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ABSTRACT

An extension of the 'Tridingonal Reduction (FEER) method to complex eigenvalue

analysis in NASTRAN is described. As in the case of real eigenvalue anal-sis, the eigen-

solutions closest to a selected point in the eigenspectrum are extracted from a reduced,

symmetric, tridiagonal eigenmatrix whose order is much lower than that of the full-size

problem. The reduction process is effected automatically, and thus avoids the arbitrary

lumping of masses and other physical quantities at selected grid points. The statement

of the algebraic eigenvalue problem admits mass, damping and stiffness matrices which

are unrestricted in character, i.e., they may be real, complex, symmetric or unsymmetric,

singular or non-singular.
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FOREWORD	 1

The Tridiagonal Reduction method for real eigenvalue analysis (Reference [1] )

is extended in the present report to accommodate complex eigenvalue problems; as

typified by complex, unsymmetric matrices. The implementation of this technique in

NASTRAN permits the extraction of specified numbers of eigenvalues lying closest to

selected points in the complex plane, as well as the associated eigenvectors. The

eigenvalues may include multiplicities.

Detailed descriptions of the theoretical development, computational procedures,

and NASTRAN user instructions are provided.
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SYMBOLS

Latin

i
i,i ,
	 general elements of reduced eigenmatrix

`	 1,9
d off-diagonrl element of reduced tridiagonai matrix

d, d normalization factors for right and left trial vectors and; they are equal

and theoretically the same as d

f number of previously calculated modes

m size of reduced eigenproblem

n size of full, wireduced eigenproblem

p, p exact and computed physical eigenvalues

q desired number of eigensolutions

r rank of the eigemnatrix, [ A

s iteration number for successful reorthogonalization

t number of decimal digits carried in the computations

i

Greek

A	 shift value increment for removing dynamic matrix singularities

A, A	 exact and computed values of inverted and shifted eigenvalues

r o' X 	
shifts in physical eigenvalues

L	 ^, a2	 shifted physical eigenvalue

I1

`r	 estimate of absolute relative error in ith computed eigenvalue

J

1
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Tatrices and Vectors

[A] eigemnatrix of the full•-sire problom

[B] damping or pseudo-damping matrix:

[D] dynamic matrix, [K+ XD	 X o M]+

[li] tridiagonal, reduced eigenmatrix

[I] identity matrix

[K] stiffness or pseudo-stiffness matrix

[L] unit lower triangular factor of [15]

[M] mass or pseudo-mass matrix

[U] upper triangular factor of [p]

(u) modal displacement vector

[V] , [V] matrices consisting of right and left trial vectors

(v) modal velocity vector

(vi ) , (v i} normalized right and left trial vectors

(wi) , (wi } unnormalized right and left trial vectors

(wr} , (Z } pseudo-random starting or redstart vectorsr

(x) , (x) exact right and left eigenvectors

(x}, (z) calculated right and left eigenvectors

(y) eigenvectors of the reduced tridiagonal matrix and participation factors
for calculating the physical eigenvectors

x

i
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'	 1.	 INTRODUCTION

The complex Tridiagonal Reduction method is an extension of the rEER algorithmm

(Past ) igenvalue Extraction Routine) for real elgenvalue analysts to complex, algebraic

oigenproblem formulations. A specified number of oigenvalues lying closest to a selected

point in the complex plane are sought, as well as the associated eigenvectors. As in the

case df real eigenvalue analysis (Reference [1] ), these eigensolutions are extracted from

a symmetric, tridiagonal eigenmatrix whose order is much lower than that of the Hill-sire

problem. In fact, the size of this canonical, reduced matrix is of the same order of mag-

nitudo as the number of desired roots, even if the discretized system model possesses

thousands of degrees of freedom. The reduction process is carried out via an automatic

algorithm requiring a finite number of steps. Tams, a basic weakness of methods requir-

ing the lumping of masses and other physical quantities at arbitrarily selected degrees of

freedom (References [ 23 - [4] ) is avoided in reducing the problem size.

With regard to computational speed, the complex Tridiagonal Reduction method is

somewhat slower than the IIessenberg method (References [5] and [G] ) for small problems

(on the order of one hundred or less degrees of freedom), if all the existing eigensolutions

are to be calculated. However, it becomes more efficient than the Hessenberg method

when the number of requested eigensolutions is much less than the full problem size. More-

over, for much larger problems, the central memory requirement of the IIessenberg method

exceeds the capabilities of most large computers, so that it becomes unavailable as a solu-

tion option. This limitation does not exist in . the case of the Tridiagonal Reduction Method.

As shown in Section 2. 1, the complex Tridiagonal Reduction method employs a

single initial shift point, and hence only one matrix decomposition is required for each

neighborhood chosen in the complex plane. It therefore is more efficient than the complex

Inverse Power method, which typically porforms many shifts and decompositions for each

region selected.

The theory and computational procedures for complex analysis depart from those

of real analysis in the following major respects:

1.	 Both left and right bi-orthogonal vectors must be created in the process of
constructing the reduced tridiagonal matrix.

7 -1-	 ORIGINAL PAGE IS
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1
2. The reduced tridiagonal matrix, while symmetric in form, is, in general,

complex rather than real.

3. The calculated theoretical errors in the computed cigenvalues are estimates
rather than upper bounds.

4. Elgensolutions closest to one or more specified points (shift points) in the
complex plane are found. All eigensoiutions obtained for previous shift
points are swept out of the problem to prevent their regeneration when
dealing with the current shift point.

The development of the method is carried out in Section 2. A detailed summary

of the computational procedures used in NASTRAN, flow diagrams and user instructions

are provided in Sections 3 and 4. NASTRAN user messages and optinnal diagnostic

output are described in Section 5.



2.

2.1

THEORY FOR COMPLEX EIGE NVALUE ANALYSIS

Problem Formulation

The general complex eigenvalue problem is stated in the form

Elap2 + Bp + K] (u) = G,

where (M] , [13], and [K] may be real, complex, symmetric or unsymmetric, singular

or non-singular. A specified number of eigenvalues, p, lying closest to a specified point,

X e , (called a shift point) in the complex plane are to be found, as well as the associated

eigenvectors (u) . The eigenvalues may include multiplicities.

