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This paper presents an expedient transonic correction technique to compute unsteady pressure distributions and

aeroelastic stability in the transonic flow regime. The transonic correction procedure here is an improvement of the

downwash weighting method proposed previously by several authors. The previous downwash weighting methods

could provide pressure and/or force corrections to some extent by applying different weighting methods on the

lifting-surface self-induced downwash resulting from aeroelastic structural displacements or prescribed motions.

However, the resulting pressure/force solutions were often found to be inconsistent, because they all failed to include

the proper transonic unsteady and out-of-phase effects. Our improved downwash correction method is a rational

formulation to include proper transonic effects, as this formulation is based on a successive kernel expansion

procedure established in accord with the formal pressure-downwash relation. Accordingly, the developed transonic

correction procedure is a proper and rational one that is expected to yield more consistent aeroelastic solutions. This

procedure is now a fully developed program, known as the transonic weighting aerodynamic influence coefficient

procedure in the ZAERO software system, or ZTAW. Computed results by ZTAW for the unsteady pressures and

aeroelastic stability boundaries for four selected wing planforms (AGARD 445.6, F-5, LANN, Lessing wings) are

found to be in good agreement with measured data. In contrast to the computational-fluid-dynamics-based methods

of computational aeroelasticity, the present procedure is proven to be far more computationally efficient and

industrially viable while yielding comparable aeroelastic solutions.

I. Introduction

T HE application of discrete element kernel function methods are
limited to purely subsonic or supersonic flows, because the

governing equations over which the methods were developed are
based on a linearized unsteady potential flow hypothesis. However,
the aeroelastic behavior of an aircraft is typically critical in the
transonic flight regime, in which nonlinear phenomena related to
embedded moving shock waves and viscosity play an important role
in aeroelastic stability. As discussed by Ashley [1], the shock wave
movement and strength profoundly affect the flexure-torsion flutter
mechanism. One consequence of this behavior is the so-called
transonic dip. This phenomenon is characterized by a decrease of the
slope of theflutter speed plot as a function of theMach number, when
compared with the same plot obtained from a linear aeroelastic
analysis. Therefore, it is necessary to pay special attention to the
flutter phenomenon under these circumstances. This is especially
significant because most modern aircraft fly in transonic flow
conditions.

One of the feasible alternatives to analyzing the aeroelastic
stability in nonlinear flow conditions is the use of time-accurate
computational fluid dynamic (CFD) solutions of the nonlinear fluid

equations coupled with structural dynamic representation of the
vehicle. Another approach is obtained by wind-tunnel testing of
aeroelastic models under transonic flow conditions. However, wind-
tunnel testing for aeroelastic investigation regarding flutter-
boundary computation is not usual, because this class of experiments
involves expensivemodels and high operational costs. The otherway
to evaluate the transonic aeroelastic behavior is from flutter flight
testing, which is themost hazardous and expensive option in terms of
operational costs. This approachmay be used either for experimental
flutter-boundary identification or to verify the aeroelastic subcritical
aerodynamic damping at specific flight-envelope points to validate
aeroelastic numerical models.

There have been several attempts to solve the transonic aeroelastic

problem using combined procedures that relate linear models to

measured data for the correction of unsteady linear aerodynamic

models. Reviews on correction techniques were presented by

Palacios et al. [2] and Silva [3], describing the most employed

methods concerning transonic flutter prediction via combined

procedures. Such approaches are named here as mixed procedures.

The purpose of such procedures is to correct the linear aerodynamic

models to take into account nonlinear effects that are not predictable

by the linearized potential-based equations of the fluid flow.
The methodologies for the solution of the transonic aeroelastic

problem based on mixed procedures are also referred to as semi-
empirical corrections. These corrections can be performed by the
multiplication, addition, or whole replacement of the aerodynamic
influence coefficient (AIC) matrix. This approach is an adequate tool
for engineering applications, because the methodology employed is
less expensive than direct use of CFD techniques. The correction
techniques, which have been applied to unsteady loading calculation
for static or dynamic stability analysis, were classified by Silva [3] in
four major groups: force-matching methods (Yates [4], Giesing et al.
[5], Zwaan [6], Pitt and Goodman [7], Brink-Spalink and Bruns [8]);
pressure-matching methods (Rodden and Revell [9], Bergh and
Tijdeman [10], Bergh and Zwaan [11], Luber and Schmid [12],
Baker [13], Baker et al. [14], Jadic et al. [15,16]); Dau-Garner type
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procedures (Garner [17], Dau [18], SenGupta [19], and Yonemoto
[20]); and modal aerodynamic influence coefficient (MAIC) matrix
replacement (Suciu et al. [21], Liu et al. [22], and Chen et al. [23]).

Themain idea of thefirst procedure is tomatch reference nonlinear
forces and moments, which may be obtained from experiments or
accurate CFD solutions of the nonlinearflowgoverning equations. In
this case, nonlinearities such as pressure jumps due to shock waves
and viscous effects are embedded in such reference quantities. The
second form to proceed with the correction is the matching of the
pressures taken as reference conditions. The same nonlinearities are
present in the reference conditions: in this case, pressure distributions
instead of loads. The Dau–Garner class of methods [18,20] are
procedures in which the unsteadiness of the resulting nonlinear
corrected pressures are computed based on steady nonlinear
information with the aid of semi-empirical relations. Finally, the
MAIC procedures [21,23] consist of generating a modal
aerodynamic influence coefficient matrix referred to measured or
computed nonlinear pressures or loading due to given modal
displacements of the lifting surface. This new matrix is then
substituted in the aeroelastic equations of motion, in which the
generalized unsteady aerodynamic forces are related to the
associatedmodal displacements of the lifting surface. The aeroelastic
analysis is performed taking into account transonic flow effects
embedded in the new modal aerodynamic influence coefficient
matrix.

