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The paper is concerned with downwash correction methods for aeroelastic stability analyses in the transonic

regime. A finite-differenceNavier–Stokes code is used to calculate the unsteady aerodynamic loading due to dynamic

angle-of-attack variations in three-dimensional transonic flow. The computed unsteady pressure coefficients are

used as a reference state for flutter analyses using the downwash weighting method. The effects of the amplitudes of

motion used in the calculation of nonlinear, unsteady reference pressures are addressed. The test case considered is

the well-knownAGARDwing 445.6 standard aeroelastic configuration. The configuration is subjected to rigid-body

pitching oscillation about the midchord point at the root section. Flutter boundaries are computed using unsteady

pressures, in the downwash correction methodology, as reference conditions to compute weighting operators. The

results are compared with available experimental data and they indicate that the aerodynamic interference and

viscous and thickness effects play an important role on the flutter prediction capability.

Nomenclature

a = speed of sound
b = reference length, taken as the semichord
c = chord, 2b
Cp = pressure coefficient
�D� = kernel function matrix
�F� = substantial derivative operator
h = displacement mode shape vector
i = receiving point index
Im� � = imaginary part of a complex number
inst = index indicating instantaneous quantity
j = sending point index
k = reduced frequency based on the freestream flow speed
kr = reduced frequency based on the speed of the sound
K = kernel of the integral relation in terms of the

acceleration potential
fLag = aerodynamic load vector
M1 = freestream Mach number
n = panel number index
nl = index indicating nonlinear quantity
q = dynamic pressure
Re� � = real part of a complex number
S = lifting surface area
�S� = integration matrix
U1 = freestream speed
W = wake surface area
[WT] = weighting function
fwg = downwash vector
f �wg = nondimensional downwash vector
�x, �h = planar position of doublet (discrete kernel function

method)
� = angle of attack
�Cp = pressure difference coefficient

�� = dynamic angle of attack
�� = nondimensional time step
� = coordinate in curvilinear system, aligned with the

spanwise direction
� = coordinate in curvilinear system, normal to the lifting

surface
� = coordinate in curvilinear system, tangent to the lifting

surface boundary, in the streamwise direction
� = nondimensional time
1 = freestream condition

I. Introduction

T HEmost commonway of performing aeroelastic analyses in the
aeronautical industry is by the use of the structural-dynamic/

unsteady aerodynamic commercial codes based on linear unsteady
aerodynamic modeling techniques combined with structural
dynamics solvers. Usually, linear aerodynamic modeling techniques
are based on discrete element solutions of the linear equations of the
fluid flow. However, the application of discrete element (panel)
methods is limited to purely subsonic or supersonic flows, because
the governing equations over which the method were developed are
based on a linearized unsteady potential flow hypothesis. However,
the aeroelastic behavior of an aircraft is typically critical in the
transonic flight regime, where nonlinear phenomena related to
embedded moving shock waves and viscosity play an important role
in aeroelastic stability.

As discussed by Ashley [1], the shock wave movement and
strength profoundly affect the flexure-torsion flutter mechanism.
One consequence of this behavior is the so-called transonic dip
phenomenon. This phenomenon is characterized by a decrease of the
slope of the flutter speed plot as a function of theMach number, when
compared to the same plot obtained from a linear aeroelastic analysis.
Therefore, it is necessary to pay special attention to the flutter
phenomenon under these circumstances. This is especially
significant as most modern aircraft fly under transonic flow
conditions.

One of the feasible alternatives for analyzing the aeroelastic
stability in nonlinear flow conditions is the use of time accurate
computational fluid dynamic (CFD) solutions of the nonlinear fluid
equations coupled with a structural-dynamic representation of the
vehicle. Another approach is the use of wind tunnel testing of
aeroelastic models, under transonic flow conditions. However, wind
tunnel testing for aeroelastic investigation regarding flutter boundary
computation is not usual because such class of experiments involves
expensive models and high operational costs. In most cases of
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experimental aeroelastic stability investigation, the objective is to
obtain accurate measurement data to validate computational
procedures applied to the solution of nonlinear equations. Examples
of experiments on unsteady aerodynamics regarding pressure
measurements have been reported in the literature [2–4]. Notable
examples of experimental flutter investigations have been presented
in [5–8]. Still another way to evaluate the transonic aeroelastic
behavior is from flutter flight testing, which is the most hazardous
and expensive option in terms of operational cost. This approachmay
be used either for experimental flutter boundaries identification or to
verify the subcritical aerodynamic damping at specific flight
envelope points to validate aeroelastic numerical models.

