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Summary

This report describes the work done during the period 1st April 1998 - 30th September 1998 for the

EOARD contract F61775-98-WE012 on Improved Flight Flutter Testing Excitation Techniques.

Strategies. A number of improved swept sine ('Chirp') and random excitation signals are

developed and demonstrated to be superior to conventional linear sweeps and minimum crest

factor random signals.
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1. Introduction

The vibration behaviour of an aircraft in flight is governed by the science of aeroelasticity [1], i.e. the

interaction of the aerodynamic, inertial and elastic forces. There are a number of undesirable

aeroelastic phenomena, and the most dangerous of these is flutter, which manifests itself as a

violent unstable oscillation that often results in structural failure. Flutter has been the cause of

numerous fatal accidents since it was first observed on a Handley Page 0/400 biplane in 1916 [2].

Current aircraft designs undergo sophisticated aeroelastic analysis, often coupled with wind tunnel

tests, to ensure that flutter does not occur within the desired flight envelope. However, testing in

flight is still required to validate the theoretical predictions and to ensure that the aircraft remains

flutter free throughout the desired flight envelope. Such a test procedure is known as flight flutter

testing.

Flight flutter testing is a critical step in the development of a prototype aircraft. The procedure to

ensure a flutter free flight envelope is difficult, as discussed later, and flutter incidents still occur.

Future aircraft designs that are lighter, more flexible and involve smart technologies are likely to

place an even greater reliance on this part of the aircraft development procedure. Improvements in

testing methodologies are still required in order to enhance the safety and efficiency of the process.

Essentially, the flight flutter test procedure consists of performing vibration tests in flight and tracking

the estimated frequencies and damping values against speed or Mach number. There are three

key stages:

1. at a constant flight condition the aircraft is excited in some manner (pilot induced inputs, control

surface excitation via the flight control system, aerodynamic vanes, explosive devices, turbulence,

etc.) and the response measured (usually with accelerometers) at various points on the structure.

2. the measured input and output data is curve-fitted, in either the time or frequency domains, using

system identification algorithms in order to estimate the natural frequencies and damping ratios at

that particular flight condition [3].

3. the decision is made to move to the next flight test point, based upon the estimated parameters, the

trends of the damping ratios against speed or Mach number. Extrapolation methods are often used

to predict the onset of flutter based upon the experimental results [3].

It is essential that the testing and curve-fitting is made as accurate as possible to enable a safe

flutter clearance programme in as few flights as possible. It is the damping of the aircraft that is of

greatest interest, however, this is the parameter that is most susceptible to experimental errors and

corruption of the measured data. There are a number of difficulties that occur in flight flutter testing

that lead to corruption of the measured data. The main problems are:

1. difficulties in providing adequate excitation - there are a limited number of ways of exciting the

aircraft in flight
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2. a limited number of response measurements - it is usual to use far fewer measurement channels

(16-32) in flight compared to the corresponding ground vibration test (500 - 1500 channels).

3. noise, in particular due to turbulence - this becomes a greater problem at the edges of the flight

envelope which is the most crucial part of the test procedure where good quality data is essential.

The combination of the above problems, along with the fact that an aircraft is a complex structure

possessing multiple modes with close natural frequencies, means that the curve-fitting process is

difficult. There can often be problems in identifying all of the required modes with a great deal of

confidence and hence determining whether it is safe to proceed to the next test point. Many flights

are therefore necessary for the flutter test clearance, particularly where multiple store cases need to

be considered. The cost of such tests can be as much as $50k per flight test hour, and so it is

highly desirable to develop improved testing methods that not only provide for safer testing, but also

enable the number of flights to be reduced, thereby making a substantial saving of time and money.

The USAF is interested in improving their flight flutter test capability for the certification of new

weapon systems on the F-1 6 and F-1 5, as well as the future flutter clearance of the F-22.

A primary target area for improvement in flight flutter testing is the quality of the excitation applied to

the aircraft. Excitation signals derived specifically for a given aircraft type or set of test conditions

will improve the quality of both the measured input and response signals. The quality of response

data may be simply evaluated in terms of the noise-to-signal ratio, NSR, defined as

RMS noise levelNSR = (1)
RMS signal level

where RMS denotes the root-mean-square amplitude of the time-domain signal. Clearly,

maximising the NSR of the measured signals will improve the quality of the modal parameters

ultimately calculated.

Previous work has been undertaken in the optimisation of random input signals through the

reduction of the crest factor [4]. However, no consideration has been given to the implications of

these signals on the rate and/or amplitude requirements of the actuators, or the effect on the crest

factor and NSR of the response signal. Similarly, applications of sine sweeps for flight flutter

testing have used conventional linear or logarithmic sweeps. In this work, the optimisation of both

random and sine sweep signals will be considered for flight flutter testing, and in particular,

improvements will be made to take account of rate, amplitude and other practical requirements

relevant to flight flutter testing.
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2. Optimal Sweep Excitation

2.1 Simple Sweep Signals

Frequency sweep or 'chirp' signals are the most popular form of continuous excitation used in

vibration testing, and are particularly common in flight flutter testing. A chirp is a continuous signal

whose frequency varies in some manner with time. As a result, the signal can contain power across

a range of frequencies. A general chirp is defined by the expression

x(t) = a(t) sin J2zf(t) dt (2)

where both the frequency and the amplitude level may be varied with time. Although it is normal to

increase frequency with time (sweep 'up'), it is equally possible to sweep 'down' in frequency. It

should be noted that a sweep 'up' immediately followed by a sweep 'down' should not be used as

an excitation signal in vibration testing. This type of input, used by some flight test practitioners, can

result in a power spectrum with zero values at certain frequencies due to cancellation of parts of the

sweep 'up' section by the sweep 'down' section with opposing phases [5]

2.1.1 Linear Chirp

The single section linear chirp is the simplest broadband excitation signal. The initial and final

frequencies must be specified, along with the total duration of the signal and the amplitude level.

