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FOREWORD

The report describes the development of the Tridiagonal Reduction Method
for real eigenvalue analysis and the implementation of this technique in NASTRAN.
A follow-on report, Part II, will subsequently be issued for a complex eigenvalue

version of the method.

All major steps in the analytical development are documented. In addition,
a detailed summary of the computational procedures, explanatory flow diagrams and

user data-preparation instructions are provided.
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SYMBOLS

Latin

a general element of reduced eigenmatrix

c participation factor for ith eigenvector, {Xi}

d off-diagonal element of reduced tridiagonal matrix

d normalization factor for v—vectors and approximate off~diagonal element
of reduced tridiagonal matrix

f number of previously calculated modes

Kij element of [Kaa] matrix

m size of reduced eigenproblem

mij element of [M] matrix

n size of the full, unreduced eigenproblem

n number of non-null columns or rows of [M] matrix

q total number of desired eigensolutions, including those previously
computed

q desired number of new eigensolutions

r rank of the matrix [M]

r maximum possible size of reduced eigenproblem

T, weighted root-mean square residual

t number of decimal digits carried by computer

Greek

a2 small negative shift parameter for vibration problems

€ tolerance for rejecting small elements of [M]

A, A exact and approximate values of inverted and shifted eigenvalues

Aa physical eigenvalue

vii



A shift in physical eigenvalue

o
A, A exact and approximate buckling eigenvalues

2 2
A! w” - w

o

Ei bound on the absolute relative error in dith physical eigenvalue
wo center of frequency range of interest
w, w exact and approximate circular natural frequencies

Matrices and Vectors

{v} vector of scalar coefficients

[A] tridiagonal, reduced eigenmatrix

[B] eigenmatrix for the inverse problem

[B] [D][B], symmetric matrix

[c] lower triangular Cholesky factor of decomposed [K]
[~d-] diagonal factor of decomposed [K]

[D] symmetric orthogonality matrix for the inverse problem
[Gm+l] defined by Equation (21), Section 2.2

[H] upper Hessenberg matrix

[1] identity matrix

[K] stiffness matrix

[K] effective stiffmness matrix after eigenvalue shift
[Kaa] stiffness matrix for analysis set

[Kga] differential stiffness matrix for analysis set

[L] lower triangular factor of decomposed [K]

[M] equal to [Maa] or [Kia]

[Maa] mass matrix for analysis set

{r} residual vector

viii



I, B

[v]
{v}
{w}
{x}
{x}
{y}
[z}
o}, {3}

[A,~]

matrix of v-vectors assembled column-wise
trial vector

pseudo-random vector

eigenvector of the symmetric inverse problem
previously generated eigenvector

eigenvector of the reduced problem

exact modal matrix

exact and approximate physical eigenvector

diagonal matrix of exact eigenvalues

ix
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1. INTRODUCTION

The Tridiagonal Reduction or FEER Method is an automatic matrix reduction
scheme whereby the eigenseolutions in the neighborhood of a specified point in the
eigenspectrum can be accurately extracted from a tridiagonal eigenvalue problem
whose order is much lower than that of the full problem. Specifically, the order,

m, of the reduced problem is never greater than

m= 2q + 10 L)

where E is the desired number of accurately computed eigenvalues. Thus, the
intrinsic power of the method lies in the fact that the size of the reduced
eigenvalue problem is of the same order of magnitude as the number of desired
roots, even though the discretized system wmodel may possess thousands of degrees
of freedom. The process is effected without arbitrary lumping of masses or
other physical quantities at selected node points and thus avoids one of the
basic weaknesses of the Guyan Reduction Method (Reference [1]) and other tech-
niques (References [2] and [3]) requiring a judicious selection of the degrees

of freedom to be retained.

Tridiagonal reduction was first suggested by Crandall (Reference [4]) as
a truncated version of the Lanczos Algorithm (Reference [5]). However, it was
soon discovered that the original scheme possessed numerical instabilities
(References [6] and [7]). The necessary improvements to correct these weak-
nesses were made by Ojalvo and Newman (Reference [8]) who were the first to
develop a successful tridiagonal reduction program for large scale structural
vibration problems. Further refinements were later introduced by Newman and
Pipano in the FEER computer program (References [9] and [10]), including the

following extended features:

1. Highly efficient numerical computation schemes which take
advantage of matrix banding and sparsity.

2. Calculation of upper and lower error bounds on the extracted
eigenvalue estimates.



3. Accommodation of singular mass matrices and stiffness matrix
singularities associated with rigid body modes,

The last capability, which is also present in the Inverse Power Method
with Shifts, overcomes a basic restriction of the Tridiagonal (Givens) Method,

namely, the need to eliminate massless degrees of freedom.

From the standpoint of computational speed, the Tridiagonal Reduction
Method is almost as fast as the Givens and Householder methods (References [11]
and [12]) when all the eigensolutions are calculated, and becomes increasingly
more efficient as the number of required eigensolutions is reduced. 1In addition,
in order to avoid prohibitively long running times, both the Givens and House-
holder methods require the use of a relatively large computer central memory
for even moderate problem sizes, while the Tridiagonal Reduction Method is ex-

tremely efficient with regard to core requirements.

As shown in Section 2.1, the Tridiagonal Reduction Method employs only
a single initial shift of eigenvalues and hence usually requires only one matrix
decomposition. It consequentiy tends to be much more efficient than the Inverse

Power Method when more than one or two eigensolutions are required.

This report describes the development of the Tridiagonal Reduction Method
and its implementation in NASTRAN for real eigenvalue analysis as typified by

structural vibration and buckling problems.

The restrictions on the use of the method for real eigenvalue analysis in

NASTRAN are as follows:

1. For structural vibration mode applications the method extracts
a preselected number of eigenvalues which are closest to a
specified shift value, A , rather than computing the eigenvalues
in a prescribed range. ©

2. In buckling problems, a preselected number of eigenvalues of
smallest magnitude are obtained, i.e., no shifting is performed.
Physically, this implies that the buckling load parameters,
whether positive or negative, are computed in order of increasing
magnitude.



The basic steps employed in the method are as follows. First, the

initial eigenvalue problem
K - laM]{¢} =0 (2)
is converted to a symmetric inverse form

[B]1{x}

A[D]{xX} (3)

where

A=x—x )

and Ao is a shift value which is used only in structural vibration mode
applications. Second, the tridiagonal reduction algorithm is employed to
transform Equation (3) into a tridiagonal form of reduced order. Third, the
eigenvalues of the reduced matrix are extracted using a Q-R algorithm similar
to that described in Reference [13]. Fourth, the corresponding eigenvectors
are computed and converted to physical form. Finally, upper and lower error

bounds on the extracted eigenvalues are obtained.

The development of the method is set forth in Sections 2 to 6. A
detailed summary of the computational procedures used in NASTRAN, explanatory
flow diagrams and user data preparation instructions are provided in Sections
7 and 8. 1In addition, user information and error messages and optional diag-
nostic output relating to the Tridiagonal Reduction Method are described in

Section 9.






2. THE TRIDIAGONAL REDUCTION METHOD

2.1 Preliminary Operations

The problem is to find a specified number of real eigenvalues and corres-

ponding eigenvectors for

K - AaM] {9} =0 (€D

It is further required that these eigensolutions constitute the set lying

closest to a specified point, Ao’ in the eigenspectrum.

The definitions of the eigenvalue, Aa’ the matrices [K] and [M], and
their mathematical properties, depend on the type of problem being solved within
the NASTRAN environment. For real analysis, which is the subject of the current
report, only two separate problem types need be considered; structural vibration
and buckling problems. The matrix definitions and mathematical distinctions for

these two cases are summarized on the following page.