There have been several attempts to solve the transonic aeroelastic
problem using combined procedures which relate linear models to
measured data for the correction of unsteady linear aerodynamic
models. A good review on correction techniques was presented in
[9], describing the most employed methods concerning transonic
flutter prediction via combined procedures. Such approaches are
named here as mixed procedures. The purpose of such procedures is
to correct the linear aerodynamic models to take into account
nonlinear effects, unpredictable by the linearized potential-based
equations of the fluid flow. Themethodologies for the solution of the
transonic aeroelastic problem based on mixed procedures are
referred also as semiempirical corrections. These corrections can be
performed by the multiplication, addition, or the whole replacement
of the aerodynamic influence coefficient (AIC) matrix. This
approach is an adequate tool for engineering applications, because
the methodology employed is less expensive than direct use of CFD
techniques.

The correction techniques, which have been applied to unsteady
loading calculation for static or dynamic stability analysis, are here
classified as a pressure matching method [10]. The matching of the
pressures based on downwash correction consists in themodification
of the control point displacement vector to satisfy a given reference
pressure distribution. The advantage of pressure matching methods
is related to the use of pressures instead of loads as reference
conditions. The use of loads to correct an AIC matrix, which relates
downwash to pressures, may lead to distortions of the pressure
distributions regarding shock wave positioning and strength [10].
This problem does not happenwhen one uses a properly definedAIC
matrix, which relates loads to the corresponding displacements in the
airfoil section degrees of freedom. However, the AIC matrices,
which result from the conventional modeling based on discrete
element solutions of the linearized potential flow equations, relate
pressures to displacements at control points. Therefore, it is natural to
employ the pressure matching for the correction of the discrete
elementmodels. The nonlinear reference pressuresmay be computed
from steady-state CFD solutions or they may be obtained from
experimental measurements.

The computation of the weighting function is based on quasi-
steady pressure slopes [11]. The choice of the pressure rates instead
of their absolute values is made to have displacement-independent
weighting functions. The next step is the definition of a prescribed
quasi-steady downwash mode shape. One suggestion is the use of a
pitch mode, for example. However, it is possible to employ other
patterns of displacements, such as a frozen structural mode shape.
The resulting weighting function will post-multiply the AIC matrix,
that is, it will operate over the downwash vector. The aeroelastic
analysis is performed considering such weighting operator as a
post-multiplier of the AICmatrices, for all reduced frequencies to be
explored in the aeroelastic study.

Generally, the pressure or load matching procedures, based on
steady reference conditions, fail in obtaining unsteady pressures at
higher frequencies. The magnitude of these pressures is well
approximated, but the phases present wrong trends. This is so
because the pressure amplitudes do not experience large variations
with the reduced frequencies as it happens with the pressure phases
[1]. The reason for this fact is the absence of unsteady transonic flow
information in the reference conditions [1,12].

The objective of the present work is therefore, to study downwash
weighting procedures applied to aeroelastic stability analysis based

on nonlinear unsteady pressures as reference conditions. Such
unsteady pressures are computed from unsteady CFD solutions for a
prescribed motion of the lifting surface. Downwash weighting
procedures are chosen due to their robustness and advantageous
features such as cost and consistency with the physics of the problem
[10].

II. Modeling Considerations

A. Integral Solution of the Linearized Potential Flow Equation

The aerodynamic modeling of unsteady linear potential flows is
performed based on methods such as the discrete kernel function
approach. The development of discrete element kernel function
methods is based on integral solutions of the small disturbances
linearized potential flow equation [13] for a configuration of interest.
The integral solution is obtained by the application of Green’s
theorem to this equation [14] in terms of unsteady source and doublet
singularity distributions, over the body surface S and its associated
wake surfacesW.

The objective of discrete kernel function methods is to solve the
problem of unsteady aerodynamic modeling of general aircraft
configurations, by subdividing its surface, as well as the associated
wakes, in discrete elements (panels). It is assumed that each of these
elements contain elementary solutions of the governing equations.
Each panel contains a control point where the boundary condition is
imposed. The integral equation is approximated by the summation of
elementary integrals associated with each panel. These elementary
integrals at each panel, aswell as the aerodynamic interference of one
panel onto others, lead to a linear system of equations relating the
pressure coefficient differences to downwash. The assembly of the
elementary integral solutions results in a matrix which elements
represent the aerodynamic influence of the panels into the control
points. This matrix is named as the aerodynamic influence
coefficients matrix, which relates the structural deformations to the
aerodynamic forces. Each integral relationship between the
downwash at a receiving point i, and the pressures at a sending
panel j can be written as a system of equations as

’iz �wi �Dij�Cpj (1)

where each of the matrix elementsDij is the result of the integration
of the kernel function over the given jth lifting surface element
geometry [14]:

Dij �� 1

8�

�
Z ��j

��j�1

Z
��j

��j�1

�
lim

�
@

@z
K �xi � ��n; yi � ��n; 0;M1; k�

��
d ��n d ��n

(2)

