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ABSTRACT

An extension of the Tridiagonal Reducilion (FEER) method to complex eigenvalue
analysis in NASTRAN is described. As in the case of real eigenvalue analvsis, the elgen~
solutions closest to a selected point in the eipenspectrim are extracted from a reduced,
sym_m‘etrlc, tridiagonal eigenmatrix whose order is much lower than that of the full-size
problem. The reduction process is effected automatically, and thus avoids the arbitrary
lumping of masses and other physical quantities at selected grid points, The statement
of the algebraic elgenvalue problem admits nﬁass, damping and stiffness matrices which
are unresiricted in character, i.e,, they may be real, complex, symmetric or unsymmetrie,

singular or non-singular.
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FOREWORD

The Tridiagonal Reductioh method for real eigenvalue analysis (Reference [1])
is extended in the present report to accommodate complex eigenvalue problems; as
typified by complex, unsymmetric matrices. The implementation of this technique in
NASTRAN permiis the exiraction of specified numbers of eigenvalues lying closest to
selected points in the complex plane, as well as the associated eigenvectors. The

+

eigenvalues may include multiplicities,

Detailed descriptions of the theoretical development, computational procedures,

and NASTRAN user instructions are provided.
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SYMBOLS
Latin

genernl clements of reduced eigenmatrix
off-diagonel element of reduced tridiagonal matrix

normalization factors for right and left trial vectors and; they are equal
and theoretically the same as d

number of previously calculated modes

size of reduced eigenproblem

size of full, wnreduced eigenproblem

exact and computed physical eigenvalues

desired number of eigensolutions

rank of the eigenmatrix, [A]

iteration number for successinl reorthogonaliz.ation

number of decimal digits carried in the computations

Greek

=

shift value increment for removing dynamic matrix singularities

“exact and computed values of inverted and shifted eigenvalues

shifts in physical eigenvalues
shifted physical eigenvalue

: - ... .th .
estimate of absolute relative error in i~ computed eigenvalue
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Malrices and Veclors

[A) eigenmatrix of the full-size problem
(B] * damping or pseudo-damping matrix
[D] . dynamic matvix, (KK+ AOB & A.OQM]
LH] tridiagonal, reduced eigenmatrix
(1] identity matrix

(K] stiffness or pseudo-stiflness matrix
(1] unit lower triangular factor of [D]
(] mass or pseudo-mass matrix

(Ul upper triangular factor of [D]

ful moclal displacement vector

vl, V] matrices consisting of right and left trial vexétors
{v) modal velocity vector

[vi] ) [31} normalized right and left trial vectors
[Wi] ’ {;i} unnormalized right and left trial vectors

{wr] . {\;\;r] pseudo-random starting or regtart vectors

{x}, {%} exact right and left eigenvectors
EEINEY caleulated right and left eigenvectors
{y} eigenvectors of the reduced tridiagonal mairix and participation factors

for calculating the physical eigenvectors



1, INTRODUCTION

The complex Tridiogonal Reduction method is an extension of {he PEER algorithm
(Fast Eigenvalue Extraction Routine) for real elgenvalue analysls to complex, algebraic
eigenprobleni formulations. A specified number of eigenvalues lying closest to a selected
point in the complex plane are sought, as well as the assocliated eigenvectors., As in the
easc of real eigenvalue analysis (Referonce [1]), these elgensolutions ave extraeted from
a symmetric, tridiagonal eipenmatrix whose order is mueh lower than that of the full-size
problem. In [nct, the size of this canonical, reduced matrix is of the same order of mag-
nitude as the number of desired roots, even if the discretized system model possesses
thousands of degrees of freedom. The reduction process is carried out via an automatic
algorithmn requiring a finite number of steps. Thus, a basic weakness of methods requir-

ing the lumping of masses and other physiecal quantities at arbitirarily selected degrees of

freedom (References [2] - [4]) is avoided in reducing the problem size.

With regard to compulational speed, the complex Tridiagonal Reduction method is
somewhat slower than the Hessenberg method (References [5] and [6]) for small problems
(on the order of one hundred or less degrees of freedomy), if all the existing eigensolutions
are to be caleulated. IHowever, it becomes more efficient than the Hessenberg method
when the number of requested eigensolutions is much less than the full problem size. More-
over, for much larger problems, the central memory requirement of the Hessenberg method
exceeds the capabilities of most large computers, so that it becomes unavailable as a solu-

tion option. This limitation does not exist in the case of the Tridiagonal Reduction Method.

As shown in Section 2.1, the complex Tridiagonal Reduction method employs a
single initial shift point, and hence only one matrix decomposition is required for each
neighborhood chosen in the complex plane. It therefore is move efficient than the complex
Lawverse Power method, which typically performs many shifts and decompositions for each

region selected,

The theory and computational procedures for complex analysis depart from those
of real analysis in the following major respects:
1. Both left and right bi-orthogonal vectors must he created in the process of

constructing the reduced tridiagonal matrix,

" QRIGINAL PAGE 18
-1- OF POOR® QUALITY



2. The reduced fridingonal matrix, while symmetric in form, is, in genecral,
complex rather than real.

3. The caleulated theoretical crrors in the computed cigenvalues are estimates
rather than upper bounds.

4, Eigensolutions closest to one or more specified points (shift points) in the
complex plane are found, All eigensolutions obtained for previous shift
points are swept out of the problem to prevent their regeneration when
dealing with the current shift point.

The development of the method is carried out in Section 2. A detailed summary

of the computational procedures used in NASTRAN, flow diagrams and user instructions
are provided In Sections 3 and 4, NASTRAN user messages and optinnal diagnostic

output are described in Section 5.