TABLE 1 - Problem Formulations

Problem . s ss NASTRAN Most General
Type Quantity Definitien Notation Properties
[X] Stiffness Matrix - K 1 Symmetric, non—
analysis set aa negative, semidefinite
matrix
Structural .
Vibration [M] Mass M?trlx M ] Same
analysis set aa
Modes
Square of a 2
A circular natural w Positive
a frequency
K] Stiffness Matrix - K ] Symmetric, positive-
analysis set aa definite matrix
Differential Stiff- R . ..
Buckling [M] ness Matrix — [Kd 1 Symm?trlc, indefinite
. aa matrix
: analysis set
A Buckling Load Y Positive or negative
a Parameter

The essential mathematical differences between the two types of problems
center around the properties of the [M] matrix, which is non-negative for vibra-~
tion mode problems, but indefinite for buckling problems, thereby permitting the
existence of both positive and negative eigenvalues in the latter case. In addi-
tion, the stiffness matrix may .be singular for vibration problems while it is al-
ways positive definite in buckling applications, which implies that the buckling

analysis is performed on a kinematically stable structure.

In summary, the two problems under consideration are of the forms

il
(@]

2 . .
[Kaa -w Maa]{¢} (structural vibrations) (2a)

and

[k, + AK:a] {6} = 0 (buckling) (2b)

Further, if the user requests vibration modes in the neighborhood of a

specified frequency, wo, Equation (2a) can be written as



[K]{o} = A" D19} (3

where
=y _ 2
Kl = [k, -oM 1 (42)
and
At = w? - mcz) : : (4b)

The resulting effective stiffness matrix, [K], is indefinite in this case, since
it possesses both positive and negative eigenvalues. This requires that a non-

square root decomposition scheme be used in subsequent operations. However,

w, = 0 is taken as a default value, or it may be speqified by the user. 1In this
case, a specified number of natural frequencies starting with the lowest will be

computed. In order to utilize a more efficient Cholesky decomposition of [R]

under these conditions, a small negative shift Ao = -a2 (see Section 5) is used,
yielding
K] = [k +a’M ) (5a)
aa aa
and
At = w? + o (5b)

It is easy to prove that the resulting effective stiffness matrix [E] is
positive definite provided that the system masses generate positive kinetic
energy due to any kinematically admissible rigid body motions of the structure.
This requirement is always satisfied by the mass matrix in a physically well
posed problem, thereby allowing a Cholesky square-root decomposition to be per-
formed when the roots are computed in the neighborhood of zero. Since no shift-
ing is performed in buckling problems, the effective stiffness matrix is
k] = [Kaa]’ which is always positive definite, again permitting the use of a

Cholesky decomposition.

In any event, a decomposition or factoring of [K] is next performed:

[L][‘d\][L]T (shifted vibration mode problems) (6a)

[K1
or

[C][C]T (buckling problems or vibration (6b)
modes in the neighborhood of
zero desired)

[X]



- where [1.] and [C] are lower triangular factors and [~d.] is a diagonal matrix.

To facilitate computation of eigenvalues closest to the point of interest

within the eigenspectrum, inverse forms of the eigenvalue problems are employed,

as in the Inverse Power Methad with Shifts..

The general form of the inverse problem may be written as

[B]{x} = A[D]{x} )]
where the above terms are defined as follows:
TABLE 2 — Inverse Eigenproblem Definitions
Problen
B D {x A
oo [8] [D] }
1. Shifted
Vibration R T TR I A N T M 1 {6} 1
aa aa aa 2 2
Modes W -w
o
2. Unshifted
Vibration [1]
Modes (in -1 -1.T P T 1
the neighbor- [c "1™ 1[c 7] (égigiisy [e1™ {6} | -2
hood of zero w o
frequency
3. Buckling -1, d -1.T T 1
Modes [C ][Kaa] [C ] [I] [C] {¢} - X‘

The above triangular matrix inverses are treated as purely operational

symbols, since in actual numerical computations vectors defined, for example, by

{a}

{a}

are obtained from the solutions of

[L_l]{b}

[L—l]T{E}

(8a)

(8b)



[L]1{a} = {b} (9a)
L1 {a}=" {5} (9b)
employing forward and backward passes.

2.2 The Reduction Algorithm

A reduction of the order of the eigenvalue problem, Equation (7), is

effected through the transformation

X} = [v] {y} (10)

nxl nxm mxl

where {X} is an approximation of {X}, n is the order of the unreduced problem,

and m < n. The transformation matrix is taken to be orthonormal to [D]#*, so

that
T
[vi“[p}[Vv] = [1] (1)
From Equations (7), (10), and (11) it is seen that
[al{y} = A{y} (12)
where
(a] = (v1T[B1[v] (13)
mxm

and A dis an approximation of the eigenvalue, A.

Thus, Equation (12) is an mth order eigenvalue problem where m < n.

The value of m 1is established according to the criteria given in Section 2.3.

The essence of the reduction scheme lies in the choice of the transforma-
tion matrix [V]. In the present case the Lanczos algorithm is used to build up

the [V] matrix, vector by vector, i.e.,

*In problem types 2 and 3 (see Table 2), [D] is the identity matrix and,
therefore, [V]T[V] = [I].



vl = vy}, v,h..on, v 1, (14)

nxm

such that the reduced mxm matrix [A] is tridiagonal and its eigenvalues
accurately approximate the roots of Equation (7) having the largest magnitude

(or, equivalently, the roots of the physical model closest to the specified

point of interest in the eigenspectrum).
Define the matrix

[8] = (D 1)(B]*, (15)

and let
iy i} = Tyt = Bllvyd - ey fvgd -y 5 vy )
................ - a, 1{vl}
_ i
= [B]{v,;} —jzl ai’.{Vj}; i=1, ml (16)

where {v,} is a starting vector (see Section 3) and all m {v}-vectors are

orthonormal to [D]. This implies that

_ T
ai,j {vj} [B]{Vi} an
while di+l is a normalizing factor given by,
= {3 T = 1/2
s41 = [19y40 37 D1V 1 (18)

The recurrence relationship, Equation (16), when carried out to one addi-

tional step (i.e., over the range i = 1, m), can be expressed in the following

matrix form:

*For shifted vibration mode problems, where [D] = [M,,], this operation is. purely

symbolic (51nce [Mé ] may be singular) and Equation (15) merely implies that
[B] = [L711T[~a.]" [L-luu RE

-~10-



LA

[(B] [v] = {v] [H] + dm+1[Gm+l] (19)
NXNn NXM NXM mxm nxm
where [H] is an upper Hessenberg matrix given by,
%11 2n 31 0 7 0 %m
d2 2y, a32 SRR S
[H] = d, a5, . (20)
| b m B
and
(o ¥ toy | b o} |
[ ,,1=1{0}{ fo} § ...... R SR G S B (21)

Premultiplying Equation (19) by [V]T[D], it can be seen that

v1T[B11v] = [(vi*[D][VI[H] + [0] (22)
or

[A] = [H]. (23)

However, the matrix [A] is symmetric and hence [H] is symmetric, requiring that

it be tridiagonal. It follows that

a, ,=0; j<i-l 24)

and

d, = a : (25)
while Equation (19) assumes the form
[B1(v] = [VIIA] +d_, [G .1 (26)

As a consequence of Equations (23) to (25), the reduced tridiagonal eigen-

value problem, Equation (12), is

-11-~



rall d2 -1
4, 399 dg
(A}{y} = dy a4 . {y} = Ay} @27
. . d
- 'Y m
d a

and the matrix coefficients are theoretically given by the simplified recurrence

formulas

a ;= {vi}T[B]{vi}

{;i+1} = [E]{vi} - ai,i{vi} - di{vi—l} i=1,m (28a)
= AT 1/2
Ay = vy 1 IDIv, 1 1]
{vi+l} = f—- {Giﬂ}; i=1, m-1 (28b)
i+l

where the sequence is initialized by choosing a random starting vector for {vl}

and setting d, = 0, {vo} = {0}.

1

Although the final off-diagonal term, dm+1, given by Equations (28a) is
not needed to construct the tri-diagonal reduced matrix, it is calculated and
saved for use in establishing error bounds (see Section 6). In addition, the

above algorithm is modified in the computer program as follows:

1. Each vector {vi 1}, calculated by Equations (28b) is reorthogonalized
to all previousTy computed {v}-vectors and eigenvectors, as des-
cribed in Section 4, before re-entering Equations (28a).

