS

NASTRAN SUPPORT PROGRAMS

I LINKLIB I I I
I _B_ I _°3 I

XBOOT

XLOADER

XIORTNS

XEOF

0

0

0

0

LINE

NUMBER

MAIN

LINK

BLKDATA

PRTO

PRT8

PRT9

XBOOT

LOADER.

LINK

XTRACE

XDUMP

0

LINKLIB

OBJ

7.2-34 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

Prior to returningcontrol to LKEDO00,LKEDOI5compressesthe SNTandEPTbasedonactual

sizes.

7.2.2.4 ControlStatementProcessing

Fora givenlink, twopassesaremadethroughthe control statements.Onthe first pass,the

formatof eachstatementis checkedandcountsof the varioustypesof statementsareaccumulated.

Thecardimagesarestoredin workingstoragefromthe end(starting at ZEND-7)andworkingtoward

the beginningusing8 wordspercard. At the endof the first pass,all remainingtables are

allocatedin workingstorage.

In the sampleproblem,the importantcountsindicate oneregion,onesegment,andtwoRENAME

statements.Workingstoragewouldappearas in the followingdiagram.Notethat ISEGCO,IRENMO,

andITABOare zeropointers(e.g., ISEGCO=ISEGCHN-I,whereISEGCHNis the pointer to the beginning

of SegmentChainsTable--seeFigure5.

ISYSUTI

IREGDEF

ISEGCO

ISEGDEF

IRENMO

ITABO

IDECK

ZEND

RegionDefinition Table

SegmentChainsTable

SegmentDefinition Table

RenameTable

GeneralTable

I 2 words

I 2 words

I 2 words

I 6 words

remainingstorage

I PARAM(3)+PARAM(6)

7.2-35 (611171)

NASTRAN SUPPORT PROGRAMS

The first entry in the GT is an entry for LINKO$. On the second pass through the control

statements for Link O, each of the tables is updated depending on the type of control statement.

The tables as they appear at the conclusion of the second pass are shown in Figure 19.

When the control statements for Link 1 are processed (after all processing is complete for

Link 0), the tables are far more dense. Note that there are two regions, eight segments and one

RENAME statement in Link I. In addition, at the conclusion of the first pass through the control

statements for Link l, the Link 0 entries are read from the Link 0 dictionary or SYSUTI and

entered into the GT so all references from Link l to Link 0 may be completed. The tables as they

appear at the conclusion of the second pass through the control statements for Link l are shown

in Figure 20.

Inspection of Figure 20 indicates that the entries for Link 0 are not chained. These entires

always begin with the second entry in the GT and form consecutive entries until the CLASS (see

section 7.2.2.1.9) of an entry is not zero.

The SDT is made clear by studying it in connection with the overlay tree shown in Figure 18.

7.2.2.5 Object Deck Processing

The following procedure is used to include object decks which were named on INCLUDE control

statements:

I. A subprogram name is taken from the SNT (proceeding sequentially from the first to the

last entry)

2. An entry corresponding to the subprogram name is located in the GT (if not located, of

course, the subprogram is not included).

3. If the CLASS of the entry is 4 or 5 and the A field (section 7.2.2.1.9) points to the

library to which the subprogram belongs, it is included. Otherwise, it is not.

4. The position of the subprogram in the SNT is its logical record number in SYSUT2. The

subprogram is read from SYSUT2 to working storage.

Referring to the picture of the SNT in section 7.2.2.3, the first subprogram to be included

in Link 0 is MAIN (the 103rd entry in the SNT).

7.2-36 (6/I/71)

D
E
S
I
G
N
O
F

T
H
E
C
D
C
6
4
0
0
/
6
6
0
0

L
I
N
K
A
G
E

E
D
I
T
O
R

0000-
J

I
-
,
-

f
r
o
.

J0l
,
-
-

b
J

b
d

JI
¢
.

0O
L

C
}

.
Jt
_

>
-

_
D

J

t
.
,
-

(
J

J

m
.-,

q=
[

._1

Z
v

rn
Z

t-4
i*-I

J
J

.-4

II

0o
I

t_
m

,

!-"Z0._--,
U

_

0WO
r

_
J

J_
_r

0
--

0.-

I--.Ji

C
)

!I
m

-

_J
9_

J
l.-

"]_

{¢)
_"

m
.-

<[
I--

(/_
Jb
_
t

,
-
0

,
_
"

O
-
-
!

(
I

(.5
2

O
!

_J
i

i!I

I'II
F

-

I
l
l

t
/
}

I
-
-

O
_

0

L
_
I

I
_
J

0
_
E
:

,
_
[
:

_
z,

I"' T
I-.-!

_
Z

I

°l00000

L
IJ

ZZ:r_JUI---

O
L_C

I
(I)

j
i

Z
_Ill

l
_,,-i

|
Z

l
W

I

o

O
r

tl/)
_.-)).-iIE

_
L

L
I
-
-

(
3

_
-

I
-..._

_.t

I

3
r
"

_
P
_
"

o
c

(
J

,
-
_

WZlaJI

e
,
_

e
-
_
o

Z_
J

E,
n

£EEJJJF
_

_
;
o

3
0

I
"__

I

a
J

i
r

(
I
)

:
T

O
_

.!

.)
LJ

I
>

I

'
'

b

1
,,_

.d"
I

0e-0e-U0$3e-0ql

4_0e--

..J

7
.
2
-
3
7
(
6
/
I
1
7
1
)

NASTRAN SU
PPO

RT PROGRAM
S

D
E

S
IG

NOFT
H

EC
D

C6400/6600LIN
K

A
G

EED
IT

O
R

_
Z

E
ZZIUiZ

m
_

I
,
.
i
J

.
_
I

-
_
O

L
l
3

Z

b
u
l

r
e

r
v

I
l
-
-

I
Z

I
I
L
l

i
b
u
l

l
,
-
-

)

II
,
-
'
,

I>
-r
v

z0U

i¢.._

Z.J!
,

!

I
'

[Z

i=tn

!

U

i=Tl=I"'

i<III!izIIU

...1
_JUIll-Z..,I

LIJ

Z_vi1-II¢¢1

.--I
Uud)-nrI-Xm

,1

lIooloc

I!o
d
o
o
o
q
o
=

ti

o
o
4
o
c
_
o

o
o

1,;2I0o

Jz,-

I

"J
,,

o
o
o
o
_
o
_
o
!
o
H
o
o
o i
'
i
i
°
°
.

:
I

I
!
,

°
_
°

4
_'-i

.-*
_'H

<t
u

n
lu

n
ur_

tn
u

rl
_

_
_

,o

o
o
lo

,
:
:
4
o
_

o
_

o
c
:
4o

c
_

o
o
o

o
_
o
_
o
_
o
_
o
_
o
_

o
_
o

I
"
l
''

'
i
!

I
|

i

(
,
0

I
'
.
-
!

i
1

!
,
v

!
i

I

o
o
o
=
o
o
=
o
o
o
,
oo
l
oo
l
o°
i

°
°
°
°
°
°
°
°
°
°
_
°
°
°
°
i

,
,

i
_
i

i
i

.
i

,
!

,
I

,
,

i
i

_
|

o
o
o
o
'
.
o

o
o
o

o
o
o
o
'
o
o
'
o
_
o
o
l
o
_
o
_
o
o
i
o
o
o
o
o
o
,

o
o
!
o
o
l
o

o
°
o
o
l
o

°
i

I
_

,
,

,
i

o
o

o
o
o

_
o
:
o

_
o
o
o
o
o

o
o

:
_

o
i
o
o

o
o

o
o
i
:
_

o
i
.
'
_
,
"
_
,

o
o

i

o
o
!
o
o
oo
o

'
|

,
!
'

i

o
O

C
¸

o
o

o
o
o
o
o
o

i

•
I/_.

O
C

3-

_
I
'
-

Z
"
_

_
C
)
_
I

0
0
C
'

,
-
_
,
-
,
I

U
<
I

_
(

_
I

o
¢
_
'
i
W
D

0
,
,

.
e,
,
e.e
,
,
e
l

o
o
o
0

Z
)

,
.
-
,
,

r
'
)

0
0

0
_
!
0
0
_

O
0

0
O
f
=
Z
}

O
O
f
_
,
l

"
-
4

O
_

0

,
_
l
u
_

,
.
,
I
x

_
I
_
_
-
I
O

O
000IO

000

I

_
X

iW
Z

U
_
I
f
)

O
r
"

•
(
,
.
.
)I
,
L
jo
r

L
L
J

;
_
Z
I
-
-

:
'
-
'
,.
.
m
.
l

(
.
.
)
r
l
,

(
.
.
)U
.

U
'
I

_
.

0
_
,
<
_
J

_
J

_
"

x

e-

_.1oe-00c0t
-

Or
_

Q
_

4_0:g0.1

e-

L
5

v0

7
.
2
-
3
9

(
6
/
I
1
7
1
)

NASTRAN SUPPORT PROGRAM
S

D
E
S
I
G
N
O
F

T
H
E
C
D
C
6
4
0
0
/
6
6
0
0

L
I
N
K
A
G
E
E
D
I
T
O
R

00

I

ocP
oO

oc
oc_

i

un_m
c

,0
,q,0

,_
ocIoc

ocIoolo¢=
oc

iI4

O
Q

O
O

I
00I
00I
00]

0
O

]
O

0

i

0(_00

C
_

O
C

'_[
P

_I
"¢

¢.)

0
0
0

e

O
O

C
,

O
0

O
tO

C
O

un
W

D
,-.J

o
Q

e...e

I

IC
>

O
0

(_

O
O

O
O

I

O
O

O
O

I

0[eC
O

C
O

.
IU

N
U

_
¢_

'-'t4"
I'..-

o
P

)
I,d_

Z1"Z1"(J(D(/)|_0illn
.

l--2¢DZ_E(J1-

I"Z]_(J-.I
J¢.3

"rc5
ZbJ_I

I
i<

I
z

I=-
I-

Z
O
.

b
d

t
.
5

U
_

b
d

,
e
l

1
-

n
r
0

e
O

b
.

e
r
)

Z
-
-
I

,
-
4

UZZ

o,4

o_o_F<
,,-III!i

o
o

!

_o

r...,
o

oo
Ioo

1°°
I

I
IIi--

Zs"
_DILl
U

_

(Z0b
..

Zi,.<

"l"U,.)
OaD>..III

U
lIm

.I
m

lII

¢_o

<[I

U
l

_c

JI(JI

1:1
c_o

_D
i

(_o
Z

I
olo

t_!
olo

_!
oto

0,.!
C

.lO

TT_q

J°I
I0n

u_
I

t

IIIf_b
.--

Z_J(DO
c

0b
..

Z<[Z(..)

..JOlID

>,..
inIII

z
,,-_o

1'-

!

m
.m

"i Z"r
o

U1.5|k-Z

iiz')!7lrL
J

JJb
J

Z7lu*

oo

itioo
!oo
Io

o

II

.t!Uii

fill

I
,.,i

I

U
l

"Gt
ziJ_.J_

¢.11

I
t--i

Z
i

U
.il

..11i

!,_1i

'?i
lg,

Z
.J

_
U

U
_Q

:
I,-
Z

P
'-IO

ot
ot

,...,e

C
I_'Noam

m
l

ol
o

o
l

olool
o1oo1

<H
<I"

,elI

ol
o

olI

oi
o

,oi

O
l

o
_(

O
l

o
_l

O
l

_)
o]

otc)
O

lI
olo=

i

O
lO

o

•,'I
l,t

l'-

_
I

,,1"
4-

I,--
ll,,,--

_1
rt"

0
li.

IG
.

U

,,i'll"..
o

C
,I

C
,

-,',,I
l"i

ll'_'l

IIII
u

n
l

i--i
Z

!
klJ:EI.m

.l:

crO$.1..

Zi..W
l

"1"
U.J0>-||t

r_..Is..
of-u0E3e--
ous-o°_..

_Jve-

-J"o
vo

7.2-41
(6/1/71)

NASTRAN SUPPORT
PROGRAM

S

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

The object deck for MAIN is read into working storage and the PIDL Table (section 7.2.5) is

located. The PIDL Table for MAIN is as follows:

348 3

MAIN 11068

C_MO I

C_M3 1

LCT

At the entry corresponding to the MAIN, the following fields can be completed:

L = ll068

CLASS = l

INDEX = I03

Since the LCT (section 7.2.5) is not empty, each TEXT Table (section 7.2.5) of the subprogram is

searched to determine if any of the tables point to one of the common blocks. In this case, none

do. However, in processing the BLKDATA subprogram in Link l, data is defined for each of the

common blocks. This condition isnoted in the LCT by setting the high order bit of length field

of the entry.

An attempt is made to locate each of the common blocks (C_MO and COM3) in the GT. Neither

is present so entries of CLASS=2 are created and the L field is set in each entry. The entries

are chained to the segment l chain and the pointers in the SCT are updated.

The ENTR Table (section 7.2.5) is located next. For the subprogram MAIN this table will

appear as follows:

36 2

MAIN

l

7.2-43 (611171)

NASTRANSUPPORTPROGRAMS

An attempt is made to locate the entry point name in the GT. In this case, MAIN is located

with a CLASS=I. The relative entry address is stored in the A field of the entry. For segments

other than one, the TEXT Tables (see section 7.2.5) are searched to locate the ID word correspond-

ing to the entry point and thus extract the number of arguments defined for the entry.

Next, the LINK Table is located. For MAIN, this table is as follows:

44 168

Q8ENTRY

1

LN

ZAP

5 1

5 l

5 1

2

0 5

5 1

FIELD

1

STBP

6

0 5

148 5

178 5

238 5

318

338

0 5

OUTPUT

l

LINK

END

1

128

168

228

308

258

0

358

7.2-44 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

Anattemptis madeto locate eachof the externalreferencesin the LINKTable(section

7.3.5) (after first checkingfor possiblerenamevia the RT). In this case,noneof the entries

exists in the GT Therefore,for eachexternalreference,the followingoccurs:

I. Anewentry is createdwith CLASS=7(the "undefined"class)

2. Theentry is linked to the "undefined"segmentchain(segment2 for Link O)

3. Sinceit is possiblethat the namesmaybedefinedsubsequentlyin a segmentnot in the

path (it is true that in Link 0 this is not possible,however,this caseis not testedand

sofor this processing,Link 0 is treatedas anyotherLink) a call entry (CLASS=6)is

createdfor eachof the symbolentries. Thecall entries formanENTAB$(seesection7.2.2.7)

chainfor the segmentandeachis chainedto the sy_ol entry of the call.

Sincethereweresevenexternal referencesbyMAIN,sevensymbolentries in the undefinedsegment

chainarecreatedandsevencall entries in thesegmentoneENTAB$chainare created. Thecontents

of the tables at this point are shownin Figure21.

Processingfor MAINis nowcomplete.Sincenoothersubprogramsweremarkedfor inclusion in

Link O, the automaticcall logic is nowinvoked. Thisworksasfollows:

I. Foreachentry in the undefinedsegmentchain, the EPTis searched.

2. If a matchis found,anentry of CLASS=4is createdin the GT(unlessit alreadyexists)

for the subprogramto whichthe entry point belongs.

3. Themainlogic is repeatedwith a logical variable SYSLIBset to .TRUE..

Notethe possiblecascadingeffect of automaticlibrary calls. This happenswhena LINKLIB

routinemakesexternal referencesto otherLINKLIBroutines. Thiscaseis handledasfollows:

I. Whenthe LINKTableis processedandit is the SYSLIBpass(i.e., SYSLIB=.TRUE.),each

external referencewhichis not.in the GTis lookedupin the EPT.

2. If the externalnameis foundin the EPTandthe correspondingsubprogramhasnot already

beenmarkedfor inclusion, anentry in theGTis createdof CLASS=4.

3. If necessary,the currentpointer in the SNTis reset to the entry correspondingto the

newsubprogramto insurethat is included.

7.2-45(6/I/71)

NASTRAN SUPPORT PROGRAMS

D
E
S
I
G
N
O
F

T
H
E
C
D
C
6
4
0
0
/
6
6
0
0

L
I
N
K
A
G
E
E
D
I
T
O
R

a
_

Q
_
_

.
7
.

b
_

b
_

O
(

07
_

,
-
4
!

c
l

-
r

i-]i!I
1

'i

:i

0e-

_.Je-

Z_2e-"
-T

-O00e-
,L

--
._1

vc%
1

7
.
2
-
4
7

(
6
/
I
/
7
1
)

NASTRAN SUPPORT PROGRAMS

For example, in the sample problem, Q8ENTRY i s an entry point in SYSTEM., which in t u r n

references SIg, which i s an entry point in SI@$ which in t u r n references GETBA which i s an entry

point in GETBA, and, in f ac t , the single INCLUDE 0BJ (MAIN) statement resul ts in 14 additional

LINKLIB subprograms to resolve a l l cross references f o r Link 0.

When the SYSLIB pass i s complete, any entr ies remaining in the undefined segment chain are

t ru ly undefined and an error message i s printed fo r each one.

A t th i s point, a certain amount of "clean u p " processing i s necessary. For example, a

number of call chain entr ies which were created because an entry was undefined a t the time, may

now be resolved and need t o be removed.

The final processing in th i s phase of the linkage edi tor i s t o create an ENTAB$ entry in the

GT for each segment with ca l l s not in the path. Relative addresses are computed for each entry

in each ENTAB$ chain. A t th i s point suff ic ient information i s available t o perform the assign-

ment of f inal storage addresses t o each entry and control passes t o the Address Assignment

Processor, LKED050. (see section 7.2.2.6)
I
3

The linkage editor tables as they appear a f te r object deck processing fo r Link 0 i s shown in

Figure 22. Similarly, Figure 23 shows the tables a f t e r Link 1 .

7.2.2.6 Address Assignment Processing

The computation of f inal storage addresses i s re lat ively straightforward with the order of

the computations being the key factor . When LKED050 receives control, each of the control section

entr ies in the GT has a length assigned so what remains essent ial ly i s t o accumulate the lengths

of each of the control sections. The way in which the segments will reside in storage (the overlay

t r ee) must be taken into consideration. As a resu l t , the computation proceeds as follows:

1. Each entry in a segment chain i s traced. If the entry defines a control section

(CLASS = 1 or 2) , the length i s accumulated. For each control section, an additional word

i s added t o the length to account for the control section ident i f icat ion word which i s placed

a t the beginning of each control section during relocation processing.

2. The length of the segment i s stored in the SDT (section 7.2.2.1.7)

D
E
S
I
G
N
O
F
T
H
E

C
D
C
6
4
0
0
/
6
6
0
0

L
I
N
K
A
G
E
E
D
I
T
O
R

l
J
n

c
_

e
-
.
.

h
l

V
"-
J

(
I
"

I
"

b
h
.

,
_
[

l
h
J

'
5

:
l
.
-
-

b
l
J

h
l
J

:
Z-
J

0=
E

Q

III_1.

n
n

I--
Z

I.-
_,J

rr
..,a

ev
W

O
C

_r

.;
z

I
i,.,.i

I
.-I

c0

I
h

_

I--
b-i

_-4
.j]

l--

L
t
J

b
l
.
.

f
_

C
:
)

I
'
-

Z0

o!

cooooc

!II--I
.'I'-,

l.-u
.I

Z
,-_

_jIII

Ii

i_J
.,E

zl
,<

!_

zl<1[
1"_

Z.J0ZW

Z
I

_J/)Z_1_
0

,_'_I_'11"I"_

I

o
c>lo

o
O

E
o

o
_o

o
0

o
o

leo
.

r",,
o

e"_
o

0

Z"'
i

:g"_
1

°
I

ZE

'
t

"li
1"

t

JJU
_t

ICIz
J

oe-

_Joq
..uof,,,.

uuoq-

,-gf,,..
oN¢0e-

°p-JNN

7.2-49
(6/1/71)

N
A

S
T

R
A

N
S

U
P

P
O

R
T

P
R

O
G

R
A

M
S

I
O

LD
_D

,=
*_

,--,U
_

L
r,

r')i_
',D

!I'-I'--P
'-_

C
O

C
_'

_
G

',.._O
O

C
,_.-,.-_.-_O

d
l

j
°
o
o
o
l
c

o
o
;
o

o
:
o
o

o
o
l
o
o
E
o
o

o
o

o
_

o
o

i
o

,
:
,
_
o

o
,
o

o
o

o
,

I
o

o
l
c
.
,

c
:
,

o
o
_
o

c
_

o
o

I

Ì
:
'
0°
°
i°

_
'
:
I

°
°
i
'
==°
°
°
°
J°
'
:°
=
'
°'
:
'°
°
_

|

-
I
"
i
"
I
I
-
'

_
_

|

i

_
c

004-t-OK
.

_
D
_

-g0Ill

0:ge--
0_._1

v

Ill
s-

7
.
2
-
5
0

(
6
1
1
1
7
1
)

D
E

S
IG

NOFT
H

EC
D

C6400/6600LIN
K

A
G

EED
IT

O
R

L
b

0.
.
.
.
I

f
,
.
.

04
-{
3
"
)

(
-

"
F
_

_
J

0U(
I
)

"
04
J_
J

04J0e-
0_--J

v

7.2-51
(6/1/71)

NASTRAN SUPPO
RT PROGRAM

S

I

0

I

3
'C

F
O

d
c

r
r

U

e
M
Q
9

m
?

 m
Im

elnu'a
m

m
0

7
F

i

I !
C

h
!

U
+

~
3

;
0

0
O

C
r

m
c

\
l*

*
a

o
o

c
l0

'

~
C

"
-

J
r

D
\
C

N
I

D
C

.
D
b
F
h
d
K
'
N
e

m
m

m
m

m
m

m
m

I

D
E

S
IG

NOF
T
H
E

C
D
C
6
4
0
0
/
6
6
0
0

L
I
N
K
A
G
E

E
D
I
T
O
R

I
"
'
i
o
-

I
Z

I
>
(

l
u

i
=

I
i

U
'
1

i
iI

'
I

UI
L
l

l
-
-

J
.
.

I
{
/
I

I
.
,
_

I
.
-
r

I
.
L
I

J

'°
;_

IC
bhiZIUb
JIt_J

0e_

IA
l

ZIIZ1-Jllf.bTI--

Z.3e_Zm
lg

I
¢

>
.
.

C

J_Z

i_
i>

-

ii
in..-

i
i

_,
o

,_iP
_

o
°N

N
N

g

e-

_Jo¢-0S
-

_JU_J04J0(IJ

e-

..J

7.2-53
(
6
1
1
1
7
1
)

N
A

S
T

R
A

N
S

U
P

P
O

R
T

P
R

O
G

R
A

M
S

oc

I

•--G
p

,-

f_f_

c:b_
O

O
c

o
io_

o
cl_

c_o
c_r

q
b

i

E

Iei

.
°'_

_
t__'

_
'

_:ur)
,_

'J"

-°i
;

°_
,,-4_

_
o

I_
o

_:
_

_
_

I

,
!

i
i

I
;

0buoUUg?gEZgg

7.2-54
(6/I/71)

D
E
S
I
G
N

O
F

T
H
E

C
D
C

6
4
0
0
/
6
6
0
0

L
I
N
K
A
G
E

E
D
I
T
O
R

t

i

I
I

!
q

_
,
_

m
_
,
_
-
,
_
-
__

_
_

_C
C

C
C

C
;_C

I;I!U
_,

16I_.1

L
_

t_10i010

2"

h+Iu"T
"

Z

!uI-ZW7Iz

i
:

i
,+i1

C
C

lI_

pIi

It_L
a_

_n

U

I+IL
M

q_b2

__j
_.J

Io!l,--

el::

imt_IU!+

,0

Ill

i_
"

!',

iFizTiz:Ui-iJZ,,,..p

i;ia-

f

Mc
c,;cI

_.,q'

tZUI,,ir',

i_JU0+
.-

I--II.I.

IUI_J¢,+

7

t....-

--I.+
,...

0t-..-

U0uU_U
,r--_
r_
0Q

.;

n
_

0:g_J

°_..J

v

f,-

.r-
h

7
.
2
-
5
5

(
6
/
I
/
7
1
)

NAFTRAN SUPPORT
PROGRAMS

-
I
*
&

0
0
0

0
 0
 0

0
 0

 0

O
O

C

C
C

O

m
m

m

I
c

lm
o

O
F

m
rr)

0
 x

.
(P

0
0

0

O
O

C

0
0

0

0
0

0

0
0

m
m

m

0
 O

C
P

O
O

.5

m

a
d

d

F7
C

0
0
0

3
0

0

0
0
0

0
0
9

e
m

=

0
0

.
-
I
d

0
0
0

d
N

N

N
N

Q

t
x
t

f
r

o
1

n

o
w

o
O

4
m

Q

C
b

w

m
m

d

0

w
m

C
3

0

0

d

te m

4 -i-
0

I
*
,

i i9
U

.: V
)

g a I 1: I .-I 0

"lo,

q;

D
E
S
I
G
N

O
F
T
H
E
C
D
C
6
4
0
0
/
6
6
0
0

L
I
N
K
A
G
E

E
D
I
T
O
R

|!|w
l

gN0ZIJ0m!

4-Z1"UgI,-

L
cJ

I!

cIl_np
,)

IIIIrITIII

o
t

°...-,j

cl_

,-,t
L_/

t,,..
ii_

o,-
i_"

_1°L
)

_1®

_...)Z2:U|(0)

II)W

!1_.1

iiz1irf_JJZL
_J

.J

II
"
-
'

Z
I
I
_

I
i
_
'

L
_

U
"
I

_
n

!
T

iI

o
!$

"Ej
,

o
t7

0
10-

0
tz

i

,
t

to_,_,

I_-
I

O
,

I!!11i

I
olo°Ii

,!

°
°!°

_ittII

°
.,,_I

e--

-J0c-OUU%
,

030-V
,

e-

v

1.

7
.
2
-
5
7
(
6
/
I
1
7
1
)

NASTRAN SUPPORT PROGRAMS

3. Steps (I) and (2) are repeated for each segment in the link.

4. The segment numbers defining a region are extracted from the RDT (section 7.2.2.1.5).

5. Starting with the last segment in the region, each possible path in the region is traced

and lengths of the paths are accumulated. Inspection of the RDT for Link 1 in Figure 25

indicates the segment numbers for Region one are 1 through 5. Looking at the SDT in the

same figure, one sees that the possible paths are 5-3-I, 4-3-I, 3-I, 2-I, I. While it is true

that certain of these paths are subsets of others, the longest path will be found by a "brute

force" technique.

6. Steps (4) and (5) are repeated for each region in the link.

7. If Link O, the initial address in Region 1 is assigned as 1008 . Otherwise, the initial

address in Region 1 is the last address in Link 0 plus one.

8. The initial address in each region is stored in the RDT by starting with the initial

address for Region 1 and accumulating the lengths of each region.

9. The logic of steps (4) and (5) is repeated and final addresses are thus assigned to each

of the segments. These addresses are stored in the SDT.

I0. It now remains to assign addresses to each of the entries in each of the segments.

This is accomplished by following the chain for each segment. Starting with the initial

address in the segment, lengths of each control section entry (CLASS = 1 or 2) are accumulated.

Addresses for alternate entry points (CLASS = 3) are assigned by adding the address of the

primary entry (the L field points to it) to the relative address of the entry point in the

A field (see GT explanation, section 7.2.2.1.9). When a primary entry (CLASS = I) is com-

pleted, the ARG bit is set to indicate this. If an alternate entry point is encountered

prior to assigning an address to the primary entry, a logic error abort (LKED990) occurs.

Figures 24 and 25 show the tables as they appear after address assignment processing for

Links 0 and I, respectively. The asterisk in certain of the symbol entries indicates that the

ARG bit is on.

7.2-58 (611171)

D
E
S
I
G
N
O
F
T
H
E
C
D
C

6
4
0
0
/
6
6
0
0

L
I
N
K
A
G
E
E
D
I
T
O
R

.
J

!
w

!!
0
,
-
-:

i
I
:
I
I
Z

i
c

!
I
'
-
-
-

I
'
-
-
,

r
_

w.
_
.
i

o

IIIJ(
I

)
-III

U_JZ
l

Z--1

!
I

_'l

,
tell

t'-
I

--

F
--_

_--41
._t

I
,-4

•
bL

]
i;

_.-L

ol"It_'
O

l

n
,
"
I

_
-
,
_

"
)

I
_

_
.
_
I

I
E

w
i

o
0
i

_
!

}Wi
Z

_
-
i
-
r

i._
.,--ic

in!I

0_J0e-U0e
_

e
-

EE"_,

1..-

4-e-U$-S.0e-
°r-
-J

v

7
.
2
-
5
9

(
6
1
1
1
7
1
)

N
A

S
T

R
A

N
S

U
P

P
O

R
T

P
R

O
G

R
A

M
S

C
O

,
.
-
.
i

U
n

(
"
)

0
1

,
,
-
i

,
.
,
_
I_
-

O
0

(
D
O

O
o

0
,
'
-
_

,
,
-
,p
.
.

U
'
_
l
J
r
)

O
0

O
0

I_D

O
c

:
_
L
¢
)

U
U
Z

t
-
-
L
L

I
/
]
D
.