A velocity vector, ( v), is defined as

(v) = p (u),	 (2)

and a shifted eigenvalue, X, is defined as

X =p - rl o •	 (3)

Substituting Equations (2) and (3) into Equation (1), the result may be written in partitioned

form as

	

1

$:13+X  M	 u	 O i -M	 u
---- ---- o-	 -- -	 -^----	 --	 (A)

- 
a

' 

I	 {v}	 Ii0	 v

or, using the inverse form, results in
i` i

[AI(x)=A(x) ,	
(J)

where
K
	-1	 1^B+	 OaM	 i-M

-^

	

0 
I	 I	 I i 0

fi
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A ~
X^

i

1 " 1
(X) = _,.1

v

and

A=	
i^	

(8)

P	 o 

Equation (5) is an eigenvalue problem in standard form, showing that the order of

the eigenvalue problem is doubled due to the presence of the [D] matrix. In the special

case where [D] is null (e.g., no damping), the problem formulation becomes

[Alp 2 +IS] (u) = 0,	 (9)

and the double-size eigenvalue problem can be avoided by considering the mathematical

eigenvalue to bo p2 . Thus, let

a2=p2-X ,	 (10)

and

A = 2	 (11)

Substituting Equations (10) and (11) into Equation (9) and using the inverse form results in

[K +a2M]-1C-M](u) = A 	 .	 (12)

Comparing the above with Equation (5) shows that the standard form with a null [D] matrix

is achieved by setting

[A]= [K+Xo M]
-1 I M],	 (13)

and

(7)
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(x) _ (u] .	 (14)

Since the eigenmatrix, [A], is, in general, unsynuneLrio, the eigenvectors, (x], are

orthogonal to the eigenvectors, (x), of the transpose eigenproblem

[A] T (x) = A (x) ,	 (15)

so that for A i Ai

(Xx r(xi } ° 0; i#J•	 (15)

The above relationship is a biorthogonality condition and the associated eigenvectors, (xi]

and (x^], are called right and left eigenvectors, respectively.

2.2	 The Reduction Algorithm

A reduction of the order of the eigenvalue problem, Equation (5), is effected through

the transformation

(x) = [V] (y) ,	 (17a)

nxl nxm mxl

and o

(x ] _ [V ] (y) , 	 (17b)

nxl nxm mxl

where (x] and (%) are approximations of (x) and (x], respectively, n is the order of

the tmreduced problem, and in n. The above transformation mati:ices are chosen to be bi-

orthonormal, so that
t

[V]T [V] = [I] .	 (18)	 a

From 1"quations (5), (17), and (18), it is seen that
I

s	 ,
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[11] (Y) = A (Y) ,	 (10)

where

[li] r» [V] p [A] [V] .	 (20)

mnn

and A. is an approximntion of tho eigonvaluo, A.

Thus, Equation (10) is an in Ill order eigonvaluo problem, where men. The value

of in is established according to l:he criteria given in Section 2.3.

As in the case of real eigonvalue analysis (Reference [l] ), the Lanczos algorithm

is used to construct the transformation matrices vector by vector, i. e. ,

[V} = [(v1 ) , (v2), ..... (vm)] ,	 (21a)

nxm

[V] = [(vl} , [ V2 } ...... in	 ,	 (21b)

nxm

such that the reduced mum matrix, [I .1], is tridiagonn]. and its eigonvalues accurately

approximate the roots of Equation (5) having the largest magnitude (or, equivalently, the

physical roots, p, closest to the specified point of interest, X e , in the complex plane).

The form of the algoritlun for generating successive vector pairs is, according to

the Lanczos technique,

di+l(vi+1)=(wi+1)=[A](vI)-ai,1(v1} -ai,2(v2)....-alli(vd' 	 (22a)

di+l (vi+1}-(wi+l}=[A]T[vI}-aI l(vl)-ai 2 {v2} .....aI ^ I {vI},	 (22b)

where [vl} and (v1} are starting vectors (see Section 2. 4), 1sism-1, and all in

vectors pairs are biorthonormal. This implies that



and

aiii = (
vi ) TUJT(^iJ ,	 (23b)

while the normalizing factors are given by

	

	 1J

	

r1i+1= diq.1 = [{^vi+1) 1{Nv ig.1 ) ] 1/2'	 "'1)

Using symmetry arguments similar to those employed for real eigenvalue analysis

(Reference [1] ), it can be shown that

air i = air i	
(25a)

i

ai, i->• - di =a	 (25b) '
and

a	 = a. =0; j <i-1.	 (25c)

The trre,,;fO ned, reduced eigemmatrix in Equation (19) is consequently tridiagonal

and symmetric having the form,

all	 d2

• [il] = Cv] 1 [A] IV] =	
d 
	

a22	
a3	

(26)
3	 33	 4

Nd\	 \	 m

	^d 	 a

	

m	 mm
i

The matrix coefficients are theoretically given by the simplified recurrence formulas

i

ORIGINAL PAGE IS
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(vi}Ir[A}(vi)

(w} _ [A] (vi} - a { vi } - di(vi-1}

i = 1 ' m	 (27a)

(wi+1} _ [A]T[vi} - ai,ii} - di(vi-1}

di+1 ^ [[will}T(wi+1}]1/2

1

(vi+1 } - d1 (wi+13i•l-1
J. = 1, m-1	 (27b)

(vi+1} - di+11 (wi r1}	
f

where the sequence is initialized by choosing random, biorthonormai starting vectors for

(vl} (vl } and by setting dl = 0; {ve} (vo } _ (0) ,
y

The final off-diagonal term, dm+1' given by Equation (27a) is used in establishing

error estimates for the computed eigenvalues (see Section 2.0). In addition, the above

algorithm is modified in the computational scheme as follows:

	

1.	 Each pair of vectors (vi+1} ' {vi+1}' calculated in Equations (27b) is reor-

thogonalized to all previously computed pairs, as described in Section 2. 5, 	 v
before re-entering Equations (27a).

i	 2.	 The size, m, of the reduced problem is a function of the number of accurate
eigenvalues requested by the user and is limited to the number of finite
physical eigenvalues available (see Section 2.3).