-12-
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2. The actual size, m, of the reduced eigenproblem is established by
the criteria given in Section 2.3, one of the restrictions being
that it cannot exceed the rank of the matrix [Maa] for vibration
mode problems or [Kga] for buckling problems.

The eigenvalues, A, and eigenvectors, {y} of Equation (27) are extracted
using a Q-R algorithm and eigenvector computational procedure similar to that
described in the NASTRAN Theoretical Manual (Reference [13]). They are then con-

verted to physical form as follows:

= -1
li = = (buckling probléms) (29a)
Ai
-2 1 2 . . .
. = — - (unshifted vibration (29b)
1 - =
Ai mode problems)
—? = %—-+ mz (shifted vibration (29¢)
i o
Ai mode problems)
6.} = [C—l]T[V]{y.} (buckling or unshifted (294)
i i . X
vibration mode problems)
{$i} = [Vl{y;} (shifted vibration (29e)

mode problems)

In addition, the vectors {y.} are normalized ({y.}T{y.} = 1) for convenience in
i i i

establishing error bounds (see Section 6).

2.3 Criteria for the Size of the Reduced Eigenvalue Problem

The total number of eigensolutions, including any existing rigid body
modes, is equal to the rank, r, of the matrix [M] = [Maa] or [M] = [Kga]; depend-
ing on whether a buckling or vibration mode problem is being solved. Thus, the
size of the reduced problem, m, cannot be greater than r. If, for example, [M]
is diagonal, then the maximum permissible value of m is equal to the total number
of non~-zero diagonal entries. In addition, if f eigensolutions have previously

been computed by NASTRAN, these must be swept out of the problem by making all

-13-



{v} vectors orthogonal to the previously computed eigenvectors. This implies

that the maximum size of the reduced problem is further reduced to
r=r-f (30)

4s a result of numerical experiments and application experiences
(References [8, 9, 14]), it has been found that in cases where m << r, a first
grouping of more than m/2 eigenvalues closest to the shift point are in
accurate agreement with the corresponding number of exact eigenvalues. The
remaining reduced-system roots are spread across the remaining exact eigen-

spectrum,

Thus, if the user requests a total of q eigenvalues closest to a speci-

fied numerical value*, the order of the reduced problem solved by NASTRAN will be

m = min[2q + 10, T] (31a)

where
q=q-f (31b)

It should be noted that in all cases m f_;, and whenever m is set
equal to r, all the eigensolutions of the unreduced problem, which have not been

previously computed, are generated.

From the above discussion it is apparent that, depending on the number of
eigensolutions requested, the rank of [M] may have an influence on the order of the
reduced problem which is generated by the program. Although the user should never
request more than r eigensolutions, the value of r may not always be a simple
matter to calculate, particularly in buckling problems. Therefore, the computa-

tional scheme has been designed to resolve the question of rank in the following

manner:

*q includes the number of previously computed eigensolutions, f. These consist
of modes generated prior to a restart plus rigid body modes generated by using
a SUPPRT card in the bulk data deck.

-14-
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The matrix [M] is first checked for inordinately small off-diagonal
elements, i.e., those which lie in the round-off range of the com—
puter. These terms can sometimes introduce artifically large physi-
cal eigenvalues and are therefore eliminated. Any off-diagonal
element for which

Imijl < 10 # 0, (32)

is set equal to zero, where t 1is the number of decimal digits
carried in the computation of the [M] matrix.

The number of non-null columns or rows of the above modified [M]
matrix is counted and designated as n. Since the rank, r, cannot
be greater than n, the program initially sets r = n - f in Equa-
tions (31) to provide a tentative size, m, of the reduced eigenvalue
problem. If the user has asked for more than ¥ eigensolutions, he
is given a message that too many eigensolutions have been requested
and that the program will try to find all the existing solutions.

(See Section 9 for a complete list of user messages and diagnostics).

If the reorthogonalization tests (see Section 4) fail for some
vector {Vi+1}’ this is an indication that a null vector has been
generated because the maximum number of r—f linearly independent
{v} vectors have already been obtained. The recurrence sequence
is then terminated and the order of the reduced eigenproblem is
further reduced to m = 1.

-15-~
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3. CHOICE OF THE INITIAL TRIAL VECTOR AND RESTART VECTORS

Prior to tridiagonal reduction, the original eigenvalue problem

[K ~ A M{p} = 0 )
is cast in the inverse form
[B]1{X} = A[D]{x} (2)
or
[B1{x} = A{X} (3)
where
1
h=s——mx- %)
a o

From Equation (1) it can be seen that if the problem size is designated
as n and r 1is the rank of the [M] matrix, then there are (n-r) spurious
eigensolutions corresponding to A = 0 or, equivalently, Ag + oo, If, for example,
a relatively small number of nodal masses or differential s;iffness elements are
employed, then [ﬁ] contains a large multiplicity of zero eigenvalues which are of
no interest and cause numerical difficulties. These are eliminated from the re-
duced tridiagonal problem by employing a constrained sub-set of v-vectors having

zero projection on the set of eigenvectors associated with A = 0.

To accomplish this, use is made of the fact that any non-null vector {;1},

generated from any other non-null vector {w}, through
{v,} = [Bl{w} (5)

will contain no components of the eigenvectors corresponding to A = 0. This can

be seen as follows.

First, express {w} as a linear combination of all the eigenvectors of [ﬁ]:

—-17-



r n
w} =] ci{Xi} + 7 ci{Xi} (6)

i=1 i=r+l

where {Xi}’ (i =1, r), are the eigenvectors for A # 0 and {Xi}’ (1=r+1, n),

are the eigenvectors for A = 0.

Next, substitute Equation (6) into Equation (5), giving

{vl} = .Zl ci[B]{Xi} + i=£+1 ci[B]{Xi} . (D
Since
[E]{xi} =A{x}; i=1,r )
and
[ﬁ]{Xi} =0 ;. i=r+l, n 9
it follows that
T
w3 = I eghix) (10)
i=1

Thus, {;l} contains no eigenvectors corresponding to A = 0, and is a null vector
only if {w} happens to be a A = 0 eigenvector. Further, it is easy to see that

after {;l} is normalized

fv.} = —=2—1'253, an
U e 1

the next vector generated,

{;2} = [ﬁ]{vl} - al,l{vl}, 12

as well as all subsequent trial vectors will be free of A = 0 eigenvectors.

Fmploying a somewhat similar argument, it can be shown that the most de-

sirable initial trial vector, {;1}, and hence the vector {w} from which it is

~18-



generated, should contain all components of the eigenvectors for A # 0. How-—
ever, since there is generally no a priori knowledge of the modal matrix, {w}
should be selected in such a way so as to make it as '"irregular" as possible with
respect to the system of elgenvectors so that it is most likely to contain a mix-
ture of all the mode shapes. It has been found that this is best achieved by

using a random or pseudo-random number generator to obtain the elements of

{wl.

If the vector {w} selected in the above manner should, by some chance,
be deficient in eigenvector components, then a null v-vector may be generated
at some point by the recurrence algorithm (Equations (28), ‘Section 2.2). In the
context of a finite digit computer, this is indicated by the appearance of an
off-diagonal term, di+1’ which is exceedingly small compared to the corresponding

diagonal term, a; 4o in the reduced tridiagonal matrix. The test used is that
b

2t I (13)

lds4q 1 < 10 lai,i

implies that the newly generated vector {v }, is null, where t is the number

i+l
of decimal digits carried by the computer. In this event, di+1

}. This vector is

is set exactly
equal to zero and a new restart vector is employed for {;i+l
generated exactly as in the case of the initial trial vector {vl}, but using a
different pseudo-random number seed. The recurrence algorithm for generation of
the v-vectors is subsequently continued in the usual manner until the required

number of vectors has been generated.

