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Frequency Domain Unsteady 
Transonic Aerodynamics for Flutter 
and Limit Cycle Oscillation Prediction 
The purpose of this study was to develop new approaches for predicting transonic flutter 
and limit cycle oscillations (LCO) using computational methods. The TSD equation is 
separated into the in-phase and out-of-phase components through a nonlinear harmonic 
averaging method. It is then solved in the frequency domain to obtain the aerodynamic 
forcing function which is needed in the flutter and LCO analyses. To predict flutter, 
equations are developed using the concept of generalized coordinates. The flutter speed is 
determined by examining the frequency-domain matrix equation eigenvalues. Flutter 
characteristics of the AGARD I-445.6 wing are analyzed. Flutter speed and frequency are 
well predicted in subsonic speed, but are overestimated in supersonic flow. To predict limit 
cycle oscillations, the frequency-domain aerodynamic coefficients are used to obtain a 
nonlinear time-domain expression for the aerodynamic force. Limit cycle oscillation 
characteristics of the DAST ARW-2 wing are analyzed. The results show LCO for Mach 
numbers ranging from 0.915 to 0.940. 
Keywords: aeroelasticity, transonic flow, frequency domain 
 
 

Introduction1

Recent advances in Computational Fluid Dynamics (CFD) in 
conjunction with a large increase in computer processing speed 
raised interest in the study of unsteady transonic aerodynamics. The 
importance of estimating the aeroelastic characteristics in the 
transonic speed range has been known since World War II. At that 
time, tests with high-speed aircraft showed that the flutter dynamic 
pressure curve drops to a minimum in the transonic speed range, 
characterizing the so-called “transonic flutter dip”. Limited available 
manpower, wind-tunnel resources, and increasing costs of testing 
time and models make experimental aeroelastic testing very 
expensive and time consuming. Flight tests are also needed to 
validate wind tunnel results. Theoretical solutions can reduce the 
cost of experimental testing by providing preliminary results for 
guidance. 

A variety of fluid dynamics models is now available to address 
unsteady aerodynamic computations for aeroelastic applications. 
Methods that account for non-linear effects are being studied using 
the Full Potential equation (FPE), the Transonic Small Disturbance 
(TSD) equation, Euler equations (EE), Navier-Stokes equations 
(both Full (FNS) and Thin-Layer (TLNS)) or a combination of 
them. Edwards and Malone (1992) present a comprehensive review 
of computational methods for transonic unsteady aerodynamics. 

One of the basic problems in transonic aerodynamics is that the 
flow is of mixed type with both subsonic and supersonic flows co-
existing, and the location of the boundaries separating these flow 
regions is unknown. The real breakthrough came with the solution 
of the two-dimensional transonic small disturbance (TSD) equation 
by Murman and Cole (1971). Their important contribution is the 
development of a mixed-type finite difference scheme to solve the 
mixed (elliptic-hyperbolic) differential equation. 

The XTRAN3S code was developed to solve the TSD equation 
using an alternating-direction implicit (ADI) finite-difference 
algorithm for treating simple 3-D cases. The employed method has a 
numerical stability restriction that requires a large number of 
sufficiently small time steps to obtain the solution (Cunningham, 
Batina and Bennett, 1988). 

The CAP-TSD (Computational Aeroelasticity Program – 
Transonic Small Disturbance) solves the TSD equation in the time 
domain (Batina et al., 1987) using an approximate factorization 
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(AF) solution algorithm which reduces or avoids the numerical 
stability restriction of the ADI algorithm used in the XTRAN3S 
code. Complete aircraft configurations can be analyzed. 

Limit cycle oscillations typically occur in the transonic speed 
range where non-linear aerodynamic effects are more prominent. 
These non-linear effects make the theoretical prediction very 
difficult. Experimental prediction of LCO is also troublesome 
because, during tests, it is difficult to distinguish it from flutter. In 
addition, LCO occurs only within a narrow range of Mach numbers 
so that it is difficult to detect. 