The frequency of excitation is then varied linearly with time, such that

f= f - t = fl + at (3)

With reference to equations (2) and (3), the linear chirp is given by

x(t) = a sinK2I{T[t + at2 (4)

Although it is guaranteed that the chirp will start with a value of zero, there is no guarantee that the

signal will end at zero. Therefore, the signal will, generally, be non-periodic and thus violate the

requirements of the Fourier transform in subsequent analyses. In cases where only a single chirp is

used as an input during vibration testing, a windowing function, such as a Hanning window, may be

applied to ensure periodicity. Alternatively. a burst chirp signal may be employed where the chirp

only occupies a fraction of the total time window, say 75%. In this case, the system response is
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given time to decay to zero before the end of the time window and periodicity of both the input and

response signals is ensured.

If it is required to use a continuous sequence made up of a number of chirps, neither windowing nor

burst chirps are suitable. Instead, the chirp defined in equation (4) is extended at a constant sweep

rate until it next crosses zero with a positive slope, and then is terminated. A sequence of such

chirps will then follow a continuous variation, although the slope will be discontinuous at the joins.

Clearly, the initial definition of the chirp has been compromised in that the final frequency has been

changed to extend the signal. However, this is deemed a small price to pay for the avoidance of the

leakage errors resulting from non-periodic signals. An additional point should be noted when the

input signals are defined digitally, as opposed to in an analogue sense, for input into digital-to-

analogue conversion (DAC) units. In this case, continuity of the sequence of signals can only be

maintained if the final point of each chirp is negative, rather than non-zero, to match the zero first

point of the next chirp section. The final point of the combined sequence, however, should be set to

zero to ensure overall periodicity of the signal.

In this work, all chirp signals will be defined digitally and the above methods for ensuring continuity

and periodicity of the final signal.

2.1.2 Logarithmic Chirp

The second class of chirp signals is the 'logarithmic chirp'. In this case, the sweep rate increases

(or decreases) exponentially with time, giving a frequency variation of

f = f expI{In f--2 t = f exp(at) (5)

This time-dependent frequency variation results in a signal defined by

x(t) = asin(2 t{exp(at)- 1}' (6)
Sa 1)

Clearly, as for the linear chirp, there is no guarantee that the signal will be periodic within its time

window. In cases where sequences of logarithmic chirps are to be used end-to-end, it will again be

necessary to alter the length and/or final frequency of the chirp components to ensure continuity in

the resulting signal.

The major perceived benefit of the logarithmic chirp as an excitation signal during vibration testing

is that the same time is spent exciting the structure across the half power bandwidth of any mode

having the same damping ratio. A linear chirp spends proportionally more time exciting modes with
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higher natural frequencies and this may be sub-optimal. The difference between linear and

logarithmic chirp inputs is particularly important is applications such as a flutter testing where the

level of noise can be significant and optimal excitation of all modes is essential.

A simple linear chirp is illustrated in figures 1 and 2, with a simple logarithmic chirp illustrated in

figures 3 and 4. In both cases, the chirp occupies 100% of the available time window, with no

alterations made to ensure periodicity.
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2.2 Multi-section chirps

This type of signal is, as discussed above, a series of simple linear or logarithmic chirps placed

end-to-end with continuity ensured at the joins. By specifying the frequency values at the

breakpoints, certain frequency ranges may be concentrated upon and other swept through

relatively quickly. In this way, simple optimisation of the input signal may be achieved.

Figure 5 shows a simple three section linear chirp, with the frequency variation shown in figure 6.

Figure 7 shows the power spectrum of the input, demonstrating the additional power input in the

central frequency band through the use of a slower frequency sweep rate.
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A further method of customising a chirp input signal is by varying the amplitude levels of the

individual sections. Although continuity of the signal is assured between consecutive chirps of any

positive amplitude levels, switches from large amplitude sections to small amplitude sections (or

vice versa) will lead to significant discontinuities in the differential of the signal which may affect the

response the system under test.

Figure 8 shows a three section linear chirp with variable amplitude levels and the frequency

variation seen previously in figure 6. Continuity of the signal is seen even with the varying amplitude

levels of the three sections. The power spectrum of the three section signal is shown in figure 9.

The effect of extending the individual chirp sections to ensure continuity is shown by the two peaks

on figure 9 at approximately the frequencies of the breakpoints - 4Hz and 7Hz.

It can be seen from figure 9 that the power input across the three frequency bands is more equally

distributed than for the constant amplitude three section chirp. This power distribution has been

achieved by manipulation of the amplitude levels of the three chirp sections for pre-determined

sweep rates and frequency breakpoints. This concept will now be extended to define more flexible

linear chirp signals with any given variations of power and amplitude with frequency.
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2.3 Multi-section amplitude and power variable non-linear chirp

Whilst the multi-section amplitude variable chirps above allow some control over the energy input

within different frequency bands, setting the sweep rates and amplitudes for each chirp section is a

matter of trial and error. A more robust system would allow the user to specify the frequency bands,

amplitude levels and relative power levels required in each band. The sweep rates and chirp

lengths needed to achieve these parameters would then be calculated and a chirp signal derived

that ensured continuity and periodicity in the time-domain.

The multi-section amplitude and power variable non-linear chirp described in this work allows the
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derivation of chirps as described above. In this technique, only the overall chirp length is specified

whilst the amplitude is allowed to vary linearly between frequency breakpoints. A non-linear

frequency sweep rate is required within each section to allow the specified relative powers and

near-linear power variation across each section to be achieved.