A further constraint on each v-vector, including the initial one, is that
it be orthogonal to all previously generated v—vectors and previously calculated
eigenvectors*. The imposition of these additional constraints is discussed in

the next section.

*Previously calculated eigenvectors may be available from the following sources:
(1) The specification of fictitious free body supports on a SUPPRT card, which
causes an equal number of rigid body modes to be automatically generated by
NASTRAN prior to entering an eigenvalue extraction routine.
(2) Checkpointing of préviously obtained eigensolutions followed by a restart
to obtain additional eigensolutions.
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4. - SWEEPING-OUT OF PREVIOUSLY OBTAINED EIGENVECTORS AND REORTHOGONALIZA-

TION OF THE TRIAL VECTORS

Assume that a combination of £ rigid body and non-rigid body eigen-
vectors have already been extracted prior to the current applicatiog of tEe
tridiagonal reduction method. Let these vectors be designated by {Xl},'{Xz},_
....,{Xf}. In order to avoid regenerating these previous eigensolutions, which |
would be inefficient, the initial trial vector, {vl}, obtained in the manner just
described, should be made orthogonal or "swept clean" of these eigenvector com-

ponents. This is theoretically accomplished by setting

~

£ ~
* . .
i} = {v;} - } [x 0y, Hix} e}
1 1 j=1 3 1 |
*
where {vl} is the swept initial vector to be used in place of {vl} following its
normalization., It can then be shown that all succeeding v-vectors generated by

the recurrence algorithm (Equations 28, Section 2.2) form a theoretically ortho-

ll:'l\ o R T
<17 LliiaL LuUC

[11]
L]
0]
)
[1}]
~

proceed, such that the later vectors are far removed from orthogonality to the
earlier ones. This is caused by unavoidable computational round-off which, because
of repeated multiplications by the unreduced eigenmatrix, [E], tends to amplify

the contributions of the eigenvector components nearest the shift point in the
calculated trial vectors. Thus, unless sufficiently accurate orthogonality of the
trial vectors is maintained, they will be excessively rich in the modes near the
shift point, and the solution of the reduced tridiagonal eigenvalue problem will

yield a false bunching of eigenvalues around this point in the eigenspectrum.

To correct this problem, Gregory (Reference [6]) experimented with the use
of higher-precision computer operations, but found only marginal improvement in

the final results. Later, Lanczos suggested a reorthogonalization of the type

i f ~ ~
g} = oy} - L (v, ¥ D v, N ) L [x, Y oMo, NIX @)
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where {v } is calculated by the unmodified recurrence algorithm and {v } is

an improved vector. While this improves matters substantially, it still does ‘not
eliminate the precision problem adequately. However, Ojalvo and Newman (Reference
{8]) found that the introduction of an iterative reorthogonalization loop can make
the trial vectors as orthogonal as necessary for extremely large systems. The

procedure is as follows:

The vector {v,,.}, obtained from either the recurrence algorithm or the

i+l
pseudo-random number generator (see Section 3) is denoted as {vigi} and reortho-
gonalized with respect to all the previously obtained vectors. This is accom-

plished by iterating,

i ~
ot = i - 1 e e N} - ; (%, 01 (o {91 110X, )

j=1 j=1
(3)

@y - Wy - % v, 1 1w 1w, } - f G, ) 1 o2
Vi’ T Vit LA MY V3T TLe) HX P DIy, }]{x}

J 3= J

until an acceptable vector
i f ~

Wy - 8y - S 1) 1t {5y 1 v} -6 ) I N @

is found which satisfies the orthogonality criteria

max I{v.}T[D]{ (S)}l_i 102—t (5a)
1<j<i I
. max I{X } [D]{v(s)}l _5_102_t (5b)
<3izf

where t dis the number of decimal digits carried by the computer. If, for some
vector, the above criteria are not satisfied after a set number of iterations,then the

program assumes that a new trial vector cannot be generated, and a reduced eigen-
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5.

value problem of order m = i 1is solved, as discussed in Section 2.3,

If the above criteria are met, then the resulting vector is normalized

and set equal to the new normalized trial vector, i.e.,

(s+1)
tvipg 7}

{v. ., } =
[{véizl)}T[D]{véizl)}]llz

i+l

. (6)

This new vector is used to compute the next off-diagonal term in the reduced tri-

diagonal matrix from the formula

a,,, = {v, VBl . ™

However, if

2-t
gy | < 2027 Jay 1, )

it is probable that {vi+1} is a null vector, possibly because the maximum number
of linearly independent vectors, corresponding to the rank of the problem, has
been exceeded. 1In this event a reduced eigenvalue problem of order m = 1i is

solved, as above.

If the criteria given by Equations (5) and (8) are all met, then the new

normalized vector {vi+l} is used to continue the reduction algorithm.

-23-



Y-



5. CRITERION FOR THE NEGATIVE SHIFT PARAMETER, az

Before tridiagonal reduction, the eigenvalue problem for natural fre-

quencies in the neighborhood of zero is

[B1{x} = A{x} &)
where
- -1.T
[8] = (¢t 11c™h] (2)
{ T
X} = [c] {¢} (3)
[k +o®M 1 = [clic]” %)
aa aa
and
A=t (5)
w + o
The criterion involved in the choice of the shift parameter, o, is that
it be large enocugh to render a possibly singular stiffness matrix non-singular {to

the extent that Cholesky symmetric decomposiion can be performed accurately in a
finite digit computer), and small enough to prevent troublesome clustering of the
eigenvalues, Ai' As an approach toward solving this problem, it is helpful to

note that, given a symmetric positive-definite matrix [J], we really obtain
T
[clicl™ = [J3] + [&J] (6)

when it is factored, because of computer rounding errors. According to Wilkinson

(Reference [16]), the following inequality is almost always satisfied,
1i-t
18311, < nao™™) |13l], )
where the above Holder-one matrix norms are equal to the maximum row sums of

absolute values, n is the order of the matrix, and t is the number of decimal

digits carried by the computer.
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Thus, in order to render the matrix [K + azM ] non—31ngular, even
when [K ] itself is singular, some matrix norm of the modlflcatlon a [M ]
should be appreciably larger than the corresponding norm of [GKaa], where the
latter matrix is in the "noise level” of the computer. On the basis of Equa-—

tion (7), the minimum az should therefore satisfy the requirement

2 . 1-t
o in 11y 2 n@o™™) Jlx |1, (®
or
n
[oe 3 Ixgl]
2 1-t, 1< i <n j=1
amin-z n(10 ) = 9

max tm, .
EiiinjL 1”]

where K.. and m,., are the elements of [K ] and [M 1.
ij ij aa aa

To further enhance the removal of possible singularities in the stiffness

matrix, a factor of ten is applied to the right side and the maximum ratio of

2
diagonal matrix elements is used. The resulting value of a;in is
K
2 _ 2-t ii .
%min n(107 ) lmiilmax’ hE # 0 (10

A final requirement imposed on the shift parameter is that it be large
enough to effect alterations in the last two-thirds of the significant digits in

each diagonal term of the unmodified stiffness matrix or, equivalently,

K
2 _ .-t/3 id .
a = 10 |—-—mﬁ|min, mg # 0 (11)

Consequently, the actual value of the shift used by the program is

2 2 2
a” = max (amin’ ao) (12)
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If the resulting modified stiffness matrix is still singular, as indicated
by a failure of the Cholesky decomposition process, the above value of az is
multiplied by a factor of 100, a maximum of two times in an attempt to render
the undecomposed matrix non-singular. If this procedure fails, the problem exe-
cution is aborted and the user is informed that the singularities cannot be re-

moved from the stiffness matrix.






6. ERROR BOUNDS ON THE COMPUTED EIGENVALUES

Once the modes of the reduced problem have been extracted, close upper
and lower bounds on the eigenvalue errors can be obtained rather economically.
This provides the user with an a posteriori check on the number of accurately
calculated eigenvalues which, in most cases, will be greater than the number re-

quested.