(
n
:
E

I
J
r
_
a
0

u
n
u
'
_

•
.
e
,
1
.

,
i
_

:
*
"
)
I
,
O
N

:
)
.
-
q

I
-
r
,
-
I

m
.
_

,
)
,
o

-
.
r
,
-
i
.
'
-
-
c
o

:
)
o
,

_
0
'
I

I

]0
,,,_

4.
_-

r,-Io
fe;

0
t'_l

D
,
r
.
-
I
I

n
_

©
_

'
_
,
o
I
_
r
,
-

-
c
o

o
o
,
I

p
c
_

I
_
P
-

,
d
,
-
6
1
o
.
,
,
l
'

c
f
v
l

.
_

r
i
t
_

"
I
N

£
<
I
-
l
_
O
_

r
i
,
4
:
)

3
o
l

_
i
-
,
_

_
I
-
-
4

4
-
<
r
i
<
I
'
.
4
"

i
t
-
4

i
'
I
L
I
_
II

_"
C

_C
O

_C
_O

"_C
_O

I

i

O
C

--"_C
_

C
_I_D

C
'

D
_

D
O

_
_
I

_
_
-
I
'
-
-
I
P
_
I
'
,
-

_
_
C

0
t'_

'-_C
_IC

00[00
D

C
_0=e

e.-i

L
)

u
.
.

3
E

I
.
J
.
l

F
-
C

4
J

U
(
I
.
.

,-_
1"'

I_
C

_
_D

¢'
_D

P
_

O
O

_
C

D
O

_
)
-

Z
.
q
I

E

I
"
_

_
[

M
I
Z

-
*

-
,
1
"

r
,
.
.P
.

:
o
_

3
"
.
0
"

_un

_
I
"
-
,
I
"
I

:
)

O
l

tr
-,,,t

-
ot

')_
_'(Y

')u
r

1,o
)

,D
3r,-

•.¢_
.4,..¢

-_,-_
-¢

,-.¢

,'11',
"),,I

n
i_

n
w

[
D

_D

_C
O

C
_C

_C
_

C
O

C
"_C

_
_C

_C

0r-

._1S
-

Oq
-O

3

0e-e-

"7,

me-

"_,

U0S,.

:ge.'-
.r-
--J

v

S--s

7
.
2
-
6
0

(
6
1
1
1
7
1
)

D
E

S
IG

NOFT
H

EC
D

C6400/6600LIN
K

A
G

EED
IT

O
R

0
o

,
-
_

,
-
e
|
,
-
t
_
I
-
I
,

i!I

41"
(,O

t
W

C
O

w
l:

(_
N

-...I
,..,_1

w
D

,..4i1

Iit

_N
_N

O
O

O
O

O
O

0_00_000
_

O
_O

O

ID
'

O
"

oo

Z
(..)

_.
.J

9:
],,,

l._J]
rv

,,

•-_I_
I

o
._o

w
_.-.

1
>"/_

_[:w
'

rap-.,
,,-,

_
I

_
I
_

111i

i

t
**i

oooo,oo

III

i

:
e_,.-

•
e:;_

JIC
n

o-_LL_
a..lO

:

.._.
(,,_[e,'t

r_,
O

,t
U

'}
U

_
O

0
1,0

,,_
b

O
w

_l,,t
.._.

_..
p,..

i

o
_[W

D

.%
1

_%
1

._
.%

,1

ii

'
_
_
W
D
i
l
r
.
I
X
l

'
]

cD
_fflff3Jo

c3o
,

0.,

i

III

_
I
_

_
_
I
_

_

!Ii!

i
'

i
Ii

e-,

II

O
000C

.
O

0_
0

_000_000

00000000
O

00000_O

C
b

O
0

C
:.

_:}
C

_
C

0

%
re}

{"I
P

'_
"I

r")
_

if)

aDO
'

IX
l

,IDf_O
U

00U
_

p_0U

0vS
-

Oq
-0S

-
(3.

O
3

S
.

S
.-

a,I

I:Zu
_

(;1

00S
.

0aJC
_

v.-I0
vO

dS
.-

:3O
3

IJ-

7
.
2
-
6
1

(6/1/71)

N
A

S
T

R
A

N
S

U
P

P
O

R
T

P
R

O
G

R
A

M
S

gc.J[=
-

_J.JQ
_

C
_

}--

_J_Jw
"

JtL0ft.

I!I_JIII

!'ili

t'r,.L
:

I

_j!

i
L

rC
¢,

•.-,I
-,JD

I

ziL
)

,__1

i
Z

L
,-._

!,_
z

,¢_t
"E

I

i-
_

ui
It:D

!

Z
O

C
_

I--

k
_

71

mI
L

_.JI
I

r0_l

I
i

_
¢_d

_--*1÷
o

_
_"

_
o

-.'t
U

_,
43

,qD

IL!ii

_1
_

--'1"
C

ic-'
C
I
C

o

2.:
:ri

w
i

-Jl"1

e',L

J

o_
1"..-,"'1,"'3

Z
O

iO

i._
._

_

!.,_I--

iii'_.

?hiIII

.--IO4--E(DO..ID

E.g¢1¢1

4-E-gu0S-O:ge'-

.--1

v

7
.
2
-
6
2

(
6
/
I
/
7
1
)

D
E
S
I
G
N

O
F

T
H
E

C
D
C

6
4
0
0
/
6
6
0
0

L
I
N
K
A
G
E

E
D
I
T
O
R
,

i
b
d

l
"
-

X

i
o

o

i
z

II
L
:
"
_

t

w
C

l
,
-

i
.
.
.
,

ZI(..)

i..JU
'I

I,cI

Z

Z!(,.,
I:ZITi...,
!u"JE

I...-

Z;.&
l

J7B
E

.
i--

Q
-I

I
U

')

I
T

r,,r
,cl

IZ
I

Z
I#'l

,-.i
j

i---
U

l,..,1

",
ILl
trZ

Zi-_
)-

!
t--

It
Z

II
I,_

c
c

,,,_
4B

_1
_

O
C

O
C

o
_

._li.,-
0Izz

I.I0i,.,,,

I=
::

"_,

_J

"0"0f,,.
(]J

4-t_(.-

000r-
_.J

v

7
.
2
-
6
3

(
6
1
1
1
7
1
)

N
A

S
T

R
A

N
S

U
P

P
O

R
T

P
R

O
G

R
A

M
S

ii

I

o
o

c:::l
o

J

O
C

_C

o
c

o
c
:
_
o
c

_
c
c
c
-
_
c

I

c
c
c

¢_10_:
II

ve-

ll£.04-.g00ID
_

c-OEe-

.ge-
.po£.£.oe-
°_..
-Jov

7.2-64
(
6
/
I
/
7
1
)

D
E

S
IG

NOFT
H

EC
D

C6400/6600LIN
K

A
G

EED
IT

O
R

oon
,
4
(
_
i

,
,
.
-
,t,
,
l

u
r
l
{
,
,
I

,
,
D
,
,
_

o
c
c
" o
o
o
I
_
=
(
o
J
o
_
o

,
|

°
j
°°°
J
°
°
o

IiIII

_tr
_-

_N
.-,

o°1o

I

o
oio

ooo

°_,

oc'_o

t-IE_NI

_
_W

D

Z•r
c

_,
p

0,s.I

I°t-I r_1,
ooo

_
I

1-
_

_JJ..1
too_

i-1:
t

-r
i

_Jc.I"
i_

_

-
_

I
_

i
.
-
I
_
-

Im
r
'
i
w

III7bJ
I

t

"li
Z:IZ

_
tJ

_

I

3
1

-
.
t
_
I
"i

,
I
,

IL"
d

l_
m

m
.,

g_Jkl÷_,l
il_-

-.._

I

"
_

I
J
o
l
o

_
,I
'
_
I

C
O

4
,

ZI
"

_
I

_
I
-

f
,
_

_
(
_
I

I

i

I'r
I_.

o
iu

,
°

I
Ii,

i

t

g
'

i
_

"_
"_

_

_
r

I
_-

!
I
I

I_"
_

_

!
i

I
i
_
i

,

I
o

(J4,UI

uO
w

_

r_
,l_

llc

-1-Jm

II
e

i° .J
_.

4.

I
U

!
I

I

•1"
_

U

,,-
z

_
o

I
I-'

I
I

I
z

J
_I(
.
}

8
,Iu

'
1

Q
C

j
,
.
-
?
.

I
"

U.
J

(
.
b

Id

v$
.
.

o1
3
r
}

e
-

0
_
_
J
ot_I-uo%

..

S-or-"
°r,"

"0
v12

7
.
2
-
6
5

(
6
/
I
/
7
1
)

N
A

S
T

R
A

N
S

U
P

P
O

R
T

P
R

O
G

R
A

M
S

I

tl_
tl_l

fir

,=
_

,-_$
,-4

.-_
,-_f

.-4

C
C

[_

m
m

i._

#

I

EF•.-i
I'k'

I%
1

Pq:_

I.-
,__

I...-
,'1"

0
7

'_.
u

tw
4Im

_lm

i

I!I

0L
IL

ZIIIO

II

7
.
2
-
6
6

(
6
/
I
/
7
1
)

D
E
S
I
G
N

O
F
T
H
E

C
D
C
6
4
0
0
/
6
6
0
0
L
I
N
K
A
G
E

E
D
I
T
O
R

Zr
d
"

I
'
-
-
_

_

m
,
,
}
,
_
.
-
;r
.
.
.
,
)

U
l
J

4
.Z:
:
I
:

,
E
,

r
-
I
-
.
i
"P
'
-

L
_

.
,
J

!

i
,
,
-
,
4w
J
_
.
.
_
,
I
'
_
;

C
_
C

C
"

i
-
"

g
I
:

:
(
:

_
_

Zb
_

;
f
}

Z"
I
"

U
_
-

C
:
'

C
;
,

C

!:
I
:

I
"

f
,
.
.
)

"
_

C
,

C
_

4
"

.
,
.
J

i
f
"
)

J.
'
,
,
.
,
)

I*--
r'3

0
_,

0
_

.#E..J04-I:]')
{::u'1

o0EaJEolf,...

r.-

000E°¢..
_Ju,--

7,2-67
(6/1/71)

NASTRAN SUPPORT PROGRAMS

7.2.2.7 Relocation Processing

The primary task of the relocation processor (LKED075) is to build text for each of the

control sections that comprise the link. The text is written on SYSUTI, one segment per logical

record. The format of the output file is shown in Figure 26. The segment is written in such a

way that each segment may be "block" loaded by the segment loader, i.e., there exists one word in

the logical record for each word in the segment. Words for which no text or data is defined are

set to zero.

Secondary tasks for the relocation processor are the listing on OUTPUT of the storage map

for the link (if MAP is .TRUE.) and writing information on SYSUT3 (if XREF is .TRUE.) to assist in

the preparation of aalisting of cross references. See the explanation of the LINKEDIT statement,

section 5.6.4.2.

In the case of Link O, an additional task is to construct the bootstrap program as the first

part of SYSUTI. A skeleton Block Data subprogram is defined in the DUMMY array in LKEDC05 (see

section 7.2.6. The appropriate length fields of this skeleton Block Data subprogram are completed,

the length of the common block XBOOTBD is computed as the Link 0 length + 2008 so the bootstrap

program will load beyond the storage area where Link 0 is to be loaded, and the subprogram is

written as the first record on SYSUTI. The remaining subprograms which comprise the bootstrap

program are defined in the array B_OTDKS in LKEDC07. These subprograms are copied from SYSUT2 to

SYSUTI (fatal error if not found). Finally, a zero length logical record is written to signify the

end of the bootstrap program.

The Link 0 directory record is written next, followed by a Link 0 dictionary record which

contains all the entry point and common block names and their addresses.

For links other than Link O, the 3-word directory record is written.

The first control section for Link 0 is LINKO$. The format of LINKO$ is shown in Figure 27

(see section 5.6.4.2 for an explanation of the PARAM array). The first control section for a link

other than Link 0 is SEGTAB$. Its format is shown in Figure 28. Depending on the link, LINKO$

or SEGTAB$ is assembled and written as the first part of segment one.

Thereafter, each entry in the segment chain is unpacked. If the entry is CLASS = I, the PIDL

Table (see section 7.2.5) of the subprogram is read from SYSUT2 (during relocation processing,

7.2-68 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

XB_TBD

XB_T

XI_RTNS

MAPFNS

Link 0 directory

Link 0 dictionary

Link 0 executable program

Link l directory

Segment l

Segment n

directory

Segment l

Bootstrap program

- -O-length record

Link 0

Link l

Succeeding Links

Figure 26. Format of the output file.

7.2-69 (6/I/71)

NASTRAN SUPPORT PROGRAMS

address at: execution

1008

I01

102

I03

104

57 41 40 35

37oooo

EQ address of entry

29 17

address of SEGTAB$-I

PARAM(4) address of
master index

address of
PARAM(5) subindex

FEI and circular buffer

Master Index

Subindex

ID word

PARAM(I)

PARAM(4)

I PARAM(5)

Figure 27. Format of LINKO$.

7.2-70 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

objects decks are read one table at a time thus minimizing object deck storage space and maxi-

mizing storage space available for text building). The entry corresponding to each common block

in the LCT of the PIDL T_ble is located in the GT and the address of the common block is stored

in the LCT.

The ENTR Table (see section 7.2.5) is read next. The address of each of the entry points is

determined by locating the entry in the GT corresponding to the entry point name. If XREF is

selected, the subprogram name and address and each of the entry point names and addresses are

written on SYSUT3.

An area in working storage corresponding to the length of the control section is initialized

to zero. The control section identification (ID) word (sometimes referred to as the "dump control

word") is stored in the first word of the area. Thereafter, the text is asse_led and relocation

of relative to final addresses is performed according to the TEXT, FILL, LINK and REPL Tables of

the object deck (see section 7.2.5). These tables are read one at a time from SYSUT2 and the

appropriate relocation routine is called. When the end of the object deck is encountered, the

text area in working storage is written in the current logical record on SYSUTI.

Relocation of external references in the LINK Table is performed in the following way:

I. If the call is in the load path of the segment making the call, the final address is the

address of the reference.

2. Otherwise, the call chain is traced and the final address of the reference is an entry

in the ENTAB$ table (see Figure 29) of the calling segment which in turn will call the seg-

ment loader to determine if the called segment is to be loaded (it may already be in storage).

If no text or data is defined for the control section, then the control section ID word is written

in the logical record followed by zero words equal in number to the length of the control section.

The last control section in a segment may be ENTAB$. There will be an ENTAB$ in each segment

which has references not in the path. Figure 29 shows the format of an ENTAB$ entry. If this

control section is present for the segment, LKED075 assembles the text for each entry and writes

it in SYSUTI.

7.2-71 (6/I/71)

NASTRAN SUPPORT PROGRAMS

370000 1 SEGTAB$

EQ address of entry

xy length address region parent

59 53 35 17 II 0

ID word

Segment 1

Segment n

at execution time:

I: segment is in core
x = O: segment is not in core

I: segment is scheduled to be loaded
Y = O: segment is not scheduled to be loaded

Figure 28. Format of SEGTAB$

address of argument N

number of
entry name arguments

(N)

EQ return address 0

segment final
RJ L_ADER. number address of

entry

59 29 17

present only if N > 6

these three words

always present in entry

Figure 29. Format of an entry in ENTAB$.

7.2-72 (611171)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

When each of the segments of the link is complete, the status of the logical variable of XREF

(see 7.2.6) is tested. If .TRUE., LKED077 is called to format and print a listing of cross

references.

LKED077 begins by allocating the XREF table (see section 7.2.2.1.I0) to the working space

formally occupied by the RDT, SCT, SDT, RT, GT, and object deck and text building storage areas

as these latter tables and areas are no longer needed.

The principal input to the cross reference processing is the information on SYSUT3 written

by LKED075. Figure 30 shows the format of SYSUT3. Two types of chains are maintained. The first

is a list chain in which entry-point entries are chained in order they appear in the storage map

(and the order in which references will be listed) and the second is a chain of all the calls to

each entry point.

Names are located in the XREF table in the same way as the GT through the hash technique

(see section 7.2.2.1.I). (An inspection of the entry formats detailed in section 7.2.2.1.I0

indicates that the initial hash pointer and hash chain pointer fields are in the same position

as the GT.)

Up to II calls from a given subprogram to a given entry point are stored in one XREF entry

since that is the maximum number of calls that can be listed in one printer line.

Two list options are provided in conjunction with the cross reference processing. Both are

controlled by PARAM(7) (see section 5.6.4.2). The first is to produce a listing of all references

from each subprogram (essentially the contents of the LINK Table of the object deck). This is

provided because of a deficiency in the output of the RUN compiler. The second option is to list

all references to Link 0 entry points for links other than Link O.

7.2.2.8 Final Processing

LKED080 performs final processing. It is called when the ENDLINKS card (see section 5.6.4.12)

is encountered. If the status of _UTFILE is C, processing is already complete and LKED080 returns.

Otherwise, the output file is written. Figure 26 shows the format of the output file.

The first step is to write the bootstrap program. This is done in a manner similar to that

described in section 7.2.2.7 except that the required object decks are copied from LINKLIB instead

7.2-73 (611171)

NASTRAN SUPPORT PROGRAMS

59 17 0

subprogram name address

entry point name address

entry point name address

4m

name of external reference 0

0 Location of
referen ce

1 0
Location of
reference

0

Location of
I i 0 reference
I

0

subprogram name address

entry point name address

end of entry

points

end of external
_F---_referenc e

Figure 30. Format of SYSUT3.

7.2-74 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

of SYSUT2 (the reason for this difference is that in the level 1.0 version (the initial version)

of the linkage editor the bootstrap decks were not necessarily on SYSUT2). Thereafter, each of

the links is copied from SYSUTI to the output file. When each link is copied, a message is written

on _UTPUT signifying the event. When all links have been copied, a 3-word record is written with

the contents of the first word being ENDLINKS. This is followed by an end-of-file.

7.2.2.9 The Bootstrap Program

As discussed briefly in section 7.2.1.4.7, the bootstrap program itself loaded by the standard

CDC loader. The CDC loader loads relocatable records from the beginning of information on a file

until a null record or end of file is encountered. After the CDC loader completes the loading of

the bootstrap program, core will be as diagrammed here.

0

778

1008

Field Length

1008 Words

Job Data

IXBO_TBDI

labeled

common

XB_T

XI_RTNS

MAPFNS

SCQPE ROUTINES

/ /

blank

common

space allocated to hold
"Supermain" = LINK 0

Bootstrap routines

Open core (blank common) used
for work space

7.2-75 (611/71)

NASTRANSUPPORTPROGRAMS

Thebootstrapdriver XB_BTbeginsexecutionandimmediatelyfetchesthe control cardimage

directing the currentjob step. Thiscardandsubsequentcontrol card imagesarenormallystored

in locations708through778of the job control block.

Thecontrol cardshouldbe in oneof the followingformats.

(I) Namel.

In this format,NAME1.is the file nameof the sequentiallinkageeditor output.

Executionof the control cardcausesthe bootstrapprogramto be loaded,andit in

turn will copytheentire executablefile to disk file SYSLM_Din direct access

format. Link 0 will thenbe loadedandtransferof executionwill bemadeinto

Link O.

(2) NameI.CREATE(Name2)

In this format,NAME1is the file nameof the sequentiallinkageeditor output.

Howeverin this case,the bootstrapprogramwill copyfile Namelto a direct access

file Name2anddeclareit to bea commonfile. Link0 will thenbe loadedandtransfer

of executionwill bemadeinto Link O.

(3) NameI.CATL_G(Name2)

In this formatNamelis the file nameof the sequentiallinkageeditor output.

Howeverin this case,the bootstrapprogramwill only copyfile Namelto a local
direct accessfile Name2.

(4) NameI.ATTACH

In this case,Namelis the direct accessfile containingthe executableprogramand

if it is availableto the job control point either locally or througha permanent

file attachor a commonfile attach, the bootstrapprogramwill be loadedbythe

CDCloader. Thebootstrapprogramin turn will loadLink 0 into coreandtransfer

of executionwill bemadeinto Link O.

Thebootstrapprogrambreaksdownthe control card into twofile namesNAME1andNAME2

(NAME2maybeblank), and_PTI_Nwill beeither blank, CREATE,CATL_G,or ATTACH.Havingthis

information,the bootstrapprogramwill thendecidewhetheror not the file NAME1is to becata-

loguedfor direct accesson file NAME2.If it doeshaveto becatalogued,that processis per-

formedimmediately.

7.2-76(6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Once it is determined that the file is in direct access format (an ATTACH was made or it was

put in direct access format) for execution of the program, " "Supermain =Link O, the always-core-

resident program segment, is read directly into core. A transfer is made directly to location

lOl8 where a jump to the actual entry point of supermain is stored. The bootstrap program is then

lost and is unrecoverable. However, it is not needed for the continuing execution of the program.

Detailed logic of the cataloguing process of the file for direct access may be found in the

logic flowhcart for XB_T, Figure 39. The bootstrap program is contained entirely in one

F_RTRAN subroutine which is well and heavily commented and should also be referenced. Refer also

to section 7.2.1.4.7.

7.2.2.10 The Segment Loader

Detailed execution of the segment loader XLBADER is covered best in the detailed comments

of the actual code and the flowcharts of XL_ADER's two entry points LINK and L_ADER.. (Figures

40 and 41).

Entry point LINK in the segment loader utilizes information stored in locations lOl8, I028,

and I038 (in the LINKO$ table) as follows.

59 29 0

1018

I028

I038

EQ BO,BO,L_B ZER_-SEGTAB$ ADD.

LENGTH-MAST MAST-INDX ADD.

LENGTH-SUB SUB-INDX ADD.

59 35 17 0

L_C is the entry point of Link O.

LINK stores the contents of word I028 in the FET word 8 when reading in a subindex for a

link. This subindex is read into the location specified by the subindex address in word I038.

Then LINK stores the address of the subindex in the FET word 8. The FET is always stored beginning

in word I048 as allocated by the linkage editor. The master index contains relative track addresses

which point to the beginning of particular logical records on the disk as listed here.

7.2-77 (6/I171)

NASTRAN SUPPORT PROGRAMS

MASTER INDEX(1) = Not used

MASTER INDEX(2) = Subindex for Link 0

MASTER INDEX(3) = Subindex for Link 1

MASTER INDEX(4) = Subindex for Link 2

The subindex contains relative track addresses which point to particular logical records defining

a particular link.

SUB INDEX(1) points to directory of 3 words containing the link number, the number of

segments in the link, and longest possible length of the link when loaded.

SUB INDEX(2) points to Segment l

SUB INDEX(3) points to Segment 2

L_ADER. is the entry point which is called in XL_ADER from ENTAB$ tables to handle the auto-

matic loading of segments as required. Each segment loaded by the segment loader results in one

call to the PP (peripheral processor) routine CI_ which reads the segment from the disk directly

into the core in which the segment is to reside. (This is often referred to as a blast read of

a record). L_ADER. calls READX for all segment loads, thus avoiding the use of the circular

buffer.

L_ADER. is concerned with two tables in core. One is SEGTAB$ (Figure 28) which may be located

by finding its zero-address in the right 30 bits of core location 1018 . SEGTAB$ contains one word

for each segment possible in a link and is terminated with a full word of zero bits. SEGTAB$ is

built into the root segment (segment I) of each link. Link 0 does not have a SEGTAB$. Each

word of the SEGTAB$ has the following format:

Bits 0 through II = Number of the parent segment or 0 if there is no parent

Bits 12 through 17 = The number of the region the segment is in

Bits 18 through 35 = The address where the segment loads at

Bits 36 through 53 = The length of the segment

Bits 54 through 57 = Unused

Bit 58 = l if a segment is about to be loaded by the segment loader. (If this

bit is on for any segment, L_ADER. or READX should be in execution)

7.2-78 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Bit 59 = 1 if the segment is currently considered in core and not overlayed by

any other segment when exit from the loader has been made.

The other table used by LOADER. is ENTAB$, a table that resides in any segment which has "downward

calls" (calls to a lower segment in a tree or outside a given region). An ENTAB$ table is made

up of entries which are 3 words or more in length. See Figure 29 for the format of an entry in

ENTAB$.

Often a downward call passing to ENTAB$ and then to LOADER. will, if LBADER. determines the

segment is in core pass control directly to the address specified in the ENTAB$ entry. The loader

knows where the ENTAB$ entry is because at the entry point to LOADER. is stored a jump back to the

address + l of the last word of the ENTAB$ entry. This jump back is never used except to deter-

mine where LOADER. was called from. LOADER. never returns. It only calls forward. The routine

called by LOADER. always returns directly to the routine that called LOADER. via the ENTAB$ entry.

Step-by-step logic is detailed in the logic flowcharts for LINK and LOADER. (Figures 40 and

41), the two subroutines of XLOADER. Segment loads are accomplished by calls to utility routine

READX. The systems programmer should also consult the heavily commented COMPASS subroutine

XLOADER. This is a relatively small, self-contained routine. Refer also to section 7.2.1.4.8.

7.2.3 Flowcharts

The following pages give flowcharts for each of the major divisions of the linkage editor,

(Figures 31 through 38), the bootstrap program (Figure 39) and the segment loader (Figures 40 and

41). The general flow of the linkage editor is given in Figure 3 and reference to it in connection

with Figures 31 through 38 may be helpful. If a flowchart symbol (e.g., a processing rectangle,

a decision diamond) is identified by a number (e.g., 910, 921) above and to the left of the

symbol, the number is the FORTRAN statement number where the processing or test can be found.

A number followed by the letter "a" (e.g., 330a) in the same position on the flowchart implies the

function can be found in the neighborhood of the FORTRAN statement numbered by the number--330 in

the example. If a processing symbol, a rectangular box, of the flowchart is identified by a symbol

name above and near the left-hand edge of the box, the box represents a subroutine call and the

symbolic name is the subroutine name. The abbreviation "nbr" stands for the word "number".

7.2-79 (611171)

NASTRANSUPPORTPROGRAMS

LKEDO00

,L
Read Print, Decode,
and Convert 1st Card
in INPUT

Name
=LINKEDIT

YES

921

Is
Continued

NO

910

Print Fatal
Error Message

Read, Print, Decode,
and Convert Next Card

_f STOP

End of NO

rd ?

YES

960

File Specs_O_

YES

Allocate Buffers
and Indices and
Open SYSUTI

_ EXIT

YES

to LKEDOI5

Print Fatal
Error Message

Figure 31(a).

;_ EXIT

to LKEDOI0

STOP

Flowchart for LKEDO00.

7.2-80 (6/I/71)

P

lr

on

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

XREF

LET

928

930

.TRUE. ÷ XREF

.TRUE. -_LET

N_LIST

932

.FALSE. ÷ LIST

NmMAP

933

.FALSE. ÷ MAP

_UTFILE

I ' _921

935
934

Invalid

Keyword

950 A

91o
Save Value I

of PARAM

Save File Name
and Status

Figure 31(b). Flowchart for LKEDO00.

7.2-81 (6/1/71)

NASTRAN SUPPORT PROGRAMS

L KEDOI 0

,l
Open INFILE. Copy

Bootstrap Program
to SYSUTI

Read Directory
Record for Link

130

Close INFILE

I

.. _,,,3 words

Copy Segments
From INFILE to
SYSUTI

L
Write Index
Record for Link

Print Fatal

Error Message

Figure 32. Flowchart for LKEDOIO.

7.2-82 (6/I/71)

D
DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

LKEDOI 5

Read, Print, and
Convert LIBRARY Card

Check
Format

Print Fatal
Error MessBge

Test

_.._sition on

End

<_nuation

NO

210

Open SYSUT2 in Buffer 2

/_llocate Storage for
Subprogram Name and

Entry Point Tables

Initialize Table
Pointers

Open a Library
in Buffer 3

_230

Not End

Read, Print, and
Convert Next Card IAdd Name of Library to

_Library Table (ignore

if Already in Table)

Figure 33(a). Flowchart for LKEDOI5.

7.2-83 (6/]/7])

NASTPJ_N SUPPORT PROGRAMS

Read a Deck From

the Library

350

Close Library. Store
Pointer in Library
Table to First Deck

in Next Library

I ,

Move Subprogram Name]

Table and Entry Point I

Table so That They Use I

Only Actual Size Required I

I
Reset Table Pointers
to New Locations

NO

Try to find PIDL
Table

Print Warning Message
Ignore Deck

_230

NO

Add Name of Subprogram
to Subprogram Names
Table. Advance Pointer

to Next Entry

Print Warning Message
Ignore Deck

_230

YES

._,_J'_ EXIT

to LKED900

Print Fatal

Message (5)

Write Deck on SYSUT2

Figure 33(b). Flowchart for LKEDOI5.

7.2-84 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

_230

I

Locate ENTR Table i

NO

?

For Each Entry Point,
Store Name and Pointer

in Entry Point Table

NO

30

(EXIT
to LKED900

Print Fatal

Error Message (5)

_(ABORT

With XDUMP

Figure 33(c). Flowchart for LKEDOI5.