The role of shock-induced trailing-edge separation (SITES), as 
one of the inducing mechanisms in limit cycle oscillations, is 
discussed by Cunningham (1988). It is mentioned that strong 
interactions between shock and boundary layer may also induce 
LCO. A semi-empirical method for predicting LCO is described by 
Meijer and Cunningham (1991). In that investigation, the measured 
steady pressure distribution for a fighter configuration is used to 
identify non-linearities that could cause LCO. Again the focus is on 
the function of SITES on the development of limit cycle 
oscillations. 

The aeroelastic characteristics of a supercritical wing were 
analyzed by Seidel et al. (1989). The wing was denoted DAST 
ARW-2 (Drones for Aerodynamic and Structural Testing – 
Aeroelastic Research Wing 2). Initial wind tunnel tests showed 
instabilities arising, in the transonic range, at a much lower dynamic 
pressure than the flutter boundary predicted using the doublet lattice 
theory. The motion was similar to the first bending mode. At a later 
date it was decided that the instability should be allowed to develop 
in the wind tunnel, past the point at which it was detected. In the 
initial tests this was avoided to prevent destruction of the model in 
case flutter occurred. The following tests showed that the instability 
was in fact limit cycle oscillations with maximum wing tip 
deflections occurring around Mach 0.9. This case illustrates the 
difficulties involved in identifying LCO and the importance of 
developing adequate theoretical prediction tools. An attempt to 
theoretically investigate this case was made by Bennett, Seidel and 
Sandford (1985) using the TSD code XTRAN3S. That attempt was 
unsuccessful and inaccuracies in predicting the steady flow field 
pressure distribution were mentioned as the probable cause. 

In the present study, the TSD equation is solved in the frequency 
domain rather than in the time domain. To achieve this, the time-
dependent TSD equation is first separated into the in-phase and out-
of-phase components through a nonlinear harmonic averaging 
method. The equations then become similar in form to steady 

434 / Vol. XXXII, No. 5, December-Special Issue 2010 ABCM 



Frequency Domain Unsteady Transonic Aerodynamics for Flutter and Limit Cycle Oscillation Prediction 

aerodynamic equations, thus simplifying the problem. A computer 
code, developed at the University of Kansas under coordination of 
Dr. C. Edward Lan, is used to solve the unsteady TSD equation, in 
the frequency domain, for three dimensional aircraft configurations. 
That computer code was expanded and improved to analyze flutter 
and limit cycle oscillations. 

Nomenclature 

b0 = reference length, m 
c = local chord, m 
g = artificial structural damping ratio, dimensionless 
k = reduced frequency, dimensionless 
m = model mass, kg 
M = local Mach number, dimensionless 
Mn = generalized mass of the nth mode, kg 
M∞  = free stream Mach number, dimensionless 
N = number of structural normal modes, dimensionless 
q∞  = free stream dynamic pressure, Pa 
qn = generalized coordinate of the nth mode, m 

nq  = generalized coordinate amplitude of the nth mode, m 
Qn = generalized force of the nth mode, N 

nQ  = generalized force amplitude of the nth mode, N 
V∞ = free stream velocity, m/s 
Vf = flutter speed, m/s 
zn = modal deflection of the nth mode, m 

Greek Symbols 

αs = steady state angle of attack, degrees 
γ = ratio of specific heats, dimensionless 
δ = phase angle between motion and aerodynamic response, 

degrees 
pΔ  = differential lifting pressure amplitude, Pa 

θ = instantaneous motion phase angle, degrees 
ρ = air density, kg/m3

φ = perturbation velocity potential, m2/s 
ω = frequency of oscillation, rad/s 
ω0 = reference frequency, rad/s 
ωn = natural frequency of the nth mode, rad/s 