The eigenvalues, A, and eigenvectors, (y), of Equation (19) are extracted using the

Q-R iteration algorithm and eigenvector computational scheme described in connection with
I

the Upper I-lessenberg method in NASTRAN (Reference [5] ). They are then converted to

`	 physical form as follows:

f	 1

C
f

3
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^ r

pi 	1 * 10
A t 	1

I} [I3] ^ [0 7	 (28a)

(u
S-V-) 1 = CV] (y I )

0
pr. = (x x• 1 2 ) 1 2;Im(p)>0
 A	 o	 i

(u I )_ [V] (yi)	 J

The velocity vector (vi} in Equation (28a) is discarded prior to further processing of the

set of eigensolutions by NASTRAN. Also, all solutions which fail the FEER error test are

rejected. IIowever, the number of acceptable solutions will, in all probability, equal or

exceed the number requested by the user when the reduced problem size is chosen accord-

ing to the criteria described in the following section.

2.3	 Criteria for the Size of the Reduced Eigenvalue Problem

The maximum number of finite eigensolutions, including any existing rigid body

modes, is equal to it.. rw k, r, of the eigenwatrix, [A], In Equation (5). Thus, for example,

massless degrees of freedom, appearing as zero diagonal terms in the [M] matrix, will

result in singularities (rank reduction), which imply infinite physical eigenvalues. These

spurious roots are swept out of the problem in the complex FEER process (see Section

2.4) with a consequent reduction in the available eigensolutions.

A further consideration in limiting the maximum problem size is that the user has

the option of requesting eigensolutions in the neighborhood of several shift points

(1 01' X 02 .... ) in the complex plane. In the Tridiagonal Reduction method, all eigen-

solutions, f, obtained for previous shift points are swept out of the problem to prevent

their re-generation when dealing with the current shift: point (see Section 2. 5). This implies



that the maximum possible size, m, of the reduced problem is further limited to

m	 =x-f.
max

On the basis of numerical experiments, similar to those cited in Reference [1] for

real c1genvalue analysis, it has been found that when nu << m max , 1 first grouping of more

than m/2 computed eigenvalues closest to the shift point are in accurate agreement with

the corresponding number of exact eigenvalues, provided that 7 s  s in max . The remain-

ing reduced-system roots are spread across the remaining exact eigenspectrum. To en-

Nance the accuracy of the associated efgenvectors, the minimum problem size is further

increased to twelve, again assuming that in << mMax

Thus, if the user requests a total of q eigenvalues closest to a specified point in

the complex plane, the order of the reduced problem Is initially set to

( =min [(2gq-10), (2n-f)J ; [B] ^ [0] ,	 (30a)
M	 ),l

min [ (2q+10), (n-f)] ; [B] = [0] . 	 (30b)

a

Although the total number of eigensolutions requested should not exceed m max
there is usually no simple way to discern this upper limit in complex eigenvalue problems.

I•Iowever, the reorthogonalization tests of Section 2.5 are designed to automatically

establish this upper limit. IS the latter tests fail for some vector pair (vi+1  (via1^'	 1
,i	this is an indication that a null vector has been gene vated because m 	 linearly inde-max

pendent vectors have already been obtained. The recurrence algorithm, Equations (27),

I is then terminated and the order of the eigenproblem is further reduced to m = I.
A

P;

2.4	 Choice of the Initial Trial Vector and Restart Vectors

Because of the inverse relationship betiveen the computed eigenvalues, A, and the

1	 physical eigenvalues, p, (see Equations (28)), spurious eigenvalues corresponding to

A = 0 are equivalent to p m . Since these eigenvalues anc their corresponding eigen-

vectors are of no interest and may cause numerical instabilities, they are eliminated from

-10_
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the reduced tridiagonal problem by employing a constrained set of (v), (v) vector pairs

having zero projection on the set of cigenvoctors associated with A = 0. Ifowever, any

non-null right and left vectors (wl} , (wl } , generated from any other non-null vectors

[W r), (w 
r
)through the transformations

(w l)= [A] (wr) ,	 (31a)

(W1)=[A] T (wr} ,	 (31b)

will contain no components of the eigenvectors corresponding to A = 0, further, after the

above vectors are orthonormalized

(vl} ° = T	 1/2 (w
l} ,	 (32a)

[(wl) (wl}]

(V 	 = T	 172 {w l} ,	 (32b)
[(wl} (W 1)]

the next vectors generated,

(w2) = [A] {vl} - all (vl) '	
(33a)

(w2 ) = [A]T{vl} - ail(vl} ,	
(33b)

as well as all subsequent trial vectors will be free of A = 0 eigenvectors.

Thus, the starting vectors, (v l } , (vl} , in the reduction algorithm are generated 	 n

from Equations (31) and (32), starting with pseudo-random vectors (wr) and (wl } , If

these pseudo-random vectors should, by chance, be deficient in some true eigenvector

components, then a null vector (vi Fl} or (vii 1 } may be generated at some point in

Equations (27). This is indicated by the appearance of an off-diagonal term, d ill , which

is exceedingly small compared to the corresponding diagonal term, a
i
,
, 
i , in the reduced

^

i

-11-	 ORIGINAL pAG1; IS
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tridiagonal matrix. The test used is that a null vector has been generated when

Idi+1ls 10-t/2 Ia i iI'
	 (3A)

where t is the number of decimal digits carried in the computations. in this event, new
restart vectors are employed for {wi+I ) , N_ 1+1 1 . These • ectors'are generated exactly

as in the case of the initial trial vectors, but using different pseudo-random number seeds.

The recurrence algorithm for generation of subsequent vector pairs (v iA .1 ) ' (vii•1}' etc.,
is then continued in the usual manner until the required number of vector pairs has been
generated.

2.5

	

	 Sweeping-out of Previously Obtained Elgenvectors and Reorthogonalization of the
Trial Vectors

As in the case of real eigenvalue analysis, successive trial vectors generated by

the theoretical algorithm, Equations (27), tend to degrade rapidly as the computations pro-

ceed in the finite digit calculations, such that later right vectors are far removed from cortho-

gonality to earlier left vectors, and previously computed eigenvectors, (x 	 (x, (x2}
(xf}; (xl), (x2} , , (xf} Therefore, each new vector pair (v i+1 } ' 511

_1 ) obtained
from either the algorithm or the pseudo-random number generator (see previous Section)

is denoted as (vi+̂ l} , {vi+1 } and reortbogonalized with respect to all the previously ob-

tained vectors. This is accomplished by iterating,

(	 fit)vi+1}
Ot-1)_ {vi+1 1} }T{v(k-1)}^{	 }

+1	 °
f	 }T{vO{-1)}] {	 } ,	 (^ )-	 {{x, +1	 x.	 3ca

j=1
iJ 	 J j=1	 J i]