2. TIEORY FOR COMPLEX EIGENVALUE ANALYSIS
2.1 Problem Formulaiion

The general complex eigenvalue problem is stated in the form
2
[nMp™ + Bp + K1{u} =0, _ (1)
where [M], [B], and (K] may be real, complex, symmetric or unsymmetrie, singular
or non-singular, A specified number of cigenvalues, p, lying closest {o a specified point,

A o’ {called a shift point) in the complex plane are to be found, as well as the associated

eigenvectors {u} . The eigenvalues may include multiplicities,

A veloelity veetor, {v}, is defined as
v} =p{u}, @
and a shifted eigenvalue, ;\., is defined as
AP =X . @)

Substituting Equations (2) and (3) into Equation (1), the result may be written in partitioned

form as

K :B+A M u O} -M u
e I CEEUIE D W P R R , {4)

' [Al{x}=Afx], (5)
where K 'BeAM 1) olm
(a)= |- B | ©
-A. OI f I I.10
P A 40
—8- oﬁle hé" o AL'LT‘I
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u
(x] = {} : )
v

T ®)

and

Equation (5) is an eigenvalue problem in standard form, showing that the order of
the eigenvalue problem is doubled due to the presence of the [(B] matrix. In the special

case where [B] is null (e.g., no damping), the problem formulation becomes
2
IMp~+K] {u} =0, (9)

and the double-size eigenvalue problem can be avoided by considering the mathematical

eigenvalue to he pz. Thus, let

A =p” -, (10)
and '
1
A== . (11)
2

-

Substituting Equations (10) and (11) into Equation (9) and using the inverse form results in
2 .-1
(K 2z M] “{~-M]{ul = A{u}. (12)

Comparing the above with Equation (5) shows that the standard form with a null [B] matrix

is achieved by setting
2 -1
[(al=[k+x M] ~L-M], (13)

and -



(x} = {u}. (14)

Stnce the eigenmatrix, (A], is, in gencral, unsymmotrie, the eigenvectors, {x}, are

orthogonal o the eigenvectors, [§}, of the transpose eigonproblem
T .= = '
LAl ™ {x} = A{x], (15)

so that fox Ai # Aj .

fﬁlefxi} =0; i (16)

The above relationship is a biorthogonality condition and the associated eigenvectors, {xi}

and {;J,] , are called right and left eigenvectors, respectively.

2.2 The Reduction Algorithm

A reduction of the order of the eigenvalue problem, Equation (5), is effected through

the transformation
{£} =1v] {y}, (17a)
nxl nxm mxl

and | , -
(1= [V1 (3}, (17)

nxl nxm mxl

where {&} and {%} are approximations of {x} and {x}, respectively, n is the order of
the unreduced problem, and msn. The above transformation matrices are chosen to be hi-

orthonormal, so that

=T
tvl™ vl = (1. - (18)
¥rom 7quations (5), (17), and (18), it is seen that

ORIGINAL PAGE 18
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(i) {y) = A(y), (19)
where
M3 =91 [A] V], (20)

mxm

and A- 1s an approximation of the eigenvaluo, A.

Thus, Equation (19) 1s an mth order eigenvalue problom, where ms=n. The value

of m is established according Lo the criterin given in Scetion 2.3,

As In the case of real eigenvalue analysis (Reference [1]), the Lanczos algorithm

is used to construct the transformation matrices veetor by vector, i.o.,

[V]= [{Vl} ’ {Vz] pesrey {Vm}] ) (21a)
n{m
[V1=0(v,1, (v}, eenn V17, (21b)
nxm

such that the reduced mxm matrix, [H], is tridiagonal and its eigenvalues accurately
approximate the roots of Equation (5) having the largest magnitude (or, equivalenily, the

physical roots, p, closest to the specified point of interest, Ao’ in the complex plane).

The form of the algorithm for generating successive vector pairs is, accoxding to

the Lanczos technique,

di+1[v.+1]={wi+l}=EA]fvi}~a V3 -2 2[ 2]---- ~a, EVJ, (22a)

i+1[ i,iv 1

REISAN BV SR A R O B A OO A 22h)

where L'vl] and [51] are starting vectors (see Section 2.4), 1<ism~1, and all m

veelors pairs are biorthonormal., This implies that

=.T . .
ai,j={vj} [AJ{vi'], : (23a).



and
:1,1 = [vj] TD\]T[’GIJ , 23h)

while the normualizing {aclors are given by

=% 1%, 11V2

U1 ™ Y i+

(M
1"‘1 (‘; ;’)
Using symmelry arguments similar to those employed for real eigenvalue analysis

(Reforence [1]), it can be shown that

ai,i.=_ a-i,i . (26a)
R Tl (25b)
and
=‘= =0 j<i~1, I
ai,j. 'li’j 0; j<i-1 {(25¢)

The treysfrtined, reduced eigenmatrix in Equation (19) is consequently tridiagonal

and symmetrie, having the form,

a7 Y
o d, ez 4y
TH] = [V] (Al [V] = (26)
d a d
3 33 4
N AN N
N Y ~
~ AN \d
~ N m

N N

~d “a
N m mm |

The matrix coefficients are theoreticﬁlly given by the simplified recurrence formulas

ORIGINAL PAGE IS
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o
FE'

R CARVN[ON

(w, )= (a3 (v} -a Qvd-div ]

’ L 1=1,m (27a)
= _ T.= = =]

W) = DT ) =0y )= 4y, )

1/2

= LT
Ay = [{'wi-l-l} [wm-ln

1 “\
vyl = A,y (W)
\ 1=1, m-1 (27h)

= 1 2
AT i AT

y

where the sequence is initialized by choosing random, biorthonormal stnrting vectors for
[vlJ. WlJ and by setting d, =0; {VOJ = [Vo] = {0},

The final off-dingonal term, dm 17

error estimates for the computed eigenvalues (see Section 2,6). In addition, the above

given by Equation (27a) is used in establishing

algorithm is modified in the computational scheme as follows:

1. Each pair of vectors [vi +1] , [\zzi +1}, caleulated in Equations (27h) is reor-
' thogonalized to all previously computed pairs, as described in Section 2.5,
Lefore re-entering Equations (27a). '

2. The size, m, of the reduced problem is a function of the number 2f accurate
eigenvalues requested by the user and is limited to the number of firite
physical eigenvalues available (see Section 2.3).
The eigenvalues, A, and eigenvectors, {y}, of Equation (19) are extracted using the
Q-Riteration algorithin and eigenvector computational scheme des_cribed in connection with
the Upper Hessenberg method in NASTRAN (Reference [5]). They are then converted to

physical form as follows:



-~ 1
B T tA
i Ai 0
[B] # [o], (28n)

: |
v)]i
"=(-1‘-+>x2)1/2-1n' >0 |

! (8] =[0]. (28b)

[ui] = [vl{y)

The velocity vector [vi} in Equation (28a) is discarded prior to further processing of the
set of eigensolutions by NASTRAN, Also, all solutions which fail the FEER error test are
rejected. THowever, the number of acceptable solutions will, in all probability, equal or

exceed the number requested by the user when the reduced problem size is chosen accord-

ing to the criteria described in the follnwing section.