The inverse of the matrix operatorDmultiplied by the downwash
vector yields the pressure distribution. In other words, the solution of
the system of equations gives the doublet strength at each panel
referred to a given downwash which is related to a displacement
mode shape. The resulting inverse matrix is named as the
aerodynamic influence coefficients matrix, which is a function of the
reduced frequency, and it is related to the pressure distribution by

f�Cp�ik�g � �AIC�ik��fw�ik�g (3)

One should recall that a simple harmonic motion is assumed,
hence the dependence on ik. The coefficients of this matrix may be
interpreted as rates of pressure variation due to a given displacement
amplitude input associated to the boundary conditions. Then, the
determination of the pressure coefficient vector in Eq. (3) is
performed from the known downwash, which is related to the
amplitude of the pitch and plunge motion at each element. The
substantial derivative of a given displacementmode is composed of a
derivative of the normal direction displacement with respect to the
main flow direction plus the associated velocity scaled by the
undisturbed flow speed which, in a small disturbance sense,
represents an angle of attack. Therefore, from the boundary
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conditions for those small perturbations, the relationship between the
normal wash and a solid boundary displacement is rewritten as

fw�x; y; 0; ik�g � @h�x; y; 0�
@x

� ikh�x; y; 0� � �F�ik��fh�x; y; 0�g
(4)

The substantial derivative applied to a given modal displacement
vector fhg, which appears in Eq. (4), is denoted by the matrix
operator �F�ik��. The resulting aerodynamic loading vector,
fLa�ik�g, may be expressed as the multiplication of the pressures
by an integration matrix �S�, which is constructed from the panel
elements geometrical characteristics. The resulting final expression
for the unsteady loading over the lifting surface is given by

fLa�ik�g � q1�S��AIC�ik���F�ik��fh�x; y; 0�g;

with �F�ik���	� �
�
@�	�
@x

� ik�	�
�

(5)

The subsonic discrete kernel function approach will be further
employed as the unsteady aerodynamic theory for computation of
unsteady pressures and loads for aeroelastic response and stability
analysis.

B. Aeroelastic Model

The equations of motion of a discrete aeroelastic system can be
represented as an equilibrium relation between the structural and
aerodynamic forces. The flutter boundary computation should be
performed by solving the complex eigenvalue problem of this
system, for a given parameter variation. The solution of the
eigenvalue problem requires that the homogeneous aeroelastic
system of equations be written into the Laplace domain.

The induced aerodynamic loading is obtained by a convolution
integral which transforms the aerodynamic loading from the time
domain to the Laplace domain. However, the AIC matrix is only
available in the simple harmonic reduced frequency domain. Thus, it
is assumed a simple harmonic motion aerodynamics, valid for
stability analysis of the aeroelastic system, because damping at this
condition is zero. Moreover, this hypothesis is mathematically
consistent with the assumption of the simple harmonic motion
introduced by the unsteady aerodynamic formulation.

The stability of an aeroelastic system is evaluated by using flutter
solution techniques. These methods are based on the solution of the
eigenvalue problem with respect to a given parameter variation.
Some examples of flutter solutions techniques are the well-known k
method due to Theodorsen [15], also presented by Rodden and
Johnson [16], and Rodden and Bellinger [17]; the p–k method,
Hassig [18]; and the g method [19]. The p–k method is the chosen
procedure to be applied for flutter computations in the present work.

C. The Navier–Stokes Nonlinear Aerodynamic Model

The nonlinear aerodynamic computations were based in the finite
difference solutions of the Navier–Stokes equations to have steady
and unsteady pressures distribution over the lifting surfaces. The
Navier–Stokes solver used for unsteady flow computations is a
modified version of a code developed by Sankar and Kwon [20]. It is
an implicit finite difference solution of the vector form of the full
Reynolds-averaged, three-dimensional Navier–Stokes equations
based on an arbitrary curvilinear coordinate system. All spatial
derivatives are approximated by standard second-order central
differences. The mathematical formulation and the description of the
numerical method have been described elsewhere [21].

A slightly modified version of the Baldwin–Lomax algebraic
turbulence model [22] is used, where the maximum shear stress is
used instead of the wall shear stress because in the vicinity of
separation points, the shear stress values approach zero at the wall. It
should be noted that this change to the Baldwin–Lomax model
allows the method to treat mild separation, but it is not clear to what
extent the results would be valid for massive separation. Because the
scope of the present investigation is the computation of unsteady

flowbehavior of oscillatingwings atmoderate amplitudes of angle of
attack, this model is adequate and will be applied to the problems at
hand [23].

The boundary conditionsmust be specified along the solid surface,
at the wing root and the far field boundaries. The far field boundaries
are located outboard of the wing tip, downstream beyond the trailing
edge. The velocity normal to the boundary is computed. Then, the
boundary conditions are imposed depending on whether it is an
inflow or outflow and whether it is subsonic or supersonic.

1) Supersonic outflow: All variables are extrapolated from the
interior of the domain.

2) Subsonic outflow: The pressure is fixed to be the freestream
value and the other variables are extrapolated.