{vi+l}={vi(+11)} - E {{vj}T{v{ll)} Tlvj } - E {{xj } r{vi+i l) }7 f xj } ,	 (35b)
j=1 j=1

where k= 1, 2, . , . , s until an acceptable vector pair (vf-I) } ' (vi+1) is found which satis-

fies the orthogonality criteria

Max I [=
v.}T(v^s) } I s 102-t ,	 36alsjs i	 J	 1+1	 (	 )

-12-
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_( )	
io2-t	

r

jsis I I (vj ) 1 {vi. i) I	
^	

(30u)

	

iM
 t I(xj)T{viSl} I S 10 

2-t 	 (30c)

lsjsf I(xj}T(vi+l} I s 102-1 , (30d)

where s s 10, and t is the number of digits carried in the computations. If, for some

value of i, the above criteria are not satisfied, then it is assumed that a new pair of

trial vectors cannot be generated and a reduced eigenvalue problem of order in i is

solved as discussed in Section 2. 3.

If the above criteria are met, then the resulting vectors are biortlionormalized and

set equal to the new trial vector pair, i. e. ,

(vi+1 } 	({^ (s))}T{v (s) }]1/2 (vi } ,	 (37a)
i I.1	 i+1

(vi+1} 	 ({v (s) } T {v (S) }] 1/2 (vi+1} .	 (37b)
i+1	 i+1

These new vectors are used to compute the next off-diagonal term in the reduced tridiagonal

matrix from the formula

di+1 = (vi}T [A] (v i+1)	
(38)

however, if

di+l I s 10-t/2 
I ai i I,	 (39)

it is probable that either (vi+1) or 
{vi+1} 

is a null vector. In this event, a reduced

eigenvalue problem of order m = i is solved, as above.

ORIGINAL PAGE IS
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	 If the criteria given by Equations (30) and (30) are both met, then the new, nornna-

lized vectors are used to continue the reduction algorithm.

2.0	 Error Estimates for the Computed Eigenvalues

rollowvng a developir,,ant similar to that of Reference [11 for real eigenvalue

analysis, it can be shown that

	

I I A 1 1- 1A, 1 1	 I dm+1 ym11.
	 (40)

The above shot,,s that the absolute value of the difference between the computed and true

eigenvalue magnitudes is proportional to the magnitude of dm+l (which is the next off-

diagonal term that would be generated had the reduced tridiagonal matrix, [I13, been in-

creased from order m to order m+l) and 
Yini, 

(which is the last term in the reduced-

system eigenveetor associated with n i).

Converting Equation (40) to physical eigenvalue form, using Equations (8), (10),

and (11), yields,

	Ipi - X e l	 Id	 y	 I	
(41a)

In. -	 I - 1	
in +1 mi	 [D] ^ [0] .

i	 o	 IAiI

- 2 	 2	
d

	

- 1 N	 m+l	 i . [D1 = [0] .	 (41b)
` Ipi	 Xo	

I	 Ym I

I 	IAi I

The use of the above error bound estimates as criteria for acceptable eigensolutions

is described in Section 3.

-14-     



3.	 SUMMARY OF COMPUTATIONAL PROCEDURES AND FLOW CHARTS 	
t

Flow diagrams illustrating; the computational procedures are shown In rigures

and 2. The details of each block are summarized below.
i

(1) Establish Tentative Reduced Problem Size (see Section 2.3)

Calculate n tentative size, m, of the reduced eigenproblem from

min [(4+10), (2n-f)]; [B] ^ [0]	 (la)

m

	

=min [ (2q+10), (n-f)]; [B] _ [o] ,	 (lb)

I
where n is the order of the [K] , [B], and [M] matrices, q is the number of user re-

quested eigensolutions, and f is the total number of previously extracted eigensolutions

calculated for earlier shift points (X or a 2).
e	 O

(2) Construct Factors of Dynamic Matrix

(a) Set

j

_ [K+a 0B+Xa M]; [B] [0]	 (2a)

[D] {
- [K+ae M]	 [B] _ [0] .	 (2b)

(b) Decompose the above dynamic matrix:

[D] _ [L] [U],	 (3)
i
{

where [L] is a unit lower triangular factor and [U] is an upper triangular far'.or,
a	 ^

i using complex arithmetic (subroutine CDCOMP in NASTRAN).

Save the triangular factors for later use in premultiplication operations involving the

eigemnatrix, [A] , and its transpose. If the decomposition fails, the shift value is

increased by A = .02(1+i) and a new decomposition is attempted. If this second
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decomposition is unsuccessful, then it is assumed that the problem contains unremov-

able singuiaritics In the neighborhood of the current shift point and the next region, if any,

.1 Is examined.

(3)

	

	 Execute Complex Tridiagonal Reduction Algorithm (see flow diagram for this block,
Figure 2)

3.1	 Initialize the Recurrence Algorithm (see Section 2.2)i
Initialize the vector index to 1=0 and set

3.2	 Generate a Pair of Starting or Restart Vectors and set di+1 = 0.0 lsee Section 2.4)

a. Construct right and left vectors {wr} and (W- r ) using a pseudo-random mmiber

generator. The vectors contain 2n elements for [B] ^ [0] and n elements for

[B] = [0] .

b. Sweep-out components corresponding to A = 0;

(wi.11) = [A] (Wr ) ,	 (5a)

(wi+1} _ [A]T{wr} .	 (5b)

c. Normalize the above vectors:

{v1+l} =	 =	 T	 1/2 {wi+1 ] r	 (^^)
[{wi+1} [W l.+1 ) ]

- (0)	 1
{vi F1 } 	-	 T	 1/2 {wi+1} .	 (Ob)

[{wi+1} {will}]

d. Set dial = 0.0 and proceed to block 3. 5..

-10-
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	3.3	 Create One Pair of Ai	 pproxGnate Trial Vectors and One Diagonal Coefficient
j(see Section 2.2)

The recurrence algorithm is:

a
i i = (vi}1[A] (vi

(w i+1 ) = [A](vi)- ai, 1(viI-di(vi-1},

.1, _
(wiPl}=[A] (vi}-ai,i(vi)-di{vi-1

di+l = I(wi+1 )T (wi+1) 11/2,

(viol} _1 (nvi+1} >
di+1

( vi O1 } =1 (wi,1,1}
di+1	 )))

where the above vectors are approximations to the new right and left trial vectors.