7.2-85 (611171)

NASTRAN SUPPORT PROGRAMS

I n i t i a l i z e For 1 s t Pass I I Echo Card i n DAYFILE

-a End o f P r i n t F a t a l E r r o r

s / I Message

Decode and Conver t 1 ' 1

F i g u r e 34(a) . F lowchar t f o r c o n t r o l s ta tement p rocess ing .

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

NO BAD

i Print Error
Messagefor
REGI_N/_VR
Problem

Invalid Verb

INCLUDE

REGIBN

_VERLAY

INSERT

RENAME

ENTRY

END

LINKor
ENDLINKS

 12oo

_1300

_1400 1,3,6

_8A_1500

_1600 2

_1990

4,5

1910

;IPrint Error Message
For Bad Format

1920

Print Error Message
For lllegal Verb

1930
I

61 Print Error Message

1940 v I For Missing Name

i rint Error Message
For Misplaced Card

010

Figure 34(b). Flowchart for control statement processing.

7.2-87 (6/I/71)

NASTRANSUPPORTPROGRAMS

II00

=2

1900

Look Up Name
in Library Table

Print Error Message
Set N_G_ : 2

3 ÷ KERR

I010

Figure 34(c). Flowchart for control statement processing.

7.2-88 (6/I/71)

D
DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

LLook Up Name
in Library Table

"_ 1121

To LKED990

Logic Error Abort

Look Up Subprogram
Name in GT

Not in Table

able

_n_r_>_--l .e,s_e

I.

reate Entry With
LASS = 4 or 5. Store

_ointer to Library in

Field

YES

r

_lOll

Figure 34(d). Flowchart for control statement processing.

7.2-89 (6/1/71)

NASTRANSUPPORTPROGPJ_MS

1200

?
Increment Region nbr

Store Segment nbrs

i n RDT

1960

_ Print Error Message

_...Li_k __ [_kl_legal Card For

8oo
1

Save Card in Working
Storage I

NO

I0

_ Exi__J
TO LKED900

Print Fatal Error
Message (0)

Figure 34(e). Flowchart for control statement processing

7.2-90 (6/I/71)

DESIGN OF THE CDC 6400/6600 L INKAGE EDITOR

Figure 3 4 (f) . Flowchart f o r con t ro l s ta tement process ing .

7.2-91 (6/1/71)

NASTRANSUPPORTPROGRAMS

1400

= 1

= 2
LK 21

LKEDI50

DelinkEntryFromOld
SegmentandLink to
CurrentSegment

LookUpINSERT
Namein GT

1421A._,,
In Table_ . _-,,Link0

INot in
Table

5 ÷ KERR

_]900

Print Error Message

Create Entry With
CLASS = 7 (undef.)

NO

1421

Figure 34(g). Flowchart for control statement processing.

7.2-92 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

15O0

=l =2

Increment Count
of RENAME Cards

Get Hash nbr For Old
Name; Hash Into RT;
Find End of Hash Chain

6 ÷ KERR

1900

H Create New Entry in
RT. Chain Entry to
Previous Entry

IOll

_1800

Figure 34(h). Flowchart for control statement processing.

7.2-93 (6/I/71)

NASTRANSUPPORTPROGRAMS

1600

=I =2

°

Store ENTRYName

I010

< EXIT

To LKED990

Logic Error Abort

4 ÷ KERR

1900

Figure 34(i). Flowchart for control statement processing.

7.2-94 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

1990

?
Set End of Table for)
Cards For Pass 2.)Complete Allocation of
Working Storage

Create Entry in GT
For LINKO$

Create Entry in GT
For SEGTAB$

Read Dictionary For
Link 0 From SYSUTI

Create Entry in GT
For Each Item in

Link 0 Dictionary

F
Set PASS = 2

1002

Figure 34(j). Flowchart for control statement processing.

7.2-95 (6/I/71)

LKED025

I Reopen SYSUT2.
I Initialize to Pro-
I cess Each Entry in
I the Subprogram Names

----- I Table (SNT)

 LLL>3OlO
Get Library Name I
From LT. Get Pointersi
to SNT From LT I

I

_>3015 _

Get Name From SNT

Look Up Subprogram
Name in GT

[I CLASS :

3210_

< [YES

NASTRAN SUPPORT PROGRAMS

Read Deck From SYSUT2

Reset CLASS to l or 2.
Complete L Field

3060

Search All TEXT
Tables in Deck

If any TEXT Table
Points to a Common
Block in the LCT, Set
High Order Bit in the
LCT Entry

3050

Get Next Common Block
Name From LCT

LKEDIO0

Look Up Common Block
Name in GT

30501a

Figure 35(a). Flowchart for LKED025.

7.2-96 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

30501a

-1

1,3,4 Print Warning Message

2,5

3055

®

3058

30599

To LKED990

Logic Error Abort
3054

Reset CLASS to 2

3_B i3058

3051

Set CLASS and L
Fields of New Entry

Set INDEX Field

Figure 35(b). Flowchart for LKED025.

7.2-97 (611171)

NASTRANSUPPORTPROGRAMS

3055

3055

Set Max L

NO

NO
Print Warning Message

Set INDEX Field

Locate ENTR Table

3080

NO
Print Error Message

3210

Figure 35(c). Flowchart for LKED025.

7.2-98 (611171)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

3080

3080

PickUpEntryName
FromENTRTable

LKED1O0

Look Up Entry Name
in GT

_r

-l

3091

Set CLASS, L and A
Fields of New Entry

0,2,3,4,5

3095
!

.I Set A Field of Old

7 Entry

30999

_C EXIT)

To LKED990

Logic Error '_bort

j--x

3_O0

II0

3092 & 3094

I Print Error Message.Set NBGB Flag

3205

Reset CLASS to 4 and
L to Library Pointer

_3210

Figure 35(d). Flowchart for LKED025.

7.2-99 (6/I/71)

3100

_YES

=Undef. /

,o

NASTRAN SUPPORT PROGRAMS

Print Warning Message

CALL LKED150

Reset CLASS, L and
A Fields in Entry

YES

Search TEXT Tables
for ID Word

EXIT

Print Warning
Message

YES

Figure 35(e).

CALL LKED990
Logic Error Abort

Flowchart for LKED025.

7.2-100 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

c

313

Store Number of

Arguments in Each
Entry in Call Chain

LI=0

NO

080

3120a

l
Turn on ARG Bit.

Set Pc = Number
Arguments

Locate LINK Table

N

315 3200

Pick Up External
Reference

LKEDI75

If Requested, Rename
External Reference

Figure 35(f). Flowchart for LKED025.

7.2-I01 (611/71)

NASTRANSUPPORTPROGRAMS

LKEDIO0

Look Up External
Name in GT

_r

-I

3170

3164

If Call Not in Path,
Add Entry to Call
Chain

2,5

3165

I Print Warning Message I

<EXIT
To LKED990

Logic Error Abort

3161

I reate New Entry
With CLASS = 7

,__o_o__ _'_i

Add Entry to Call
Chain

W

3170

Figure 35(g). Flowchart for LKED025.

7.2-I02 (6/I/71)

DESIGNOFTHE CDC 6400/6600 LINKAGE EDITOR

31620

I Search EPT

NO

NO

I YES
LKEDI50 +

Delink Entry From Old

Segment and Link to
Current Segment

LKEDSO0

Look Up Subprogram
Name in GT

[re te ew n r, n
' i_ Table With CLASS=4

200 151

Set INDEX Field in GT. I

Set Max Length of Text

and Deck Table
!

_3210

Not in Table

Figure 35(h). Flowchart for LKED025.

7.2-I03 (6/I/71)

3210

NASTRANSUPPORTPROGRAMS

of NO

3015

.TRUE. SYSLIB

SE.

NO
Libraries

YES 3010

Undef. S_._

3
Initialize to Trace
Each Segment Chain
in the GT

YES

YES

NO
UNPKSYM r_ 3280

Unpack Items in GT
Entry

3280

Print Warning Message

_298

For Each Entry in Chain1
Which Matches an Entry
in LINKLIB, Create a GT_
Entry of CLASS=4 for |
Subprogram Name |

Set SYSLIB to .TRUE.

3010

Figure 35(i). Flowchart for LKED025.

7.2-I04 (6/I171)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

0,6
32899

ToLKED990
LogicError Abort

4,5

_3287

32871

Print ErrorMessage.
SetN_GBFlag

3288

I Print Error Message.
Set N_G_ Flag

329

Print Error Message
Set NI_G_Flag

3295

Figure 35(j). Flowchart for LKED025.

7.2-I05 (611171)

NASTRANSUPPORTPROGRAMS

YES

?

NO

NO

_I Print Error Message.

-[Set NOG_ Flag

Print Error Message
Set N_G_ Flag

OFF

Turn Off

3295

3 EXIT

OK To LKED990

Logic Error Abort

_3295

Get Entry in Call
Chain

NO

Set PSYM : 0

Figure 35(k). Flowchart for LKED025.

7.2-I06 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

LYES

3280 NO

3270a_

_o

IPrint Error Message I

Each Entry in Chain.F°r

Set N_G_ Flag

Initialize to Process
Each Entry in Each
Segment Call Chain

]
3306 "4

Get Segment Limits
From RDT

[_ 3310

Get Segment Chain
Pointers From SCT

Unpack Call Chain
Entry

Delink Entry From
Call Chain

3320

NO

31

Figure 35(I). Flowchart for LKED025.

7.2-107 (611/71)

NASTRANSUPPORTPROGRAMS

3320__-._

I Print Error Message.i
Set NBGB Flag

4
Set A Field in Entry

<_f Call

YES

3322

YES Chain Now

Empty

NO

3311

NO

Create Entry in GT
For ENTAB$

yEs

3310

_3306

Figure 35(m). Flowchart for LKED025.

7.2-108 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

LKED050

1
Initialize to Process
Each Segment Chain

Get Segment Chain
Pointer From SCT.
Set LENGTH=O

Unpack Entry

I LENGTH=LENGTH+L+I

J

YES

Store LENGTH in SDT

Figdre 36(a). Flowchart for LKED050.

Initialize to Process
Each Region

4010a

Get Segment Number
Defining Region
From RDT. REGLEN=O

4012

PARENT=Last Segment
in Region. LENGTH=O

4014

LENGTH=LENGTH+Length
of Segment PARENT=
Parent in SDT

Set Maximum Region
Length

7.2-I09 (6/I/71)

NASTRAN SUPPORT PROGRAMS

NO

12

N_4olOa

Replace Region Lengths

IWith Region Addresses l

Iby Accumulating Lengths I

1
Initialize to Process
Each Region

4030a _

Get Segment Numbers
Defining Region From
RDT Get Region
Address From RDT

Add Length of Segment
to Current Address

Store Segment Address
and Region Number in
SDT

p

o

4o3 4030a
Initialize to Process

Each Segment Chain

[_>_o-]_
UNPKSYM _ v 4050

I Unpack Entry

$
Figure 36(b). Flowchart for LKED050.

7.2-110 (611171)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

0,6

4044

40499

To LKED990

Logic Error Abort

II Store Subprogram
Address in L Field.
Turn on ARG Bit

4046

Store "Entry"
Address in A Field.
Increment Address

4047

I Get Subprogram Address /

via L Field. Add it t_
Relative Address, and |

Store in A Field |

4,5,7
2 4042

Figure 36(c). Flowchart for LKED050.

7.2-III (6/I/71)

NASTRANSUPPORTPROGRAMS

YES

NO_N 0

YES

Accumulate and Set
Address of ENTAB$
Entry

EXIT

To LKED990

Logic Error Abort

4042

LKEDIO0 _NO
I

Look Up Entry in GT I

I

rES

Print Error Message.
Set NOGOFlag

_4070

Figure 36(d). Flowchart for LKED050.

7.2-112 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

=l?_

Save ENTRY Address

L

I
NO J Print Error Message.

I Set N_G_ Flag

Look Up L_ADER. in GT

NO ,_ExIT
To LKED990

Logic Error Abort

Generate RJ L_ADER.
Instruction

Figure 36(e). Flowchart for LKED050.

7.2-I13 (6/I171)

NASTRAN SUPPORT PROGRAMS

LKED075

_ ENTER _

I

Print Error Message.
Set NOGB Flag

Set WRIT_UT = .FALSE.

Set WRIT_UT = .TRUE.

4

Build and Write BLKDATA I

Program and Write on I

SYSUTI I

Look Up Name of a
Bootstrap Deck in
the SNT

5010

NO _IWrite Directory Record

"lon SYSUTI

_5020

Figure 37(a). Flowchart for LKED075.

7.2-114 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

NO

?

Read Deck From SYSUT2
Write Deck on SYSUTI

Print Fatal Error

Message

UNPKSYM _ v5180

Unpack Entry in GT

' r

 C/5009a YES
Write Directory Record
on SYSUTI. Write Dic-
tionary Record on
SYSUTI

Initialize to Build
Text for Segments

Get Segment Numbers
For Region From RDT

Get Segment Chain
Pointers From SCT

_5040

5044

Figure 37(b).

ENTAB$ YES

NO

try in

YES

NO

Build SEGTAB$.
Write SEGTAB$
on SYSUTI

NO

YES

Assemble LINKO$.
Write LINKO$ on
SYSUTI

Print First Entry

5040

Flowchart for LKED075.

517O

505O

7.2-I15 (6/I/71)

NASTRAN SUPPORT PROGRAMS

EXIT _"_-j-
To LKED900

Logic Error Abort

>3

YES

Read PIDL Table

For Subprogram
on SYSUT2

=2

Set LR = 1 Get

Length From PIDL

NO

Get Address of Each

Entry in LCT From GT

I
Read ENTR Table For
Deck on SYSUT2

Print Entries.
If XREF, Write Entries
on SYSUT3

5100

Figure 37(c). Flowchart for LKED075.

5O8O

No Text-Generate
Zeros. Print Storage
Map Line

_5040

Get Length From Entry. |
Print Storage Map Line.|
Set LR Depending on |
Position of Common |
Block in LCT

Zero Text-Building
Area. Write Dump
Control Word

Read a Table From
Deck

NO

516

Write Text on
SYSUTI

7.2-116 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Any Other Table

LINK

TEXT

FILL

FILLTAB

_I Relocate Text

1

_5103

TEXTTAB _ YES

Relocate Text

L

5103

REPL _1

l

REPLTAB

Figure 37(d).

Relocate Text

Flowchart for LKED075.

7.2-I17 (6/I/71)

NASTRAN SUPPORT PROGRAMS

5130

Get External Name

Look Up Name in GT

UN

Unpack Entry

YES _

r

YES _ _5134

Get Address From IGT Entry

Figure 37(e).

EXIT ._

To LKED990

Logic Error Abort

5160

I

Write Text on SYSUTI I

NO

Close Record on SYSUT3 1

I

Flowchart for LKED075.

5040

7.2-I18 (611/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

5134

Trace Call Chain

to Find Entry

NO ExIT)
To LKED990

Logic Error Abort

NO I
Set Address to ABSENT.

Get Address From
ENTAB$ Entry

Perform Relocation I
of All References to
External Symbol

5103

5130

Figure 37(f). Flowchart for LKED075.

7.2-I19 (6/I/71)

NASTRANSUPPORTPROGRAMS

5170

Build Text For

ENTAB$

I Write ENTAB$ on
SYSUTI

Close Record For
Segment

NO

5034

NO

5025

XREF? .FALSE _
RETURN

Close Record on SYSUT3
Rewind SYSUT3

I
_ EXIT_
To LKED077

Figure 37(g). Flowchart for LKED075.

7.2-120 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

LKED077

Initialize For
Processing

7010

Read Subprogram Name
and Address

NO

YES_N=a?_e_

Read Entry Point
Name and Address

Look Up Entry Name
in Table

?

'Read

External Reference

NO
I

Create Entry. Link toJ
List Chain L

Link to List Chain

7020

Figure 37(h). Flowchart for LKED075.

7.2-121 (6/I/71)

NASTRAN SUPPORT PROGRAMS

}°
Look Up Name in
Table

_o

Create Entry in
Table

Create Call Entry

Read Location of
External Reference

NO

7O5O

ireaeNewcanrlPrnne

Figure 37(i).

Add Current Call
Location to Call

Entry

Flowchart for LKED075.

7050

Complete Call Entry.
Print Line

7010

External Name =
Last Word Read

7.2-122 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

7060

?
Initialize For 2nd

Pass (SORT 2)

Read Link 0 Dictionary
From SYSUTI. For Each

Entry in Link 0 Which
is Also in the Table,
Link the Entry to the
Call Chain

of List

7130 _YES

I
I Restore Table Pointer

UNPKEP

Unpack List Chain
Entry

 , yEs

Initialize to Trace
Call Chain

NO

UNPKXRF _ v 7110
1

Unpack Call Chain I

Entry {

Print Calls

Print Entry

Figure 37(j). Flowchart for LKED075.

7.2-123 (6/I171)

NASTRANSUPPORTPROGRAMS

LKED080

YES

Create BLKDATAProgram 1
Whose Length=Length of _
Link 0 + 2008. Write This I
Program as 1st Record on
_UTFILE

Open LINKLIB in
Buffer 2

RETURN

229

Write Record With
Word ENDLINKS. Close
BUTFILE.

Read a Deck From
LINKLIB and Locate
PIDL Table

NO

Write Deck on _UTFILE

i

Close LINKLIB

L

 Exist ForJ

YES

Read Subindex For
Link Point Index
to Subindex

,L
Read Directory Record
For Link. Write Direc-
tory Record on OUTFILE

Copy Each Segment
From SYSUTI to
(_UTFILE

Figure 38. Flowchart for LKED080.

7.2-124 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

XBBBT

1
Pick up Control Card

From Locations 708 -
778 and Unpack Each
Character Into a
Separate Word

From the Control Card
Characters Form the
Two File Names NAME1
and NAME2 and the optior
Specified

220

YES

_Print Illegal _PTI_N]

sage S

I
_ STOP _

Figure 39(a).

Print Message About l
Illegal Use of File l

.a son
YFS

Open the Direct Access
File of Name NAME2

Declare File Named

NAME2 to be a C_MM_N
File

YES
Release it From
C_MM_N and Evict

the Disk Space it
is Using

420 _r

Determine Amount of
Core There is Avail-
able in Blank C_4_N

NO

Set NAME2="SYSLM_D" _

Flowchart for subroutine XB_T of the bootstrap program.

7.2-125 (6/I/71)

NASTRAN SUPPORT PROGRAMS

I

Open the Sequential I
File NAME1 With Rewind I

]
I

Read One of the I

Bootstrap Relocatables I

From File NAME1 I

Loop to Copy I

Bootstrap

Program_

i rite it Sequentially
on File NAME2

465

_ Read Link 0 Directory i
Record From File NAME1

Write Directory Record|
as Direct Access Recor_
Using Sub-lndex on |

File NAME2 |

Read Link 0 Dictionary
From File NAME1 and
Write it Out as Direct-
Access Record 2 Using

Sub-lndex on File NAME2

IRead Link 0 "Supermain" 1
Directly Into the Core I
Space it Will Occupy atJ
Z(1) in /XB_TBD/ From I
File NAME1

1
Write out "Supermain"
as Direct-Access Recorc
Record Nbr 3 Using
Subindex on File NAME2

Set Index Specification

in FET to Point to the

Master Index

Write Out the Link 0]
Subindex as Direct-

Access Record 2 Using
the Master Index on
File NAME2

I Redefine the Space

Occupied for Use by
the Sub and Master
Indices to be the
Actual Predefined
Space in Supermain

Rebuild the FET
For Direct-Access
File NAME2 in its
Permanent Location

in SllpPrm_._.n

570 _"

Read a Link

Directory From
File NAME1

v700

!

Print Error Message i
About Invalid JDirectory Record

STOP

Figure 39(b). Flowchart for subroutine XB_T of the bootstrap program.

7.2-126 (611171)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

w

70

Close the Sequential
File NAMEI With Rewind

NO
i

_I Define Index in FET

to Point to theSubindex

J.,

r

Set the Field Length

in Locations 738 and
768

 YES
Close File NAME2
With Rewind Only

Close File NAME2
With Unload

Execute C_MM_N Macro
on NAME2 to Re-attach
C(_ON FiIe

ReopenFileNAME2Direct-Access

Transfer Control to

Location lOl8 in Core

Figure 39(c). Flowchart for subroutine XB_T of the bootstrap program.

7.2-127 (611171)

NASTRAN SUPPORT PROGRAMS

Write Out the Director)
Record as Direct-Access
Record 1 Using Sub-
Index on File NAME2

Set LINK Number and
NUMSEGS From Directory
Record Data

<o11>NUMSEGS

_ Compl ete

Define Index in FET
to Point to Master
Index

I
Write Sub-lndex For

Link Just Cataloged
as Direct-Access
Record LINKNUM+2

_sing Master-lndex)
on File NAME2

570

I
Read a Segment From I
File NAME1 l

Print Insufficient L_

_ _- !

Write the Segment as T

Direct-Access Record (STOP _)I+I Using the Sub- j
index on File NAME2

Figure 37(d). Flowchart for subroutine XBOOT of the bootstrap program.

7.2-128 (6/I171)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Print Message That
NAME1 May Not be
Different From NAME2

on _PTI_N="ATTACH"

Write a Message

STOP

220

or

N/_ME2="B1ank"
?

YES

750

Insufficiel

cient Core

I Open the Direct-
Access File NAMEI

i

'Read in Subindex For

Link O, Which is
Record 2, Using the
Master Index

1
Define FET to Point
to This Subindex
Just Read

I
Read in Link 0 Direc-
tory = Record l Using
the Subindex

i
I

Set Link 0 "Supermain"L

Length]

Read in Supermain =
Record 3 Using the
Sub-lndex

Supermain is Read
Directly Into its
Permanent Location
in C)re

1
I

Redefine FET in its I
Permanent Location I
in Supermain

Move Master Index
From Working FET to
Permanent Location

lOl8 in Core

ransfer Control tOre_cation I018 in Co

Figure 39(e). Flowchart for subroutine XB_T of the bootstrap program.

7.2-129 (6/I/71)

NASTRANSUPPORTPROGRAMS

LINK

1
Store in Word 8 of
the FET the Master
Index Address and
Length

Compare the Requested
Link Number With the
Master Index Length
to Determine if it is
in Range

I Call LINKERR to 1

the Link_ NO .] Write Message "LINK i
Number inJ "| NUMBERIS OUT OF I

"',,_ ngej,-/ L..._NGE." _

j'_Relative Track_ YES Read in the Sub-
<Address for the Sub-_>_-_ index for the Link

___ Desired

T N°
Change Word 8 of the
FET to Point to This
Subindex Just Read

Call LINKERR to Write I

I Message."LINK NOT l

(TOp)
Read in Record 1 Using
This Link's Subindex I
to Pick up 3 Word
Directory Record

< STOP

Figure 40(a). Flowchart for subroutine LINK of the segment loader.

7.2-130 (611171)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

?
Check Link Num}_erin

Directory to Verify
We Have Correct Link
at Hand

Check For Sufficient
Core to Load Lowest

Segment of Link

NO

NO

Read in Record 2 UsingI
Subindex. This is I
the Root Segment For I

the Link

I
Turn on Left-Most Bit
in SEGTAB$ Segment l
Word to Indicate

Segment l is in Core

Branch to Entry Point

of the Link in the
Rootsegment Just Loaded

(ACTUAL EXIT)

I Call LINKERR to Write I
_l Message INCORRECT
I DIRECTQRY RECORD FQR

I Call LINKERR to Writ_
Message "INSUFFICIENT
C_RE F_R LINK--."

;C

STOP

STOP

Figure 40(b). Flowchart for subroutine LINK of the segment loader.

7.2-131 (6/I/71)

NASTRAN SUPPORT PROGRAMS

LOADER.

1
Determine Address of

the ENTAB$ Entry
Which Called L_ADER.

1

ick Off Segment Number

rom Last Word of I
NTAB$ Entry (This is
he Segment in Which the I
ntry Point of the True
all Resides)

1
Look at SEGTAB$ Entry |

For This Segment and
Note if it is Loaded

l(Bit 59 will be on if

[Segment is in Core)

Move the Actual Jump-
Back Instruction From
the Next-to-Last Word
in the ENTAB$ Entry,
to the True Entry Poin
Given in the Right 18
Bits of the Last Word

in the ENTAB$ Entry.

I
If the Number of Argu-

ments as Given in the

Right 18 Bits of the
Third Word From the
Bottom of the ENTAB$
Entry is Greater Than
6, the Number of Argu-
ment Addresses Over 6

as Stored in the Top
of the ENTAB$ Entry
are Moved to the Stor-

age Area in the Called
Routine

NO

Transfer Control to the_

True Entry + 1 as Given
in the Last Word of the

_,,ENTAB$ Entry

I Save B Registers
B1 Through B6

I Turn on MARKED-FOR- I

L_AD Bit For SEGTAB$ I
Entry of Segment in |
Tree If IN-CORE Bit Of_

]
Pick up Parent
Segment Number of
Segment Just MARKED-

I F_R-L_AD

_ _ NO
/

Pick up Word in I
SEGTAB$ For This
Segment

Figure 41(a). Flowchart for subroutine L_ADER. of the segment loader.

7.2-132 (611171)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Set Load Origin
Address of Highest
Segment to be Loaded
From Last SEGTAB$
Entry MARKED-F_R-
L_AD

Pick Off Region Number
of Last Segment MARKED-
F_R-L_AD in SEGTAB$

Entry

Sweep Through SEGTAB$
Entries and Find First

Segment Having Same
Region Number as Seg-
ments MARKED-F_R-L_AD

Pick up Next SEGTAB$
Entry in Region

Restore B Registers Y_e Out
Region

AD Bit

Bit on and Does Se,

Have an Origin Lower Than
Tree Being Loaded

?

Read Segment Into |
Core and Turn Off
MARKED-F_R-L_AD Bit
and Turn on IN-C_RE
Bit

I
Turn Off IN-C_RE |
Bit For Segment r

Figure 41(b). Flowchart for subroutine L_ADER. of the segment loader.

7.2-133 (611171)

NASTRAN SUPPORT PROGRAMS

7.2.4 Subroutine Descriptions

This section contains descriptions for linkage editor subroutines, which are classified in

four categories:

I. Major subroutines. These are coded in F_RTRAN and are named LKEDxxx, where

I00 < xxx < 299. In general these subroutines operate on the linkage editor tables in

working storage.

2. Linkage editor utilities. These are C_MPASS routines the names of which are related

to the function they perform. They are all entry points in subprograms named LKEDxxx,

where 300 < xxx < 399. Most of these routines perform tasks directly related to the

linkage editor such as field manipulation of table entries.

3. General utilities. These are C_MPASS and F_RTRAN routines the primary functions of

which are general in nature and not limited to linkage editor applications. No naming

convention exists for the general utilities. Several of these routines (e.g., XRCARD,

MAPFNS) are used in the NASTRAN program.

4. Miscellaneous. These are written primarily in FORTRAN and perform auxiliary tasks for

the linkage editor. The naming convention is LKEDxxx, where 900 _ xxx _ 999. An example

is LKED990, a routine which abnormally terminates the linkage editor in the event of an

error in the logic.

Much of the communication among linkage editor subroutines is via seven named common blocks,

LKEDCxx, where Ol _ xx _ 07. Section 7.2.6 gives definitions of the principal variables in these

common blocks.

Table 2 gives in alphabetical order the entry points described in section 7.2.4 along with

the subsection numbers where the descriptions can be found.

7.2-134 (611171)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Table 2. Entry Points Described in Section 7.2.4.

Entry Point Section Number Entry Point

ABSENT. 7.2.4.3.5 REINDX

ANDF 7.2.4.3.21 REPLTAB

CALLCHN 7.2.4.2.8 RSHIFT

CHARTST 7.2.4.2.12 RSHIFTX

COMPARE 7.2.4.3.4 SEGPATH

COMPLF 7.2.4.3.21 STOEXT

CONVERT 7.2.4.2.10 SYMHASH

CORDUMP 7.2.4.3.6 TEXTTAB

C_RWDS 7.2,4.3.24 UNPK

FIELDLN 7.2,4.3.27 UNPKI2

FILLTAB 7.2.4.2.21 UNPK30

GETEXT 7.2.4.2.17 UNPKCAL

HASH 7,2.4,2,30 UNPKEP

LINK20. 7.2.4.3.28 UNPKID

LINKERR 7.2.4.3.29 UNPKMSK

LINKTBI 7.2,4.2.22 UNPKSYM

LINKTB2 7.2,4.2.22 UNPKXRF

LKEDIO0 7.2,4.1.I UNPKXX

LKEDI50 7.2.4,1.2 WRITEX

LKED175 7.2.4.1.3 XBKPREC

LKED200 7.2.4.1.4 XBKREC

LKED201 7.2.4.1.4 XCL_SE

LKED900 7.2.4.4.1 XDUMP

LKED990 7.2.4.4.2 XEOF

LKED995 7.2.4.4.3 XEVICT

LSHIFT 7.2.4.3.21 XFETCH

LWORDS 7.2,4.3.23 XFRDREC

N_W 7.2.4.2.19 XJUMP

ORF 7.2.4.3.21 XOPEN

PACK 7.2.4.2.3 XRCARD

PACK12 7.2.4.2.6 XREAD

PACKCAL 7.2.4.2.16 XREQST

PACKDMP 7.2.4.2.26 XREWIND

PACKSYM 7.2.4.2.2 XSTORE

PACKXRF 7.2.4.2.27 XTRACE

PACKXX 7.2.4.2.14 XWRITE

READX 7.2.4.3.15 ZAP

Section Nu_er

7,2.4.3.11

7.2.4,2.23

7.2.4.3.21

7.2.4.2.11

7.2.4.2.9

7.2.4.2.18

7.2.4.2.7

7.2.4.2.20

7.2.4.2.4

7.2.4.2.5

7.2.4.2.24

7.2.4.2.15

7,2.4.2,29

7.2.4.2.25

7.2.4.2.4

7.2.4.2.1

7.2.4.2.28

7.2.4.2.13

7.2.4.3.14

7.2.4.3.19

7.2.4.3.17

7.2.4.3.9

7.2.4.3,3

7.2.4.3.7

7.2.4.3.10

7.2.4.3.22

7.2.4.3.18

7.2.4.3.25

7,2.4.3.8

7.2.4.3.1

7.2.4.3.13

7.2.4.3.20

7.2.4.3.16

7.2.4.3.22

7.2.4.3.2

7.2.4.3.12

7.2.4.3.26

7.2-135 (6/I/71)

NASTRAN SUPPORT PROGRAMS

7.2.4.1 Major Subroutines

7.2.4.1.1 LKEDIO0

Subprogram name: LKEDIO0

Type of routine: Subroutine

Alternate entry points: None

Purpose: To locate an entry in the General Table. If no entry is found and an option is

selected, a new entry in the GT is created.

