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SUMMARY

When attempting to experimentally determine the dynamic properties (natural frequency, damping,
and mode shapes) of a structure, one of the most important aspects is to collect and process data that
represents the structure as accurately as possible. This means that “clean” and error free data must
be collected. This data must be processed by an appropriate frequency response function model.
This data can then be used as input to an number of parameter estimation algorithms and could also
be used in modal modeling algorithms.

This technical report describes the procedure used to collect this data. Many of the potential errors
are discussed as well as techniques to eliminate or reduce the effects of these errors on the quality of
the results.

Throughout the time frame of this contract, it was determined, that if the procedures described in -
this technical report are followed, data can be collected, as input to modal parameter estimation
algorithms, that will yield accurate dynamic properties of the test structure. With care and attention
to theoretical limitations, these dynamic properties can be used to construct a modal model.
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PREFACE ’ )
»
This report is one of six Technical Reports that represent the final report on the work involved with !
United States Air Force Contract F33615-83-C-3218, Experimental Modal Analysis and Dynamic ':
Component Synthesis. The reports that are part of the documented work include the following: \
{
AFWAL-TR-87-3069 n
VOLUME1  Summary of Technical Work o
VOLUMEII Measurement Techniques for Experimental Modal Analysis :
VOLUME III Modal Parameter Estimation -
VOLUME IV  System Modeling Techniques "

VOLUME V  Universal File Formats !
VOLUME VI Software User’s Guide .
\
For a complete understanding of the research conducted under this contract, all of the Technical ‘:
Reports should be referenced. .
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1. INTRODUCTION

The most fundamental phase of any experimental analysis is to acquire data that are relevant to
defining, understanding, and solving the problem. When attempting to define a structure
dynamically (usually in terms of impedance functions or in terms of natural frequencies, damping
ratios, and modal vectors), this normally involves measuring a force input to the structure and the
system response to that input as either displacement, velocity or acceleration (all of which are related
through differentiation and/or integration).

=

. This data are sometimes observed, measured and analyzed in the time domain using equipment as
! simple as a volt meter and an oscilioscope and forcing functions that are well defined such as single
frequency sine waves. The natural frequencies are estimated by observing peaks in the response
amplitude. Damping can be estimated by a log decrement equation and mode vectors are estimated
by measuring the response at various points of interest on the structure. Phase resonance testing, or

forced normal mode testing, used extensively in the aircraft industry, is a sophisticated version of this
method.

n e ap e B ]
- AL a0~ R T BRI

Advances in hardware and software allowed for the computation of the fast Fourier transform (FFT),
the single input, single output frequency response function and the ability to use these measured and
stored frequency response functions as inputs to parameter estimation algorithms which could
"automatically” estimate natural frequency, damping, and mode shapes and even display "animated”
mode shapes on display terminals. The digital computer, mass storage medium, and the FFT allowed
band limited random noise to be used as the forcing function so that the structure could be tested
faster and the data analyzed or re-analyzed at a later time. But these new techniques also caused
many potential errors, particularly signal processing errors.

WL L 1\-.‘ 'vl,'.l'.xg ;n;"-i

In recent years, more advances in the speed, size and cost of mini-computers and other test related
hardware have have made multi-input, multi-output frequency response function testing a desirable
testing technique.

L

4

This volume is concerned with the measurement techniques that are widely used in modal analysis.

Although some history is presented, a more complete history can be found by reviewing the literature ';.
identificd in the Bibliography that is presented as part of this report. Also, some present rescarch in .
the areas of frequency response function estimation, multiple input considerations, and non-linear :
vibration considerations is presented as part of this report. {:

7

1.1 Objectives

The objectives of a modal test are to make measurements that as accurately as possible represent the
true force input and system response so that accurate frequency response functions are computed.
These frequency response functions are the input to parameter estimation algorithms. If the data

used as input to these algorithms are not accurate, the parameters that the algorithms estimate are
also not accurate,

S G5 YT N e,

-1-

4

T e SR

.-
N N S

N W W » 1 W o ‘u‘ " o A A A ‘-“‘\-'\“\.‘.'.'\‘-“ e ,'-'




2t N T N T W W R T A R e e R L I NN CIN N GWUM VL, 2B Gu AR b N ¢ e sie " aRA" 288 4N 2Te aTh .00 .0 0.4 0 .0 Vol 0 h Vap -

’; {
[ U
" !
XN
1.2 Terminology '
byt
4 Throughout this report, the nomenclature will follow, as close as possible, the nomenclature found at )
' the end of this report. Any exceptions will be noted at the time they are introduced. !
) Y
; One potential point of confusion is the concept of system degree of freedom versus a measurement 0
Dy degree of freedom. -
. A system degree of freedom is the more classical definition of the number of independent .
A coordinates needed to describe the position of the structure at any time with respect to an absolute R,
- coordinate frame. Therefore, every potential physical point has six (three linear and three rotational) '
- degrees of freedom. Therefore, the structure has an infinite number of system degrees of freedom. )
o While the theoretical number of system degrees of freedom is infinite, the number of system degrees !
7 of freedom can be considered to be finite since a limited frequency range will be considered. This
;:' 3 number of system degrees of freedom in the frequency range of interest is referred to in the following !
K sections as N. ]
1 W
¥ A measurement degree of freedom is a physical measurement location (both in terms of structure ,
14 coordinates as well as measurement direction) where data will be collected. Therefore, for a typical Y
modal test, the number of measurement degrees of freedom will not necessarily be related to the
. number of system degrees of freedom. It is apparent that the number of measurement degrees of D
o freedom must be at least as large as the number of system degrees of freedom. In general, since three f
N translational motions are measured at every physical measurement location and since these physical )
::' locations are distributed somewhat uniformly over the system being tested, the number of
measurement degrees of freedom will be much larger than the number of system degrees of freedom
expected in the frequency range of interest. This, though, does not guarantee that all modal
. information in the frequency range of interest will be found. ;
[ The number of measurement degrees of freedom (the number of physical measurement locations R,
. multiplied times the number of transducer orientations at each physical measurement location) is ¢
K, referred to in the following sections as m. Note that the number of measurement degrees of freedom 1
h can be used to describe input or output characteristics.
]
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2. MODAL TESTING

The basic purpose of any modal test is to determine the damped natural frequency, damping, and in
most cases mode shapes, of a test structure. These are known as the modal properties or dynamic
properties of a system and are unique to the system and the boundary conditions under which it was
tested. In some cases it is also necessary to compute generalized or modal mass and modal stiffness.
Therefore, by measuring these dynamic properties, we define the system.

The results from the modal test are historically used for three purposes. These are:

« Finite Element model verification
« Troubleshooting

« Modal modeling

In all cases, the modal tests start with acquiring data (usually input and output) from the structure.
Because of the one to one relationship between the time domain and the frequency domain, the data,
which is always measured in the time domain, may be converted to the frequency domain.

In the time domain, free decay data or impulse response functions, 4 (1), are used in the estimation
the dynamic properties.

In the frequency domain, frequency response functions, H (w), are estimated. The frequency response
function is then the input to a parameter estimation algorithm used to estimate the dynamic
properties,

There are also modal parameter estimation methods that do not require that intermediate functions
be computed; these methods utilize long time records. Due to practical limitations concerning
archival and retrieval of data in this format, these methods are not addressed in this report.

2.1 Test Structure Set-up

The first decision that must be made before any data is collected is the test configuration. Since the
modal parameters that are estimated are for the test structure in the configuration in which it is
tested, the test structure should be in a configuration that, as close as possible, represents the desired
data. This means that the boundary conditions are an important consideration when setting up the
test. If the structure is in a free-free configuration, then the modal parameters estimated are for the
free-free case. This is especially important when attempting to verify a finite element model. If the
structure is tested in a configuration that is different from the configuration that was modeled, there
is no chance of correlation. Since the modal parameters that are estimated are for that configuration,
a structure may need to be tested more than once to completely define the structure in its various
operating configurations.

Also in this initial phase of the test, the points to be tested are identified, marked, and measured in
physical coordinates. In most cases, the physical points and associated directions where acceleration
(displacement) is to be measured are selected to give physical significance to the animation. But it is
important that any critical points that need to be measured are also identified.

Another factor that may need to be considered at this time is the ability to access the measurement
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degrees of freedom that need to be tested. This may require some ingenuity so that the test
configuration is changed as littie as possible during the data collection.

2.2 Hardware Set-up

In all cases, it is only possible to estimate the dynamic properties of the system. This is directly a
result of only being able to estimate "true” inputs and responses of the system. It is therefore
imperative that the "best” possible data is collected.

For single input, single output frequency response function testing, a force input to the system must
be measured as well as the system response to that input.

One of the first decisions to be made is the frequency range (f,un to finx) for the test. The frequency
range must, of course, include all important modes that are to be identified. But, because of the
constraints of the parameter estimation algorithms, the number of modes (modal density) should be
kept to a minimum. This may mean that more than one test, using different frequency ranges, needs
to be conducted. Many times, the test frequency range cannot be determined until initial
measurements have been made. An important consideration is that, when using modal modeling
techniques, it is important to identify modes that are higher or lower in frequency than the test
frequency. This will yield more accurate modal models.

Next, the type of excitation and the form of the forcing function must be selected. Sometimes, the
structure may determine the type of excitation. Other times, the use of the data may determine the
excitation. If the purpose of the test is troubleshooting, an impact test may the best form of
excitation. If a modal model is to be built, more precise form of input must be used.

If an impact test is to be conducted, the size of hammer and hardness of the impact surface must be
selected. This will determine the frequency range of the usable frequency response.

If a shaker is to be used to excite the structure, a forcing signal needs to be selected. This could
include sine, pure random, periodic random, or burst random as well as others that may more closely

match operating conditions. Section 4 presents many common excitation signals and their strong and
weak points,

The force input location(s) must be selected to excite all the important modes in the frequency range
to be tested. For multi-input testing, there are other constraints that must be satisfied. Section 6 has
a complete review of these constraints,

In a typical test, load cells are used to measure the force input and accclerometers to measure
acceleration values which can be related to displacement.

The transducers generally have there own power supply and signal conditioning hardware.
Accelerometers need to be sciected such that they have sufficient sensitivity but also low mass to

make measurements of acceleration that accurately define the acceleration of the structure at that
point.

These signals, force and acceleration, are then passed through low-pass anti-aliasing filters, analog-
to-digital converters, and into the analysis computer.

The computer calculates fast Fourier transforms and all necessary auto and cross spectra needed to

compute a single frequency response function. This is normally stored to disc and another output
selected.

.4-
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In the case of multiple inputs, many of the potential errors arise from the additional hardware needed
to collect the data required to compute frequency response functions. The potential “bookkeeping”
to be certain that the correct auto and cross spectra are being used in the computations can in itself
be bothersome. A two input, 6 response test necessitates the calculation of 8 auto spectra and 13
cross spectra, each with a real and imaginary part, in addition to the 12 frequency response functions
that are estimated in one acquisition session. There are also 2 load cells, 6 accelerometers, 16 cables,
8 transducer power supplies, 2 exciter systems, 2 signal generators, 8 anti- aliasing filters, and 8 ADC
channels that all have the possibility of failure during the test. It is therefore important to have a
technique to check various components used in the test at selected intervals. Most of these errors can
be eliminated by good measurement practice.

2.3 Initial Measurements

Once the structure is defined and an input point(s) selected, it is necessary to take initial
measurements to be certain that the input point excites the structure reasonably well over the analysis
range and to be certain that all hardware is operating properly.

Usually, the "driving point” is measured first. This is because the form of the driving point
measurement is well known and defined and also because this should be a "clean" measurement. In
a driving point frequency response function, all peaks in the imaginary part should be of the same
sign (positive or negative), each resonance should be followed by an anti-resonance, and all circles in

the Argand plot lie on the same half of the plane. Many potential problems can be averted from this
one measurement.

Once the driving point measurement is satisfactory, measurements at remote points are made. This
will ensure that the structure is satisfactorily excited at all points for that force level. In a typical test,
the level of excitation is not changed over the duration of the test. In fact, if the structure is highly
non-linear, this would make the analysis overly complicated.

2.4 Non-linear Check

Another important step in a successful modal test is to check for linearity. The basic theory of modal
analysis requires a linear structure. Seldom is the structure under test linear over all but a limited
force range. Linearity is easily checked by exciting the structure at various force levels. If a shift in
natural frequency occurs for different force levels, the structure exhibits some form of non-linear
stiffness. If the amplitude of the frequency response function changes, the structure exhibits non-
linear damping. Section 7 is an extensive review of non-linear considerations.

2.5 Modal Test

Once the initial set up is complete, the actual testing phase is simply a process of collecting,
processing, and storing the relevant information. This data will then be used in parameter estimation
algorithms and potentially modal modeling algorithms. For an in-depth review of these areas, other
technical reports, found in the preface, should be consulted.
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3. MODAL DATA ACQUISITION

Acquisition of data that will be used in the formulation of frequency response functjons or in a modal
model involves many important technical concerns. One primary concern is the digital signal
processing or the converting of analog signals into a corresponding sequence of digital values that
accurately describe the time varying characteristics of the inputs to and responses from a system.
Once the data is available in digital form, the most common approach is to transform the data from
the time domain to the frequency domain by use of a discrete Fourier transform algorithm. Since
this algorithm involves discrete data over a limited time period, there are large potential problems
with this approach that must be well understood.

3.1 Digital Signal Processing

The process of representing an analog signal as a scries of digital values is a basic requirement of
modern digital signal processing analyzers. In practice, the goal of the analog to digital conversion
(ADC) process is to obtain the conversion while maintaining sufficient accuracy in terms of
frequency, magnitude, and phase. When dealing strictly with analog devices, this concern was
satisfied by the performance characteristics of each individual analog device. With the advent of
digital signal processing, the performance characteristics of the analog device is only the first criteria
of consideration. The characteristics of the analog to digital conversion now become of prime
importance.

This process of analog to digital conversion involves two separate concepts, each of which are related
to the dynamic performance of a digital signal processing analyzer. Sampling is the part of the process
related to the timing between individual digital pieces of the time history. Quantization is the part of
the process related to describing an analog amplitude as a digital value. Primarily, sampling
considerations alone affect the frequency accuracy while both sampling and quantization
considerations affect magnitude and phase accuracy.

3.1.1 Sampling

Sampling is the process of recording the independent variable (force, acceleration, etc.) of an analog
process. This can be done in an absolute sense where the independent variable is in terms of time.
Quite often, particular advantage can be gained if the sampling process proceeds in a relative sense
where this independent variable is in terms of some event. This relative approach is the basis of the
processing of data related to rotating equipment where the event is a revolution of a shaft. In either
case, the same theories apply to the sampling process. In the relative approach, there is simply a
change of variable associated with the independent axis (time versus event).

The process of sampling arises from the need to describe analog time histories in a digital fashion.
This can be done, in general, by recording a digitized amplitude and a reference time of measurement
or in the more common method of recording amplitudes at uniform increments of time (A t). Since
all analog to digital converters sample at constant sampling increments during each sample period, all
further discussion will be restricted to this case.
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3.1.2 Sampling Theory

Two theories or principles apply to the process of digitizing analog signals and recovering valid
frequency information. Shannon’s Sampling Theorem states, very simply, the following:

Framp 2 Fone * 2.0 (1)

This theorem has to do with the maximum frequency which can be described accurately. It should be
noted that Equation 1 establishes the lowest limit that can be used to digitize a signal and still
identify a certain maximum frequency component. For reasons involving the practical limitation of
the analog filters used prior to any digitization, the sampling frequency is often chosen to be four
times the maximum frequency of interest. In this case, Equation 1 still applies as stated by the
inequality. Note that in this situation the resulting frequency information must be displayed
appropriately to avoid viewing the data that is considered invalid.

Rayleigh’s criterion or principle was first formulated in the field of optics and has to do with being
able to resolve two closely related spaced frequency components. For a time record of T seconds, the
lowest frequency component measurable is:

af =+ @)

It should be emphasized that Equation 2 is always true regardless of the absolute frequency involved.

With these two principles in mind, the selection of sampling parameters can be summarized as shown
in Figure 1. Note that for this case, the equality in Equation 1 has been used.

3.1.3 Quantization

Quantization refers to the conversion of a specific analog value of amplitude to the nearest discrete
value available in the analog to digital converter. This process involves representing a range of voltage
by a fixed number of integer steps. Normally, the range of voltage is chosen to be between positive
and negative limits for a given voltage limit. The number of discrete levels is a function of the
number of bits in the analog to digital conversion. An ADC with an "M-BIT™ converter is able to
determine signal amplitude within one part in 2 raised to the M power. Ten and twelve bit converters
are very common. An example of a three bit converter is shown in Figure 2. The most important
consideration with respect to optimum quantization depends upon the concept of actual word size
versus cffective word size. The actual word size is the number of bits available in each word in the
ADC or computer. The effective word size is the number of bits used in each word in any operation
in the ADC or computer. The first consideration is that of dynamic range. This has to do with the
input to the ADC in the digitization process. Since the actual word size of the ADC is fixed, the
dynamic range of the ADC (60 db for 10 bits, 72 db for 12 bits) is only meaningful if the quantization
of an input signal of interest involves all of the bits of the actual word. Two situations may exist
where this is not true. First, if the input ranges for the ADC are not automatically or manually set to
the optimum position, some loss of dynamic range will occur. This means that the maximum level of
the data should not be less than one half of the input voltage range. Secondly, if the signal has more
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T Af(af=)
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N*, the data block size, is aiways a power of 2.

Figure 1. Digitization Equations

dominant information content outside the band of interest, a significant portion of the dynamic range
will be used to describe the unwanted characteristic. This will reduce the potential dynamic range
available to the portion of the signal in which there is interest. Some common examples of this are a
large mean value offset, Figure 3, or large harmonic component (such as 60 Hertz) as shown in
Figure 4. Both of these situations cause the effective word size of the ADC to be smaller than the
actual word size of the ADC with respect to the information of interest.

This dynamic range consideration with respect to quantization is particularly important when a
multiplexer is used to obtain a large number of channels of data in parallel. Since a multiplexer
configuration often involves only one ADC channel for a number of multiplexer channels, the
dynamic range of all the channels must be similar or the effective word size for many of the channels
will be much less than the actual word size. In this situation, the signals must be amplitied prior to
digitization so that each channel has approximately the same dynamic range. Naturally, this
amplification factor must be taken into account in the final calibration of the data.
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3.14 Discrete Fourier Transform

The discrete Fourier transform algorithm is the basis for the formulation of any frequency domain
function in modern dagg acquisition systems, In terms of an integraf Fourier transform, the function
must exist for aj) time in 3 continuous sense jn order to pe evaluated. For the realistic medsurement
sttuation, data are available j 3 discrete sense over a limiteq time period. The discrete Fourier
transform, therefore, js based upon 4 set of assumptions concerning thjs discrete sequence of values,
The assumptions can he reduced to two situations that must be met by every signal processed by the
discrete Fourier transform algorithm. The first assumption is thyt the signal must be a totally
observed transient with Tespect o the time period of observation, f this is not trye then the signal
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must be composed only of harmonics of the time period of observation. If one of these two
assumptions is not met by any discrete history processed by the discrete Fourier transform algorithm,
then the resulting spectrum will contain bias errors accordingly. Much of the data processing that is
considered with respect to acquisition of data with respect to the formulation of a modal model
revolves around an attempt to assure that the input and response histories match one of these two
assumptions. For a more complete understanding of the discrete Fourier transform algorithm and
the asst)lcij?ted problems, there are a number of good references which explain all of the pertinent
details '

3.1.5 Errors

The accurate measurement of frequency response functions depends heavily upon the errors involved
with the digital signal processing. In order to take full advantage of experimental data in the
evaluation of experimental procedures and verification of theorctical approaches, the errors in
measurement, generally designated noise, must be reduced to acceptable levels.

With respect to the frequency response function measurement, the errors in the estimate are
gencrally grouped into two categories: variance and bias. The variance portion of the error is due to
random deviations of each sample function from the mean. Statistically, then, if sufficient sample
functions are evaluated, the estimate will closely approximate the true function with a high degree of
confidence. The bias portion of the error, on the other hand, does not necessarily reduce as a result
of many samples. The bias error is due to a system characteristic or measurement procedure
consistently resulting in an incorrect estimate. Therefore, the expected value is not equal to the true
value. Examples of this are system nonlinearities or digitization errors such as aliasing or leakage.
With this type of error, knowledge of the form of the error is vital in reducing the resultant effect in
the frequency response function measurement.

Specifically, two general categories of problems exist which may cause significant error even when
great care has been taken to deal with inaccurate system assumptions and obvious measurement
mistakes. The first category is concerned with the limitations of using finite information. Any
measurement instrument is limited in time resolution, or frequency bandwidth. However, sampling a
signal at discrete times also introduces a form of amplitude error (called aliasing) that converts high
frequency energy to lower frequencies. This source of error would be classified as a bias. Thus, the
time resolution and frequency bandwidth parameters are generally dictated by an anti-aliasing filter
in front of the sampler. The shape of this filter influences the in-band accuracy and the stop-band
rejection characteristics of the instrument. Obviously, filters are not perfect, and there is no such
thing as absolute rejection. Strong signals with potential aliasing are often present to some extent.
Another form of amplitude error is invoived in the quantization of the analog signal to a digital
signal. Since only discrete amplitude levels are possible, the amplitude will often be in error. This
source of error is normally Gaussian distributed and therefore is part of the variance portion of the
total error.

Analogous to time resolution limits, there is always a limit on frequency resotution. This is ultimately
determined by the total effective time over which coherent data is collected. The etfect of this finite
collection time is the introduction of another type of non-linear error (called leakage), which
converts energy at each frequency into energy within a relatively narrow band neziby. This type of
error is controlled to some extent by weighting (or windowing) the original time domain data.
However, this type of error will always cause a considerable bias in any portion of a measurement that
is sufficiently close to a strong signal. In the situation of excitation of lightly damped structures, this
leakage error, compared to all other sources of error, is usually the largest bias error and often will be
much greater than the variance error.
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3.1.6 Leakage Error

This error is basically due to a violation of an assumption of the tast Fourier transform algorithm.
This assumption is that the true signal is periodic within the sample period used to obscrve the
sample function. In the cases where both input and output are totally observable (transient input
with completely observed decay output within the sample period) or are harmonic functions of the
time period of observation (T), there will be no contribution to the bias error due to leakage.

Leakage is probably the most common and, therefore, the most serious digital signal processing error.
Unlike aliasing and many other errors, the effects of leakage can only be reduced, not completely
eliminated. The leakage error can be reduced by any of the following four methods:

« Cyclic averaging
« Periodic Excitation

Increase in Frequency Resolution

« Windowing or Weighting Functions

In order to understand how each of these methods reduce the leakage error, the origin of leakage
must be well understood.