A general chirp signal may be expressed as

x(t) = A(co))sin •b(t) (7)

where Ob(t) is the instantaneous phase. For a total time duration of T, the Fourier transform of the

chirp signal is given by

7'1
1 fA(co)sinO 0(t)e"', dt (8)

T0

The autopower spectrum of the chirp is thus given by

p(Ct) = IX(Cf (9)

Thus the aim of this technique is to calculate q5(t) given A(wo) and P(wo). No obvious closed

form analytical solution exists for this problem. Instead an approximation will be used whereby the

frequency range is divided into a large number of small sections of equal frequency interval and a

constant sweep rate is assumed within each section. By calculating the sweep rate and time for

each interval, the entire non-linear chirp may be generated from the individual sections with a

continuous amplitude and rate of change of amplitude. As a first approximation, however, the

sweep rate, power and amplitude of each section may be considered to be constant.

For a typical chirp interval of unknown duration Ti and sweep rate a.i, and known amplitude Ai

and autopower p 1 ,the mean modulus spectrum level for a linear chirp has been evaluated [6], as

Aj •

-vF (10)

For the jh interval, the contribution to the power at the mean frequency is therefore given by
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P - (11)
' 2a

The relative power and amplitude between the j"' and k"l intervals can be determined from the

specification of the chirp. Therefore, using equation (11) it may be seen that

-- 2 (12)

Each of the intervals, by definition, covers an equal frequency increment. Thus the duration of each

interval t1i will be inversely proportional to its sweep rate and it may be seen that

-k 
(13)

ti ak,

Combination of equations (12) and (13) allows the relative time length of each interval to be

expressed in terms of the relative power and amplitude levels. As the total time duration of the

signal T is specified, it may be seen that

N

Nti = T (14)
.J=I

such that

ti 1+ / =T (15)
.J=2 tj

Hence, t1 , and subsequently all t.i, may be estimated from the initial specification using equations

(13) and (15). Finally, using the known start and end frequency of each interval, the corresponding

sweep rates may be found. The required chirp signal is then constructed from the separate chirp

intervals, using the methods described earlier to ensure continuity.
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2.4 Practical Application

It has been shown how a continuous chirp signal may be generated to a specified set of amplitude

levels and relative power levels, and with a pre-defined total time duration. One of the prime

reasons for customising an input signal for use in vibration testing is to ensure that the rate and

amplitude restrictions of the device used to apply the input are not exceeded. Clearly, for a chirp

signal, the time-domain amplitude of the input may be specified in advance and thus need not

exceed any given limits. Using equation (7), it may be seen that the rate of change of the chirp

signal is a cosine function of the instantaneous phase and can therefore also be evaluated and

checked for compliance with the excitation equipment.

The primary reason, then, for customising a chirp input signal is to improve the noise-to-signal ratio

of the response signal on the understanding that this process will improve the final modal

parameter estimates. For a sinusoidal response signal, the best approach to reducing the NSR is to

force the response to occupy a greater proportion of the available data acquisition range. In effect,

frequency regions of low response amplitude should be driven harder to increase the response

levels and resonant regions driven less hard to equalise the response amplitudes across the length

of the signal. However, for a constant sweep rate, this approach implies a low level of power input

in resonant regions and a subsequently poor NSR on the input signal in the critical areas. Instead,

the methodology described above should be used to equalise the power input across the frequency

range by varying the sweep rates of the chirp intervals. An example of this approach is given in the

next section.
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2.5 Simulated Results

Figure 10 shows the Frequency Response Function for a simulated three degree of freedom (DoF)

system with natural frequencies of 10, 15 and 16 Hz. A simple linear chirp between 1 and 25 Hz is

selected for excitation of this system. The unit amplitude chirp is shown in figure 11 with the

corresponding power spectrum shown in figure 12.
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Figure 10 - FRF of simulated three degree of freedom system
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Figure 11 - Linear chirp input signal, unit amplitude

16



-3
x10

1.5

E
cc

a)
0.5

0

0 1'0 15 20 25 30

Frequency (Hz)

Figure 12 - Power spectrum of linear chirp input signal

30

20

E

-10

-20

-30

04 6 8 10
Time (secs)

Figure 13 - Response of system to linear chirp input signal

The response of the system to excitation by the linear chirp signal is shown in figure 13 with the

associated response power spectrum shown in figure 14. The RMS (root-mean-square) values of

the input and response signals are, respectively, 0.7067 and 7.0282.

In order to improve the quality of the parameter estimates resulting from the chirp response data, it

is required to reduce the noise-to-signal ratio of both the input and response signals. It will be

assumed that the response of the structure is to be held to within the amplitude limits of the initial

tests with the linear chirp; scaling of the input signal may be performed at any time to cause the
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response to occupy the available amplitude and/or data acquisition ranges. However, a certain

amount of flexibility will be allowed in the amplitude of the input signal. In essence, it is assumed

that the amplitude of the initial linear chirp was defined as that which would provide the maximum

allowed response amplitude levels. The aim of the analysis is to re-define the input signal, in terms

of amplitude and/or sweep rate, in order to increase both the power input in the important frequency

ranges and the overall noise-to-signal ratios, without exceeding the pre-defined response amplitude

limits. It should be noted that, throughout this report, the dynamic systems under test are assumed

to be linear, such that a doubling of the input amplitude will simply double the response amplitude

at all frequencies of interest.
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Figure 14 - Power spectrum of system response signal

A three-section variable amplitude chirp signal is shown in figure 15. This signal has been defined

as described in the previous sections, with a nominally uniform power distribution across the

frequency range 1 - 25 Hz, but with a linear amplitude variation between the breakpoints. The

signal is defined to sweep quickly through the low frequency range 1 - 8 Hz with a high amplitude

to induce a more significant response level than seen for the original linear chirp. The amplitude is

then reduced through the frequency range 9 - 17 Hz, with a minimum level corresponding to the

modal frequency at 15 Hz. This section of the chirp uses a slower sweep rate to guarantee the

power input in this important frequency range, whilst the low amplitude input ensures that the

overall noise-to-signal ratio of the response signal is minimised. Finally, the chirp increases in

amplitude through the remaining frequency range. The RMS value of the variable amplitude chirp

is 2.3848, more than three times that of the linear chirp, thus implying a threefold reduction in the

input noise-to-signal ratio.