Calling Sequence:

CALL LKEDIOO(NAME,POINTER,ZPOINT,SEGNO,STATUS,FLAG)

NAME - (input) symbolic name, left justified, zero filled

POINTER - (output) relative location of entry if found or created; zero if not found

and not created

ZP_INT - (output) ITABO + POINTER if found or created; undefined otherwise, where

ITABO is a zero pointer to the GT

SEGNO - (input) if entry is not found and FLAG # 0 and SEGNO _ O, the newly created

entry is chained to the segment defined by SEGNO.

STATUS - (output) if entry was not found (whether created or not), STATUS = -I.

Otherwise, STATUS = CLASS (see section 7.2.2.1.9) of entry (0 _STATUS _7)

FLAG (input). If entry is found, FLAG is ignored. If entry is not found and

FLAG : O, return is made with POINTER = 0 and STATUS = -I. Otherwise,

(i.e., FLAG _ 0), a new entry is created and POINTER points to it while

STATUS = -I indicates this case.

Method: HASH (section 7.2.4.2.30) is called to obtain the hash number for NAME. SYMHASH

(section 7.2.4.2.7) is called to locate the entry in the General Table. If the entry is in

the table, then return is given with POINTER pointing to the entry, ZP@INT = ITABO + P_INTER

and STATUS : CLASS of the entry. If the entry is not in the table and FLAG = O, return is

given with P_INTER = 0 and STATUS = -I. Otherwise a new entry is created in the GT. If

SEGNO _ O, the new entry is chained to the segment chain defined by SEGNO. Return is given

with POINTER pointing to the new entry, ZPOINT = ITABO + POINTER and STATUS = -I.

7.2-136 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Language: F_RTRAN

7.2.4.l.2 LKEDI50

LKEDI50

Type of routine: Subroutine

Alternate entry points: None

Purpose: To delink a symbol entry in the General Table from its posted segment chain and

link the entry to a new segment chain.

Callinq Sequence:

CALL LKEDI50(P_INTER,ZP_INT,SEGNBR)

P_INTER - (input) points to an entry in the GT.

ZP_INT - (input) = TABO + P_INTER, where ITABO is the zero pointer to the GT

SEGNBR -- (input) new segment number to which entry is now to be linked

Method: The posted segment number and segment chain pointers are obtained from the 3rd

word of the GT entry by UNPKXX (section 7.2.4.2.13). The beginning and ending segment

chain pointers are obtained from the SCT by UNPKI2 (section 7.2.4.2.5). The entry is then

delinked (removed) from the posted segment chain. Segment chain pointers for the new segment

(defined by SEGNBR) are obtained from the SCT by UNPKI2. The entry is now linked (added) to

the end of the new segment chain. Updated chain pointers for both the old and new segment

chains are stored in the SCT. An updated 3rd word of the GT entry is stored.

Language: F_RTRAN

7.2.4.1.3 LKED175

Subprogram name: LKEDI75

Type of routine: Subroutine

Alternate entry points: None

Purpose: To Perform the rename function (see section 5.6.4.9)

Calling Sequence:

CALL LKEDI75(NAME,DKNAME,NEWSTAT)

NAME (input/output) name of the external reference to be tested for renaming.

the rename occurs, NAME is replaced by the new name.

If

7.2-137 (6/I/71)

NASTRAN SUPPORT PROGRAMS

DKNAME (input) name of subprogram in which NAME is an external reference

NEWSTAT - (output) a logical variable set to .TRUE., if a rename occurred; .FALSE.,

otherwise.

Method: NEWSTAT is set to .FALSE.. If the Rename Table is empty, return is given. Other-

wise, HASH (section 7.2.4.2.29) and SYMHASH (section 7.2.4.2.7) are called to locate the

entry in the Rename Table. If the entry is not in the table, return is given. Otherwise,

NAME is set to the new name, NEWSTAT is set to .TRUE., and return is given.

Lanquage: F_RTRAN

7.2.4.1.4 LKED200

Subproqram name: LKED200

Type of routine: Subroutine

Alternate entry points: LKED201

Purpose: To determine if a call (external reference) is in the path of the subprogram making

the call. If the call is not in the path, an entry is added to the call chain of the current

subprogram and linked to the ENTAB$ chain of the calling segment. LKED201 performs all the

logic as LKED200 does except the path test.

Callinq Sequence:

 LKE02001
CALL ILKED2011 (TOPTR,TOSEG,FROMSEG)

TOPTR (input) pointer in GT to entry defining the symbol called (external reference).

TOSEG (input) segment number of external reference

FROMSEG - (input) segment number from which call originates.

Method: If entry comes through a call to LKED200, then SEGPATH (section 7.2.4.2.9) is called

to determine if the call is in the path. If it is, return is given. Otherwise, code common

with LKED201 is executed. CALLCHN (section 7.2.4.2.8) is called to determine if any entry

is already in the call chain. If so, return is given. If not, an entry in the call chain

is created. The entry is linked to the ENTAB$ chain for the segment defined by FRBMSEG.

The fields of the entry are completed and return is given.

Languaqe: FORTRAN

7.2-138 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

7.2.4.2 LinkageEditor Utilities

7.2.4.2.1 UNPKSYM

Subproqram name: LKED300

Type of routine: Subroutine

Alternate entry points: None

Purpose: To unpack into II words the II fields of a 3-word symbol entry in the General

Table (see section 7.2.2.1.9)

Callinq Sequence:

CALL UNPKSYM(Z(ZPOINT),ITEMS)

Z(ZP_INT) - (input) address of the Ist word of the symbol entry

ITEMS - (output) address of an array of dimension II where the fields of the entry

will be stored as follows:

(I) Symbol name

(2) CLASS

(3) P1

(4) INDEX

(5) L

(6) Pc

(7) PN

(8) SEG

(9) A

(lO) PREV

(ll) NEXT

Note: the ARG bit is not unpacked

Method: Fields are extracted using bit masks constructed by the MXi instruction shifts and

logical products.

Language: C_MPASS

7.2-139 (6/I/71)

7.2.4.2.2 PACKSYM

NASTRAN SUPPORT PROGRAMS

Subprogram name: LKED300

Type of routine: Subroutine

Alternate entry points: None

Purpose: To store the II fields of a 3-word symbol entry in the General Table from an

ll-word array (see section 7.2.2.1.9)

Callinq Sequence:

CALL PACKSYM(Z(ZP_INT),ITEMS)

The arguments are defined as in UNPKSYM (see section 7.2.4.2.1)

Method: Each word of the 3-word entry is constructed using shift and logical sum instructions.

Fields are not examined for maximum size.

Language: C_MPASS

7.2.4.2.3 PACK

Subprogram name: LKED300

Type of routine: Subroutine

Alternate entry points: PACKMSK

Purpose: To store a single item in a word which contains more than one item.

Calling Sequence:

CALL PACK(ENTRY,ITEM,BIT,WIDTH)

CALL PACKMSK(ENTRY,ITEM,BIT,MASK)

ENTRY - (output) address of word where ITEM is to be stored

ITEM (input) item to be stored

BIT (input) position of the low-order bit in the field in ENTRY where ITEM is to be

stored (numbering convention is that the high order bit in a word is 59 and the

low order bit is O. Bits are numbered from left to right).

WIDTH - (input) width of the field in bit positions

MASK - (input) a mask of l-bits in the low order position of the word, the number of

l-bits is the width of the field where ITEM is stored. The remainder of MASK

must be zero-filled.

7.2-140 (611171)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Method: IF PACK is called, a mask of "l" bits specified by WIDTH is constructed in the

low-order part of a word, with the remainder of the word zero-filled. If PACKMSK is called,

this step is not necessary. The word specified by ENTRYiis fetched, shifted according to

BIT, the requested field is cleared using alogical product with the complement of MASK,

ITEM is entered using a logical sum, the word is shifted to its original position, and stored

back in memory.

Language: CI_MPASS

7.2.4.2.4 UNPK

Subprogram name: LKED300

Type of routine: Integer function

Alternate entry points: UNPKMSK

Purpose: To extract a single item from a word which contains more than one item.

Callinq Sequence:

ITEM = UNPK(ENTRY,BIT,WIDTH)

ITEM = UNPKMSK(ENTRY,BIT,MASK)

Where the arguments are defined as in PACK and PACKMSK (see section 7.2.4.2.3)

Method: If UNPK is called, a mask of "l" bits specified by WIDTH is constructed in the low-

order part of the word, with the remainder of the word zero-filled. If UNPKMSK is called,

this step is unnecessary. The word specified by ENTRY is fetched, shifted according to BIT

and the item is extracted using a logical product. ENTRY remains unchanged in memory.

Language: C_MPASS

7.2.4.2.5 UNPKi2

Subprogram name: LKED300

Type of routine: Subroutine

Alternate entry points: None

Purpose: To unpack four 15-bit items from a one-word entry or eight 15-bit items from a two-

word entry.

7.2-141 (6/I/71)

NASTRAN SUPPORT PROGRAMS

Calling Sequence:

CALL UNPKI2(ENTRY,ITEMS,K)

ENTRY - (input) address of the Ist word of a one-word or two-word entry.

ITEMS - (output) address of the Ist word of a 4-word or 8-word array where the

unpacked items will be stored, right-adjusted, zero-filled

K

Method :

Language:

(input) 1 or 2 specifying the number of words to be unpacked

Items are extracted using a 15-bit mask, logical product and 15-bit shift instructions.

C_MPASS

7.2.4.2.6 PACK12

Subprogram name: LKED300

Type of routine: Subroutine

Alternate entry points: None

Purpose: To pack four 15-bit items into a one-word entry or eight 15-bit items into a two-

word entry.

Call_____ingSequence:

CALL PACKI2(ENTRY,ITEMS,K)

where the arguments are defined as in UNPKI2 (see section 7.2.4.2.5)

Method: Using a shift and logical sum, the items are packed together.

Note: Items are not examined for maximum size (_ 15 bits)

Lanquaqe: COMPASS

7.2.4.2.7 SYMHASH

Subprogram name: LKED300

Type of routine: Integer Function

Alternate entry points: None

Purpose: To locate a symbol entry in a table

Calling Sequence:

P_INTER = SYMHASH(TABLE,NAME,HASHNBR,STATUS)

7.2-142 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

TABLE - (input) address of the Oth word in the table (i.e., address of the

Ist word minus one)

NAME - (input) symbol to be located, left-justified, zero filled

HASHNBR - (input) hash number of the symbol

POINTER and STATUS - (output) if entry for symbol is not in table:

POINTER = 0

STATUS points to last entry in symbol chain.

if entry is in table:

POINTER points to entry

STATUS = CLASS of entry

Method: Beginning with the entry to which HASHNBR points, the symbol chain is searched for

a match. If found, POINTER and STATUS are set as defined above. If the end of chain is

encountered before a match occurs, P_INTER is set to zero and STATUS is set to point to the

last entry in the symbol chain.

Language: COMPASS

7.2.4.2.8 CALLCHN

Subprogram name: LKED300

Type of routine: Integer Function

Alternate entry points: None

Purpose: To trace the chain of calls to a symbol.

Calling Sequence:

POINTER = CALLCHN(TABLE,CALLPTR,FROMSEG,STATUS)

TABLE - (input) address of Oth word in table

CALLPTR - (input) pointer to entry of symbol called

FROMSEG - (input) segment number from which call originates

POINTER and STATUS - (output) if no chain exists:

POINTER = STATUS = 0

if call is already in chain:

POINTER = O, STATUS _ 0

7.2-143 (611171)

NASTRAN SUPPORT PROGRAMS

if call is not in chain:

POINTER points to last entry in call chain

STATUS _ 0

Method: A call chain exists if the ARG bit = 0 and Pc # O. This situation is tested. If

not true, return is made with POINTER = STATUS = O. A call is defined to be already in the

chain if the segment number from which the call originates matches the FROM field of the call

entry. The chain is searched for this condition. If found, POINTER and STATUS are set as

defined above. Otherwise, P_INTER points to the last entry in the chain and STATUS is set

to nonzero.

Language: C@MPASS

7.2.4.2.9 SEGPATH

Subprogram name: LKED300

Type of routine: Logical Function

Alternate entry points: None

Purpose: To determine if the segment called is in the path of the segment from which the

call is made.

Calling Sequence:

LVAR = SEGPATH(Z(ISEGDO),TOSEG,FROMSEG)

LVAR - (output) logical variable which is .TRUE. if call is in the path; .FALSE.

otherwise

Z(ISEGDO) - (input) address of the Oth word of the Segment Definition Table

TOSEG - (input) segment number to which call is made

FROMSEG - (input) segment number from which call is made

Method: Starting with the entry in the SDT to which FROMSEG points, the parent of the seg-

ment is checked. If it maches T_SEG, LVAR is set to .TRUE. and SEGPATH returns. If the

parent is zero, LVAR is set to .FALSE. and return is given. Otherwise, the segment to

which the parent points is fetched and the tests repeated.

Language: COMPASS

7.2-144 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

7.2.4.2.10 CONVERT

Subproqram name: LKED300

Type of routine: Integer Function

Alternate entry Points: None

Purpose: To convert a symbol stored in a 2-word array of 4 characters per word, left

justified, blank filled (NASTRAN format) to a single word, left-justified, zero filled.

Callinq Sequence:

NEWNAME = CONVERT(OLDNAME)

OLDNAME - (input) 2-word array of 4 characters per word, left justified, blank filled

NEWNAME - (output) one word, left justified, zero filled

Method: Each character of _LDNAME is tested until a blank character is found or 8 characters

have been examined. Character positions starting with the blank and those succeeding are set

to zero.

Languaqe: COMPASS

7.2.4.2.11 RSHIFTX

Subprogram name: LKED300

Type of routine: Integer Function

Alternate entry points: None

Purpose: To shift a computer word to the right a specified number of bit positions.

Callin9 Sequence:

SHIFTED = RSHIFTX(NUMBER,N)

SHIFTED - (output) shifted word

NUMBER - (input) computer word to be shifted

N - (input) number of bit positions to shift

Method: The number is assumed to have the high order bit equal to zero (this is not tested).

The AXi instruction is used.

Lanquaqe: COMPASS

7.2-145 (6/I/71)

NASTRAN SUPPORT PROGRAMS

7.2.4.2.12 CHARTST

Subprogram name: LKED300

Type of routine: Logical Function

Alternate entry points: None

Purpose: To test a position in a XRCARD output buffer (see section 3.4.19) for a specific

delimiter.

Callinq Sequence:

LVAR = CHARTST(_UTBUF(K),CHAR)

LVAR - (output) logical variable which is .TRUE. if OUTBUF(K) and OUTBUF(K+I)

contain the specified delimiter; .FALSE. otherwise

_UTBUF(K) - (input) address of a 2-word array of characters stored 4 characters per

word, left justified, blank filled

CHAR (input) address of a character stored in IH format (i.e., left justified,

blank filled)

Method: Let the character be C and a blank be b. Then the two words at _UTBUF(K) and

_UTBUF(K+I) must be Cbbbbbbbbb and bbbbbbbbbb. The words are tested for that condition.

If the condition is satisfied, LVAR is set to .TRUE.. If not, LVAR is set to .FALSE..

Language: C_MPASS

7.2.4.2.13 UNPKXX

Subprogram name: LKED300

Type of routine: Subroutine

Alternate entry points: None

Purpose: To unpack the 2nd or 3rd word of a symbol entry in the General Table (see section

7.2.2.1.9).

Calling Sequence:

CALL UNPKXX(Z(1),ITEMS)

Z(1) - (input) address of the word to be unpacked (2nd or 3rd word of a GT entry)

ITEMS - (output) address of a 4-word array where the four items will be stored.

7.2-146 (6/i171)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Method: Using appropriate bit masks, shifts, and logical products, the fields of the word

are extracted and stored.

Language: COMPASS

7.2.4.2.14 PACKXX

Subprogram name: LKED300

Type of routine: Subroutine

Alternate entry points: None

Purpose: To pack 4 items into the 2nd or 3rd word of a symbol entry in the General Table

(see section 7.2.2.1.9)

Calling Sequence:

CALL PACKXX(Z(I),ITEMS)

where the arguments are defined in UNPKXX (see section 7.2.4.2.13)

Method: Using appropriate shifts and logical sums, the items are packed into a single word

and stored in the table. The items are not checked for being within the specified field

width.

Languaqe: COMPASS

7.2.4.2.15 UNPKCAL

Subprogram name: LKED320

Type of routine: Subroutine

Alternate entry points: None

Purpose: To unpack the items in the first two words of a call entry in the General Table

(see section 7.2.2.1.9)

Calling Sequence:

CALL UNPKCAL(Z(1),ITEMS)

Z(1) (input) address of call entry in GT

ITEMS - (output) a 9-word array where the items from the first two words of the call

entry are stored as follows:

(I) PREV

(2) NEXT

7.2-147 (611/71)

NASTRAN SUPPORT PROGRAMS

(3) NBRARG

(4) CLASS = 6

(5) P1

(6) FR(_M

(7) PFR(_M

(8) PNEXT

(9) PSYM

Method." The items are extracted using appropriate bit masks, shifts, and logical products.

Lanouaqe: C_MPASS

7.2.4.2.16 PACKCAL

Subprogram name: LKED320

Type of routine: Subroutine

Alternate entry points: None

Purpose: To pack the items comprising the first two words of a call entry in the General

Table (see section 7.2.2.1.9)

Calling Sequence:

CALL PACKCAL(Z(1),ITEMS)

where the arguments are defined as in UNPKCAL (see section 7.2.4.2.15)

Method: The items are packed using shifts and logical sums. Field width sizes are not

checked.

Language: COMPASS

7.2.4.2.17 GETEXT

Subprogram name: LKED320

Type of routine: Integer Function

Alternate entry points: None

Purpose: To convert a single word an external reference in the LINK Table (see section

7.2.5) when it is split between two words.

7.2-148 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINICAGE EDITOR

Callinq Sequence:_

EXTNAME = GETEXT(Z(J))

EXTNAME - (output) external reference

Z(J) (input) address of the first of two words where the external reference is

stored in the right half of Z(J) and the left half of Z(J+l)

Method: Using a 30-bit mask, shifts, and logical products, the external reference is

constructed from the two words.

Lanquaqe: C_MPASS

7.2.4.2.18 STOEXT

Subproqram name: LKED320

Type of routine: Subroutine

Alternate entry points: None

Purpose: To store an external name in the LINK Table (see section 7.2.5) when the name is

split between two words. ST_EXT is the inverse of GETEXT (section 7.2.4.2.17)

Calling Sequence:

CALL ST_EXT(Z(J),EXTNAME)

where the arguments are defined as in GETEXT

Method: Using masks and shifts, EXTNAME is split into two halves and stored in the right

half of Z(J) and left half of Z(J+l).

Lanquaqe: C_MPASS

7.2.4.2.19 N_W

Subprogram name: LKED320

Type of routine: Subroutine

Alternate entry points: None

Pur_E]_ose: To return the date and time of day

Callinq Sequence:

CALL N_W(A)

A - (output) address of a two-word array where

7.2-149 (611171)

NASTRAN SUPPORT PROGRAMS

A(1) = time of day (BCD)

A(2) = date

Method: The time of day is found using the SC_PE CLOCK macro, and the date is found using

the DATE macro.

Language: C_MPASS

7.2.4.2.20 TE×TTAB

Subprogram name: LKED320

Type of routine: Subroutine

Alternate entry points: None

Purpose: To perform relocation of text words in a TEXT Table (see section 7.2.5)

Calling Sequence:

CALL TEXTTAB(Z(L_C),Z(1),N,ADDRESS)

Z(LOC) (output) address where the first word of relocated text will be stored

Z(1) (input) address of first word of TEXT Table.

N (input) number of words in TEXT Table

ADDRESS - (input) relocation address (i.e., address of subprogram or common block to

which text refers)

Method: See section 7.2.5 for a description of the TEXT Table of a subprogram. The first

word of a TEXT Table is a relocation indicator word. It is used to determine what kind of

relocation applies to each of the address fields in the remaining words of the TEXT Table.

Lanquaqe: COMPASS

7.2.4.2.21 FILLTAB

Subproqram name: LKED320

Type of routine: Subroutine

Alternate entry points: None

Purpose: To perform relocation of address specified by the FILL Table

Callinq Sequence:

CALL FILLTAB(Z(ITEXT),Z(JLCTO),Z(J),N,LR)

7.2-150 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Z(ITEXT) - (output) address of the Ist word of text for the control section currently

being constructed

Z(JLCTO) - (input) address of the Oth word of the Local Common Table (LCT) (see section

7.2.5)

Z(J) (input) address of the Ist word of the FILL Table

N - (input) nun_er of words in the FILL Table

LR (input) pointer in the LCT to the control section currently being constructed.

Method: See section 7.2.5 for a description of the FILL Table of a subprogram. A 30-bit

byte is extracted from the FILL Table. If it is a control byte, the relocated address is

fetched from the LCT. If it is a data byte, the text word containing the reference to be

relocated is fetched, the relocation is performed (upper, middle or lower depending on P),

and the relocated word is stored back in the text area. This process is repeated for each

30-bit byte until the end of the table is encountered.

Language: COMPASS

7.2.4.2.22 LINKTBI

Subprogram name: LKED320

Type of routine: Function

Alternate entry points: LINKTB2

Purpose: LINKTBI returns an external name from the LINK Table (see section 7.2.5), and

LINKTB2 performs relocation of all references to the external name.

Calling Sequences:

EXTNAME = LINKTBI(Z(IO),J,SWITCH)

LVAR = LINKTB2(ADDRESS,Z(ITEXT),LBC)

EXTNAME

J

SWITCH

Z(IO)

LVAR

- (output) name of external reference

- (input/output) current pointer in LINK Table (starting with l)

- (input) current byte pointer (- = high order, + = low order)

- (input) address of Oth word in LINK Table

(output) logical variable which if .TRUE. means the next call must be to

LINKTB2 and if .FALSE. means the next call must be to LINKTBI. Note:

7.2-151 (611/71)

NASTRAN SUPPORT PROGRAMS

LINKTBI is always called first at the beginning of the analysis of the LINK

Table.

ADDRESS - (input) address of the external name returned from last LINKTBI call.

Z(ITEXT) - (input/output) address of first word of text being constructed.

L_C (input) relative address in text of external reference to be relocated.

Method: See section 7.2.5 for a description of the LINK Table of a subprogram. LINKTBI

extracts the name of the external reference. If the byte switch is plus, the name is split

between two words. The addresses of the arguments of the LINKTBI call are saved and restored

at entry to LINKTB2. Actual relocation of references to the external name are performed by

the alternate entry. Depending on the relocation bits, the word located at Z(ITEXT + LOC) is

relocated and returned to memory. The byte switch, LINK Table pointer, and logical variable

are set and return is made.

Lanquaqe: COMPASS

7.2.4.2.23 REPLTAB

Subprogram name: LKED320

Type of routine: Subroutine

Alternate entry points: None

Purpose: To perform relocation specified by a REPL Table (see section 7.2.5) of a subprogram

Calling Sequence:

CALL REPLTAB(Z(J),Z(ITEXT),N,LR)

Z(J) - (input) address of the Oth word of the REPL Table (i.e., the ID word)

Z(ITEXT) - (input/output) address of the first word of text being constructed

N (input) number of words in REPL Table

LR (input) pointer in LCT to the control section currently being constructed.

Method: See section 7.2.5 for a description of the REPL Table of a subprogram. Data items

are built, relocated, and stored in the text area as a function of the parameter in the REPL

Table.

Lanquaqe: C_MPASS

7.2-152 (6/I/71)

7.2.4.2.24 UNPK30

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Subprogram name: LKED320

Type of routine: Subroutine

Alternate entry point: None

Purpose: To unpack two 30-bit bytes from a FILL Table (see section 7.2.5) or LINK Table

(see section 7.2.5).

Calling Sequence:

CALL UNPK30(ENTRY,ITEMS)

ENTRY - (input) address of word in FILL or LINK Table to be unpacked

ITEMS - (output) an 8-word array as follows:

(I) = high-byte control, 0 or l

(2) = high-byte relocation bits or 0 if (1) = 0

(3) = high-byte RL or 0 if (1) = 0

(4) = high-byte LBC or AR if (1) = 0

(5)-(8)= same for low byte

Method: The items are unpacked using shifts and logical products with appropriate masks.

Language: C_MPASS

7.2.4.2.25 UNPKID

Subprogram name: LKED320

Type of routine: Subroutine

Alternate entry points: None

Purpose: To unpack a table identification word (see section 7.2.5)

Calling Sequence:

CALL UNPKID(W_RD,ITEMS)

W_RD - (input) ID word to be unpacked

ITEMS - (output) a 4-word array as follows:

(I)=CN I
(2)=WC See section 7.2.5

(3)=LR 1
(4)=L

7.2-153 (611171)

NASTRAN SUPPORT PROGRAMS

Method: The items are unpacked using shifts and logical products with appropriate masks.

Language: COMPASS

7.2.4.2.26 PACKDMP

Subprogram name: LKED320

Type of routine: Integer Function

Alternate entry points: None

Purpose: To format the dump control word which is stored at the beginning of each control

section.

Calling Sequence:

W_RD = PACKDMP(NAME)

WORD - (output) formatted dump control word

NAME - (input) control section name, left justified, zero filled

Method: The dump control word is constructed to look as follows:

[370000 _] NAME I

59 42 41 0

where

_I for a common block
BIT = _0 otherwise

Lanquage: CBMPASS

7.2.4.2.27 PACKXRF

Subprogram name: LKED350

Type of routine: Subroutine

Alternate entry points: None

Purpose: To pack the items of the XREF entry into the XREF Table (see section 7.2.2.1.10).

Calling Sequence:

CALL PACKXRF(Z(ZP_INT),ITEMS)

7.2-154 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

Z(ZP_INT)- (output)addressof first wordof 6-wordXREFentry in XREFTable.

ITEMS (input) a 19-wordarraycontainingthe itemsto bepackedinto the XREF

entry asfollows:

(I) Subprogram name

(2) CLASS = 2

(3) P1

(4) 0 (not used)

(5) N See section 7.2.2.1.10

(6) PREV

(7) NEXT

(8)-(18) Ci

(19) 0 (not used)

Method: The items are packed using appropriate shifts and logical sums.

Language: C_MPASS

7.2.4.2.28 UNPKXRF

Subprogram name: LKED350

Type of routine: Subroutine

Alternate entry points: None

Purpose: To unpack the items of an XREF entry in the XREF Table (see section 7.2.2.1.I0).

Calling Sequence:

CALL UNPKXRF(Z(ZP_INT),ITEMS)

where the arguments are defined as in PACKXRF (see section 7.2.4.2.27)

Method: Using appropriate masks, shifts, and logical products each of the fields in

Z(ZPBINT) is extracted and stored in the ITEMS array.

Language: C_MPASS

7.2-155 (611171)

NASTRAN SUPPORT PROGRAMS

7.2.4.2.29 UNPKEP

Subprogram name: LKED350
J

Type of routine: Subroutine

Alternate entry points: None

Purpose: To unpack the items of an entry-point entry in the XREF Table (see section

7.2.2.1.10).

Callinq Sequence:

CALL UNPKEP(Z(ZPOINT),ITEMS)

Z(ZPOINT) - (input) address of the first word of a 3-word entry-point entry in the XREF

Table

ITEMS (output) an ll-word array where the items are stored as follows:

(I) Entry point name

(2) CLASS = 1

(3) P1

(4) 0 (not used)

(5) A

(6) 0 (not used) See section 7.2.2.1.10

(7) PN

(8) PCI

(9) PCN

(I0) PREV

(II) NEXT

Method: Using appropriate masks, shifts, and logical products, each of the fields is ex-

tracted and stored in the ITEMS array.

