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This article reviews the development of the original modal
assurance criterion (MAC) together with other related assur-
ance criteria that have been proposed over the last twenty
years. Some of the other assurance criteria that will be dis-
cussed include the coordinate modal assurance criterion
(COMAC), the frequency response assurance criterion (FRAC),
coordinate orthogonality check (CORTHOG), frequency scaled
modal assurance criterion (FMAC), partial modal assurance
criterion (PMAC), scaled modal assurance criterion (SMAC),
and modal assurance criterion using reciprocal modal vectors
(MACRV). In particular, the thought process that relates the
original MAC development to ordinary coherence and to or-
thogonality computations will be explained. Several uses of
MAC that may not be obvious to the casual observer (modal
parameter estimation consistency diagrams and model updat-
ing are two examples) will be identified. The common prob-
lems with the implementation and use of modal assurance cri-
terion computations will also be identified.

The development of the modal assurance criterion1-2 over
twenty years ago has led to a number of similar assurance cri-
teria used in the area of experimental and analytical structural
dynamics. It is important to recognize the mathematical simi-
larity of these varied criteria in order to be certain that con-
clusions be correctly drawn from what is essentially a squared,
linear regression correlation coefficient. The modal assurance
criterion is a statistical indicator, just like ordinary coherence,
which can be very powerful when used correctly but very mis-
leading when used incorrectly. This article will first review the
historical development of the modal assurance criterion. Other
similar assurance criteria will then be identified although the
list is not intended to be comprehensive. Typical uses of the
modal assurance criterion will be discussed and finally, typi-
cal abuses will be identified.

Historical Development of the MAC
The historical development of the modal assurance criteria

originated from the need for a quality assurance indicator for
experimental modal vectors that are estimated from measured
frequency response functions. The standard of the late 1970s,
when the modal assurance criterion was developed, was the
orthogonality check. The orthogonality check, however,
coupled errors in the analytical model development, the reduc-
tion of the analytical model and the estimated modal vectors
into a single indicator and was, therefore, not always the best
approach. Many times, an analytical model was not available
which renders the orthogonality check impractical.

The original development of the modal assurance criterion
was modeled after the development of the ordinary coherence
calculation associated with computation of the frequency re-
sponse function. It is important to recognize that this least
squares based form of linear regression analysis yields an in-
dicator that is most sensitive to the largest difference between
comparative values (minimizing the squared error) and results
in a modal assurance criterion that is insensitive to small
changes and/or small magnitudes. In the original thought pro-
cess, this was considered an advantage since small modal co-

efficient values are often seriously biased by frequency re-
sponse function (FRF) measurements or modal parameter es-
timation errors.

In the internal development of the modal assurance criterion
at the University of Cincinnati, Structural Dynamics Research
Lab (UCSDRL), a little modal assurance criterion (Little MAC)1,
a big modal assurance criterion (Big MAC) and a multiple
modal assurance criterion (Multi-MAC)3 were formulated as
part of the original development. Little MAC and Multi-MAC
were primarily testing methods and are not discussed further
here. The modal assurance criterion that survives today is what
was originally identified as Big MAC. Since the “Big Mac” ac-
ronym was already in use at that time, MAC is the designation
that has persisted.

Modal Vector Orthogonality. The primary method that has
historically been used to validate an experimental modal model
is the weighted orthogonality check comparing measured
modal vectors and an appropriately sized (the size of the square
weighting matrix must match the length and spatial dimension
of the modal vector) analytical mass or stiffness matrix (weight-
ing matrix). Variations of this process include using analyti-
cal modal vectors together with experimental modal vectors
and the appropriately sized mass or stiffness matrix. This lat-
ter comparison is normally referred to as a pseudo-orthogonal-
ity check (POC).

In the traditional orthogonality check, the experimental
modal vectors are used together with a mass matrix, normally
derived from a finite element model, to evaluate orthogonal-
ity of the experimental modal vectors. In the pseudo-orthogo-
nality check, the experimental modal vectors are used together
with a mass matrix, normally derived from a finite element
model, and the analytical modal vectors, normally derived from
the same finite element model, to evaluate orthogonality be-
tween the experimental and analytical modal vectors. The ex-
perimental and analytical modal vectors are scaled so that the
diagonal terms of the modal mass matrix are unity. With this
form of scaling, the off-diagonal values in the modal mass
matrix are expected to be less than 0.1 (10 percent of the di-
agonal terms).

Theoretically, for the case of proportional damping, each
modal vector of a system will be orthogonal to all other modal
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Nomenclature
L = Number of matching pairs of modal vectors.