	

3.4	 first Normalization Test (see Section 2.4)

The test is:

Idi+ll Z 10-t/2 l a i, i I

Pass: Proceed directly to block 3.5.

rail: Return to block 3. 2, generate a new pair of restart vectors for (v 0 ) ) and

0(vi+l}' and proceed to block 5.5.

I

	

3.5	 Iterate to Obtain Orthogonalized Trial Vectors  (see Section 2.5)
n

Designate (x) } , (x^} 0=1, f) as previously calculated and stored eigenvector pairs, i

i. e. , calculated earlier by complex rr1;R for previous shift points in the complex plane.
1

ORIGINAL PAGE IS
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Y.1 Y A'

Perform the iterations,

{V (1`) }- {V(k-1) } -E Cf^ }1{VO`-1)}RV }
i+l	 j=1	 j	 i+l	 j

f	 _

- E L{xjJT{Vi(+11)}){xj} A
J=1

{Vi+1J= {Vi+ll)J - E C{^ j }T {Vi4,1 ) J7 (Vj)
J=1

f	 T= It-1
- E C{xj} {Vi+1 ) D (xi)
J=1 

(9a)

(9b)

k = 1, 2.... until

I{Vj )T{Vi+1 ) I s 102-t,lsjsi

si
()I (Vj)	 { v1+1} 2-t

15 10i :5

x I I; )TI V(k)) I s 10 2-tis j

max I(xj)T(v1(k))Is102-t,
is'sf

(10)

or k = 10.

If the orthogonality criteria, Equations (10), are satisfied, proceed to block 3. G. Other-

wise, set the problem size, m, equal to i and proceed to Exit.

3.0

	

	 Normalize the Orthogonalized Trial Vectors (see Section 2. 5)

Compute

IV
1 	 (k)

iHl	 ^ {V (k) )T{ (k) ) J172	 i91
i+1 Vi+1

-1s-
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i

1	 (k)	 ,
{vi+1} e 

C[°v ({)}l1{v (k) } ]1/2 {v1+1}	 (11»)

i+1	 i+1

These are the new orthogonalized and normalized trial vectors.

3.7	 Second Normalization Test and Creation of Off-Dingonal Coefficient (so p Section 2.5)

(a) Compute the next off-diagonal term of the reduced tridiagonal matrix from

ai+1 {°i}T[A]{vi+1} 	 (12)

(b) Verify whether the following test is met:

Idi+1I, 
10-t/2 I al$i l •	 (13)

If it is, set i = i+1 and return to block 3.3 for continuation of the recurrence

algorithm. If the test fails, set m=i to reduce the problem size and proceed

to 'Exit.

(4)	
Solve Reduced-System Eigonnroblem (see Section 2.2)

(n) The coofficients a11' 
11
22' ' ' .' amm and d

2 , d3 , .... din computed in block

3 form the diagonal and off-diagonal terms of an intiI order symmetric, tri-

diagonal matrix, CH], (the matrix is, however, usually complex rather than real).

(h) The mth order eigenvalue problem

Cll] {Y}=A{Y}
	

(14)

is solved for the eigenvalues, A i , and the eigenvectors, {y i } , using the Q-11
a

iteration algoritlun and eigenvector computational scheme described in

connection with the Upper Ilessenberg method in NASTRAN (Reference [51).

(c) The reduced system eigenveetois are normalized so that	 j
j
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tip
^	 (yd (Y l^ ° 1; t = 1, m.	 (1S}

(G)	 Compute Estimate of Eigenvalue Errors (see Section 2.6)

(a) Estimates of absolute relative errors in the computed eigenvalues are obtained

from

ip,-xel -1J	 Idm+lymil IB3^10^,	 ( )I)	 1Ga	
ii	 pi- X01

I A I

2 2	
d

91=
	 1 p2 -)` 2 l -1 ^ l m1lymil P [E]=[0],	 (16b)

Ipi - a e I	 I ail
where dm+1 is the last off-diagonal term computedcomputed in block 3.3 and ymi 

is

the lnst element in the vector { y i) . If the physical elgenvalue, p i , corresponds

to a zero root (e.g. , a rigid body mode), the above computational scheme Is

invalid and therefore bypassed. A zero root is assumed to occur whenever

	

r	 J._

112Ii4S < 10
-t/3 ,	 (17)

where,

RMS = n C ► 	 I 
+ IP2 i + ..... 4, Inm I ] 1/2 ,	 (18)

and is denoted by setting the error 1;,i
, to zero.

} (1)) The eigenvalues are listed in order of increasing distance from the shift paint,

to determine whether their associated estimated errors, ^ i , meet an

acceptable relative error tolerance set by the user on the EIGC bulk data card

ithe default value Is 0.10/n, where n is the order of the stiffness matrix).

The first eigenvalue not meeting the tolerance test, as well as all subscouent I
eigenvalues furtlier removed from the center of Interest, are considered to lack

sufficient accuracy and are therefore discarded.
i

-20-
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a,
(c) Acceptable oigenvalues oblainen in the above manner are reordered according

to the mngnitude of the imaginary part, with positive values considered as a

group ahend of all negative values.

(0)

	

	 Compute Physical Eigenvalues and Elgenvectors and Store (see Section 2.2)

The mathematical eigonvalues, A i , and eigenveetors, (yi}, are converted to

physical form as follows:

Pi= I +xe
At

[BY [o}

l
l u l = CV] (yi)
Ì  v 1 i

Pl = (1 + x o )1/2; IM (Pi) > 0
it

(ui } = CV} (yi}

a	 -i

(19a)

[B] = L01
	

(19b)

where

IV] = C (vi} , (v2 } , ..... , (vm} J .

The velocity'vector (v i } in Equation (19a) .s discarded.

(20)

}
b
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Figure 1. Overall Flow Diagram - Complex Tridiagonal Reduction Method
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3.3 Create One Pair of Approximate
Trial Vectors and One Diagonal g^,	 s

ENTER	 C4

3.1 Initialize
Recurrence

Algorithm

lz?3yes

i=0

3.2 Generate a
Pair of Start-
ing or Restart
Vectors and
Set di+1 0.0

3.5 Iterate to

Obtain a	 Pass
Pair of 7

Yes	 i=
Problem
Sze?