The discrete Fourier transform algorithm assumes that the data to be transformed is periodic with
respect to the frequency resolution of the sampling period. Since, in general, the real world does not
operate on the basis of multiples of some arbitrary frequency resolution, this introduces an error
known as leakage.

The following is one approach (there are many other equivalent presentations) used to explain
leakage in terms of convolution.

The concept of multiplication and convolution represents a transform pair with respect to Fourier
and Laplace transforms. More specifically, if two functions are multiplied in one domain, the result is
the convolution of the two transformed functions in the other domain. Conversely, if two functions
are convolved in one domain, the result is the multiplication of the two transformed functions in the
other domain. When a signal is observed in the time domain with respect to a limited observation
period, T, the signal that is observed can be viewed as the multiplication of two infinite time functions
as shown in Figures 5§ and 6. The resulting time domain function is, in the limit, the signal that is
processed by the Fourier transform which is shown in Figure 7. Therefore, by this act of
multiplication, the corresponding frequency domain functions of Figures 8 and 9 will be convolved to
give the result equivalent to the Fourier transform of Figure 10. In this way, the difference between
the infinite and the truncated signal can be evaluated theoretically.

In order to evaluate the frequency domain result, the concept of convolution must now be
understood. First of all, the integral equation representing the convolution of two time domain
signals x(t) and y(t) can be given by Equation 3.

W($) = [ X(@)Y($-w)dw 3)

Therefore, the evaluation of the convolution of two functions is a function as well. The value of the
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new function can be viewed as the integration (or summation) over all frequencies of the product of
the two frequency domain functions, where one function has been shifted in frequency. This result is
shown in Figure 10. Note that only the amplitude results are shown for simplicity. For a complete
understanding of the bias error, a discussion of the phase effects is also needed. Figure 8 is the
Fourier transform of Figure 5. Figure 9 is the Fourier transform of Figure 6. Figure 10 is the
convolution of Figure 8 and Figure 9.

For the practical case, the resulting functions shown in Figure 7 and Figure 10 are not continuous but

occur in a digital sense. For this case, Equation 3 can be adjusted accordingly as shown in Equation 4. .
+N ‘
W)=Y X((Aw)Y(¢-iAw) 4)
1=-N
Where: $=sAw
s = -No—o#N

With this in mind, two cases must be evaluated with respect to whether the theoretical harmonic
chosen for the example is periodic or not with respect to the window period, T. These cases are
shown in Figure 11 and Figure 12. Note that a harmonic signal was chosen for this example since any
other signal can be thought to be simply a linear sum of such harmonics. Since the Fourier transform
is also linear in this sense, the result shown is valid for any theoretical signal satisfying the Dirichlet
conditions.

Therefore, when an analog signal is digitized in a Fourier analyzer, the analog signal has been
multiplied by a function of unity (for a period of time T) in the time domain. This results in a
convolution of the two signals in the frequency domain. This process of muitiplying an analog signal
by some sort of weighting function is loosely referred to as "windowing”. Whenever a time function
is sampled, the transform relationship between multiplication and convolution must be considered.
Likewise, whenever an additional weighting function such as a Hanning window is utilized, the effects
of such a window can be evaluated in the same fashion.

3.1.7 Aliasing Error

If frequency components larger than one haif the sampling frequency occur in the analog time
history, amplitude and frequency errors will result. These errors are a result of the inability of the
Fourier transform to decide which frequencies are within the analysis band and which frequencies are
outside the analysis band. This problem is explained graphically in Figure 13. :

A summary of what happens to signals above the Fmax defined by the equality in Equation 1 is
shown graphically in Figure 14. This demonstrates that a signal above F,, will appear after being
digitized as a frequency below F ... This serious error is controlled by using analog filters prior to
digitization to low pass only the information below F,, .. Naturally, since filters have a limited out of
band rejection, the positioning of the cutoff frequency of the filters must be made with respect to the
F . and the roll-off characteristic of the filter.

A number of other errors must be discussed in order to understand that the possibility for error
originates at every step in the measurement process. While all of the following errors are possible,
many of the errors are a function of the way in which the ADC hardware operates or often
malfunctions. Many of these errors can be evaluated by performing a histogram on a signal with
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known characteristics.

3.1.8 Quantization Error

The difference between the actual analog signal and the measured digitized value. Normally this is
plus or minus one half of one part in 2 raised to the M power. Since this error is a random event,
averaging will minimize the effect on the resulting measurements.

3.1.9 Differential Nonlinearity

If the roundoff that occurs to cause quantization error is not regular (some of the spacing between
counts varies) this type of error results. This causes the "noise” from quantization error to be biased.

3.1.10 Bit Dropout

One bit in the ADC may never be set. Qbviously, any sample requiring this bit in the ADC word to
be set will be in error and the error will be biased. A similar problem exists if one bit of the ADC
word is always set.

3.1.11 Reference Voltage

The reference voltage used by the ADC may drift within or between sample periods. Since this drift is
not known or measured, this error will cause a bias in any resulting estimate of the dependent
variable.

3.1.12 Overload and Overload Recovery

When the ADC is overloaded, it may 1ke several sampling increments to recover. This is normally
only a problem under severe overloads but if it occurs the result will be a bias in the estimate of the
amplitude.

3.1.13 Aperture Error - Clock Jitter

The value of amplitude recorded does not correspond to the assumed instant in time, t . This type of
error will result in a bias in the estimate of time and frequency parameters.
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’ 3.1.14 Digitizer Noise W,
Z
'
The random setting of plus or minus one bit when the input is zero is referred to as digitizer noise. A
i This error may become dominant in transient excitation since a large part of the observed histories :
may be very small or actually zero as in the case of impact testing. This error can be controlled to :
some extent by averaging and the use of special window functions. y
o
2,
3.2 Transducer Considerations ;
-
)
The transducer considerations are often the most overlooked aspect of the experimental modal -
analysis process. Considerations involving the actual type and specifications of the transducers, :
mounting of the transducers, and calibration of the transducers will often be some of the largest ‘;
sources of error. v
) e
Transducer specifications are concerned with the magnitude and frequency limitations that the ::
transducer is designed to mect. This involves the measured calibration at the time that the id
transducer was manufactured, the frequency range over which this calibration is valid, and the '
magnitude and phase distortion of the transducer, compared to the calibration constant over the "
range of interest. The specifications of any transducer signal conditioning must be included in this N
evaluation. " A
2, -
! Transducer mounting involves evaluation of the mounting system to ascertain whether the mounting )
system has compromised any of the transducers specifications. This normatly involves the possibility .
of relative motion between the structure under test and the transducer. Very often, the mounting >
systems which are convenient to use and allow ease of alignment with orthogonal reference axes are ::‘
subject to mounting resonances which result in substantial relative motion between the transducer .
and the structure under test in the frequency range of interest. Therefore, the mounting system A '
which should be used depends heavily upon the frequency range of interest and upon the test .
conditions. Test conditions are factors such as temperature, roving or fixed transducers, and surface "
X irregularity. A brief review of many common transducer mounting methods is shown in Figure 15. '
) A
, -
: Transducer calibration refers to the actual engineering unit per volt output of the transducer and :\-
3 signal conditioning system. Calibration of the complete measurement system is needed to verify that f
; the performance of the transducer and signal conditioning system is proper. Obviously, if the
measured calibration differs widely from the manufacturers specifications, the use of that particular .
. transducer and signal conditioning path should be questioned. Also, certain applications, such as p'
] impact testing, involve slight changes in the transducer system (such as adding mass to the tip of an ::
instrumented hammer) that affect the associated calibration of the transducer. 3 :::
74
Ideally, on-site calibration should be performed both before and after every test to verify that the #
transducer and signal conditioning system is operating as expected. The calibration can be performed :
4 using the same signal processing and data analysis equipment that will be used in the data acquisition. f,
There are a number of calibration methods which can be used to calibrate the transducer and signal Ky
conditioning. Some of these methods yield a calibration curve. with magnitude and phase, as a N
4 function of frequency while other methods simply estimate a calibration constant. Most of the current o
calibration methods are reviewed in Figure 16. Note that some of the methods are more suited for I

ficld calibration while other methods are more suited for permanent installations in calibration
) . [49]
laboratories .
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Main advantage

Main disadvantage

Frequency
Method range tHz)
Hand-heid 20-1000
Putty 0-200
Wax 0-2000
Hot glue 0-2000
Magnet 0-2000
Adhestve 0-2
film
Epoxy- 0-5000
cement
Stud 0-10.000
mount

*Quick look™
Alignment. ease of mounting

Ease of applicaton

Quick setung ume. good
alignment

Quick setup

Quick setup

Mounts on irregular surface.
alignment

Accurate alignment (f
caretul.y machined

Approximate freq ranges.
depends; on transaucer
mass. and contact
condittons

Poor measunng quality for long
sampie penods

Low-frequency range. creep problem
during measurement

Temperatre limitatons. frequency
range limited by wax thickness.
alignment

Temperature-sensitive transducers

Requires magnetic matenal,
alignment. bounce a problem dunng
impact. surface preparation
important

Alignment. flat surtace

Long cunng ume

Difficuit setup

:

A

Figure 15. Transducer Mounting Methods
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Method Remarks

2
d
M Inversion LT~ Constant Can only be used with .
¢ test Q_, fﬁ transducer that has stable
o : .
é dc output; calibration ‘
s against local eanth s f
’ Transducer gravity
Companson Frequency Calibration against reference
method Reference response transducer N
transgucer .

Transaucer
v, ~3=

Reciprocity Constant Calibrauon against
’ oM
o method e and/or mass-loaded shaker q
L’- Exciter frequency
response "
v
‘l
v v
Drop — Constant Calibraton against local
method 19 earth and gravity: used N
- T for ac-coupled
J .l
transducers .
N '
2 \
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Figure 16. Calibration Methods
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3.3 Error Reduction Methods

There are several factors that contribute to the quality of actual measured frequency response
function estimates. Some of the most common sources of error are duc to measurement mistakes,
With a proper measurement approach, most of this type of error, such as overloading the input,
extraneous signal pick-up via ground loops or strong electric or magnctic fields nearby, etc., can be
avoided. Violation of test assumptions are often the source of another inaccuracy and can be viewed
as a measurement mistake. For example, frequency response and coherence functions have been
defined as parameters of a linear system. Nonlinearities will generally shift energy from one
frequency to many new frequencies, in a way which may be difficult to recognize. The result will be a
distortion in the estimates of the system parameters, which may not be apparent unless the excitation
is changed. One way to reduce the effect of nonlinearities is to randomize these contributions by
choosing a randomly different input signal for each of the n measurements. Subsequent averaging will
reduce these contributions in the same manner that random noise is reduced. Another example
involves control of the system input. One of the most obvious requirements is to excite the system
with energy at all frequencies for which measurements are expected. It is important to be sure that
the input signal spectrum does not have "holes” where little energy exist. Qtherwise, coherence will
be very low, and the variance on the frequency response function will be large.

Assuming that the system is linear, the excitation is proper, and obvious measurement mistakes are
avoided, some amount of noise will be present in the measurement process. Noise is a general
designation describing the difference between the true value and the estimated value. A more exact
designation is to view this as the total error comprised of two terms, variance and bias. Each of these
classifications are merely a convenient grouping of many individual errors which cause a specific kind
of inaccuracy in the function estimate. The variance portion of the error essentially is Gaussian
distributed and can be reduced by any form of synchronization in the measurement or analysis
process. The bias or distortion portion of the error causes the expected value of the estimated
function to be different from the true value. Normally, bias errors are removed if possible but, if the
form and the source of a specific bias error is known, many techniques may be used to reduce the
magnitude of the specific bias error.

Four different approaches can be used to reduce the error involved in frequency response function
measurements in current fast Fourier transform (FFT) analyzers. The use of averaging can
significantly reduce errors of both variance and bias and is probably the most general technique in the
reduction of errors in frequency response function measurement. Selective excitation is often used to
verify nonlinearities or randomize characteristics. In this way, bias errors due to system sources can
be reduced or controlled. The increase of frequency resolution through the zoom fast Fourier
transform can improve the frequency response function estimate primarily by reduction of the
leakage bias error due to the use of a longer time sampie. The zoom fast Fourier transform by itself
is a linear process and does not involve any specific error reduction characteristics compared to a
baseband fast Fourier transform(FFT). Finally, the use of weighting functions(windows) is
widespread and much has been written about their value [1-3,10,11] Primarily, weighting functions
compensate for the bias error(leakage) caused by the analysis procedure.

3.3.1 Signal Averaging

The averaging ot signals is normally viewed as a summation or weighted summation process where
each sample function has a common abscissa. Normally, the designation of “history” is given to
sample functions with the abscissa of absolute time and the designation of "spectrum™ is given to
sample functions with the abscissa of absolute frequency. The spectra are normally gencrated by
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Fourier transforming the corresponding history. In order to generalize and consolidate the concept
of signal averaging as much as possible, the case of relative time could also be considered. In this way
"relative history” could be discussed with units of the appropriate event rather than seconds and a
"relative spectrum” would be the corresponding Fourier transform with units of cycles per event.
This concept of signal averaging is used widely in structural signature analysis where the event is a
revolution. This kind of approach simplifies the application of many other concepts of signal
relationships such as Shannon’s sampling theorem and Rayleigh’s criterion of frequency resolution.

The process of signal averaging as it applies to frequency response functions is simplified greatly by
the intrinsic uniqueness of the frequency response function. Since the frequency response function
can be expressed in terms of system properties of mass, stiffness, and damping, it is reasonable to
conclude that in most realistic structures, the frequency response functions are considered to be
constants just like mass, stiffness, and damping. This concept means that when formulating the
frequency response function using cross and auto power spectrums, the estimate of frequency
response is intrinsically unique, as long as the system is linear. In general, the auto- and cross-power
spectrums are statistically unique only if the input is stationary and sufficient averages have been
taken. Nevertheless, the estimate of frequency response is valid whether the input is stationary, non-
stationary, or deterministic (see Section 5).

The concept of the intrinsic uniqueness of the frequency response function also permits a greater
freedom in the testing procedure. Each function can be derived as a resuit of a separate test or as the
result of different portions of the same continuous test situation. In either case, the estimate of
frequency response function will be the same as long as the time history data is acquired
simultaneously for the auto- and cross-power spectrums that are utilized in any computation for
frequency response or coherence function.

The approaches to signal averaging vary only in the relationship between each sample function used.
Since the Fourier transform is a linear function, there is no theoretical difference between the use of
histories or spectra. (Practically, though, there are precision considerations which will be discussed

later). With this in mind, the signal averaging useful to frequency response function measurements
can be divided into three classifications:

« Asynchronous

« Synchronous

. CyCl ic

These three classifications refer to the trigger and sampling relationships between sample functions.

Asynchronous Signal Averaging - The classification of asynchronous signal averaging refers to the
case where no known relationship exists between individual sample functions except for the intrinsic
uniqueness of the frequency response function. In this case the least squares approach to the estimate
of frequency response must be used since no other way of preserving phase and improving the
estimate is available. In this situation, the trigger for digitization (sampling and quantization) takes
place in a random fashion dependent only upon the equipment availability. The digitization is said to
be in a free-run mode.

Synchronous Signal Averaging - The synchronous classification of signal averaging adds an
additional constraint that each sample function must be initiated with respect to a system input. This
fact, together with the intrinsic uniqueness, would allow the frequency response function to be
formed as a summation of ratios of Y divided by X since phase is preserved. Even so, the reduction
of variance and the value of coherence available with the power spectra approach would preclude the
use of any other techniguc in most cases. The ability to synchronize the initiation of digitization

-30-

Cmtu - mrE- s mw B . . e Coae o= " . D N L UL U R VL Wl Vol Wl W Wi Pl

RN ¥

n

.l

‘s’\

NS

. e
2
L

LY \* -'\ - H.‘-'

. Y

A "

oA

NIV

L atatet ey

-

“l<“_;\‘- ?'\'}'\‘.\"

5=

g

yon T
.-,

s

, ‘:f.‘:g;g;i T h s

o o

?*'-

S



g Sa® fal et ga¥ fur fa* Ha® a* " o a0 fat iia® Ja¥ fat fa® BV fati fut gt Sat gud hadoh o gat 4 Aoga/l =gt ot 0 ~ - o b 5 0 by
o
>

|
| ]
: allows for use of non-stationary or deterministic inputs with a resulting increased signal to noise ratio O
and reduced leakage. Both of these improvements in the frequency response function estimate are o

due to more of the input and output being observable in the limited time window. »
o
| The synchronization takes place as a function of a trigger signal occurring in the input (internally) or u;;
in some event related to the input (externally). An example of an internal trigger would be the case )

where an impulsive input is used to estimate the frequency response. All sample functions would be '{
initiated when the input reached a certain amplitude and slope. A similar example of an external ™

. trigger would be the case where the impulsive excitation to a speaker is used to trigger the estimate of )

frequency response between two microphones in the sound field. Again, all sample functions would 0
be initiated when the trigger signal reached a certain amplitude and scope. ::-
I.‘. g
Cyclic Signal Averaging - The cyclic classification of signal averaging involves the added constraint -:“
that the digitization is coherent between sample functions. This means that the exact time (absolute )
or relative) between each sample function is used to enhance the signal averaging process. Rather ;
than trying to keep track of elapsed time between sample functions, the normal procedure is to allow AN
no time to elapse between successive sample functions. This process can be described as a comb ~
digital filter in the frequency domain with the teeth of the comb at frequency increments dependent "‘
upon the periodic nature of the sampling with respect to the event measured. The result is an -"'
attenuation of the spectrum between the teeth not possible with other forms of averaging. "i
This form of signal averaging is very useful for filtering periodic components from a noisy signal since .-
the teeth of the filter are positioned at harmonics of the frequency of the sampling reference signal. RS
This is of particular importance in signature applications where it is desirable to extract signals :‘\
connected with various rotating members. This same form of signal averaging is particularly useful ;::
for reducing leakage during frequency response measurements and also has been used extensively for o )
evoked response measurements in biomedical studies. »
A very common application of cyclic signal averaging is in the area of analysis of rotating structures. E
In such a signature analysis application, the peaks of the comb filter are positioned to match the ~4
fundamental and harmonic frequencies of a particular rotating shaft or component. This is o=
particularly powerful, since in one measurement it is possible to filter all of the possible frequencies {: Y
generated by the rotating member from a given data signal. With a zoom Fourier transform type of Y
approach, potentially only one shaft frequency at a time can be examined depending upon the zoom v
power necessary to extract the shaft frequencies from the surrounding noise. ;‘,,
)
In the application of cyclic signal averaging to frequency response function estimates, the \‘_',
corresponding fundamental and harmonic frequencies are now simply the frequency resolution, Af, :
and integer multiples of Af. In this case, the spectra between each Af is reduced with an associated Y )
reduction of the bias error called leakage. j,-:
The implementation of cyclic signal averaging proceeds in a manner easily applicable to most fast f.:
Fourier transform analyzers. The cyclic averaged inputs and outputs are normally computed by -f‘:
simply summing successive time records. The important requirement of the successive time records is :\
that no data is lost. Therefore, these successive time records could be laid end to end to create a b
‘ digitized time record of length NT. The cyclic averaged records are then created by simply adding I
each time record of length T together in a block mode. ,:
While the basic approach to cyclic averaging involves using the data weighted uniformly over the total :.
saumple time NT, the benefits that can be gained by using weighting functions can also be applied. The s
application of a Hann window to the successive time records before the summation occurs yields an »
even greater reduction of the bias error. Theretfore, for frequency response measurements Hann o
weighted signal averaging should drastically reduce the leakage errors which can exist when using )
broadband random excitation techniques to measure frequency response. In Figure 17 through c;
Figure 20), a series of mcasurements were performed by measuring the frequency response of a very :.r
N
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Figure 17. Asynchronous Averaging: (N=1,M=1)
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lightly damped automotive frame. The value of N indicates the number of cyclic time records
averaged together and M s the number of asynchronous auto and cross spectrum averages: a total of
NM time records were sampled. This is done so that, statistically, the same amount of independent
information is available in each averaging case. Note that for every case, the total time required to
acquire the measuremeni is the same and no change has been made in the placement of the
transducers or the form of the excitation. Clearly, the measurement using cyclic averaging with the
Hann weighting show a significant reduction of the bias error. An interesting point is that the data
near the antiresonance is also drastically improved due to the sharp roll off of the line shape of the
Hann weighted averaging.

Overlapping Time Records - There are at least two common averaging techniques that use histories
which may or may not overlap. In both cases, the averaging techniques involve processing random
data histories in order to enhance the data. The first case is that of overlap processing. Overlap
processing involves using individual sample histories which are not totally independent from one
another. The dependence that occurs results from each successive history starting before the
previous history ends. For the general case where the time data is not weighted in any fashion, it
should be obvious that this averaging procedure does not involve any new data and, therefore,
statistically does not improve the estimation process. In the special case where weighting functions
are involved, this technique can utilize data that is otherwise ignored. Figure 21 is an example of a
data record that has been weighted to reduce the leakage error using a Hann weighting function.
The data prior to twenty percent of each sample period and after eighty percent of each sample
period is nearly eliminated by the Hanning window used. Using an overlap factor of at least twenty to
thirty percent as in Figure 22 involves this data once again in the averaging process.

The second case involving overlapping histories is that of random decrement anzlysis (1215] Thjs
process involves the overlapping of histories in order to enhance the deterministic portion of the
random record. In general, the random response data can be considered to be made up of two parts:
a deterministic part and a random part. Since averaging takes place in the time domain, the random
part can be reduced if a trigger signal with respect to the information of interest exists. In the
previous discussions, this trigger signal has been a function of the input (asynchronous or
synchronous averaging) or of the sampling frequency (cyclic averaging). More generally, though, the
trigger function can be any function with characteristics related to the response history. Specifically,
then, the random decrement technique utilizes the assumption that the deterministic part of the
random response signal itself contains free decay step and impulse response functions and can be
used as the trigger function. Therefore, by starting each history at a specific value and slope of the

random response function, characteristics related to the deterministic portion of the history will be
enhanced.

There are three specific cases of random decrement averaging that represent the limiting results of its
use 11®] The first case occurs when each starting value is chosen when the random response history
reaches a specific constant level with alternating slopes for each successive starting value. The
random decrement history for this case becomes the free decay step response function. An example
of this case for the first few averages is shown in Figure 23. The second case occurs when each
starting value is chosen when the random response history crosses the zero axis with positive slope.

The random decrement history for this case becomes the free decay positive impulse response
function.

The third case occurs when each starting value is chosen when the random response history crosses
zero with negative slope. The random decrement history for this case becomes the free decay
negative impulse response function.