A* = Complex conjugate of A.
Ni = Number of inputs.
No = Number of outputs (assumed to be larger than Ni).
Ne = Number of experimental modal vectors.
Na = Number of analytical modal vectors.

Hpq(ω) = Measured frequency response function.
   pq(ω)= Synthesized frequency response function.

ψqr = Modal coefficient for degree-of-freedom q, mode
r.

ψpqr = Modal coefficient for reference p, degree-of-free-
dom q, mode r.

{ψ}T = Transpose of {ψ}.
{ψ}H = Complex conjugate transpose (Hermitian) of {ψ}.
{ψr} = Modal vector for mode r.

{ψpr} = Modal vector for reference p, mode r.
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vectors of that system when weighted by the mass, stiffness or
damping matrix. In practice, these matrices are made available
by way of a finite element analysis and normally the mass ma-
trix is considered to be the most accurate. For this reason, any
further discussion of orthogonality will be made with respect
to mass matrix weighting. As a result, the orthogonality rela-
tions can be stated as follows:

For r ≠ s:

For r = s:

Experimentally, the result of zero for the cross orthogonal-
ity calculations (r ≠ s, Eq. 1) can rarely be achieved but values
up to one tenth of the magnitude of the generalized mass of each
mode are considered to be acceptable. It is a common proce-
dure to form the modal vectors into a normalized set of mode
shape vectors with respect to the mass matrix weighting. The
accepted criterion in the aerospace industry, where this confi-
dence check is made most often, is for all of the generalized
mass terms to be unity and all cross orthogonality terms to be
less than 0.1. Often, even under this criteria, an attempt is made
to adjust the modal vectors so that the cross orthogonality con-
ditions are satisfied.4-6 Note that, in general, experimental
modal vectors are not always real-valued and Eqs. 1 and 2 are
developed based upon normal or real-valued modal vectors.
This complication has to be resolved by a process of real nor-
malization of the measured modal vectors prior to utilizing Eqs.
1 and 2 or by applying an equivalent procedure involving the
state-space form of the weighted orthogonality relationship.

In Eqs. 1 and 2, the mass matrix must be an No×No matrix
corresponding to the measurement locations on the structure.
This means that the finite element mass matrix must be modi-
fied from whatever size and distribution of grid locations re-
quired in the finite element analysis to the No×No square ma-
trix corresponding to the measurement locations. This
normally involves some sort of reduction algorithm as well as
interpolation of grid locations to match the measurement situ-
ation.7-13

When Eq. 1 is not sufficiently satisfied, one (or more) of three
situations may exist. First, the modal vectors can be invalid.
This can be due to measurement errors or problems with the
modal parameter estimation algorithms. This is a very common
assumption and many times contributes to the problem. Sec-
ond, the mass matrix can be invalid. Since the mass matrix
does not always represent the actual physical properties of the
system when it is built or assembled, this probably contributes
significantly to the problem. Third, the reduction of the mass
matrix can be invalid.7-13 This can certainly be a realistic prob-
lem and cause severe errors. The most obvious example of this
situation would be when a relatively large amount of mass is
reduced to a measurement location that is highly flexible, such
as the center of an unsupported panel. In such a situation, the
measurement location is weighted very heavily in the orthogo-
nality calculation of Eq. 2, but may represent only incidental
motion of the overall modal vector.

In all probability, all three situations contribute to the fail-
ure of orthogonality or pseudo-orthogonality criteria on occa-
sion. When the orthogonality conditions are not satisfied, this
result does not indicate where the problem originates. From an
experimental point of view, it is important to try to develop
methods that indicate confidence that the modal vector is, or
is not, part of the problem.

Modal Vector Consistency. Since the frequency response
function matrix contains redundant information with respect
to a modal vector, the consistency of the estimate of the modal
vector under varying conditions such as excitation locations
(references) or modal parameter estimation algorithms can be
a valuable confidence factor to be utilized in the process of
evaluation of experimental modal vectors.

The common approach to estimation of modal vectors from
frequency response functions is to measure several complete

rows or columns of the frequency response function matrix.
The estimation of modal vectors from this frequency response
function matrix will be a function of the data used in the modal
parameter estimation algorithms and the specific modal param-
eter estimations algorithms used. If the modal vectors are not
well represented in the frequency response function matrix, the
estimation of the modal vector will contain potential bias and
variance errors. In any case, the modal vectors will contain
potential variance errors.