Theoretical Development 

Unsteady Transonic Small Disturbance Equations in the 
Frequency Domain 

A conservative-form, dimensionless, three-dimensional 
transonic small disturbance equation is derived from the full-
potential equation: 
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The equation is valid for unsteady, compressible, isentropic, 
irrotational flows. Corrections for entropy and vorticity effects are 
introduced through the use of modified coefficients (Batina, 1989). 
In the time-domain method, the TSD equation is directly integrated 
with small time steps. In the present approach the TSD equation is 
obtained in the frequency domain by using the method of harmonic 

averaging. The method of harmonic averaging has been used in the 
past to solve problems in nonlinear oscillations described by 
ordinary differential equations (Nayfeh and Mook, 1979). Hwang 
(1988) successfully applied it to compute the unsteady transonic 
flow about an airfoil by using the unsteady full-potential equation. It 
was shown that the main advantage of applying the averaging 
technique is to split a time-dependent equation into the in-phase and 
out-of-phase components which are similar in form to the steady 
flow equation. Therefore, the solution algorithm of steady flow 
equations can be directly adopted. In this way, time-domain 
integration of the unsteady flow equation can be avoided. 

To apply this method, let the velocity potential be split into a 
steady and an unsteady component as 

) +cos( )( +)( =)( us δθφφφ x,y,zx,y,zx,y,z,t  (2) 

where  and  are the perturbation velocity potentials for the 
steady and unsteady flow, respectively. 

φs φu

After the above expression is substituted into Eq. (1), the 
following steps are taken to perform the harmonic averaging: 

1) Steady Flow: Dropping the unsteady terms in Eq. (1), the 
steady flow equation is obtained: 
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2) Overall Averaging: Integrate Eq. (1) over one cycle and 
subtract the steady flow equation to obtain 
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3) In-Phase Averaging: Multiply Eq. (1) by θcos  and then 
integrate it over one cycle to obtain 

zy

x

][ +]  H +  H +[ +

]G2F2[E BA
u(i)
z

u(i)
x

s
y

u(i)
y

s
x

u(i)
y

u(i)
y

s
y

u(i)
x

s
x

u(i)
x

u(o)
x

u(i)

φφφφφφ

φφφφφφφ ++=−−
 (5) 

where . δφφδφφ sin  = , cos  = uu(o)uu(i)

4) Out-of-Phase Averaging: Multiply Eq. (1) by θsin  and 
integrate it over one cycle to obtain 
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5) In-Phase Equation: Multiply Eq. (4) by and add Eq. (δ2cos 3) 
and Eq. (5) to obtain 
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where . φφφ u(i)(i)   = +s

6) Out-of-Phase Equation: Multiply Eq. (4) by  and add 
Eq. (

δ2sin
3) and Eq. (6) to obtain 
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where . φφφ )u()(   = oso +
Pressure Coefficients: The pressure coefficient is derived from 

Bernoulli's equation under the linear and small disturbance 
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assumptions, which neglect the perturbation velocities in y and z 
directions respectively (Dowell, 1978). 

Wing Boundary Conditions: The wing boundary conditions 
are defined such that the normal velocity of the fluid at the wing 
surface equals the normal velocity on the wing. 

Body Boundary Conditions: The body boundary conditions 
are satisfied not on the actual body surface. Instead, to simplify the 
grid interpolation, the body is replaced by a rectangular box. Even 
though the location of the body surface is changed, the original 
surface slope is preserved to obtain accurate aerodynamic loading. 

Wake Boundary Condition: The wake boundary condition is 
defined such that the pressure difference across the wake vortex 
sheet is zero. 

Far Field Boundary Conditions: The far field boundary 
conditions in supersonic flow field are derived by the method of 
characteristics to satisfy the non-reflecting properties from the far 
field boundaries (Hsu, 1994). 

Finite Difference Equations 

The governing equation has been decomposed into the in-phase 
and out-of-phase equations (Eq. (7) and Eq. (8)): 
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The partial derivatives of the velocity potentials are replaced by 
finite differences. The type-dependent differencing scheme 
proposed by Murman and Cole (1971) is applied. In the governing 
equation, the nonlinear coefficient of xxφ  will determine the flow 
regime after transforming Eq. (9) and Eq. (10) into a coordinate 
system aligning with the local flow (Sun, 1991). Central 
differencing is used if the coefficient is positive, which implies 
subsonic flow with an elliptic P.D.E., but upwind differencing is 
used for xxφ  if the coefficient is negative, implying supersonic flow 
with a hyperbolic P.D.E. An in-phase and an out-of-phase 
tridiagonal matrix equation in the k-direction are formed. Successive 
line over relaxation (SLOR) is used to solve the equations. 