Most of the aforementioned correction procedures employ
steady state reference data, which may be loads or pressures. Some
of them are based on the computation of corrected unsteady
pressures from semi-empirical relations or with the aid of
computational fluid dynamics simulations. After analyzing the
correction procedures reviewed by Silva [3], some conclusions
arose regarding their performance for transonic flow computation.
For example, it could be noted that the force-matching method
developed by Giesing et al. [5] does not guarantee that the
modified pressure distribution, resulting from the corrected AIC
matrix, will be the same as the experimental distribution or the
distribution computed with the nonlinear method. In the presence
of shock waves, this pressure distortion can severely modify the
aeroelastic behavior. Furthermore, the nature of the transonic dip
depends on the shock wave characteristics with regard to its
positioning and strength. Nevertheless, at least the modified
pressure distribution will guarantee that the sectional lift and
moment will be the same. But this fact is not sufficient to yield a
complete restoration of the nonlinear quasi-steady flow shock
behavior as it would not be the same as the reference condition
regarding the shock dynamics contribution.

The best way to preserve the reference nonlinear flow conditions
regarding the shock structure is the direct matching of pressures by
the use of a weighting operator. However, pressure-based weighting
methods [9–12] present problemswith regard to the evaluation of the
pressure ratios necessary for the computation of the correction
factors. If in any case there is a zero or very low pressure value in the
denominator, the correction will present a tendency to blow up or
yield very high correction-factor values, resulting in a poor
conditioning of the resulting corrected AIC matrix.

An alternative to reformulate the adjustment of the pressures, to
avoid the numerical problems mentioned already, is to correct the
downwash vector. This approach consists of the modification of the
control-point displacement vector (downwash) to satisfy a given
reference pressure distribution. The advantage of this method, when
compared with the pressures correction, is that the weighting-factor
computation depends on a linear system equation solution instead of
a simple pressure ratio. For this reason, even though there are null
displacements or pressures given as reference conditions, the
solution of the linear system of equations will not result in weighting
factors being excessively large as happens in the pressure-matching
procedures at those conditions.

Pitt and Goodman [7] and McCain [24] explore downwash
correction methodologies, procedures that are based on the
postmultiplication of a modified AICmatrix, which relate strip loads
to its degrees of freedom. Pitt and Goodman’s [7] procedure is a

force-matching method because the reference conditions are strip
forces andmoments. The choice of the correction of the downwash is
based on considerations highlighted by McCain [24]. That author
discussed in his work that the postmultiplication weighting operators
allow modification of both the real and imaginary parts of the
downwash, thus changing the pressure amplitudes and phase angles.

After analytically reviewing such correction methods, it was
concluded that the combination of the matching of the pressures
through the downwash weighting presents good robustness and the
preservation of themean steady flow nonlinear characteristics. These
features indicate that this approach may be developed for the
prediction of the approximate unsteady transonic aerodynamic
loading. Downwash correction procedures based on steady reference
pressures may be a good option for the discrete element aerodynamic
approximate modeling for transonic flow. However, the procedure
based on weighting functions computed from steady pressures does
not present good results with regard to the approximation of the
imaginary counterpart of the nonlinear unsteady pressures [3].

The objective of the present work is to study correction techniques
applied to unsteady transonic flow computation. Downwash
weighting procedures are robust, inexpensive in terms of
computational costs, and are compatible with the physics of the
problem. They also present the advantage of providing a simple way
to modify the pressures obtained from the linear theory by the
replacement of externally computed or measured pressure
distributions. These procedures will be investigated using either
steady or unsteady pressures. An extension of this formulation will
also be developed to circumvent the problem of the wrong pressure
phase computation, without the use of nonlinear unsteady pressures
taken as reference conditions for the correction procedure. The
methodology of the present work is summarized next:

1) Understand the small-disturbance nonlinear transonic flow
characteristic with regard to its behavior when subjected to small-
disturbance conditions.

2) Evaluate the downwash correction techniques using either
steady or unsteady reference pressures, and also understand its
behavior based on the nature of those reference conditions.

3) Enhance downwash correction procedures to obtain correct
transonic unsteady pressures based on steady reference conditions,
independent of the reduced frequency of interest.

II. Aerodynamic Model

Linear aerodynamic modeling techniques are based on discrete
element solutions of the linear equations of the fluid flow. The fluid
flow is represented by the linearized potential flow equation [25] in
the frequency domain as

�2’xx � ’yy � ’zz � 2ikM2
1’x � k2M2

1’� 0 (1)

The aerodynamicmodeling of unsteady linear potential flowsmay
be performed by discrete kernel function methods, which are based
on integral solutions of the small-disturbance linearized potential
flow equation. The integral solution is obtained by the application of
Green’s theorem to this equation [26] in terms of unsteady source and
doublet singularity distributions over the body surface S and its
associated wake surfaces W. The aerodynamic model for a given
body is then approximated by the summation of elementary integral
solutions associated with each element (panels) that discretizes the
body surface. These elementary integrals at each panel, as well as the
aerodynamic interference of one panel onto others, lead to a linear
system of equations relating the pressure coefficient differences to
downwash. The assembly of the elementary integral solutions results
in a matrix in which the elements represent the aerodynamic
influence of the panels into the control points. Each integral
relationship between the downwash at a receiving point i, and the
pressures at a sending panel jmay bewritten as a system of equations
as