Frequently, different subsets of the frequency response func-
tion matrix and/or different modal parameter estimation algo-
rithms are utilized to estimate separate, redundant modal vec-
tors for comparison purposes. In these cases, if different
estimates of the same modal vectors are generated, the modal
vectors can be compared and contrasted through an evaluation
that consists of the calculation of a complex modal scale fac-
tor (relating two modal vectors) and a scalar modal assurance
criterion (measuring the consistency or linearity between two
modal vectors).

The function of the modal scale factor (MSF) is to provide
a means of normalizing all estimates of the same modal vec-
tor, taking into account magnitude and phase differences. Once
two different modal vector estimates are scaled similarly, ele-
ments of each vector can be averaged (with or without weight-
ing), differenced or sorted to provide a best estimate of the
modal vector or to provide an indication of the type of error
vector superimposed on the modal vector. In terms of modern,
multiple reference modal parameter estimation algorithms, the
modal scale factor is a normalized estimate of the modal par-
ticipation factor between two references for a specific mode of
vibration.

The function of the modal assurance criterion (MAC) is to
provide a measure of consistency (degree of linearity) between
estimates of a modal vector. This provides an additional con-
fidence factor in the evaluation of a modal vector from differ-
ent excitation (reference) locations or different modal param-
eter estimation algorithms.

The modal scale factor and the modal assurance criterion also
provide a method of easily comparing estimates of modal vec-
tors originating from different sources. The modal vectors from
a finite element analysis can be compared and contrasted with
those determined experimentally as well as modal vectors de-
termined by way of different experimental or modal parameter
estimation methods. In this approach, methods can be com-
pared and contrasted in order to evaluate the mutual consis-
tency of different procedures rather than estimating the modal
vectors specifically. If an analytical and an experimental vec-
tor are deemed consistent or similar, the analytical modal vec-
tor, together with the modal scale factor, can be used to com-
plete the experimental modal vector if some degrees of freedom
could not be measured.

The modal scale factor is defined, according to this ap-
proach, as follows:

or:

Since the modal scale factor is a complex-valued scalar, this is
also equivalent to:

Eq. 3 implies that the modal vector d is the reference to which
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the modal vector c is compared. In the general case, modal
vector c can be considered to be made of two parts. The first
part is the part correlated with modal vector d. The second part
is the part that is not correlated with modal vector d and is
made up of contamination from other modal vectors and any
random contribution. This error vector is considered to be
noise. The modal assurance criterion is defined as a scalar
constant relating the degree of consistency (linearity) between
one modal and another reference modal vector as follows:

or:

Since the modal assurance criterion is a real-valued scalar, this
is also equivalent to:

or:

or:

The modal assurance criterion takes on values from zero –
representing no consistent correspondence, to one – represent-
ing a consistent correspondence. In this manner, if the modal
vectors under consideration truly exhibit a consistent, linear
relationship, the modal assurance criterion should approach
unity and the value of the modal scale factor can be consid-
ered reasonable. Note that, unlike the orthogonality calcula-
tions, the modal assurance criterion is normalized by the mag-
nitude of the vectors and, thus, is bounded between zero and
one.

The modal assurance criterion can only indicate consistency,
not validity or orthogonality. If the same errors, random or bias,
exist in all modal vector estimates, this is not delineated by the
modal assurance criterion. Invalid assumptions are normally
the cause of this sort of potential error. Even though the modal
assurance criterion is unity, the assumptions involving the
system or the modal parameter estimation techniques are not
necessarily correct. The assumptions may cause consistent
errors in all modal vectors under all test conditions verified
by the modal assurance criterion.

Modal Assurance Criterion (MAC) Zero. If the modal assur-
ance criterion has a value near zero, this is an indication that
the modal vectors are not consistent. This can be due to any of
the following reasons:
• The system is nonstationary. This can occur if the system is

nonlinear and two data sets have been acquired at different
times or excitation levels. System nonlinearities will appear
differently in frequency response functions generated from
different exciter positions or excitation signals. The modal
parameter estimation algorithms will also not handle the dif-
ferent nonlinear characteristics in a consistent manner.

• There is noise on the reference modal vector. This case is the
same as noise on the input of a frequency response function
measurement. No amount of signal processing can remove
this type of error.

• The modal parameter estimation is invalid. The frequency
response function measurements may contain no errors but
the modal parameter estimation may not be consistent with
the data.

• The modal vectors are from linearly unrelated mode shape
vectors. Hopefully, since the different modal vector estimates
are from different excitation positions, this measure of in-
consistency will imply that the modal vectors are orthogo-
nal.
If the first four reasons can be eliminated, the modal assur-

ance criterion can be interpreted in a similar way as an orthogo-
nality calculation.