The power spectrum of the three-section chirp input is shown in figure 16. It can be seen that the

linear amplitude variations enforced upon the chirp cause the power spectrum to vary from its initial
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uniform distribution. It is believed that lengthening each of the chirp sections to ensure continuity of

the signal is responsible for the minima in the power spectrum at 8 and 17 Hz. This effect is similar

to that seen during the 'sweep-up /sweep-down' testing approach discussed previously.
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Figure 15 - Three section variable amplitude chirp signal
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The response of the system to the three-section variable amplitude chirp input is shown in figure

17. The RMS value of the response is increased to 9.9343, whilst its maximum value is no greater

than that resulting from the initial linear sweep. For any fixed level of additional noise corruption of
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the data, the noise-to-signal ratio will thus be reduced. The increase in response power at the

important modal frequencies is seen by comparing the response power spectrum for the amplitude

variable chirp input, shown in figure 18, to the original response spectrum in figure 14.
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Figure 17 - System response to variable amplitude chirp signal
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3. Optimal Random Excitation

3.1 Crest Factor Reduction

Random noise signals are commonly used as input signals in a range of vibration testing

applications. However, the nature of such signals means that large positive or negative spikes are

likely to occur somewhere within the signal. In order that all of such signals may be used as

excitation, both the input amplitude and/or data acquisition range will be scaled accordingly. As a

result, the overall noise-to-signal ratio of random signals in real applications is unnecessarily poor.

The crest factor c of a random signal x(t) is defined by

- max(x)- min(x) (16)
2u-,

Here, o., is the standard deviation of x(t) given by

22_f(x-- X) dt (17)

0

where x is the estimated mean of x(t). For a discrete signal, the standard deviation may be

estimated using

1 N 2N- =(- , i - ) (1 8 )

Sometimes the crest factor is defined in terms of the RMS level of the signal rather than the

standard deviation on the assumption of a zero-mean signal. Thus, it may be seen that a signal

with a lower crest factor (reduced or eliminated spikes) will yield a lower noise-to-signal ratio in

practical applications. In this section, a procedure will be described for reducing the crest factor of

any random signal whilst retaining exactly the original power spectrum.

3.1.1 Gerchberg-Saxton Algorithm

The Gerchberg-Saxton algorithm is the most commonly applied technique for crest factor reduction

in random signals.This approach utilises a time-frequency clipping method to determine the optimal

phase distribution for some pre-determined amplitude and frequency content.

The Gerchberg-Saxton algorithm follows the steps illustrated in figure 19. Firstly, the time signal is
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clipped at some level between its peak and RMS amplitudes. In practice, all of the points of the

discrete time signal above the clipping level are reduced to this level. Similarly, those below the

negative clipping level are increased. The optimal level at which to clip the signal has been

considered by a number of researchers. Suggested levels include both fixed and variable

percentages of either the maximum amplitude or the V2 times the RMS level. It is generally

accepted that the signal should be clipped below the required maximum amplitude to aid a rapid

convergence of the algorithm. However, clipping at too low a level can actually result in longer

times to convergence or, in extreme cases, unstable oscillations of the signal between successive

iterations of the algorithm.

Following the clipping of the time-domain signal, the resulting signal is Fourier transformed. A new

frequency-domain signal is then created from the amplitude spectrum of the original signal and the

phase of the clipped signal. The inverse Fourier transform yields the updated time-domain signal

which is clipped at the beginning of the next iteration. The process may be halted when the crest

factor of the signal falls below a pre-specified value or when the reduction of the crest factor is no

longer significant with further iterations (i.e. convergence).

A simple implementation of the Gerchberg-Saxton algorithm Is shown in figures 20 - 22. Figure 20

shows a broadband random signal with a uniform input spectrum, and a crest factor of 3.31.

Application of the Gerchberg-Saxton algorithm causes the crest factor of the signal to drop, as

illustrated in figure 21. The final signal, shown in figure 22, has a crest factor of just 1.49 but with

the same amplitude spectrum as the initial signal. In this case, the crest factor reduction was halted

as soon as a value below 1.5 had been achieved.
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3.1.2 Snowlines

In the previous example, based on the Gerchberg-Saxton algorithm, the initial amplitude spectrum

is re-imposed upon the clipped signal. However, in many applications, only sections of the

frequency range need to be specified exactly, allowing some flexibility in the frequency content of

the final signal for the remaining frequencies. By allowing these non-critical frequency components,

known as 'snowlines', to take other values, it has been seen that crest factor reduction can be

performed more efficiently.

A simple example of the use of snowlines for crest factor reduction involves a band-limited random

signal, as illustrated in figures 23 and 34. The amplitude spectrum is defined to be uniform for the

lower half of the frequency range; the remainder is initially set to zero. However, as the upper

frequency range is non-critical, any values will be accepted this region. The Gerchberg-Saxton

algorithm is then implemented, but with only the lower half of the frequency range reset every

iteration. Figure 25 shows the progress of the algorithm as the crest factor is reduced. The final

signal has a crest factor of 1.47 as compared to the initial value of 3.15, whilst the reduction only

took eight iterations. Although the signals used in this and the previous simulation are different and

cannot be directly compared, the significant reduction in the number of iterations required is typical

of the use of snowlines. The final signal is shown in figures 26 and 27, in which the non-zero

snowlines of the upper frequency range are apparent.