Therefore, in each of these cases, the random decrement technigue acts like a notched digital filter
with pass bands at the poles of the trigger function. This tends to eliminate spectral components not
coherent with the trigger function.
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Figure 19. Cyclic Averaging (N =4, M = 20)
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It 4 secondary function is utilized as the trigger function, only the history related to the poles of the
secondary function will be enhanced by this technique. If the trigger function is sinusoidal, the
random decrement history will contain information related only to that sinusoid. Likewise, if the
trigger function is white noise, the random decrement history will be a unit impulse function at time
zero. One useful example of this concept was investigated for conditioning random response
histories so that information unrelated to the theoretical input history is removed. In this situation,
the theoretical input history serves as the trigger function. The random decrement history formed on
the basis of this trigger function represents the random response function that would be formed if the
theoretical input history were truly the system input. In reality, the measured input history may vary
due to noise, impedance mismatch, etc.

3.3.2 Excitation

Another effective error reduction technique is the use of excitation signals that match the signal
processing constraints. These signals will be more fully discussed in Section 4.

3.3.3 Increased Frequency Resolution

An increase in the frequency resolution of a frequency response function affects measurement errors
in several ways. Obviously, finer frequency resolution allows more exact determination of the
damped natural frequency of each modal vector. The increased frequency resolution means that the
tevel of a broadband signal is reduced. The most important benefit of increased frequency resolution,
though, is a reduction of the leakage error. Since the distortion of the frequency response function
due to leakage is a function of frequency spacing, not frequency, the increase in frequency resolution
will reduce the true bandwidth of the leakage error centered at each damped natural frequency. In
order to increase the frequency resolution, the total time per history must be increased in direct
proportion. The longer data acquisition time will increase the variance error problem when transient
signals are utilized for input as well as emphasizing any nonstationary problem with the data. The
increase of frequency resolution will often require multiple acquisition and/or processing of the
histories in order to obtain an equivalent frequency range. This will increase the data storage and
documentation overhead as well as extending the total test time.

There are two approaches for increasing the frequency resolution of a frequency response function.

The first approach involves increasing the number of spectral lines in a baseband measurement. The

advantage of this approach, is that no additional hardware or software is required. Often, FFT

anatyzers do not have the capability to alter the number of spectral lines used in the measurement.

The second approach involves the reduction of the bandwidth of the measurement while holding the )
number of spectral lines constant, If the lower frequency limit of the bandwidth is always zero, no

additional hardware or software is required. Ideally, though, for an arbitrary bandwidth, hardware

and/or software to pertorm a trequency shifted, or digitally filtered, FET will be required.

The frequency shifted FITT process for computing the frequency response tunction has additional
characteristics pertinent to the reduction of errors. Primarily, more accurate information can be
obtained on weak spectral components if the bandwidth is chosen to avoid strong spectral
components. The out-of-band rejection of the frequency shifted FFT is better than most analog
filters that could be uscd in a measurement procedure to attempt to achieve the same results.,
Additionally, the precision of the resulting frequency response function will be improved due to
processor gain inherent in the frequency shifted FFT calculation procedure. An example of the
improvement of the frequency response function using a frequency shitted FET can be scen in Figure
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3.3.4 Weighting Functions ;
- . . . 34
Weighting functions, or data windows, are probably the most common approach to the reduction of o,
. the leakage error in the frequency response function. While weighting functions are sometimes ‘.’
desirable and necessary, weighting functions are often utilized when one of the other approaches to N
error reduction would give superior results. Averaging, selective excitation, and increasing the :._
frequency resolution all act to reduce the leakage error by the elimination of the cause of the error. >
. . . ]
Weighting functions, on the other hand, attempt to compensate for the leakage error after the fact. :
This compensation for the leakage error causes an attendant distortion of the frequency and phase 2.3
information of the frequency response function, particularly in the case of closely spaced, lightly :
damped system poles. This distortion is a direct function of the width of the main lobe and the size =
of the side lobes of the spectrum of the weighting function. Examples of some common weighting ::
functions are given in Figure 25. Complete details concerning these and many other weighting T
functions are available from many sources [ 10,1 n:-
ol
. . . . r . - . ’h-
Weighting functions may be applied to all classifications of signal averaging. The most common case )
is a weighting function equal to the inverse of the number of averages used in the estimate. When
this weight is used, the individual power spectra can be weighted at the end of the signal averaging or :‘;.
as an ongoing procedure referred to as stable averaging. This type of weighting introduces no further :-l:
distortion in the frequency response function estimate but, also, does not act to compensate for the t',',
leakage error. \:
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4. EXCITATION TECHNIQUES

. &

r Wy

When exciting a structure to determine its modal properties, it is important to remember that the "
form of the excitation will have an effect on the validity of the estimates of the modal properties. If
the frequency response estimates contain errors, then the estimates of the modal properties will also
contain errors. There are at many signals that can be used to excite structures for modal testing.
Some have many advantages over others. The accuracy of the estimates of the frequency response
functions and the time to acquire the data are different are only some of the differences between the
signals.

4.1 Excitation Constraints

While there is no well developed theory involving the excitation of structures for the purpose of
estimating the frequency response functions, there are a number of constraints that mqut be
considered in order to yield an estimate of the frequency response function that is unbiased (17-23]

The first constraint that is important to the estimation of the frequency response function is
concerned with digital signal processing. Since most modern data acquisition equipment is based
upon digital data acquisition and Discrete Fourier Transforms, unique requirements are placed on
the excitation signal characteristics. This digital approach to processing the input and response
signals, with respect to the frequency domain, assumes that starting at a minimum frequency and
ending at a maximum frequency the analysis is going to proceed only at integer multipies of the
frequency resolution, therefore matching the limits of the Discrete Fourier Transform. Therefore,
this constraint first indicates that any excitation signal should only contain frequency information
between the minimum and maximum frequency. This constraint also implies that, ideally, either the
frequency content should be discrete and located only at integer multiples of the frequency resolution
or that the excitation should be a totally observed transient.

Lo an e 4

Both of these methods match the Discrete Fourier Transform equally well, but there are advantages
and disadvantages to both. If the data contains information only at multiples of the frequency
resolution, it is impossible to use a zoom Fourier Transform to achieve a smaller frequency resolution
on the same excitation function. If a new excitation function is created that contains information
only at integer multiples in the zoom band, it is possible to zoom. If the data is a transient, the
signal-to-noise ratio may become a problem.

; The second constraint that is important to the estimation of the frequency response function is
concerned with the requirements of the modal parameter estimation algorithms. A fundamental

assumption in modal analysis is that the structure under evaluation is a linear system or at least

behaves linearly for some force level. While this is never absolutely true, parameter estimation ;

algorithms are written as though this assumption is valid. With the increasing complexity of the

modal parameter estimation algorithms, violation of this characteristic within the frequency response .

function data base renders these algorithms impotent. Therefore, the modal parameter estimation

constraint requires that the excitation signal yield the best linear estimate of the frequency response

function even in the presense of small nonlinear characteristics or a significant nonlinear

characteristic being evaluated around an operating point.

&
x
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) An additional constraint that is important when using multiple inputs is the requirement that the
inputs be uncorrelated. This can be achieved by using deterministic signals, such as sinusoids, with
different magnitude, phases, and frequencies for each input during each average involved with the
estimation of the frequency response function. Normally, uncorrelated inputs are achieved by using a
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different random excitation signal for each input. Assuming that a significant number of averages is
involved, the use of uncorrelated random signals, then, is a simple solution to the requirement that
the excitation signals be uncorrelated.

4.2 Excitation Signals

Inputs which can be used to excite a system in order to determine frequency response functions
belong to one of two classifications. The first classification is that of a random signal. Signals of this
form can only be defined by their statistical properties over some time period. Any subset of the total
time period is unique and no explicit mathematical relationship can be formulated to describe the
signal. Random signals can be further classified as stationary or non-stationary. Stationary random
signals are a special case where the statistical properties of the random signals do not vary with
respect to translations with time. Finally, stationary random signals can be classified as ergodic or
non-ergodic. A stationary random signal is ergodic when a time average on any particular subset of
the signal is the same for any arbitrary subset of the random signal. All random signals which are
commonly used as input signals fall into the category of ergodic, stationary random signals.

The second classification of inputs which can be used to excite a system in order to determine
frequency response functions is that of a deterministic signal. Signals of this form can be represented
in an explicit mathematical relationship. Deterministic signals are further divided into periodic and
non-periodic classifications. The most common inputs in the periodic deterministic signal designation
are sinusoidal in nature while the most common inputs in the non-periodic deterministic designation
are transient in form.

g o

The choice of input to be used to excite a system in order to determine frequency response functions
! depends upon the characteristics of the system, upon the characteristics of the parameter estimation,
and upon the expected utilization of the data. The characterization of the system is primarily
concerned with the linearity of the system. As long as the system is linear, all input forms should give
the same expected value. Naturally, though, all real systems have some degree of nonlinearity.
Deterministic input signals result in frequency response functions that are dependent upon the signal

gl S RN

level and type. A set of frequency response functions for different signal levels can be used to Ky
4 document the nonlinear characteristics of the system. Random input signals, in the presence of f.
) nonlinearities, result in a frequency response function that represents the best linear representation :-_‘I'_
! of the nonlinear characteristics for a given level of random signal input. For small nonlinearities, use N
of a random input will not differ greatly from the use of a deterministic input. v

)

l The characterization of the parameter estimation is primarily concerned with the type of

mathematical model being used to represent the frequency response function. Generally, the model
is a linear summation based upon the modal parameters of the system. Unless the mathematical
representation of all nonlinearities is known, the parameter estimation process cannot properly
weight the frequency response function data to include nonlinear effects. For this reason, random -
input signals are prevalently used to obtain the best linear estimate of the frequency response )
function when a parameter estimation process using a linear model is to be utilized. y
N

The expected utilization of the data is concerned with the degree of detailed information required by
| any post-processing task. For experimental modal analysis, this can range from implicit modal vectors

{ needed for trouble-shooting to explicit modal vectors used in an orthogonality check. As more detail

\ 18 required, input signals, both random and deterministic, will need to match the system
characteristics and parameter estimation characteristics more closely. In all possible uses of :
frequency response function data, the conflicting requirements of the need for accuracy, equipment .

availability, testing time, and testing cost will normally reduce the possible choices of input signal.
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With respect to the reduction of the variance and bias errors of the frequency response function,
random or deterministic signals can be utilized most effectively if the signals are periodic with respect by
to the sample period or totally observable with respect to the sample period. If either of these criteria
are satisfied, regardiess of signal type, the predominant bias error, leakage, will be eliminated. If
N these criteria are not satisfied, the leakage error may become significant. In either case, the variance
| error will be a function of the signal-to-noise ratio and the amount of averaging.

" Many signals are appropriate for use in experimental modal analysis. Some of the most commonly g
used signals are described in the following sections. For those excitation signals that require the use
of a shaker, Figure 26 shows a typical test configuration; Figure 27 shows a typical test configuration

. when an impact form of excitation is to be used. The advantages and disadvantages of each excitation

signal are summarized in Figure 28.

P I SIE SR

4.2.1 Slow Swept Sine

,: ”
K The slow swept sine signal is a periodic deterministic signal with a frequency that is an integer '
-~ multiple of the FFT frequency increment. Sufficient time is allowed in the measurement procedure ¢
. for any transient response to the changes in frequency to decay so that the resultant input and 2

response histories will be periodic with respect to the sample period. Therefore, the total time

- needed to compute an entire frequency response function will be a function of the number of 7
'; frequency increments required and the system damping. ]
.

l‘

, 4.2.2 Periodic Chirp

i ?
~

) The periodic chirp is a fast swept sine signal that is a periodic deterministic signal and is formulated

. by sweeping a sine signal up or down within a frequency band of interest during a single sample !

& period. Normally, the fast swept sine signal is made up of only integer multiples of the FFT frequency '

increment. This signal is repeated without change so that the input and output histories will be
periodic with respect to the sample period.

s srr
.

4.2.3 Impact (Impuise)

v v

The impact signal is a transient deterministic signal which is formed by applying an input puise to a
system lasting only a very small part of the sample period. The width, height, and shape of this pulse
will determine the usable spectrum of the impact. Briefly, the width of the pulse will determine the
frequency spectrum while the height and shape of the pulse will control the level of the spectrum.
' Impact signals have proven to be quite popular due to the freedom of applying the input with some
) form of an instrumented hammer. While the concept is straight forward, the effective utilization of an
impact signal is very involved (21, y

RS “-‘v‘-‘ v & A

ol A g

4.2.4 Step Relaxation

-
&
x

The step relaxation signal is a transient deterministic signal which is formed by releasing a previously

»E ..
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applied static input. The sample period begins at the instant that the release occurs. This signal is
normally generated by the application of a static force through a cable. The cable is then cut or
allowed to release through a shear pin arrangement (22]

4.2.5 Pure Random

The pure random signal is an ergodic, stationary random signal which has a Gaussian probability
distribution. In general, the frequency content of the signal contains all frequencies (not just the
integer multiples of the frequency resolution used by the Discrete Fourier Transform) but may be
filtered to include only information in a frequency band of interest. The measured input spectrum
will be altered by any impedance mismatch between the excitation system and the structural system
under evaluation. There are many important characteristics of the pure random signal relevant to the
estimation of frequency response functions. Since neither the input nor the response to this input is
periodic with respect to the frequency resolution used in the digital signal processing, the bias error
due to the truncation of the signal will be present if the structure being evaluated has light to
moderate damping. Normally, weighting functions such as a Hanning window are used to try to
reduce the effects of this truncation error but weighting functions cannot eliminate completely the
bias of this error. The pure random signal type yields a peak-to-RMS ratio that is sufficiently low so
that most problems with noncoherent noise can be eliminated through averaging. The data is well
suited for use with the zoom Fourier Transform to achieve a smaller frequency resolutijon.

4.2.6 Pseudorandom

The pseudorandom signal is an ergodic, stationary random signal consisting only of integer multiples
of the FFT frequency increment. The frequency spectrum of this signal has a constant amplitude with
random phase. If sufficient time is allowed in the measurement procedure for any transient response
to the initiation of the signal to decay, the resultant input and response histories are periodic with
respect to the sample period. The number of averages used in the measurement procedure is only a

function of the reduction of the variance error. In a noise free environment, only one average may be
necessary.

4.2.7 Periodic Random

The periodic random signal is an ergodic, stationary random signal consisting of discrete frequencies
containing only integer multiplies of the frequency resolution used by the Discrete Fourier
Transform. The frequency spectrum of this signal has random amplitude and random phase
distribution. Since a single history will not contain information at all frequencies, a number of
histories must be involved in the estimation process. For each average, an input history is created
with random amplitude and random phase characteristics at each of the discrete frequencies involved
in the Discrete Fourier Transform. The structure under evaluation is excited with this input in a
repetitive cycle until the transient response to the change in excitation signal decays. The input and
response histories should then contain only frequency information that will be involved in the
Discrete Fourier Transform and are now recorded as one average in the total process. Since the
input and response contain information only at integer multiples of the frequency resolution, there is
no leakage in the measurement. With each new average, a new history, uncorrelated with the
previous histories but constructed in the same manner, is generated so that the resulting
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measurement will be completely randomized.

There are many important characteristics of the periodic random signal with respect to its use in the
estimation of frequency response functions. The periodic random signal determines the best linear
estimate of the frequency response function consistent with current modal parameter estimation
algorithms since the leakage error is eliminated so effectively. The obvious disadvantage of this
method is that it is at least twice as slow, because of the wait of at least one measurement cycle for
the transient part of the response to decay to zero, as any other excitation signal with the same
statistical parameters. A secondary disadvantage is that more sophisticated hardware is required in
order to generate periodic signals synchronous with the measurement process. Another
disadvantage of the periodic random signal is that it is not possible to post process time domain
periodic random data using the zoom Fourier Transform. This is because the data contains
information only at the frequency resolution of the original frequency range.

4.2.8 Burst Random

The burst random signal, often referred to as a random transient, is neither a completely transient
deterministic signal nor a completely ergodic, stationary random signal but contains properties of
both signal types. The frequency spectrum of this signal has random amplitude and random phase
distribution and contains energy throughout the frequency spectrum. The difference between this
signal and the pure random signal is that the random transient signal is truncated to zero after some
portion of the sample period (normally fifty to eighty percent depending on the damping in the
system). Because the input and response are totally observable transients, the measurement
procedure duplicates the results of the periodic random procedure but without the need to wait for
the transient part of the response to decay. The point at which the input history is truncated to zero
is chosen so that the response history decays to zero within the sample period. Even for lightly
damped structures, the response history will decay to zero very quickly due to the damping provided
by the excitation system trying to maintain a zero input force. This will work best when the excitation
system utilizes a voltage feedback amplifier. This damping, provided by the excitation system, is often
overlooked in the analysis of the characteristics of the signal type since many excitation systems utilize
a current feedback amplifier. Since the measured input history, although not exactly like the
generated input signal, includes the variation of the input during decay of the response history, the
input and response histories are totally observable within the sample period. This yields an unbiased
estimate of the frequency response function, with respect to leakage, and does not affect the
estimates of structural damping parameters.

There are many important characteristics of the burst random signal relevant to its use in the
estimation of frequency response functions. The signal-to-noise ratio is much larger as well as the
peak-to-RMS ratio being much lower than other forms of transient signals. The random aspect of
the signal type provides a linear representation of the frequency response function that is consistent
with the periodic random signal but in at least half of the measurement time. In addition, compared
to the periodic random signal, the random transient signal is continuous in the frequency range of
interest which allows zoom Fourier Transforms to be used on the same data to achieve a smaller
frequency resolution when required. While some additional hardware is required to generate the

random transient signal, the hardware does not require the sophistication involved with the periodic
random signal.
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§le-dy Pure ’ Psuedo | Random | Fast | Impact | Burst | Burst w

State Random | Random Sine Sine Random Q’

Sine 7

Minimize Leakagze No No Yes Yes Yes | Yes Yes Yes -.:
Signal-to-Nolise Ratlo Very Fair Falr Fair High | Low High | Falr %

High :

RMS-to-Peak Ratio High Falr Fale Fair High | Low High* | Fair )
Test Measurement Time Very Good Very Fair Fair | Very Yery | Very a‘:
Long Short Good | Good | Good oA
Controlled Frequency Content | Yes Yes Yes Yes Yes | No Yes Yes Ny
. . . . . . LA

Controlled Amplitude Content | Yes No Yes No Yes | No Yes No :\-

[ ] [ ] [ ] -

Removes Distortion No Yes No Yes No No Na Yes !‘
Characterize Nonlinearity Yes No No No Yes | No Yes No ~
-
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Figure 28. Summary of Excitation Signals
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S. FREQUENCY RESPONSE FUNCTION ESTIMATION

»
v
5.1 Introduction N
7
Y
The theoretical foundation for the estimation of modal parameters has been well documented.
Historically, modal testing was first done using the phase resonance, or forced normal mode testing 9, .
method. Using this method, the structure was forced into a normal mode by a number of single s,

LN Y

frequency force inputs. The frequency, damping, and modal vector could then be estimated.

With advances in computer technology (both hardwafe and software), and especially the e

development of the Fast Fourier Transform, it became practical to estimate frequency response

functions for random data. The theoretical foundation for the computation of frequency response
. . [1-3,25-2<ﬁ . . .

functions for any number of inputs has be well documented . A single input, single output

frequency response function was estimated for all test points. This greatly reduced test time. But, in

order to insure that no modes had been missed, more than one input location should be used.

SN

2

X
Starting in about 1979, the estimation of frequency response functions for multiple inputs has been el
investigated [27.30-36)  The multiple input approach has proven to have advantages the over single »
input approach. When large numbers of responses are measured simultaneously, the estimated
frequency response functions are consistent with each other. ;§
e
[
Y
5.2 Theory »
-

’p

Consider the case of n inputs and m outputs measured during a modal test on a dynamic system as
shown in Figure 29. Equation S is the governing equation.

X(w) = H(w) * F(w) )

For simplicity, the w will be dropped from the equations. Since the actual measured values for input
and output may contain noise, the measured values are:

-
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Therefore, a more general model for the computation of frequency response functions for N; inputs
and N, outputs could be at response location p:

~ NI -~
Xp-np =3 Hpg * (Fy-v,) (6)
q=1
Where:

F = I:’ - v Actual input
X =X -n Actual output

~

X, =Spectrum of the p-th output, measured

-

F, = Spectrum of the q-th input, measured

H,, = Frequency response function of output p with respect to input q

v, = Spectrum of the noise part of the input

n, = Spectrum of the noise part of the output

v v y,
F 1 F 2 * F N|
F F, Fy,
H
XN,
T "No

Xy

Figure 29. Multiple Input System Model

If N; = N, = 1, Equation 6 reduces to the classic single input, single output case. With N, not equal 1,
the equation is for the multiple input case.

For the multiple input case, the concegt of coherence must be expanded to include ordinary, partial,
and multiple coherence functions [30.35) " Each of the coherence functions is useful in determining the

validity of the model used to describe the system under test or, as discussed in Section 6, to evaluate
how well the inputs conform to the theory.

Ordinary coherence is defined as the correlation coefficient describing the possible causal
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'
relationship between any two signals. Ordinary coherence can be calculated between any two forces o)
or between any force and any response. In this calculation, the contribution of all other signals is =9
ignored. Therefore, the interpretation of the ordinary coherence functions must be made with great )
care. The use and interpretation of the ordinary coherence function between forces will be discussed o
in Section 6. The ordinary coherence function between an input and an output is of little use in Q
determining the validity of the model. This is because the output in the multiple input case is due to W
a number of inputs so that the ordinary coherence will not have the same useful interpretation as in }_"_
the single input case. Y
)
Partial coherence is defined as the ordinary coherence between any two conditioned signals. The o
signals are conditioned by removing, in a systematic manner, the contribution(s) of other signals. -
The order of conditioning has an effect on the degree of correlation. A partial coherence function o
can be calculated between conditioned inputs, a conditioned output and a conditioned input, or, with 3
multiple outputs, between conditioned outputs. Typically, the input and output are conditioned by f.
removing the potential contributions to the output and input from other input(s). The removal of )
the effects of the other input(s) is formulated on a linear least squares basis. There will be a partial iy
coherence function for every input/output combination for all permutations of conditioning. The '
usefulness of partial coherence with respect to frequency response function estimation is to I
determine the degree of correlation between inputs. The use and interpretation of the partial ;
coherence will be discussed in Section 6. -:
)
Multiple coherence is defined as the correlation coefficient describing the possible causal relationship 0
between an output and all known inputs. There will be one multiple coherence function for every ::'.
output. Multiple coherence is used similarly to the ordinary coherence in the single input case. The e
multiple coherence function should be close to unity throughout the entire frequency range of the “'_:-
estimated frequency response function. A low value of multiple coherence at resonance indicates '\.ﬁ
possible measurement error, unknown inputs, unmeasured inputs, or signal processing errors such as )
leakage. However, a low value of multiple coherence is not expected at an antiresonance since there .
should be sufficient signal-to-noise ratio at these frequencies (antiresonance is not a global property A
of the system). -
5.3 Mathematical Models A
o)
o
Depending on the where the noise is assumed to enter the measurement process, there are at least .-'_:
three different mathematical models that can be used to estimate the frequency response functions. ::‘-
It is important to remember that the system determines its own frequency response function for a .‘
given input/output pair and the boundary conditions for the test. In the limit, if all noise were -
removed, any estimation technique must give the same result. ‘:
%
-.J‘
5.3.1 H, Technique ;‘-’-
N
.-
Assuming that there are no measurement errors on the input forces, let the measurement errors on :\
the response signal be represented by {n}. The H, least squares technique aims at finding the ﬁ
solution {H ]} of Equation 7 that minimizes the Fuclidean length of {n}, the “squared error”. This o
solution is also called the least squares estimate. Writing Equation 6, usin% all measured values (the * ) h
has been dropped for simplicity) in a form more readily recognized yields (31-34.36], by
‘»

TaTetets
M )
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[H]N., xN {F}Mxl ={X}Nox1 '{’7}N,><1 (7)

The subscripts refer to the size of the matrix. It is well known that the solution [[HTI can be found as
the solution of the set of "normal equations” formed by post multiplying by { F}¥ 37°39)

[HY{F}{FY! ={X}{F}! -{n}{F}¥ 8)
| In] |2 is minimum
Where:

H : complex conjugate transpose (Hermitian)
| |..| |3 : Euclidean norm

Equation 8 can be reduced to Equation 9 by assuming that the noise on the outputs are uncorrelated
with the inputs and that with sufficient averages, the normalized noise spectra are close to zero.