Surface Interpolation 

The need for surface interpolation arises from the fact that the 
grid points necessary for the aerodynamic computations are not, in 
general, the same as those used in the structural modeling of the 
lifting surface. The method used for surface interpolation is 
described by Harder and Desmarais (1972). 

Prediction Method for Transonic Flutter 

The generalized structural equations of motion are obtained 
from Lagrange's Equations by expressing the airplane elastic 
deformation in terms of the structural normal (or natural) modes 
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The generalized equations of motion are obtained as: 
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Expressing the generalized coordinates and the generalized 
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then Eq. (12) becomes 
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where the generalized force amplitude can be written as 
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The lifting pressure amplitude is a function of the generalized 
coordinates 
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where jp  is the normalized lifting pressure amplitude of the  
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The superscripts i and o indicate in-phase and out-of-phase 
respectively. By adding an artificial structural damping, g, in Eq. 
(14) results 
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Eq. (19) can be rewritten in dimensionless form as 
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The eigenvalue problem is solved for λ  and the damping ratio 
of each mode, g, is obtained from the imaginary part of each 
eigenvalue (Dowell, 1978). The quantity g indicates the amount of 
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structural damping required to make the system neutrally stable. The 
flutter speed corresponds to the minimum value of speed for which 
g is positive. Numerical interpolation was used to estimate the 
flutter speed, using a small number of reduced frequencies in 
solving the TSD equation, to save computing time. Eigenvalues 
were estimated using an eigenvalue extraction subroutine 
(Desmarais and Bennett, 1976). 

Prediction Method for Limit Cycle Oscillations 

For LCO prediction the aerodynamic force must be a nonlinear 
function of the elastic deformation. The total lifting pressure can be 
decomposed as 

∑
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Substituting Eq. (24) into Eq. (15) gives 

dydxzcqQ njp

N

j
n ∫∫∑ Δ=

=
∞

1
 (25) 

where 

∞

Δ
=Δ

q
p

c j
jp  (26) 

Rewrite Eq. (25) as 

∑
=

∞=
N

j
njn HbqQ

1

2
0  (27) 

where 

00

ˆ,ˆ,ˆˆ
b
yy

b
xxydxdzcH njpnj ==Δ= ∫∫  (28) 

The term njH  is associated with the harmonic function 
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From Eqs. (12), (27) and (30), 
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It is assumed that jnj qA /  and jnj qB /  can be expressed as the 
product of a linear function of reduced frequency with a linear 
function of generalized coordinate amplitude. This representation is 
arbitrarily chosen to give one of the simplest general polynomial 
representations which accounts for dependency on  and jk jq . 
Therefore, they can be written as 
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The e and f coefficients are estimated, using least squares curve 
fitting, by obtaining jnj qA /  and jnj qB /  for several different 
values of reduced frequency, k, and generalized coordinate 
amplitude, jq . The least squares interpolation approximately fits 
the data to give the four e coefficients for the A function, and the 
four f coefficients for the B function. 

Substitution of Eq. (32) into Eq. (31) produces 
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In Eq. (33) the generalized force is a non-linear function of the 
generalized coordinate and is valid for an oscillatory motion. That 
equation can be integrated in time from an initial disturbance (initial 
value problem).  

Then the stability of the system can be examined from the 
obtained time history in the generalized coordinate. From Eq. (11) it 
can be seen that the resulting displacement time history for any 
point on the structure is given by the summation of the generalized 
coordinate time histories multiplied by the corresponding normal 
mode deflections. 