The use of snowlines thus reduces the number of iterations required for a given level of crest factor
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reduction and may be used in situations where only specific frequency regions of the input

spectrum need to be retained. The use of snowlines is more fully investigated in [7]. An interesting

result of this work is that, as the number of non-zero spectral lines is reduced, the resultant time-

domain signals tend towards chirp-like signals. As chirps are sinusoidal, they exhibit the minimum

possible crest factor value of F2/. The implication of this result, then, is that the random signal with

the absolute minimum crest factor is actually a chirp signal whose sweep rate is altered to give the

required amplitude spectrum. Further work in this are is required to integrate the results of chirp and

random signal optimisation.
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Figure 23 - Narrowband random signal
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Figure 24 - Amplitude spectrum of narrowband random signal
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Figure 27 - Amplitude spectrum of crest factor reduced narrowband random signal

3.1.3 Other Considerations

The Gerchberg-Saxton algorithm, and the examples given above, simply take a random signal and

reduce the crest factor, thus tending to reduce the noise-to-signal ratio of the signal in practical

applications. However, if the crest factor reduced signal is to be used as input for the purposes of

vibration testing, other practical factors need to be taken into consideration. Specifically, the

maximum rate and amplitude levels of the excitation device will limit the input signals which may be

applied physically to a structure. Excitation signals which would require higher rate and/or

amplitude levels than are possible with the given device would not be applied correctly. Instead, the

applied force would appear clipped or time-lagged with respect to the input signal, with consequent

distortion of the input frequency characteristics. The second consideration is the noise-to-signal

ratio of the response signal, which is as important as the input signal in terms of the accuracy of the

derived modal parameters. Clearly, however, an input signal with the minimum crest factor will not

lead to a response signal with a similarly low crest factor. In order to optimise the crest factors in

both the input and response signals, the transfer function of the system needs to considered within

a two-stage optimisation process. A similar procedure may be used to account for maximum

amplitude and rate considerations.

In terms of crest factor reduction for both input and output signals, the simplest approach is a two-

stage implementation of the Gerchberg-Saxton algorithm. For an input-output optimisation to be

performed, an estimate of the system Frequency Response Function is required, from either a

previous test or a numerical model. Firstly, the Gerchberg-Saxton algorithm is first applied to the

input signal for one iteration and the crest factor calculated. Next, the predicted response of the

28



system to this input is estimated and the crest factor of this signal reduced by again applying one

iteration of the Gerchberg-Saxton algorithm. The improved response signal is then inverse-filtered

using the estimated Frequency Response Function to yield the corresponding input signal. The

inverse-filtering procedure is best performed in the frequency domain to avoid problems of

minimum phase. The two-stage Gerchberg-Saxton algorithm described then iterates, consecutively

reducing the crest factor of the input and output signals until some criteria is met.

Simple criteria based on limits and/or convergence may be specified in terms of both the input and

output crest factors. However, as the crest factor is essentially a statistical measure - the range of

the data set normalised by twice the standard deviation - simple statistical analysis suggests a

form for a combined crest factor from two signals. Given signals x, (t) and x2 (t) with

corresponding individual crest factors c, and c2 , then the combined crest factor c,,,, will be

defined as

C, 2 , C 2± (19)

As the minimum crest factor for any sine-based signal is V/2, it may be seen that the minimum

possible value of c,,, will be 2.

The two-stage Gerchberg-Saxton algorithm described will tend to minimise the value of c,,, and

yield reasonable input and predicted output signals. However, the minimisation procedure may not

be achieved optimally in terms of the total computational requirement and variations to the simple

scheme described have been suggested. The first option is to run the Gerchberg-Saxton algorithm

until convergence on the input signal prior to calculating the response, and then to continue with the

crest factor reduction of the input and output consecutively. The aim of this technique is to eliminate

a number of the filtering and inverse-filtering operations in the early iterations. However, simple

optimisation of the input without consideration of the response may lead to response signals with

initially very high values and, ultimately, the necessity for a larger number of iterations. A second

option is to concentrate the crest factor reduction at each iteration on the signal with the highest

crest factor rather than simply alternating between the input and response signals. This approach

has the potential to optimise both signals in fewer iterations. However, as will be seen in the

simulation presented, the crest factor reduction of input and response signals are opposing criteria

which will tend to cause the algorithm to alternate between the two signals in the later stages of the

optimisation anyway.

The two-stage Gerchberg-Saxton algorithm, in its original form, will be demonstrated using the

three DoF system FRF shown in figure 10. The initial narrowband random input signal, with a crest

factor of 3.12, is shown in figure 28. The response of the system to this input is shown in figure 29

and has a crest factor of 3.10. The algorithm was implemented using snowlines and the individual
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and combined crest factors plotted after the crest factor reduction of either signal.
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Figure 28 - Narrowband random input signal
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Figure 29 - Response of 3DoF system to random input signal

Figure 30 shows the progress of the two-stage Gerchberg-Saxton algorithm, which shows both the

input and output crest factors reducing in consecutive iterations. Clearly, the minimisation of the

input and output crest factors are opposing criteria, leading to an oscillation of both traces as the

algorithm switches between the two signals. The combined crest factor is reduced from 4.395 to

2.547. In practice, for two random signals linked by a transfer function, the minimum c,O, value of 2
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is very unlikely to be achieved.