[H 1w, xm {F w1 {FHixw, = { X, x1 {FHxwm, )]

The elements of the coefficient matrix and right hand matrix in Equation 9 are readily identified,
when expanded, with the auto and cross power spectra of input forces and response signals (30-35

When the matrix multiplications of Equation 9 are expanded to form Equations 10 or 11, the form is
more readily recognized as a frequency response function estimation.

[H ]|[GFF)=[GXF] (10)
or

[H |-[GXF[GFFI* (11)
Where:

(H] = Frequency response function matrix

Hy Hiz . . Hyy,
H21 . .

HNol . . . HNoNI

-55-

LA A

P
s "3
-

(‘: 1.;.;,-&1\,4

MRS

TNANANNTT

-

L}

A AER AL s

A -

[y g ap XS

Ao

e -

o

T ES RN

-

3NN )

Y

P A A
. .

n ary,

“e s
» »

.
I'l

-

:.}' s"."-'—

Y-,
-

P
¥ ] '.

"
b &
-



e

o
L I B W

7

el W ol

L &

L PADND)
' ‘. .. " .' o1 .
p et a

"-“l- l*}}l‘.l

PR XX

;lt}n e A

3 N

b S

e

[GXF ]= Input/output cross spectra matrix

{XHF}

XI]
X,

X,

°

[Fy Fz . .Fy,]

: complex conjugate

[GFF }= Input cross spectra matrix

= {F{FY¥
VFl
F2 * t t
=9 - [F1 F3 FN.]
Fy,
[GFFyy . .. GFFy,
LG}v*'FMl ... GFFyy,

GFF4= GFFy ( Hermitian matrix)

The ordinary coherence function can be formulated in terms of the elements of the matrices defined
previously. The ordinary coherence function between the p-th output and the q-th input can be
computed from Equation 12.

| GXF,, |2

COHw = GFF, GXX,, (12)

Where:

GXX,, = Auto power spectrum of the output

The magnitude of the error vector that corresponds to the least squares solution is a measure of how




N an an N b

LB o i

well the response signal is predicted by the input forces. When compared with the magnitude of the
response signal, a normalized measure, known as the multiple coherence function, can be defined by
Equation 13 [34"35].

M M H_ GFF.H,
MCOH, =Y % Tpe 0 "t Tt

(13)
=1 t=l GHPP

Where:
H,, = Frequency Response Function for output p and input s
H, =Frequency Response Function for output p and input t

5.3.1.1 Dual Input Case

The natural place to begin the investigation of the practicality of the multiple input frequency
response function estimation is with the two input case.

The model used for the H, technique is shown in Figure 30. By expanding Equation 6 with N; equal
to 2 and N, equal to 1, the equations for the two input single output case can be put in a form that
reduces the matrix equation to Equation 14

-

X, -np=Hp Fy +Hy Fp (14)

Figure 30. Dual Input System Model, H, Technique

Again, if the noise on the output is uncorrelated with the inputs and if sufficient averages are taken,
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Equation 14 can be put in the form of Equation 10 to compute the least squares estimate of the
frequency response functions. The result is Equation 15.

A P o o U L D D O W

.

{X,} [F1 F2] = [Hyy Hyo] {ﬁ;} [Fi F2]

Forming the matrix products for N, outputs, Equation 15 can be expanded to Equation 16 in the
form of Equation 11.

AR AN S N T

Hy Hy GFX,, GFXy,

H21 H22 GFXQ} GFXZz .

Hs Ha| |GFXs GFXy| |GFFy GFF |
. . . . [GFF a GFF 22]

Hy,y Hya| |GFXy, GFXy,

A Pty

When the input cross spectra matrix [GFF] is inverted, Equation 16 can be simplified to yield
Equation 17 and Equation 18 that are for estimates of two frequency response functions.

-
-
-
-’
of
W
.
1%

_ GFXpl GFF% 'GFXPQ GFle
pL - det{GFF]

LAY

_ GFX,; GFFy, - GFX,; GFF 5
»2 - det{GFF]

Where:
det[GFF] = Determinant of [GFF)] matrix
= GFFH GFFQQ - GFF21 GFFlz

R '(. -‘_\n.‘s"

There are three ordinary coherence functions that can be computed for the dual input case. The
interpretation of the ordinary coherence functions is now not completely consistent with the single
input case. As discussed in Section 6, the coherence between the forces, COH 5, should be as close
to zero as possible. The ordinary coherence between the response and either force (COH,, COH,;)
is of limited use because the output is now caused by the two input forces.
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The multiple coherence function can be defined by Equation 13.

5.3.1.2 Multiple Inputs

For more than 2 inputs, Equation 10 can be expanded, as an example, for six inputs to yield Equation
22. Note that Equation 22 has been put in transposed form in which the frequency response
functions appear as a column instead of a row. Equation 22 is recognized as a set of simultaneous
equations with the frequency response functions as the unknowns.

GFFll . . GFF61 le Gﬁpl
GFF . Hy, GXFp,

_ S @)
GF.Fls .. GFFGG I.I'pG GX.FpG

Equation 22 could be solved for the frequency response functions by the technique of Section 5.3.1,
inversion of the [GFF] matrix, but the com[futational time and possible dynamic range errors may
make the inversion technique undesirable 34,40] Computational techniques for solution of the
equation wil! be discussed latter in this Section.

As before, ordinary coherence functions can be defined between any two forces or any force with the
response giving a total of 21 possible ordinary coherence functions. In a systematic way, 4 partial
coherence functions between forces can also be defined and one multiple coherence function can be
defined by Equation 13. The partial coherence functions are defined and discussed in Section 6.

5.3.2 H, Technique

If all measurement errors are assumed to be confined to the inputs, let the errors associated with the
inputs be represented by {v}. The H; least squares technique aims at finding the solution [H] of

Equation 23 that minimizes the length of {v}. The basic model for the H; technique is shown in
Figure 31 [41:42],

[H 1w, xm { {FInx1 +{v}mx1} ={X}v,x1 23
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Figure 31. System Model for H, Technique

P

To find the solution of Equation 23 in a similar manner as in the H, case, postmultiply by { X}¥.

[HI{{F} +{v} HX}* = {XH{X}¥ (24)

-

S

If the noise on the input {v} is assumed not correlated with the output and if sufficient averages are
taken so that the noise matrix approachs zero, Equation 24 can be written as:

LA St A A g

‘s

»
E A

(H v, o {F by s A, <1 = {X I, 1 {XH e, (25)

The elements of the matrices are now identified as the cross power spectra between inputs and
outnuts and the output auto power spectra.

v ., AR ARE
.:...I.'{t'-’f_f

To investigate the potential uses of the H; technique for multiple inputs, it will be helpful to expand
the equations for two cases. One is when the number of inputs and the number of outputs are equal
and another when the number of outputs is greater than the number of inputs.

N
5 S S

5.3.2.1 Two Inputs/Two Response

A® e

x_u

>

For the case of two inputs and two responses, N, = N; = 2. Expanding Equation 24 for this case yields:

23] 2
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[Hl2x2 [GFX )3 x3 = [GXX ]z x2 (26)
or

[Hlaxz = [Gﬂlzxz [GFX]'zlxz 27

Equation 26 can be solved for the frequency response functions by inverting the input/output cross
spectra matrix at every frequency in the analysis range and solving the set of simultaneous equations.

5.3.2.2 Two Inputs/Three Responses

For the case of two inputs and three responses, N, = 3 and N; = 2. Equation 25 is expanded to yield:

[H ]3 x2 [GFX]2x3 ={GXX 343 (28)

or

[H3x2 = [GXX 13x3 [GFX J3xs (29

For Equation 29 to be valid, a 3 x 3 matrix must be multiplied by a 2 x 3 matrix. For the equation %o
be valid, a generalized inverse must be used. Therefore, unique frequency response function can not
be estimated from this set of data. Therefore, an added constraint on the H, technique is that the
number of outputs must equal the number of inputs 14243] For the single input, single output case,
this constraint is not a disadvantage. But, for the multiple input technique, this constraint makes the
H, technique impractical for many testing situations (for example a 2 triaxial response test with 2
inputs). Also, the major advantage of the H, technique is to reduce the effects of noise on the input.
This can also be accomplished by selective excitation that is investigated in Section 4 or by
formulating the H, frequency response estimate which is better suited for multiple inputs. Therefore,
the H, technique was not heavily investigated for the multiple input case.

5.3.3 H, Technique

Assume now that measurement errors are present on both the input and the response signals,
represented by {v} for the noise on the input and {n} for the noise on the output. The H, least
squares technique aims at finding the solution [H] in Equation 29 that minimizes the sum of the
Euclidean lengths of {n} and {v}, or the "total squared error" [42.44-46] s solution is referred to as
the Total Least Squared estimate. It is proved in the literature that it can be identified with the
elements of the matrix [GFFX ] defined by Equation 30. Again the elements of this matrix are readily
identified with the auto and cross power spectra of input forces and response signals.

(HI{ {F}-{v}}={X}-{n} (29)
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[GFFX] = {FH{XN" {F}{X}] (30)
: orrx)- [GFE ) lggj (0

The matrix [GFFX] is Hermitian; its eigenvalue decomposition is therefore defined by Equation 31.

. The Total Least Squared estimate for [H ] is then defined by Equation 32.
[GFFX)=[V] T A [V)¥ 31
Where:
U'A) = diag (M, Ao Au)
wrwl =1

Vl p+l / p+l p+l

{H}= : (32)

"y

'Vp p+l / Vp+1 p+l

Notice that the Total Least Squares solution does not exist if ¥ pelpsl equals 0. This however can only
happen if the submatrix [GFF] of [GFFX] is smgular 4. that is, if the input forces are correlated.
Verifying that the input forces are not correlated is therefore sufficient to warrant the existence of
~ the Total Least Squares solution.

o e e a ue e o

Corresponding to the Total Least Squares estimate, there will be errors on both input forces and
response signals. The magnitude of the errors on the response signal can be expressed by Equation
33. If this error is substituted into Equation 34, one calculates a measure of how well the response
signal is predicted by the input forces, considering now however also errors on the input forces.

W T

Gm = /\pu V;u p+l Vpu p+l (33)
3
-1.6m
MCOH = GXX (34)

5.4 H, Technique

[1‘97 ]a similar fashion, a "scaled” frequency response function has been proposed by Wicks and Vold

Starting with Equation 6 for a single input (the cquations can be readily expanded to the multiple
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X -n=H*F -v) (35) !
h'(
Expanding for the single input case and colleciing error terms yields: )
oy
4 . . . R '
nn +(HH')(wv')=(HF-X)(HF -X) (36) >
‘.»
If the error terms of Equation 36 are equal in magnitude, a least squares minimization can be applied N ;
to Equation 36. To insure that the magnitudes are equal, either the input or the output can be o
scaled. Assuming that the input is scaled by S, Equation 35 can be written as: '
'.A
)}'-n=HS‘(FA'-v) o
«g
[
If the scaling constant is carried throughout the development, an equation can be written for a "
"scaled" frequency response function. -
]
- A a A Y ] LI A A AV X I}
oo XX -S?FF )+V(S?FF -XX')*+48*X FF X an .
s 28X F \
o
>
5.5 Comparison of H,, H,, and H, X
-~

The assumption that measurement errors are confined totally to the input forces or totally to the
response signals is sometimes unrealistic. But, it is important to understand why H, H,, and H,
yield different estimates of the same input/output frequency response function for a given system. It
is important also to remember that a linear system has only one theoretical frequency response for
any given input/output pair. Table 1 compares the different assumptions and solution techniques.

P ]
- -

Pt

TABLE 1. Comparison of H; H,, and H,

Technique | Solution | Assumed location of noise
Method | Force Inputs | Response
H, LS no noise noise
H, LS noise no noise
H, TLS noise noise

il s

*v
o
It is also important to realize that if the noise on the inputs {} and the noise on the responses {v} N
are eliminated, H, equals H, and they are approximately equal to H,. Therefore, it is important to
~
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spend time to acquire data that is noise free and that fits the assumptions of the Discrete Fourier
Transform rather than accept the errors and try to minimize their effect by the solution technique.

The mechanism of the least squares solution of H; and H, and the Total Least Squares solution of
H, can be compared using the following geometric interpretation 144] " Assume that m equals 1 for a
single input, and real-valued input forces and response spectra. Figure 32 is a measure of the
goodness-of-fit for one frequency, magnitude only, of the frequency response estimate. F represents
the input at that frequency and X the corresponding response. In the H, technique only X is assumed
inaccurate, and it is the vertical distance that is minimized. Likewise, for the H, technique, only F is
assumed to contain errors and so the horizontal distance is minimized. In the H, technique, both F
and X are assumed inaccurate. The Total Least Squares technique aims at minimizing the total error
on F and X so that the perpendicular distance is minimized. Figure 32 depicts the Least Squares and
Total Least Squares measure of goodness-of-fit at a resonance of the system. As can be seen,
because the H, technique is minimizing a large vertical distance, therefore the slope of the line will be
pulled down, meaning that the value at resonance will be low. Since the H, technique minimizes a
horizontal distance, the slope of the line will be steeper than for the H, technique. Figure 33 shows
the same goodness-of-fit for an anti-resonance condition. In this case, the reverse is true. The H,
technique minimizes a large horizontal distance giving a value in the anti-resonance that is too high.
The H, technique minimizes a smaller vertical distance giving a sharper anti-resonance. The H,
technique in both cases minimizes a distance that is between the H, and H, techniques. Away from a
resonance or anti-resonance where the errors are likely to be less, the H,,H,, and H, techniques are
almost identical.

From the standpoint of frequency response function estimation, the H, technique, at resonances,
underestimates the height of the peak amplitude and therefore overestimates the damping. In the
Argand plane, the circles look “flat". The H, technique, at resonances, overestimates the amplitude
and therefore underestimates damping. The circles look oblong in the H, technique. The H,
technique gives, at resonance, an estimate of the frequency response function that is between the H,
and H, estimates. At antiresonances, the reverse is true, H, gives the lowest estimate and H, gives
the highest estimate with /, in the middle. Away from resonance, all three give the same estimate. It
is important to remember that in all three cases, the value computed is only an estimate of the
theoretical frequency response function. If other measurement errors or violation of system
assumptions are present, all three estimators will give erroneous results. It is therefore important to
spend as much time as possible to reduce known errors before data acquisition begins.

5.6 Examples

To investigate the potential improvements and limitations of the multipl~ ,put frequency response
function estimation, a base line set of data is needed for comparison. For this set of data, an
automobile body-in-white, shown in Figure 34 was chosen as a representative structure. The
structure is lightly damped so that leakage is expected to be a problem. The body was mounted on air
rides to simulate a free-free condition. In an attempt to reduce as many measurement errors as
possible, an accelerometer was permanently mounted at point #1 and left in the same position
throughout the entire data collection period. Also, all cabling, power supplies, load cells, and signal
generation equipment was kept constant. Therefore, any variation in the data should be caused by
the multiple input technique and not because of differences in the equipment or poor data
collection techniques. In all cases, 25 stable frequency domain averages were collected in the range
from 0 to 50 Hertz. The anti-aliasing filters were set at 40 Hertz. The low frequency characteristics
of the accelerometers is about 5 Hertz. Therefore, the data below S Hertz is not expected to be of
good quality. But, the accelerometers were chosen because of their low mass.
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5.6.1 Single Input

Figures 35 and 36 show frequency response function estimates (log magnitude and phase), their
associated ordinary coherence function, and input auto power spectrum taken on the body-in-white, \
using existing single input, H, technology. The excitation was pure random and a Hanning window
applied to both the excitation and the response signals. The data was collected by attaching one '
shaker and estimating the associated frequency response function of that input location versus the
response at location #1. As can be seen by the ordinary coherence functions, leakage at the
resonances appears to be a problem. The low value of the coherence function at the anti-resonance is :
expected because of the low signal-to-noise at those frequencies. ,

5.6.2 Dual Inputs

Next, two forces were input at points #1 and #2. In this case, frequency response function H;, was

estimated . Figure 37 is the associated estimate of the frequency response function. Figure 38 is the !
multiple coherence function for this case. Also computed during this measurement cycle is frequency
response function H,,. Both input auto power spectra were flat from 0 to 40 Hertz. This indicates
that sufficient energy should be present to excite all modes in the 0 to 50 Hertz range. As can be ’
seen by comparing Figure 35 with Figure 37 the estimates for the dual input case are comparable

with the associated single input case. But, for the dual input case, the estimates of the frequency

response functions are computed from data that is taken simultaneously. Therefore, the estimates of

the damped natural frequency and damping for these two functions are consistent with each other.

Also, since these two functions are estimated from symmetric input locations, the two estimates could

be added to enhance symmetric modes and subtracted to enhance anti-symmetric modes.

Noting that the multiple coherence function exhibits drops from unity at system poles may indicate
that leakage is a probiem. But, the multiple coherence function does not exhibit the drops at anti-
resonances because there is now sufficient signal-to- noise at these frequencies. Therefore, the
estimate of the frequency response function should contain less errors at these frequencies.

5.6.3 Three Inputs

For the body-in-white, three inputs approach the limits of the optimum number of inputs. Therefore, !
an exciter was attached at point #3, and three frequency response functions were estimated )
simultaneously. Figure 39 is the frequency response function that was estimated in this case. Figure

40 is the associated multiple coherence function. Again, when comparing the associated frequency

response estimates for the single, dual, and three input case, the estimates are very similar. For the

three input case, the estimates are computed from data that is taken simultaneously, therefore -

.
.

ghw
e vetets

- consistency between the three rows is guaranteed for these three estimates.
':" [
‘-: The multiple coherence function again indicate that leakage may still be a problem. But, as expected, 1
7 the multiple coherence function is unity at anti-resonances ]
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5.7 Calculation Techniques

Once the acquisition of the required auto and cross spectrum has been completed, the solution of the
pertinent equations can proceed in a variety of ways. Since the H, technique is not practically
adaptable to the multiple input technique, it will not be discussed.

It should be noted, from regression analysis, that in order to compute a direct estimate of the
frequency response function, the number of averages must be equal to the number of inputs. To
compute a least squares estimate of the frequency response function, the number of averages must be
greater than the number of inputs.

5.7.1 H, Technique

5.7.1.1 Trivial Solution

Starting with Equation 11, the solution for the estimate of the frequency response function can
proceed in at least 3 ways. Equation 11 is restated for clarity as Equation 38.

[H]=[GFX] [GFFI! (38)

If the off diagonal terms in Equation 38 were to average to exactly zero, the solution would be exactly
the same as for the single input case. This situation would occur if the inputs were totally
uncorrelated. This approach was investigated but the resulting frequency respons= functions were of
poor quality when compared to the single input case. Figure 41 shows a frequency response and
coherence function that was estimated with two driven inputs, measuring only one, and using the
existing single input equations. As can be seen, the data is of unacceptable quality.

5.7.1.2 Matrix Inversion

If the off diagonal terms of the input cross spectrum matrix do not average to zero, and the input
cross spectrum matrix is not singular, the frequency response functions could be estimated by
inversion of the input cross spectrum matrix. This approach yields no computational problems but,
as the number of inputs is increased, the amount of memory needed to store intermediate results is
sometimes more than is available in a mini-computer. Therefore, the results need to be stored to disk
making the inversion for more than two inputs inefficient from a computer standpoint. The inversion
technique is straight forward except for the need to have a generalized inversion algorithm for a
variable number of inputs.

In the initial stages of the research, the inversion technique was used exclusively. As long as the
ordinary coherence between forces was not exactly unity or if the determinant of the input cross
spectrum matrix was not zero, Equation 38 is solvable. The input cross spectrum matrix needs to be

inverted at each frequency in the analysis range and then Equations 17 and 18 were solved for the :,,'
frequency response functions. This inversion of a matrix as opposed to a single input auto spectrum
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for the single input case places an additional load on the analysis computer. As the number of inputs
was increased, it became apparent, for the equipment at the University of Cincinnati Structural
Dynamics Research Laboratory (SDRL), that the inversion technique would be computationally
cumbersome. But, others in the field who have virtual memory mini-computers, have used the
inversion technique with satisfactory results.

5.7.1.3 Gauss Elimination

As an alternative to the matrix inversion technique, an algorithm was developed based upon a
Gaussian elimination approach to the solution of Equation 38. This approach was found to be well

suited for the mini-computer hardware with limited memory and is often the method used within an
inversion subroutine.

As an example of the algorithm, start with Equation 22 which is restated as Equation 39.

GFFy . . . GFFg] [H,] [GXF,;
GFFy; GFFg| |H,| |GXF,

. . e 39)
GFFys . . . GFFg| |H,e |GXF,e

This equation is for the six input and one response case. The form of Equation 39 can be recognized
as a set of simultaneous equations with the frequency response functions as the unknowns. The input
cross spectrum matrix [GFF ] is well suited for a Gauss elimination procedure since the terms along
the diagonal should always be positive values as well as being the largest values in the [GFF) matrix.
Therefore, it is not necessary to pivot during this elimination. In order to proceed, the [GFFX,]

matrix is defined in Equation 40. The form of this matrix is required so that multiple coherence can
be computed if required.