2,3 Criteria for the Size of the Reduced Eigenv;ﬂue Problem

The maximum number of finite eigengolutions, including any existing rigid body
modes, is equalt to tk . rark, r, of the eigenmatrix, [A], In Eguatton (5). Thus, for example,
massless degrees ol freedom, appearing as zero diagonal terms in the [M] matrix, will
+» result in singularities (rank reduction), which imply infinite physical eigenvalues. These
gpurious roots are swept out of the problem in the coraplex FEER process {see Section

2.4) with a consequent reduction in the available eigensolutions.

A further consideration in limiting the maximum problem size is that the user has
the option of requesting eigensolutions in the neighborhood of several shift points
7Y 01’ A 02’ .) in the complex plane, In the Tridiagonal Reduction method, all eigen-
solutions, f, obtained for previous shift points are swept out of the problem to prevent
their re~generation when dealing with the current shift point (s.ee Section 2, 5), This implies

ORIGINAL PAGE IS
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that the maximum possible sizo, m, of the reduced problem is further limited to

moax " rT f. (29)
On the basis of numerieal experiments, similar to those ciled in Reference [1] for
real cigenvalue analysis, it has been found that when m << mo a first grouping of more
than m/2 computed cigenvalues closest to the shilt point are in accurate agreement with
the corresponding number of exact eigenvalues, provided that 7 sm < mooe The remain-
ing reduced-system roois arve sprend across the remaining exact eigenspectrum. To en-
hance the accuracy of the associated eigenvectors, the minimwm problem: size is further

increased to lwelve, again assuming that m <«<m

Thus, if the user requests a total of g eigenvalues closest to a specified point in

the complex plane, the order of the reduced problem is initially set to

=min [(2c—1+10), @n-f)]; [B]1#[0], (302)

=min [ (2¢+10), (n-f)] ; [BI=C(0]. (30h)

Although the total munber of eigensolutioné requested should not exceed moo
thers is usually no simple way to discern this upper limit in complex eigenvalue problems.
However, the reorthogonalization tests of Section 2.5 are designed to automatically
establish this upper limit. If the latter tests fail for some vector pair { vi+1}, £\=ri+l} )
this is an indication that a null vector has been genevated because m o lingarly inde-
pendent vectors have already been obtained. The recurrence algorithm, Equations (27),

is then terminated and the order of the eigenproblem is further reduced to m =i,

2.4 Choice of the Inifial Trial Vectior and Restart Vectors

Because of the inverse relationship between the computed eigenvalues, A, and the
physical eigenvalues, 1_), {see Eguations (28)), spurious eigenvalues corresponding to

A= 0 are equivalent to p—«. Since these eigenvalues anc their corresponding eigen-

vectors are of no interest and may cause numerical instabilities, they are eliminated {rom

=10~



the reduced tridiagonal problem by employing a constrained set of {v}, (¥} veetor paivs
having zevro projection on the sct of ecigenveetors associated with A= 0. lowever, any
non-null right and lelt vectors {wl] , {‘.-51] , genorated from any other non-null vectors

{wr}, (‘\'—Gr] through the transformations
{wyl=lal{w }, - (31a)
= T,=
{wl}= [al [wr} y (31D)

will contain no components of the eigenvectors corresponding to A =0. TFurther, after the

above vectors are orthonormalized

1
{v,}=— {w 1, (32a)
Ve w02
31 = — ; 173 {‘;1] ) (32h)
015,17 w1
the next vectors generated,
{w,} = Al {v,}~a (v}, - (332)
(5,} = (A1 (5.} -2, (5,3, (335)

as well as all subsequent trial vectors will be free of A=0 eigenvectors.

Thus, the starting vectors, {V 1, {v }, in the reduction algovithm are gcncmted
from Equations (31) and (32), starting wnh pseudo ~random vectors {w } and [w 1.
{hese pseudo-random vectors should, by chance, he deficient in some true ezgenvector ‘
components, then a null veclor {vi_l_l} or ﬁi +1] may be generated at some point in
Equations (7). This is indicated by the appearance of an off-diagonal term, di 41 which

is exceedingly small compared to the corresponding diagonal term, ai i in the reduced

© IS
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tridiagonal matrix. The test used is that a null vecior has been generated when

|<10t/2|

ld i+1 1,1" (34)
where t is the number of decimal digits carried in the computalions. In this event, new

restart vectors are employed for {w } {w, .]. These veclors are generated exaetly

i+l
as in the case of the initial trial vectors, but using different pseudo-random number sceds.
The recurrence algorithm for generation of subsequent vector pairs [Vi-l 1] , [?i -|-1]' gic. ,
is then continued in the usual manner until the required number of vector pairs has heen

generated.

2,6 Sweeping-out of Previously Obtained Eigenvectors and Reorthogonalization of the
Trial Vectors
As in the case of real eigenvalue analysis, successive {rial vectors generated by
the theoretical algorithm, Equations (27), ‘tend to degrade rapidly as the computations pri-
ceed in the finite digit calculations, such that later right vectors are far removed from srtho-
gonalily to earlier left vectors, and previously computed eigenvectors, [x 1, {m | P
[n 1 [.‘.\ 1, {x Yyeooo,fx } Thevefore, each new vector pair {-vi+1J , [Viﬂ] obtained
from elther thc algorlthm or the pseudo-random number generator (see previous Section)
is denoted as {vi(-:-)l)] , {_3(;21] and reorthogonalized with respect to all the proviously oh-

tained vectors. This is accomplished by iterating,

2

fv “"} (v “‘1} 5 15 3 Tl Dy - z: tm vl (%], (35a)
=1 j=1 '
i
CIAEITA z AUAR USRS }~>:: () "0 R, (35b)
i=1

where k=1,2,...,s until an acceptable vector pair {Vi(i;.}’ [31(?1} is found which satis-

fies the orthogonality criteria

max 2~
15551 |ty) Ty =107, | - (36n)