4.5

m-m Input signal
�---�. Output signal

Combined
4 \ __

3�5

V.-
0
U

�3 --- I.
K...

o

2.5

2 � .- >, >�-�

1.5
0 2 4 8 8 10 12 14

kerations

Figure 30 - Progress of two-stage Gerchberg-Saxton algorithm
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Figure 31 - Crest factor reduced narrowband random input signal
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Figure 32 - Response to crest factor reduced random input signal

A simple two-stage implementation of the Gerchberg-Saxton algorithm has been demonstrated for

the simultaneous crest factor minimisation of random input and response signals. As discussed

above, a practical requirement of crest factor reduced signals is that neither the maximum rate nor

amplitude of the exciter is exceeded. Thus, a need exists for simultaneous displacement and

velocity crest factor reduction to ensure that low noise-to-signal ratios are obtained within the

limitations of the given excitation device. For sine-based signals, the relationship between the

displacement and velocity is given by the simple frequency domain transformation

x(w) = iw X(w) (20)

Hence, the displacement-velocity crest factor optimisation may be undertaken in exactly the same

way as for input-output signals, using a transfer function of iwo in the two-stage Gerchberg-Saxton

algorithm. Figure 33 shows the progress of a two-stage Gerchberg-Saxton algorithm for the

simultaneous reduction of amplitude and rate crest factor, applied to a narrowband signal with the

inclusion of snowlines. For both signals, clipping was performed at a percentage of the

instantaneous RMS level rather than at some pre-defined level corresponding to a physical limit.

Figure 33 shows the displacement crest factor reduced from 2.61 to 1.57 and the rate from 2.92 to

1.40 in 53 iterations. The combined crest factor thus drops from 3.91 to 2.10. In both the amplitude

and rate signals, a significant reduction is seen in the maximum values.

Clearly, simultaneous crest factor reduction may still not yield compatible displacement and velocity

signals in terms of the physical limits of the excitation device. Instead, the inputs may be scaled to

fit the most restrictive of the limitations, with the wasted capacity in terms of the other parameter
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accepted. Alternatively, the crest factor reduction may be focused on the signal which is closest to

its physical limits at each iteration thus exploiting the flexibility in the other parameter. In this way,

simultaneous crest factor reduction of the displacement and velocity components of a single signal

may be used to ensure the optimum noise-to-signal ratio in both signals within pre-determined

limits.
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Figure 33 - Progress of two-stage Gerchberg-Saxton algorithm
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3.2 Comparison With The Schroeder Phase Approach

Schroeder [10] developed one of the first approaches to devise a phase distribution such that the

crest factor of a random signal is minimised. His method was based upon the observation that a

Frequency Modulated signal would always possess a low crest factor. With the assumption that

the number of harmonic components in the specified power spectrum are large and in a band width

that is small compared to the centre frequency, the relationship between the phases (D

11-I

(') =() 2;T1 (n - k)pk n = 1,2,...,N
k=l

is a good choice for a low crest factor signal. p is the power spectrum for each harmonic and N is

the total number of harmonics.

The above formulation is further simplified in the special case where the spectra is flat. The results

of the above method degrade when the above assumptions are violated which is the case if a wide

range frequency range is required. The Schroeder method has been considered by NASA as a

possible method of generating random signals for flight flutter testing excitation.

In the following simple example, the displacement clipping and Schroeder methods are compared

for the generation of a random signal of 1024 data points, sampled at 40Hz that was required to

produce a uniform power spectrum between 1 Hz and 10 Hz.

The Schroeder method has a fixed phase distribution relative to the first harmonic. This first phase

was varied for 30 different cases. The clipping approach, however, is dependent upon the initial

random phase distribution, and 30 different initial phase distributions were carried out to obtain

signals with the same power content. The following results were found

Method Average Crest Standard Maximum Crest Minimum Crest

Factor Deviation Factor Factor

Schroeder 1.818 0.036 1.851 1.732

Clipping Method 1.568 0.023 1.601 1.507

It can be seen that there is a significant improvement in the clipping approach results compared to

the Schroeder method, even when the worst of the 30 different cases is taken. These findings

were found to hold for a number of different test cases.
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4. Statistical Implications

4.1 Introduction

Approaches for the noise-to-signal minimisation of both chirp and random signals have been

presented and demonstrated on simulated systems. However, so far only single chirp or random

sequences have been considered. In practice, it is known that better power spectra, Frequency

Response Functions and subsequent modal parameters may be obtained by using averaging

procedures applied to the results of a number of chirp or random excitation tests. For a fixed total

test time, a choice must be made between a chirp or a random input. Following this decision, it

would be useful to predict whether the results of one long sequence are likely to be superior or

inferior to the average of a number of shorter sequences. In order to answer these questions,

random and chirp signals must be considered separately in terms of their statistical parameters.

4.2 Random Signals

The statistics of broadband random signals are well understood, and described in depth in [8,9].

For a random signal x(t), sampled every At seconds to a give a sequence of N points, the

power spectral density (PSD) evaluated from the data will differ from the true PSD which

corresponds to the underlying random process from which the data has been drawn. Clearly, the

aim is to best approximate the (unknown) true PSD from the available data. The difference

between the true and measured PSD derived from a random signal may be characterised by

estimates of the variance and bias. Variance is a measure of the random spread of an estimated

about its true value; averaging a large number N of similar estimates will reduce the variance as a

function of 1/N to the limit of zero variance when an infinite number of results are averaged. In

comparison, bias is an offset of the expectation of the estimated parameter which cannot be

removed by averaging. In many statistical applications, a trade-off exists between bias and

variance of results for a fixed quantity of data.