Modal Assurance Criterion (MAC) Unity. If the modal as-
surance criterion has a value near unity, this is an indication
that the modal vectors are consistent. This does not necessar-
ily mean that they are correct. The modal vectors can be con-
sistent for any of the following reasons:
• The modal vectors have been incompletely measured. This

situation can occur whenever too few response stations have
been included in the experimental determination of the
modal vector.

• The modal vectors are the result of a forced excitation other
than the desired input. This would be the situation if, dur-
ing the measurement of the frequency response function, a
rotating piece of equipment with an unbalance is present in
the system being tested.

• The modal vectors are primarily coherent noise. Since the
reference modal vector may be arbitrarily chosen, this modal
vector may not be one of the true modal vectors of the sys-
tem. It could simply be a random noise vector or a vector
reflecting the bias in the modal parameter estimation algo-
rithm. In any case, the modal assurance criterion will only
reflect a consistent (linear) relationship to the reference
modal vector.

• The modal vectors represent the same modal vector with dif-
ferent arbitrary scaling. If the two modal vectors being com-
pared have the same expected value when normalized, the
two modal vectors should differ only by the complex valued
scale factor, which is a function of the common modal coef-
ficients between the rows or columns.
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Mode

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1

1.000
0.000
0.001
0.011
0.021
0.012
0.008
0.002
0.029
0.005 
0.001 
0.118
0.275
0.007

2

0.000
1.000
0.012
0.006
0.010
0.001
0.009
0.003
0.007
0.006
0.029
0.273
0.126
0.002

3

0.001
0.012
1.000
0.002
0.007
0.017
0.001
0.001
0.006
0.022
0.019
0.060
0.045
0.394

4

0.011
0.006
0.002
1.000
0.993
0.011
0.007
0.001
0.014
0.013
0.003
0.002
0.002
0.010

5

0.021
0.010
0.007
0.993
1.000
0.013
0.006
0.012
0.015
0.014
0.004
0.002
0.003
0.003 

6

0.012
0.001
0.017
0.011
0.013
1.000
0.000
0.005
0.004
0.007
0.011
0.012
0.009
0.006 

7

0.008
0.009
0.001
0.007
0.006
0.000
1.000
0.000
0.022
0.005
0.002
0.008
0.009
0.007 

8

0.002
0.003
0.001
0.001
0.012
0.005
0.000
1.000
0.000
0.020
0.019
0.011
0.007
0.006 

9

0.029
0.007
0.006
0.014
0.015
0.004
0.022
0.000
1.000
0.015
0.008
0.005
0.019
0.006

10

0.005
0.006
0.022
0.013
0.014
0.007
0.005
0.020
0.015
1.000
0.093
0.002
0.003
0.025 

11

0.001
0.029
0.019
0.003
0.004
0.011
0.002
0.019
0.008
0.093
1.000
0.026
0.017
0.023

12

0.118
0.273
0.060
0.002
0.002
0.012
0.008
0.011
0.005
0.002
0.026
1.000
0.755
0.067

13

0.275
0.126
0.045
0.002
0.003
0.009
0.009
0.007
0.019
0.003
0.017
0.755
1.000
0.067 

14

0.007
0.002
0.394
0.010
0.003
0.006
0.007
0.006
0.006
0.025
0.023
0.067
0.067
1.000

Table 1. Numerical presentation of MAC values.
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Therefore, if the first three reasons can be eliminated, the
modal assurance criterion indicates that the modal scale fac-
tor is the complex constant relating the modal vectors and
that the modal scale factor can be used to average, difference
or sort the modal vectors.

Under the constraints mentioned previously, the modal as-
surance criterion can be applied in many different ways. The
modal assurance criterion can be used to verify or correlate
an experimental modal vector with respect to a theoretical
modal vector (eigenvector). This can be done by computing
the modal assurance criterion between Ne modal vectors es-
timated from experimental data and Na modal vectors esti-
mated from a finite element analysis evaluated at common
stations. This process results in a Ne×Na rectangular modal
assurance criterion matrix with values that approach unity
whenever an experimental modal vector and an analytical
modal vector are consistently related.

Once the modal assurance criterion establishes that two
vectors represent the same information, the vectors can be
averaged, differenced or sorted to determine the best single
estimate or the potential source of contamination using the
modal scale factor. Since the modal scale factor is a complex
scalar that allows two vectors to be phased the same and to
the same mean value, these vectors can be subtracted to
evaluate whether the error is random or biased. If the error
appears to be random and the modal assurance criterion is
high, the modal vectors can be averaged (using the modal
scale factor) to improve the estimate of a modal vector. If the
error appears to be biased or skewed, the error pattern often
gives an indication that the error originates due to the loca-
tion of the excitation or due to an inadequate modal param-
eter estimation process. Based upon partial but overlapping
measurement of two columns of the frequency response func-
tion matrix, modal vectors can be sorted, assuming the modal
assurance function indicates consistency, into a complete es-
timate of each modal vector at all measurement stations.