-12-



ax = 2-1 _
m |[vj] [v(s)] | 1077, {360j

1sj=1 i+,

max .= T, (5) 2 .
psjar 1051 (g3 11077, (36e)
max Te=(8) 2- )z
yejeq |11 Tl 5207, (3Cd)

where s =10, and t is the number of digits carried in the computations. If, for some
value of i, the above criteria are not satisfied, then it is assumed that a new pair of
trial vectors cannot be generated and a reduced eigenvalue probiem of order m=1 is

solved as discussed in Section 2. 8,

If the ahove criteria are met, then the resulting vectors are biorthonormalized and

set equal to the new {rial vector pair, Ii.e.,

(v, = Wy, (372)
SAPE ._ L. 58, 37h)

These new vectors are used to computle the next off-diagonal term in the reduced tridiagonal

matrix from the formula
a . =1 AT v, ] . - (38)
i+l _' i i+l

However, if

-t
ld.,, 1= 10 /2 la, 1 (39)

-y

it is probable that either {v } or [3 +1} is a null vector. In this event, a reduced

i+l i
eigenvalue problem of order m =1 is solved, as abhove.

~ QRIGINAL QUALITY
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If the criteria given by Equations (36) and (39) are both met, then the new, norma-

lized vectors are used to continue the reduction algorithin,

2.6  Error Estlmates for the Compuled Eigenvalues

TFollowing a developmant similar to that of Reference [1] for real eigenvalue
analyéis, it can be shown that
(40)

Al - 1Al = la, ¥

m+L Y mi l ’

The above shows that the absolute value of the difference between the computed and true
eigenvalue magnitudes is proportional to the magniiude of dm+1 {which is the next off-
diagonal term that would be genevated had the reduced tridiagonal matrix, [H], been in-
creased from order m f{o order m+l) and Yini’ (which is the last ierm in the reduced-

system eigenvector associated with Ki).

Converting Equation (40) to physical eigenvalue form, using Equations (8), (10),
and (11), yields,

o, -2 | d .y .
——= .1 gM;[BHEo], (41a)
Ipi —Aol ' |A :

i

-2 .2 .

lp." - x| ld_ .y .|

—— -1 & —mAE i rp= o], (41b)
by -2 A, ]

The use of the above error bound estimates as criteria for acceptable eigensolutions

is described in Section 3.

-14-



3. SUMMARY O COMPUTATIONAL PROCEDURES AND FLOW CHARTS

Flow diagram¢ illustrating the computntional procedures are shown in Figures ?

and 2. The delails of each block are summarized helow,

(1) Establish Tentative Reduced Problem Size (see Section 2. 3)

Calculate a tentative size, m, of the reduced eigenproblem f{rom
=min [ (2q+10), @n-0)}; [B] # [0] (1a)
m {
=min [(2q+10), (n-0)]; [B] = (0], (1b)

where n is the order of the [K], [B], and [M] matrices, g is the number of user re-
quested eigensolutions, and f is the total number of previously extracted eigensolutions
calculated for earlier shilt points ()Lo or Aoz).

(2) Construct FFactors of Dynamic Matrix
(@) Set
=K+ _B+A“M]; [B] # (0] (2a)
[D]
= [K+A02M] ;  [Bl=1T0]. | (2h)
(b) ' Decompose the above dynamic matrix:
[D] = (] [u], . (3)

where [L] is a unit lower triangular factor and [U] is an upper triangular far'or,

using complex arithmetic (subroutine CDCEMP in NASTRAN). |

Save the triangular faclors for later use in premultiplication operations involving the
eigenmatrix, [A], and its transpose. If the decomposition fails, the shift value is

increased by A =.02(1+i) and a new decomposition is attempted. If this second

B 19
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decomposltlion {s unsuceessful, then it is assumed that the problem confains unremoy-
able singuiariiies in the neighborhood of the current shift point and the next regton, I any,
is examined,

(3) Exccute Complex Tridiagonal Reduetion Algorithm (see {low dingram for this block,
Figure 2)

3.1  Initinlize the Recurrence Algorithm (see Seelion 2,2)

Initinlize the vector index to i=0 and set
{v }={v}={ol (4)

= 0.0 (sce Section 2, 4)

3.2 Generate a Pair of Starting or Restart Vectors and set di +1

ﬁ. Construet right and left vectors [wr} and {xﬁr} using a pseudo~-random number

generator. The vectors contain 2n elements for [BI1#[0] and n elements for

(3]=[0].

b, Sweep-oul components corresponding to A =0;
{wi-l-l} = [A].[wr} , | (5a)
W, .} =0a1"(w ). | (5b)
i+l T

¢. Normalize the above vectors:

vl — L tw, 3, (6a)
o Wi+1]rl (W] e

{3(0)}= = .:—L 1/2 [;i'l'l] . (6D)
[y ) vy )]

d. Set di-i-l = 0.0 and proceed to block 3. 5.
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3.3 Creale One Pair of Approximate Trinl Veetors and One Dingonal Coefficiont
(sce Section 2, 2)

The recurrence algovrithm is:
= .7

{w,q) = [Ad{v }- a, jfvd-aidv 3,

= T, = = =
iwi-l-l] = [A] {vi} -ai’i[vi}-di{vi_l} )

Plw, 1172, > m

. /
i+l

where the above vectors are approximations to the new right and left trial vectors.

3.4  Tirst Normalization Tesi (see Section 2. 4)

The test is:

-t/2
oy |

|d, .| =10

o | (8)

Pass: Proceed directly to block 3.85.

Fail: Return to block 3. 2, generate a new pair of restart vectors for {v, 4(-)1)] and

{v ], and procead to block 5.5,

3.5 Iterate to Obtain Orthogonalized Trinl Vectors (see Sectlion 2. 5)

Designate {x 1, {}\ }G=1, D) as prevmusly calculated and stored eigenvector pairs,

i.e., caleulated earher by complex TREER for previous shift pointsin the complex plane.