Expressions exist [9] for the variance and bias of estimated PSDs based on averages from n

independent random sequences. It should be stressed that the variance and bias described here

relate only to the approximation of the PSD by a finite number of data samples and are completely

unrelated to any additional noise corruption of the measured data. For the estimated autopower

spectrum, G•.,the variance o-XX is given by

2 G 2 .
oX. - Gy. (21)

n

For the crosspower spectrum between samples of x(t) and y(t), the variance U-2,,, is given by
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,•Y (22)
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where 42, is the coherence between the signals x(t) and y(t). It is clear, then, that the variance

of the spectral estimates decreases as the number of averages used is increased.

The bias on a power spectral estimate Gx,. may be approximated by

b(G 1) 2 2  (23)24T2Oo

where T is the total time length of the averaged sample. The bias is thus a function of the

curvature of the power spectrum at frequency co, giving a maximum at spectral peaks, and is

inversely related to the square of the sample length. As the frequency resolution is dependent upon

the sample length, the bias error may be viewed in terms of the spacing of the spectral lines in the

frequency domain. As the sample length is reduced, the frequency resolution becomes worse such

that the energy from a wider frequency band is represented by a value at each single frequency

line. Clearly, as the resolution becomes worse the estimated PSD values are increasingly

inaccurate estimates of the true PSD at each frequency. The degree of inaccuracy is then related

to the curvature of the PSD across the frequency band, as givne by equation 23.

In practice, it is difficult to accurately evaluate the bias as given in equation 23. However, if a simple

single DoF system is assumed, it can be shown that the bias is essentially negligible for sample

lengths which give a frequency resolution of less than 0.25 times the half power bandwidth of the

spectral peak. This analysis may be applied to well-separated peaks in the power spectra of

multiple DoF systems.

For a fixed test time length, Th,, = nT, a clear trade-off is presented between minimisation of the

variance and bias errors of the estimated spectra. The question of whether it is better to use a

single random sequence or the average of a number of segments thus depends upon the

respective levels of variance and bias error which are deemed acceptable.

Figure 34 shows the response power spectrum of the three DoF system described earlier, when

excited with a single, 8192 point broadband excitation signal. The variance of the estimated PSD

(solid line) is clear with respect to the true PSD (dashed line). Repeat tests would show a similar

level of variance, but with a different specific error on each spectral line. Figure 35 shows the

response PSD as estimated from the average of 16 segments of 512 points. Clearly, the variance
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of the PSD estimate is greatly reduced. However, the estimated PSD values shown by the

diamonds do not correspond to the true PSD due to the bias error, now significant as a result of the

poor frequency resolution. Repeating this test would return PSD estimates with the same levels of

bias on each spectral line. It should be noted that the linear interpolation between the estimated

points of figure 35 is purely for display purposes - the estimates are only valid at the points

indicated by the diamonds.
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Figure 34 - Power spectrum resulting from a single random input signal
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Figure 35 - Power spectrum resulting from an averaged random input signal

For subsequent analyses, neither of the results shown above would be ideal. A compromise based

on four averages may be more suitable. A common technique which can yield additional

information is the use of overlap averaging. In this procedure, overlapping segments are averaged
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such that some elements of the time-domain signal are used more than once. For example,

consider 4096 point data set on which averaging is to performed to yield a 1024 point set. With zero

overlapping, four separate 1024 point segments would be taken - starting at points 1, 1025, 2049

and 3073 respectively - and averaged. However, if 50% overlap is used, seven 1024 segments

may be defined, starting at points 1, 513, 1025, 1537 ... 3585, such that the majority of the total

signal is included in two of the seven segments. In general, the number of segments which may be

averaged using overlap techniques, n,,,er, is given by

n TUlO0 +1 (24)

where T is the time length of each sample, T,, is the total time length of the test data set and u

is the overlap percentage.

The application of overlap averaging is well known. However, the apparent increase in the number

of averaged samples with no loss of frequency resolution implies, with reference to equations 21-

23, that the variance of the final power spectrum estimate may be decreased with no corresponding

increase in bias. Clearly, this cannot be the case. Strictly, the expressions for spectral variance and

bias presented above are based upon the assumption of independent random signals. As a result,

the degree of overlap averaging cannot be increased indefinitely. However, empirical studies have

shown that for overlap levels of up to 66%, an apparent improvement in both variance and bias

errors can be achieved with respect to the results of non-overlapped averages.

As mentioned previously, the variance and bias of the estimated power spectra described in this

section occur entirely due to the random nature of the signals being used and the approximation of

the true underlying power spectra from a finite data set. Such errors do not affect deterministic

signals such as chirps. The second, potentially dominant source of error, is that of noise corruption

of the data. Such noise will affect any measured signal - random or deterministic - and is generally

dealt with as an unknown random sequence. Averaging procedures will tend to decrease the

variance of this noise in the frequency domain. Ultimately, however, additional white noise on time-

domain signals will result in a bias of estimated power spectra with respect to the uncorrupted

spectra required. As a bias, this type of error cannot be eliminated through the use of averaging

procedures.

It is finally worth noting that the expressions given for variance and bias, and indeed the discussion

of overlap averaging, take no account of any windowing functions which should be applied to all

random signals to eliminate leakage errors.
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4.3 Chirp signals

As deterministic signals, chirps do not suffer from the variance and bias errors associated with

random signals, but are still affected by additional noise corruption of measured data. As a result,

the expressions given in the previous section are not valid for chirp signals.

A subtle difference exists between the use of random and chirp signals, namely that segments of a

random signal may be averaged on the assumption that the frequency content of each sample is

the same as that of the whole signal. For a chirp signal, this is clearly not the case and, if averaging

is required, a number of identical, short chirp sequences must be applied sequentially to the

system. In practice, the use of very short chirp signals can cause problems as the system under

excitation is never truly in a steady state during the test. Also, the use of windowing functions can

result in the loss of a significant quantity of information if a large number of short chirp signals are

used.