GFFy, GFFy ... GFFg GXF,,

GFF\, GXF,,

X : . : (40)
GFF\s . GFFes GXF,q
GXF,, . .. GXFe, GFF,

The [GFFX,] matrix is processed by first dividing row one by GFF,,, multiplying by GFF,, and
subtracting the conditioned row one from row two. Note that the superscripts refer to the number of

times that the particular matrix element has been conditioned. When the conditioning is complete,
the notation LFF or LXF is used.

GFF
LFF,, = CFF., =1 (41)
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GFF 4,

LFF, = GFF,. (42)
GFF%, = GFFy - GFF,; LFF, (43)
This results is Equation 44.
1 LFFy .. LFFg LXF,,
0 GFFn . GFFy GXFj 44)

GXFy, GXF, .. GXFs, GXX,

Rows 3 through 7 (i = 3 - 7) are then conditioned by dividing each row by GFF,,, multiplying by
GFF,;, and subtracting from each element. This would result in Equation 45.

1 LFFyy .. LFFg LXF,,
0 . . GFFly GXF., s)

0 GXF}, .. GXF}, GXX}

Rows 3 through 7 are then conditioned in a similar manner using GFF%, as the pivot element. When
the conditioning is completed, the matrix takes on the form of Equation 46. In practice, the form of
the diagonal (1) and the lower triangle (0) is known. Therefore, these elements are not actually
conditioned in the algorithm but, saved in their conditioned intermediate form so that other
responses collected simultaneously with this set of forces can be processed without reprocessing the
[GFF] portion of the [GFFY ]| matrix.

1 LFFy ... LFFg LXF,,
0 1 . LFFe LXF,,
. ) (46)
0 1 LXY,q
0 0 .. 0 GxXx?

Once the form of Equation 46 has been achieved, the frequency response estimates can be found
through back substitution using the conditioned equations as follows:

H.'e = m.'e (47)

Hig = LXFyx - Hig LXFgg (48)
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H;q = LXF;y - H;g LXF¢g, (49)
- H;s LXFeg,

H.' = IJG’}S - H.-g mea (50)
-Hig LXFgq
~H;y LXF ¢

Hiz = LXF;; - Hig LXFg3 (51)
-His LXFg
-Hiy LXF 4o
- H;3 LXF 5,

H;y = LXF;y - Hig LXFg, (52)
- His LXFgy
- Hy LXF 4
-H;s LXF4
- H;3 LXF 5

From the form of the [GFFY] matrix, either before, during, or after conditioning, the ordinary,
conditioned, and multiple coherence functions as defined in Section 6 can be calculated. The multiple
coherence function can be redefined as in Equation 53.

GXX?
GXX,

MCOH, = (53)

An added benefit of the Gauss Elimination procedure is that the conditioned terms may be left in the
lower half of the input cross spectra matrix. Therefore, if more than one response is measured
simultaneously, the input cross spectra matrix is only conditioned once for those responses. Each
response is then used to estimate frequency response functions with those forces. This can greatly
reduce computation time. For the next measurement cycle, the input cross spectra matrix is again
conditioned and the next set of responses is used.

Both the inversion technique and the Gauss Elimination techniques have been used with equal
results at the UC-SDRL. The actual numerical procedure is often a function of the hardware
involved.
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6. MULTIPLE INPUT CONSIDERATIONS

From the theory in Section S, the equations for the computation of the frequency response functions
all require that the input cross spectra matrix [GFF ] not be singular (1-3,25-30], Unfortunately, there
are a number of situations where the input cross spectra matrix [GFF] may be singular at specific
frequencies or frequency intervals. When this happens, the equations for the frequency response
functions cannot be used to solve for unique frequency response functions at those frequencies or in
those frequency intervals even though the equations are still valid.

One potential reason for the input cross spectra matrix [GFF ] to be singular is when one or more of
the input force auto power spectrum is zero at some frequency or some frequency interval. If an input
has a zero in the auto power spectrum, the associated cross spectrums calculated with that force will
also have zeros at the same frequency or frequency interval. The primary reason for this to occur
would be because of an impedance mismatch between the exciter system and the system under test.
Unfortunately, this situation occurs at system poles that have a low value of damping where a good
estimate of the frequency response is desired. Therefore, it is imperative to check the input cross
spectra matrix for zeros. For the two input case where the determinant is calculated, a good check is
to be sure that the determinant does not have zeros in it.

Another way that the input cross spectra matrix may be singular is if two or more of the inputs are
totally coherent at some frequency or over some frequency interval. A good method to check for
coherent forces is to compute the ordinary and conditioned partial coherence functions among the
inputs =" A technique is also presented in Section 6.2.2 that computes the principal auto power
spectra of the input forces (48] This technique uses an eigenvalue decomposition to determine the
dimensionality of the input cross spectra matrix [GFF ]. If two of the inputs are fully coherent, then
there are no unique frequency response functions associated with those inputs at those frequencies
even though the Equation 11 is still valid. This is because the frequency response is now estimated
using a singular matrix that will yield infinite solutions that are combinations of each other.
Although the signals used as inputs to the exciter system are uncorrelated random signals, the
response of the structure at resonance, combined with the inability to completely isolate the exciter
systems from this response will result in the ordinary or conditioned partial coherence functions to
have values other than zero, particularly, at the system poles. As long as the coherence functions are
not unity at any frequency, the equations will give a correct estimate of the frequency response
function. It is therefore necessary to have a method to evaluate the inputs to assure that there are
neither holes in the auto power spectrum nor perfectly coherent inputs.

6.1 Optimum Number Of Inputs

When considering the estimation of frequency response functions in the presence of multiple inputs,

more time must be spent to determine the number of inputs, the input directions, and the input
locations.

An advantage of the multiple input technology is that, for most structures, all important modes can
be excited in one test cycle. For example, in a typical test of an aircraft structure, if existing single
input technology is used, at least two complete tests must be conducted in order to get sufficient
energy into both the vertical and lateral fuselage modes. If two symmetric, correlated inputs with zero
or 180 degree phase difference are used, even though the number of degrees of freedom that the
parameter estimation algorithm must deal with is reduced, at least two complete tests must also be
conducted to define all the modes of the structure. With uncorrelated random multiple inputs, since
there is no constraint on the input directions, one input could be vertical and the other horizontal. In
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this way, both the vertical and lateral modes will be excited in the same test cycle. By exciting at
symmetric locations, the frequency response estimates can be added or subtracted to enhance in
phase and out of phase modes. Since the original frequency response estimates are not destroyed,
effectively, four pieces of useful information have been estimated for the structure under test in one
test cycle.

But, as the number of inputs is increased, so too is the potential for problems with the excitation
forces. One such problem is that, due to the structural response, the inputs may be correlated by one
or more exciters driving the other exciters. This happens most often if the exciters are placed at
locations that have a high amplitude of motion particularly at resonance. Also, depending on the size
of the structure, there is a diminishing return on more inputs. The advantage of two inputs to one
input has been apparent in almost every test case. For more than two inputs, particularly on smaller
structures, the added inputs mean that more averages must be taken to compute "clean” frequency
response functions. In practice, fighter aircraft have been tested with as many as six inputs with no
adverse effects. For automobiles, three inputs appears to be a practical limit.

6.2 Input Evaluation

Let F,. . . Fy, represent the spectra of N; input forces at a particular frequency. The input forces

are correlated at this frequency when the input cross spectra matrix [GFF ], defined by Equation 54 is
singular.

GFFy, ... GFFye

[GFF]= | . f (54)

GFF1N| s e » GFFN|N|
Where:

GFF, = GFFy; (Hermitian Matrix)

GFFy =Y F;F
6.2.1 Coherence Functions

The ordinary coherence function measures the degree of linear dependence (or correlation) between
the spectra of two signals. The partial coherence function measures the degree of linear dependence
between the spectra of two signals, after eliminating in a least squares sense, the contribution of some
other signals. Both functions can be used in systematic procedure to verify that the forces are not
correlated or that the input cross spectra matrix [GFF | is not singular.

The ordinary coherence function between any input i and any other input k can be defined by
Equation 55 If F; and F, are linearly dependent at any frequency, then COHy equals 1.0 at that
frequency and a unique frequency response functions cannot be computed at that frequency even
though the equations are still valid. If the coherence function is any value other than 1.0, the inputs
are not correlated and the frequency response functions can be calculated.
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| GFF, |?

Lo Tk 55
COHy, GFF; GFFy (53)

Where:
GFF,; = Cross power spectrum between inputs i and k
GFF; = Auto power spectrum of input i
GFF,, = Auto power spectrum of input k

Next consider F; as a reference spectrum, and eliminate from F, ... Fy, in a least squares sense, all
linear dependence on F;. For F, the pertinent equations are Equation 56 and Equation 57.

F}y=F,-Ly F, (56)
GFF 4

.12 57

La GFF 57)

In these equations, F3 represents what is left from F, after eliminating the linear dependence on F,
in a least squares sense. The superscripts refer to the number of times a particular element has been
conditioned. The auto power spectrum of F} represented by GFFL,, can be calculated from Equation
58 or Equation 59. This equation also defines the first step of a Gauss elimination on the input cross
spectra matrix [GFF ) applied to element GFF 5. If COH ;; equals 1.0, then from Equation 59 GFF},
equals 0.0; a zero diagonal element is generated during the first step of the Gauss elimination on the

input cross spectra matrix [GFF |. Therefore, the input cross spectra matrix [GFF] is singular and F,
and F, are correlated.

| GF} 12 |2
1 _ - —
GFFY, = GFF GFF.. (58)

If COH,, is smaller than 1.0, F, and F, are not linearly dependent. Next consider F} as the
reference spectrum and eliminate out of F5 . . . F}, all linear dependence on F}. This yields
Equation 60 and Equation 61.

F} =F} - LopF} (6
GFFL, 1
= —— -}

%" GFFL, ‘

The partial coherence function between F} and F3, COH3, is defined by Equation 62 It the ;v
coherence is equal to 1, then F} and F} are linearly dependent.
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| GFFis |2
I8 ‘Hl = — 62
CHz GFFL, GFFl (62)

From Equation 63 or Equation 64 it follows that GFF3s is 0.0, implying that the input cross spectra
matrix [GFF ] is singular and that F; . .. Fy, are correlated. If COH}, is less than 1.0, then F3 canbe
taken as the next reference spectrum. Sequentially, then, a total of N;-1 functions is generated. If
COH,, or any COH},; 1.2, defined by Equation 65, equals 1.0 then the input cross spectra matrix
[GFF] is singular and the input forces are correlated at that frequency and unique frequency
response functions cannot be calculated at that frequency.

| GFFL, |2
= GFFly - —= 63
GFF2%, = GFFl, GFFL, (63)
GFF2%, = GFF; (1- COHY) (64)
GFF% 1.2 |?
COH£+1k+2 = I k+1k+2 I (65)

GF. Fi-vlk-vl GFF, t+2k+2

k=12,... m-2
6.2.1.1 Vector Representation

To better visualize the concept of ordinary and partial coherence, the inputs can be represented by

vectors at any frequency. Figure 42 shows a three input case where the inputs at a given frequency
are represented by three vectors. i

By considering F, as the reference spectrum, the ordinary coherence between inputs 1 and 2 and
between inputs 1 and 3 can be defined as:

Fa

COH,; = — 66

OH,, Fs (66)
- FSl

COH,3 = — 67)
Fs

Where F,, is the perpendicular distance of the projection of F; on F, and Fg, is the perpendicular

distance of the projection of F3 on F,. This is equivalent to eliminating F, from F; and Fj.

Therefore, if either F, or F, was in the same direction as F,, the perpendicular distance divided by

the original length would be 1 indicating perfect correlation. If the vectors were at right angles, the

value would be zero, indicating no correlation.
Next, the vectors F} and F}, which are the part remaining after eliminating F,, are used to compute
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the conditioned partial coherence. Figure 43 shows these two vectors.

The partial coherence between inputs 2 and 3 after eliminating input 1 is defined as:

K Fa
» COHY = =2 (68)
KN F3 '
."
_,;: This is equivalent to finding the perpendicular distance of the projection of F} on F3. 1
A ‘
,. To demonstrate that the order of conditioning has an effect on the magnitude of the coherence, the
" three forces are shown again in Figure 44, now using F, as the reference vector. The ordinary
N coherence between inputs 2 and 1 and between inputs 2 and 3 are now defined by Equations 69 and
70.

T.‘;
A F
K COHy = 7= (69)
it F 1
L
Y

F
" COHp = -2 (70)
(12 Fq
M
0 '
'-:: Next, the vectors F} and F}, which are the part remaining after eliminating F5, are used to compute

the conditioned partial coherence. Figure 45 shows these two vectors.

%)
:’ The partial coherence between inputs 1 and 3 after eliminating input 2 is defined as follows.
)
”
"6 Fl
X I
g
N As can be seen by comparing Figures 42 through 45, the values of the coherence functions are
‘:.: ! different for the different conditioning sequence. ¢
i)
X
:;: 6.2.2 Principal Input Forces
N
K
4
! A more critical and concise technique can be formulated if F -, ... F .y represent the spectra of N;
- independent, fully non-correlated input forces from which the spectra of the measured input forces
.": can be derived by linear combinations, as shown by Equation 72. The input cross spectra matrix
K [GFF] can now be expressed by Equation 73. [GFF -] is a diagonal matrix with the auto power
o spectra of the principal forces on the diagonal; the diagonal elements are referred to as the principal
i auto power spectra.
\::
R
C‘z
.l
o
)l.'
. -85- q
?

[
[
"

. .- . P ' ; TP T Yo R TR R AT UL LI LS T LT AT T AR I B R .,‘ E R '_i')'
i ,-‘!,:'0..‘0.',; X ‘. o ..' o ‘."-_.v.r, J.‘ ..‘.0‘ ,p;-J- .. e > Lol .F.’J" LA ™ O W, 2 » o n



1 _
COH23— .64

1,2

Figure 43. Remaining Vectors - F; Used As The Reference

O




PR A OO DO TR

Figure 44. Three Inputs As Vectors - F;Used As The Reference

-87-

W W 7 P Ry o
O s A e T 4 DO AN oA



2,1
F3

Figure 45. Remaining Vectors - F, Used

As The Reference




et a%s at ala hte e 80a 82 082 100 100 402 A% % B0 A% §in 000 0V 078 070 AVR SR 0 R0 0 0 1t 0010 0 08 0.0 000 0,0 ot ot Piut Bt B2t e ha® 0y By’ Jlia” gbes Ban bt Ry

ok T

R

e - -

A I A

- e

e Yot il

-

o

1 ¥ *n ) L R R T P LPLE BN B Se” I PO N AP L TR LIPS Y W) l.""-.'\‘\"
RO SN I Pyt T N e e L T o Ll n s o LR PN ITAL Y. N0 AT,

[Fluﬁml=[F‘rnF’M][U] (72)

L]

[ U ] : complex matrix, dimension m x m
GFF'.’k:EF'.'.F'k:O i=k

[GFF]=[UY[GFF-][U] (73)

o Y

Notice that Equation 73 defines the eigenvalue decomposition of the input cross spectra matrix
[GFF). From this point of view, [GFF -] represents the eigenvalues and [U] the eigenvectors of the
input cross spectra matrix [GFF]. This eigenvalue decomposition is always defined since the input
cross spectra matrix [GFF] is Hermitian. The eigenvectors are independent, so that [U] is not
singular. Therefore, when some of the eigenvalues of the input cross spectra matrix [GFF] are 0, or
negligible, then the input cross spectra matrix [GFF] is singular. Or, in other words, when some of
the principal auto power spectra are negligible and therefore the corresponding principal input forces
insignificant, then the measured input forces are correlated.

This procedure is similar to transforming the inertia matrix of a structure to the principal moments of
inertia or to transforming the stress tensor to the principal stress direction.

6.3 Examples

To investigate the potential of the ordinary and partial coherence, the determinant, and the principal
input forces to detect the presence of either zero’s in the auto power spectrum of the forces or to
detect correlated forces, it is again beneficial to start with the dual input case. Again, the data were
collected from the body-in-white using the same input locations as in Figure 34. In some of the data
in this section, potential failures in the data collection were purposely introduced into the estimation
of the frequency response function.

Figure 46 shows the ordinary coherence function between the input forces for the two input case. As
can be seen, the highest degree of correlation is at the rigid body bounce mode. But, because the

correlation is below unity, the frequency response function can still be estimated uniquely at all
frequencies in the frequency range of interest.

Figure 47 shows the principal auto power spectra of the same input forces. Since there are two
spectra, each of significant value, there is little correlation between the forces. But, at the rigid body
bounce mode, the second spectra has a fairly significant drop. This indicates the same correlation as
the ordinary coherence function at the same frequency.

To check for zeros in the input auto power spectrum, either the auto power spectra themselves may
be checked, or the value of the determinant of the input cross spectra matrix may be checked. Figure
48 shows the two input auto power spectrums. The auto power spectra are both flat with no
significant drops. Figure 49 is the determinant of the input cross spectra matrix. This function also
has no significant drop. These functions indicate that there are no zeros in the auto power spectra.
Therefore, the frequency response functions can be estimated for the entire frequency range of
interest. Figure 50 shows the frequency response estimates.

g
3

Next, one exciter system was turned off, simulating an exciter system failure during the test. Since the

S nY " e
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motion of the structure due to the other exciter. The measured force will look similar to an
acceleration signal, since the load cell, with the mass of the structure on top of it, will be simitar to an
accelerometer. Figure 51 shows the input auto power spectra of the forces. The top function is for
the input that was driven. The bottom is for the input that had the shaker turned off. The top
function is similar to the previous auto power spectrum. The bottom function, much lower in
magnitude, shows the location of resonances, similar to an auto power spectrum of acceleration.

- Figure 52 shows the ordinary coherence function between these two signals. The function is unity at
many locations and approaches unity at most frequencies. This function should look like the function
N in Figure 46. Figure 53 is the principal auto power spectra for this case. There is now only one
i ' spectra that has significant value indicating one independent force. Figure 54 is the determinant
function which is much lower in value than the function in Figure 49 and also has many zero's. Figure

55 is the estimate of the frequency response functions for this case.

E load cell was still attached to the system, that load cell measured a force that was caused by the

The general form of a frequency response function can be seen in these functions but, the data is of
unacceptable quality.

To show the problems with correlated inputs, the same signal was used to drive both exciter systems.
Figure 56 shows the input auto power spectra of the two input forces. Because of the difference in
the impedance at the two locations, the auto power spectra appear different. Therefore, there is no
way to detect correlation by looking at the auto power spectra.

Figure 57 shows the ordinary coherence function between these two forces. The value of the
ordinary coherence function is unity throughout virtually the entire data block. Figure 58 is the
principal auto power spectra for the same case. Again, there is only one spectra of significant value in
this function. Figure 59 shows the frequency response estimates for this case. Again, these are of
unacceptable quality. For the three input case, the value of the coherence functions and the principal

. input spectra becomes more obvious. As the number of inputs increase, so too do the number of
functions. It is important to realize that the order of removal has an effect on the value of the partial
coherence functions.

First, a three input case with all shakers operable was used. Figure 60 shows the ordinary coherence
function between input 1 and input 2. The function shows some correlation at the rigid body bounce
mode but is not unity at any frequency in the range of interest. Figure 61 shows the conditioned
partial coherence function between input 2 and input 3 with the effects of input 1 removed. This
function also shows no correlation between forces. Figure 62 shows the principal auto power spectra
of input forces. There are three spectra of significant value indicating three, uncorrelated forces.
Therefore, the frequency response functions can be estimated.

To demonstrate the difficulty of interpretation of the coherence functions and the conciseness of the
principal forces, the signal to input 2 was turned off but the load cell was left on. Figure 63 shows the
ordinary coherence function between input 1 and input 2. Figure 64 shows the conditioned partial
coherence function between input 2 and input 3 with the effects of input 1 removed. Figure 65 is the
principal auto power spectra of inputs. All three functions show that there is correlation between
forces. The coherence functions indicate correlation by the fact that they are unity for a good

portion of the data block. The principal auto power spectra by the fact that there are only two
spectra of significant value.
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Next, input 2 was made active and the signal to input 3 was turned off. Figure 66 shows the ordinary
coherence between input 1 and input 2. Figure 67 shows the conditioned partial coherence function
between input 2 and input 3 with the effects of input 1 removed. Figure 68 is the principal auto
power spectra for this case. The ordinary coherence between input 1 and input 2 shows no potential
problems with correlation. But, the conditioned partial coherence show a definite correlation
between inputs. This is also seen in the principal auto power spectra because there is only two
spectra of significant value.
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7. NON-LINEAR CONSIDERATIONS

7.1 Overview

The vibration of structures is a very natural phenomenon and although much work has been
dedicated to the analysis and understanding of it, there exist an infinite number of vibrational
problems which cannot be predicted. Because of this, experimental testing is needed to describe the
vibrational characteristics of many structures. In this research, a linear system will be defined as a
system in which the responses are linearly proportional to the input forces. A nonlinear system will
be defined as having responses that are not linearly proportional to the input forces. In the analysis
of linear systems, the responses can be predicted and an explicit mathematical model can be
generated to represent the physical characteristics of the system. In the analysis of nonlinear systems,
the responses can not adequately predict the measured dynamic characteristics.

It is accepted that most real structures exhibit nonlinear characteristics. Practical experience suggest
that in many cases, this nonlinear term is negligible and a linear system can be assumed. However, as
structures become more complicated and more accurate results are required, the nonlinear
component is no longer negligible.

In modal analysis, frequency response functions are calculated based on a linear model of the
structure. Thus, it is important to first accurately determine the contribution of the nonlinear
components to the system. As described in Figure 69, the contribution of nonlinear components
varies from system to system. At position "A", there exist a totally linear system having no
contamination of nonlinear components. Between positions "A™ and "B" the system is composed of
linear and nonlinear terms; however, the nonlinear component in this case is small enough to be
negligible. Between positions "B” and "C", the nonlinear term can no longer be negligible - the

system should not be assumed to be linear. Finally, past position "C" the system is considered to
highly nonlinear (49],

7.2 Research Objectives

One of the primary objectives of this research is to investigate previous studies dealing with
nonlinearities as related to the modal analysis field. A review of current studies which deal with
nonlinearities was made in terms of a literature search. Because of the difficulty involved in creating
a physical structure with a known nonlinearity, most of the past research has only dealt with basic
mathematical nonlinear structures having only one or two degrees of freedom.

Because of the increasing utilization of the multiple input estimation technique, it is the ultimate goal
of this research to investigate a method for detecting nonlinearities in a system when using the
multiple input estimation technique combined with random excitation signals. What is eventually
desired is a detection method which could be programmed into the modal acquisition software and
accessed to evaluate the degree of nonlinearity within a test structure.
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Figure 69. Evaluation of Linear and Nonlinear Systems

7.3 Modal Analysis and Nonlinearities

7.3.1 System Assumptions

In the field of experimental modal analysis there are three basic assumptions that are made about a
structure. First, the structure is assumed to be time invariant. This means that the modal parameters
that are to be determined will be constants of the structure. In general, a structure will have
components whose mass, stiffness, or damping depend on factors which are not measured or included
in the model. For example, in some structures, the components could be temperature dependent. In
this case, temperature could be described as a time varying parameter; therefore, each of the
temperature dependent components would be considered to be time varying. Thus, for a time
varying structure, the same measurements made at different times would be inconsistent.