The modal assurance criterion can be used to evaluate
modal parameter estimation methods if a set of analytical
frequency response functions with realistic levels of random
and bias errors is generated and used in common with a va-
riety of modal parameter estimation methods. In this way,
agreement between existing methods can be established and
new modal parameter estimation methods can be checked for
characteristics that are consistent with accepted procedures.
Additionally, this approach can be used to evaluate the char-
acteristics of each modal parameter estimation method in the
presence of varying levels of random and bias error.

The concept of consistency in the estimate of modal vec-
tors from separate testing constraints is important consider-

ing the potential of multiple estimates of the same modal vec-
tor from numerous input configurations and modal parameter
estimation algorithms. The computation of modal scale factor
and modal assurance criterion results in a complex scalar and
a correlation coefficient that does not depend on weighting in-
formation outside the testing environment. Since the modal
scale factor and modal assurance criterion are computed analo-
gous to the frequency response function and coherence func-
tion, both the advantages and limitations of the computation
procedure are well understood. These characteristics, as well
as others, provide a useful tool in the processing of experimen-
tal modal vectors.

MAC Presentation Formats. One of the big changes in the
application of the Modal Assurance Criteria over the last
twenty years is in the way the information is presented. His-
torically, a table of numbers was usually presented as shown
in Table 1.

Today, most computer systems routinely utilize color to
present magnitude data like MAC using a 2D or 3D plot as
shown in Figures 1 and 2. It is important to remember, how-
ever, that MAC is a discrete calculation and what appears as a
color contour plot really only represents the discrete mode to
mode comparison. Nevertheless, a color plot does allow for
more data to be presented in an understandable form in a mini-
mum space.

Other Similar Assurance Criteria
The following brief discussion highlights assurance criteria

that utilize the same linear, least squares computation approach
to the analysis (projection) of two vector spaces as the modal
assurance criterion. The equations for each assurance criterion
are not repeated unless there is a significant computational
difference that needs to be clarified or highlighted. This list is
by no means comprehensive nor is it in any particular order of
importance but includes most of the frequently cited assurance
criterion found in the literature.

Weighted Modal Analysis Criterion (WMAC). A number of
authors have utilized a weighted modal assurance criterion
(WMAC) without developing a special designation for this case.
WMAC is proposed for these cases. The purpose of the weight-
ing matrix is to recognize that MAC is not sensitive to mass or
stiffness distribution, just sensor distribution, and to adjust the
modal assurance criterion to weight the degrees-of-freedom in
the modal vectors accordingly. In this case, the WMAC becomes
a unity normalized orthogonality – or psuedo-orthogonality –
check where the desirable result for a set of modal vectors
would be ones along the diagonal (same modal vectors) and
zeros off-diagonal (different modal vectors) regardless of the
scaling of the individual modal vectors. Note that the weight-

Figure 1. 2-D presentation of MAC Values. Figure 2. 3-D presentation of MAC Values.
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ing matrix is applied as an inner matrix product for the single
numerator vector product and both vector products in the de-
nominator.

Partial Modal Analysis Criterion (PMAC). The partial modal
assurance criterion (PMAC)14 was developed as a spatially lim-
ited version of the modal assurance criterion where a subset
of the complete modal vector is used in the calculation. The
subset is chosen based upon the user’s interest and may reflect
only a certain dominant sensor direction (X, Y and/or Z) or only
the degrees-of-freedom from a component of the complete
modal vector.

Modal Assurance Criterion Square Root (MACSR). The
square root of the modal assurance criterion (MACSR)15 is de-
veloped to be more consistent with the orthogonality and
psuedo-orthogonality calculations using an identity weighting
matrix. Essentially this approach utilizes the square root of the
MAC calculation, which tends to highlight the cross terms (off
diagonal) that are generally very small MAC values.

Scaled Modal Assurance Criterion (SMAC). The scaled
modal assurance criterion (SMAC)16 is essentially a weighted
modal assurance criteria (WMAC) where the weighting matrix
is chosen to balance the scaling of translational and rotational
degrees-of-freedom included in the modal vectors. This devel-
opment is needed whenever different data types (with differ-
ent engineering units) are included in the same modal vector
to normalize the magnitude differences in the vectors. This is
required since the modal assurance criterion minimizes the
squared error and is dominated by the larger values.