’iz �wi �Dij�Cpj (2)
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where each of the matrix elementsDij is the result of the integration
of the kernel function over the given jth lifting-surface element
geometry [14]:

Dij��
1

8�

Z ��j

��j�1

Z
��j

��j�1

�
lim
z!0

�
@

@z
K �xi� ��n;yi� ��n;0;M1;k�

��
d ��nd ��n

(3)

The inverse of the matrix operator D multiplied by the downwash
vector yields the pressure distribution. In other words, the solution of
the system of equations gives the doublet strength at each panel
referred to a given downwash that is related to a displacement-mode
shape. The resulting inverse matrix is named as the aerodynamic
influence coefficient matrix AIC, which is a function of the reduced
frequency, and is related to the pressure distribution by

f�Cp�ik�g � �AIC�ik��fw�ik�g (4)

One should recall that a simple harmonic motion is assumed, hence
the dependence on ik. The coefficients of this matrix may be
interpreted as rates of pressure variation due to a given displacement
amplitude input associated with the boundary conditions. Then the
determination of the pressure coefficient vector in Eq. (4) is
performed from the known downwash, which is related to the
amplitude of the pitch and plunge motion at each element. The
substantial derivative of a given displacementmode is composed of a
derivative of the normal direction displacement with respect to the
main flow direction plus the associated velocity scaled by the
undisturbed flow speed, which, in a small-disturbance sense,
represents an angle of attack. Therefore, from the boundary
conditions for those small perturbations, the relationship between the
normal wash and a solid boundary displacement is rewritten as

fw�x; y; 0; ik�g � @h�x; y; 0�
@x

� ikh�x; y; 0� � �F�ik��fh�x; y; 0�g

(5)

The substantial derivative applied to a given modal displacement
vector fhg, which appears in Eq. (5), is denoted by the matrix
operator �F�ik��. The resulting aerodynamic loading vector fLa�ik�g
may be expressed as the multiplication of the pressures by an
integration matrix S, which is constructed from the panel elements
geometrical characteristics. The resulting final expression for the
unsteady loading over the lifting surface is given by

fLa�ik�g � q1�S��AIC�ik���F�ik��fhg

with �F�ik����� �
�
@���
@x
� ik���

�
(6)

The subsonic discrete kernel function approach will be further
employed as the unsteady aerodynamic theory for computation of
unsteady pressures and loads for aeroelastic response and stability
analysis.

III. Pressure-Matching Correction Method

The chosen approach to be further investigated is the downwash
correction for pressure matching [3], taking into account steady
reference nonlinear pressures as reference conditions to compute a
weighting operator WT. In this situation, the computation of the
weighting operator should be based on quasi-steady pressure slopes,
as performed by Luber and Schmid [12]. The choice of the pressure
rates instead of their absolute values is made to have displacement-
independent weighting functions:

f�Cnl
p �ik� 0�g � �AIC�ik� 0���WT�ik� 0��fw�ik� 0�g (7)

This method presents good robustness and preservation of the mean
steady nonlinear flow because the pressures are fully restored in
steady state conditions. However, it should be noted that an identified
discrepancy is its failure to compute unsteady pressures due to the
absence of nonlinear unsteady pressure information in the reference

conditions [3]. As an alternative, the unsteady pressure matching is a
way to include the nonlinear unsteady information in the reference
conditions:

f�Cnl
p �ikr�g � �AIC�ikr���WT�ikr��f �w�ikr�g

)
�AIC�ikr���1f�Cnl

p �ikr�g|�������������������{z�������������������}
f �w�ikr�gnl

� �WT�ikr��f �w�ikr�g (8)

where kr is a given reduced frequency associated with the unsteady
transonic flow taken as reference condition, and f �w�ikr�gnl is the
modified downwash resulting from the product of theAICmatrix and
the reference pressures.

The computation of the downwash weighting matrices is
performed from the ratio between the prescribed and the modified
downwash for both methods using steady or unsteady pressures as
reference conditions

�WT�ik� 0��ii �
fw�ik� 0�gnli
fw�ik� 0�gi

�WT�ikr��ii �
f �w�ikr�gnli
f �w�ikr�gi

(9)

leading to diagonal weighting operators to be included in the
following relation:

fLnl
a �ik�g � q1�S��AIC�ik���WT�ik� 0��fw�ik�g
� q1�S��AIC�ik���WT�ikr��fw�ik�g (10)

IV. Pressure-Matching Versus Force-Matching Results

Giesing et al.’s [5] force-matching method was evaluated with
respect to its performance in transonic aeroelastic stability analysis.
This is a force-matching method in which the computation of the
weighting matrix is based on strip loads. Each strip is composed of a
set of panels along the streamwise direction. Because the reference
loads are taken for each strip, whereas correction factors are to be
calculated for each panel, it is clear that there are fewer available data
(reference loads) than unknowns (correction factors). Therefore, the
correction factors need to be computed by a minimization technique,
which is described by Giesing et al.