Language: C_MPASS

7.2-156 (6/I/71)

DESIGN OF THE CDC 6400/_600 LINKAGE EDITOR

7.2.4.2.30 HASH

Subprogram name: HASH

Type of routine: Integer Function

Alternate entry points: None

Purpose: To compute the hash number of a symbolic name

Calling Sequence:

HASHNBR = HASH(NAME,NBRENTR)

HASHNBR - (output) hash number of the symbolic name

NAME - (input) symbolic name, left justified, zero filled.

NBRENTR - (number of entries (not words) in table

Method: The following equation is evaluated:

HASHNBR = M_D(RSHIFTX(NAME,18),NBRENTR)*3+I

where RSHIFTX is described in section 7.2.4.2.11 and M_D is the standard M_D function of the

F_RTRAN language. It is assumed that the number of words per table entry is three.

Language: F_RTRAN

7.2.4.3 General Utilities

7.2.4.3.1 XRCARD

Subprogram name: XRCARD

Type of routine: Subroutine

Alternate entry points: None

Purpose: To interpret and convert free-field card images.

Calling Sequence:

CALL XRCARD(_UTBUF,N,INBUF)

_UTBUF - (output) address of anyarray where the converted card image is stored

N - (input) number of words in _UTBUF

INBUF - (input) address of an 20-word array containing the card image.

Method: See section 3.4.19.

Languaqe: F_RTRAN

7.2-157 (6/I/71)

NASTRAN SUPPORT PROGRAMS

7.2.4.3.2 XTRACE

Subproqram name: XLgADER

Type of routine: Subroutine

A1 ternate entry points: None

Purpose: XTRACE when called gives a traceback from i t s e l f t o the program which called

XTRACE and from tha t program t o the one cal l ing i t and so for th. Note following sample

output.

Call ing Sequence:

CALL XTRACE

Method: From the entry point of XTRACE, XTRACE picks up the address + 1 of where the cal l

t o XTRACE was made from. Stored a t the address of tha t call i s the address of tha t program's

entry point - 1. From there a trace can be made t o the next called routine in the same

fashion.

Language :

7.2.4.3.3 XDUMP

Subprogram name : XL0ADER

Type of routine: Subroutine

A1 ternate entry points : None

Purpose: XDUMP i s called t o dump an area of core storage. XDUMP does not actually perform

the dumping. I t uses the u t i l i t y routine CBRDUMP (section 7.2.4.3.6) t o actually format the

dump.

Call ing Sequence:

CALL XDUMP(ADD1 ,ADD2,0P)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

ADDI- Variablecontainingfirst addressdesiredin dump

ADD2- Variablecontaininglast addressdesiredin dump(If it is greaterthanfield

length, XDUMPwill usethe field length- 1 asthe last addressin dump.

OP -il if °nly an°ctal dumpis desiredif octal andBCDare desired

XDUMPdeterminesthe numberof wordsto bedumped.It thensets upa call to

CORDUMPreceivesthe addressof the arrayand

Method:

CORDUMPwhichperformsthe actual dumping,

dumpsit in the prescribedformat.

Language: COMPASS

7.2.4.3.4 COMPARE

SubproBram name: XLBADER

Type of routine: Integer Function

Alternate entry points: None

Purpose: COMPARE compares two words of core memory and returns a count (0 to 60) of the

number of bits that do not match in the two words.

Calling Sequence:

COUNT = COMPARE(W_RDI,W_RD2)

Method: An logical difference is performed and the number of bits in the result is returned.

Language: COMPASS

7.2.4.3.5 ABSENT.

Subprogram name: XLOADER

Type of routine: Subroutine

Alternate entry points: None

Purpose: The linkage editor automatically inserts a call to ABSENT. for calls to unsatisfied

externals. ABSENT. will be called if these unsatisfied externals are ever called. Then

ABSENT. will call XTRACE to inform the user whence the unsatisfied external was called.

7.2-159 (6/I/71)

NASTRAN SUPPORT PROGRAMS

Calling Sequence:

CALL ABSENT.

Usually called in assembly language or implicitly via a RENAME card in the linkage

editor control card language.

Method: ABSENT. calls XTRACE and then executes a return jump to EXIT to halt the job.

Language: COMPASS

7.2.4.3.6 CORDUMP

Subprogram name: CORDUMP

Type of routine: Subroutine

Alternate entry points: None

Purpose: CORDUMP performs the actual dumping of an area of core. Normally CORDUMP is called

via the driver XDUMP since a FORTRAN program normally cannot define any area of core directly.

Calling Sequence:

CALL CORDUMP(BUF ,LBUF ,OP, NBUFF)

BUF - Array to be dumped.

LBUF - Length of the array BUF

_IO for octal dump only
OP

for octal and BCD dump.

NBUFF - Variable containing the address of the last word of the segment loader's buffer.

(NBUFF is used to eliminate the formatting of 10 buffer into control sections)

Method: CORDUMP creates a normal dump of core storage giving absolute addresses and core

storage four words per line. CORDUMP also looks for the "control section ID word" which

starts each common block or subprogram and outputs relative addresses based on this word.

Figure 42 gives an example of a core storage dump.

Language : FORTRAN

7.2-160 (6/I/71)

DESIGN
OF THE CDC 6400/6600 LINKAGE EDITOR

C
C

C
C

C
C

C

C
C

C
C

C

C
C

 d
 *

N
C

5
\
 C

C

C
C

J

C

C
-

N
F

l

0

C
C

O
C

 C
O

C
G

C
O

C

C
C

l
-

C
C

C
G

O
O

c

o
o

t

C

O
C

G
O

O

E
C

O
C

 C
C

C
O

O
0

0

0
0

0
 0

0
0

0
0

0

0
0

0
.

3
 0

0
0

0
0

0

C
C

.
C

.
C

 C
 C

C

G
C

C

F
C

O
O

 0
O

O
C

.
C

C

0
0

0
0

 0
0

0
0

0
0

O

0
0

D
 O

O
O

Q
C

C

o
o

o
c

 C
~

C
C

O
C

0

0
0

0
 D

O
O

O
O

O

0
0

0
0

 0
0

0
0

0
0

0

0
0

0
 0

0
0

0
0

0

0
0

0
0

 0
0

0
0

0
0

O

C
C

.
0

 C
'
C

i
C

O
C

C
.

C
C

C
C

 C
C

C
C

C
.

C

O
O

O
D

 0
0

0
0

0
0

N
C

N
U

m

 c

.PI

m

o
o

-

-
0

0
-

C
D

O
U

0

0
0

0

f

3

0
-

C
3

0
0

0

C
C

C
C

C

D
O

C

0
 0

 C
 0

0
0

0
0

0

3
0

2

C
3

0
^

0
0

0
0

0

3
0

5
 E

.
.
U

C
C

C
-
.
N

C

C

L
*

C
C

-

8
-

C

N
C

O
G

O

0
0

~
0

C
0

0

c
0

u
o

o
p

?

O
O

C
l

C
O

O
O

O

G
0

0
0

0
0

0

0
0

0
0

0
0

C

C
C

C
C

C
C

:

E
O

C
C

G
O

C

O
C

C
O

C
O

O

0
0

0
0

0
E

0

C
C

O
O

0
"

O

O
O

C
O

C
O

O

0
0

0
0

0
0

0

0
0

0
0

0
0

0

~
O

O
C

C
E

C

O
C

O
~

O
C

C

O
O

O
G

O
G

O

O
O

O
U

C
O

O

. . *
'

* lT
l

/i
0

-

9
 C

9

 C

5

a

0

5

0

C

9

0

G

9

9

 C

9

9
 C

4

0

C

9

9

 C

5

9
 C

9

9

 C

9

0
 C

9

5

0

9

9

 C

9
-

9

.
2

9

*

C

9

9
 C

9

9

9

5

0

a

4

9

9

c

O
d

*

C

4
C

9

C

*

C

9

0

9
0

*

L
C

O

C

9

C

'
4

0

9
1

1
-

1

0

*
C

x

c

*
C

C

O
c

C

C

C

. C'
C

\

C

C

.

C
:

W
C

'

C

Y
C

C

x
c

O

O
L

Y

C

1
-
c

o

U
f

7

C
C

u
c

N
O

0

a
C

\

C
C

\

C

0
0

0

7

0

7

0
.3

0

c
o

r

C
C

+

L

C
-

C

C

W
C

C

L
L

'C

m
o

o

m
a

C

c
'

0

J

'2

_
L

C

0
2

0

0
0

I

-
0

IY

O

C
-

X
O

-

0

;
I
-
0

Z

C

O
Z

O

0
0

U

O
O

U

O

V
O

0

4

c

9
c

9

W
O

9

C

b
U

0

9
0

1

W
O

9

0

4
1

0

*
O

5

c

0
0

Q

C
C

Q

C

9
2

0

0
0

*

Ir
l

9

9
w

9

9

 'U
9

+

a

t

9

C

4
-

4

9
V

l
C

*

C
C

*

D
O

*

r
o

1

a
o

*

c
o

1

0
0

9

0
0

9

3
0

9

-
c

9

n

*
.

Y
O

0

0
0

9

C
C

Q

C
C

~

C
C

e

c
o

9

C
O

0

0
0

4

0
0

O

O
O

*
c

o

9
0

.
3

*

-
O

C
O

O

0

*
a

0

9

0

4
0

0

5

o

e
c

n

9

C

a
0

0

9

?

t
o

o

5

0

9
0

0

B
 -.

.
C

 0

0

c
o

-

-
C

C

.z
,

0

C
O

C

C

C

-,
2
 2

irJ

il'
(rl

+
%
r

4

-J
S

'

"
4

5

-
W

C

7
.

- -
0

4;
O

C

C

C

I
t

.

I1

I1

I
P

.

c
 ,
 :
-

c
 0

 -
C

C
C

c

3
 0
 e

::I:
.tr

,
:

a
:

-.:\I

N
 ra

m
 6

C
C

 C

C
C
 C

0

3
 ?,

D
e

3

n
r

c
c

c
 3

C
C

 C
C

C
C

II
I1

I1

I1

II

It

-
-1

-3
-1

-
L

U
IU

I"
.W

L
J

x

o
l

a
a

a

d
J

C
T

-
'

S

r
-

C
C

c

-
-

c

c
c

c
-

 -
-- n

'
N

&
 \

c
.

c

0
'-
 =

C
C

C
C

C
C

11
11

I1

1)
I1

 11

W
Y
 V

V

l
W

Y

~
z

m
r

m
s

:

.
a

~
a

u
a

3

J
-

d

.r
n

,o
 .
s
s
c

C
C

C
C

C
C

c

2
0

=
c

3

c
=

c
c

c
T

.

C
C

P
C

C
C

11
II

II
I1

I1

I1

I
J

_
L

J
_

f
-
l
-
~

IA

W
L

L
I

W
W

r
l

r
Z

l
c

t
K

.
2

3

r

P
-

5

-.r

n
i
l
r

r
r

e
*

<-

7

o
=
=
-

n

1
 h

 ~
-

1

C

c

C

.
.
>

c
;

C
C

C
C

C
F

I1
 ' I1

 11
11

11
I1

(
n
l
n
i
r
r
 v
i
m

D
T

x
r

s
,

J
j

u

=
?

<
.a

u
a

NASTRAN SUPPORT PROGRAM
S

C
 d

'
.
J

r

-
N

h
'

...---
0
 ?

C

0

"
r

o
c

C

C
C

C

I1

11
11

It

J

J

J
 I

I
U

W
Y

)
W

3

Z
D

 n'

r -
I

n

Q
U

Y
 a

J
 Q

J

0

L

P
U

L
T

J
,

l

m
m

 m

C
 C
C
 C

I
I

U
U

U

C
0

r
)

O
C

Z

C
O

C
C

C

O
O

0
0

U

O
 0
 C

 0

0
0

0
0

*

0
0

 c

C

*

C
O

O
0

8

0
0

0
0

8

0
0

0
0

*

O
U

O
O

*

O
C

O
O

*

C
C

C
P

*

o
o

o
o

* * * * *

,I

4

d
C

O

* L
n

m
e

 -
*

O
C

O
N

N

*
O

D
0

0
0

*

O
C

l
O

h
O

8

C
c

C
C

e

*
O

O
U

C
O

*

O
C

0
0

0

*
O

C
 0

 C
O

*

"
0

0
0

0

*
o

o
c

o
o

*

o
o

o
o

a

*
O

C
 C

O
O

*

O
O

?
C

I
O

*

o
c

c
.

c
,

o

4
C

"
c

.
O

C

.
*

I

J
C

o

c
-

d
W

C

C
 C

C

C

O

C
C

C
D

C

C
C

C
C

C

C
C

C
C

I1

I1

,I

11
11

_
1
2
-
d
d

U
l0

J
v
h

.
u

X

t
T

X
X

T

c

P
C

~

m

-
.-

n
C

L
c

'W

r
,

,
-

I
J

.

liJ
l"

'L
r

J

m
m

m
F

m

C
.

.

r

11
I,

I,
I,

It

:%
:I$:

4
.1

4

4
1
4

Q

*
C

 c

r
*

C
 C

h

*
C

 C
C

*

C
L

<

*
C

 E
r

*

E
C

C

*
C
L
-

*
O

C
9

*

C
C

C

*
C

C
C

4

.
-

r
d

*

C
I

C

* '
W

C

O
F

u

n

8
 ns

I-
R

'
8

N
C

O

O
d

 C
C

*

C
C

C

o
r

 J
-

O

R
C

C

* 0

0

*
l
 C

C
C

*

C
C

C
R

0

c

C

C
C

* c

C

 o
a

O

~
C

C
C

*

P
C

C
C

*

c

o

m

*
.

-
C

C
d

O

C

C

C
C

C

C

C

C

X
Q

 n

n

d

C
 c

m
c

V

)
C

I
n

"
-
C

u

n
m

m
n

.
I
n

n
r
n

c

c
,
n

I
C

c
,

r

C

d

 C
C

L

L
lC

C

i
C

C

\
r

F
d

.
-

o
 n.

T
O

7

?
C

C
U

'
C

C

(
L

C

C

C
C

V

O

C
C

o

m
 C

O

~
c

m

c
c

C

C
C

.
C

C

(
L

O
C

O
W

L

O
4

0
0

Z

C
 C

C

U

C
S

 C

C

C

v
'
3

r
t
n

.
t

^

rJ)

O
N

 c
m

m

O
N

n
m
m

* m
 n,

n
,r

d

O

 O
N

O

*
0
 O

J

C

o

c

C
.

C
~

J
 -

C
U

I/

0

O

N
C

* * * * o
o

c
-

m
o

Q
C

 C
C

C

*
C

C
R

i
O

*
O

C
P

,
O

I
t
o

c
s

u

*
G

O
C

O

*
0
 O

W
0

Q

0
 =

N
O

0

.
-

C
C

C

O
Z

C
C

C

*
-

-
*

u

*
C-

t

C

C
I

*
I4

S
C

U

r
-
?

r
r
z

lm

O

N

C
I
N

R

4

N

 0
 O

N

*
t

C
C

1

b

c

c
 o

c

*'%
 c
 y

-
?

I

N
 C

C

IU

-
*

<
 1

C
 C

l
.
.
.

C

C
C

F

0

0
 0

0

C
C

C
C

C

C

 c
r

It
11

I1

I1

J
 -'

-I
-

u
'

'A
' l"

LA
x

Z
l

 l I
,c

1
. .r <

,
I

I
 T

d
 I

m

I

C
I

C
,

.

<
-

-
,

la
c

a
.
 u
,

-
1

*.

1
 C

-

J

r.

O
C

.
-

4

-
8

R

~
P

I
C

C
C

C
C

C
C

C

3
C

 5
0

 n
o

O

C
C

 C
 C

.
C

C

C

~
C

C
C

C
C

I1

Il

11
II

I1

II W

J
 J

-'

_
I

-&
_
I

_
I

W
L

'W
L

I
W

A
J

W

z
r

m
z

z
z

a

-
3

-
:

4
c

*
c

C

C
C

C
-
.
.
-
R

1

h
.5

c
c
c
c

o
r

 I
 .r<

 s
a

,
r

r
.
m

9

"

(r
m

.

C
i

C
C

T

I,
I
#
 It
II

I1

I1
 I1

V
~

u
-
(
F

u
-
u

-
I
n

V

s
r

r
n

m
a

 m
m

4
4

 4

<
*
.
a
*

7.2.4.3.7 XEOF

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Subprogram name: XEOP

Type of routine: Subroutine

Alternate entry points: None

Purpose: To write an end-of-file on a storage device (tape or disk).

Calling Sequence:

CALL XEOF(FET)

FET - Address of the FET

Method: XE_F executes the SCOPE WRITEF macro via the SC_PE routine CPC to write the end-of-

file.

Language: COMPASS

7.2.4.3.8 XOPEN

Subprogram name: XI_RTNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: XOPEN generates the File Environment Table (FET) for a file based on data in the

calling sequence.

Callin 9 Sequence:

CALL XOPEN(FET,LFET,INDEX,LINDEX,OP)

FET - (output) array where the FET is to be built. (First word of FET should have

file name left adjusted and zero filled.)

LFET - (input) length of FET plus the length of the circular buffer

INDEX - Variable array where relative track addresses for direct access records will be

stored.

LINDEX - Length of INDEX. (If O, then no index is implied and file will be sequential.)

7.2-163 (6/I/71)

NASTRAN SUPPORT PROGRAMS

0 Open to read/rewind

1 Open to read/no rewind

2 Open to write/rewind

OP - 3 Open to write/no rewind

4 Open for direct access-alter/rewind (see SCOPE manual)

5 Open for direct access-alter/no rewind (see SCOPE manual)

-I Construct FET but do not open file.

Method: XOPEN builds the FET as described in the SCOPE 3.1 reference manual, chapter 3. The

FET length is made 15 words long, and the balance of the space sent to XOPEN and used as the

circular buffer. The circular buffer is never used if only READX (section 7.2.4.3.15) and

WRITEX (section 7.2.4.3.14) are to be used, and in that case LFET may be set to 30 on calls

to XOPEN.

Language: C_MPASS

7.2.4.3.9 XCLOSE

Subprogram name: XIORTNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: XCLOSE closes a file but does not return it to the system.

Calling Sequence:

CALL XCLOSE(FET,OP)

FET - Address of the FET

li ClOse/no rewind

OP - Close/rewind

Close/unload

Method: XCLOSE executes the SCOPE CLOSE macro which performs differently on the many

versions of SCOPE 3 in the field. Consult with your systems programmer to determine exact

results for your installation. Refer also to the SCOPE 3.1 reference manual, chapter 3.

Language: COMPASS

7.2-164 (611171)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

7.2.4.3.10 XEVICT

Subproqram name: XI_RTNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: XEVICT releases all space occupied by a file on the disk.

is preserved.

Calling Sequence:

CALL XEVICT(FET)

FET - Address of the FET

Method: XEVICT executes the SC_PE 3 EVICT macro.

LanBua_e: C_MPASS

The logical file name

7.2.4.3.11 REINDX

Subprogram name: XI_RTNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: REINDX redefines the index pointer field for the FET.

Calling Sequence:

CALL REINDX(FET,INDEX,LINDEX)

FET - Address of the FET

INDEX - Array where new index is to be defined

LINDEX - Length of INDEX

Method: REINDX places the index address and index length in word 8 of the FET in the

following format

59 35 17 0

FET(8) = l [LINDEX [ADD(INDEX) 1

where ADD = address

Language: C_MPASS

7.2-165 (6/I/71)

NASTRAN SUPPORT PROGRAMS

7.2.4.3.12 XWRITE

Subprogram name: XI_RTNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: To start writing, continue writing, or complete writing a logical record on tape

or disk either sequentially or randomly.

Calling Sequence:

CALL XWRITE(FET,RECORD,BUF,LBUF,FLAG)

FET - Array where FET is stored.

RECORD - 0 if sequential writing is to begin or continue.

> 0 implies RECORD is the record number of a direct-access record.

Used only when starting to write the record

BUF - Array of information to be written

LBUF - Length of BUF

FLAG _IO if record is not to be completed.

(i if record is to be completed with end-of-record mark.

Method: XWRITE stores the address of BUF in the FET. It then begins or continues writing

the record either sequentially using 10WRITE or direct access using I_RW (both are SCOPE

utilities). If FLAG is nonzero, the record is then completed sequentially using the SCOPE

WRITER macro. All data are processed through the circular buffer.

Language: C_MPASS

7.2.4.3.13 XREAD

Subprogram name: XlORTNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: To start reading, continue reading, or complete reading a logical record on tape

or disk either sequentially or randomly.

Calling Sequence:

CALL XREAD(FET,REC@RD,BUF,LBUF,FLAG,COUNT)

7.2-166 (611171)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

FET Array where FET for file is stored.

RECORD - 0 if sequential reading is to begin or continue.

> 0 implies RECORD is the record number of a direct-access record.

Used only when starting to read the record

BUF - Array where data read are to be placed

LBUF - Length of BUF

_iO to read LBUF words or to read to the end of record, which ever occurs first.
FLAG

if up to LBUF words are to be read and positioning to next record is to occur.

-2 on return if end-of-file was encountered.

_)-I on return if end of record was not hit and LBUF words were read.
COUNT

I_a_°__ ___ie_o_______________r_oi_st_r_UrI_p_.°fwords that were read if an end of record

Method: XREAD defines where BUF is located in the FET. It then begins or continues reading

the record either sequentially using 10READ or randomly using IORR (both are SCOPE utilites).

If FLAG is nonzero and the end of record was not encountered, a record is skipped to bypass

any remaining data. This is accomplished by using the SC_PE SKIPF macro.

Language: COMPASS

7.2.4.3.14 WRITEX

Subprogram name: XIORTNS

T_zp_eof routine: Subroutine

Alternate entry points: None

Purpose: To write an entire logical record either sequentially or randomly without using

the circular buffer.

Calling Sequence:

Identical to XWRITE except FLAG is not interpreted (see section 7.2.4.3.12)

Method: The pointers FIRST, IN, GUT, and LIMIT are set to reflect the actual output buffer

BUF, which in turn becomes the circular buffer. A direct call is made to the PP routine CIO.

Language: COMPASS

7.2-167 (6/1/71)

IWASTPJ_NSUPPORT PROGPJ_MS

7.2.4.3.15 READX

Subprogram name: XlORTNS

Type of routine: Subroutine

Alternate entry points: None

Pu__ur_Dose: To read an entire logical reocrd either sequentially or randomly without using the

circular buffer.

Calling Sequence:

Identical to XREAD except FLAG is not interpreted (see section 7.2.4.3.13).

Method: The pointers FIRST, IN, OUT, and LIMIT are set to reflect the actual input buffer

BUF, which in turn becomes the circular buffer. A direct call is made to the PP routine C10.

Language: COMPASS

7.2.4.3.16 XREWIND

Subprogram name: XIORTNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: To rewind a disk or tape file and place it at the beginning of information.

Calling Sequence:

CALL XREWIND(FET)

FET - Address of the FET

Method: XREWIND executes the SCOPE REWIND macro.

Language: COMPASS

7.2.4.3.17 XBKREC

Subproqram name: XlORTNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: XBKREC backspaces a tape or disk file one logical record.

Callinq Sequence:

CALL XBKREC(FET)

7.2-168 (611/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

FET - Address of the FET

Method: XBKREC executes the SCBPE BKSP macro.

Languaqe: C_MPASS

7.2.4.3.18 XFRDREC

Subprogram name: XI_RTNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: To position a file forward to the beginning of the next logical record crossing only

one end-of-record mark.

Callin9 Sequence:

CALL XFRDREC(FET)

FET - Address of the FET

Method: XFRDREC executes the SC_PE SKIPF macro.

Language: C_MPASS

7.2.4.3.19 XBKPREC

Subprogram name: XI_RTNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: To position a file backwards one physical record.

Calling Sequence:

CALL XBKPREC(FET)

FET - Address of the FET

Method: XBKPREC executes the SC_PE BKSPHRU macro.

Language: C_MPASS

7.2-169 (6/I/71)

NASTRANSUPPORTPROGRAMS

7.2.4.3.20 XREQST

Subproqram name: XI_RTNS

_ype of routine: Subroutine

Purpose: To execute the standard SC_PE request macro.

Callinq Sequence:

CALL XREQST(FET,PYQX,DC,DT)

FET - Address of the FET

PYQX 1
DC

DT

See SCBPE 3.1 reference manual, section 3.5

Method: XREQST executes the SCOPE REQUEST macro. This may be installation dependent.

Lanquaqe; C_MPASS

7.2.4.3.21 ANDF, _RF, C_MPLF, RSHIFT, LSHIFT

Subproqram name: FtAPFNS

Type of routines: All Integer Functions.

Purpose: To perform a logical and, or, complement, right shift, or left shift.

Calling Sequence:

RESULT = ANDF(WORDI,WORD2)

RESULT = ORF(W@RDI,WORD2)

RESULT = COMPLF(WBRDI)

RESULT = RSHIFT(WORDI,COUNT)

RESULT = LSHIFT(W_RDI,COUNT)

where WBRDI and WBRD2 are words being operated on and are unchanged after the execution.

COUNT is the number of bits W_RDI is to be shifted right or left.

In RSHIFT and LSHIFT bits shifted outside of the word boundary are lost while the others

are zero filled.

Method: Direct assembly language logical instructions are used.

Lanquage: COMPASS

7.2-170 (611171)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

7.2.4.3.22 XFETCH,XSTORE

Subprogram name: MAPFNS

Type of routines: Subroutines

Alternate entry points: None

Purpose: To fetch (store) an array of data from (to) anywhere in the job's core.

Calling Sequence:

CALL XSTORE(BUF,LBUF,LOCADD)

CALL XFETCH(BUF,LBUF,LOCADD)

BUF - Receiving array (XFETCH); transmitting array (XSTORE)

LBUF - Length of BUF

LOCADD - Variable containing the address from which data is fetched (XFETCH); or address

into which data is stored (XSTORE)

Method: A direct move of data is made in such a way that it does not matter if the array

from which data are moved overlaps the array to which the data are moved.

Language: COMPASS

7.2.4.3.23 LWORDS

Subprogram name: MAPFNS

Type of routine: Integer Function

Alternate entry points: None

Purpose: To determine how many words of core there are from the argument to the field

length

Callin9 Sequence:

RESULT = LWORDS(ARG)

ARG - Variable from which the nunfoerof words to the field length is computed.

Method: The field length, stored in location 768 of the job's core, is used to make the

computation.

7.2-171 (6/I/71)

7.2.4.3.24 CBRWDS

NASTRANSUPPORTPROGRAMS

Subprogram name: MAPFNS

Type of routine: Integer Function

Alternate entry points: None

Purpose: To determine an inclusive distance in words between two arguments in core.

Calling Sequence:

RESULT = CORWDS(ARGI,ARG2)

ARGI and ARG2 are the two arguments for which the inclusive difference is desired.

Method: RESULT = Absolute value of the differences between the two addresses plus one.

Language: CBMPASS

7.2.4.3.25 XJUMP

Subproqram name: MAPFNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: To make an absolute jump to code anywhere in core.

Calling Sequence:

CALL XJUMP(L_CAT)

LOCAT = Variable where an absolute location is stored.

Method: A jump is executed to whatever address is in the location LBCAT.

Lanq_aqe: CBMPASS

7.2.4.3.26 ZAP

Subprogram name: MAPFNS

Type of routine: Subroutine

Alternate entry points: None

Purpose: To zero core from whatever location is specified in core location lOl8 to the field

length as specified in location 638 .

Calling Sequence:

CALL ZAP

7.2-172 (6/I/71)

DESIGNOFTHECDC6400/6600LINKAGEEDITOR

Method:Storezerosin all locationsdesired.

Language: C_MPASS

7.2.4.3.27 FIELDLN

Subprogram name: MAPFNS

Type of routine: Subroutine

Alternate entry points: None

Pu__ose: To obtain the field length of the job, or to change the field length and to store

the field length in locations 638 and 768.

Calling Sequence:

CALL FIELDLN(LENGTH)

LENGTH = 0 if field length is to be returned in LENGTH.

= Value > O if the field length is to be changed. The field length is changed

to LENGTH.

Method: The SC_PE memory macro (MEM) is executed.

Language: CIaMPASS

7.2.4.3.28 LINK20.

Subprogram name: MAPFNS

Type of routine: Subroutine

Alternate entry point: None

Purpose: LINK20. makes a call to Link 20.

when called can result in a switch to Link 20.

Calling Sequence:

CALL LINK20.

Method: A call to Link 20 is made directly.

Language: C_MPASS

Through the use of a RENAME, a particular routine

(e.g., RENAME PEXIT=LINK20.)

7.2.4.3.29 LINKERR

Subprogram name: LINKERR

Type of routine: Subroutine

7.2-173 (6/I/71)

NASTRAN SUPPORT PROGRAMS

Purpose: To output message when called by subroutine LINK in XL{_ADER.

Calling Sequence:

CALL LINKERR(LINK,ERROR)

LINK - A link number

ERROR - Number of an error message

Method: Writes the error message specified by ERR_]R.