3) Subsonic inflow: The density is extrapolated from the interior of
the domain and the other variables are fixed from the freestream.

4) Supersonic inflow: All variables are fixed to be the freestream
values.

III. Downwash Correction Method

The main purpose of the correction methods to be developed here
is the computation of unsteady transonic flows for dynamic
aeroelastic response and aeroelastic stability analysis [10]. The main
idea of such procedure is the modification of the downwash vector
inside the pressure to downwash linear relationship. The transonic
flow reference conditions can be based on either CFD solutions of the
nonlinear fluid dynamic governing equations [20,21], or
experimental data.

The basic equation over which this procedure is developed is the
algebraic pressure to downwash relationship, derived from the
application of discrete element kernel function methods to model the
linearized potential flow equation. This relation is rewritten in a
simplified form as a function only of the reduced frequency as

f�Cp�ik�g � �AIC�ik��fw�ik�g (6)

The downwash vector is related to the lifting surface
displacements by boundary conditions defined in a small
disturbances context, and may be regarded as an effective dynamic
angle of attack at each of the lifting surface elements. In the
frequency domain, these boundary conditions are rewritten here as

fw�x; y; 0; ik�g � @

@x
fh�x; y; 0�g � ikfh�x; y; 0�g (7)

recalling that fh�x; y; 0�g is an out-of-plane lifting surface
displacement mode shape, and fw�x; y; 0:ik�g is the resulting
downwash with respect to the modal motion. When steady-state
pressures are considered as reference conditions [10], the
corresponding downwash is reduced to the derivative of the
associated mode shape displacements with respect to the flow
direction x as,

fw�x; y; 0�g � @

@x
fh�x; y; 0�g (8)

leading to a steady-state pressure to downwash relationship given by

f�Cp�ik� 0�g � �AIC�ik� 0��fhx�x; y; 0�g (9)

Another capability of downwash correction procedures is the use
of computed or experimental unsteady pressure differences. In such
cases, the reference conditions are based on frequency-dependent
pressures, computed from the time domain aerodynamic response.
Pressure time histories, for example, may result from the lifting
surface displacements due to a prescribed motion. These
displacements are arbitrary, as they may be, for example, impulse-
type or oscillating harmonic motions. For the present downwash
correction investigation, the unsteady pressure differences
computation was performed based on a time domain CFD solution
of the Navier–Stokes equations, using the finite differences approach
mentioned in Sec. II.
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The chosen displacement may be any unsteady motion associated
to a displacement mode shape of the lifting surface. In the present
investigations, it is chosen a rigid body harmonic pitching rotation
around the root midchord axis of the lifting surface, at a preset
reduced frequency kr. This motion leads to an unsteady downwash,
which also may be regarded as an unsteady perturbation in angle of
attack, with amplitude equal to the amplitude of the pitching motion,
��.

Because the linear aerodynamicmodel to be corrected is defined in
the frequency domain, it shall be necessary to transform the reference
time domain pressure differences to the frequency domain. The most
adequate approach is the first harmonic components computation of
the pressure differences using a Fourier transform algorithm applied
to their time histories. The Fourier transformations used herein to
obtain the frequency domain components of the pressure differences
are given by [21]

Re ��Cnl
p �ikr�� �

k

�

Z
�1�2�=kr

�1

�Cp��� sin�kr�� d� and

Im��Cnl
p �ikr�� �

k

�

Z
�1�2�=kr

�1

�Cp��� cos�kr�� d�
(10)

where kr is given by kr � !c=a1 and � � a1t=c is the
nondimensional time, as defined in the nondimensionalization of
the Navier–Stokes equations. Because the time domain simulation of
the Navier–Stokes equations is based on a discrete time marching
algorithm, the Fourier integrals, presented in relations (10), shall be
approximated by discrete Fourier transforms as follows:

Re ��Cnl
p �ikr�� �

krM1��

2���

Xm1�mT

m�m1

�Cpm sin�krm��� and

Im��Cnl
p �ikr�� �

krM1��

2���

Xm1�mT

m�m1

�Cpm cos�krm���
(11)

where�� is the computational nondimensional time step over which
the time marching simulation was performed. Therefore, the
complex first harmonic components of the pressure coefficient
differences�Cnl

p �ik� are obtained from the real and imaginary part of
the first harmonic components, given by Eqs. (11) as

f�Cnl
p �ikr�g � �Ref�Cnl

p �ikr�g� � i�Imf�Cnl
p �ikr�g� (12)

Because the unsteady pressure differences f�Cnl
p �ikr�g are

computed, it is possible to determine correction factors, which
satisfy a system of equations analogue to Eq. (9). Special care needs
to be taken regarding definition of the reduced frequency for the
Navier–Stokes simulations. The reduced frequency differs from that
defined for the discrete element kernel functionmethod by a factor of
kr � k�M1c=b�, because k� !b=U1. Thus, to have unsteady
pressures computed by the Navier–Stokes simulation and kernel
functionmethods at the same reduced frequency, the aforementioned
relation needs to be satisfied. Another feature to be noted is that the
unsteady pressure coefficients are divided by the amplitude of the
motion, ��, as indicated in Eqs. (11).