In carrying out the development, it is convenient to write the eigen-

problem in its inverse form

[(B1{X} = A{X} )

where

I @

Considering some approximation, {ii}’ to an exact eigenvector, {Xi}’ it

can be expanded in terms of the exact modal matrix as follows:

{ii} = [2][b,] 3)
where
(2] = (4%} } {%,} f....0 X} )
nxn
and
bl
{bi} = b, )
b
n

is a vector of scalar coefficients.

If the eigenvalue approximation associated with {ii} is denoted by Ki’

then the residual vector for the ith modal approximation is given by
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{r,} = [ - A_[T11{R,}

B - Ai[I]][Z]{bi} (6)

However

[B1{2] = [2]1[-A,-] o)

where [\Ad‘] is the diagonal matrix of eigenvalues, Ai’ i=1, n.
It follows that
R} = [Z]I[~A,0 - A [1]]{b,} (8)
Denoting a weighted root-mean-square residual by
_ T 1/2
r, = (IR, } IR H™'7, (9
it can be seen that

2 Triw i T - i
rg = o YA = A [T1112] D1 (2] A] = Ay [T]1{b, ) (10)

However, without any loss of generality, the eigenvectors can be orthonormalized

so that
T - 1; i=3j
{Xj} 1} = { 0. 14 j} (11)
The modal matrix is therefore unitary, i.e.,
T
[2)7[D][z] = [1] (12)
and
2 _ T, _x 2
ry = (b, I=A,) - A [T117 (b, )
n -
= 3 b2 o, - )2 (13)
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e

where {bij} refers to the jth element of the vector {bi}'

At this point it should be noted that NASTRAN also normalizes the eigen-

vectors {yi} of the reduced tridiagonal problem, so that

& FoiE} = &, T o) =1 (14)

where
[v] = [{Vl} 4 {vz} LA {Vm}] (15)

Thus,
& mIERY = F b2 -1 16
i i ‘J.=1 ji o~ (16)

and it follows that
2 ma (A - Ap? an
1<j<nm

Therefore, when Ai is close to an exact eigenvalue, Ai’ it can be seen that

IA,

1—Ai|i|r

N (18)

1

or

Xai - >‘o ri
lG—— -1l < |=7] (19)
ai o Ai

Since A . is close to A . when A, is close to A., Equation (19)
ai ai i i

implies that

A r,
i B el N (20)
ai A.(1 +XxA)

1 o 1

which is a measure of the maximum relative error in the dith physical eigenvalue*.

The residual, T, in the above equation can be evaluated quite easily via

the following approach.

*This test is obviously invalid when A, 4 = 0, i.e., a rigid body solution. 1In
this event, the computed value of xai is, in itself, a measure of the absolute
error in the physical eigenvalue and no further accuracy information is needed.
The existence of an eigenvalue as an additional rigid body mode not requested
on a SUPPRT card in the NASTRAN Bulk Data Deck is detected by the criterion
lxai' < lO't/3, in which case Equation (20) is bypassed.
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Set
x;} = [vi{y;}
in Equaticn (6). Then
{R;} = [[B][V] - A VI,
However, from Equation (26) of Section 2.2, it is seen that

[B][V] = [VI[A] +4d_,,[G ,.]

where [A] is the tridiagonal reduced matrix and

[¢_,,1 = [{o} 1 {0} S....f v 11 .
Therefore,
{r;} = [VI[A] +d_, 06 ] - A [VII{y,} .
But
[a1(y;} = A, {3},
so that
Ry = 4y 16 1)
and

2 T 2 T T
r; = R }IDIHR = {y,}[6 17 [DIG 1y, }.

It can be seen that

T
6_,,1 (P16 1 =

e O o

~32-
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so that finally,

2 2 2
T3 = A Vi 0 (30)
where ymi is the last element of the vector-{yi}.
Therefore, Equation (20) assumes the form
AL |d AN
ll - Aal < —m+l mi . (31)
ai A, @@ + 2 A
i o1l

Thus, it is seen that the eigenvalue errors are proportional to dm+1’ which is
the next off-diagonal term that would be generated, had the reduced tridiagomal
matrix [A] been increased from order m to order mtl. Equation (31) shows that
this term is further modified by a weighting factor Vi’ which is the last term

in the reduced-system eigenvector associated with Aai'

f

The use of the above error hound formula as

acceptable eigensolutions is described in Section 7.
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7. SUMMARY OF COMPUTATIONAL PROCEDURES AND FLOW CHARTS

Flow diagrams illustrating the computational procedures are shown in

Figures 1 and 2. The details of each block are summarized below.

(1) Calculate Small Negative Shift Parameters, az, (See Section 5)

In the case of unshifted vibration mode problems the negative shift para-=

meter for removing possible singularities is found from:

2 2 2
a” = max (amin’ ao) (1
where
K
2 2-t ii
o . = n(10 — : m, . 0 2
min ( )lm .lmax’ ii 7 (2a)
ii
and
K
2 ~-t/3 ii
o2 = 107t/ [=—=]_. (2b)
o m, . 'min
ii
K and m are the diagonal elements of [K_ ] and [M 1], respcectively, =n is

ii ii aa aa ol 7
the number of {ua} degrees of freedom, and t 1is the number of decimal digits

carried by the computer.

(2) Zero-Out Excessively Small Elements of [M] Matrix (See Section 2.3)

a. Compare the magnitudes of all off-diagonal elements of [M] with

the corresponding diagonal elements to determine whether

m, .
_1J . s = 4
lm .| <10 3 i=3, my, # 0. (3

b. Set mij = 0.0 for every off-diagonal element satisfying the above

criterion.
(3) Establish Tentative Reduced Problem Size (See Section 2.3)
a. Count the number, n, of non-null columns or rows in the above modi-

.fied [M] matrix and set
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(4)

r=n-f (4)

where f is the number of previously computed eigensolutions.

(b) Calculate a tentative size, m, of the reduced eigenproblem from

m = min[2q9 + 10, T] (5a)

where

q=q-f (5b)

and q 1is the total number of accurate eigenvalues requested by the user,
including previously computed modes. If a_> ;, warn user that too many
eigensolutions have been requested - program will try to find all existing

solutions.

Construct Factors of [K] Matrix {(See Section 2.1)

a. Set
(i) [K] = [Kaa - wg M ] (Shifted Vibration (6a)
aa Mode Problems)
or
(1)  [K] = [K__ +a?M ] (Unshifted Vibration (6b)
a aa Mode Problems)
or
(iii) [K] = [Kaa] (Buckling Problems) (6c)
b. Perform a non-square root decomposition:
= T
(K] = [L1[>a.][L] (7a)

for case (i), or a Cholesky symmetric decomposition:
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K] = [c1rc)” (7b)

for cases (ii) and (iii), using real arithmetic without pivoting. Save
the triangular and diagonal factors. If the decomposition for case (i)
fails or the decompositions for cases (ii) and (iii) fail after two in-
creases in a2 by factors of one hundred, then the program is aborted

and a fatal error message is issued, indicating that there are unremov-

able stiffness matrix singularities.

(3) Execute Tridiagonal Reduction Algorithm (See flow diagram for this block,
Figure 2)
(5.1) Initialize the Recurrence Algorithm (See Section 2.2)

Initialize the vector index to i = 0 and set
{vo} = {0} ®

where {vo} is an (nx1) null vector.

(5.2) Generate a Starting or Restart Vector and set d, = 0.0
s i+l
(See Section 3)

(a) Construct an n-element vector {w} using a pseudo-random

number generator.

(b) Solve for an un—-normalized trial vector from the equation

{;i+1} = [B]{w} €))
where
[B] = [L-l]T[‘d\]_l[L—l][Maa] (case 1) (10a)
or
[B] = [C—ll[Maa][C—l]T (case ii) (10b)
or .
[3] = [c‘l][xga][c‘ll'f . (case iii) (10c)
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Forward and backward passes are used to perform the above inverse

operations.