. ) ORIGINAL PAGE IS
~17- OF POOR QUALITY,



Porform the iterniions,

i

I R el IR £ T
=1

(k-1)
i'il i+1 3y }

i+l

(k=2)yy (), | (%)

f
=,
-3 [[xj] {vi+1

=1

5= G - z v PEE 5,
=1

—-jz N Al KN G

k=1,2..,., uniil

max = 4T (k) 2-t
PIPTRIARAAV IR

max (k) t
T 1T o0 o

= T 2-
11;3&:{- ‘ [xj] {"ﬁi} |= 10

isjs{

max ‘[ ][v(k)]\5102t

or k= 10.

I the orthogonality criteria, Equations (10), are satisfied, proceed to block 3.6. Other-

wise, set the pfoblem size, m, equal to i and proceed to Exit.

3.6 Noxmaljze the Oxthogonalized Trial Veclors (see Section 2. §)

Compute

}= 1
i+l -(lc)] {v (1»:)]..1/2
1 o

(k)
[v1 P (L1a)

{v

-18-



=g : (k)
iy a(k)} v.09) 1/2{ 141 (11b)
Vpad i)

These are the new orthogonalized and normalized trial veclors,

3.7 %cond Normalization Test and Crention of Off-Diagonal Coefficient (sce Section 2.5)

{0} Compute the next off-diagonal term of the reduced tridiagonal matrix from
by ={v, 3t CAv,, ) (12)
{b) Verify whether the following test is met:
-t/2
dp,, 1210 |am|. (13)
If it is, set i =i+l and return to bloek 3.3 for continuation of the recurrence

algorithm. If the test fails, set m=i to reduce the problem size and proceed
{o Exit.

@) Solve Reduced-System Eigenproblem (sec Section 2. 2)

(@) The coeflicients a, ., 4, ss¢0s80 and d

11’ 22 mim 2’

d3, veey dm computed in block
3 {form the diagonal and off-diagonal terms of an mtl order symmetrie, trj-

diagonal matrix, {H], (the malrix is, however, usually complex rather than real),

() The mth arder eigenvalue problem

] {y}= A{y) (14)

is solved for the cigenvalues, Ki’ and the eigenvectors, [yi] , using the Q-R
iteration algorithm and eigenvector computational scheme deseribed in ‘

connection with the Upp'er Hessenberg method in NASTRAN (Refercnce [5]).

() The reduced system eigenvectors are normalized so that

ORIGINAL PAGE IS
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fl‘
v Iy =1 t=1,m. (15)

(5) Compuie Eslimate of Eigenvaiue Ervrors (sce Scclion 2, 6)

(a)

®)

Estimales of absolule relafive errors in the computed eigenvalucs are obtnined

from
|51_A0‘ ia +1y \
6 |y T Y e el AL, (160)
-2 .2 ;
P, - A d y
517 | i2 %l -1 “Lm“*%—)"li“ (B]=(0], (16b)

where am is the lnst off-diagonal term computed in block 3.3 and ymi is

+1
the lnst clement in the veclor {yi} . If the physical eigenvalue, 1'51, corresponds
to a zero root (e.g., a rigid body mode), the above computational scheme is

invalid and therefore bypassed. A zero root is assumed to occur whenever

b,
i -t/3
—IT.I\TIE—‘:IO ' (17}
where,
1 =2, =2 - 2, .1/2
rms =2 Ulpy | oy | +oeeniw o 11775, (18)

and is denoted by setting the error gi, to zero,

The eigenvalues are listed in order of increasing distance ijroni the shifll point,
ko’ to determine whether their associated estimated errors, gi, meet an
acceptable relative error tolerance set by the user on the EIGC bulk data card
fthe default value is 0.10/n, where n is the order of the stiffness matrix).

The first eigenvaiue not meeting the tolerance test, as well as all subseguent
elgenvalues furthor removed from the center of interest, are considered to lack.

sulficient accuracy and are therefore discarded.
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{c) Acceplabie clgenvalues oblained in the above manner are reordered necording

lo the magnitude of the imaginary pavt, with positlve values considered us o

group nhead of all negative values.

()

Compute Physical Elgenvalues and Elgenveclors and Store (secc Scclion 2, 2)

. The mathematieal eigenvalues, j_\i, and eigenvectors, {yi], are converied to

physical form as follows:

~
l—.;i - l- +>\o
A
. > [B]# L0] (192)
{“} = [V {y,],
v
) )
(24205 >
: F [B]=(0] (19h)
(v} = L] {y,]
)
where .
[V:I:[{Vl]: {VZ],.“”’[vm]]. (20)

The velocity vector [vi} in Equation (19a) is discarded.

~91-
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( ENTER )
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Tentative Reduced
Problem Size
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Solve Reduced
System
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Compule
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XY
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-
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!

V.

‘ EXIT )

?LD=AO +A

Figure 1. Overall Flow Diagram - Complex Tridiagonal Reduction Method
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Unsatisfied

( ENTER )
.

y

3.1 Initialize
Recurrence
Algorithm

i=0
!

Generate a
Pair of Start-
ing or Restart
Veclors and

Set di+1=0. 0

3.2

v

3.5 Iterate to
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Problem
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A
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Creation of
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Tigure 2. TFlow Diagram for Block 3, Execute Complex Tridiagonal Reduction Algorithm.
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4, NASTRAN USER'S INSTRUCTIONS

The following pages show modifications of the EIGC card in the NASTRAN bulk
data deck which accommodate user implementation of the Tridiagonal Reduetion method
for complex eigenvalue analysis. The modifications consist of additions to the standard

usay instructions and are underscored for ease {n identification.