The system of Eqs. (6) is now rewritten as function of a frequency-
dependent weighting operator given by

f�Cnl
p �ikr�g � �AIC�ikr���WT�ikr��f �w�ikr�g (13)

where f �w�ikr�g is the downwash vector divided by amplitude of the
motion��. The diagonal weighting matrix coefficients are obtained
from the ratio between amodified unsteady downwash, computed by

fwnl�ikr�g � �AIC�ikr���1f�Cnl
p �ikr�g (14)

and the known downwash associated to the prescribed lifting surface
motion, leading to

�WT�ikr��ii � �wnl�ikr��i=� �w�ikr��i (15)

The nonlinear unsteady aerodynamic loading computation is
performed by introducing in Eq. (5) the correcting weighting
operator, which multiplies the downwash vector, leading to an
approximate aerodynamic loading given by

fLnl
a �ikr�g � q1�S��AIC�ikr���WT�ikr��fw�ikr�g (16)

The choice of the reduced frequency over which the nonlinear
unsteady pressure differences are referred is arbitrary; however, a
good suggestion is the flutter reduced frequency predicted from the
purely linear stability analysis of the aeroelastic model [10]. This
assumption allows the best correction of the unsteady aerodynamic
loading at the critical reduced frequency, representing an
improvement on the prediction of transonic effects near the flutter
boundary. However, for different reduced frequency values, there is
no guarantee that the computation of the unsteady transonic loading
has physical significance. This is so because the weighting function
is computed based on a given reduced frequency value, which shall
be different from the one in this different unsteady flow condition.

IV. Results

A. Analysis of the Unsteady Pressures for the AGARD Wing

The results to be presented in this section are obtained using
downwash correction methods, based on unsteady pressures as the
nonlinear reference conditions. The test case to be investigated is the
AGARD wing 445.6 weakened model no. 3 [6], in subsonic to
transonic flow conditions. As a first step, the unsteady pressure
distribution over the AGARD 445.6 wing are investigated to
understand the fluid dynamic behavior as it affects the flutter
computation for this wing.

The AGARD wing 445.6 has an aspect ratio of 4.0 and a NACA
65A004 airfoil section. This wing is modeled by the doublet lattice
method, implemented in MSC/NASTRANTM software system [24],
as an isolated wing in different flow conditions, where the discrete
elementmodel is composed of 240 panels. The test conditions belong
to a subset of those presented in the work ofYates [6], which consists
in an experimental investigation of the aeroelastic behavior of this
wing under transonicflowconditions. Themodel under investigation
is described by Yates, regarding its structural and geometrical
characteristics.

The computation of the nonlinear unsteady pressures is performed
from the finite difference solution of the Navier–Stokes equations,
using the method described in Sec. II. The current implementation
was previously employed to the case study of the F-5 wing [10,21],
which has some common aspectswhen comparedwith the case of the
AGARD wing, e.g., low thickness profile, low aspect ratio, and
transonic flow conditions. The computational mesh surrounding the
wing is an algebraically generated,C-type topology, with 141 points
in the �-direction, tangent to the lifting surface boundary, where 121
points are over the lifting surface itself. In the �-direction, normal to
thewing surface, there are 41 points between the solid surface and the
limit of the computational mesh. Finally, in the �-direction, there are
25 points aligned with the spanwise direction, where 17 points are
over the lifting surface, and the remaining points are located between
the wing tip and the computational domain limit.

The code used for the Navier–Stokes solution discussed in the
present effort was extensively validated as demonstrated in [10,21],
for the case of the F-5 wing performing harmonic oscillations. In
these references, the results of the code were compared with
experimental data showing good agreement in terms of unsteady
pressures computations. Such calculations have considered
extensive parameter variations, including several angles of attack,
reduced frequencies, and amplitudes of motion. Furthermore, the
calculations have also considered mesh refinement investigations to
quantify the mesh effects in the Navier–Stokes solutions. Hence,
because the test case considering the F-5 wing has several common
aspects with the current AGARD wing test case, for instance, low
thickness profile, low aspect ratio wing, and transonic flow
conditions, the authors felt that they could use the experience from
the work in [10,21] to reduce the number of computational runs for
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the present AGARD wing transonic flow investigation. Therefore,
the mesh sizes for the present work were selected following the
experience acquired with the F-5 study ([10,21]) and, in particular,
the lessons learned in that study with regard to adequate mesh sizes
for the present unsteady calculations. Hence, the meshes here used
are essentially identical in size to the best compromise achieved in
the F-5 study in terms of grid size, except that the current meshes
have more points in the spanwise direction because the AGARD
wing has a larger aspect ratio that the F-5 wing.