Language: F_RTRAN

7.2.4.4 MISCELLANEOUS

7.2.4.4.1 LKED900

Subprogram name: LKED900

Type of routine: Subroutine

Alternate entry points: None

Purpose: To abnormally terminate execution of the linkage editor with an error message in

case of table overflow.

Calling Sequence:

CALL LKED9OO(C_DE)

C_DE - (input) number which defines the type of overflow which has occurred.

Method: A fatal error message is printed and the linkage editor stops.

Language: F_RTRAN

7.2.4.4.2 LKED990

Subprogram name: LKED320

Type of routine: Subroutine

Alternate entry points: None

Purpose: To abort the linkage editor in the event an unexpected condition (logic error) is

encountered.

Calling Sequence:

CALL LKED990

7.2-174 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

Method: LKED990 passes the address from which the call occurs to LKED995 which prints the

fatal message.

Languaqe: C_MPASS

7.2.4.4.3 LKED995

Subprogram name: LKED995

Type of routine: Subroutine

Alternate entry points: None

Purpose: To abort the linkage editor abnormally

Callinq Sequence:

CALL LKEDg95(LBC)

L_C - (input) location at which logic error was detected.

Method: LKED995 prints a message indicating that a logic error has been detected and the

location of the error. The contents of the linkage editor tables are then printed by LKED999.

Finally, a mode error is forced so that, if the user has included a DMP control card, a

storage dump will be taken.

Lanquage: F_RTRAN

7.2-175 (6/I/71)

NASTRAN SUPPORT PROGRAMS

7.2.5 Object Deck Format

The object deck of a subprogram as it is output from the assembler or the compiler comprises

one logical record. Each logical record is made up of an indefinite number of tables. Each table

is proceeded by an identification word which has the format:

IcNI wc l,Rl, I
59 53 47 35 26 17 0

where

CN = code number identifying the type of table

WC = Word count of the table excluding identification word

LR = Code defining the method of relocation of the relative address L

L = Relative address, 18 bits defined differently for each type of table

7.2.5.1 PIDL Table

The Program Identification and Length (PIDL) Table contains the subprogram identification

and names of each of the common blocks referenced by the subprogram.

identification word

CN : 348

LR = ignored

L = 0

word 1

59

name of subprogram PL J
17 0

PL = length of subprogram

7.2-176 (6/I/71)

words 2-WC

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

name of common block BL

59 17 0

where

BL = length of common block

If WC = l, no references to common blocks appear in the subprogram. The linkage editor is prepared

to process only one PIDL table in an object deck. Additional PIDL tables are ignored with a warn-

ing message. The list of common block names is called the Local Common Table (LCT). Since

relocation of addresses relative to common blocks is designated by positions in the LCT, the order

of common block names is significant.

7.2.5.2 ENTR Table

The ENTRy Point Table (ENTR Table) contains a list of all named entry points to the sub-

program and to associated common blocks (note: an entry point to a common block is ignored by the

linkage editor and a warning message is issued). The ENTR Table must immediately follow the PIDL

Table.

identification word

CN = 368

LR = ignored

L = ignored

words I-WC

Each entry in the ENTR table consists of two words. The first word contains the name of the

entry point. The second word contains the relative address of the entry point and its method

of relocation.

Ist word I entry point name

59 17

J
0

7.2-177 (6/I/71)

NASTRAN SUPPORT PROGRAMS

2nd word I RL I LOC

59 26 17

RL = code defining the relocation specified by L_C:

0 = absolute (therefore the Table is ignored by the linkage editor)

1 = relative to subprogram origin

3-778 = relative to common block M, where M is in position RL-2 of the LCT

(ignored by linkage editor)

LOC = relative address of the entry point

7.2.5.3 TEXT Table

Text and data tables (TEXT tables) contain data comprising the subprogram and information

necessary for relocating the data. The TEXT Table consists of an origin for the data, the data

itself, and indicators describing relocation (if any) of the three possible locations in a data

word which may have relative storage addresses.

numbers in the object deck.

identification word

CN = 408

WC satisfies: 2 _WC _208

LR t!_778

TEXT Tables may appear in any order and any

= absolute (therefore the Table is ignored by the linkage editor)

= relative to subprogram origin

= relative to common block M, where M is in the position LR-2 of LCT (see section

7.2.5.1)

L = relative address of first word of data

First word

This relocation word consists of a series up to 15 of 4-bit bytes describing the relocation

of each of the three possible address references in a 60-bit data word. The first byte

(bits 56-59) describes the relocation for the data word in the second word of the TEXT Table,

etc. The number of relevant bytes and data words is determined by WC. Relocation is relative

to program origin or the complement of program origin (negative relocation). The value and

relocation for each byte follows:

7.2-178 (6/I171)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

O00x

lOxx

llxx

OlOx

Ollx

IxlO

Ixll

0010

0011

no relocation

upper address, program relocation

upper address, negative relocation

middle address, program relocation

middle address, negative relocation

lower address, program relocation

lower address, negative relocation

same as IxlO

same as Ixll

words 2 through WC

Data words are relocated consecutively relative to L. All addresses are relocated relative

to subprogram origin, never relative to a common block. Relocation of addresses relative to

common blocks is accomplished through FILL Tables (see section 7.2.5.4).

7.2.5.4 FILL Table

The FILL Table contains information to relocate previously defined address fields. References

to common blocks are relocated through this table.

identification word

CN = 428

LR = 0

L = 0

words 1 through WC

All FILL Table words are partitioned into sets of contiguous 30-bit bytes. Each set is

headed by one control byte and followed by an arbitrary number of data bytes. The last

data byte may be zero. The control byte contains information about each of the subsequent

data bytes until another control byte is encountered.

control byte

Ioi IAR I
29 28 8 0

7.2-179 (611171)

NASTRAN SUPPORT PROGRAMS

AR is the relocation code pertaining to the succeeding data bytes. AR may assume

0 = absolute relocation (i.e., no relocation takes place)

1 = program relocation

2 = negative relocation

3-778 = relative to common block M where M is in position AR-2 of LCT (see section

7.2.5.1)

data byte

111PJ RL J L°c
29 28 26 17 0

P = position within word of address

I0 = upper

Ol = middle

O0 = lower

RL = code pertaining to the relocation of the address specified by L_C. RL has the same

range as AR (see above) except RL _ 2

LBC = relative address of the data word to be modified. The contents of the address field

position (F) at location L_C relative to RL is added to the origin as specified by AR

in the control byte.

7.2.5.5 LINK Table

The LINK Table specifies external references within the subprogram.

external symbol must appear as an entry in the LINK Table.

identification word

CN = 448

LR = ignored

L : 0

Each reference to an

7.2-180 (6/1/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

words l throu9h WC

All remaining words are partitioned into sets, each consisting of one 60-bit name and a series

of contiguous 30-bit data bytes indicating address positions which refer to the external

s_nnboldescribed in the 60-bit name. It is possible for the 60-bit name to be split between

two co_uter words. Names of external s_nnbolsmust begin with a character for which the

display code representation has the high order bit equal to zero.

name word

59

name of external s_nBbol

data byte

I IPIRL I
29 28 26 17 0

P = position within the word of the reference to the external s_nnbol

lO = upper

Ol = middle

O0 = lower

RL = code pertaining to the relocation of the address specified by L_C

0 = absolute (ignored by linkage editor)

l = program relocation

3-778 = relative to common block M, where M is in position RL-2 of the LCT.

L_C = relative address of the word containing the external symbol

7.2.5.6 REPL Table

T'_eREPL Table provides an efficient means for repetition of a block of data.

identification word

CN = 438

LR = ignored

7.2-181 (6/I/71)

NASTRAN SUPPORT PROGRAMS

L = ignored

words 1 through WC

Each entry in the table consists of two words in the format

C B

59 41 0

SR S

I DR D

26]7

S = initial relative address of source data

SR = code for the relocation of the address specified by S

0 = absolute (ignored by linkage editor)

1 = program relocation

3-778 = relocation relative to common block M, where M is in position SR-2 of LCT

(see section 7.2.5.1)

D = initial relative address of destination of data

DR = code for the relocation of the address specified by D; same range of value as SR

B = size of data block in words

C = number of times d_ta block is to be repeated;

I = increment to be added to D before each data block is repeated; first repetition of

block is at D, second at D + I, etc.

If C = O, C is interpreted as 1

If B = O, B is interpreted as 1

If I = O, I is interpreted as B

If D = O, D is interpreted as S + B

7.2-182 (6/I/71)

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

7.2.6 Principal Linkage Editor Variables

Table 3 describes principal linkage editor variables in common blocks LKEDCxx, where

Ol _ xx _ 07. The following conventions apply:

I. In the description column, a pointer, if not defined further, is assumed to point to

the Ist word rather the Oth word of a table

2. Twenty character symbols in the default value column imply octal representation

3. The letter "b" in the default value column implies a blank character

4. Ten character symbols in the default value column imply character string representations.

Note these are left-adjusted in the word and zero-filled.

5. Integers (less than ten digits) in the default value column are decimal numbers.

6. A blank in the default value column implies the entry has no default value.

7.2-183 (611171)

N
A

S
T

R
A

N
S

U
P

P
O

R
T

P
R

O
G

R
A

M
S

000C
_

O
J

0

%
oOOO

-
_

O
-
Q

r
_

O
O
O
O

-
Q

°
o

_
_

o
o
o
o

O
O
O
O

r
_

4
-

O
r
_

.
Q

I
-
-
-

O
Z
0
0

.
Z
_

O
-
Q

r
-
_

_
J

_
.
D
-

n
O

.
_
D

-
_

.
.
.
I

m
m

_
-
-
__

r
_

p
,
,
.

D
,
-
.

D
-
-
-

r
-
-
.

c
O

p
,
.
.

D
-
,
-

p
,
,
.

O
O

O
O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
_

_
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O
O
O

O
O
O

O
O
O
O

ntoOL
_e-

"Z0c-O;5-_-

g

I---

0
0

"_
be-

or,-

f,-

.....1

Z._1c-Oco

.
to

_
_.-0

4=,
to

._.1
z3

f,-
O

J
4-.

to

C
D

_
.
Z
_

_
E

O
J
_

.
_
z

_
O

_
°
_

E
_
-
J

.
_

_
-

"10
"
0

0

._-
_

..I-J
tO

(J

"0
"
_
0

_
'
-

..c=
0

4J

0
0

.-_
4_

4-
_-

0

'_
T

-
o

_
to

-0

_
.
;

5
,
-

O
_
-
I
-
-
-

_
-

'
:
=
_

O
O

O
(
-
J

"
_
J

-
_

_
-
I
_
(
/
)

_
•

_
.

_
J

_
.
_

.
_

O

0
J

t
o

0
4
-

0
0

_
-

_
o0

e--
0

_
_

04-

e-
E

•I_
to

e.-
I_

0
_

'

•._
to

4--
_

0"0
tO

Q
;

S
-

E
_
-

0
r
_
-

_
E

(
-
_

E
(
-
J

0

t
o

t
o

h
-

l
-
-

r
_
"

p
-
-

l
-

X
Z

u
J

r
O

.
_

0

to
_

I--
_4-

0

_
J

t
o

t
o

r_
J

t
o

r
_

O
O

O
O

O

O
_

v'
_

'_
'_

.

O
O

O
O

O
O

t
o

-I-J
0(lJ
"10Ill

_-z
(._0

I---
.=

_
x/

to
.-_

0.3
_.l

._I
_.

I
-
-

_
.
-

-
t
-

o
O

z
_
_
_

Z
N

>'-
r
-
_

(
=
'
3

_
_

L
O

_

t
o

0,
.
J

7.2-184
(6/I/71)

D
E
S
I
G
N
O
F
T
H
E

C
D
C
6
4
0
0
/
6
6
0
0

L
I
N
K
A
G
E

E
D
I
T
O
R

O
0

r
-
-

O
0

O
0

0000000000

r
_

e
_

i
I
-
-

"
ZS.00_lad

0._

e.-
u

.e-¢L
e,h

%
-oc-ooe-u

IlJ

I---

I--
xI--

_
0_

x
e-

_
_J

oL
0,.l.a

-,i
(,,-

oS-
e-

_

U
_

0
r

"_
E

0

_j
e"

I"-
Z

$
.
.

0

_
I
;

.
-
_

4
-
>

.
_

r
_

G
;

.
r
-
)

W
-

Q
;

"
I
,
'
-

G
;

I
-
-
-

e
-

c
O

0
(
"

_
"
1
3

0
"
1
0

-
_

_
-

_
_

_
)
_

_
e
=

4
a

.
)
a

I
.
.

_
-

0
"
,
-
-

0
3

.
,
(
3
0

,.--
Z

u,l..
,r_

0

I--

{-
0-_

O
_

{,_)
e,m

o
o

o
o

o
_

_
o

o
F

:,
o

F
:,

_
_

g
o

_
o

3®_oE
•_

_'o
f,-z
c0

7
.
2
-
1
8
5
(
6
/
1
/
7
1
1

N
A

S
T

R
A

N
S

U
P

P
O

R
T

P
R

O
G

R
A

M
S

111

%>

0000000000000000000

000n
p

L
_

L
_

O
0

r
'
_

.
_
j

0
0

0
0

0
0

n
_

0

.
-
J

O
I.iJ

z
z

.,-v.

d
__1

r
_

Z
U

,-
-_

O

I--

E
_

.,m
_,

E
0

"
'

'
"

O
_

_/
v

(_¢-m
_-I

.J

o
o

o
o

S

.-I
J

.--I
J

.--I
J

O
O

O
O

O
O

ILl
_

IA
J

I._
ILl

"'

J
,.J

,--I
J

J
J

O
O

O
O

O
O

L_J
v

_
__

_
_

v
.d

.--I
.--I

.--I
--J

J

_
z

,_
-r

0

_,0
6,3

r,.
Z

C
D

0

I_
._1

z
I--

I--
_

OI--

_-D
J

....I
.J

J

_3J
O

O
N

Z
Z

Z
Z

Z
O

'3

7.2-186
(6/I/71)

D
E

S
IG

NOFT
H

EC
D

C6400/6600LIN
K

A
G

EED
IT

O
R

,34--

r-,

.mc--

"
E

u'}
(_

G
.}

.._

m
:_

u')

"[-
__

:
0°_

K
-

"0
0

(IJ

•_
Q
j

I
.
*
.
;

0
t
o

_
._

e-
U

e-I1J

"G
_

>

_-
a,I

O
_O

c-

"ZUIlJ

O
O
O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O
O
O
O
_
O

_
O
O
_
O
O
O
O
O
O
_
O

_
O
Z
_
O
_
O
_
O
O
Z
O

D
O
_
O
_
O
_
O
O
_

_
O
_
O
_
O
_
O
_

Z
Z
_
>
>
Z
Z
_
Z
_
Z
Z

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
_
0
0

0
_
0
_
0
0

0
_
_
0

0
_
_

Z
_
_

_Z
_

000000000

.
Q

0
r
_

0
_
t
_

0
r
_

0
.
Q

•
0

r
_

L
d

0
X
_

_
0

-
C
_

r
_

0
r
_

I
-
-
-

00
e
O

4
Jt
-
O0l
-
-

I
L
l

z.
_
J

¢
-

4
_c
-
OI-O

z
%

_..I
_

ill
r-

E
u._

•

.._
-_

4-_

_
O

ig
o4-

_
t

K
-

o
O

a
_

.
%
-

K
.

l
.
i
_

_
-
o

O
-

D
E

_
-

0
J

r
r
_

O
_
-

_
O

f,..-

m
O

O

_
-

K
.

V
;

.
_

-
Q

OK
.

04
-
a

v,•_
I---

%
T

.
_

t..-

_
-

4
-
_

O
_
-

_
C
)
-

c
"

_
n

r
-

E
_

(
I
)

.
Z
D

O

I
-
-

C
O

0
0

e
-

O
O
-
-
_

(
.
-
)

_
o_

_h
,

(
.
.
)
r
_

_
j

e
o

o
r
)

0
0

,
,
l

l
*
l

.
.
J

.
.
J

O
d

_
-

C
O

C
O

r
-
-

(
_
r
)

O
O

O
O

O
O

O

-
.
I

"
,
,
I

-
.
/

-
_

-
,
I

"
.
/

"
-
,
"

.
.
J

-
J

_
-
I

.
-
I

.
-
I

-
J

-
-
I

Q
)

_
a
_

c
O

E

T
__

tO
"-/

>
-

I---
W

,,,
I._

-lJ
-1J

,
,

I
-
-

,
-
w

z
I
-
-

_
l
-
-

.
_
J

_
J

_
"

_
-
-

Z
m
,
-

Z

7.2-187
(6/I/71)

N
A

S
T

R
A

N
S

U
P

P
O

R
T

P
R

O
G

R
A

M
S

C
Z

J

O
0

0000000000000000

0

0
0

0
0

0
0

0
0

T
.S-O_J._-

4-0C0"5Uv
_

!
,
.
,
-

O
r
)

r
'
_

0

_
zu,-0

I---

r-
0

0-_
_v

0
0

0
0

0
0

_
_
_

_
_
_

_
_
_

_
_

L
)

_
-
_

r
_

I
=
_

r
_

_

_
/

v
v

_
-
/

v
v

0
0

0
0

0

_
.
_

_
_
)

_
_
)

_
.
)

_
.
_

_
_
_

C
_
_

v
v

V
_
/

v
v

v

O
_

O
0

O
r
)

0
0

0
_
-
)

_
_
)

r
_

_
_
-
_

L
_

L
_

1
,
1

x
/

x
/

"
_
/

_
J

.
.
_

.
-
-
J

_
>
.
.
-

I
;
=

L
,
_

Z
Z

Z
Z

Z
Z

I--
_"

kS
..

Z
"

Z
Z

L
,_

-r
L

_I
h

X
X

_
_

_
_

I
.
_

Z
Z

Z
Z

Z
Z

_

.
-
J

'
_
C

L
L

_
_
C

-
_

_
C

7
.
2
-
1
8
8

(
6
/
I
/
7
1
)

D
E

S
IG

NOFT
H

EC
D

C6400/6600LIN
K

A
G

EED
IT

O
R

'3Z
3

r
o

4
-
-

(
I
,
;

0
C

O
c,.,l

C
)

iv}
_

I/)

0
0

0
0

0
0

00
0

0
0

0000
4
3

0
(
3
:

_
0

0
C
_

0
4
3

4
3

0
0

r
,
.

0
0

0
0

4
3

0
0

_
0

0
0

0
.
.
(
3

•
.
(
3

0
_

I_
_

0
0

0

0
._

m
-.,

_
I-

Im
I--

._

0
0

-I-
0

_
_

_
_

{/}
_

Im

00000000000000000

_
J

.
J

h

.
.
(
3

LeO0"0laJ

G
J

rO¢.-

-,6e-

T
.

%
,..

0I.--
0._S,-

uo
'
_

.
_

0

Q
J

Z
u
,
-

.
_

0

I
-
-

O
.
_
C

E
_
J

E
o

o
_

0
0

0
0

0
0

0
0

0
0

0
_

0
0

Q
J

E

_
_

O
d

(
"
3

Z
I
_

_

:
:
_

_
-
-
I

(
_
0

_
-

t
/
'
)

I
s
'
)

t
/
'
;

t
/
}

I
-
-
"

I
-
-
-

I
_

_
L
s
.
J

7
.
2
-
1
8
9

(
6
1
1
1
7
1
)

%>q-

r=-

¢00

0•_
c'-

-_
¢-

.
u

J
o

"_

,_
_

o

°__1
.-_

4-J

_
0

T
-

3=
'--

_
"_

0

0
e-

_.

c"
I

4-_
0

c-
e-

5
X

"g
e._

o
_.-

"EU

G
.;

_
m

:l-
r'-

,.--
Z

q"-
e'_

0

I'--

c"
0

O
r"-

_
v'

.._
Q

J

_-Z
_"

>
N

N

N
A

S
T

R
A

NS
U

P
P

O
R

TP
R

O
G

R
A

M
S

7.2-190
(6/I/71)

j_

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

7.2.7 Linkage Editor Output and Diagnostic Messages

Figure 43 shows control statements and output of a link edit of the linkage editor.

7.2.7.1 Diagnostic Messages

Figures 31 through 38 show how diagnostic (or intermediate) output which may be obtained from

the linkage editor. This output is intended primarily for test or maintenance of the linkage

editor. The output is selected by setting PARAM(8) to an appropriate value on the LINKEDIT control

statement (see section 5.6.4.2). PARAM(8) acts similarly to a sense switch, i.e., each defined

bit triggers a certain type of output independently of the other bit settings. The decimal values

(all powers of two) for PARAM(8) and their functions are as follows:

Value

l

4

8

16

32

64

Type of Output Obtained

Contents of the GT after each INCLUDE and INSERT

statement

Contents of each object deck as it is processed in

LKED025

All tables after processing each deck in LKED025

Text for each segment after construction in LKED075

Contents of all tables after control statement

processing

Contents of all tables after object deck processing

Contents of all tables after address assignment

processing

Contents of each link as it is written in LKED080128

These values may be combined in any desired manner (e.g., PARAM(8) = 52 which is 4 + 16 + 32).

7.2.7.2 LINKLIB Subprograms

Table 4 gives a list of subprograms in LINKLIB.

7.2-191 (6/I/71)

*oOiN
;

NWZ..JOO

_4

n¢
r'_

X
U

J

o
--*

t--

Q

O
U

J
..J

•
Z.J

W
_

_
_

"
"
J

1
1

.J
..l.J

0
=

=
1

_,1

I,-=
.1

,.I
.._

elf.
_

_
U

J
U

.I

Z

N
A

S
T

R
A

N
S

U
P

P
O

R
T

P
R

O
G

R
A

M
S

0
O

00c.
0

oO

_1"¸¸
,4"
I_

o
o

o
0

_
-

z
_

,.
z_

,,_..
_

_
Z

u
_

_
x

u
-

,."
lJ

xx
_zJ

O
_

O
'

f,_}
J

0
0000

0
O

0
0

0000
0

O
C

,

o
_

0
oo

¢kI)-

,o
Z

_.
L

u

t_

0
tur_

N

O
.

0
q

c

Zu
J

0

I,-I

0
w

u.tu
I

_
_

Z
O

.
_

_
_

_O
O

O
C

,
O

O
O

O
O

O
O

O
_O

O
O

O

N
N

,4"

,O
.O

,O
O

O
O

O
O

O
O

O

_N
_

X
X

X

0
0_$

O
O00

O
O

O
O

O
00000

0
0
0
0
0
0
0
0

O
0

0
0
0
0
0
0
0
_

O
0

_
o

_
z

_

O
O

O
O

O
_O

O
O

O
O

O
O

O
O

O
C

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
C

'O
O

O
O

O

O
O

O
O

O
O

_O
O

O
_

O
O

O
O

O
O

O
O

O
O

_

O
O

O
O

O
O

_O
O

0
0

0
O

O
O

O
O

O
O

O
O

0
0
0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0

O
0

_
_
.

_
_

_

7
.
2
-
1
9
2

(
6
1
1
1
7
1
)

g0UvZZ,
,
w

t
_
,
r
,
,

.
j0
-.
.
_

0S
-

O-
I
_

.
_(
l
J

E
n

t
O

.
_
-

0
3_
J

_
r
_

C
_

I-.¢I

uC
)

.IO

0
_

_.-

•...a
,.Iz

O
CN

4"
(5

•
N

O
I-

N
UC

)
--I

0
ZC

)

,e[
U

0._
.j0I-.JZ

t-
0

Z
I--

U0
0

..I

a.
Z0t..
I-

)-
,c[
u

I--
Z

Z
0U0

_
ZO.J

0
Zr_

D
E
S
I
G
N
O
F

T
H
E
C
D
C
6
4
0
0
/
6
6
0
0
L
I
N
K
A
G
E

E
D
I
T
O
R

N
O

0
g-400

0
00-.4
O

C
*C

,

0
C

'O
0

O
O

O
O

O
O

O
O

O

X
I

I
I

I
I

I
I

I
I

I
I

II
I

O
I

I
I

_'0.
n

,
_-

I
I

I
I

I
I

I
I

I
I

I
Z

_
I

L_'_
!.)

I
I

IX
Z

"
at.

_.nuj
U

I
I

I
I

I
I

I
I

I
I

I

C
:
}

u
_

_
.

_
.
-
_
'
,

_
_

_
u
Z

n
"

e
u
Z

_
.
_

I
-
-
r
"

C
:
)

r
_

(
:
:
9

r
-

C
D

F
.
.
J

F
.
J

r
-
;
.

F
,
_

(
D

F
,
.
J

._
I

--I
rc)

I
I

.._
..I

.,
.._

,._
_
E
'
X

(
D
_

I
I

I
I

I
I

I
I

I
I

I
u

u
_

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

14.

C
_

0
0

0
0

0
0

0
¢
_

0
0

0
_
-
'

_
0

0
0

0
0

¢
D

0
0

0
0

0
0

0
0

0
0

_
0

"
_

0
0

¢
D

0
0

_
0

0

I--
e

_
O

.
--I

I
,v.

t,u
f,,u

u
J

,'."

>..
r_

I--
I--

I.-
I--

_-
I--

C

I---
:a_

_
_,

)"
)"

Z
l...

x
,,n

_L
I--

I--
_

U
#

'I"

%00c-

..J5---.s

7
.
2
-
1
9
3
(
6
/
I
/
7
1
)

N
A

S
T

R
A

N
S

U
P

P
O

R
T

P
R

O
G

R
A

M
S

t
i
_

U
_

_
0

O
U
_

,
-
_

(
_

W
D

I
_

0
_D

_
I

0
i
_

,
-
4
r
_

,
-
I

e
%
l
M
r

_
I
'
-

,
-
i

0
0

0
t
3

O
0

_
O
.
_
t

"
_

C
"

0
0

(
D

(
D

O
_

c
J

C
_
c
_
O

0
0

(
D

0
0

O
0

(
_

O
C
_
O

0
0

i
I

I
I

I
i

!
l

I
i

I
I

I
I

I
II

Z
r-_

C
C

_
z

z
Z

Z
Z

C
b_

(:3
B

-
LIL.

_
r_

Z
Z

Z

I
I

I
I

!
I

I
I

I
I

I
I

l
I

I
I

,
,

',
,

,
,

,
,

,
,

,
I

I
l

l
,

,

C
,

o
o

0
O

c
,

o
_

o
0

0
*

o
0

o
0

o
o

o
o

¢
0

o
0

(
J

0
0

o
0

_
o

0
_
3
,

o
c
_

0
0

0
0

_
D

o
0

,
-
_

0

4
_

4
0004
0q
J_
J

v0
3O
_

k
L

7
.
2
-
1
9
4

(
6
1
1
1
7
1
)

D
E
S
I
G
N

O
F
T
H
E
C
D
C
6
4
0
0
/
6
6
0
0

L
I
N
K
A
G
E
E
D
I
T
O
R

,
4
.
,
,
-
_4
.

r
n

_
I

C

_
e
d

l
,rj

O
0

C
JC

-
C

J
C

'
C

.

O
.IQ

_

N
*
,
w
l(
"
_

,
,
-
,
I(M

l
_
'
_

0
C
'

C
_
'

0
0
0

0IW
.

00

o
o
o

_
O
f
_
C

0
C

¢
'
_
t
"
_
I
,
.
-

4
"

t
M

_
-
4
I
_

N

,
-
4
t
M

(
M

o
o
o

_
C
'
C
,
O

C
"

0
00C

'
0

O

,
£
'
,,
,
I
-l
_
'
_

W
D

u
t
_

4
.

,
,
.
,
i,,
-
.
*(M

N

O
O
C
.
J

0
0

0
0
0
C
.

0
0

0

O
O

O
C

J
o

¢)
o

O
O

C
)

0
0

0
000

0
0

0N0004"

00

00000
0

00_00
0

O

O
O

O
O

O
_

O
O

O

O
O

O
O

O
O

O
0

O
O

_O
O

O
O

O
°O

O
O

000_00
o

O
O

0
0

N
O

°
{f_

(%
1

N
h

{el
N

_'1
_,4

_4
N

I-I
I_1

tw
T

_O
.-I

I'll
fr_

Irj
ell

e-I
,,-i

O
O

..4
C

_
O

_.t
F

.)C
.I

i-4
°

.
e4

0
C

_

O
C

)
O

C
_O

0
0

0
¢_

C
_

¢,.,
0

0
0

0
0

C
'_O

¢'_
0

0
0

0

I
I

_
I

I
I

I
I

_:
'_

_-
I

I
I

I
u

_,Y
_

_
t.u

u
u

_
uu

I
I

I
I

x._l_
I

I
I

I
I

I
I

I

I
!

_Z
_

_
_

Z
Z

Z
_

_
I

I

Z
_Z

Z
Z

_
_

_
_

Z
Z

_

X
X

_X
X

X
_

_
X

_
_

I
I

!
I

I
I

0
0

_
0

0
0

0
0

0
0

0
_

0
0

0
0

0
0

0
0

0
0

0
t_

_
0

0
0

o

4
-
)

£
)
.
.