When the complex Tridiagonal Reduction method is invoked, the E parameter on
this eard represents the maximum allowable value of the computed absolute relative
error in a physical eigenvalue (see Section 2.0). If this value is exceeded, the associated
eigensolution is not accepted for further processing by NASTRAN,. A detailed list of the
maximum relative errors compuied by complex FEER can be obtained by requesting
DIAG 12 in the NASTRAN Executive Control Deck (see Eection 5),
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BULK DATA DECK
Input Data Card EIGC Complex Eigenvalue Extraction Datn

Description: Delines data nceded to perform complex cigenvalue analysis

: / h2

2
/ / B
a2 \/(’ S ’Ll
bl
Format and Example:

1 2 3 4 5 6 7 8 9 10
EIGC SID  |METH@D! N@RM G ¢ E | e | 4abe
EIGC .14 DET | PGINT 27 | - 1. -8 i ABC
+ahe a1l Wep | %pi Wiy Y Ngl Ny | T tdek
+BC 2.0 5.6 | 2.0 | ~8.4 2.0 4 4 DET
Tdef Ta2 Do Tz Wyo T3 Ne3 Nag | oo
+EF )] -5.5 -5.5 5.0 5.6 1.5 6 3

(ete.)

_ _ GE 18
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Field
SID

METII@D

N@RM

(g5 @

{abj L) ojbj)

Conlenis

Sel idenfilication number (unique integer > 0)

- Method of complex efgenvalue extriction, one of the BCD values, "INVY,

"pET!, "TIESS'T or "FEER!

INV = Inverse power method

DET - Determinant method

HESS -~ Upper Hessenherg method
TFEER - Tridiagonal Reduction Method

Method for normalizing eigenvectors, one of the BC.)) values "MAX!" or
“PQINT”

MAX - Normalize to a unit value for the real part and a zero value
for the imaginary part, the component having the largest
magnitude

P@INT - Normalize to a unit value for the real part and a zero value
for the imaginary part the component defined in fields 5 and
6 - defaults to "MAX'" if the magnitude of the defined com-
ponent is zero.

Grid or scalar point identification number (Required if and only if
N@RM=P@INT) (Integer > 0)

Component number (Required if and only if NGRM="P@EINT" and G is a

. geometric grid point)(0 = integor = 6)

Convergence criterion (optional)(Real 2 0. 0)
Tor method = "FEERY, error-iolerance on acceptahble eigenvalues in per-
cent (default value is .10/n, where n_is the order of the stiffness matrix)

Two complex points defining a line in the complex plane (Real)

For method = "FEER', (¢ aj'i’aj) is a point of interest in the complex
plane, closest to which the eigenvalues are computed;]aaj| + Iwaj | >0.
The point (ozbj, —‘ij) is ignored. -

Width of region in complex plane (Real > 0. 0)
Blank for method = "FEER!'.
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Remarks:

1,

2.

7.

Estimated number of roots in cach region (Integer > 0)
Ignored for method = "PEER".

Desired number of roots in each region (Default is 3Ng;){Integer >0)
* Desired number of accurate roois for method = "FEER" (Default is 1),

Lach continuation card defines a rectangular search region. For method =
"FEER", the card defings a circular search region, centered at (055, Wajl
and of sufficient radius to encompass Ng;_roots. Any number of regions
may be used and they may overlap. Rools in overlapping regions will not he
extracted more than once,

Complex eigenvalue extraction data sets must be selected in the Case Control
Deck (CMETH@D=SID) to be used hy NASTRAN,

The units of &, w and 4 are radians per unit time.
At least one conriinuation card is required.

Tor the de’ *yminant method with no damping matrix, complex conjugates of
the roots found are not printed.

See Section 10.4.4.5 of the Theoretical Manual for a discussion of convergence
criteria.

For the Upper Hessenberg method, Ngy controls the number of vectors com-
puted. Only one continuation card is considered and the (@, w) pairs, along
with the parameters 4, and Ngg, are ignored. Imsufficient storage for HESS
will eause the program to switch to INV,

v
]

The erroy tolerance, I, for the "FEER" method is with regard lo

1270 ©) L | tor [m1 £ 007 and
‘pi - (aﬂj’ wa;])‘ {

-2 2
lpi - (aaj’ waj) |

-1| for[B)=1(0],

2 2
|pi - (aaj! wﬂj) |

where pi is a computed eigenvalue and P, an exact eigenvalue.
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USER MESSAGES AND OPTIONAL DIAGNOSTICS

[#4

5.1 NASTRAN TFuncilon Module User Messages for the Complex Tridiagonal Reduction
Method

5.1.1 General

The following is a description of the NASTRAN user messages which may be
generated hy NASTRAN during the execution of the Complex Tridiagonal Reduction method
and which are unique to this method. Explanatory information is provided following the
text of each massage and, in the case of a [atal message, correctivé action is indicated,
Refer to the NASTRAN Users' Manual, Section 6 for a complete listing of other system

and user messages,

Fatal messages cause the termination of the execution following the priniling of the
message text. These messages will always appear at the end of the NASTRAN ouiput.
Warning and information messages will appear at various places in the oufput stream.
Such messages convey only warnings or information to the user. Consequently, the exe~

cution continues in a normal manner following the printing of the message text.

5.1.2 List of User Messages

3149 ##+  USER WARNING MESSAGE 3149, USER SPECIFIED NEIGHB@RHGED
CENTERED AT @RIGIN N@T ALLYWED, CENTER SHIFTED Td@
THE RIGIIT . 001.

Point of interest in the complex plane (0,0 Wy ), closest to which the
eigenvalues will be computed, was input as (0. 0 0.0) on an EIGC bulk
data continuation card. Since this is an inadmissible choice, the point
automatically used was (. 00L, 0.0).

3150 #+*  USER WARNING MESSAGE 3150, DESIRED NUMBER (T EIGENVALUES
ok INVALID., SET = 1.

Number of accurate roots desired Ngq; was omifted, input as zero or.
negative on an BIGC bulk data continuation card, The number auto-
matically used was 1.

3151 #+%  USER WARNING MESSAGE 3151, DYNAMIC MATRIX IS SINGULAR
(JCCURRENCE #*##*) IN NEIGHB@RHGFED CENTERED AT kst sokfok

Point of inlerest in the complex plane (&, @ closest to which the

ai)’
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315D

3153 ###

3154 #owk

31585 #Hdok

3156 H#

eigenvalues will he computed, was input {oo close {o an eigenvalue
on an EIGC hulk data continuation card. 'The point is automalienlly
shilted by adding .02 lo both the real and imaginary parts. If the
dynamic matrix is still singular, the next neighborhood, if any, is
searched.