3.4Fail	 First
k=1-+1	 Normaliza

tion
Test

Orlhogonalized

Unsatisfied	 Orthogonality
Criterion

Satisfied

Reduce `	 3. G Normalize the
EXIT Problem	 Orthogonalized

Size to i	 Trial Vectors

J

d =0.0
i+1

Yes

 lc= 0
A	 ?

no

3.7 Second

Fail	 Normalization	 Pass
Test and	 > i=i+1
Creation of
Off-Diagonal
Coefficient

Figure 2. Flow Diagram for Block 3, Execute Complex Tridiagonal Reduction Algorithm.
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4.	 NASTRAN USER'S INSTRUCTIONS

The following pages show modifications of the EIGC card in the NASTRAN bulk
i

f	 data deck which accommodate user implementation of the Tridiagonai Reduction method

for complex e[gonvalue analysts. The modifications consist of additions to the standard
I	

user instructions and are underscored for case [n Identification.

When the complex Tridiagonai Reduction method is invoked, the E parameter on

this card represents the maximum allowable value of the . computed absolute relative

error in a physical eigenvalue (see Section 2.6). If this value is exceeded, the associated

eigensolution is not accepted for further processing by NASTRAN. A detailed list of tha

maximum relative errors computed by complex TEER can be obtained by requesting

DIAG 12 In the NASTRAN Executive Control Deck (see Section 5).

^l
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BULL{ DATA DECK

i
	 Input Data Card EIGC	 Complex Eigenvalue Extractior. Data

I^	

Description: Defines data needed to perform complex eigenvalue analysis

W

bl

5	 G	 7	 8	 9

9

10

+abc ]

ABC

F el

DEF

Format and Example:

1	 2	 3	 4

EIGC SID IMETHOD1 NQ RAT G C E
^EIGC 14 DET I PINT 27 1  1. -8

+def a2 a2 ab2 Wb2 2	 e2	 1	 d2
5.6 5.6 1.5	 G	 1	 3

(etc.)

:

ORIGINAL PAGE I5
	 ^
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Field	 Contents

SID	 Set identification number (unique integer> 0)
i

METHOD

	

	 Method of complex eigcnvaluc extraction, one of the BCD values, "INV",
"DET", "HESS" or " FEE11"

INV - Inverse power method

DET - Determinant method

HESS - Upper Hessenberg method

FEER - Tridiagonal Reduction Method

NORM

	

	 Method for normalizing eigenvectors, one of the BCD values "MAX" or
"POINT"

MAX - Normalize to a unit value for the real part and a zero value
for the imaginary part, the component having the largest
magnitude

POINT - Normalize to a unit value for the real part and a zero value
for the imaginary part the component defined in fields 5 and
0 - defaults to "MAX" if the magnitude of the defined com-
ponent is zero.

i
G

	

	 Grid or scalar point identification number (Required if and only if
NORM=PQJINT) (Integer > 0)

C

	

	 Component number (Required if and only if NORM="POINT" and G is a
geometric grid point)(0 sinteg<nr z 0)

E	 Convergence criterion (optional)(Real Z0.0)
Tnr mnlhnA = IfPRTR" nm+nv-4nlnrn rinn nn

(a	 w )	 Two complex points defining a line in the complex plane (Real)
aI	 aI	 For method = "FEER", (rt a , w a ) is a ^^:,, .,r 4-4---^; ;- 4a,,,

(IX bj' °^bj )	plane, closest to which the eigenvalues

The point (a bj , w,.) is ignored.

f .

	

	 Width of region in complex plane (Real
Blank for method = "FEER".

-20-
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Nej

Ndj

i
Remarks:

1.

Estimated number of roots in each region (Integer > 0)
Ignored for method =

Desired number of roots in each region (Default is 3Ne j ) (Integer > 0)
na,innri nnnihni • nr nnnnrntn rnnic rnr ,nnthnrl 	 i i TPR11 11 trinrrn, li- in '

Each continuation card defines a rectangulnr search region. For method =
"PEER", the card defines a circular search region, centered at (aaj, Waj)
and of sufficient radius to encompass Nrlj roots. Any number of regions
may be used and they may overlap. Roots in overlapping regions will not be
extracted more than once.

2. Complex eigenvalue extraction data sets must be selected in the Case Control
Deck (CMETIIOD=SID) to be used by NASTRAN.

3. The units of a, W and t, are radians per unit time.

4. At least one continuation card is required.

5. For the de' rminant method with no damping matrix, complex conjugates of
the roots found are not printed.

0. See Section 10.4.4.5 of the Theoretical Manual for a discussion of convergence
criteria.

7. For the Upper Ilessenberg method, Nd1 controls the number of vectors com-
puted. only one continuation card is considered and the (a, W) pairs, along
with the parameters t1 and Ne1, ;ire ignored. Insufficient storage for HESS s
will cause the program to switch to INV.

S. The error tolerance, E, for the "FEER" method is with regard to

pi - (a aj ' W aj ) _ 1	 for [B] [0] and
I .P. - (a aj , Waj)

i,

IpI -
 (a al WaI)2^ - 1 for [B] _ [0] ,

IP i - (a aj , cdnj)

where pi is a computed eigenvalue and p i .in exact eigenvalue.

I
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	5.	 USER MESSAGES AND OPTIONAL DIAGNOS'T'ICS

	

5.1	 NASTRAN Function Module User Messages for the Complex Tridiagonal Reduction
Method

5.1.1 General

The following is a description of the NASTRAN user messages which may be

generated by NASTRAN during the execution of the Complex Tridiagonal Reduction method

and which are unique to this method. Explanatory information is provided following the

text of each message and, in the case of a fatal message, corrective action is indicated.

Refer to the NASTRAN Users' Manual, Section 0 for a complete listing of other system

and user messages.

Fatal messages cause the termination of the execution following the printing of the

message , text. 'T'hese messages will always appear at the end of the NASTRAN output.

Warning and information messages will appear at various places in the output stream.

Such messages convey only warnings or information to the user. Consequently, the exe-

cution continues in a normal manner following the printing of the message text.

5.1.2 List of User Messages

3140 *** USER WARNING MESSAGE 3149, USER SPECIFIED NEIGHBORHOOD
CENTERED AT OfRIGIN NOT ALLOWED, CEN'T'ER SIIIFTED TO
THE RIGIIT . 001.