The investigation of the unsteady transonic flow behavior around
the AGARD wing 445.6 is here performed examining pressure
distributions at spanwise station 30.8%. The main concern of this
investigation is to verify the influence of the amplitude of the motion
on pressure distributions. Thus, this station was chosen because the
flow is less subjected to three-dimensional effects as indicated by
Silva et al. [25].

Three reduced frequencies are chosen from the test conditions,
where each of them corresponds to a given Mach number, as
presented by Yates [6]. These frequencies are presented in Table 1,
where one should observe that k� !b=U1, whereas kr � !c=a1.
For both linear and nonlinear computations, c� 2b� 1:0�m�.

Pressure distributions are computed from the doublet lattice
method and the unsteady Navier–Stokes simulation for the reduced
frequencies and correspondingMach numbers, presented in Table 1.
In the case of the nonlinear solution, they were obtained for different
amplitudes of oscillation, leading to pressure coefficient differences
properly scaled by the magnitude of the disturbance. The
computations were performed for different amplitudes to quantify
the influence of the amplitude of the motion on the pressure ratios,
and to compare these to the ones computed from the linear model.

The computed unsteady pressure distributions along the chord at
spanwise station 30.8% are presented in Figs. 1a and 1b. The chosen
amplitudes are 2.0 and 3.0 deg in angle-of-attack rotation around the
root midchord axis. Both real and imaginary parts of these pressures
are presented for the lower Mach number (0.678), the corresponding
reduced frequency k given in Table 1, at these amplitudes of
oscillation.

The results presented in Fig. 1 are the complex pressure
distributions for a subsonic (M1 � 0:678) flow condition. For low
amplitudes of motion (until��� 1:0 deg, not shown here), there is
a distinct leading edge suction peak [10]. However, examining the
results presented in Fig. 1, it is possible to note that there is a
deviation near the leading edge, for both real and imaginary parts of
the pressures, for these larger amplitudes on motion. To further
investigate this behavior, contour plots of the pressures at the
maximum angles �inst � 2:0 deg and �inst � 3:0 deg are shown in
Fig. 2, whereas instantaneous pressures at several angles of attack are
plotted in Fig. 3 for ��� 2:0 deg and ��� 3:0 deg.

For both angles of attack, one should observe the appearance of a
secondary suction peak that moves towards the trailing edge with the
increase in motion amplitude. The displacement of this secondary
pressure suction peak is associated to the aerodynamic lag of theflow
around the finite thickness profile, computed by the Navier–Stokes
solution [20].

The surface pressure distribution plots in Figs. 3a and 3b indicate
that the pressure distribution is quite influenced by the motion
amplitude. For example, for the same instantaneous angle of attack of
1.8 deg, it is possible to note the dependency of the aerodynamic lag
on themotion amplitude. For��� 2:0 deg (Fig. 3a), the position of
the secondary pressure peak is around x=c 
 0:1, whereas for���
3:0 deg (Fig. 3b), the position of the secondary pressure peak is
x=c 
 0:2. Because these secondary pressure peaks aremovingwith

Table 1 Reduced frequencies for AGARD wing 445.6 aeroelastic

analysis

Mach kr k

0.678 0.48839 0.36016
0.901 0.34076 0.18910
0.960 0.28252 0.14714
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Fig. 1 Unsteady pressure distributions for the wing station at 30.8% of
span,M1 � 0:678.

a) inst = 2.0 deg b) inst = 3.0 deg
  

Fig. 2 Instantaneous pressure contours at leading edge of spanwise
station 30.8%, M1 � 0:678.
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Fig. 3 Instantaneous pressure distributions at spanwise station 30.8%,

M1 � 0:678.
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Fig. 4 Unsteady pressure distributions for the wing station at 30.8% of

span,M1 � 0:960.
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time, and their displacements increase with the amplitude of the
motion, then the deviation from the linear complex pressure
distributions are larger for the higher angle-of-attack amplitudes
(Figs. 1a and 1b). The downstream displacement of the secondary
pressure peak is more pronounced in the subsonic Mach number
because, under this condition, the aerodynamic lag effects are more
relevant.

The differences that have been observed between the doublet
lattice method and the Navier–Stokes results atM1 � 0:96 (Fig. 4)
are associated to a shock wave formation. Contour plots of the
instantaneous pressures at maximum angle-of-attack situations are
presented in Fig. 5 whereas instantaneous pressure distributions at
several angles are shown in Fig. 6 for this Mach number. For
��� 3:0 deg, there is only a slight trend for appearance of a
secondary peak (Fig. 6b), because the aerodynamic lag is suppressed
by the high undisturbed flow speed energy.