USER INFURMATIUN MESSAGE 3152, SUBRGUTINE ALLMAT UTPUT
EIGENVALUE *%4* IS NULL,

When an eigenvalue output from subroutine ALLMAT is exactly zero,
the formula for computing the associnted theoretical exrror test fuils.
The magnitude of the eigenvalue is considered to be 10710 for use in
that formula.

USER WARNING MESSAGE 3153, ATTEMPT T¢ NYRMALIZE NULL
VECTER IN SUBRGUTINE CTEER4. NG ACTIUN TAKEN.

An eigenver Hr oulpul from subroutine ALLMAT is a zero-vector.

USER WARNING MESSAGE 3154, SIZE ¢F REDUCED PREBLEM
DECREMENTED ¢NCE (N@W #++¥) DUE T¢% NULL ERRYR ELEMENT.

If subroutine CFEER4 receives a reduced {ridiagonal matrix having
errvor element dy,4q exactly (0,0), it is impossible to compute menn-
ingful theoretical error estimates for any of the eigenvalues, The size
of the reduced problem is reduced by one, so that d,,; becomes the new
error element.

USER WARNING MESSAGE 3155, REDUCED PREBLEM HAS VANISHED.
NG R@GPTS FEUND,

If decrementing the size of the reduced problem (see message 3154)
cauges the size to hecome zero, the program continues to the next
neighhorhood, if any.

USER WARNING MESSAGE 3156, SIZE @¢F REDUCED PRUBLEM
RESTYRED T@ *++* BECAUSE NEXT ERRUR ELEMENT WAS ALS®
NULL. ERRFR ELEMENT SET = kit ook

This message follows message 3184, If d,, is also exactly zero (in
addition to d,;, ;4 being exactly zero), then the original reduced problem
size is restored and d,, 4 is setto (€, 0) where € = E/100 and E is
the error tolerance on acceptable eigenvalues input on the EIGC bulk

data card.

_ ORIGINAL PAGE xs_
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3157 +#

3158 #tk

3159 Hk*

3160 kkk

3161 kk

3162 H#*

3163 *#k

USER WARNING MESSAGE 3157, FEER PRICESS MAY IIAVE
CALCULATED FEWER ACCURATE M@DES *+++ TIJAN REQUESTED
IN THE NEIGHB@RUGHD @T #ttk +kk

The desired number of eigenvalues specilied on the EIGC bulk data
continuation eard exceeds the additional number that can be caleulaied
by the Complex Tridiagonal Reduciion (Complex TEER) method in the
current neighborhood,

USER WARNING MESSAGE 3158, N¢ ADDITIGNAL M@DES CAN BE
F@UND BY FEER IN THE NEIGHB@RIGHD @T7 #xkk hohkk

An initial pseudo-random vector eannot he madeé orthogonal to the exisi-~
ing set of orthogonal veectors (which come from Restart and from all
prior-neighborhood sets of eigensolutions).

USER INF@RMATIGN MESSAGE 3159, ALL S@GLUTIGNS HAVE BEEN
F@UND.

The FEER method has solved the entire problem. Any additional neigh-
borhoods (as specified by the presence of EIGC bulk cdata continuation
cards) are ignored.

USER INFERMATIGN MESSAGE 3160, MINIMUM ¢PEN C@RE N@T
USED BY FEER *#k¢ WERDS (**++ K BYTES),

This message indicates the amount of open core, in both byles and
words, not used by FTEER.

USER WARNING MESSAGE 3161, DESIRED NUMBER (T EIGENS@LU-
TIGNS #*++ FGR NEIGHB@RHGGD #4++ GI *+kk CENTERED AT

fokkk xik TXCEEDS THE EXISTING NUMBER #%#%, ALL EIGENS@LU-
TIGNS WILL BE S@GUGHT.

The desired number of eigenvalues specified on the EIGC hulk data

continuation card exceeds the size of the eigenmatrix, which is the
maximum possible number of existing eigenvalues.

USER WARNING MESSAGE 3162, ATTEMET T¢ NGRMALIZE NULL
VECT@R. N@ ACTIGN TAKEN.

The general vector normalization routine (CFNCZ5R_1 or CFN@R2) has
a zero-vector input fo it.

USER WARNING MESSAGE 3163, ALL #+%* SGLUTIGNS HAVE FAILED
ACCURACY TEST., NG RUGTS FGUND, :
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104 Ak

3105 ok

316G +¥*

The number of cigensolulions passing the relative error test is zoro,
The maximum allowable crror for the relative error test is specified
in field 7 of the EIGC bulk data card, A detailed list of the compuled
error hounds could have been obtnined by requesting DIAG 12 in the
Executive Conlrol Deck.

USER INF@RMATIUN MESSAGE 3164, ALL #+¥* SGLUTIONS ARE
ACCEPTABLE,

All the eigensolutions obtained in the reduced problem corresponding {o
the point of interest pass the relative error test. The maximum allow-
able error for the relative error test is specified in field 7 of the
TIGC bulk data cavrd., A detailed list of the compuied error estimates
could have heen obiained by requesting DIAG 12 in the Exccutive
Control Deck,

USER INFRMATIGN MESSAGE 3165, #+#k SGLUTIZNS HAVE BEEN
ACCEPTED AND *##+% SGLUTIGNS HAVE BEEN REJECTED,

Some cigensolutions passed the relative error test and some did not,

USER INFT@RMATION MESSAGE 81066, *#+4#* M@GRE ACCURATE EIGEN-
SPLUTIPNS TIIAN THE *+x% REQUESTED HAVE BEEN FGUND F¢gR
NEIGHB@RHE@D *+#4 @I #kkx CENTERED AT #4## *k%%  USE DIAG
12 T@ DETERMINE ERRUR ESTIMATES.

The number of eigensolutions passing the relative error test is greater
than the number requesied on the corresponding EIGC bulk data con~
tinuation card, The maximum allowable error for the relative error
test is specified in field 7 of the EIGC bulk data card. A detailed

list of the computed error estimates could have heen obtained by re-
questing DIAG 12 in the Executive Control Deck.