(¢c) Normalize the above vector:

0y _ 1 1/2 -
oyt = -[{— T 0165 }] oyt an
Vit ViHl
where
[p] = [Maa] (case i) (12a)
{p] = [1] (cases ii and iii) (12b)
(d) Set di+1 = 0.0 and proceed to block .(5.5).
(5.3) Create One Approximate Trial Vector and One Diagonal Coefficient
(See Section 2.2)
The recurrence algorithm is:
a ;= {vi}T[B]{vi} (13)
{;i+l} = [E]{vi} - ai,i{vi} - di{vi—l} (14)
= Y T = 1/2
3, = 1o,V DIE,, 1 (15)
L (O, 1 -
{Vi+1} = E———-{vi+l} (16)
i+l
where
[B] = [D}[B] (17)

and {;igi} is an approximation to the new trial vector.
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(5.4) First Normalization Test (See Section 3)

The test is

2-t
ldg 4yl > 3077 oy || (18)
Pass: Proceed directly to block (5.5)
Fail: Return to block (5.2), generate a mnew restart vector for'{vigi},

and then proceed to block (5.5).

(5.5) Iterate to Obtain Orthogonalized Vector (See Section 4)

Designate 'ﬁ%}, j =1, £ as previously calculated and stored

eigenvectors. Perform the iteratioms,

i
P 68 -1 e TN )

j=1
£

"J.Zl [xj}T[D]{ (S)}]{x }; s =0,1,2... (19)
until

max l{vj}T[D]{VEii}|_i 102_t

1< 49 <1

and 231=1 ) (20)

max XTI} < 107"
or 1<j<f

s = 14.

If the orthogonality criterion, Equation (20), is satisfied, proceed to
block (5.6). Otherwise, set the problem size, m, equal to i and pro-

ceed to Exit.

(5.6) Normalize the Orthogonalized Trial Vector (See Section 4)

Compute
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(s+1)
i '}

v }= _—
il [t B (1 (o BT 1172 (21)
i+l i+l
This is the new orthogonalized and normalized trial vector.
(5.7) Second Normalization Test and Creation of Off-Diagonal Coefficient

(See Section 4)

(a) Compute the next off-diagonal term in the reduced tridiagonal
matrix from

dipgg = {vi+1}T[B]{Vi} (22)

(b) Verify whether the following test is met:

2-t
ldgep] > 1077 lay 4l (23)
If it has, set i = i+l and return to block (5.3) for continuation of
the recurrence algorithm. If the test fails, set m =1 to reduce the
problem size and proceed to Exit. Issue message to user that only i

modes can be obtained — more than r - f modes may have been requested.

(6) Solve Reduced-System Eigenvalue Problem (See Section 2.2)

a. The coefficients all’ a22, cee s amm and d2’ d3, ceaay dm’

computed in block (5) are interpreted as the following symmetric, tridiagonal

array:
211 2
d, 359 4
[A} = d3 agq ) . (24)
. - -
m
) d ‘a
m mm
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b. The mth order eigenvalue problem
(Al{y} = Ay} (25)
is solved for the eigenvalues, Ki’ and eigenvectors {yi} using a Q-R algorithm

and eigenvector computational procedure similar to that described in the NASTRAN

Theoretical Manual (Reference [13]).

c. The reduced system eigenvectors are normalized so that
. T )
{y.}{y.}=1; 1=1, n (26)
i i
) Compute Maximum Eigenvalue Errors (See Section 6)
a. The maximum absolute relative errors in the computed physical

eigenvalues are obtained from

) I(Em+1)(ymi)l .
|Ai(1 + oni)|

4 i=1,m (27a)

where Em+l is the last off-diagonal term computed in block (5.3) and Vi is
the last element in the vector {yi}. If the physical eigenvalue 1/Ki + Xo,
corresponds to a rigid body mode, the above computation is invalid and therefore

bypassed. A rigid body mode is assumed to occur whenever

l_l.— +A | < 107t/3 (27b)
A o=

i
and is denoted by setting the relative error, Ei, equal to a flat zero.

b. The eigenvalues are processed in order of increasing distance
from the center of range of interest, XO, to determine whether their associated
Ei values meet an acceptable relative error tolerance set by the user on the
EIGR or EIGB bulk data card (the default value is .001/n where n is the order

of the stiffness matrix). The first eignevalue not meeting the tolerance test,
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as well as all subsequent eigenvalues further removed from the center of interest,

are considered to lack sufficient accuracy and are therefore rejected.

c. Acceptance eigenvalues obtained in the above manner are reordered

in terms of increasing physical value for subsequent processing by NASTRAN.

8. Compute Physical Eigénvalues ard Eigenvectors (See Section 2.2)

The mathematical eigenvalues, Ki’ and eigenvectors, {yi}, are converted

to physical form as follows:

¥y o= -1
Ay = A (Buckling Problems)
i

B? =-%— - a2 (Unshifted Vibration

t Ai Mode Problems)
5? =-%— + w2 (Shifted Vibration

* Ai ° Mode Problems)

- ~-1.T . .
{6.} = [c "1 [vi{y.} (Buckling or Unshifted

1 1 Vibration Mode Problems)

{6} = vVily,;} (Shifted Vibration

Mode Problems)

where

(vl = [{vl}{vz} cees {vm}].

-42-

(28a)

(28b)

(28¢)

(29a)

(29b)

(30)



Unshifted
Vibration
Modes 1. Calculate small
negative shift
parameter, O

Problem
type

All
Others

2. Zero out excessively
small elements of
[{M] matrix

v
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Figure 1. Overall flow diagram for tridiagonal reduction method
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5.3 Create one
approximate trial

vector and one
ENTER diagonal coeff.

5.1 1Initialize the
Recurrence
Algorithm; 1 = 0

5.2 Generate a starting
or restart vector

and set di+l = 0.0

5.5 Iterate to obtain
orthogonalized
vector

Unsatisfied

Orthogonality
criterion

Satisfied

Reduce 5.6 Normalize the
problem orthogonalized
size to i trial vector
5.7 Second
Fail normalization

test and creation
of off-diagonal
coeff.

Figure 2. Flow diagram for block 5, execute tridiagonal reduction algorithm
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8. NASTRAN USER'S INSTRUCTIONS

The following pages show modifications of the EIGR and EIGB cards in
the NASTRAN Bulk Data deck which accommodate user implementation of the tridia-
gonal reduction method for real eigenvalue analysis. The modifications are
constituted of additions to the standard user instructions and are underscored

for ease in identification.

When the tridiagonal reduction method is invoked, the F2 or L2 parameter
on these cards represents the maximum allowable value of the computed relative
error in a physical eigenvalue (see Section'6). If this value is exceeded, the
associated eigensolution is not accepted for further processing by NASTRAN. A
detailed list of the maximum relative errors in the computed eigenvalues can be
obtained by requesting DIAG 16 in the NASTRAN Executive Control Deck (see Section
9).
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BULK DATA DECK

Input Data Card EIGB Buckling Analysis Data
Description: Defines data needed to perform buckling analysis.

Format and Example:

1 2 3 4 5 6 7 8 9 10
EIGB SiDh METH@D Ll L2 NEP NDP NDN E +abe
EIGB 13 DET ~ 0.1 2.5 2 1 1 0.0 "ABC
+abce NPRM G C
+BC MAX
Field Contents
SID Set identification number (Unique integer > 0)
METH@D Method of eigenvalue extraction, one of the BCD values "INV",

"DET", "FEER", "UINV", or "UDET"

INV - 1Inverse power method, symmetric matrix operations
DET - Determinant method, symmetric matrix operations
FEER — Tridiagonal reduction method, symmetric matrix
operations
UINV - TInverse power method, unsymmetric matrix operatiomns
UDET - Determinant method, unsymmetric matrix operations
11, L2 Eigenvalue range of interest (Real; L1 < L2 > 0.0) For METH@D

= "FEER", L1 is ignored and L2 is the acceptable relative error

tolerance on eigenvalues, in percent (Default is .001/n where n is
the order of the stiffness matrix) (Real > 0.0)

NEP Estimate of number of roots in positive range. Desired number
of eigenvalues of smallest magnitude for METH@D = "FEER"
(Default is automatically calculated to extract at lease one
accurate mode) (Integer > 0)

NDP, NDN Desired number of positive and negative roots (Default = 3 NEP)
(Integer >0). Ignored for METH@D = "FEER"
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E

N@RM

G

C

Remarks
1.
2.
3.
4.
5.
6.
7.