The procedurewas tested for thewell-knownAGARDwing 445.6
weakened model 3 with a standard aeroelastic configuration [27].
This wing does not present significant nonlinear effects under
transonic flow conditions, because the flutter speed dip is mainly
governed by compressibility effects. However, as pointed out by
Bennet et al. [28], the AGARD 445.6 wing is a well-defined
benchmark model for validation purposes, even for the investigation
of transonic flow phenomena. The wing is modeled by the ZONA 6
method [26], implemented in theZAEROsoftware system [29], as an
isolated wing attached to a wind-tunnel wall. The flow conditions
that were used for analysis belong to a subset of the experiments on
the wing aeroelastic stability presented by Yates [27]. In the same
reference, the mathematical model regarding its structural and
geometrical characteristics is described. The Mach numbers and air
densities for the cases considered here are presented in Table 1.

The discrete element aerodynamic model, based on the ZONA 6
method, is composed of 220 panels uniformly distributed along the
chord length. The flutter computations were performed using the g
method [29,30]. The stripwise lifting-surface loading was computed
based on the integration of nonlinear steady pressure distributions,
computed by the CFL3D Navier–Stokes computational fluid
dynamics solver [31,32], The nonlinear flow simulations were
performed at two distinct angles of attack of 0.0 and 0.5 deg. Quasi-
steady pressure disturbances were computed and scaled by the
amplitude of the motion, turning them independent of the amplitude
of the disturbances, if one considers that the flow behaves linearly in
this range.

Once these loads are obtained, the procedure allows the
computation of a force-matching weighting matrix that exactly
restores the nonlinear reference loading condition. In Fig. 1 the
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complex pressure distribution, after the multiplication of the
weighting matrix from Giesing et al.’s [5] method, is compared with
the nonlinear pressures obtained by the Navier–Stokes solution and
with those obtained from the ZONA 6 linear solution [29].

The results from the flutter solution using Giesing et al.’s [5]
correction procedure are presented in Fig. 2. In the same figure are
results for the downwash weighting method (DWM) based on the
same reference flow conditions used for Giesing et al.’s [5] method
(i.e., for the same quasi-steady pressure disturbances).

Looking at Fig. 1, one can notice that the pressures are not restored
because the force matching is a least-squares-based procedure; that
is, there are less unknowns (which are the correction factors) than
equations, because the weighting matrix needs to have the same
dimension of the AIC matrix. Then this weighting matrix does not
guarantee a correct pressure distribution, as it only assures the load
matching. In Fig. 2, one should observe that the flutter stability
margin is overpredicted in terms of the flutter dynamic pressure. This
is an indication that such procedures have inadequately handled
unsteady effects due to transonic nonlinearity, hence causing various
discrepancies in their unsteady transonic pressure prediction, as
shown in Fig. 1.

V. Development of a New DWM

The following step is to develop a new downwash correction
method beginning with the study on the transonic flow behavior in a
small-disturbance context to understand the physics of transonic
flows, including any linearity assumption [33,34]. In addition, an
evaluation of downwash weighting methods using both steady and
unsteady pressures as reference conditions is performed to
understand the role of the reference conditions in the aeroelastic
stability computations [3]. And finally, an enhancement of the
downwash weighting procedure is introduced based on the
observations from the aforementioned investigations [3].

The unsteady transonic flow behavior investigation [33] is based
on an extension of Dowell et al. [35] research on this class of flows.
However, an extension of this investigation is presented in the
present effort because Dowell et al. employed a two-dimensional
transonic small-disturbance (TSD) finite difference solution,
whereas the present investigation is based on a three-dimensional
Navier–Stokes finite difference computation. The features to be
investigated are shockwave dynamics and loading (CL andCM). The
nonlinear aerodynamic model is based on the full Reynolds-
averaged, 3-D Navier–Stokes equations. The numerical method is a
second-order finite difference solution of the partial differential
equations in structured grid using the Beam–Warming [36]
approximate factorization scheme [37]. The results of the current
Navier–Stokes implementation were previously validated with NLR
F-5 wind-tunnel results [37,38].

The test case is the simulation of the same F-5 wing undergoing
rigid pitch oscillations at different amplitudes of the motion and
reduced frequencies. A Fourier transform is used to obtain frequency
content of the time response of Cp, CL, CM1=4, and shock
displacement. The latter quantity is defined as the location of the
maximum pressure chordwise gradient [33]. The linear behavior of
those quantities was observedwith respect to the prescribed dynamic
angles of attack leading to linear limits. Once these limits were

Table 1 Flow conditions for AGARD wing 445.6

(weakened model 3) aeroelastic analysis

Mach Reynolds Density, slug=ft3

0.678 1:410 	 106 0,000404
0.901 0:911 	 106 0,000193
0.960 0:627 	 106 0,000123
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Fig. 1 Comparison between the unsteady pressures obtained from

Giesing et al.’s [5] method; ZONA 6 and CFL3D AGARD 445.6 wing;

weakened model 3; M1 � 0:96.
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Fig. 2 Flutter boundaries (dynamic pressure and frequency) for the
AGARD wing 445.6; weakened model 3 (Giesing et al. [5]).
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identified, linear boundaries were constructed, as presented in Fig. 3.
In this figure, CM represents the amplitude of the complex moment
coefficient as a function of the dynamic angle of attack��, and k is a
reduced frequency. A detailed description of this investigation is
presented in [33].

To identify the limit for each case, a linear equation was estimated
so that it would start at the origin and pass through thefirst and second
points, in which it is assumed that the flow behaves linearly at these
low amplitudes of motion (0.125 and 0.250 deg). A linear equation
was then reduced for thesefirst values, leading to a linear relationship
used to extrapolate to the following points. Thus, a percent deviation
of the actual unsteady moment coefficient or shock displacement to
the extrapolated value was computed. The first point at which the
deviation exceeded 5% (named CMcrit for the case of the moment
coefficient) and the previous point were used in an interpolation to
find the corresponding dynamic angle of attack that defines the linear
limit [33].