The second basic assumption is that the structure is observable. By observable, it is meant that the
input/output measurements that are made contain enough information to generate an adequate
behavioral model of the structure. For example, if a structure has several degrees of freedom of
motion that are not measured, then the structure is considered to be not observable. Such a case
would be that of a partially filled tank of liquid when sloshing of the fluid occurs [50],

Finally, the third basic assumption is that the structure is either linear or can be approximated as
linear over a certain frequency range. This essentially means that the response of the structure due to
the simultaneous application of two or more excitation forces is a linear combination of the responses
from each of the input forces acting separately. This relationship is shown in Figure 70. If a particular
input signal, a (), causes an output signal, 4 (¢), and a second input signal, b (), causes a different
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Figure 70. Linear Network

output signal, B (t); then, if both input signals, a (f) and b (t), are apPlled to a linear system, the
output signal will be the summation of the individuat signals, 4 (t)+B (t)

7.3.2 Basic Nonlinear Systems

A linear system with several degrees of freedom can be modeled completely by a frequency response
function which can be defined as the Fourier transform of the output signal divided by the Fourier
transform of the input signal. In mechanical systems, the input signal is a type of force while the
output signal is a quantity such as displacement, velocity, or acceleration. The frequency response
function of these different output quantities are referred to as receptance, mobility, or compliance
respectivly, see Table 2.

As was previously stated, a linear structure can be characterized by its frequency response function
and, as long as the structure does not physically change, this function will remain constant. This is not
the case for a nonlinear structure; the system is no longer characterized by a single response function.
In this case, the structure is very dependent to the time varying variables in the inputs of the system.

Although there exist very linear systems, most real structures have nonlinear components. Practical
experience shows that the degree of nonlinearity of a structure varies according to the characteristics
of the system. That is, welded structures will usually exhibit a linear response; where a riveted or spot
welded structure exhibits a very nonlinear response

As an example of a nonlinear system, consider a simple pendulum of length "I" having a bob of mass
"m", as shown in Figure 71. The equation of motion or this simple pendulum can be written as:
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TABLE 2. Frequency Response Measurements

&

o W

-
. N,
Receptance Acceleration :- ‘
Force s
]
Effective Mass —FLCC_— oo
Acceleration o
. o
Mobility Yelocity =
Force -
N
Force )
I d —_
mpedance Velocity =
. . Displacement A
Dynamic Compliance Force
\-)
o Force .
t —_
] Dynamic Stiffness Displacement ' 4
i
:.'-
»
mi2e+mgle=0 or 8+5;—6=0 (74) v
~
N
hY
This equation only holds for small oscillations, such that: Y
%' y
sin@ =6 (75) .
“
LY
: .
\ -
; The exact equation of motion is nonlinear and can be written as: )
: o
)
E mi?6+mglsine=0 o  6+86-Le6+ 5020 (76) 2
{
b

A simple spring-mass system is shown in Figure 72. This system can be characterized by the equation:

mx+kx=0 X))

This equation is based on the assumption that the eiastic spring in the system obeys Hooke's Law;
which states that the spring force is proportional to the spring deformation. In this case, the
relationship between the spring force versus the spring deformation is a straight line, as shown in
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Figure 71. Simple Pendulum e
Figure 73. However, this linear characteristic property is not found in many systems. In a simple coil '-”_'l
spring, a nonlinear behavior will occur when the spring is overly compressed or extended. In either o
case, the elastic spring will exhibit a nonlinear characteristic such that the spring force increases more L
rapidly than the spring deformation; this is referred to as a hardening spring. On the other hand, :
certain systems such as the simple pendulum exhibit a softening characteristic. Both of these ~
nonlinear properties are shown in Figure 73. A system which exhibits a hardening or softening effect :: A
can be described by the following equation of motion: o
[
mivk(xsPx®)=0 (78) =
.

where the nonlinear term is positive for a hardening effect and negative for a softening effect. These
are both examples of nonlinear stiffness in a structure. For the hardening effect, the natural frequency
will increase with the amplitude of the oscillation, where the frequency will decrease with amplitude
for a softening effect. These nonlinear properties are also shown in Figure 74. As the frequency of
the input force is swept up, the frequency response would follow the curve from location 1, to
location 2. to location 3. At location 3, a small increase in frequency would result in an immediate
jump of the response down to location 5. From location S, the response would follow the curve
through location 6 as the frequency increased. If the input force was to begin at a high frequency and
then decrease, the response would follow the curve from location 6 to location 5 and continue on to
location 4. At location 4, a smail decrease in frequency would result in an immediate jump up to
location 2. From location 2 the response would follow the curve to location 1.
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Figure 72. Simple Spring-Mass System

The previous examples have all exhibited nonlinearities in the elastic component. When considering a
simple mass system with a dashpot as the damping component, as shown in Figure 75, certain
assumptions must be made. The spring component must be linear and the force due to the resistance
of the dashpot must be proportional to the velocity; thus, the equation of motion is linear. However,
in many cases, the dashpot resistance is more accurately described by a term which is proportional to
the square of the velocity. Furthermore, the resistance is always opposing the motion.

This nonlinear equation of motion is written as:
mi+c |x|x+kx=0 (79)

This is an example of nonlinear damping within a structure (53],

Nonlinear behavior in structures can be related to such characteristics as backlash, nonlinear stiffness,
nonlinear damping, nonlinear material properties, or friction. These nonlinearities can be classified as
“limited” or "nonlimited” nonlinearities. In the "limited" case, the nonlinearity is limited within a
particular force level range. Nonlinearities due to backlash could be classified as a "limited”
nonlinearity. "Nonlimited” nonlinearities refer to those nonlinearities which are independent of force
level. Nonlinear damping is an example of a "nonlimited” nonlinearity (54]
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7.3.3 Excitation Techniques

When a structure is to be tested to determine the modal parameters, one of the most important
considerations is the excitation method to be used. For a linear structure, the frequency response
function is independent of the amplitude and type of the excitation signal. This is not the case for a
nonlinear structure; the selection is crucial since the method of excitation can either minimize or
enhance the nonlinear behavior of the structure. The different excitation signals can be divided into
two classifications; the determinististic excitation signals and the random excitation signals.

The deterministic signal is one which can be described by an explicit mathematical relationship. These
signals are then divided into two other classifications, periodic or non-periodic. A signal is periodic if
it repeats itself at equal time intervals. Frequency response functions that result from deterministic
signals are dependent upon the signal level and type. Therefore, these signals are very useful in

detecting nonlinearities in structures. Table 3 gives a summary of the different excitation signals and
their classification.

The use of a sine wave, which is a determinis.ic signal, to excite a structure is very common (531 The
main advantage of a swept sine test is that the input force can be precisely controlled. It is this
characteristic that makes this method particularly useful when trying to identify nonlinear systems. 1f
a particular system is nonlinear, by varying the input force levels, one can compare several frequency
response functions and identify inconsistencies. A major disadvantage with this method is that it
gives a very poor linear approximation of a nonlinear system. This causes a serious problem if the
data is to be used to estimate modal parameters. Therefore, this method is adversely affected by
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Figure 74. F.R.F. of a Hardening and Softening Spring

nonlinearities.

Another deterministic excitation signal is an impact signal. The impact testing technique is very useful

for trouble-shooting and preliminary modal surveys. However, this technique should not be utilized _:
. with nonlinear structures because of the difficulties in controlling the impact force and insufficient -
Y energy to properly excite the structure 6], ::
[ The random signal is one which can only be described by its statistical properties over a given time

period; no explicit mathematical relationship exists. For structures with small nonlineatities, the
A frequency response functions from a random signal will not differ greatly from that of a deterministic

signal. However, as the nonlinearity in the structure increases, the random excitation gives a better
linear approximation of the system, since the nonlinearities tend to be averaged out. The random
excitation signal has been increasingly useful since it enables the structure to be investigated over a
) wide frequency range, unlike the sine wave 9,
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Figure 75. Simple Spring-Mass System with Dashpot

TABLE 3. Excitation Signal Summary

|
Deterministic Excitation | Random Excitation
:
Slow Sinusoidal Sweep True (Pure) Random
. Fast Sinusoidal Sweep Pseudo Random
- Periodic Chirp Periodic Random
- Impulse (Impact) Burst Random (Random Transient)
) Step Relaxation
-,
»
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7.4 Nonlinear Detection Techniques
7.4.1 Distortion of The Characteristic Function

Mathematically, linearity can be expressed by the superposition theorem which states:

Ifa(t) ~A(@)and b(t) - B(t) Then a(t)+b(t)—A()+B() (80)

To be utilized experimentally, each measured frequency response function would be required to be
checked for the validity of Equation 80. Since this would be an impractical process, only several
representative functions are checked. If Equation 80 is valid, the structure is assumed to be linear
under the given test conditions (573, Typically, only the driving point measurements are evaluated.
Other response locations, which allow the nonlinear characteristics to be excited, need also to be
evaluated.

7.4.1.1 The Nyquist Plot

One of the earliest methods for detecting nonlinearities in test structures utilized the characteristics
of the Nyquist plot. From a strict control systems definition, the Nyquist plot is a polar plot of the
open-loop transfer function. The original approach for the "circle fit" parameter estimation routine
which utilizes the Nyquist plot, was developed by Kennedy and Pancu (58], The Nyquist plot is
another way of displaying the frequency response function,; it plots the real part of the function versus
the imaginary part of the function. As is shown for a single degree of freedom system in Figure 76,
the horizontal axis is the real part and the vertical axis is the imaginary part. At the starting
frequency for a linear system, the phase angle is close to zero and the magnitude is one over the static
stiffness. In the Nyquist, plot the frequency increases in a clockwise direction. As the frequency
approaches resonance, the real part of the function decreases while the imaginary part increases. At
the point where the rate of change of the arc length with respect to frequency is a maximum, the
curve crosses the imaginary axis. At that point the real part goes to zero and the complex number is a
pure imaginary value and that frequency is resonance. Beyond the resonance, the curve continues on
a circular arc and reaches the origin at an infinite frequency.

In models which are comprised of nonlinear elements or signal processing errors, the Nyquist plot is
no longer a circular arc. In these cases the resulting plots are elliptical or a combination of circles with
distorted regions (591 These distortions are due to the fact that the linearized equation, which is
represented as a complex value, can no longer be represented as a circle.

Not only do the plots distort, but the lines that join points of constant frequency for different
excitation levels (isochrones) also distort for nonlinear systems. The distortion of the isochrones is
dependent upon the type of nonlinearity. Figure 77 gives several examples of these distortions. It
should be noted that the plots in Figure 77 are only the response of the system. The isochrones are
more sensitive to nonlinearities than the actual Nyquist plots; thus, the pattern of these lines could be
a better detection and identification techni(fue for nonlinearities. Methods for identifying the
nonlinear systems have proved to be successful &), however, prior assumptions about the form of the
nonlinearity must be made. Another limitation is that the algorithm which is utilized to estimaie the
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Figure 76. Nyquist Plot

frequency response function influences the shape of the Nyquist plot. As in the case where the H,
algorithm is utilized for the estimate, the amplitude at resonance is underestimated. When the H,
algorithm is utilized, the amplitude at resonance is overestimated. In both cases, the estimation error
causes the Nyquist plot to be elongated. For the isochrones to be useful, the modes of vibrations of
the system must be lightly coupled and the nor!'inearity must be simple t61)

7.4.1.2 Damping Values

As an extension to the Nyquist distortion detection method, the damping values computed from a
single mode of vibration has proven to be useful as a linearity detection technique. As represented in

Figure 76, an estimate of the damping of a singzle degree of freedom linear system can be calculated
from a Nyquist plot by the following equation [62],

2_ .2
6= Lo 1 (81)
ﬂ,’ t oa +t 9,,
an 2 an 3

By utilizing several frequencies before and after the resonant frequency, several independent damping
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Figure 77. Distorted Nyquist Plots g

estimates can then be produce a three-dimensional carpet plot. Figure 78 represents a linear system.
The damping estimates are constant for each of the different combination of frequencies before and ¢

after the resonance; thus producing a flat contour. Figure 79 compares two nonlinear cases and )
shows how the three-dimensional carpet plots varies from a linear case (6], Again, this method is 2

; €asy to implement; however, only lightly coupled modes of vibration can be accurately examined. This Y
method also has no means of linearizing the response for the modal analysis test, ::

-t

7.4.2 Reciprocity

The theorem of reciprocity states that the dynamic response of the p* displacement co-ordinate, due

to any time-varying force of the g* co-ordinate is equal to the response of the g% co-ordinate due to
the same force of the p% co-ordinate (4],

! Mathematically it is expressed as:

XP X'
F, F, (82)

Reciprocity is often used as a linearity indicator; however, it does not define linearity. A symmetric
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Figure 78. Carpet Plot of a Linear System

nonlinear system may exhibit reciprocity while not satisfying the superposition principle (1] 1t has
been shown that reciprocity only strictly applies to the ratio of statically applied forces and the
resulting response displacements and not to dynamically applied forces. For the reciprocity theorem
to be valid the stiffness matrix [ k ], the mass matrix [ m ), and the system matrix [ £ J* [ m ] must be
symmetric; these conditions are not commonly found ir: real structures.

7.4.3 Coherence

The measured coherence function is also often used as a linearity indicator. The coherence function
is defined as a measure of the degree of causality between a system input and output. It describes the
division of the output power into coherent and incoherent parts with respect to the input. The

coherence function is a good indicator of uncorrelated noise on the input or output signals; however, ’.
it does not necessarily indicate that the test structure is nonlinear. It has been shown that even )
though the coherence functions are nearly unity, when the fre%uency response functions are overlaid, -
shifts in frequency occur - indicating a nonlinear structure 7] The ability to differentiate between ."_;
nonlinearities and the effects of leakage is often difficult and many nonlinearities maybe phase r
coherent when a periodic random excitation signal is used. '

) -
Although these are the most common ways of detecting nonlinearities, none of these techniques are "
definitive indicators of linearity within a structure. Other methods do exist that not only give a better e
indication of linearity but also can aid in the identification of nonlinearities. j

[

N
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Figure 79. Carpet Plots of Nonlinear Systems

7.4.4 The ’Sig-function’

The ’sig-function’ is a new method that was developed as a nonlinearity detector for the time domain

y and is still in the development stages at the University of Leuven, Belgium. A time domain detecting
y technique could be advantageous for several reasons. As in the case of a sinusoidal excitation, the
», common practice is to only utilize the fundamental harmonics of the output to calculate the

frequency response function and neglect all the other sub and post harmonics. The ’sig-function’
utilizes the total energy of the harmonic distortion of the outpu* <ignal.

\ The ’sig-function’ describes the energy of the harmonic distortion of the output signal, as related to
the total energy, as a function of frequency. It is mathematically defined for a sinusoidal excitation as
a, follows:

L
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sigf (@) = *— (83)
JCx@))2r
0
‘ where:

x (1) represents the total response signal
x ' (t) represents the fundamental filtered time signal

In this equation, x (1), is the total response due to some input force at the fundamental frequency (w).
The term x “ (¢) is the portion of x (¢) that is occurring at the fundamental frequency. The numerator,
which is the difference of these values, represents the response that does not occur at the
fundamental frequency. This calculation is made at each frequency between some minimum and
maximum bandwidth. Once calculated, the magnitude of the function will range from 0 to 1, where 0
represents a linear system with no nonlinear characteristics and 1 represents a system which is totally
nonlinear.

This ’sig-function’ method is mainly a detection technique rather than a identification method. The
biggest advantage of this technique is that it does not use reduced data. Most other nonlinear
detection techniques usually require the estimation of frequency response functions. These
techniques are based upon the fundamental harmonic in which the output is filtered such that it
contains only the excitation frequency. Because of this, there is a reduction in the available data (61],
There are however two disadvantages with the 'sig-function’ method namely; its sensitivity for noise
and the restriction for sinusoidal excitation. This technique has also not yet been applied to multi-
mode systems.

7.4.5 The Hilbert Transform

One of the most promising methods for detectir.g nonlinearities is one which uses a version of the
Hilbert transform to provide a relationship between the real and imaginary parts of the measured
complex frequency response funcéion. The initial application of the Hilbert transform to the field of
modal analysis was done by Professor T. Vinh of the Institute Superieur des Materiaux et de la
Construction Mecanique, St. Quen, France. Vinh and his associates, A. Haoui and Y. Chevalier, are
currently utilizing the Hilbert transform in the time domain (66-67) while M. Simon, G.R. Tomlinson,
and N.E. Kirk, of Simon Enginezring Laboratories and the University of Manchester - Manchester,
England, are making applications of the Hilbert transform in the frequency domain (69-70] The
following mathematical description of the Hilbert transform and its application to nonlinearities is a
combination of the previous references.

) \. .'. Y ". ‘

The Hilbert transform is a mathematical way to describe a causal physical system. By causal physical
system it is meant that the system can only react to inputs after the inputs have been applied. If the
analytic tunctions of a complex variavle are examined, certain relationships between the real and
imaginary parts of the functions are found. Given the imaginary part of a complex variable, the real
part could be uniquely determined. The same holds true for the real part; that is, if the real part of a
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complex variable is given, the imaginary part could be uniquely determined. This relationship between
the real and imaginary parts is a version of the Hilbert transform. Likewise, for a linear mechanical
system, the imaginary part of the frequency response function is uniquely determined from the real
part or the phase of a frequency response function uniquely gives the amplitude. This only applies to
a frequency response function that corresponds to a causal system; therefore, the Hilbert transform
is applied to a frequency response function to determine if this relationship between the imaginary
and real parts exists. If this relationship does not exist, the system under investigation is not a linear
causal system.

X

- -
'.;h;-‘, »

4

The Hilbert transform of a real-valued time signal, f (¢), is defined as:

H o)=L L0 (84)

t-r

To redefine the Hilbert transform, let G (z) be a function of a complex variable, z. Cauchy’s formula
states that if G is analytic everywhere within and on a simple closed contour, C, taken in the positive
sense and z, is any point interior to C, then:

G(zo) = 57 [SE)E (85)

z
Z‘Zo

In terms of the quantity Mobility, the measured complex analytic function, H (w), can be written in the
frequency domain as:

ﬂ Ay -3 1% 86
P PR 0

This equation can also be written as a function of complex frequency such that z = a +j¢. If this
series is expressed as the ratio of two polynomials, the function becomes:

(z-ay)(z-ay)...(z-Azma)
(z-b1)(z-b3)...(2-bay)

H@)=jzA (87)

g A g

where A is a constant; @ and b are the zeros and poles of the function representing the antiresonances
and resonances of the system. The mapping of these poles and zeros onto the complex frequency
plane is shown in Figure 80. The poles are in the top half of the plane but the zeros can be in any
part of the plane. The contour, C, for the integration of Equation 84 needs to be chosen such that it
avoids the poles. Figure 80 shows this contour which is a semicircle in the lower half of the z-plane
and a section on the real axis, with a slight detour to avoid the extra poles located at w = ¢ w, on the
real axis Because of this contou: selection, the integral of Equation 85 can be broken up into two
separate integrals.
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£=f+f (88)

The first integral approaches zero as the radius of the semicircle, R, approaches infinity. For this

case, the integral of Equation 85 is only the line integral which lies on the real axis and can be written
as:

) = - L-py [ HwMe (89)
xj

o0 W We

where PV indicates that the Cauchy Principal Value of the integral has been taken and w, represents
the current frequency in the frequency response function. This equation is of the same form as
Equation 85; therefore, it can be written as:

H{A(w.)} =H (@) = - ,ri}.PV [ Hlwd (90)

o WTwe

where H ' (w,) tepresents the Hilbert transform of the measured complex analytic function,

H{H(w.)}. As could be done with Equation 85, Equation 90 can be split into its real and imaginary
parts; which are as follows:

Re H' (u) = py [ IRH)dw 1)

ImH’ (w,) = % PV | RL:’}:M 92)

These relations define the Hilbert transforn: pair which relate the real and imaginary parts of H (w).

If (w) is the Fourier transform of a recl signal A (¢), which is the unit impulse response of a linear
system, such that:

Hw)= [ n(tye?™tdr (93)

then from the properties of the analytic Fourier kernel, e 3"7“*, the real part of fl(u) is an even
function and the imaginary part of H(w) is an odd function. This can be stated mathematically as:
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AGw) = A W) (94)

Equations 91 and 92 can be rewritten as:

- 1] ~ oo -~
RCH,(%)=_lPV{J. Im H(w) dw : Im H (w) dw) ©5)
x b W - W, ° W= w,
] -~ oo ~
mH () - - -l—PV{f Re H(w)dw . Re H(w)dw) (%)
x o Wrw ° w - W,
Using the following properties which define odd and even functions:
Re H(- w) = Re H(w) (97)
ImH (- w) = - Im H (w) (98)
Equation 95 can be rewritten as:
0 ~ o -
ReH (w)=- Lpy { [ ImH(w)dw [ Im H(w) dw) 99)
" o  CW-ow, ° W - w,

. % PV{? Im H () dw +}° Im H(w) dw)

o w+ W, ° w - W,

o & 4
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Equation 96 can also be rewritten as:

ImH’ (w,) =%PV{ (100)

j. -Rf’:‘f{-(:)dw +}° Reff(wldw}

-0 c V] w - e

Loy, {T Re H(w)dw +}° Re H () dw)
x 0

w + w, ° w-w,

CwReH w)dw
x W - w?

It is these two Equations, 99 and 100, which are so called the Kramer - Kronig version of the Hilbert
transform. They are continuous forms of the Hilbert transform and can be used to relate the real and
imaginary parts of a frequency response function of a linear system. A new form of the Hilbert
transform is currently being developed by using the inverse Fourier transform. It will replace
Equations 99 and 100 to reduce the speed limitation in the frequency domain calculation.

As earlier defined, the frequency response function is the ratio of the Fourier transform of the
output signal over the Fourier transform of the input signal.