Point of interest in the complex plane (a ai , w 11i ), closest to which the
eigenvalues will be computed, was input as (0. 0, 0.0) oil 	 EIGC bulk
data continuation card. Since this is an inadmissible choice, the point

automatically used was (. 001, 0.0).

3150 ***

3151 ***

USER WARNING MESSAGE 3150, DESIRED NUMBER (Or EIGENVALUIS
.i.*** INVALID. SET = 1.

Number of accurate roots desired Ndl , was omitted, input as zero or
negative on an EIGC bulk data continuation card. The number auto-
matically used was 1.

USER WARNING MESSAGE 3151, DYNAMIC MATRIX IS SINGULAR
(OCCURRENCE ****) IN NEIGHBORHOOD CENTERED AT **** ^°*^^

Point of interest in the complex plane (a ai , w, i),  closest to which the

-28-
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eigenvalucs will be computed, was input too close to an eigenvalue
on an EIGC bilk data continuation card. The point is automatically
shifted by adding .02 to both the real and imaginary parts. If the
dynamic matrix is still singular, the next neighborhood, if any, is
searched.	 i

3:152 *44 USRR INFORMATION MESSAGE 3152, SUBROUTINE ALLMAT OU'T'PUT
EIGENVALUE **** IS NULL,

When an eigenvalue output from subroutine ALLMAT is exactly zero,
the formula for computing the associated theoretical error test fails.
The magnitude of the eigenvalue is considered to , be 10-10 for use in
that formula.

3153 **;k USER WARNING MESSAGE 3153, ATTEMPT TO NORMALIZE NULL
VECTOR IN SUBROUTINE CFEER4. NO ACTION TAISEN.

An eigenve( )r output from subroutine ALLMAT is a zero-vector.

3154 *** USER WARNING MESSAGE 3154, SIZE OF REDUCED PROBLEM
DECREMENTED ONCE (NOW ***4') DUE TO NULL ERROR ELEMENT

If subroutine CFEER4 receives a reduced tridingonai matrix having
error element dmi•1 exactly (0, 0), it is impossible to compute mean-
ingful theoretical error estimates for any of the eigenvalues. The size

	 Y

of the reduced problem is reduced by one, so that d ln becomes the new
error element.

3155 .4; ** USER WARNING MESSAGE 3155, REDUCED PROBLEM HAS VANISHED.
NO ROOTS FOUND.

If decrementing the size of the reduced problem (see message 3154)
causes the size to become zero, the program continues to the next
neighborhood, if any.

3156 *** USER WARNING MESSAGE 3156, SIZE OF REDUCED PROBLEM
RESTORED TO **** BECAUSE NEXT ERROR ELEMENT WAS ALSO
NULL. ERROR ELEMENT SET = **** ****

This message follows message 3154. If dm is also exactly zero (in
addition to dm+l being exactly zero), then the original reduced problem
size is restored and dm+1 is set to (8, 0) where e = E/100 and E is
the error tolerance on acceptable eigenvalues input on the EIGC bulls
data card.

ORIGINAL PAGE Id
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3157 *** USER WARNING MESSAGE 3157, FEER PROCESS MAY IIAVE
CALCULATED FEWER ACCURATE MODEvi **** THAN REQUESTED
IN TIIE NEIGHBORIIOOD Or **** ****

The desired number of eigenvalues specified on the EIGC bulk data
continuation card exceeds the additional number that can be calculated
by the Complex Tridiagonal Reduction (Complex PEER) method in the
current neighborhood,

3158 *** USER WARNING MESSAGE 3158, NO ADDITIONAL MODES CAN BE
FOUND BY PEER IN 'TIIE NEIGHBORHOOD Or **** ****

An initial pseudo-random vector cannot be made orthogonal to the exist-
ing set of orthogonal vectors (which come from Restart and from all
prior-neighborhood sets of eigensolutions).

3159 *** USER INFORMATION MESSAGE 3159, ALL SOLUTIONS HAVE BEEN
FOUND.

The PEER method has solved the entire problem. Any additional neigh-
borhoods (as specified by the presence of EIGC bulls data continuation
cards) are ignored.

3100 * a'* USER INFORMATION MESSAGE 3160, MINIMUM OPEN CORE NOT
USED BY PEER **** WORDS (**** X BYTES). r

This message indicates the amount of open core, in both bytes and
words, not used by rEER.

3161 *** USER WARNING MESSAGE 3161, DESIRED NUMBER Or EIGENSOLU-
TIONS **** FOR NEIGIIBORIIOOD **** Or **** CENTERED AT
**** **** EXCEEDS TIIE EXISTING NUMBER ****, ALL EIGENSOLU-
TIONS WILL BE SOUGIIT.

The desired number of eigenvalues specified on the EIGC bulk data
continuation card exceeds the sire of the eigenmatrix, which is the
maximum possible number of existing eigenvalues.

3162 *** USER WARNING MESSAGE 3162, ATTEMPT TO NORMALIZE NULL
VECTOR. NO ACTION TAKEN.

The general vector normalization routine (CFNORI or CFNOR2) has
a zero-vector input to it.

3163 *** USER WARNING MESSAGE 3163, ALL * 4:** SOLUTIONS IIAVE FAILED
ACCURACY TEST. NO ROOTS FOUND.

-30-
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The number of olgensolutioms passing the relative error test is zero.
The maximum allowable error for the relative error test is specified
in field 7 of the EIGC hull: data card. A detailed list of the computed
error bounds could have been obtained by requesting DIAG 12 in the
Executive Control Deck.

3164 *** USER INFORMATION MESSAGE 3104, ALL **** SOLUTIONS ARE
ACCEPTABLE.

All the eigensolutions obtained in the reduced problem corresponding to
the point of interest pass the relative error test. The maximum allow-
able error for the relative error test is specified in field 7 of the
EIGC hulk data card. A detailed list of the computed error estimates
could have been obtained by requesting DIAG 12 in the Executive
Control Deck.

3105 *** USER INFORMATION MESSAGE 3165, **** SOLUTIONS HAVE BEEN
ACCEPTED AND **** SOLUTIONS HAVE BEEN REJECTED.

Sonic eigensolutions passed the relative error test and some did not.

3166 *** USER INFORMATION MESSAGE 3166, **** MORE ACCURATE EIGEN-
SOLUTIONS THAN THE **** REQUESTED HAVE BEEN FOUND FAR

	

NEIGHBORHOOD **** Or **** CENTERED AT	 USE DIAG fY12 TO DETERMINE ERROR ESTIMATES.