Looking at Fig. 3, it should be observed that linear limits depend
on spanwise station, reduced frequency, and amplitude of the
motion. This indicates that simply using two-dimensional linear
limits, as presented by Dowell et al. [35], would not be appropriate
when dealing with correction methods. Notwithstanding the
dependence of the linear limits on reduced frequency and spanwise
station, it is clear that some degree of linear behavior may be
assumed, allowing the approximation of an unsteady transonic flow
by means of linear small-disturbance governing equations.

The downwash weighting method is based on the matching of the
pressures. Once the unsteady transonic flow behavior was
characterized, the subsequent step was to perform an investigation
regarding the role of the reference nonlinear pressures into the
solution of the flutter problem of an aeroelastic system. The
downwash weighting method was tested for the computation of the
aeroelastic stability of the AGARD wing 445.6, weakened model 3
[27]. Computations were performed using either nonlinear steady [3]

or unsteady pressure distribution as reference conditions [3]. The
linear unsteady aerodynamicmodeling is based on the doublet-lattice
method, implemented in theMSC/NASTRAN software system [39].
The chosen flutter solution technique is thepkmethod [40], which is
mathematically consistent for the computation of the flutter
boundary. The weighting operators are computed to correct the
pressure to downwash relation, resulting from the modeling of the
AGARD 445.6 wing using the doublet-lattice method.

The nonlinear pressures were obtained under unsteady motion to
provide the corresponding reference conditions for the downwash
weighting method. In this case, the pressures were computed under
harmonic motion oscillations of the wing with amplitude
��� 2:0 deg, for which the nonlinear contribution due to unsteady
transonic effects are more relevant. In the case of the application of
the downwash correction method based on steady pressures as
reference conditions [3], the chosen amplitude of the quasi-steady
motion is ��� 0:5 deg because the nonlinear contribution comes
from the steady mean transonic flow. The weighting operators are
introduced in the aeroelastic analysis as correction factors, yielding
the computed flutter speeds shown in Figs. 4 and 5. Figure 4 presents
a comparison between the transonic flutter computation based on the
correction using steady and unsteady nonlinear pressures and
experimental results [27]. Figure 5 includes comparisons with some
well-known aeroelastic analysis codes [28,29] with unsteady
downwash correction procedure results.

The ZTAIC code [22,29] is a modal aerodynamic influence
coefficient matrix correction method based on the transonic
equivalent strip method developed by Liu et al. [22] and further
extended by Chen et al. [41]. The CAP-TSD code is a time-domain
finite difference solution of the transonic small-disturbance equation
[28] coupled with a finite element structural dynamic model. The
results shown in Figs. 4 and 5 are presented in terms of the flutter
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speed index (FSI) [27] andflutter frequency as a function of theMach
number. One can observe in Fig. 4 that the computed flutter speeds
from the DWMbased on unsteady pressures indicate the presence of
the transonic dip. In the same figure, results are also shown from the
correction based on steady pressures. One may notice that there is a
good agreement when comparing the dip slope between the unsteady
pressures based correction procedure and the experimental data. The
steady pressure-based correction underestimates some of the flutter
speeds as well as the dip slope. The reason for these discrepancies is
related to the absence of a nonlinear unsteady pressure contribution,
because the reference pressures, over which the correction factors are
computed, are steady.

One feature to be pointed out in Fig. 4 is that in the subsonicMach
number case (M1 � 0:678), the correction based on unsteady
pressures did not significantly change the linear prediction. This is
because at the subsonic flow condition the differences between the
amplitude of the linear and the nonlinear computed pressures are
very small and not sufficient to introduce changes in the computation
of the corrected flutter speed. However, the same behavior is not
observed in the frequency plots shown in Fig. 4. Note that at
M1 � 0:678 the flutter frequency computed from the unsteady
downwash weighting method is higher than the linear result and also
higher than that computed by the steady downwash correction
method. The reason for this difference is not clear, but asmay be seen
in Fig. 5, there seems to be a tendency for overprediction of theflutter
frequency in this subsonic case, even for other nonlinear codes such
as CAP-TSD and ZTAIC, which better approach the experimental
flutter frequencies.

On the other hand, in the case of the computed flutter frequencies
atM1 � 0:901 and 0.96, the frequencies are subjected to noticeable
changes resulting in corrected values that are in better agreement

with the experimental values. In Fig. 5, the CAP-TSD code
calculations [28] also yield good results, because its formulation is
based on a finite difference nonlinear solution of the three-
dimensional form of the transonic small-disturbance equations.
Furthermore, the ZTAIC and CAP-TSD codes adequately represent
the severity in the flutter dip phenomenon, which is a desirable
feature in transonic flutter prediction in this case. A disadvantage
regarding such procedures is the dependency on two- and three-
dimensional unsteady finite difference solutions of the nonlinear
equations, respectively, increasing the computational cost in
comparison with the downwash correction method.

The next step was to perform a sensitivity analysis with regard to
the variation of the dynamic amplitude input, which is used to
generate the nonlinear unsteady pressure distribution, taken as
reference conditions for the computation of the correction factors.
The objective is to understand the sensitivity of the computed
aeroelastic system stability margins with respect to the amplitude of
the motion responsible for generating the reference pressures.
Figure 6 presents the computed flutter speeds, based on the unsteady
downwash correction method, using the resulting pressures with
respect to a set of displacement amplitudes. The same figure includes
comparisons with the results computed from the uncorrected
aeroelastic model and experimental measurements [27]. One should
observe that the flutter speeds present significant variation with the
nature of the unsteady pressure data used to compute the correction
factors. These results are graphically represented in Fig. 6 as the
variation of the nondimensional flutter speed (FSI) with the
freestream Mach number.