Modal Assurance Criterion Using Reciprocal Vectors
(MACRV). A reciprocal modal vector is defined as the math-
ematical vector that, when transposed and premultiplied by a
specific modal vector, yields unity. When the same computa-
tion is performed with this reciprocal modal vector and any
other modal vector or any other reciprocal modal vector, the
result is zero. The reciprocal modal vector can be thought of
as a product of the modal vector and the unknown weighting
matrix that will produce a perfect orthogonality result. Recip-
rocal modal vectors are computed directly from measured fre-
quency response functions and the experimental modal vec-
tors and are, therefore, experimentally based.

The modal assurance criterion using reciprocal modal vec-
tors (MACRV)17 is the comparison of reciprocal modal vectors
with analytical modal vectors in what is very similar to a
psuedo-orthogonality check (POC). The reciprocal modal vec-
tors are utilized in controls applications as modal filters and
the MACRV serves as a check of the mode isolation provided
by each reciprocal modal vector compared to analytical modes
expected.

Modal Assurance Criterion with Frequency Scales (FMAC).
Another extension of the modal assurance criterion is the ad-
dition of frequency scaling to the modal assurance criterion.18-

19 This extension of MAC “offers a means of displaying simul-
taneously the mode shape correlation, the degree of spatial
aliasing and the frequency comparison in a single plot.” This
development is particularly useful in model correlation appli-
cations (model updating, assessment of parameter variation,
etc.).

Coordinate Modal Assurance Criterion (COMAC). An exten-
sion of the modal assurance criterion is the coordinate modal
assurance criterion (COMAC).20 The COMAC attempts to iden-
tify which measurement degrees-of-freedom contribute nega-
tively to a low value of MAC. The COMAC is calculated over a
set of mode pairs, analytical versus analytical, experimental
versus experimental or experimental versus analytical. The two
modal vectors in each mode pair represent the same modal
vector, but the set of mode pairs represents all modes of inter-
est in a given frequency range. For two sets of modes that are
to be compared, there will be a value of COMAC computed for
each (measurement) degree-of-freedom.

The coordinate modal assurance criterion (COMAC) is cal-
culated using the following approach, once the mode pairs have
been identified with MAC or some other approach:

Note that the above formulation assumes that there is a match
for every modal vector in the two sets and the modal vectors
are renumbered accordingly so that the matching modal vec-
tors have the same subscript. Only those modes that match be-
tween the two sets are included in the computation.

The Enhanced Coordinate Modal Assurance Criterion
(ECOMAC). One common problem with experimental modal
vectors is the potential problem of calibration scaling errors
and/or sensor orientation mistakes. The enhanced coordinate
modal assurance criterion (ECOMAC)21 was developed to ex-
tend the COMAC computation to be more aware of typical ex-
perimental errors that occur in defining modal vectors such as
sensor scaling mistakes and sensor orientation (plus or minus
sign) errors.

Mutual Correspondence Criterion (MCC). The mutual cor-
respondence criterion (MCC)22 is the modal assurance criterion
applied to vectors that do not originate as modal vectors but
as vector measures of acoustic information (velocity, pressure,
intensity, etc.). The equation in this formulation utilizes a
transpose and will only correctly apply to real valued vectors.

Modal Correlation Coefficient (MCC). One of the natural
limitations of a least squares based correlation coefficient like
the modal assurance criterion is that it is relatively insensitive
to small changes in magnitude, position by position, in the vec-
tor comparisons. The modal correlation coefficient (MCC)23-24

is a modification of MAC that attempts to provide a more sen-
sitive indicator. This approach is particularly important when
using modal vectors in damage detection situations where the
magnitude changes of the modal vectors being measured are
minimal.

Inverse Modal Assurance Criterion (IMAC). An alternative
approach to increasing the sensitivity of the modal assurance
criterion to small mode shape changes is the inverse modal as-
surance criterion (IMAC).25 This approach uses essentially the
same computational scheme as MAC but utilizes the inverse
of the modal coefficients. Therefore, small modal coefficients
become significant in the least squares based correlation coef-
ficient computation. Naturally, this computation suffers from
the possibility that a modal coefficient could be numerically
zero.