4
.
-
}

0I
,
,
.
.
-

0:gL
5c_

U
U,n

x
x

X
x

C
_

n
e

,_
eJ

•

7.2-195
(6/1/71)

P n S F I L o CG6542 OUTPTC O C 0 0 3 7

RDPRU. 0 0 6 5 5 2 ---NONE---

OAT, 0 C 6 5 7 4 OUTPTC 0 0 3 0 4 2 0 0 0 0 6 1 0 0 0 0 7 5

OPEN, 0C,6133 SYSTEM. 0 9 ' 2 4 6 4
OUTPTC 0 9 0 0 2 7

srn. 0 0 6 2 7 4 OUTPTC 0 0 3 0 7 4

CETRA C 0 7 0 2 5 OUTPTC 0 0 J . 0 1 0

KOOER GO7046 OUTPTC 0 5 0 0 0 4 0 0 0 0 4 5

SEGMENT

w
w

I ;; SEGMENT
cn - SEGMENT
cn
\

' SEGMENT 2
V

SEGMENT

SEGMENT

SEGMENT

L I N K
1 RENAME

INCLUDE
l NCLUDE
INCLUDE
OVERLAY

2 INCL l lOE
OVERLAY

3 INCLUDE
INCLIJDE
OVERLAY

4 INCLUDE
INCLUDE
OVERLAY

5 INCLUDE
OVERL AY

6 INCLUDE
I NCLtJOE
INCLlJOE
REGION
OVERLAY

7 INSERT
ENTRY
END

L E V E L 2 e 0 C D C 6 6 0 D L I N K A 6 E E D I T 0 R 2 O e 4 L s 2 9 c 0 9 / 1 7 / 6 9

1
SYSTEM = SYSTEM.
C I N K E O T I LKEDCOOe LKED lOOv CKED150v L K E D 1 7 5 r LKED2OO)
L I N K E O T I LKED900, L K E D 9 9 5 r L K E D 9 9 9 r L K E 0 3 0 0 ~ L K E 0 3 2 0)
L I N K E O T (HASH)
A
L I N K E D T (LKEDOlO 1
A
L I N K E D T I L K E D O l 5
L I N K E D T (XRCARD)
A
L I N K E D T (LKEDO25 I
L I N K E D T f L K E D 9 6 4
4
L I N K E n T (L K E D 0 5 9 1
A
L I N K E O T (LKEOC75)
L I N K E D T I L K E D 0 7 7 r L K E D 3 5 0 1
L I N K E D T (RECDIJMP)

R
RLANK,.
LKEDOGO

Figure 43(e). Linkage e d i t o r output .

u
J

D
E
S
I
G
N
O
F
T
H
E

C
D
C
6
4
0
0
/
6
6
0
0
L
I
N
K
A
G
E

E
D
I
T
O
R

Z
C
.
_

_
x

Z
_Z

_

_
0

I

,_
Z

o
_

N
t'-
ZW_J

"
=
"

00
Z.
=
J

_
.I,
v
-

-
,
"

I
-
-

Z
0

t
u

u
.

_
Z_J

N
_

N
_N

O
O

O
O

O
O

=
_
=
_
=
_

_
=
_
-

_
=
=
_
_

,
,
4

0oN
N

0
0

0
u
.

c
z
>

r
,
"

0
x

,
'
_

_
s

Z

0
O
0

O
0

0
0
_
0
0

0
_

_
0

_

0
_

O
C

0
O
C
_
O

0
0
0
_
0
0
0
0
0
0
0
0

0
O
0

O
0

0
0
0
0
0

_
O
0
0
0
0
0
_
O
C

O
0

0
_
0

O
_

O
(_000

O
0

O
0

O
0

O
0

Z

O

NZOL
0

W

O,,1-

O%
.

3r.a

OOe-
°__Ji2

7
.
2
-
1
9
7

(
6
/
I
/
7
1
)

ENTRY-PT

LKF03:?3

LKF0130

PACK

PACKM'iK

R E F E R E N C E S T O E A C H E N T R Y P O I N T I N L I N K 1 20.41.29. 09 /17 /69

AOORESS CALL FROM LOCATIPN LOCATION LOCATION LOCATION LOCATION LOCATION LOCATION LnCATION LOCATION LOCATION LOCATION

C15057 LKE0030 061376 001752
LKEDlOO 3C3062 OC0151
LKEO150 03?336 00CQ47 000056 000062 000120
LKE02r9 600076 0CG117 000143
LKEnOlO 003265 020272
LKEnf25 Oi>3712 fin0324 006337 000545 000601 000605 090611 000710 QC0725 001120 001124

f '31165 OU12?O O r 1 2 2 4 031325 031331 OC1511 091536 031hh4 001672 !'01677 001703

F i g u r e 43(9). Linkage e d i t o r output .

D
E

S
IG

NOFT
H

EC
D

C6400/6600LIN
K

A
G

EED
IT

O
R

_
_

_r
_

_

_,_un
_lr

t'n
,.4

000
_

,-I
,.4

C
)

_..
C

,
0

0
0

000
0

0
0

t'-g.w
0C
,0o0

00o
0

00o
0

O
0

000
0

O
0

0

,0p-000

000
0

O
0

0
00_

0
O

0
0

0_0
0

O
0

0

,4"

000,0000

0

0O
0

0
O

0
oO

0

_00
0_

O
0

0_
0

_
O

_
0

00_
O

0
O

C
"

000
0

0
O

0
0
0
0

O
0

O
0

0
0
0

0
0

O
0

0

00a
_

,
i
.
_

"
0C
L
)

C
P

e
-

-
r
-

.
,
.
.
I

e
-

G
.
}

_
n

7
.
2
-
1
9
9
(
6
/
I
/
7
1
)

PACKXX 0 1 5 2 1 6

IJF+PKCI\I. 0 1 5 2 2 5

PbCKCAL 0 1 5 2 4 0

G F T F X T 0 1 5 2 5 2

S TOF XT 0 1 5 2 5 7

L K F 0 9 9 0 6 1 5 2 6 5

NOW LKEDCOG

TEXTTAB
V
', F I L L T A R

I
N
0 L T N K T R l
0

L I N K T 9 2 rn
'2r , REPLTAR
2 - l lNPK33

I INPKID

PACKDYP 0 1 5 5 3 2

HAFH O f 5 5 4 0 LKEDOOO
LKEOlCO
L K E n 1 7 5
LKEDC77

I NPIJTC C 1 5 7 3 1 LKEDOCC
L K E 0 3 1 5

Figure 43(i) . Linkage ed i to r output .

,
¢

0o0,
,
0

o00u
'
_

00

D
E
S
I
G
N
O
F
T
H
E

C
D
C
6
4
0
0
/
6
6
0
0
L
I
N
K
A
G
E

E
D
I
T
O
R

0
,

,
,
0

0

00
I
-
-

c
)

C
"

4
-

0o0

0r
_

0o
0

_
0

o
o
r
r
t

0

_
_
o_

,
_

¢
-
,

r
_

,
.
.
_,
-
=

0
0

_
O
0

0
0

0
"
_
0

0

t
_Zt
,
,
,
=

00.
,
,
0

UCU

uJ
t_u

z
z

..J
.J

Z
Z

0
(3

Z
_

_

Z

Z
"r

lg
",_

Z
Z

.d{:3-

0I-04-_

"0_J(1}
r

.--J

7
.
2
-
2
0
1

(
6
/
I
/
7
1
)

NASTRAN SUPPORT PROGRAMS

Table 4(a) . L i s t o f Subprograms in 'LINKLIB.

iiECOHD NO, LEVEL NO* LENGTH PACKAGE CHKSUM ------ CHEATION DATE
OCTAL DECIMAL OCTAL (8)

1 0 1'178 3362 XUOOT 666 1 UNKNOWN
2 0 283 4 X 3 2 o A D E R 571 1 2 / 1
3

5 / 7 0
0 290 442 XIOwTrJS 5116 0 5 / 0 7 / 7 0

4 rl 3 0 - 3 6 XEOF 4tj2n -- ilYKNOWN .-

5 0 7 5 113 DIIMP 6137 LINKNOIN
0 25'1 401 MAPFNS 36 17 6

7 0 671 1237 SYSTEV. 2533
H 0 b84 1254 - -- -- -- - sTO$ 6554 UNKNOWN- .

9 0 90 132 OUTPTC 2273 UNKNOIN
l o - d 15 17 LOCF 600 UNKMOWN -

11 0 2 7 3 3 GLTBA 2246 UNKI'JOWN
0 1% 183 267 I0 6 6 0 3 UNKNOWN

13 0 182 266 TORANDM 667 1 LJNKNOWN
0 191 14 -_ - - -271_-- CPC 6017 u r s -

15 0 42 5 3 Xf)lJMP 346.1 UNKNOWN
_i)- _ 1 4 3 ---- % ~ - - _ C U H [) I J M P - A ~ - ~ K U - - -

1 7 0 179 263 LINKERR 5332 UNKNOWN
14 L m 1 3 1 7 K O O E H - . * 6 5 2 _ U N W Y I ? J - - -
19 0 549 1127 KRAKEH 7405 UNKNOWN
2 0 - - O 1 4 - 2 6 --- - XRCL--- 2 0 4 0 U N K ! ! ! U W N - --
2 1 0 2 5 31 nC(jOEH 4374 UNKNOWN
22 0 14 -16 UBLE 1 3 h 0 - _ _ UNKNOWN -- -
23 0 8 6 126 SINCOS 6150 UNKNOWN

n 6 1 24 - - 7 5 UBAIEX 6445 UNKNOWN
2 5 n 4 0 50 I B A I E X 1210 UNKFJOWN
2 6 0 213 - 325 INPUTB 6664 - UNKNOWN --
27 0 97 141 INPUTC 3116 IJNKNOWN
28 0 7 3 I 11 OUTPTS ?374 , UNKNOWN- _-

---A --- - -- .--- -
2 9 0 35 43 PEMAHK 4750 UNKNOWN

0 33 3'3 - - - - SECOND 222 0 IJNKNOWN --
3 1 0 6 7 103 DSQRT 534 UNKNOWN
32 -- - 11 - __ 26 . - -3 ? -_ -- - DABS 4357 !!!!&ow! - -_
3 3 0 5 2 6 4 SORT 2347 UNKNOWN
3 4 0

pp - - -- - - - - - - -- .- 7 1_ . _ -- - 10'I ---- J!PuTS__3664 - - L,NI(No WB
3 5 0 6 6 1 rJ2 EXP 5003 UNKIJOWN
36 -- 0 - -. -..- - 55 67 - [)MOD 4530 UNKNOWN
37 0 14 I 6 LEGVAH 7325 UNKNOWN
38 0 EL 2Q!!cd-- 3431 -- UNKNOWN -

39 0 9 4 136 TAN 4044 UNKlJOWN
4 0 0 76 - _ _ _ - - _ _ - - ~ - - - - _611&- ALNl oG 6537 UNKNOWN -
4 1 0 121 171 ASINCOS 1047 UNKNOWN
4 2 0 7 9 117 -- -- A T AN 5326 UNKNOWN .-

43 0 9 6 140 ATAN2 4315 UNKNOWN
4 4 - - - -- --2(34 4 3 k & C K S P ____A205 UNKNOWN
45 0 97 141 MOFFt'X 570 UNKNOWN
4 b 0 - - - 96 140 -- BUFFEP_.-- _3750--- UNKNOWN - - _ _
4 7 (I 4 5 5 5 CARS 2510 UNKNOWN
4 H -- 0 - - 5 3 65 - CHAXEX 7066 UNKNOWN
49 n h 0 7 4 CCOS 4042 lJNKNOWN
5 0 0 4 13 6 0 CEXP - -- -- . -- 576 UNKNOWN
5 1 0 45 5 4 CLOG 6455 UNKNOWN

DESIGN OF THE CDC 6 4 0 0 / 6 6 0 0 LINKAGE EDITOR

Table 4(b). L i s t o f Subprograms i n L I N K L I B .

-- - - - -
KEC?HD N O a LEVEL NO* LENGTH PACKAGE CHKSUM ------ CREATION DATE

OCTAL U E C I M A L OCTAL 1B1 - - - --- -- - - -
4 3 1 48 6 0 CSOYT 2672 UNKNOWN

0 - %--_ -- - -_-261-.---_- 2 X D A T A N 3 1 3 5 UNKNOWM . _-
55 0 90 132 DBADEX 4624 UNKNOWN

-- Ll 50 l % L - 3 DEXP 3Ki3 - W N U N - -

5 7 0 200 310 OISPLA 1756 UNKNOWN
157 - 2 4 - --_- - n-- -. 2 3 5 DLNLOG _ 2776 UNKNOWN

5 9 0 3 1 37 OS I GN 5611 UNKNOWN
0 6 0 - _- - - - - - - - - 154 - . - - - 231 - - - Db I f JCOS- - - - 5 324 UNKNQW - - -

6 1 0 16 2 0 DVCHK 26 UNKrJOWN
h 2 n 7 1 5333 - UNKNOWN_- - - - -- -- -- -- - - - - 1.07 ~ N D F J I
b 3 0 36 44 XDINT 4143 UNKNOWN
b 4 0 75 113 I FENDF 4500 UNKNOWN - --- -
64 0 66 102 I OCHEK 4642 UNKNOWN

UNKNOWN -- - __ _ - r)- _ _ - 11- - - _ --l% -.!S!!Y.EC-- -155 --- - - -
h 'I 0 34 42 LENGTH 6.31 1 UNKNOWN

-- -.b? --_ _ _ _ " - - -. 215 - - _- -- 330 OUTPTB -- - UNKNOWN - - _
b 9 0 15 17 OVERFL 3300 IJNKNOWN
7 U 0 3 0 36 - ---- - - - - --- - PALISE_- 1666 _-VNK"rlOWN-- _
'7 1 D 2 1 25 HkNF 6147 UNKNOWN
7 2 - - (1 . - . _ 5_1_ ._ _ 6 1 _ h R A I E X - 2 3 A A N KNOWN- - -
73 r) 65 i n 1 HRAUEX 5424 U!JKNOWr\l
7 u - - - - - - - - - - .-_-_ 0 - -- 76 _ 114 _-~-E~~IY_II?--- _ - A 5 6 3 - - - L I N _ K _ N _ O _ U - ,
75 n 2 6 32 Sl- X TE 2535 UNKNOWN
76 0 - -- -- - - .- . - - -31 - _-31__31 I T E T -ZL- IJNKIJOWN___ --
7 7 0 69 1 Q4 T A Y H 6543 UNKIJOWN
7 8 -- - - -- - -- - 0 --- -- -72 - 110 - _- - . - S I N H _ 1 4 h UN-MOk!N -
7 9 0 72 11 0 COSH 1302 UNKNOWN

_ - -_ E!O _ - 0 -- 28 - - 3 4 . - .3SwTCH--4fj7--..--4MN4W ?I -- -
8 1 0 17 2 1 S T A R T 1111 UNKNOWN

-- - 0 82 - _- _-_. - - _ 3. - _ - - -- - ~ - - - ~ ~ ~ - 4 3 b f i - UNKN_O_W-N - -
k 3 0 45 55 WHETEC 5100 UNKNOWN

----- - 84 0 8 7 127 !!!!!f_IhlS - - 1 7 _ 1 ? - -__--____ UNKNOWN
6 5 n 588 I l l 4 TNPIITN 2671 UNKlJOvJN -- - 86 n - 351 - -537 _ 2!JTf!m - _ - 1k2.2 _ -- UNKNOWN
3 7 - - 0 74 l l ? HEADEC 4432 CINKNOWN
8d -- - - - - n 39 47 F T N H I N 4666 IJNKNO\rJN _

-. ---- - - - - - - ---
8.19 0 96 l4n l N l T M S 6535 UNKNOWN
9 0 0

p- - - - - - - - - - 1L!l --_- - 1 6 6 --__ _h$AJ-M> - UNKlJOWN 1 - - _ - - - - - -
9 1 r) 2 5 MOYTt 5571 UNKNOWN
92 n - - - - - - - -- I%-- - -16. 31 MXTFT -- -- 2 3 0 4 UNKNOWN - - - -
93 0 3 2 4 n MXGET 5675 UNKNOWN

- 2 4 - - - .- 1 _ __19--. - _--a - - !!2_c/\LL-..- -1315 U%KM!WN --
9 5 (I 3 2 4 0 MBPUT 7236 UNKNOWN

- - 9 b - 0 32 f+ 0 -- M & - t U l . -k517_ -- UNKlJoWN-
3 7 (1 3-47 533 C'LOT 673Q UNKNOWN

-- 96 -- - - - - - - - 325 lINKNOWN_. 0 _ - - - 5A5 -- _ SY M HOL-- -__36_64 . _ - - . - -
9 9 0 184 270 SCALE 702 UMKIJOWN

l o o _ - I---- - - _ 0- _P 9 9 3 5 3 AX_&- -_-_--- i ~ 3 5 . L llNIc_No41N
101 0 167 247 L I N E 4511 UNKNOWN

-- 1-0 2 0 i.'3_6 354 _ -N!FH3H 4 1 62-- .__ --- - __-LJW.!!NO w N
l f r . 3 17 0 0 0

-- - - - - -. - - -- LE\(_kl- .7(jHULJP !-ENji_T)II I S _- 4 1 4 4 33513--- -- -_ - - - --

NASTRAN SUPPORT PROGRAMS

7.2.8 Recommended Improvements to the Level 2.0 Version

More and more CDC 6000 ser ies instal la t ions are ins ta l l ing "private" disk packs thus providing

a user mountable/demountable direct access storage device. The increasing use of these packs

suggests two areas of improvement in the Level 2.0 version (the current version) of the linkage

edi tor .

1. Provide for the case where the individual l inks which comprise the executable program

reside in more than one direct access f i l e (presumably on different packs). Large programs

such as NASTRAN will not f i t on a single disk pack.

2. Provide fo r object deck l ib ra r ies in direct access format on the packs. Again, for a

large program such as NASTRAN, considerable elapsed time i s spent in i n i t i a l processing in

creating the single direct access f i l e SYSUT2 from each of the sequential l ib ra r ies .

The f i r s t area could be implemented by modifying XBPIPIT and XLPIADER. Perhaps input could be

supplied t o XBBPIT which specifies a destination f i l e 'for the 1 ink. XB0DT could then modify the

master index in LINKO$ with th i s information. XLOADER could be modified t o accept the new format
i

in LINKO$.

The second area could be implemented by changing the format of the LIBRARY control statement

t o the following:

LIBRARY namel (a) , name2(a) . . .

where

a = T or C as in the LINKEDIT statement. Files which are coded C are assumed to be already

in direct access format (probably with a name index). Files coded T are sequential and are con-

verted t o direct access formation on SYSUT2 as now. This would imply changes t o LKED015, LKED025

and LKED075.

DESIGN OF THE CDC 6400/6600 LINKAGE EDITOR

7.2.9 Linkage Editor Glossary

control section Consists of all instructions and data defined for a subprogram or common

block.

delink to delete from

ENTR Table Object deck table containing a list of all named entry points and common

blocks. See section 7.2.5.2

EPT Entry Point Table. See section 7.2.2.1.4

FET File Environment Table. See SCOPE reference manual.

FILL Table Object deck table containing information to relocate previously defined

GT

ID

LCT

link

link

LINK Table

LKEDO00

LT

nbr

path

PIDL Table

address fields.

General Table.

Identification

See section 7.2.5.4

See section 7.2.2.1.9

Local Common Table, See section 7.2.5.1

when used as a verb, "to link" means "to add to."

Collection of one or more segments which co,rise a logical subdivision

of the program. Link 0 (consisting of one segment only) is in main storage

at all times. It is the first link to receive control when execution of

the program is initiated. The root segment of any other link resides in

main storage at all times that the link is being executed. An overlay

program must consist of at least one link other than Link O.

Object deck table specifying external references with the subprogram.

See section 7.2.5.5

Main program. See Figure 31.

Library Table. See section 7.2.2.1.2

abbreviation for "nu_er"

Consists of a segment, A say, and all segments in the same region between

A and the root segment (first segment). The root segment is a part of

every path in every region. When a segment is in main storage, all segments

in its path are also in main storage.

Program Identification and Length Table. Object deck table containing

the subprogram identification and names of each of the common blocks

referenced by the subprogram. See section 7.2.5.1.

7.2-205 (6/I/71)

reg.

region

RDT

REPL Table

RT

SCT

SDT

seg.

segment

SNT

TEXT Table

tree

XREF Table

NASTRAN SUPPORT PROGRAMS

abbreviation for "region"

Contiguous area of main storage within which segments can be loaded

independently of paths in other regions. An overlay program can be

designed in a single or multiple regions.

Region Definition Table. See section 7.2.2.1,5.

Object deck table that provides for an efficient means for repeating a

block of data.

Rename Table. See section 7.2.2.1.8.

Segment Chains Table. See section 7.2.2.1.6.

Segment Definition Table. See section 7.2.2.1.7.

abbreviation for "segment."

Smallest functional unit (one or mere control sections) that can be loaded

as one logical entity during program execution.

Subprogram Names Table. See section 7.2.2.1.3.

Object deck table containing instructions and data. See section 7.2.5.3

The graphic representation that shows how segments can use main storage at

different times. It does not imply the order of execution.

See section 7.2.2.1.10.

7.2-206 (6/I/71)

THE SOURCE CONVERSION PROGRAM (SCP)

7.3 THE SOURCE CONVERSION PROGRAM (SCP)

7.3.1 Purpose of the Source Conversion Proqram

The Source Conversion Program (SCP) translates the NASTRAN FORTRAN code that compiles on the

UNIVAC ll08 and IBM S/360 to a form acceptable to the NASA Langley Research Center (LRC) CDC 6000

series RUN compiler.

The SCP is primarily concerned with two major differences between the FORTRAN acceptable to

the LRC RUN compiler and the FORTRAN acceptable to the compilers of the three other computers

initially selected for NASTRAN's execution: IBM System/360 (BS); UNIVAC ll08 (EXEC 8); and IBM

7094-7044 Direct Couple System (IBSYS). These two differences are: a) nonstandard returns from

called subroutines, and b) subroutines with multiple entry points.

7.3.2 Conversion Performed

Figure l shows a subroutine containing special cases of the types of FORTRAN statements on

which the SCP operates. This subroutine was generated merely for illustrative purposes; it

clearly violates many of the NASTRAN FORTRAN rules set down in section 6.2.

Figures 2, 3, 4, and 5 show the FORTRAN statements generated by the SCP from the code shown

in Figure I. These statements will compile on the LRC RUN compiler and will produce object code

equivalent to that produced by the other compilers.

7.3.2.1 The Nonstandard Return (NSR)

The NSR affects three types of FORTRAN statements: a) the RETURN statement; b) the CALL

statement; and c) the SUBROUTINE or ENTRY statement.

l ° The RETURN statement.

SCP Input (e.g., see lines 0033 and 0015 in Figure l)

RETURN

or

RETURNi

where i is an alphanumeric constant.

7.3-I (311171)

NASTRAN SUPPORT PROGRAMS

S ~ H R O L T I ~ I E S U E 1 (* , A # a)
c a * * * * ---
C THrS SAMPLE SUBROUTrNE ILLUSTRATES PARTlCCULAR CASES OF ALL THE
C STATEMENT TYPES C O N V E R T e G - P . - 8885

0004
C -
C 11 M l l L T l P C E EhTPIES, 0006
C 2) MULTI P L E E R T K I E S W I T H ' . O ~ - S T A N C A R D RETURNS, - - -Q09 !2 -
C 3) nUPMY ARGUFENT - A - A P P t A R I ! v G Oh P O H E THAN CNE ENTRYI 0008
C 4 1 D I F E W S I O N S T A T E M E Q T S AI- TFR_AN ALTERNAJE ENTRY,-- _ 0009
C 5) N O h * S T A N D A R U R E T U R N S A S I N A CALLING PROGRAt l t 001 0 .
C 6) Y O h m S T A Y D A R D R ~ T U R W S A ? I N THE CALLED PROGPAM, --- 001 1
C 7) N O h s S T A V D A R D R E T U R ~ V S 0 , L O G I C A L I F STATEMEtvTS, 001 2

c * * * * * --
C SEsohD E ~ T R Y P O I N T

____4aUl__l
001 8

C * * " * * p------------.---. 411l9_- -
F i T R Y SOi32 0020
CALI F U N C l (A , P ; 1 0 0) - T----- - - -. -- - .- _ _ A ' L - - -

3 0 3 CALl F U N C ~ (P I O O F %20(1, 3 0022
2oR CALL F U h J g R ($ I t ? O) -- -- - - 0 0 2 3 -

RFTURA 0024
C*c** , - - --- -- -- - ___0025
C THIRC E N T R Y P O l l N T
C * * * * a

0026
- - - - ---- - - -- - - - - - - -- - - - - - -- - - -- 0027

E L T R Y S l J R 3 (A , f ? C , D t F I *) 0028
-- l h 7 F ~ f H He($) .,..._ ___l_____i-_Y-d--

IF(LI r F O c i) CALL ~ b h ~ 2 ($ 1 0 8 , $ 3 0 0 ~ 2 ~ 0 ~ 0 ~ ~) 0030
- R F T I I R h 1 - 0 9 3 1 - -

303 I F (D cfOc 310) R k T U R N 1 0032
- - -- HFTtJHh- . -na33---

Eh I) 0034

Figure 1. Subroutine acceptable t o t he UNIVAC 1108, IBM System/360, and IBM 7094-7044

D i r e c t Couple System FORTRANs, b u t n o t t o t he CDC 6000 ser ies FORTRAN.

F igure 2. D r i v e r deck generated f o r e n t r y SUB1 o f t he sample subroutine.

THE SOURCE CONVERSION PROGRAM (SCP)

Figure 3. Driver deck generated for entry SUB2 of the sample subroutine.

S L . J ~ ~ T ' O J T I NE SIJB3 (-1 r % , I I t F) 8 GETURNS (K E T I J R V I 1 S U Q 3 1
C O U 4 ~ Y / 3 Y S T E h l /III!Ill(1) S U R 3
C O Y r l O J / ~ % Z S ~ J P l / I I I ~ I ~ I I I I I I I I I ~ ~ SUQ3 3
~ ~ ~ ~ ~ ~ u q * = i o c r - c I I I i I I I t 1) -1 S U R ~ 4
TII11al=LilcT(~)- : J ~ ' \ ~ J N N sus3 5
1 I I 1 I O Z = L ~ C F (~ C) - Ji'\l '\lJNNI\I SURJ 6
I I I I I OJ=LOCF(UEF)-I'\I J ~ v ' ' J N ~ ' S U R 3 7
C A L L ~ ~ J H J Z Z Z (I I I ~ I I I (~ ~ I ~) ~ I I I I I ~ ~ ~ I I ~ I I O ~ I I ~ ~ I ~ S ~ 8

L F T ' I ? Y S (~) SUW3 9

Figure 4. Driver deck generated for entry SUB3 of the sample subroutine.

MSTRAN SUPPORT PROGRAMS

c SUBROUTINE SUBI (+ ; 2 (*) S U R ~ 3
C & * * * + S U R l 3

' - r: THtS SAMRLE SU_BRO_U_TSNE rLLUSTRATES PARTICULAR CASES OF ALL THE 5 U ~ 1 4
r: STATEMENS" TYPES CONVERTED BY THE SOURCE CONVERSION PROGRAM. S U P 1 5

8 c - S U P 1 6 1

C 1) M U L T I P L E E N T R I E S , S U B 1 7
C 2) M ~ J L T I P L F E N T R I E S 4 I f ~ WCNaSTANDARD RETURNS S U P l 8
C 3) D U M M Y ARBUMENr * A & APPEARING ON MORE THAN ;)ME ENTRY,----- S U R l 9

' C 4) D I M E N S I O V S ~ A T E ~ E N T S b F T E H AN ALTEFtNATE EVTRY, S W l 1 0 1
C 5) N O @ - S T A N D A R P n f T U R N S AS 1 Y A C A L L I N G PROGRAM, S U B 1 11 I
C 6) V O N - S T A N D A R D sfETUSNS AS I N T H F C A L L F D PROGRAM. S U P 1 13
C 7) +JON-STANDARD aESURNS O N L O G I C A L 1F S T A T E M F N T S . S U R I 13

I C a * * + a S U R l 1 4
C f NTRY S U B 3 (A ~ B C ~ I J E F , *) S U R l 15 ,

INTEGER b c (3) sun1 16
IFC A 385) 4 0 , 5 0 , 5 Q S Y R I 1 7

4 0 R E T U R N R E T U R N 1 5 U R I 18 -- --- --
a 50 RETURN RETURN2 S U R l 1 9
ct**rr sun1 ao
C SECOND ENTRY P O I N T

----- -----
S U P l 2 1

e * * * + * -- S U P 1 23
ENTRY S U H 2 Z Z Z sun1 2 3

7 -
C E V T 9 Y S U B 2 - SUP 2 4

C A L L F U N C I (A) , R E ~ J R N S (~ O @) SUP: F
1 0 0 C A L L F ~ W C ~ ~ I ~ O I R I ~ ~ E ~ U ~ N S (~ - O O ~ ~ ~ ~) - - - - .- S U B 1 26
2 0 0 C A L L FUNC3 ,aFTLJR%S(100 S U R I 2 7

RETURN - S U P 1 28
Cut*+* 51191 2 9
c THIRD E V T P Y P ~ ~ N T - -- q U R 1 30
C + * * + * S U B 1 31

ENTRY S U B 3 7 Z Z -- J U R l 33
If (D o E Q r l) C A C L F ~ ~ N C ~ ~ ~ ~ Q C O I D) ~ R E T U R N S (~ O O ~ ~ Q O) S U B 1 33
RETURN R k T U R N 1 S U E 1 3 4 - .