The best results in approaching the experimental transonic-dip
slope occur when one considers a dynamic angle amplitude of
��� 2:0 deg at the same time as the flutter speeds are slightly
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and other methods.
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underestimated. Above this value, an interesting result should be
noted. The computed flutter speeds at 2.5 deg are nearly coincident
with the experimental speeds in the transonic Mach number range.
Otherwise, it is possible to note an increase of the flutter speeds
computed at 3.0 deg.

The present investigation indicates that computed flutter speeds
using the unsteady downwash correction method depend on the
amplitudes of the motion. In the linear/nonlinear investigations
presented by Silva et al. [33], the transonic flow linear behavior limit
could be established for disturbances in angle of attack below
0.35 deg, assuming the moment coefficient criterion. One should
recall thatmoments play an important role in the flutter phenomenon.
Hence, the variation of the flutter speeds and frequencies as a
function of motion amplitude results from such nonlinear flow
behavior of unsteady transonic flows. This result is consistent with
the conclusions drawn by Silva et al. [33]. It is important to compute
unsteady pressures inside the linear range; otherwise, spurious flutter
predictions may appear. Further discussion on the sensitivity of the
flutter speed with respect to the amplitude of the dynamic angle of
attack was presented in [42].

The enhancement of the downwash weighting procedure is
motivated by the aforementioned investigation results. Linear
unsteady aerodynamic theories applied to the aeroelastic modeling
and analysis are developed considering small disturbances around
mean angle-of-attack variations of the lifting surface. The linear/
nonlinear behavior investigation indicated that unsteady transonic
flow behavior is strongly dependent on the amplitude of the motion
[33]. However, aeroelastic deformations are usually smaller than the
computed linear limits. Based on this observation, it is inferred that
for aeroelastic analysis in a small-disturbance context, unsteadiness
of transonic flows present a linear behavior with regard to
aerodynamic derivatives and shock dynamics when the amplitudes
of lifting surfaces undergoing unsteady motion are below the linear
limits.

After examining the linear and nonlinear behavior of aerodynamic
quantities as a function of the angle of attack, it was concluded that
unsteady transonic pressures behaves linearly around a steady
nonlinear mean flow for small amplitudes of the motion, such as
aeroelastic deformations [33]. Therefore, the unsteadiness of
transonic flow around a mean steady state nonlinear pressure
distribution can be computed as a linear contribution predicted by a
small-disturbance linear aerodynamic model in superposition to a
nonlinear steadymean flow. Thus, the proposed procedure should be
understood as an extension of the steady DWM, and the reference
pressure distribution is composed of the superposition of an unsteady
contribution predicted by the linearized potential flow equation in a
steady nonlinear mean flow [3].

The procedure is divided in two steps, the first being a nonlinear
steady mean flow correction as is performed for the correction of the
steady downwash when nonlinear pressure differences are
considered as reference conditions. The second step is the correction
of the unsteady downwash, in which the unsteady counterpart of the
reference pressures to be added to the steady nonlinear reference
pressures will compose new reference pressure differences. These
unsteady pressure contributions are predicted by a linear unsteady
flow aerodynamic model.

In essence, the method employs a successive kernel expansion
algorithm that can inject the given steady pressure into the perturbed-
frequency-based integral equations to recover the out-of-phase
pressure. To show the idea behind the successive kernel expansion
method (SKEM), consider the lifting-surface formulation in which
the integral equation according to the acceleration potential equation
reads

w�x; y; 0; ik� � � 1

8�

Z Z
A

�Cp��; ��K�x � �; y � �; 0; ik;M�d�d�

(11)

where K�ik� is the kernel function of the acceleration potential,
w�ik� � hx � ikh, and h is the normal mode. It is assumed that it is
possible to expand the subsonic kernel function as an asymptotic

series around small reduced frequencies. The kernel K�ik� is a
function of reduced frequency and its domain of dependency is
continuous and analytic. Consequently [43], the kernel function can
be expanded in an asymptotic series for small reduced frequencies
bounded by 1.0. Such previous attempts can be found in [44,45].
Therefore, with the expanded kernel, the pressure-downwash
relation equation (11) can be recast in terms of a reduced frequency
expansion format [43,46]. Expanding�Cp�ik� andK�ik� in terms of
�ik�n of Eq. (11) gives

hx � ikh� �ik�0
ZZ

A

��C0
p � ik�C1

p � �ik�2�C2
p � � � ��

	 �K0 � ikK1 � �ik�2K2 � � � ��dA (12)

Collecting like-order terms of �ik�n (n� 0; 1; 2; . . .) of Eq. (12)
results in n equations:

O �ik�0: fhxg � �K0�f�Cpg ! �C0
p � �A0�fhxg

O�ik�1: fhg � �K1�f�C0
pg � �K0�f�C1

pg
! �C1

p � �A0�ffhxg � �K1�f�C0
pgg

O�ik�2: f0g � �K0�f�C2
pg � �K1�f�C1

pg � �K2�f�C0
pg

! �C2
p � �A0�f�K1�f�C1

pg � �K2�f�C0
pgg

..

.