Frequency Response Assurance Criterion (FRAC). Any two
frequency response functions representing the same input-out-
put relationship can be compared using a technique known as
the frequency response assurance criterion (FRAC).26-28 The
simplest example is a validation procedure that compares the
FRF data synthesized from the modal model with the measured
FRF data. The basic assumption is that the measured frequency
response function and the synthesized frequency response
function should be linearly related (unity scaling coefficient)
at all frequencies. Naturally, the FRFs can be compared over
the full or partial frequency range of the FRFs as long as the
same discrete frequencies are used in the comparison. This
approach has been utilized in the modal parameter estimation
process for a number of years under various designations (pa-
rameter estimation correlation coefficient29, synthesis correla-
tion coefficient30 and response vector assurance criterion
(RVAC)31). This procedure is particularly effective as a modal
parameter estimation validation procedure if the measured data
were not part of the data used to estimate the modal param-
eters. This serves as an independent check of the modal param-
eter estimation process.
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Complex Correlation Coefficient (CCF). A significant varia-
tion in the frequency response assurance criterion is the com-
plex correlation coefficient (CCF)31, which is computed with-
out squaring the numerator term, thus yielding a complex
valued coefficient. The magnitude of the coefficient is the same
as the FRAC computation but the phase describes any system-
atic phase lag or lead that is present between the two FRFs. In
situations where analytical and experimental FRFs are com-
pared, the CCF will detect the common problem of a constant
phase shift that might be due to experimental signal condition-
ing problems, etc.

Frequency Domain Assurance Criterion (FDAC). A similar
variation in the frequency response assurance criterion is the
frequency domain assurance criterion (FDAC)32, which is a
FRAC-type of calculation evaluated with different frequency
shifts. Since the difference in impedance (FRF) model updat-
ing is often an FRF that is in question due to frequencies of
resonances or anti-resonances, the FDAC is formulated to iden-
tify this problem. A related criterion, the modal FRF assurance
criterion (MFAC)18, combines analytical modal vectors with
measured frequency response functions (FRFs) in an extension
of FRAC and FDAC that weights or filters the FRF data based
upon the expected, analytical modal vectors.

Coordinate Orthogonality Check (CORTHOG). The coordi-
nate orthogonality check (CORTHOG)33 is a normalized error
measure between the pseudo-orthogonality calculation, com-
paring measured to analytical modal vectors, and the analyti-
cal orthogonality calculation, comparing analytical to analyti-
cal modal vectors. Several different normalizing or scaling
methods are used with this calculation.

Uses of the Modal Assurance Criterion
Most of the potential uses of the modal assurance criterion

are well known but a few may be more subtle. A partial list of
the most typical uses that have been reported in the literature
are as follows:
• Validation of experimental modal models
• Correlation with analytical modal models (mode pairing)
• Correlation with operating response vectors
• Mapping matrix between analytical and experimental modal

models
• Modal vector error analysis
• Modal vector averaging
• Experimental modal vector completion and/or expansion
• Weighting for model updating algorithms
• Modal vector consistency/stability in modal parameter esti-

mation algorithms
• Repeated and psuedo-repeated root detection
• Structural fault/damage detection
• Quality control evaluations
• Optimal sensor placement

Abuses of the Modal Assurance Criterion
Many of the alternate formulations of the modal assurance

criterion were developed to address some of the shortcomings
of the original modal assurance criterion formulation. When
users utilize the original modal assurance criterion in these
situations, a poor result will often follow. For the purposes of
this discussion, this is referred to as misuse or abuse. The mis-
use or abuse of the modal assurance criterion generally results
due to one of five issues. These issues can be summarized as:
• The modal analysis criterion is not an orthogonality check.
• The wrong mathematical formulation for the modal assur-

ance criterion is used.
• The modal assurance criterion is sensitive to large values

(wild points?) and insensitive to small values.
• The number of elements in the modal vectors (space) is small.
• The modal vectors have been zero padded.
These issues can be further explained in the following para-
graphs.

The modal analysis criterion is not an orthogonality check.
It is important to recognize that the modal assurance criterion

effectively weights the computation based upon the spatial
distribution of the degrees-of-freedom included in the modal
vectors. The modal assurance criterion does not weight the
modal vectors with a mass or stiffness matrix and, therefore,
cannot compensate for situations where a very limited num-
ber of degrees-of-freedom (sensors) have been placed on a
massive sub-structure of a mechanical system. The typical
example involves the engine of an automobile. If few or no
sensors are placed on the engine and a large number are placed
on the surface of the automobile body, several modal vectors
at different modal frequencies will have very high MAC num-
bers indicating that the modal vectors are the same. This ex-
ample indicates to the user that an incomplete modal vector
was measured and the user has violated one of the primary
assumptions of experimental modal analysis (observability).