Convergence criteria (optional) (Real > 0.0)

Method for normalizing eigenvectors, one of the BCD values "MAX"
or "PPINT"

MAX -~ Normalize to unit value of the largest component in the
analysis set '

PPINT - Normalize to unit value of the component defined in
fields 3 and 4 defaults to "MAX" if defined component.
is zero

Grid or scalar point identification number (Integer > 0) (Re—
quired if and only if NORM = "PHINT")

Component number (One of the integers 1-6) (Required if and
only if N@RM = "PPINT" and G is a geometric grid point)

Buckling analysis root extraction data sets must be selected in the
Case Control Deck (METHPD = SID) to be used by NASTRAN.

The quantities L1 and L2 are dimensionless and specify a range in
which the eigenvalues are to be found. An eigenvalue is a factor by
which the prebuckling state of stress (first subcase) is multiplied to
produce buckling. f METH@D = "FEER", L1 is ignored and L2 repre-
sents the maximum upper bound, in percent, ongTAFEER/ﬁEXACT - 1[ for

acceptance of a computed eigensolution.

The continuation card is required.

See Sections 10.3.6 and 10.4.2.2 of the Theoretical Manual for a dis-
cussion of convergence criteria.

If METHPD = "DET", L1 must be greater than or equal to 0.0.

If NPRM = "MAX", components that are not in the analysis set may have
values larger than unity.

If NPRM = "PPINT", the selected component must be in the analysis set.
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BULK DATA DECK

Input Data Card EIGR

Description: Defines data needed to perform real eigenvalue analysis.

Format and Example:

EIGR SID METH@D Fl F2 NE ND NZ E +abc
EIGR 13 DET 1.9 15.6 10 12 o 1.-3 | ABC
+abc NPRM G C
+BC PPINT 32 4

Field Content

SID Set identification number (Unique integer > 0)

METH@D Method of eigenvalue extraction, one of the BCD values "INV",

"DET", "GIV”, "FEER", "UINV", or "UDET"-

INV Inverse power method, symmetric matrix operations,

DET Determinant method, symmetric matrix operations.

GIV Givens method of tridiagonalization.

FEER Tridiagonal reduction method, symmetric matrix

operations.

UINV Inverse power method, unsymmetric matrix operations.

UDET Determinant method, unsymmetric matrix operations.
Fl, F2 Frequency range of interest (Required for METH@D = "DET",

"INV", "UDET", or "UINV") (Real > 0.0; F1 < F2). Frequency

range over which eigenvectors are desired for METH@D = "GIV".

The frequency range is ignored if ND > 0, in which case the
eigenvectors for the first ND positive roots are found. (Real
Fl1 < F2). If METH@PD = "FEER", F1 ‘is the center of range of
interest (Default is F1 = 0.0) (Real > 0.0), and F2 is the
acceptable relative error tolerance on frequency-squared, in
percent (Default is .001/n where n is the order of the stiffness
matrix) (Real > 0.0) T T

Estimate of number of roots in range (Required for METH@D =
"DET", "IWV", "UDET", or "UINV", ignored for METH@D = "FEER")
(Integer > 0)
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ND Desired number of roots for METH@D = "DET", "INV', "UDET",
or "UINV", (Default is 3 ©NE) (Integer > 0). Desired number
of eigenvectors for METH@D.= "GIV" (Default is zero) (Integer
> 0). Desired number of roots and eigenvectors for METH@D =
"FEER" (Default is aivtomatically calculated to extract at least
one dcécurate mode) (Integer > 0)

NZ Number of free body modes (Optional - used only if METH$D =
"DET" or "UDET") (Integer > 0)

E Mass orthogonality test parameter (Default is 0.0 which means
no test will be made) (Real > 0.0).

NPRM Method for normalizing eigenvectors, one of the BCD values
"MASS", "MAX" or "P@INT"

MASS - Normalize to unit value of the generalized mass

MAX - Normalize to unit value of the largest component in
the analysis set

PPINT — Normalize to unit value of the component defined in
fields 3 and 4 - defaults to "MAX" if defined com-
ponent is zero

G Grid or scalar point identification number (Required if and only
if NPRM = "PPINT") (Integer > 0)

C Component number (One of the integers 1-6) (Required if and
only if N@RM = "PPINT" and G is a geometric grid point)

Remarks:

1. Real eigenvalue extraction data sets must be selected in the Case
Control Deck (METHPD = SID) to be used by NASTRAN.

2. The units of Fl1 and F2 are cycles per unit time. If METH@D =
"FEER", F2 represents the maximum upper bound, in percent, on
lwfprp/Wxacy — 1] for acceptance of a computed eigensolution.

3. The continuation card is required.

4, If METH@D = "GIV", all eigenvalues are found.

5. If METHPD = "GIV", the mass matrix for the analysis set must be
positive definite. This means that all degrees of freedom, including

rotations, must have mass properties. @MIT cards may be used to re-
move massless degrees of freedom.
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10.

. A nonzero value of E in field 9 also modifies the convergence

criteria., ~“Seé Sections 10.3.6 and 10.4.2.2 of the Theoretical Manual
for a discussion of convergence criteria.

If NgYRM = "MAX", components that are not in the analysis set may have

values larger than unity.
If NPRM = "P@INT", the selected component must be in the analysis set.

If METHAD = "“GIV" and rigid body modes are present, F1 should be
set to a small negative number rather than zero if the rigid body
eigenvectors are desired.

The desired number of roots (ND) includes all roots previously found,
such as rigid body modes determined with the use of the SUP@RT card,

or the number of roots found on the previous run when restarting and

APPENDing the eigenvector file.
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9. USER MESSAGES AND OPTIONAL DIAGNQSTICS

9.1 NASTRAN Functional Module User Messages for the Tridiagonal Reduction
Method

9.1.1 General

The following is a description of the NASTRAN user messages which may be
generated by NASTRAN during the execution of the Tridiagonal Reduction method
and which are unique to this method. Explanatory information is provided follow-
ing the text of each message and, in the case of a fatal message, corrective
action is indicated. Refer to the NASTRAN Users' Manual, Section 6 for a com-

plete listing of other system and user messages.

Fatal messages cause the termination of the execution following the print-
ing of the message text. These messages will always appear at the end of the
NASTRAN output. Warning and information messages will appear at various places
in the output stream. Such messages convey only warnings or information to the
user. Consequently, the execution continues in a normal manner following the

printing of the message text.

9.1.2 List of User Messages

2385%%% UYSER WARNING MESSAGE 2385, DESIRED NUMBER ¢F EIGENVALUES EXCEED
THE EXISTING NUMBER, ALL EIGENS@LUTI¢NS WILL BE S@UGHT.

The desired number of eigenvalues specified on the EIGR card
(NEP) or the EIGR card (ND) exceeds the rank of the [Kga] or [Maa]
matrix, which is the maximum number of existing eigenvalues.

2386%%% USER FATAL MESSAGE 2386, STIFFNESS MATRIX SINGULARITY CANN@T BE
REMPVED BY SHIFTING.

Check the specification of masses on CPNML, CPNM2, CMASSi,
material defintion and element property cards to ensure that the
degrees—of-freedom in the analysis set are not all massless.

2387%%% USER WARNING MESSAGE 2387, PROBLEM SIZE REDUCED T@ **%*% DUE T@
ORTHPGPHNALITY DRIFT PR NULL TRIAL VECTOR.
ALL EXISTING MODES MAY HAVE BEEN ¢BTAINED. USE DIAG 16 T¢
DETERMINE ERR@R B@UNDS.
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2388%%*

2389%%*

2390% %%

2391 %*%

2392%%%

The Tridiagonal Reduction Method cannot generate a reduced
problem size of the order prescribed in Section 10.6.2.3 of

the Theoretical Manual. However, the desired number of accurate
eigenvalues specified on the EIGB card (NEP) or the EIGR card
(ND) may have been obtained. A detailed list of the computed
error bounds can be obtained by requesting DIAG 16 in the
EXECUTIVE C@NTRPL DECK.