Time Integration of Flutter Equations 

The nonlinear flutter equations were integrated in time using the 
automatic multi-dimensional Runge-Kutta-Fehlberg program 
RKF45 described by Atkinson (1988). 

Effect of Shock-Boundary Layer Interaction 

The computer code was modified to use the method described 
by Lee (1990) to model the effect of shock induced flow separation. 
The effect of a suddenly thickened boundary layer behind a shock is 
treated as an equivalent vertical surface velocity. 

Results and Discussion 

A computer code was developed at the University of Kansas, 
under coordination of Dr. C. Edward Lan, to solve the unsteady 
TSD equation in the frequency domain using the method described 
in the present study. That computer code was named USTSD 
(UnSteady Transonic Small Disturbance). 

The USTSD code was validated for predicting unsteady pressure 
distributions in a study by Hsu (1994). In the present study, the 
original USTSD code was expanded and improved to include the 
capability of predicting transonic flutter and LCO.  

Flutter Estimation 

The AGARD I-Wing 445.6: This test case is generally used as 
a standard for validating methods of flutter estimation (Yates, Land 
and Foughner, 1963). It consists of a cantilevered wing with a half-
span aspect ratio of 1.65, taper ratio of 0.66, quarter-chord 
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sweepback angle of 45o and NACA 65A004 airfoil section in the 
stream wise direction.  

Weakened model 3 has a wing span of 0.76 m, a root chord of 
0.56 m, and the structure was made more flexible by drilling holes 
through the wing and filling with foam plastic to maintain 
aerodynamic continuity. Five wing normal modes were obtained 
along with the corresponding natural frequencies and generalized 
masses. The flutter results are presented in Fig. 1.  
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Figure 1. Flutter speed index and frequency ratio curves for the I−Wing 
445.6 weakened model 3. 

 
The flutter speed index, , is defined as FC

μω00b

V
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where the mass-density ratio, μ , is given by 

ρυ
μ m
=  (35) 

where υ  is the volume of a conical frustum having wing chord at 
root as base diameter, wing tip chord as upper diameter and wing 
semi-span as height. 

The CAP-TSD estimations (Cunningham, Batina and Bennett, 
1988) include both linear and non-linear results. The linear results 
were obtained by setting coefficients F, G and H equal to zero in the 
TSD equation (Eq. (1)) and by neglecting wing thickness. 

It is interesting to notice that, in the subsonic range, the linear 
estimations show a good agreement with the experimental results, 
except at Mach 0.96 where non-linear effects are expected to play a 
major role. This good agreement might be justified by the fact that 
the model has a very thin airfoil section, so wing thickness can be 
neglected. In the supersonic range the linear results show higher 
flutter speed indices than the experimental values. This appears to 

be a general trend and is also observed in an aeroelastic analysis of 
the F-15 wing (Pitt and Fuglsang, 1992), in which CAP-TSD was 
used. The reasons for this trend are not clear and require further 
investigation. The non-linear estimations are limited to three points 
at Mach 0.678, 0.901, and 0.96 and show, as expected, a slightly 
better result at Mach 0.96 compared to the linear estimation. 

The harmonic gradient results were obtained from a study by 
Wong, Lee and Murty (1992). Only the two points in the 
supersonic range at Mach 1.072 and 1.141 were included, to show 
the consistently higher values for the flutter speed index obtained 
in that range. The harmonic gradient method is described by Chen 
and Liu (1985). 

The USTSD results for the flutter speed index show good 
agreement with the experimental data except in the supersonic range 
for which the flutter speed indices are higher than the experimental 
values. The transonic dip is shown very clearly around Mach 1.0. 
The flutter frequency ratio results from USTSD agree well with the 
experimental results except, again, for supersonic speeds. 

Limit Cycle Oscillations 

Characteristics of the DAST ARW-2 Wing: The DAST 
ARW-2 (Drones for Aerodynamic and Structural Testing 
Aeroelastic Research Wing 2) is a supercritical wing with aspect 
ratio of 10.3 and leading edge sweep angle of 28.8 degrees. The 
stream wise wing sections are defined by three supercritical airfoils 
described in a study by Eckstrom, Seidel and Sandford (1994) at 
spanwise locations 7.1%, 42.6% and 100%. Five wing normal 
modes were obtained (Sandford, Seidel and Eckstrom, 1989). 