: w Fy t) w) + w
Aw) = —U—lF{ O = ReAW +jImAw) (101)

The Hilbert transform of the measured complex function, H (w) is defined as:

H{Hw)}=H ) =ReH (W) +jImH () (102)

where ReH "(w) represents the real part of the Hilbert transform and ImH “(w) represents the
imaginary part of the Hilbert transform as defined in Equations 99 and 100. Thus, for a linear system
the Hilbert transform of a system’s frequency response function, H{H (w)} equals the original
frequency response function, H(w). This can be mathematically written as:

H (w) = H(w) (103)

Thus, for a linear system, the Hilbert transform can be used to calculate the real part of f{(w) from
knowing the imaginary part and visa versa, by using Equations 99 and 100. In practical terms, when a
frequency response function is obtained through a particular testing technique, the procedure is to
compute the imaginary part of the frequency response function by taking the Hilbert transform of the
real part. This calculated imaginary pait is then compared to the actual measured imaginary part. The
same type of procedure is also applied 2 the real part of the functions. If the correlation between the
calculated and the actual measured parts are good then the system is classified as a linear system.
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However, when the measured frequency response function is contaminated by nonlinearities, the
correlation is poor. In this case, there exist the condition whereby the relationship between Equations
99 and 100 no longer hold true. This condition can be expressed as:

H{H ()} =H () + Hw) (104)

Therefore, it can be stated that for a causal system to exist H *(w) must equal H (w), and if H ' (w)
does not equal H(w) the system is classified as being nonlinear.

Thus, the following statements must be valid for a structure to be linear:
H' (w) = Hw) (105)

F'[Hw))=h(t) (106)

It should be noted that the same conclusions have been derived by Vinh (66] using Parseval’s
theorem, which states that the energy in the frequency domain is equal to that in the time domain.

Because one can only consider a limited frequency range, one can derive a useful algorithm for
discrete frequency response functions from Equations 99 and 100.

Assume that H (w) is defined at n number of frequencies, w,. .. w, (Where w, = nAw), and that:

Hw)=0 for w<w, ,w>w, (107)

The discrete form of the Hilbert transform is then:

» H Aw
ReH ' (w) = Ha(w,)=-;z —’5“1’-“’2— (108)

k=1 (le wi

" ffn(wk)kaN

2_ 2
k=1 Wi -~ Wi

, L 2w
ImH () = Hi (@) =

(109)

where:

(wn - wl)

n-1)

Aw=wy ~wey =
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Since these functions are exactly linear, they will obey the equality condition where:
H{Hy} = H; (110)

H{f:ll} = f{R

. However, when the magnitude of the real or imaginary part of f{(w) does not equal zero at the
frequency limits such that Equation 110 is not satisfied, errors in the transformed data are found due
to the fact that the Hilbert transform is based upon an integral from -co to co. To correct for these
errors correction terms can be introduced to account for the transformed data outside the limited
frequency range;, however, a preliminary estimation of the natural frequencies within the desired
frequency band is required.

These correction terms are derived by first assuming the data is represented as a2 mobility
frequency response function such that:

JjwkX,

Hw)= 2 P2 (1+6)

(111)

Considering only one degree of freedom, the continuous Hilbert transform is broken up into three
frequency ranges:

H ® wH (w)3w
Hie ) = -2 PV / “’fz‘(_‘”:a” 155 wHi 3 155 “ ’(“’) (112)
. 2w, “ WH r(w)Bw “ WH r(Wdw % wHr(w)dw
}{hn(wr) PVf uﬁ _wc f wz w "{ u;-wz (1]3)

The first and last terms are the corrections terms for the low and high frequency range. In these
ranges, w is assumed to influence any resonant frequencies, w,. Therefore, for the lightly damped
Cdse:

LI
LI

o

3

- e ¥

W oWP(1+j8) 7 u? - WP (114)

0
fﬁ((lif!i




T T T TR ST R T IR S ¥ T T E T T T T E IO (00 A’ et e At Jief JaSJat MG AN LI G SN N S L S S L A AR L R SR Al &

W W T TR T W e/ ' . TR

B

R

L and & on 4

)

The correction terms can then be written as:

Ag(w)) = -2 qf- ke _wde (115)
r o (@P-u) (P-ud)

B”(w‘)h%i (u;u-\,:?) D (116)

i “[ Gn D am

w2 § G @9

W+ €

When there is more than one mode in the response between wy, and w, the correction is made by
summing the individual terms for each mode. Therefore, the discrete Hilbert transform formula are:

" H Aw
H&(W)='£2M‘E—+AR*BR (119)
Tz wh-of

. 2w; » H (we)Aw
Hi ()= 25— s A+ B; (120)

k=l Wi -Ww]
with

Wy - Wy

A= D)

Utilization of the Hilbert transform for the identification of nonlinearities has proven to be useful in
the case of a sinusoidal excitation. However, in the case where a random or transient excitation signal
is desired, using the Hilbert transform to detect nonlinearities would not be valid since the use to the
Fourier transform results in frequency response functions which satisfy the equality condition
H(w) = H (w), and thus a nonlinearity could not be detected (68],

One disadvantage with this particular application to detect nonlinearities is that the Hilbert
transform in the frequency domain is a continuous transform over all frequencies. When a discrete
transform is defined, errors are introduced and there is a loss of information in the resonant
frequency region, particularly in the case of a lightly damped mode.
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7.4.6 Volterra and Wiener Functional Series

Volterra first suggested that the input/output relationship of a nonlinear system could be expressed
as a functional series in 1887 [71),

The expression for the system response from a stationary random excitation can be written as:
x (1) =x,(t) +x3(1) +nt) (121)
where

x{t) =Total measured response

X,(¢) = Linear response term

x3(t) = Nonlinear response term

n(t) = extraneous uncorrelated noise term

If a particular system is linear and time-invariant, then the output can be expressed as the
convolution of the input with the system’s unit impulse response:

x()= [R(f(@-1Mdr 122)

In the nonlinear system case, the output can be expressed in a Taylor series as:

x(t)=ho+ [ R Of (¢ -ri)dri+ [ [ha(ry, 1 (¢ - 1) x(t - 1)drydry + (123)
f f fhs(fx T2, T3 (T = X (l - 13)X (f - ry)dridrydrg + ...

In this equation, A,(r,...r,) are terms which are referred to as the Volterra Kernals which represent
the higher order characteristic terms of a nonlinear system. As a linear time-invariant system is
completely characterized by its unit impulse response, so a nonlinear system, which can be
represented by a Volterra series, is completely characterized by its Volterra Kernals.

By taking the Fourier transform of Equation 123, the series can be represented in the frequency
domain as;
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Xowy s wy, .. wy) =Hy(wy , wp, .. .wo)F (w)F (wg).. . F(w,) (124)

This equation indicates that by using the higher order calculated frequency response functions,
nonlinear systems can be identified and characterized. Because the Volterra equation is a Taylor
series, it has several limitations. One problem is the convergence of the Volterra series. Another
limitation is encountered in determining the maximum number of terms required in the Volterra
expansion.

The Wiener functional series, an alternative functional series, can be written as:

x() = § fg,‘(rl s T2 TH(fist -1, 012, ..t - )M dry. . . dr, (125)

n=0 (n)

TG

A system of a certain general class is characterized by a set of functions called Wiener kernals which

®
are determined by analyzing the system response to a white Gaussian time function. In Wiener’s S
technique, the coefficients of an orthogonal expansion of the Wiener kernels are determined. This :
leads to the general Wiener model. The Wiener theory is limited to system characterizations with ::.
non-white Gaussian inputs and several non-Gaussian waveforms. Wiener eliminated the limitations LG
that are present in the Volterra series by forming the orthogonal set of functions. The advantage of \\:.{-
this form is that the estimates of the kernal functions can be obtained by a correlation technique. ®
This method utilizes the orthogonality of the Hermite functions when the excitation is gaussian white S

noise <
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7.4.7 Bispectral Analysis

AL RN

In the classical linear spectral analysis, only the statistical relationships between the auto and cross
spectra are used in the analysis. The first extension of the linear spectral analysis to higher order
investigations is bispectral analysis. This method is utilized as a technique of detecting quadratic
nonlinearities. The advantage of this higher order investigation is that it is able to measure the extent
of statistical dependency of various combinations of three spectral components. Because of this, the
bispectral technique has proven very useful in the nonlinear study of vibrations.
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The cross bispectrum (C.B.S.) is one type of bispectrum which evaluates the quadratic statistical

relationship among three spectral components. Mathematically, the cross bispectrum can be
expressed as:
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B.(w; , wp) = <X (0 )X (w)U" (w3)> (126)

where:
W +up =Wy

The relationship, w, +wy = wy denotes that the interaction of two complex spectral components
generates a third spectral component. In this spectrum, a peak is present when the spectral
components, X (w;) and X (w;), are statistically dependent on U(ws). The height of the peak is
dependent on the amplitude of the three spectral components. Because of this dependency, a
normalized measurement of the statistical dependency is required which is independent of the spectra
component’s amplitude. This normalized measure is referred to a the cross bicoherence squared
(C.B.C.) and is mathematically defined as:

| Bo(wy , ur)|?
< | X (@)X (wp) |2><|Uws) 2>

b2(w , wg) = (127)

When complete statistical dependency exist between U (w3), X (w;) and X (wg), the cross bicoherence
squared will equal unity. If there is no dependency at all the C.B.C. is equal to zero.

The bispectrum therefore measures the extent of statistical dependency between those three spectral
components with respect to amplitude. The bicoherence squared is then a normalized measure of the
statistical dependency independent of amplitudes; thus, peaks in the spectrum will exist even though
the spectral amplitudes are small, if there is significant statistical dependency (77-80} Figure 81 shows
the sensitivity of the cross bispectrum to quadratic nonlinearities.

7.5 Nonlinearities and Multiple Inputs

7.5.1 The Multiple Input Estimation Technique

Because of the Gaussian probability distribution of the random signal, nonlinearities are difficult to
detect through conventional detection methods. When using a deterministic excitation, such as in a
slow swept sine signal, nonlinearities can be detected by varying the force level and comparing the
frequency response functions. When nonlinearities are present, the frequency response functions
obtained will be different, because the force amplitude is not constant throughout the frequency
range. To investigate a method for the detection of nonlinearities through the use of a random
excitation signal coupled with the multiple inputs, one should review the multiple input theory as
described by the Structural Dynamics Research Laboratory at the University of Cincinnati
(18,30.33.43.48] Section S is a compiete presentation of multiple input theory.
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Figure 81. Cross Bispectrum Plot

7.5.2 Higher Order Function Estimates

In most typical mechanical systems, the response which is due to a given excitation is dictated by both
linear and nonlinear mechanisms. In many cases, the linear response dominates over the nonlinear

.)‘Ij- Seele A Y ‘.I“.I"n".';:

N
response. The nonlinear response is of a higher order and often is assumed to be negligible. However, '»,\'
. even weak nonlinear terms can be instrumental in the input/output relationship of the system. It is '}.
the intent of this thesis to investigate a procedure for the detection of nonlinearities in structures by ‘.
using higher order frequency response function estimates that are calculated when using multiple )
inputs. “.-_
Consider the case of a single input and a single output measured during a modal test. The system ::
model assumed is: o
Ry
)
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X (w) = H(w)*F(w) + v(w) (128)

where:

X(w) = Spectrum of the output

F(w) = Spectrum of the input

H (w) = Frequency response function of the output with respect to the input
v(w) = Spectrum of the noise component of X not linearly related to F

ey
PO
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If the structure under investigation was a noise-free perfect linear system containing no
nonlinearities, Equation 128 could be reduced to:

3 _JN%

X=HF (129)

As nonlinearities are added to the system, Equation 129 becomes increasingly incorrect. To correct
for these nonlinearities additional higher order terms could be added, as described in Equation 130.

n
X

22

n n L
X=HF+ Y HF*+ Y HF' (130)
k=2 1=2

NG
DARARS

o

This equation should mathematically describe a linear system with any number of nonlinearities.
Because of computer limitations and the mathematical complexities involved, this thesis will
concentrate on the following simplified estimate.

X X s

X=H,F+H,F*+H F3+H F* (131)

>

In this equation, there is only a single input (F) and a single response (X). One could say that the
first term of Equation 131 represents the linear portion of the system, while the following terms
represents a squared, cubic, and quadratic nonlinear ierm. By considering the measured input signal
F, to be one force along with F2, F3, and F* also representing forces, the multiple input theory can be
utilized assuming the forces are uncorrelated. Therefore, four frequency response functions can be
calculated. After mathematically manipulating them, these four frequency response functions can be
normalized and utilized as nonlinearity detection functions.

7.5.3 Research Approach

Because of the difficulty of creating a physical system with a single known nonlinearity, this thesis will ::»‘
. ".
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concentrate on a computer simulated approach to the investigation. The first step is to digitally
simulate a dynamic system, by using the computer program BOSS.

BOSS (Block Oriented System Simulator) is a time sharing FORTRAN 1V program developed for
simulation of dynamic systems by T.R. Comstock of the University of Cincinnati and V.T. Nicolas of
Structural Dynamics Research Corporation. The system to be simulated is described by a series of
blocks similar to those employed in control systems analysis. Since BOSS is capable of solving first
and second order differential equations, the user need not prepare an "analog computer wiring
diagram”. This feature, combined with unique integrating routines and program logic, results in less
time required to define the system, simplified input/output, increased accuracy, and on-line
adjustment of all system parameters and time variables.

BOSS provides the capability of simulating systems requiring up to ninety-nine blocks. Twenty-six
standard linear and nonlinear block types are available. The user may also generate up to six special
block types. BOSS contains an ordering routine that automatically assures that the correct sequence
of calculations will be performed (81]

As input to the BOSS program, a file which contained characteristic properties of a particular system
was created. Upon termination of the BOSS program, an output file which contained the filtered
digital force and response values for the time domain signals were generated. This dual channel, time
domain data was then written to disc. By modifying the existing data acquisition program, the
necessary filtered data was obtained directly from disc. The existing data acquisition program was
modified as to first obtain the simulated force and response signals from the disc in blocks of 1024
digital time points. A Hanning window was then applied to both signals as a corrective measure for
the error, leakage, which smears energy throughout the frequency range. Both the force and response
data blocks were then Fourier transformed. Once the blocks were transformed into the frequency
domain, the simulated force block was squared, cubed, and quadrupled in order to create the
additional input forces. The necessary auto and cross spectra were calculated. These functions were
required to calculate the four frequency response functions and multiple coherence function, utilizing
the multiple input theory. In order to use the frequency response functions as nonlinear detection
functions, each of the functions were first multiplied by its complex conjugate; resulting in individual
response power functions. These functions were then normalized by muitiplying the function by its
corresponding input power spectrum; thus, creating functions which represent the response due to
the four inputs. Individually, the higher order functions were meaningless; however, once normalized
and compared, the functions could be used as nonlinearity detection functions. Schematically, this
process is depicted in Figure 82.

From these functions, one can detect nonlinearities in the test structure. If the structure is linear, the
effect of the higher order terms should be negligible and the estimated higher order detection
functions shouid not be significant when they are overlaid. However, as the nonlinearity in the test
structure increases, the cstimated higher order functions are needed to describe the response of the
nonlinear system. Thus, these normalized higher order functions become more significant as the
nonlinearity in the test structure increases.

7.5.4 Research Application

As was previously discussed, the BOSS program allowed both linear and nonlinear systems to be
simulated digitally. Several different systems with different characteristics were simulated and
compared. Table 4 gives a brief description of each of the systems that were analyzed. For each of
the systems analyzed (Figures 85-110). plots of the normalized nonlinearity detection functions
(top). the real and imaginary parts of the estimated frequency response function due ta the actual
force (middle), and the multiple coherence function were plotted for comparison purposes. Each of
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Figure 82. Process Flow Diagram

these plots are identified by their associated BOSS input file names and are referenced in Table 4.
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File Linear/ Type of Nonlinearity | Excitation | Force Level | Number of | Figure
Nonlinear | Nonlinearity Signal Averages
'BLRA Linear £=00 Random 1000 100 85
BNRA | Nonlinear | Duffing |g=1x10* Random 1000 100 86
BNRC | Nonlinear | Duffing |A=8x10* Random 1000 100 87
BLBA Linear =00 Burst 1000 100 88
BNB100 | Nonlinear | Duffing |A=8x10 Burst 1000 100 89
BLBA Linear B=00 Burst 1000 25 90
BNBA Nonlinear | Duffing |g=1x10* Burst 1000 25 91
BNBB Nonlinear | Duffing |f=6x10* Burst 1000 25 92
BNBC Nonlinear | Duffing |A=8x10* Burst 1000 25 93
BNBD Nonlinear | Duffing |A8=10x 10* Burst 1000 25 94
BLBLF Linear =00 Burst 100 25 95
BNLF1 | Nonlinear | Duffing |g=1x10* Burst 100 25 96
BNLF8 | Nonlinear | Duffing |A=8x10* Burst 100 25 97
BLHFO0 Linear p=00 Burst 5000 25 98
BNHF1 | Nonlinear Duffing | f=1x10* Burst 5000 25 99
BNHF8 | Nonlinear | Duffing |A8=8x10* Burst 5000 25 100
BLK2 Linear € =00 Burst 1000 25 103
BNK21 | Nonlinear | Clearance | eo = 0.0001m Burst 1000 25 104
BNK25 | Nonlinear | Clearance | eo =0.0005m Burst 1000 25 105
BLK2HO | Linear e =00 Burst 5000 25 106
BNK2H1 | Nonlinear | Clearance | ey = 0.0001m Burst 5000 25 107
BNK2HS | Nonlinear | Clearance | eg = 0.0005m Burst 5000 25 108
BNDA | Nonlinear | Damping | c|xx Burst 1000 25 110

TABLE 4. BOSS Input Files

7.5.4.1 Duffing’s Equation Simulated

The first system which was sirnulated was a single degree-cf-freedom system as shown in Figure 83.
In this model, the stiffness is proportional to the displacement cubed as in Duffing’s equation. Figure
84 shows a block diagram of th= BOSS input file for this system. For this simulated system the
following parameters were used.

mass (m) = 5 Kg
damping (c) = 100 N-s/m
stiffness (k) = 150,000 N/m

In this system, B8 represents the amount of nonlinearity; as 8 increases, the amount of nonlinearity in
the model also increases. A linear system of this type has a theoretical resonant frequency at 27.5 Hz.
and a damping value of 5.8 %.

In the initial investigation, the excitation signal was a pure random signal with a multiplication gain of
1000. A constant 100 averages were also taken for the analysis. Three different systems were then
simulated as g equaled 0, 10000, and 80000. As was to be expected, when 8 = 0, a linear case existed
and the normalized detection functions gave no indication of a nonlinearity being present. As 8
increased both the frequency response and multiple coherence functions became more distorted. As
shown in the nonlinearity detection functions, as 8 increases the higher order nonlinear terms better
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Figure 83. Nonlinear Stiffness Model

describe the nonlinear behavior of the system and have a greater effect on the entire response of the
model. Although the nonlinearity simulated was a theoretical cubic nonlinearity, no single higher
order term was dominant in describing the nonlinearity (reference Figures 85, 86, 87).

k ;
N

7.5.5 Effects of Varying Test Parameters N

~

The same model was used to investigate the effect of varying the excitation signal, number of ~

averages, and excitation force level. When the excitation signal was changed from a pure random .
signal to a burst random signal, there was no significant improvement in the quality of the
i measurement for the linear or nonlinear case. The majcr advantage of the burst random signal over
p the pure random signal is the capability of the burst random signal to minimize the "leakage” error.
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Figure 84. BOSS Nonlinear Stiffness Model
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However, when simulating the system, 8 was set to 0 and 80000 to simulate a linear and nonlinear
case. After comparing the burst random functions with the pure random functions, no significant
changes were found (reference Figures 88, 89). After analyzing the synthesized data, decreasing the
number of averages from 100 to 25 had little to no effect on the quality of the measurement in both
the linear and nonlinear cases (reference Figures 90, 91, 92, 93, 94). This is inconsistent with actual
experience which shows that decreasing the number of averages deteriorates the measured functions.
The fact that the measurements did not deteriorate, could indicate that the random generator
within the BOSS program was not creating a pure random signal.

T NN Y YN S S T AL YA Y

However, it should be noted that in physical structures, it is possible to minimize the effect of
noncoherent noise by increasing the number of averages with a type of random excitation. Utilizing a
burst random excitation signal with 25 averages yielded the same results as in the previous nonlinear
system. As 8 was increased the frequency response and multiple coherence functions became more
distorted. As in the random excitation case, the higher order nonlinear terms became more dominant
as the nonlinearity, 8, increased (reference Figures 90, 91, 92, 93, 94).

N

5=

Using the same model, the force level was decreased by a factor of 10. Three systems were simulated _,.
where g equaled 0, 10000, and 80000. In each case, the normalized detection functions indicated a K
linear system; the higher order terms had little to no effect on the synthesized system because of the ;
low force level. Furthermore, none of the frequency response or the multiple coherence functions :-:
demonstrated any distortions. Even though the systems had known nonlinearities, they could be "

represented as linear systems (reference Figures 95, 96, 97). y
Using the same § increment values, the system was simulated at a high force level; 5 times that of the :-'
original level. At this high level, even the linear model (8=0.0) indicated characteristics of a ;.:
nonlinearity being present. The higher order terms became somewhat influential in the system. This N
is most likely due to numerical problems within the BOSS program. As g increased in magnitude, the )

nonlinearity increased and the higher order detection terms became more dominant (reference
Figures 98, 99, 100). -

7.5.6 Dead Zone Gap Simulated

To further investigate the purposed detection technique, another nonlinear system was simulated. As
shown in Figure 101, the nonlinear parameter in this case is the magnitude of the dead zone gap (e,).
As the dead zone increases, the nonlinearity of the system becomes more severe. Figure 102 shows a
block diagram of the BOSS input file for this system. This single degree-of-freedom model used the
following parameters.

mass (m) = 5 Kg
damping (c¢) = 20 N-s/m
stiffness (k) = 75,000 N/m

A linear system of this type has a theoretical resonant frequency at 27.5 Hz. and a damping value of
1.2 %.

Initially, a linear case was analyzed where there was no dead zone gap (e,). As before, the linear
system showed no distortions in the frequency response and multiple coherence functions. The
detection functions gave no indications of any higher order terms being influenced. A dead zone gap
was then introduced at both 10000 m and S0000 m. Again, each of the functions demonstrated that
as the nonlinearity of the system increased, the contribution of the higher order terms also increased
(reference Figures 103, 104, 105).
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Figure 99. Nonlinear Stiffness Model - BNHF1
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Using the same increments for e, the force level was increased by a factor of five. As was previously
demonstrated, at this higher force level the linear case indicated contributions of small nonlinear
higher order terms. As the gap increased, the contribution of the higher order terms became more
significant (reference Figures 106, 107, 108).