USER WARNING MESSAGE 2388, USER SPECIFIED RANGE N#T USED F@R
FEER BUCKLING, THE R@PTS @F LOWEST MANGITUDE ARE @BTAINED.

The value of L1 specified on the EIGB card is ignored for
buckling analysis by the Tridiagonal Reduction (FEER) method.

USER WARNING MESSAGE 2389, PRUBLEM SIZE REDUCED. N@ M@RE TRIAL
VECTPRS CAN BE @BTAINED.

The desired number of eigenvalues specified on the EIGB card
(NEP) or the EIGR card (ND) exceeds the number that can be
calculated by the Tridiagonal Reduction (FEER) method. Check
whether the requested number of eigenvalues exceeds the rank
of the [Kga] or [Maa] matrix, which equals the number of exist-
ing eigenvalues.

USER WARNING MESSAGE 2390, **%** FEWER ACCURATE EIGENS@LUTI@NS
THAN THE ***% REQUESTED HAVE BEEN FOUND. USE DIAG 16 T@¢
DETERMINE ERRPR B@UNDS.

The number of eigenvalues passing the eigenvalue relative—error
test is less than the number requested on the EIGB or EIGR card.
The maximum allowable error is specified in field 5 on the above
cards. A detailed list of the computed error bounds can be ob-
tained by requesting DIAG 16 in the EXECUTIVE C@NTROL DECK. A
checkpoint and restart should be employed to obtain additional
accurate eigensolutions.

USER FATAL MESSAGE 2391, PRAGRAM LGGIC ERROR IN FEER.

USER INFPRMATIPN MESSAGE 2392, ***% MPRE ACCURATE EIGENS@LUTIPNS
THAN THE #*%*%* REQUESTED HAVE BEEN FOUND. USE DIAG 16 T¢ DETERMINE
ERRGR BYUNDS.

The number of eigenvalues passing the eigenvalue relative-error
test is greater than the number requested on the EIGB or EIGR
card. The maximum allowable error is specified in field 5 on
the above cards. A detailed list of the computed error bounds
can be obtained by requesting DIAG 16 in the EXECUTIVE C@NTR@L
DECK.



2393%*%* USER WARNING MESSAGE 2393, THE REDUCED-SYSTEM EIGENVECT{R
CORRESPPNDING T$ EIGENVALUE #%*% DPES NPT MEET CPNVERGENCE
CRITERIPN. ABSPLUTE RELATIVE ERRPR BETWEEN SUCCESSIVE
ITERATES 1S ¥#%%

The accuracy of the corresponding physical eigenvector is in

doubt. Refer to the Eigenvalue Summary Table for the largest
error in the generalized mass matrix.

9.2 The Eigenvalue Summary Table

The following summary of the eigenvalue analysis performed is automatically
printed when rigid formats using the Tridiagonal Reduction (FEER) method are in-

voked:
1. Number of eigenvalues extracted.
2. Number of starting points used.

This corresponds to the total number of random starting and re-
start vectors used by the FEER process.

3. Number of starting point moves.
Not used in FEER (set equal to zero).

4. Number of triangular decompositions.
Always equal to one, except for unshifted vibration problems
(roots starting from the lowest requested). 1In this case a
maximum of three shifts and three decompositions are employed
to remove possible stiffness matrix singularities.

5. Total number of wvector iterations.

The. total number of reorthogonalizations of all the trial
vectors employed.

6. Reason for termination.
0) Normal termination

(@] Fewer than the requested number of eigenvalues and eigen-—
vectors have been extracted.

(3) The problem size has been reduced. However, the desired
number of accurate eigensolutions specified on the EIGB
or EIGR card may have been obtained. A detailed list of
the computed error bounds can be obtained by requesting
DIAG 16 in the EXECUTIVE CONTRPL DECK.
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7. Largest off-diagonal modal mass term and the number failing the
mass orthogonality criterion.

9.3 Optional Diagnostic Output

The user can obtain special detailed information relating to the genera-
tion of the reduced problem size, the elements of the reduced tridiagonal matrix,
computed error bounds and other numerical tests by requesting DIAG 16 in the

NASTRAN Executive Control Deck.

The meaning of this information is explained below in the order im which

it appears in the DIAG 16 output.

@RDER — The order of the unreduced problem (size of the [Kaa] matrix)

MAX RANK ~ The maximum number of existing finite eigensolutions as initially
detected by FEER

RED @RDER — The order of the reduced eigenproblem which will be solved to

obtain the number of accurate solutions requested by the user
number of previously computed accurate eigenvecto
eigenvector file which were generated prior to a restart or by
the NASTRAN rigid body mode generator

T Yyom oL e ~
{Z)" JCT - 1ine LS on tihe

USER SHIFT - Used only in frequency problems. The user specified shift after
conversion from cycles to radians - squared

INTERNAL SHIFT- Used only in frequency problems. A small positive value auto-~
matically computed to remove singularities if the user has
specified a zero shift. Otherwise, the negative of the user
shift

SINGULARITY CHECK - PASS: the shifted stiffness matrix is non-singular
*%%%: the number of internal shifts needed to remove
stiffness matrix singularities

TRIDIAGPNAL ELEMENTS RYW j, **, *%% *%*% - Lists the computed tridiagonal ele-
ments of the reduced eigenmatrix:

j ~ Matrix row

** - Diagonal element

%%% - Off-diagonal element

*%k%% - Tirst estimate of off-diagonal element in the next row



$RTH ITER

MAX PR@J

N@RMAL FACT

The number of times a reorthogonalization of a trial vector
has been . performed. . . .

The maximum projection of the above trial vector on the pre-
viously computed accurate trial vectors (prior to the current

reorthogaonalization)

The normalization factor for the reorthogonalized trial vector.

@PEN CORE NPT USED *** FEER3 - open core not used by Subroutine FEER3, in

single-precision words

FEER QRW ELEMENT *, ITER *%, *%% _ RATIO *kkk  PROJ Fkkkk:

*

kkk

The internal eigenvalue number in the order of its extraction by
FEER

The number of inverse power iterations performed to extract the
associated eigenvector of the reduced system (this is not a
physical eigenvector)

If a multiple root has been detected, the number of times that
the previous multiple-root, reduced-system eigenvectors have been
projected out of the current multiple-root eigenvector before re-
peating the inverse power iterations

The absolute ratio of maximum, reduced-system eigenvector elements
for successive inverse power iterations

The maximum projection of a current multiple-root eigenvector on
previously computed eigenvectors for the same root.

PHYSICAL EIGENVALUE *, **_ THEPR ERR@R **%* PERCENT, PASS OR FAIL:

*

PASS

FAIL

The internal eigenvalue number in the order of its extractiom by
FEER

The associated physical eigenvalue (A for buckling problems,
w2 for frequency problems)

Theoretical upper bound on the relative eigenvalue error, in
percent

The computed error is less than or equal to the allowable specified
on the EIGB or EIGR bulk data card (default is .00l whnere n is the
order of the stiffness matrix)

The computed error is greater than the allowable and thnis mode is
not accepted for further processing

QPEN CORE NPT USED *** FEER4 - open core not used by Subroutine FEER4, in singie

precision words
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FEER C¢MPLETE *’ **, ***, kkkk

* - The remaining CPU time available following decomposition of the shifted
stiffness matrix, in seconds (the total time is specified on the TIME
card in the Executive Control Deck)

% - The remaining CPU time, in seconds after completing Subroutine FEER3
Hkk - The remaining CPU time, in seconds after completing Subroutine FEER4
*kkk - The total operation count for FEER after decomposition of the shifted

stiffness matrix. One operation 1s considered to be a multiplication
or division followed by an addition
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