(13)

where �A0� � �AIC�ik� 0�� is the AIC matrix at k� 0. Note that an
additional term of order k2 � ln �k�, between the order of �ik�1 and
�ik�2, should have been formally presented in the expansion
procedure [i.e., Eqs. (12) and (13)] [44,45]. This term has been
omitted here, simply for clarity in describing the successive kernel
expansion procedure.

The successive kernel expansion procedure injects the given
steady pressure into Eq. (13) by replacingA0 withAIC
, whereAIC


is the corrected AIC matrix at k� 0 and it can be obtained through
the downwash weighting matrix method [Eq. (8)]. The unsteady
pressure is then computed using Eq. (11) for �Cnp in a successive
manner. In this way, a rational basis is established for the newDWM
according to the successive kernel expansion procedure, whereby
proper and consistent unsteady aerodynamic solutions can be
obtained through given transonic steady aerodynamic inputs.

Because the kernel functions and their expansion attempts are
given in [44,45], extension of the present new DWM approach for
sonic and upper-transonic (where M > 1:0) unsteady flows are
feasible.

VI. Results and Discussions

A. Validation of the Unsteady Pressure Distribution

Four test cases are selected to validate the unsteady pressure
coefficients computed byZTAWwithmeasured data. These are anF-
5 wing pitching about 50% root chord atM� 0:948 and k� 0:264
[38], a LANN wing in pitch mode about 62% root chord at M�
0:822 and k� 0:105 [47], and a Lessing wing in first bending mode
atM� 0:9 and k� 0:13 [48].

The corrected AIC matrices at k� 0 are first generated using the
downwash weighting matrix method. The unsteady pressure
coefficients are then computed by the successive kernel expansion
method. For all test cases, the CFL3D Navier–Stokes solver is used
to compute the steady pressure coefficientCp at two angles of attack:
�1 and �2. Therefore, the reference quasi-steady pressures, named
here as Cpgiven , are obtained as the ratio between pressure coefficient

differences and the amplitude of the motion.

B. F-5 Wing Pitching about 50% Root Chord at M � 0:948 and k�
0:264

The CFL3D Navier–Stokes computations are performed at
M1 � 0:948, �1 � 0:5 deg, and �� 0 deg. Figure 7 shows that the
steady pressure coefficient Cp computed by CFL3D at this Mach
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number and�� 0:0 deg correlates verywell with the test data;Cpgiven
is then computed accordingly,

Cp ��� 0:5 deg� � Cp ��� 0:0 deg�
0:5 deg

and it is presented in Fig. 8.
Shown in Fig. 9 is the comparison of the unsteadyCp computed by

ZTAWand theDWMmethod (due to the pitch oscillation about 50%
root chord at M1 � 0:948 and k� 0:264) with the wind-tunnel
measured data. It can be seen that the real parts of the unsteady
pressures �Cp computed by ZTAW and DWM are very close to
Cpgiven and they agree well with the experiments [38]. As discussed

previously, this is expected because the in-phase�Cp of ZTAW and
that of DWM can be essentially derived from Cpgiven . However, the

imaginary parts of the unsteady pressures�Cp computed by DWM
do not seem to include the shock-jump behavior as indicated by the
measured data. By contrast, the correct shock-jump behavior is well
predicted by ZTAW. This case clearly shows the shortcoming of the
DWM method and the ability of the ZTAW method to extract
accurate out-of-phase pressures from the given steadyCp through the
SKEM.

C. LANN Wing in Pitch Mode about 62% Root Chord at M � 0:822
and k� 0:105

The CFL3D steady Cp presented in Fig. 10 on a LANN wing at
M1 � 0:822 and �� 0:6 deg shows a strong shock located at 40%
chord.Cpgiven for this case is depicted in Fig. 11 andwas computed by

CFL3D at �� 0:6 and 0.8 deg according to

Cpgiven �
�Cp
��
�
Cp ��� 0:8 deg� � Cp ��� 0:6 deg�

0:2 deg

The unsteady pressures �Cp on the LANN wing in pitch
oscillation about 62% root chord at M1 � 0:822 and k� 0:105
computed by ZTAW and DWMare presented in Fig. 12. This time it
is seen that the imaginary parts of the unsteady pressures �Cp as
computed by the DWM method result in erroneous shock-jump
behavior of an opposite trend to that of the measured data.

Again, in contrast, the computed results of unsteady �Cp by
ZTAWpredicted the correct trend in shock-jump behavior and are in
good agreement with measured data [47] throughout all spanwise
locations. It should be noted that the zigzag behavior of the ZTAW
unsteadyCp at y=2b� 82:5% is caused by the same zigzag behavior
of Cpgiven at the same spanwise station. If more accurate Cpgiven is

provided by CFL3D, it is believed that more accurate unsteady�Cp
is expected to be obtained by ZTAW.