W O ,F e

7.5.7 Nonlinear Damping Effects Simulated

TN SN

To evaluate a nonlinear damping system, a single degree-of-freedom model in which the damping is

A proportional to the square of the velocity was generated. In this model, the damping is always
K) opposing the motion of the system and is mathematically expressed as:
l.-
o mi+c |x|k+kx=£f(t) (132)
£
o This model consisted of the following system parameters:
- mass (m) = 5 Kg
b damping (c) = 100 N-s/m
R stiffness (k) = 150,000 N/m
.Y
oy As before, a theoretical linear system of this type has a resonant frequency at 27.5 Hz. and a damping
value of 5.8 %. Figure 109 shows a block diagram of the BOSS input file for this nonlinear system.
\.
- After simulating the nonlinear system, the higher order detection functions indicated that a ;
'-j nonlinearity was present even though the frequency response and multiple coherence functions did d
~ L . . S
" not demonstrate any drastic distortions (reference Figure 110). )
~|
v, .
- 7.5.8 Two Degree of System Simulated '
. t
f
S As an alternative to evaluating a system simulated by the BOSS program, a Hewlett Packard
Mechanical Transfer Function Simulator (HP 05423-60002) was used to generate a linear model. A '
- pure random excitation signal was utilized as the input signal to the function simulator. The simulator
N was then able to generate a linear two degree-of-freedom response signal. At this point, the modified
T data acquisition program was used to generate the nonlinear detection functions; however, the time
. domain input and response signals were obtained as "real time” data from the function simulator.
Once calculated, the nonlinear detection functions indicated the presence of a type of nonlinearity at
| ": the resonant frequencies. However, the frequency response and multiple coherence functions did not b
" demonstrate any nonlinear distortions (reference Figure 111). This seems to be an inconsistency with '.
_ the linear function simulator and should be further researched. {
v As a second evaluation, the force level was increased and a new set of functions were calculated. The
increased force level made the higher order terms of the detection functions become more dominate.
Y Although, the frequency response and coherence functions remained unchanged; implying a linear
u’.‘ system exist (reference Figure 112).
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7.5.9 Application to Physical Systems ‘._
oy
<
)
Two physical structures were used to evaluate this detection method. The first structure was a .:
modified body-in-white in which the rear of the vehicle was removed from the "B” pillars and the Y
floor was removed up to the "A" pillar section joints. This modified structure is referred to as a ;
“buck”. The second structure evaluated was a 1986 Jeep in which the front and rear suspensions were Pl
removed. A single electrodynamic shaker was attached to the front rail through a stinger . by
configuration. A load cell which measured the input force was attached between the stinger and the L,
rail. An accelerometer, which measured the response of the structure, was located at the excitation ‘.,
point in the excitation direction. These two signals were then used as inputs to the data acquisition ] \&"
program. A pure random excitation signal was used to excite the structure at three different force s
levels, 2.5, 5, and 10 Ibs. rms. o
At each of these force levels, four nonlinear detection functions were calculated along with the .
‘ frequency response and multiple coherence functions. In each of the three different detection plots, N
) the higher order terms are represented at a constant level except in two ranges. At the ranges 0-10 :
b Hz. and 20-30 Hz., the plots indicate peaks in the higher order nonlinear terms. The only significant ~
difference in the frequency response functions at the different force levels occurs at 20-30 Hz. In this -
range, the resonant frequencies not only show a change in amplitude but also a frequency shift which RS
! could indicate nonlinear behavior (reference Figures 113, 114, 115). ’
oy
As was the case in the "buck” test, a single electrodynamic shaker was attached to the front rail of the P
Jeep through a stinger configuration. A pure random excitation signal was used to excite the ~H
structure at three different force levels, 5, 10, and 15 Ibs. rms. A load cell measured the input force
while an accelerometer measured the response at the driving point in the excitation direction. These AN
two signals were then used as “real time" inputs t~ the modified data acquisition program. ’
!
At each of the different force levels, four nonlinear detection functions were calculated; which is a o
. . . . . . . LY
single linear function and three nonlinear functions. The linear frequency response and multiple \r)
coherence functions were 'also calculated for each force level. Again, the nonlinear higher order :
functions remained at a somewhat constant amplitude except in several frequency ranges. In each of v
the three different nonlinear detection plots, peaks in the nonlinear higher order functions were !\.
) found at 4-6 Hz, 15-21 Hz, and 24-32 Hz. After comparing the calculated frequency response -~
4 functions, for each of the different force levels, the peaks in the nonlinear detection functions o
corresponded to resonant frequencies. At approximately 28 Hz., the frequency response functions 'Q
; demonstrated not only a change in amplitude but also a shift in the resonant frequency which ; :
b indicates nonlinear behavior (reference Figures 116, 117, 118). W
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7.6 CONCLUSIONS AND RECOMMENDATIONS ,
U

It is apparent that in physical mechanical systems, there exist a linear and nonlinear response due to '
some force input. In many cases, this nonlinear behavior can be neglected. However, in other cases, )
the nonlinear response cannot be ignored. It is and has been essential to perform some type of A
linearity check in order to make this evaluation. As the use of dynamic models based on experimental :
data becomes more extensive, the detection and eventually the characterization of noniinearities &
becomes even more important. z d

The initial presented work provides several nonlinearity detection methods which are currently being .
implemented. Each of these different techniques has certain limitations which effect the accuracy of :
b the detection method. As an alternative detection method, this work researched the possibility of N
detecting nonlinearities by utilizing higher order terms in conjunction with the multiple input/output : g
estimation theory. By using higher order terms of a measured input force, the nonlinear behavior of &
a system can be detected. This alternative technique was researched as a fast and valid method to give '
an indication of the linearity of a system when implementing a random type of excitation signal. :\.
..l
This research demonstrated that for a theoretical single degree-of-freedom system, as the amount of ',', ;
nonlinearity increases, the nonlinear detection functions become more predominant. This preliminary N
study indicates that this nonlinear detection technique is sensitive to different types of nonlinearities ™
if the correct number of higher order nonlinear terms are utilized. Further research is needed to '
determine the actual number of higher order terms necessary to accurately model a particular -1
nonlinear system. To further validate this detection technique, the frequency response functions ,‘
which are estimated utilizing the multiple input theory should be compared to the frequency response -
functions estimated by a single input/output algorithm. Although initial investigations demonstrated -
that the utilized forces were uncorrelated in the frequency domain, additional research is needed to S
study the relationship between these forces. As in most cases, this detection method is only valid for -
the measured response and input force points; it is still necessary to check several critical points of t
the structure for linearity and then assume the entire system behaves accordingly. The higher order %
detection technique does however eliminate having to perform a linearity check at different force 3
levels for comparison purposes. The technique will give an indication of the amount of nonlinearity ; .
present in the structure at a particular force level. Further research is needed to evaluate an »

acceptable level at which linearity within the system can be assumed. .
-,
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Nomenclature
Matrix Notation

{-} braces enclose column vector expressions

.y oW vector expressions

(-] brackets enclose matrix expressions

[..]% complex conjugate transpose, or Hermitian transpose, of a matrix
[-]7

[..]* inverse of a matrix

[.-1 generalized inverse (pseudoinverse)

[-]q xp size of a matrix: q rows, p columns

[-] diagonal matrix

Operator Notation

complex conjugate

F Fourier transform
F! inverse Fourier transform
H Hilbert transform
H? inverse Hilbert transform
In natural logrithm
L Laplace transform
Lt inverse Laplace transform
Re +jIm complex number: real part "Re", imaginary part "Im"
X first derivative with respect to time of dependent variable x
x second derivative with respect to time of dependent variable x
y mean value of y
y estimated value of y
Y A B; : ‘
iz1 summation of 4; B; fromi=1ton
a
at partial derivative with respect to independent variable "t"
det[..] determinant of a matrix
[ ]2 Euclidian norm
Roman Alphabet
Aper residue for response location p, reference location q, of mode r
C damping
COH ordinary coherence functiont
COH, ordinary coherence function between any signal i and any signal kt
COH"™ conditioned partial coherencet
e base e (2.71828...)
F input force
F, spectrum of g referencet
GFF auto power spectrum of referencet
GFF,, auto power spectrum of reference gt
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GFFy cross power spectrum of reference i and reference kt
|GFFX) reference power spectrum matrix augmented with the response/reference cross
power spectrum vector for use in Gauss elimination
GXF cross power spectrum of response/referencet
GXX auto power spectrum of responset
GXX,, auto power spectrum of response pt
h(t) impulse response functiont
hpe (1) impulse response function for response location p, reference location q t
H(s) transfer functiont
H (w) frequency response function, when no ambiguity exist, H is used instead of H (w)!
Hpg(w) frequency response function for response location p, reference location g, when no
ambiguity exist, H,, is used instead of H, (w)!
Hy(w) frequency response function estimate with noise assumed on the response, when no
ambiguity exist, H, is used instead of H { (w)t
Ha(w) frequency response function estimate with noise assumed on the reference, when no
ambiguity exist, H, is used instead of H,(w)t
Hgs(w) scaled frequency response function estimate, when no ambiguity exist, Hg is used
instead of Hg(w)t
H,(w) frequency response function estimate with noise assumed on both reference and
response, when no ambiguity exist, H, is used instead of H,(w)!
[7} identity matrix
j V-1
K stiffness
L modal participation factor
M mass
M, modal mass for mode r
MCOH multiple coherence functiont
N number of modes
N; number of references (inputs)
N, number of responses (outputs)
» output, or response point (subscript)
p input, or reference point (subscript)
r mode number (subscript)
R; residual inertia
RFr residual flexibility
s Laplace domain variable
t independent variable of time (sec)
L discrete value of time (sec)
te =k At
T sample period
x displacement in physical coordinates
X response
Xy spectrum of p® responset
z Z domain variable
Greek Alphabet
8(1) Dirac impulse function
Af discrete interval of frequency (Hertz or cycles/sec)
At discrete interval of sample time (sec)
€ small number
n noise on the output
-202-
e e it e e o T e N N AN G N e N ™ NN

I T U e ]

¢
AR U AR

A

P et e ™
e %

« - .

=
.

PR S
) [N AL

A

T PRSP T AN

{‘l‘ - ‘: ': - "‘

4



-

at ddaWurN ¥, LAY - g W . ¥

r* complex eigenvalue, or system pole

A' =af + jwf

diagonal matrix of poles in Laplace domain

noise on the input
variable of frequency (rad/sec)

imaginary part of the system pole, or damped natural frequency, for mode r

(rad/sec)

w =0,V 1'§r2

undamped natural frequency (rad/sec)

n': \7 0,2"’(41'2

scaled p* response of normal modal vector for mode r

scaled normal modal vector for mode r
scaled normal modal vector matrix
scaled eigenvector

scaled p# response of a complex modal vector for mode r

scaled complex modal vector for mode r
scaled complex modal vector matrix
variable of damping (rad/sec)

real part of the system pole, or damping factor, for mode r

damping ratio
damping ratio for mode r

vector implied by definition of function
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Appendix A: Least Squares Method

v .

.

A.1 Least Squares Method

The process of determination of a mathematical model for a group of variables is known as the

parameter estimation process. One of the more popular approaches used in parameter estimation is
the Least Squares Method.

-
W
o
1Y
§

In its simplest form the least squares method will be illustrated in this section. Suppose that the

relationship between two group of variables x and y can be best described by the equation of a
straight line:

y=a,x+a, (A1)

One could arbitrarily choose two sets of x and y quantities and solve for the two unknown parameters
a, and a, . Yet, the line constructed by the computed @, and a4 parameters might not pass
through some sets of x and y, since the information associated with those points were not used in
computing @, and a,.
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Figure 119. Straight Lines Fitting the Data 5
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The reasons for all the points not being located on one straight line could be:

w

o Errors in data set '.'_:

N

« Inaccurate model for the data set. N

: The least squares criterion requires that the sum of the squares of the deviations separating the data ~.
points from the curve will be minimum. These deviations are simply the difference between the

estimated values of y ( hereafter denoted by y,) from Eq. (A1) and the actual measured values of N

y (y,). In other words, the deviations are the errors associated with the value of y predicted by the -

model and the actual measured data. The least squares method approach will use information -

associated with all of the x and y sets, to determine the "best" estimates of a, and a,. N

N 2 N 12 N 2 )

E=T e -3 53] =T [n-(aixeaq] (A2) N

1 r=1 r=1 g

N

Minimization of error, Eq. (A2), with respect to @; and a, results in the following equations which Q

are called the normal equations for the least squares problem: A

b

A-1 .
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£ oyaly, 4 =0 A3 :
2o, " E 2y (en o Ay .

OE EZ[y, 011+ao)” 1] 0 (A4) !
day
d
Equations (A3) and (A4) can be solved for the unknown parameters @, and a,. ¢
v
N N N .
Ras 3
r=1 r=l r=i
T v (8 ) (A3) 2
NYx2-[Tx N
r=1 r=t »
e
N N N N -
r=1 r=1 r=1 r=1
ao= N N 2 (A6) :
NY x? -[2 x,] 3
r=1 =1 ) Ky
The a, and aq values computed from Egs. (AS) and (A6) represent the characteristics of a straight
line which would "best” describe the x and y sets of values. K
e .
Similarly, one could compute @, and @, parameters with the criterion that the sum of the square of ::
errors in the x (¢, ) would be minimum. Another approach could be the minimization of the sum of "
the square of errors in thex and y (e, ). »
<
-
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- Figure 120. Errors in Least Squares Estimation §
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The least squares problem can be formulated in matrix notation as: .
"
{¥}=[X]{4} (A7) Iy
’
r
;: s
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where, (M
Y2

M=t -

N

The equations presented by matrix Eq. (A7) are in general a set of inconsistent and overdetermined
equations. Inconsistent, since it is not usually possible to find {A} that would satisfy all the individual
equations of Eq. (A7), and overdetermined, since the number of equations is larger than the number
of unknowns. The least square solution of Eq. (A7) is:

(XT{Y} = [XTT[X]{A} (A8)
and solving for unknown vector {A}
(4) - (X (A9)

provided that ([X JT{X])? exists. In the case that the inverse of ([X F[X]) does not exist, one could
use numerical techniques to solve for vector {A}.

In a more general case where matrices A, X, and Y are complex valued, the transpose notation, T,
must be replaced with hermitian notation, H, in Eqgs. (A8) and (A9). Where the hermitian operator,
H, is the complex conjugate transpose. Hence, the unknown vector {A} is given by:

(4= (e (A10)

Individual equations in matrix Eq. (A7) could be multiplied by a weighting factor to give that
equation more or less weight in the computation. The weighting factors could be presented in form
of a diagonal (NxN) matrix, W. The diagonal element in row i represents the weighting factor
corresponding to equation i, and the off diagonal terms are all zero. Matrix W is pre-multiplied to
both sides of Eq. (A7):

[Wi{Y} = [W][X]{4} (A11)
where,
w, 0 . 0
=)l
0 0 . wy

Solving for vector {A}in Eq. (A11):

(A} = (P X wEm Y (A12)
In general the relationship of Eq. (1.1) could be in the form of:

y=ayx vay "'+ - ra,x+a, (A13)

A set of equations similar to the formulation above could be written and solved to obtain the least
squares estimation of unknown parametersay , ay., , .., a; , dq.

The least squares method stated above could easily be extended to problems involving more than one
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independent variable. For example, z could be expressed in terms of x and y:
Z=Aaay+a,X +d,y (A14)

The corresponding normal equations for the least squares problem of Eq. (A14) are:

o= Lofe{er, ] 0
2 - oferfaar, +arx, vad[x] -0 a1
2 - 2fer(ary, raur,+ad[] -0 (A1)

Equations (A15) - (A17) can be solved for the unknown parameters a5 , 4, , and a4. The computed
values a3 , 4, , and a4 represent the characteristics of a plane which would "best” describe thex ,y,
and z sets of values.

The above theory and formulation could be expanded to least squares estimation of a surface and
eventually to higher order dimensions.

A.2 Correlation Coefficient

The "goodness” of the least squares estimation process is measured by the coefficient of
correlation parameter which is defined in terms of fotal variation and explained variation. The total

N
variation of y is defined as 33( y,-¥ )%, which is the sum of the squares of the deviations of y, from the
r=1

N

mean value,y. Total variation consists of two parts: (1) the explained variation, Y3(¥,-¥)?; and (2)
N =1

the unexplained variation, 33(y,- ,)®. The terms explained variation and unexplained variation are
'.:1

used to denote the fact that the deviations y,-y have a definite pattern, while, the deviations y,- y, are

random and unpredictable.

< e <

— . . -
} unexplained variation =y, - y,
P } explained variation = y, -y

total variation = unexp. var. + exp.var. =y, -y

A
|
|
|
|
!
|
|
|
|
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Figure 121. Variations in Data
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Therefore, the coefficient of correlation 42, is defined as:

N
T(-7y)?
—_— (A18)
TO-¥)

=

The magnitude of 42 varies between 0 and 1. A value of 0 indicates no correlation between
dependent and independent variable(s), while a value of 1 indicates perfect correlation.

It should be pointed out that the coefficient of correlation computed for a set of data and a assumed
model, only indicates the relationship of data based on the assumed model. That is, the coefficient of

correlation measures the degree to which the assumed model describes the relationship for a set of
data

A.3 Examples

A.3.1 Example 1

For the data given in Table 5 and the assumed model equation:

y=ayx+ao (A19)
65 63 67 64 68 62 70 66 68 67 69 71
68 66 68 65 69 66 68 65 71 67 68 70
TABLE §. x and y Values for Least Squares Fit
a) Find the least squares solution of @; and a,.
b) Find the coefficient of correlation.
Solution:
a) The following normal equations must be solved for @, and a4
N N
aON+aler=EYr (AZO)
N =y =y
@Y r+a,yx =Y xy, (A21)
r=1 r=1 r=1
substituting the appropriate terms in Egs. (A20) and (A21):
12a4 + 800a, = 811
800aq + 534184, = 54107
from which we find @, = 0.476 and a¢ = 35.82 or
y=0476x + 35.82 (A22)
A-S
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Figure 122. Least Squares Fit of Data

N
b) Explained variation = ¥3(,-¥)? = 19.22

_
N
Total variation = (y,-¥)? =3892
r=1
.. . 19.22
=q2= =(0.7027
Coefficient of correlation =+ 3892 0.702

A.3.2 Example 2

Given the model for the sampled impulse response function between two points on a
structure as,

2N
h(te) = 3 A’ 4 (A23)
r=1
where,
=07 1721 ot 12N

At = value of time subinterval
1, = kAt
and the known pole information Ar, formulate the least squares solution of estimating the residues,
A,.
Solution:
For simplicity and conciseness let,

ArdAte
z,=¢"
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l:' and therefore Eq. (A23) can be rewritten as,
K2 -
h(t) = ¥ AZ (A24)
N '=‘
b3
/ expanding Eq. (A24) for time values of £ to f,y_; will result in the following 2N equations
d
' h(to) =A, +Agz+- -+ Ay
h(t))=A,21 +Az23 +° -+ Ay 2oy
"~ h(tz)=A 28+ Az 25+ -+ Agy 23y
. (A25)
)
i}
- Pltana) = Ay 2380+ A 28V v Agy 23N
v presenting the 2N equations of Eq. (A25) in matrix form gives,
o
e
& 1 1 .1 A h(ty)
b Z Z; . Zyy ! h(ty)
< 2 2 2 Az| _
¥ zZy 23 . 2N TrEq h(g) (A26)
R . . . . A .
: 20 2 UM h(tae
< or,
N
' [21{4}={h} .
::: Solving Eq. (A26) with more than 2N rows for vector {A} will result in the least squares solution of
. the residues.
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Appendix B: Singular Value Decomposition

B.1 Singular Value Decomposition

The singular value decomposition will decompose a matrix into the simplest possible form, that being
diagonal. This decomposition will always be possible regardless of the rank, or dimension, of the
matrixll],

Consider the right and left eigenvectors of the m x n matrix [ A ], which is of rank k.
[A}{v}={u}o (B1)
[41¥{u}={v}o (B2)

where:
o {u} = m x 1 left singular vector
« {v} = n x 1 night singular vector

« o = scalar singular value

By substituting Eq. (B1) into Eq. (B2) for {u}, the right singular vectors can be determined from:
(M) [A]{v}={v}o? (B3)
| [A1F[A]-0%[1] ]| =0

where:

o i=1—k a"-2 >()
ei=k+l—=n o?=0
e [V]=[{vh {v}:2 {v)s - {v}.]right singular unitary matrix.

By substituting Eq. (B2) into Eq. (B1) for {v}, the left singular vectors can be determined from:
[A)[A ) {u}={u}o? (B4)
| [A1[A)-0[1]] =0

where:

ei=1—k 02>0
eli=k+l—m 0.'2‘—'0

e [U)=[{uh {u}2 {uls -+ {u}n]!left singular unitary matrix.
If the eigenvector matrices (U ] and [ V'] are unitary ((U ] = [U]* and [V }¥ = [V ]?). that is, both
columns and rows form an orthonormal set, the linear transformation will preserve both angles and
lengths. Interpreted geometrically, linear transformations defined by unitary matrices behave like

simple rotations in space. The matrix [ 4 ], can now be decomposed into diagonal form by appending
the eigenvector matrices to Eq. (B1) and premultiplying by [ U ]¥, forming the matrix product:

B-1

sl 'f_'f\;J‘N-'v,,.I.‘._-'

% *w

v
.

»
4

r
»
7
P

Fanl

s

=
.

PRI

PRI ARI

NASD

'
P Y e g )

i
SRR



R T T T N T N P s T T TR T I N T I T T T ST IO K IR )5 A M It et Rt el b AR R Ah A

a a 8.0 L ¢ f

{u}#
(S1=[UPEA][V]= (| [{uhor - {uheor {Oha - {O)] . (BS)

{u}t

Using the unitary matrix property, [U J¥ [U ] =1 ], the right hand side can be further simplified as:

ey 0 0 -+ 0 1
0 oo 0o --- 0 [0]
(S1=[UF[A}[V]= (:) (-.) ” 0 =”EJ [0”. (B6)
0 0 0 - o 0] ([0
0T T T (D)

Thus, the origonal matrix, [ A ], is decomposed into the matrix [ S ], with the singular values on the
diagonal, by the unitary matrices [U ] and [V ].

Then the singular value decomposition of [ 4 ] is defined by:
[41=1U1STIVIF (B7)

Noting the partitioning of the matrix [ S ] of Eq. (B6), the unitary transformation matrices [U | and
[ V'] can be partitioned in the same way to yield:

H

Lar-tonsive = [ we] (B IS (®8)
Thus, the singular value decomposition of [A ] can be further reduced to:

(Al=[ULTZI V] (B9)

where:
e U], = left singular submatrix of size m x k
» [£] = diagonal singular value matrix of size k xk

o [V ¥ = right singular submatrix of size k x n.

The (Moore-Penrose) gencralized inverse (pseudoinverse) (13, [A4 |*, of [4 ] is:
1
|A1*=|V1[fﬁ{, HH]IUI"=[V]1IEJ"IUH’ .

where:
o [ A =nxmgeneralized inverse of [ A4 |
e | V], = right singular submatrix of size n x k.
o [ = inverse of diagonal singular value matrix of size k x k

o [UH = teft singular submatrix of size k x m.
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