ARW-2 Wing LCO Prediction Using USTSD Code: In this 
present study an attempt was made to predict the ARW-2 limit cycle 
oscillations. The following conditions are chosen for the study: 

 
1) ARW-2 wing alone configuration; 
2) Control surfaces are not deflected; 
3) Zero angle of attack; 
4) Air medium (standard atmosphere); 
5) Mach number ranging from 0.8 to 0.95 with corresponding 

dynamic pressure range from 6,000 to 8,000 Pa (altitude of 
about 15,000 m). 

 
For the initial calculations fully conservative finite difference 

scheme, with shock/boundary-layer interaction correction, was used. 
The results showed instability at Mach 0.92, but limit cycle was not 
achieved. The correct trend was observed, with the system 
becoming less unstable as the amplitude grows. However, the 
system remained unstable for what was considered a reasonable 
range of amplitude (keeping in mind the small disturbance 
assumption). Following calculations using non-conservative 
differencing and no shock-boundary layer interaction produced the 
correct trend for the instability, becoming stable for a reasonable 
value of amplitude. It is known that the use of non-conservative 
differencing in some cases produces results that are closer to 
experimental results than using conservative differencing 
(Anderson, Tannehill and Pletcher, 1981). 

A case study with prominent shock-boundary layer interaction 
was investigated to validate the use of non-conservative differencing 
in such problems. That case study is the RAE 2822 airfoil at Mach 
0.73 (Lee, 1990). As Fig. 2 shows, the results obtained using the 
USTSD computer code with non-conservative differencing are 
closer to the experimental results than the other results, specifically 
on the upper surface where the shock is located. This indicates that 
non-conservative differencing may be more accurate for cases where 
shock/boundary-layer interaction is important. 
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Once it was decided that the use of non-conservative differencing 
was justified with the ARW-2 wing, an investigation of the relative 
importance of each normal mode on the instability was conducted. 
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Figure 2. Steady pressure distribution for the RAE 2822 airfoil at M = 0.73 
and α = 3.19o. CD: conservative differencing, NCD: non-conservative 
differencing, VC: with viscous correction, NVC: no viscous correction. 

 
The ARW-2 aeroelastic characteristics were obtained using the 

flutter prediction method with the following conditions: 
 

1) Mach 0.92; 
2) Dynamic pressure of 7300 Pa; 
3) Altitude of 15,000 m (standard atmosphere); 
4) Reduced frequency of 0.105; 
5) Reference length of 0.562 m. 

  
Flutter analysis results were obtained using only the first normal 

mode and using all five normal modes. One eigenvalue is obtained 
when only the first normal mode is considered. Five eigenvalues are 
obtained when all five normal modes are considered. Each 
eigenvalue has a corresponding value of airspeed, frequency and 
damping required for neutral stability (Eq. (22)). Only the first 
eigenvalue had airspeed compatible with the specified Mach number 
and altitude. The other eigenvalues had airspeeds too high for the 
assumed Mach number and altitude. Therefore, only the first 
eigenvalue should be considered in the aeroelastic analysis at that 
particular Mach number and altitude. Examination of the results for 
the first eigenvalue showed that they do not change significantly if 
just one or all five modes are considered. The eigenvector 
corresponding to the first eigenvalue showed that the first mode had 
a relative contribution to the elastic deformation over 100 times 
larger than that of the other modes. Based on those results, only the 
first bending mode was considered in the analysis of the ARW-2 
instability. This assumption is consistent with the experimental 
results that showed that the ARW-2 limit cycle oscillations had 
characteristics similar to the first bending mode. 