The simulation presented is the previous section is now repeated, using a chirp input signal. For the

averaged result, the same, shorter chirp signal was applied to the system. Figure 36 shows the

results generated using the full 8192 point chirp, whilst the results of the averaged shorter chirps is

shown in figure 37.
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Figure 36 - Power spectrum resulting from a single chirp input signal
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Figure 37 - Power spectrum resulting from an averaged chirp input signal

Clearly, in the absence of the estimation errors related to random signals and additional noise, the

results of the single chirp input seen in figure 36 give a perfect match to the true power spectrum.

Equally, the results of the averaged multiple chirp inputs, shown in figure 37, are very good,

although the frequency resolution is arguably too low for accurate parameter estimates to be

obtained. Therefore, for a noise-free deterministic signal, there is no benefit in averaging and a

single long chirp is the best choice from the point of view of frequency resolution.

Averaging can only be of benefit for deterministic signals if the sampled data is corrupted by noise.

The above simulation was repeated with the addition a high level of white noise to the response

signals. The results are displayed in figures 38 and 39 for the single and averaged chirps

respectively. Clearly, from figure 38, using a single long chirp with no averaging leads can lead to

badly corrupted power spectra estimates in the presence of noise. Averaging will reduce the

variance of the noise, as seen in figure 39, although only at the cost of frequency resolution. The

underlying bias effect of the noise on the response power spectrum is also visible in this figure

where the estimated spectrum is greater than the true value for the majority of the spectral lines.
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Figure 39 - Power spectrum resulting from an averaged chirp input signal with noise
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5. Random or Sweep Excitation ?

The methods that have been developed in this work have been shown to improve

upon the approaches used currently for the generation of sweep and random

excitation signals. One question that is of interest is whether it is better to use sweep

or random excitation. Of course, the type of excitation devices available may preclude

any choice e.g. the DEI vane is only able to provide steady or step sine excitation

signals.

In terms of crest factor, the sinusoidal approaches are always superior to the random

signals, and the amplitude at any given point of the input signal can be easily found.

Also, if the generated random signals tend towards chirps during the crest factor

optimisation process, this would tend to suggest that chirps are the best type of signal.

However, the clipping process is solely minimising the crest factor, and not how well

the frequencies are 'mixed-up'.

Both chirp and random signals can be formulated to concentrate on frequency regions

of interest. The key question to consider is whether it is

1. better to put a lot of energy into a frequency region for part of the time as with a

chirp, where there will be a good signal-noise ratio, but a poor one for the rest of

the duration of the excitation, or

2. to excite across the entire frequencies of interest - not giving such a strong

excitation but also counteracting any noise for the entire duration of the signal.

Aside from arguments regarding the stationary behaviour of the noise, if the random

and chirp signals have the same frequency content, then exactly the same results

should be obtained. The only difference between the signals is, of course, the phase,

which leads to differences in the crest factor. If it is possible to tune the gains for the

chirps such that the maximum amount of energy can be put in without overload of the

excitation or measurement system, then the best results should be obtained using

chirp excitation.
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6. Conclusions

A number of improvements have been proposed to the excitation signals traditionally used during

flight flutter testing. The aim of these improvements is to optimise the distribution of energy within a

time-domain signal such that noise-to-signal ratios are minimised, and the accuracy of subsequent

parameter estimation techniques is improved.

For chirp (sine-sweep) signals, it has been shown that a variable overall sweep rate may be

defined, based upon a series of linear sweep-rate variations, which will allow given power and

amplitude distributions to be combined within a fixed length chirp signal. Such a signal has been

input to a simulated system resulting in reduced noise-to-signal ratios on both the input and

response signals.

For random signals, the Gerchberg-Saxton algorithm for crest factor reduction has been described

and demonstrated as a method of improving the noise-to-signal ratio. This algorithm has been

extended to the optimisation of input and response signals, in situations for which a good

representation of the system FRF is available, and also for the simultaneous optimisation of

amplitude and rate parameters, for cases where physical limits exist in the excitation system.

Simulated studies have been used to demonstrate the application of the proposed methods and to

show that they are superior to the conventional random generation or linear sweep approaches.

The statistical aspects of averaging with the new methods have been considered and, as would be

expected, the use of averaging reduces the effect of noise on the measured data.

The question as to whether to use random or chirp excitation is rather dependent upon a number of

factors rather than purely the excitation signals themselves. If everything was equal, and absolute

control of the gains was possible, then the approaches with the best crest factors i.e. the optimal

sweep approach should be used. The use of the methods developed in this study should be

employed on actual flight flutter tests to investigate their applicability in practice.
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7. Future Work

1. The excitation signals described above should be compared to more traditional approaches in

real life flight flutter testing. Some of the methods are to be implemented in the flight test of an

F-1 8 aircraft at NASA Dryden sometime in the near future.

2. The consequences of the clipping methods giving near sine sweep type signals should be

investigated further. Does this mean that the optimum broad band signal is a sine sweep ? or is

this just a consequence of the algorithm used, and should some means of 'mixing' up the

frequency content in the Gerchburg-Saxton algorithm be explored.

3. Comparison of the developed methods should be made with excitation signals based upon

solely (+1, -1) or (+1,0,-i) elements. Such methods would give very good crest factors but

would not necessarily give exactly the desired frequency content. The consequences of rate

expectations of such signals should also be taken into account.

4. Consideration should be made of the use of force appropriation type methods for flight flutter

testing. Such methods are successfully used in ground testing to separate modes with very

close natural frequencies and significant modal interaction, and so the application to flight

testing would seem to be a natural step.
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