D. Lessing Wing in First Bending Mode atM � 0:9 and k� 0:13

An important issue exists for almost all transonic AIC correction
methods, which is their capability of generating accurate real and
imaginary parts of unsteady pressures �Cp of elastic modes with
given steady pressure and theCp given based on a static pitch mode.
The Lessingwing [48] is an ideal case to clarify this issue because the
measured unsteady �Cp on the Lessing wing is obtained by an
oscillating first bending mode, not a pitch mode. Shown in Figs. 13
and 14 are the steady Cp and Cpgiven , respectively, computed by

CFL3D atM� 0:9. It should be noted thatCpgiven is obtained here by

Eq. (8), which is due to a pitch mode at k� 0.
The unsteady Cp due to an oscillating first bending mode at

M� 0:9 and k� 0:13 is presented in Fig. 15, in which excellent
agreement between the SKEM results and wind-tunnel data can be
seen. This agreement clearly assures the applicability of ZTAW to
provide proper unsteady pressures of elastic modes with given static
pitch-mode solutions. Meanwhile, the results computed by the linear
method (ZONA 6) shown in Fig. 15 fails to predict the unsteady
shock effects, as expected.
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Fig. 7 Comparison of steady Cp between CFL3D and wind-tunnel data on a F-5 wing atM1 � 0:948 and �� 0:0deg.
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Fig. 9 Unsteady �Cp on a F-5 wing due to a pitch oscillation about 50% chord atM1 � 0:948 and k� 0:264.
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Fig. 10 Steady Cp on a LANN wing atM1 � 0:822 and �� 0:6deg.
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Fig. 11 Cpgiven
Computed by CFL3D of a LANN wing atM1 � 0:822.
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E. Validation of Flutter-Boundary Predictions

Two test cases are selected to validate the flutter-boundary
predictions of ZTAW with the wind-tunnel measurements. Again,
Cpgiven is obtained byCFL3D at two angles of attack and computed by

Eq. (13).

F. Flutter Boundaries of the AGARD 445.6 Wing

Four flutter boundaries of the AGARD 445.6 weakened wing [27]
are presented in Fig. 16: those computed with ZTAW, DWM, and
ZONA 6, as well as wind-tunnel measurements.

In the steady downwash correction the pressure phases are not
corrected, resulting in more conservative flutter dynamic pressures
when compared with strictly linear results. In addition, one should
note that the results of this method for transonic Mach numbers have
the same behavior of the uncorrected linear methods regarding the
transonic-dip curve slope. This is an indication that the transonic-dip
behavior is closely related to the contribution of the imaginary part of
the pressures.

In the case of the successive kernel expansion procedure, the
computed correction factors result from the matching of nonlinear

unsteady pressures composed by nonlinear steady mean flow
pressures and linear unsteady pressure contributions. Therefore, the
correction factor will take into account (in an approximate form) the
unsteady transonicflowbehavior, because its computation is referred
to those nonlinear unsteady pressures. In summary, the dip slope
predicted by the successive kernel expansion method is increased,
because the correction procedure takes into account the influence of
the real and imaginary parts of the transonic unsteady pressures.
Thus, this improvement in the reference conditions leads to better
results in approaching the experimental measurements.

G. Flutter Boundaries of the PAPAWing

The flutter boundaries of the pitch-and-plunge apparatus (PAPA)
wing [49] at �� 1 and �2 deg computed by DWM and ZTAW
(SKEM) are presented in Fig. 17 and compared with the wind-tunnel
measurements. It can be seen that DWM largely underpredicts the
flutter dynamic pressures, whereas they are well predicted by
ZTAW.A similar trend of the flutter boundaries of the PAPAwing at
�� 2 deg is shown in the same figure. Again, ZTAW flutter results
agree better with the test data than those of DWM. One should
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observe that the downwash correction method largely underpredicts
the flutter dynamic pressure, whereas the flutter results of the
successive kernel expansion method correlate well with test data,
both for the subsonic and the transonic Mach numbers. This is so
because the unsteady components of the nonlinear pressures
introduced by the correction procedure play an important role in the
flutter computation.

Another feature to be highlighted with regard to the successive
kernel expansion method is the capability to predict the flutter of the
wing at different initial angles of attack, as opposed to the linear
theory, which is independent of angle of attack. This is because the
steady mean flow can be computed at a given steady state angle of
attack, and the nonlinear unsteady pressures, used to compute the
correction factors, will be obtained from the contribution of the
nonlinear steady mean flow pressures and added to unsteady linear
pressures. Therefore, the angle-of-attack contribution is included in
the mean flow conditions, because unsteady linear pressures
predicted by the linear unsteady aerodynamicmodel are independent
of the angle of attack.

VII. Conclusions

The transonic dips were captured with application of the present
steady and unsteady downwash correction methods. However, the
dip phenomenon was more evident and closer to experiments when
the unsteady downwash correction method was employed. It may be
concluded that the unsteady flow contribution, embedded in the CFD
computed nonlinear unsteady pressures taken as reference
conditions, plays an important role in the transonic flutter
phenomenon. Another feature to be highlighted is that the flutter
boundaries computed by unsteady downwash correction methods
are significantly dependent on the unsteady pressures taken as
reference conditions. The preceding is consistent with the
observations regarding the linear/nonlinear investigations, in which
it was found that the linear limit associated with the liftingmoment is
more sensitive to the amplitude of the motion used to compute the

nonlinear unsteady pressures for the unsteady correction method
[33,42].

Almost all previous AIC correction methods based on steady
reference conditions are found to yield erroneous out-of-phase
pressures, especially in terms of shock-jump behavior. The SKEM,
also named the ZTAW method, employs a kernel expansion
procedure that forms a rational basis for an advanced DWMmethod.
With quasi-steady pressures computed from a rigid pitch
displacement of the lifting surface given either by CFD or
measurements, ZTAWcan yield accurate out-of-phase pressures in a
general frequency range as well as well-correlated flutter solutions.

In addition, ZTAW can be extended to cover the full transonic
range, includingM � 1:0, because the successive kernel expansion
method is derived according to a unified acceleration potential
formulation covering subsonic, sonic, and supersonic Mach
numbers.
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