The first prediction of the ARW-2 limit cycle oscillations was 
carried out at the following conditions: 

 
1) Mach 0.92; 
2) Dynamic pressure of 7300 Pa; 
3) Altitude of 15,000 m (standard atmosphere); 
4) Reduced frequencies of 0.115, 0.110, 0.105, 0.100, 0.095; 
5) Amplitudes of generalized coordinate of 0.02, 0.06, 0.12, 0.18, 

0.24 m; 
6) Reference length of 0.562 m; 
7) Initial displacement for generalized coordinate of 3 mm for the 

time integration (initial disturbance). 

The generalized aerodynamic force (GAF) coefficients anj and 
bnj (Equation (18)) were obtained using program USTSD with the 
conditions described above. Figure 3 shows the out-of-phase GAF 
coefficients as a function of the reduced frequency and amplitude of 
generalized coordinate. 
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Figure 3. Out-of-phase GAF coefficient for the ARW-2 wing at M = 0.92, 
α = 0o and b0 = 0.562 m. 

 
The sign of the out-of-phase GAF coefficient indicates whether 

the system is stable or not, for a single degree-of-freedom case. The 
system is stable if the coefficient is negative and unstable if it is 
positive. 

Figure 3 shows that, for a fixed value of amplitude, the system 
becomes more unstable as the reduced frequency is decreased. This 
is equivalent to saying that, for a given frequency of oscillation, the 
system becomes more unstable as the airspeed is increased. This is 
consistent with the physical phenomena of flutter and LCO: the 
system is stable at low speeds, but becomes unstable as the speed is 
increased. Also, from Fig. 3 it can be seen that, for a fixed value of 
reduced frequency, the system becomes asymptotically more stable 
as the amplitude of generalized coordinate is increased. This is 
consistent with LCO: the system is unstable for small amplitudes of 
oscillation, but becomes stable as the amplitude increases. 

To explain the trends observed in Fig. 3 the pressure distribution 
was analyzed. Figure 4 shows the out-of-phase unsteady pressure 
coefficient distribution at 80%, 87% and 95% spanwise sections, at 
Mach 0.92, obtained using non-conservative differencing. 

The wing region close to the tip was chosen for analysis because 
that is where the largest elastic deformations occur for the first 
bending mode. The larger the deflection is, in a region of the 
structure, the greater the contribution of that region to the GAF 
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coefficient is (see Eq. (18)). The out-of-phase pressure distribution 
defines the out-of-phase generalized aerodynamic force and, 
therefore, defines whether the system is stable or not. It can be seen 
that there is a differential pressure peak near the locations of the 
steady pressure shock. Positive values of the out-of-phase 
differential pressures are in phase with the first bending mode 
velocity and have a destabilizing effect (positive work). Negative 
values of out-of-phase differential pressures are 180o out of phase 
with respect to the first bending mode velocity and have a 
stabilizing effect (negative work). 

x/c

c p(o
)

0 0.2 0.4 0.6 0.8 1-0.4

-0.2

0

0.2

0.4

0.6

0.8

95% Span

c p(o
)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

87% Span

c p(o
)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.02
0.12
0.24

80% Span

q (m)
_

 
Figure 4. Out-of-phase unsteady differential pressure coefficient for 
the ARW-2 wing at M = 0.92, α = 0o and b0 = 0.562 m using non-
conservative differencing. 

 
It can be seen in Fig. 4 that the area of the positive differential 

pressure peaks is reduced as the amplitude of generalized force 
coordinate is increased. Also, the area of the negative differential 
pressure near the leading edge is increased as the amplitude of 
generalized force coordinate is increased. Both trends cause the 
system to become more stable as the amplitude of oscillation 
increases, characterizing limit cycle oscillations. The two causes for 
LCO for this particular example seem to stem from a very mild 
reduction in shock strength as the amplitude of oscillation increases 
in conjunction with changes in the pressure distribution around the 
leading edge. The aerodynamic undamping that starts LCO at small 
amplitudes is usually very small and the changes in pressure 
distribution that occur as amplitude increases do not have to be 
strong to drive the system to a stable condition. 