3 5 0 I F C 3 , E Q , 2 . O) R f T U Q Y R F T U R ~ ~ s U R l 35
RETURN -- -- -- SJR1 36
END 3 U R I 37

F i g u r e 5. SCP o u t p u t o f t h e s a m p l e s u b r o u t i n e .

THE SOURCE CONVERSION PROGRAM (SCP)

2,

3.

SCP Output (e.g., see line SUBI 36 and SUBI 18 in Figure 5)

If i is not present in the input then no conversion takes place.

RETURN RETURNi

where i is an alphanumeric constant identical to the i of the input.

The CALL statement having nonstandard return arguments.

SCP Input (e.g., see line 0022 in Figure l)

CALL s($nl,$n 2$nK,al,a 2aj)

where s is the SUBROUTINE or ENTRY name, the ni are FORTRAN statement numbers

associated with nonstandard returns, and the ai are ordinary arguments.

SCP Output (e.g., see line SUBI 26 in Figure 5)

CALL s(al,a 2 aj), RETURNS(nl,n 2 nK)

where s, the ai, and the ni are as defined above. Note the "$'s" have been removed.

The SUBROUTINE or ENTRY statement.

SCP Input (e.g., see line O001 in Figure l)

SUBROUTINE S(*l,* 2*K,al,a2 aj)

or

ENTRY S(*l,* 2 *K,al,a2 aj)

where s is the subroutine or entry name, the *i are arguments representing the

nonstandard returns and the ai are ordinary arguments.

SCP Output

SUBROUTINE s(al,a 2 aj), RETURNS (RETURNI, RETURN2 RETURNK)

where s and the ai are as defined above.

Note: During the overall conversion process the nonstandard return s(*'s) in

ENTRY statements are removed by the multiple-entry processor (see Figure 7) as

described in section 7.3.2.2. This process is performed first, and thus the

nonstandard return processor encounters only SUBROUTINE statements having

nonstandard returns.

7.3-5 (311171)

NASTRAN SUPPORT PROGRAMS

7.3.2.2 Subroutines Having Multiple Entries

U_,like nonstandard return processing, which is essentially a statement-for-statement con-

version process, subroutines having multiple entries cannot be converted in a straightforward

way for compilation on the LRC RUN compiler.

The problem of multiple-entry subroutines lies in the requirement that each argument must

continue to represent the beginning of the same area in core that is assigned upon the first

entry where it appears as an argument until it receives another core assignment at the same or

another entry in which it appears in the same subroutine. Thus in Figure I, if entry were made

to SUB3 (line 0028) the dummy arguments A, BC, and DEF would receive core assignments. If the

next entry to this subroutine were made at SUB1 (line 0001), the argument A would receive a new

core assignment; however BC and DEF would retain the assignments received at the previous entry,

SUB3.

The LRC version and all versions of the CDC 6000 series RUN compiler accept arguments only

on the SUBROUTINE statement; ENTRY statements may not have arguments (1)

The list of arguments on any CALL statement, whether to an initial or secondary entry point,

should agree with the argument list of the SUBROUTINE statement. In CDC 6000 series FORTRAN, for

each argument in a CALL list, an address and not a variable, entire array, or external subroutine

is passed to the called subroutine. The following paragraphs describe the technique used to

convert subroutines having multiple entries.

I. If all the entries of a subroutine have precisely the same number of arguments,

and these arguments have the same names and appear in the same order, then the SCP

does nothing more than remove the argument lists from the ENTRY statements.

(1)Control Data 6400/6600 Computer _ystems FORTRAN Reference Manu_l CCDC pub, NO. 60174900)

7.3-6 (3/I/71)

THESOURCECONVERSIONPROGRAM(SCP)

2. If the aboveconditionis notmet, thentheSCPgenerates"drivers" as shownin

Figures2, 3, and4.

3. Toinsurethat a coreassignmentfor anargumentis maintainedfor future calls to a

subroutinewith multipleentries, all calls to that subroutineare trappedthroughsmall

subroutinescalled "drivers." TheSCPgeneratesa driver for eachentry point in a

multiple-entrysubroutine. Thedriver subroutinenameis the sameasthe entry it

represents. Its argumentlist is the sameasthe original, e.g., seethe entries

in Figuresl, 2, 3, and4.

4. Thedriver's function is to preservethe coreassignmentsof its argumentsandto

thencall the entry originally intendedwith a list of all possibleargumentcore

assignments.

5. Theargumentlist of the converteddeckis comprisedof the set-theoreticunion

of all argumentnamesfor all entries (seeFigurel, lines O001and0028,andFigure5,

line SUBI l).

6. Thedrivers donot preservethe actualcorelocations, but insteadpreserve,in

labeledCOMMON,indexesrelative to a fixed location in core (/SYSTEM/--seesection

2.4.I.8). Seefor examplelines SUB3 5, SUB3 6, andSUB37 in Figure4.

7. Theentry point namesof the original subroutineare filled to sevencharacters

each,using"Z's." Seven-characternamesare in generaluniquesincesix is the

maximumnumberof characterspermittedfor namesin NASTRANFORTRAN.TheSCPdoes

not considerthe possibility of a multiple-entrysubroutinehavingtwoentry names

(suchasSUBZandSUBZZ)which,whenfilled with Zsto sevencharacters,wouldproduce

identical entry names.In this case,the codeproducedbythe SCPwill not compile,

andit is upto the programmerusingthe SCPto solvethe problem.

8. At executiontimethe drivers will producecorrect results only whenCALLsaremade

in a sequencethat wouldbevalid usingtheoriginal subroutineonthe UNIVACll08

andthe IBMS/360.

7.3-7 (311171)

NASTRAN SUPPORT PROGRAMS

7.3.3 Major Divisions in the Program

The following discussion is intended for the use by the programming analyst responsible for

the use and maintenance of the SCP. Refer to the symbolic FORTRAN code, which is heavily com-

mented, in addition to this discussion and the flowcharts given in section 7.3.5.

7.3.3.1 The Main Driving Routine CONVSOU

The main driving routine CONVSOU is a single subprogram that controls the conversion of

FORTRAN subprograms it finds on the input file.

It does the following:

I. Reads a full subprogram into core.

2. Calls MULTEN, the multiple-entry processor, which will convert the deck for multiple

entries.

3. Calls REORDR, the delcarative statement reordering processor, which will rearrange

into correct order any declaratives within the subprogram. REORDR is called only if

the subprogram has multiple entries.

4. Calls NSRETN, the nonstandard return processor, which will complete the conversion

by translating all nonstandard return statements within the subprogram.

5. Outputs the converted deck via routine DKOUT.

6. Repeats steps l through 5 until no more subprograms remain on the input file.

The main driving routine contains blank COMMON which is loaded below (i.e., at a higher

core location than) all object code of the SCP. It is thus used as open core. Within the main

driving routine and the three processors, a subprogram being converted always lies in this open

core from Z(IDK) to Z(NDK), where

Z = Open core array

IDK = Relative location in Z where the subprogram begins.

NDK = Relative location where the subprogram ends.

7.3-8 (311171)

THESOURCECONVERSIONPROGRAM(SCP)

Eachcardimageof the subprogrambeingconvertedoccupiestwelvewordsof core,eachword

havingsix left-adjusted characters. Consequently,the SCPis recommendedfor useonly ona

CDC6000series computeralthoughit is theoretically capableof runningonanymachinehaving

six-characterwords(e.g., UNIVACIf08). This is reasonablesincethe SCPis designedto operate

onCDC6000series formatfiles.

7.3.3.2 TheMultiple-EntryProcessorMULTEN

Themultiple-entryprocessorMULTENoperatesonthe original codeonesubprogramat a time.

It scansthe codefor entry statementsand,if found,calls utility routineNAMARGto forman

argumentlist. After all entries havebeenfound,the followingtakesplace.

I. If only a primaryentry wasfound,noaction is takenandthis processorreturns

to the maindriving routine.

2. Theargumentlists of all entries arecompared.If theyare identical, thenthe only

action takenis to removethe argumentlists fromall secondaryentries.

3. If the argumentlists arenot identical, utility routineDRIVESis called to generate

andoutputa driver deckfor eachentry point. Theentry statementsof the original

programare thenalteredto appearas commentstatements,newentries are insertedbefore

them,andcontrol is returnedto the maindriving routine.

MULTENwill in all casesset a flag if morethanoneentry is foundto indicate that the

declarativestatementprocessorRE_RDRis to becalled.

7.3.3.3 TheDelcarativeStatementReorderingProcessorRE_RDR

Thefunctionof the declarativestatementreorderingprocessorRE_RDRis to moveall

declarativestatementsto the top of a subprogramandalso insurethat theyare in the following

order (seesection6.2):

I. DBUBLEPRECISION

2. COMPLEX

3. REAL

4. INTEGER

7.3-9 (311171)

NASTRAN SUPPORT PROGRAMS

5. LOGICAL

6. EXTERNAL

7. DIMENSION

8. COMMON

9. EQUIVALENCE

I0. DATA

RE_RDR is called for subprograms with multiple entries because DIMENSION statements appearing

after a secondary entry must be moved to the top of the program.

This processor originally was a stand-alone program, and still retains DIMENSION statements,

while the other two processors use the open core concept.

REORDR uses a shuttle-exchange sort considering all nondeclarative statements to be stored

last. Comments appearing directly above, or embedded within, a declarative statement are moved

along with the respective declarative in the sorting process.

7.3.3.4 The Nonstandard Return Processor NSRETN

The nonstandard return processor NSRETN analyzes each statement of the subprogram it receives

for conversion. When it finds any of the following statement forms, it will branch to a section

of code that will perform the conversion directly.

I. SUBROUTINE statement having nonstandard returns (*'s) in its argument list.

2. RETURNi, where i is an integer constant.

3. IF(....)RETURNi, as in (2).

4. CALL statement having nonstandard return FORTRAN statement numbers ($n) in its

argument list.

5. IF(....)CALL statement as in (4).

7.3-I0 (3/I/71)

THE SOURCE CONVERSION PROGRAM (SCP)

7.3.3.5 Utility Subroutines

Described below are 25 small utility subroutines used by the SCP. All are written in

FORTRAN except WRTEOR, ORF, LSHIFT, RSHIFT, LOCF, and FIELDLN, which are written in COMPASS.

All of the exceptions save WRTEOR are part of the MAPFNS routine described in section 5.5.6.1.

7.3.3.5.1 WRTEOR

A COMPASS assembly language routine to complete a logical record on the converted deck

output file.

CALL WRTEOR

7.3.3.5.2 CDTYPE

When called by REORDR, this routine will analyze one 72-column card image and return a

value indicating what kind of FORTRAN statement or statement fragment it is.

CALL CDTYPE(TYPE,BUFF,ADD)

TYPE = Integer returned with one of the following

-l

-2

0

l

2

3

4

5

6

7

8

9

lO

BUFF =

Comment statement

Continuation statement

Undefined statement

DOUBLE PRECISION statement

COMPLEX statement

REAL statement

INTEGER statement

LOGICAL statement

EXTERNAL statement

DIMENSION statement

C0_@4_Nstatement

EQUIVALENCE statement

DATA statement

Eleven-word buffer containing card column characters 7 through 72, six characters

to a word

7.3-11 (3/I/71)

NASTRAN SUPPORT PROGRAMS

ADD = BCD word containing columns 1 through 6 of the card image.

7.3.3.5.3 MOVE

M_VE moves a group of card images, when called by REORDR, to a higher position in the deck.

It performs a shuttle-exchange.

CALL M_VE(POINT,BEGIN,END,CARD,ADD)

PBINT = Integer value pointing to the last card sorted into place, after which cards

on the current move will go.

BEGIN = Integer card number of the first card in a group of cards to be moved.

END = Integer card number of the last card in group to be moved.

CARD = Buffer containing the card images for the subprogram.

ADD = Buffer containing the address field of each card image.

7.3.3.5.4 TOP

TOP, a small routine, determines where the first nonentry, noncomment statement of a sub-

program begins.

CALL TOP(POINT,CARD,ADD,TOTAL)

POINT = Integer value of card number returned.

CARD = Array of card image statement fields.

ADD = Array of card image address fields.

TOTAL = Integer value of the total number of cards in subprogram.

7.3.3.5.5 MASK2

MASK2 unpacks a specific character from a specific word in core.

CALL MASK2(WORD,CHAR,LETTER)

WORD = Word of core where the character to be unpacked resides.

CHAR = Integer count counting from left of character desired.

7.3-12 (3/I/71)

THE SOURCE CONVERSION PROGRAM (SCP)

LETTER = Word character is returned in. The character is left-justified and the word

is filled with blank characters.

7.3.3.5.6 MASK3

MASK3 unpacks a character from a word in a string of words and increments string pointers

appropriately.

CALL MASK3(W_RD,MW_RD,MCHAR,LETTER)

W_RD = Current word in string to unpack character from.

MW_RD : Word currently being operated on.

MCHAR = Character desired counting from left in the word.

LETTER = Word in which character is returned, left-justified filled with blanks.

MCHAR is incremented by I. If it then exceeds 6, it is set to 1 and MW_RD is incremented

by 1 before return is made.

7.3.3.5.7 MASK7

MASK7 analyzes a statement image buffer and returns the n-th nonblank character in the image;

or if the image is exhausted, it returns a blank.

CALL MASKT(CARD,N,LET,NCARDS)

CARD = Statement image buffer

N = Number of the character desired, N > 1

LET = Word the character is returned in, left-justified filled with blanks

NCARDS = Number of cards in statement image.

7.3.3.5.8 GETNAME

GETNAME determines the name appearing on the entry statement of a subprogram.

CALL GETNAME(Z,NAME)

Z = Entry statement image buffer.

NAME : Word where the name is returned, left-justified filled with blanks.

7.3-13 (3/I/71)

ARGBUF(IARG+O)

ARGBUF(IARG+I)

ARGBUF(IARG+2)

ARGBUF(IARG+3)

ARGBUF(IARG+4)

NASTRAN SUPPORT PROGRAMS

7.3.3.5.9 NAFtARG

N_ARG operates on any kind of an entry statement (SUBROUTINE or ENTRY) and returns a buffer

of data about the entry.

CALL NAMARG(ARGBUF,IARG)

ARGBUF = General buffer where data is to be placed.

IARG = Next location of ARGBUF which may be filled.

On return the following values will have been placed in ARGBUF.

= Location of entry

= Entry name

= Number of nonstandard returns in the entry statement

= Number of arguments

= BCD name of the first argument

ARGBUF(IARG+3+ARGBUF(IARG+3)) = BCD name of the last argument

7.3.3.5.10 PACKCD

PACKCD packs a character into the output card image. It will generate continuation cards

as needed.

CALL PACKCD(CHAR,1OPT)

CHAR = Word with the left-justified character to be packed.

0 implies continue the current statement.

1 implies start a new statement.

2 implies start the first statement at Z(1), the open core array in blank common.

>2 implies start a new statement at Z(IBPT).

7.3-14 (3/I/71)

THESOURCECONVERSIONPROGRAM(SCP)

7.3.3.5.11 INSERT

INSERTinserts newentries into multiple-entrysubroutinesif required,andconvertsthe
old entries into commentstatements.

CALLINSERT(IDK,NDK,ARGS,jARGS,ARGBUF,IARG,STARS)

IDK

NDK

ARGS

JARGS

ARGBUF

IARG

STARS

= Pointerto the first wordof the subprogramin opencore.

= Pointerto the last wordof the subprogramin opencore.

= Arraycontainingthe unionof argumentnames.

= Numberof namesin ARGS.

= Buffer produced by NAMARG containing entry argument data.

= Length of ARGBUF.

= Number of asterisks to be placed on main entry.

7.3.3.5.12 UNPKZ

UNPKZ unpacks the next character of a statement, automatically considering continuation

cards.

CALL UNPKZ

COMM_M/ZUNPKZ/ISTATE,JSTATE,LASTWD,ZW_RD,ZCHAR,CHAR

ISTATE

JSTATE

LASTWD

ZW(_RD

ZCHAR

CHAR

= Pointer to the first word of a statement.

= Pointer to the tentative last word of a statement.

= Pointer to the actual last word of a statement.

= Pointer to the current word of open core being work on.

= Last character position unpacked, 0 < ZCHAR < 6.

= Character unpacked.

7.3-15 (3/I/71)

NASTRAN SUPPORT PROGRAMS

7.3.3.5.13 PACKZ

PACKZ packs a character into a string.

CALL PACKZ(IBUMP,CH)

C_MM_N/ZUNPKZ/ISTATE,JSTATE,LASTWD,ZWORD,ZCHAR,CHAR

ISTATE

JSTATE

LASTWD

ZWORD

ZCHAR

CHAR

IBUMP

CH

7.3.3.5.14

See UNPKZ, section 7.3.3.5.12

_0 if pointers are not to be altered.

0 if automatic pointers are used.

= Character to be packed.

PACK1

PACK1 packs a specific character into a specific word of core.

CALL PACKI(WORD,J,CHAR)

WORD = Word where character will be placed.

j = Character position, 1 to 6, counting from left where the character will be

placed in W_RD.

CHAR = BCD character left-justified.

7.3.3.5.15 UNPK (function)

UNPK unpacks a specific character from a specific word of core.

CHAR = UNPK(W_RD,J)

WORD = Word of core where character to be unpacked resides.

J = Character position, 1 to 6, counting from left.

7.3-16 (311171)

THESOURCECONVERSIONPROGRAM(SCP)

CHAR= Characterreturned,left-justified andfilled with blanks.

7.3.3.5.16 ZW_RD

ZW_RDunpacksthe nextoneto six charactersfroma statement,ignoringblanks,andpacks
theminto a singleword,left-justified andfilled with blanks.

CALLZW_RD(NAME,JCHARS)

C_MM_N/ZUNPKZ/ISTATE,JSTATE,LASTWD,ZW_RD,ZCHAR,CHAR

ISTATE=

JSTATE=

LASTWD=
SeeUNPKZsection7.3.3.5.12

ZWORD=

ZCHAR=

CHAR =

NAME = Wordwherethe charactersare returned.

JCHARS= Numberof charactersdesired.

7.3.3.5.17 NAMEZ

NAMEZfills out a nameto sevencharacterswith "Z's" onthe right.

CALLNAMEZ(NAME,NEWNAME)

NAME

NEWNAME

7.3.3.5.18

= Single word with name in it.

= Seven word buffer where the seven characters of the new name will be

returned, each left-justified and filled with blanks.

ZNAME

ZNAME is the same as NAMEZ (7.3.3.5.17) except that the name is filled with "Z's"

left.

on the

7.3-17 (311171)

NASTRAN SUPPORT PROGRAMS

7.3.3.5.19 ORF (function)

ORF performs the logical sum of two words.

RESULT = ORF(W_RDI,WORD2)

7.3.3.5.20 LSHIFT (function)

LSHIFT performs logical shift of a word n-bits to the left. High-order bits shifted out

are last; vacated low-order bit positions are zero-filled.

RESULT = LSHIFT(WORD,N)

W(_RD = Word to be shifted. (Its not altered)

N = Number of bits to shift left.

RESULT = Returned value of shifted word.

7.3.3.5.21 RSHIFT (function)

RSHIFT performs a right shift with the dual characteristics of LSHIFT. See section

7.3.3.5.20.

7.3.3.5.22 LOCF (function)

LOCF determines the absolute location of a variable address.

RESULT = LOCF(W_RD)

W@RD = Varaible whose address is desired.

RESULT = Returned address of WORD.

7.3.3.5.23 FIELDLN

FIELDLN returns the number of words of core available for code and data storage.

CALL FIELDLN(L)

L = Number of words of core available L must be set to zero before call is made to

FIELDLN.

7.3-18 (3/I/71)

THE SOURCE CONVERSION PROGRAM (SCP)

7.3.3.5.24 D_UT

DKOUT outputs the converted deck.

through 80 of each card image.

CALL DKOUT(IDK,NDK)

IDK

NDK =

It places the name and sequence numbers in columns 73

= Pointer to the first word of the converted deck in open core.

Pointer to the last word of the converted deck in open core.

7.3.3.5.25 DRIVES

DRIVES generates a driver deck for each entry point of the subprograms that have multiple

entries.

CALL DRIVES(ARGBUF,IARG,ARGS,JARG)

ARGBUF = Buffer of names and argument lists for all the entries as prepared by NAMARG.

See section 7.3.3.5.9.

IARG = Length of ARGBUF

ARGS = Buffer where DRIVES will place the union of all arguments found in ARGBUF.

JARG = Length of ARGS.

7.3.4 Use of the SCP

The SCP operates on an input file of subprograms to be converted. This input file need

only consist of FORTRAN card images in a form capable of being read by CDC 6000 series formatted

READ statements. These card images, thus, must be in CDC 6000 series display code. The file

may be constructed such that each deck is a logical record, or the card images of all decks may

be continuous. The FORTRAN code of the routines to be converted are assumed to be "correct,"

i.e., compilable on the UNIVAC ll08 or the IBM S/360.

To execute the program, compile all routines of the SCP placing the object decks on some

file, e.g., SCPR. Then execute the program using the control card:

SCPR(OUTFILE,INFILE).

where INFILE is the file name where the code to be converted is to be found, and OUTFILE is where

the output code is to be placed. The output will be one CDC 6000 series logical record per output

7.3-19 (311171)

NASTRAN SUPPORT PROGRAMS

subroutine or driver deck.

The program should be executed with approximately 130,0008 words of core. This amount will

allow the handling of the largest subprogram within NASTRAN. Figure 6 shows a sample deck setup

for an SCP run.

7.3.5 SCP Flowcharts

This section contains flowcharts for the routines comprising the SCP.

and the corresponding routines are:

The figure numbers

Figure Number Routine No. of Sheets

7 C_NVS_U 1

8 MULTEN 2

9 NAMARG 1

I0 DRIVES 2

II RE_RDR 3

12 NSRETN 4

7.3-20 (3/I/71)

THE SOURCECONVERSIONPROGRAM(SCP)

SUBROUTINE 2 (to be converted)

\

SUBROUTINE 1 (to be converted_

789

OBJECT DECKS OF SCP

JOB,OI ,I00,I30000.

\

Figure 6. Sample deck setup for an SCP run.

7.3-21 (311171)

NASTRAN SUPPORT PROGRAMS

C_NVSOU

_ Enter _

Determine Amount

of Core Available

I Print a Linel

Read Card

Images for
One Deck

From Input File

I Move Deck I
Down to End

of Open Core

Cal I MULTEN

for Multiple

Entry
Process ing

Call NSRETN

for Nonstandard

RETURN Processing

Yes

Yes

Cal I DKOUT

to Output
the Converted

Deck

I Rewind the

Converted

Deck Output
File

f Print EOF
Message !

I Call REORDR

for Declarative
Statement

Reordering

l

Figure 7. Flowchart for CONVSOU.

7.3-22 (311171)

THESOURCECONVERSIONPROGRAM(SCP)

RemoveENTRYWhich
_isAssumedto bea

_.JDummy EntryNeeded
[to Circumvent a
IUNIVAC ll08 Compiler

_Bug.

MULTEN

Yes

Call NAMARG
to Get the

Name and List
of Arguments From

the SUBROUTINE
Statement

Search Through
Card Images of

Deck for Next

ENTRY Statement

Yes_

No

" Set Type Statement I
Reorderin(Flag TrueJ

=_ Return

w No

(es

i

i

Call NAMARG to 1

Get Name and List

of Arguments From
the ENTRY Statement

I
Figure 8(a). Flowchart for MULTEN.

7.3-23 (311171)

NASTRAN SUPPORT PROGRAMS

Compare the Argument
Lists of All Entries

in the Subprogram

Ye o

Yes

Add *'s to the
SUBROUTINE Statement

Argument List to
Insure Maximum Count

Remove Argument
Lists From All Entries
Except the SUBROUTINE

Statement and
Print a Messaqe
To This Effect

Figure 8(b). Flowchart for MULTEN.

7.3-24 (3/I/71)

Call DRIVES
to Generate Driver

Decks for All the
Entries in the

Subprogram

L
Call INSERT to

Turn All Current
Entries Into Comment

Statements and
Insert New

Entry Statements
With New Names

THESOURCECONVERSIONPROGRAM(SCP)

NAMARG

_ Enter _

Extract Name

From Entry
Statement and

Put it in Buffer

Extract the

Arguments and
Place Them in

the Buffer.
Maintain a Count

of Nonstandard
Returns and

Place it in the
Buffer

Figure 9. Flowchart for NAMARG.

7.3-25 (311171)

NASTRAN SUPPORT PROGRAMS

DRIVES

Form a List of the

(Set-Theoretic) Union
of Arguments From All

the Argument Lists

Start Driver Deck

for an Entry by
Forming a SUBROUTINE
Statement Using the

Original Name and
Arguments of an Entry

I FormC_MM_N/SYSTEM/ i i ii(1) I

I Form I
_MM_N/ZZ...namel/IIIIIOI lllllOn
where, n = total number of arguments I

in the union list, and namel is the I
name of the original primary entry I

point

I
I ormINNNNNNN=L_CF(IIIIIII(1))-I

l
Form a statement for each argument

of the following form

I I I I I i -=L_C F (arg) - NNNNNNN

where arg is the argument, and i
is its position i the union list

Figure lO(a). Flowchart for DRIVES.

7.3-26 (3/I/71)

THE SOURCE CONVERSION PROGRAM (SCP)

Form

CALL namei(lllllll(lllllOl),lllllll(lllll02) lllllll(lllllOn))
where, namei is the name of entry driver deck is for, filled out on

right to seven characters with Zs, and n is the number of arguments
in the union list of all arguments.

Add nonstandard returns to previous
CALL if *'s were in original entry.
Form,

RETURNS(nl,n 2 nk)

where the n i are the FORTRAN
statement numbers associated
with the k nonstandard returns

Form additional returns if nonstandard

returns were placed on the CALL statement,
RETURN RETURN1

RETURN RETURNk
where, k is number of nonstandard returns
possible.

Call DIq_UT
to Output the
Dri ver Deck

YeS'No

C Return _

Figure lO(b). Flowchart for DRIVES.

7.3-27 (3/I/71)

NASTRAN SUPPORT PROGRAMS

REBRDR

(Entry)

Print Message [

and Do I
Not Order I

I (Return

Move the Deck I
From Open Core i

to Dimensioned i

Arrays i

I
Initialize TyPE Array of Length i

Ten to Zero, Setting TYPE(1)=1200 I

I TY

Position Pointers
to Last Statement

of Last Declarative
Statement Processed

Yes

Figure ll(a). Flowchart for REORDR.

7.3-28 (3/I/71)

THE SOURCE CONVERSION PROGRAM (SCP)

JPosition Pointers to I

Next Card and J

Cal I CDTYPE I

to Determine its Type I

No

Determine Where
End of Statement

Lies, That is, How
Many Continuation
Cards and Embedded

Comments Are
Present

_r

Move This Complete
Statement

Under Last Declarative

Statement Moved

by Moving the

Cards I_anediately
Above it Down.

(SHUTTLE-EXCHANGE)

_r

TYPE(This Type): I

TYPE(This Type)-l]

Yes

Ye:;
r

TYPE(This Type)+l

No

Figure ll(b). Flowchart for RE_RDR.

7.3-29 (3/I/71)

NASTRAN SUPPORT PROGRAMS

No

I Move Deck Back I
Into Open Core

Block

1

Figure ll(c). Flowchart for REORDR.

7.3-30 (3/I/71)

THE SOURCE CONVERSION PROGRAM (SCP)

Move Card
Into the

Output Deck
Core Space

I
No

(Return)

NSRETN

,l
Initialize Pointers

For Output Deck
Core Space and
Input Deck Core

Position.

Position to (Next Card

N°_e s

N_Yes

Figure 12(a). Flowchart for NSRETN.

7.3-31 (3/1/71)

NASTRAN SUPPORT PROGRAMS

es

IN°

Y
Position to

Statement Contai ned
on the Logical

IF

Figure 12(b). Flowchart for NSRETN.

7.3-32 (3/I/71)

THESOURCECONVERSIONPROGRAM(SCP)

No

COUNT the Number 1of *'s

1
Convert SUBROUTINE

Statement While Moving

it to the Output
Deck Core Space.

Figure 12(c). Flowchart for NSRETN.

7.3-33 (3/I/71)

NASTRAN SUPPORT PROGRAMS

i t is Moved t o t h e
Output Deck Core

Convert RETURNi
t o RETURN RETURNi
a s i t is Moved t o

Output Deck Core Space.

F igure 1 2 (d) . Flowchart f o r NSRETN.