ORIGINAL PAGE IS
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5.2  ‘The Eigenvalue Summary Table

The following summary of the cigenvalue analysis performed, using the complex

Tridiagonal Reduction (FEER) method, is nutomatically printed:
1. Number of eigenvalues oxtracted.

2. Number of siarting points used.
This corresponds to the total number of random starting and restart veetors used
by the complex FEER process for all neighborhoods,

3. Number of starting point moves.
Not used in FEER (set equal {o zero).
4, Number of triangular decompositions.

Always equal to the number of points of interest (neighborhoods) in the complex
plane processed by FEER, since ordinarily only one triangular decomposition is
required by FEER for each point of interest, unless the dynamic matrix is singular
at a given point of interest, in which case an additional decomposition is required
(obtained by moving the point of interest slightly),

5. Total number of vector iterations.
The {otal number of reorthogonalizations of all the trial vectiors employed.
G. Reason for termination.

(0) All, or more solutions than the number requested by the user, have been
determined (normal termim tion).

(1) All neighborhoods have been processed, but FEER has not obtained the de-
sired munber of roots in each neighborhood, possibly because they have

already been found in other neighborhoods.

{2) Abnormal termination - either no roots found or none pass thc FEER error
test. :

~52



* 5.3 Optlonal Diagnostic Quiput

The user ean obtaln special delafled information relating Lo the generation of the
reduced problem size, the elements of the reduced tridiagonal malrix, vector reortho-
gonalizatlion jterations, computed error estimates, order of cigenvalue exlyvaction, and
distance of extracted eigenvalue from the center of intorast by requesting DIAG 12 in the
NASTRAN oxcrulive control deck.

The meaning of this information is explained below in the order in which it appears
in the DIAG 12 output.

*ert FEERAF*F (FAST EIGENVALUE EXTRACTIGN ROUTINE)###*
This header is always printed first. |
*r+4SINGLE PRECISION WORDS ¢T $PEN CARE NPT USED (SUBRGUTINE XXKX)
kokdk C?pen core not used by subroutine XXXX, in cingle~precision words.
XXX5r - Bither CIFCNTL, CFEERS, or CFEER4. This message appears three times.
C1+ ¥ 1T, ACCURACY CRITERIPN (INPUT VALUE **)
* - Accuracy criterion, used for rejecting eigensolutions (expressed as a percentage).
## - Value of accuracy criterion input by the user c;n the EIGC hulk data caxrd.
CFCNTL NEIGHBARUGED * CENTER = #* #% NO,DES, RTS.= *ik NENSYM = #ki*

* -~ Positive integer indicating which neighborhood, or center of interest, is currently
belng processed.

*¥ #% - Center of intevest in the complex plane.

*kk  ~ Number of desired roois for the current neighborhood, input by the user on the
corresponding EIGC bulk data continuation card. '

#dkk -~ Indicator which, when nonzero, forces the program to consider the matrices as
non-symmetric, even though they may actually be symmetric, This is input by
the user in field 7 of each EIGC bulk data continuation card. This input was
used during program checkout of the complex FEER process, and it should have
no affect on the solition. However, the user should leave field 7 blank on each
EIGC continuation caxd.
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REGRTHGGENALIZATIGN ITERATION * TARGET VALUE = &
ERRORS = Hdk bk bk ddok

L The reorthogonalization iteralion-number. This wessage will sppesr many
times, as the FEER process “eleans up't cach trial veotor by foreing it to he
ns orthogonal as possible to the set of veelors nlready compuied,

#k - . Convergence tolerance, such that the errors must be smaller than this value.
In order to avoid laking square roots, the tolerance and errors are all squared.

Aok dokok kb Ak - Tour reorthogonalization errors, the fivst two of which correspond to
the orthogonality of the current right and lefl hanced (rial veetors, respectively,
with respect to nll previously computed veetors in the current neighborhood,
and the latter two of which correspond to t!l:» orthogonality of the sume vectors
with respect to nll eigenveclors previously computed (restart and prior neigh-
borhoods).

REDUCED TRIDIAGONAL MATRIX ELEMENTS RAW *
GFT DIAGONAL = ##
DIAGONAL = #k# ki
* = The row number of the (reduced) tridiagonal matrix,
#* k% - Ynlue of “ne off-dingonal element for that row.
*+k bk =Value of the diagonal element for that row.
Tollowing the printing of several lines containing reorthogonalization information and
reduced tridiagonal matrix elements, when the TEER process has finished its computa-
tions for the current point of interest, the hender (see above) is printed once again,

followed by a table which summarizes all the eigensolutions found by FEER., This table

. has seven enlumns, as follows:
(1)  Solution number. This is simply a positive integer 1,2,3,... .

(2) Order of extraction. These numbers indicate the order in which the
tridiagonal matrix was constructed.

(8) Distance [rom center. This is the distance from the extracted eigenvalue
to the neighborhood center (which is printed above the table) in the complex
plane. The tabular values are sorted according to increasing distance from
the center,

(4) Real part of the extracted sigenvalue,
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(5) Imaginary part of the extracted oigernnlue,

(6) ‘Theorelienl arvor estimate. This value must be smaller than the Accurncy
Criterion {sce above) for tho elgensolution to he nceeptable.

(7Y Status, A single word, Maceept' or "rejecl!, to indiente the rosult of the
aceuracy test, A minus sigh (=) I8 added to ""reject! so that the sye ean
more rapidly distinguish belween the two words,

Finally, this iable is printed a sccond time, but with the rojucted cigensolutions deleted.

Tor very small problems, thers is a Vory Delailed Printout (VDP) oplion. This
optton was originally used to debug the complex FEER logic, and is no longer requived.
DIAG 12 must be specified in the executive control deck {o invoke the VP option, and
furthermore, field 6 of a given EIGC bulk daia continuation card must have a ([loating
point) value equal to or greator than the size of the stiffhess matrix. Thus, field 6 of
each EIGC continuation eard should ordinarily he left blank, so that the VDP option will
he suppressed. The actual printed output of this option consists of all vectors for each
step of the complex FPEER process, which is too extensive and detailed for normal user

purposes.
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