The generalized equations of motion were obtained using the 
method for LCO prediction and integrated in time using the 

Runge-Kutta-Fehlberg method. The time history for displacement, 
instantaneous amplitude and frequency at Mach 0.92 is shown in 
Fig. 5. The results show limit cycle oscillations with the maximum 
amplitude of about 10 centimeters and frequency of about 8.1 Hz. 
The amplitude is higher than the experimental result of 5 cm and 
the frequency is lower than the experimental result of about 9 Hz. 
The wing first bending mode has a natural frequency of 8.1 Hz 
which shows that frequency matching is associated with the 
occurrence of LCO. 
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Figure 5. Time history for the ARW-2 wing at M = 0.92, αs = 0o, b0 = 0.562 m, 
q∞ = 7300 Pa and altitude of 15,000 m. 

 
LCO was observed for Mach numbers between 0.915 and 0.940. 

All results are plotted in Fig. 6 along with the experimental results. 
The experimental results show LCO for a wide range of Mach 
numbers with the maximum occurring around Mach 0.93. Usually, 
LCO is expected to occur for a narrow range of Mach numbers. One 
possible reason for the large differences between estimated and 
experimental results is that not enough nonlinear aerodynamic 
damping terms (the f coefficients of Eq. (33)) were considered in the 
calculation. It is expected that including terms of higher degree 
would improve data fitting for the B function and, thus, increase the 
accuracy of the prediction. The calculated results show LCO for a 
Mach number range from 0.915 to 0.94 and the maximum occurs 
around Mach 0.94. 

Conclusions 

The method described in the present study for predicting flutter 
produced good results, when compared to experimental results, in the 
subsonic and transonic speed ranges, for the AGARD I-445.6 wing. 
For the supersonic range the computed flutter results were 
significantly different from the experimental results. This difference 
was consistent with published data obtained using the harmonic 
gradient method. The method used in this study to predict limit cycle 
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oscillations showed LCO for the DAST ARW-2 wing in Mach 
numbers ranging from 0.915 to 0.94. The Mach number range at 
which LCO occurred was much narrower than the experimental. The 
calculated maximum amplitudes were about 2 to 3 times larger than 
the experimental results. For both experimental and calculated results 
the largest value of maximum amplitude occurred around Mach 0.93. 
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Figure 6. Maximum deflections for the ARW-2 wing at αs = 0o, b0 = 0.562 m, 
q∞ = 7300 Pa and altitude of 15,000 m. 

 
The use of non-conservative differencing produced better results 

than the use of conservative differencing with corrections for 
shock/boundary-layer interaction. Study of a RAE airfoil showed 
that, in some cases, the use of non-conservative differencing may 
produce good results for the shock/boundary-layer interaction effect. 
This effect was produced by moving the shock upstream and 
reducing its strength. 

The mechanism that caused LCO in the case studied seems to be 
a combination of weakening of upper surface shock and changes in 
leading edge pressure distribution as the amplitude of oscillation 
increases. 

The higher frequency normal modes could have and important 
effect on the flutter speed and frequency, in the supersonic range, for 
the AGARD I-445.6 wing. Inaccuracies in obtaining the structural 
normal modes could also have significant impact on the results.  

Even though the use of non-conservative differencing produced 
reasonable results for shock-wave/boundary-layer interaction, it is 
unknown if this approach would work for other test cases. It would 
be preferable to find an effective method to correct for viscous 
effects without compromising the conservative properties. 

The LCO characteristics of the ARW-2 wing were obtained 
considering only the first bending mode. The validity of the single-
degree-of-freedom assumption was not verified by comparing the 
results when all five normal modes are included in the calculation. 
The effect of factors like steady state angle of attack, control surface 
deflection and test medium on LCO characteristics was not 
investigated. 

The LCO results presented are just an indication that the 
method used in this study works. It would be necessary to explore 
more cases before the method is validated. The main obstacle to 
achieving that objective is that it is currently very difficult to 
obtain complete LCO experimental data. Such data would have to 
consist of not only aerodynamic data, but also a very good 
description of the structural properties. 
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