The wrong mathematical formulation for the modal assur-
ance criterion is used. Frequently, users implement the modal
assurance criterion, or a related similar computation, using a
vector transpose in the numerator and denominator calcula-
tions rather than an Hermitian (conjugate transpose). This er-
ror causes no problem as long as analytical vectors or real-val-
ued experimental vectors are involved in the calculation.
However, in the general case, where some of the vectors are
complex-valued, this does not give the correct result. The origi-
nal mathematical formulation assumes the general case but has
been reported incorrectly in some literature. This innocent
error often occurs when the author is utilizing real-valued vec-
tors and notices no problem. However, users who do not rec-
ognize this issue are often led astray in subsequent applications
involving complex-valued vectors.

The modal assurance criterion is sensitive to large values
(wild points?) and insensitive to small values. The modal as-
surance criterion is based upon the minimization of the squared
error between two vector spaces. This means that the degrees-
of-freedom involving the largest magnitude differences be-
tween the two modal vectors will dominate the computation
while small differences will have almost no effect. Therefore,
nodal information (small modal coefficients) will generally not
have much effect on the MAC calculation and large modal co-
efficients will potentially have the greatest effect. This also
means that, if there have been erroneous data included in the
modal vectors due to calibration errors, modal parameter esti-
mation mistakes, etc., these wild points may dominate the MAC
calculation.

The number of elements in the modal vectors (space) is
small. Since the modal assurance criterion is essentially a sta-
tistical computation where the number of averages comes from
the number of elements in the modal vectors, if the modal vec-
tors have only a limited number of degrees-of-freedom, this will
skew the meaning of the numerical MAC value. This frequently
happens when high order, multiple reference modal parameter
estimation algorithms estimate the stability or consistency dia-
gram. Modal vector stability or consistency is identified using
a MAC computation where the vectors include only the de-
grees-of-freedom at the reference locations, typically two to
five. In these situations, there may be great variability in the
MAC computation, particularly if the modal vector is not well
excited from one or more of the reference locations. Vectors
with many elements reduce the sensitivity of MAC to this prob-
lem.

The modal vectors have been zero padded. Frequently,
when modal vectors are exported from one computational en-
vironment to another, the modal vectors include zero values
when no value was ever measured, or computed, for that de-
gree-of-freedom. For example, in an experimental situation, one
(X) or two dimensions (X,Y) of translational response may be
measured at some degrees-of-freedom rather than three dimen-
sions (X,Y,Z). In the commonly used Universal File Format for
modal vectors (File Format 55), this is the case since there is
no designation for not measuring the information. When the
modal assurance criterion is calculated for this case, there will
be a problem if some other vectors, with nonzero information
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at these degrees-of-freedom, are included in the computation.
This can be avoided if information is dropped from the com-
putation when either vector includes a perfect zero (within
computational precision) at a degree-of-freedom, but is rarely
done.

Current Developments
Currently, many users are utilizing more statistical ap-

proaches to understand the meaning and bounds of experimen-
tal modal parameters.34-39 This approach extends to the modal
assurance criterion as well. Examples are the bootstrap and
jackknife approaches40-42 to the evaluation of the mean and
standard deviation of discrete sets of experimental data. These
approaches remove and/or replace portions of the computation
(bootstrap uses replicative resampling, jackknife uses sequen-
tial elimination) to evaluate the bounds or limits on the MAC
values. In this way, the sensitivity of the MAC computation can
be more effectively evaluated than with the current single num-
ber indicating the degree of linearity between two modal vec-
tors that are being compared.

Conclusions
Over the last twenty years, the modal assurance criterion has

demonstrated how a simple statistical concept can become an
extremely useful tool in the field of experimental modal analy-
sis and structural dynamics. The use of the modal assurance
criterion and the development and use of a significant num-
ber of related criteria, has been remarkable and is most likely
due to the overall simplicity of the concept. New uses of the
modal assurance criterion and new criteria will be developed
over the next years as users more fully understand the limita-
tions of the current criteria. Certainly in the next few years, the
increased use of other statistical methods as well as further de-
velopment of singular value/vector methods are related areas
that will generate useful tools in this area.

Even so, it will always be important to recognize the origins
and limitations of tools like the modal assurance criterion to
avoid misuse of the methodology. Simplistic tools like the
modal assurance criterion are limited in their meaningful ap-
plication. The development of related assurance criteria has
been initiated by shortcomings, real or perceived, of the origi-
nal modal assurance criterion. Dissatisfaction often has re-
sulted from the misuse of these tools by users, removed from
the actual development or unaware of application limitations
in subsequent implementations. It is clear that users will con-
tinue to need more feedback concerning quality assurance in-
formation relative to experimental modal parameters and that
new techniques, particularly statistical methods that utilize the
redundant information present in the measured data, will con-
tinue to be developed with strengths and weaknesses, just like
the modal assurance criterion.
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