One should observe in Figs. 6a and 6b that there is a displacement
of the shock wave towards the trailing edge, from x=c 
 0:50 to
x=c 
 0:57 for the angles of attack �� 2:0 deg and �� 3:0 deg,
respectively. The transonic effects are more pronounced for this
Mach number, and are especially evident in the imaginary part of the
pressures, leading to strong differences between the linear and
nonlinear predicted phases.As the pressure phases aremore sensitive
to the shock movement than the pressure amplitudes, the main
differences when comparing the potential and the Navier–Stokes
results will be in the imaginary part of the pressure.

Another feature to be noted is the influence of the amplitude of the
motion on the shock wave position. In Figs. 4a and 4b, one may
notice that the shock appears to move aft as the amplitude is
increased. The reason for this behavior is that, in steady flow
conditions, the shock wave position moves towards the trailing edge

as the angle of attack is increased, as shown by Silva et al. [25]. This
behavior is also noted for unsteady flows, as indicated by Dowell
et al. [26]. Recalling that the pressures are scaled by the amplitude of
the motion, one should note that, for smaller angles of attack, the
shock position is about the same. This is so because in the low angle-
of-attack range the transonic flow behaves linearly, with respect to
angle of attack, as concluded by Silva [10].

The behavior of the phase angles of the scaled complex pressure
difference along the chord for M1 � 0:96 is summarized in
Fig. 7, where � is the nondimensional phase angle resulting
from the scaling of the phase angle �, computed from
�� tan�1�Im�Cp�=Re�Cp��, and the amplitude ��, as �� �=��.

As may be observed in Fig. 7, for this specific case, i.e., M1 �
0:96 and 30.8% spanwise station, pressure phases remain around
�8 deg up to x=c 
 0:55. Aft of that location, the pressure phase
advances as the trailing edge is approached. The corresponding
pressure difference amplitudes, scaled by the amplitude of the
motion, are summarized in the same figure. It may be noticed that the
scaled pressure difference amplitude changes only slightly as the
angle-of-attack amplitude is increased.

The pressure distribution behavior, summarized in the results of
this section, suggests that the amplitude of the motion plays an
important role in the computation of the complex unsteady pressure
distributions. The amplitude of the pressures gives the lift, whereas
the pressure phases may be understood as a form to quantify the lag
between the center of pressure displacement and the lifting surface
motion. Because the center of pressure position is governed by the
shock displacement, as indicated by Ashley [1], the moment
coefficient derivatives will be more sensitive to the nonlinearities of
theflowover the lifting surface. Therefore, from these observations it
is suggested that the influence of the nonlinearities will promote
significant changes in the computation of the aeroelastic stability,
because flutter depends on the relative position of the center of
pressure with respect to the elastic axis position. In the next
subsection an investigation of the aeroelastic stability behavior will
be performed to evaluate the influence of the amplitude of the angle
of attack on the computation of flutter speeds based on nonlinear
unsteady pressures.

B. AGARD 445.6 Wing Aeroelastic Stability Analysis

The computation of the aeroelastic stability of theAGARDwing is
performed using either nonlinear steady [10] or unsteady pressure
distribution as reference conditions. The unsteady aerodynamic
modeling is based on the doublet lattice method, implemented in the
MSC/NASTRANTM software system [24]. The chosen flutter
solution technique is the p–k method, which is mathematically
consistent for the computation of the flutter boundary. Theweighting
operators are computed to correct the pressure to downwash relation,
resulting from the modeling of the AGARD 445.6 wing using the
doublet lattice method.

The nonlinear pressures were obtained under unsteady motion to
provide the corresponding reference conditions for the unsteady
downwash weighting method. In this case, the pressures were
computed under harmonic motion oscillations of the wing with
amplitude ��� 2:0 deg, where the nonlinear contribution due to
unsteady transonic effects are more relevant. In the case of the
application of the downwash correction method based on steady
pressures as reference conditions [10], the chosen amplitude of the
quasi-steady motion is ��� 0:5 deg because the nonlinear
contribution comes from the steadymean transonicflow. Indeed, this
amplitude is sufficient because it will be computed quasi-steady
pressure rates, which would be independent of the amplitude of the
motion. Furthermore, it was identified by Silva et al. [25] that for
small angles of attack (up to 2.0 deg), the flow behaves linearly with
the variation in angle of attack with regard to the shock wave
displacement in steady flow conditions. However, for larger angles
of attack it is possible to have shock-induced separations, which are
not desirable for the computation of the quasi-steady reference
pressure, because this phenomenon is out of the scope of the present

  
a) inst = 2.0 deg b) inst = 3.0 deg

Fig. 5 Instantaneous pressure contours at leading edge of spanwise
station 30.8%, M1 � 0:960.
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Fig. 6 Instantaneous pressure distributions at spanwise station 30.8%,

M1 � 0:960.
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M1 � 0:96.

SILVA, MELLO, AND AZEVEDO 1511

D
ow

nl
oa

de
d 

by
 T

ho
m

as
 H

er
m

an
n 

on
 N

ov
em

be
r 

30
, 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.1
68

86
 



investigation. The main concern is to have a nonlinear steady mean
flow distribution with regard to the shock positioning and strength.