The number of eigensolutions passing the relative error test is greater
than the number requested on the corresponding EIGC bulls data con-
tinuation card. The maximum allowable error for the relative error
test is specified in field 7 of the EIGC bulk data card. A detailed
list of the computed error estimates could have been obtained by re-
questing DIAG 12 in the Executive Control Deck.

ORIGINAL PAGE IS
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5.2	 The Ligcnvalue Summary Table

The following summary of the oigenvalue analysis performed, using the complex

Tridiagonal Reduction (PEER) method, is automatically printed:

F

4

1. Number of cigonvalues extracted.

2. Number of starting points used.

This corresponds to the total number of random starting and restart vectors used
by the complex PEER process for all neighborhoods.

3
	

Number of starting point moves.

Not used in PEER (set equal to zero).

4. Number of triangular decompositions.

Always equal to the number of points of interest (neighborhoods) in the complex
plane processed by PEER, since ordinarily only one triangular deconnposition is
required by PEER for each point of interest, unless the dynamic matrix is singular
at a given point of interest, in which case an additional decomposition is required
(obtained by moving the point of interest slightly).

5. Total number of vector iterations.

The total number of reorthogonalizations of all the trial vectors employed.

0
	 Reason for termination.

(0)

	

	 All, or more solutions than the number requested by the user, have been
determined (normal termination).

(1) All neighborhoods have been processed, but PEER has not obtained the de-
sired nmmber of roots in each neighborhood, possibly because they have
already been found in other neighborhoods.

Abnormal termination - either no roots found or ^^ ^ ^^^ *''^ rrrn ^,.,.^,.
test.
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5.3	 Optional Diagnostic Output

The user can obtain special detailed information relating to ilia generation of ilia

reduced problem size, the elements of the reduced trldingonal matrix, vector reortho-

gonalization Iterations, computed error estimates, order of eigenvalue extraction, and

distance of extracted elgenvaluo from the center of Interest by requesting DIAG 12 in the

NASTRAN executive control deck.

The meaning of this information is explained below in the order In which it appears

in the DIAG 12 output.

****PEER**** (PAST EIGENVALUE EXTRACTIdN ROUTINE)****

This header is always printed first.

****SINGLE PRECISION WORDS OF OPEN CORE NOT USED (SUBROUTINE X,X)

** - Open core not used by subroutine XXXX, in eingle-precision words.

X= - Either CPCNTL, CFEER3, or CPEER4. This message appears three times.

C]	 ACCURACY CRITERION-* (INPUT VALUE **)

- Accuracy criterion, used for rejecting eigensolutions (expressed as a percentage).

* :r	 - Value of accuracy criterion input by the user on the EIGC bull: data card.

CrONTL NEIGIIBORIIND * CENTER = ** ** N6.DES. RTS. = *** WNSYM = ****
1

*	 - Positive integer indicating which neighborhood, or center of interest, is currently
being processed.

** ** - Center of interest in the complex plane.

*** - Number of desired roots for the current neighborhood, input by the user on the
corresponding EIGC bulk data continuation card.

** - Indicator which, when nonzero, forces the program to consider the matrices as
non-symmetric, even though they may actually be symmetric. This is input by
the user in field 7 of each EIGC Milk data continuation card. This input was
used during program checkout of the complex. PEER process, and it should have 	 s
no affect on the solvtion. II wever, the user should leave field 7 blank on each
EIGC continuation card.

—33—	
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REORTIMG(ANALIZATION ITERATIdN * TARGHT VALUE *T
rRRORS = *** *** *** ***

* -	 The reorthogonalization iteration-number. This m 4ssnge will nppear many
times, as the PEER process "clams up" each trial vector by forcing It to be
as orthogonal as possible to the set of vectors already computed.

** -	 Convergence tolerance, such that the errors must be smaller than this value.
In order to avoid taking square roots, the tolerance and errors are all squared.

** *** *** ;r. ** - Pour reortbogonalization errors, the first two of which correspond to
the orthogonality of the current right and left handed trial vectors, respectively,
with respect to all previously computed vectors in the current neighborhood,
and the latter two of which correspond to Ui orthogonality of the same vectors
with respect to all eigenvectors previously computed (restart and prior neigh-
borhoods).

REDUCED TRIDIAGONAL MATRLI ELEMENTS ROW
OFF DIAGONAL = ** **

DIAGONAL = *** ***

*	 - The row number of the (reduced) tridingonal matrix.

** ** - Value of `.ne off-diagonal element for that row.

*** ^**-Value of the diagonal element for that row.

Following the printing of several lines containing reorthogonalization information and

reduced tridi.agonal matrix elements, when the PEER process has finished its computa-

tions for the current point of interest, the header (see above) is printed once again,

followed by a table which summarizes all the eigensolutions found by PEER. This table

has seven columns, as follows:
u;

(1) Solution number. This is simply a positive integer 1, 2, 3,. . . .

(2) Order of extraction. These numbers indicate the order in which the
tridiagonal matrix was constructed.

>a

(3) Distance from center. This is the distance from the extracted eigenvalue
to the neighborhood center (which is printed above the table) in the complex 	 j
plane. The tabular values are sorted according to increasing distance from 	 j
the center.

(4)	 Real part of the extracted eigenvalue.

',.,I
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(u)	 Imaginary part of tiro extracted oige ,"Jue.

(G)	 'Theoretical error estimate. This value must be smaller than the Accuracy
Criteria] (see above) for the eigensolution to be acceptable,

(7)	 Status. A single word, "accept" or "reject", to Indicate the result of the
accuracy test. A minus sign (-) Is added to "reject' so that the eye can
more rapidly distinguish between the two wordri.

Finally, this fable is printed a second time, but with lino rojucteci etgonsolutions deleted.

For very small problems, there is a Very Detailed Printout (VDP) option. This

option was originally used to debug the complex FFLR logic, and is no longer required.

DIAG 12 must be specified in the executive control deck to invoice the VDP option, and

furthermore, field G of a given E1GC bulls data continuation card must have a (floating

point) value equal to or greater than the size of the stiffness matrix. Thus, field G of

each LIGC continuation card should ordinarily he left blank, so that the VDP option will

be suppressed. The actual printed output of this option consists of all vectors for each

step of the complex FEER process, which is too extensive and detailed for normal user

purposes.
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