The weighting operators are introduced in the aeroelastic analysis
as correction factors, yielding the computed flutter speeds shown in
Tables 2 and 3. Table 2 presents a comparison between the transonic
flutter computation based on the correction using steady and
unsteady nonlinear pressures and experimental results [6]. Table 3
includes comparisons with some well-known aeroelastic analysis
codes [27–29] with unsteady downwash correction procedure
results.

The ZTAIC method [27] is a modal aerodynamic influence
coefficient matrix correction method, based on the transonic
equivalent strip method developed by Liu et al. [12] and further
extended byChen et al. [27]. TheCAP-TSDmethod is a time domain
finite difference solution of the transonic small disturbance equation
[29] coupled with a finite element structural-dynamic model. The
results shown in Tables 2 and 3 are also represented in graphical form
in Figs. 8 and 9, respectively, in terms of the flutter speed index (FSI)
as a function of the Mach number.

The flutter speed index is a nondimensional flutter speed defined
as FSI� Vf=�bs!�

����
��

p �, where Vf is the dimensional flutter speed,
bs is the root semichord length, and !� is a reference frequency. The
term inside the square root is themass ratio defined as [6] ��� �m=	#,
where �m is the mass of the wing, 	 is the flow density if the test
medium, and# is the volume of a conical frustum having streamwise
root chord as a lower base diameter, streamwise tip as the upper
base diameter, and the wing span as height. The flutter speed
index computation is performed for each Mach number, depending
on the freestream properties and geometrical properties of
the wing, as FSIM1�0:678 � Vf=506:7, FSIM1�0:901 � Vf=733:1,
and FSIM1�0:960 � Vf=918:3, where the flutter speed is given in SI
units (m=s).

One can observe in Fig. 8 that the flutter speed indexes computed
from the correction based on unsteady pressures indicate the
presence of the transonic dip. This phenomenon is characterized by a
decrease of the slope of theflutter speed plot as a function of theMach
number, when comparingwith the linearly predicted one. In the same
figure are also shown results from the correction based on steady
pressures. One may notice that there is a good agreement when
comparing the dip slope between the unsteady pressures based
correction procedure and the experimental data. The steady pressures
based correction underestimates some of the flutter speeds, as well as
the dip slope. The reason for these discrepancies is related to the
absence of a nonlinear unsteady pressures contribution, because the
reference pressures, over which the correction factors are computed,
are from steady nature.

One feature to be noted in the same results (Fig. 8) is that in the
subsonic Mach number case (M1 � 0:678), the correction based on
unsteady pressures did not change significantly the linear prediction.
This fact can be understood by resorting to Figs. 1 and 4, where one
should observe the differences in the pressure phases from the linear
and nonlinear calculations, for each Mach number and for the same
amplitude of the motion ��� 2:0 deg. Considering those
differences between the linear and nonlinear pressure distributions,
the resulting correction factors for the transonic flow conditions will
properly introduce the necessary changes in the downwash vector to
take into account the nonlinear behavior. However, at the subsonic
flow condition the differences between the amplitude of the linear
and the nonlinear computed pressures are very small and not
sufficient to introduce changes in the computation of the corrected
flutter speed. The same behavior is observed in the frequency plots
shown in Fig. 8. Note that atM1 � 0:678 the flutter frequency is not
subjected to significant changes, when comparing it with the
uncorrected results. On the other hand, in the case of the computed
flutter frequencies atM1 � 0:901, andM1 � 0:96, the frequencies
are subjected to important changes resulting in corrected values
which are in better agreement with the experimental ones.

The results presented by Chen et al. [27], as shown in Fig. 9,
indicate that the transonic dip phenomenon is well characterized in

Table 2 Flutter speeds and frequencies for AGARD wing 445.6

M1 Experimental Linear Steady correction Unsteady correction

VF , m=s !F , Hz VF, m=s !F , Hz VF , m=s !F, Hz VF, m=s !F, Hz

0.678 231.37 17.98 239.89 20.18 213.82 21.25 239.30 23.76
0.901 296.69 16.09 299.30 16.38 275.65 17.35 284.76 17.12
0.960 309.01 13.89 329.18 14.57 315.97 15.65 298.63 15.41

Table 3 Flutter speeds and frequencies for AGARD wing 445.6

M1 Unsteady Correction CAP-TSD (nonlinear) (Bennet et al. [28]) ZTAIC (Chen et al. [27])

VF , m=s !F , Hz VF , m=s !F, Hz VF, m=s !F , Hz

0.678 239.30 23.76 234.09 19.2 231.95 19.30
0.901 284.76 17.12 290.17 15.8 294.19 16.38
0.95 N/A N/A 291.39 12.8 287.91 13.46
0.96 298.63 15.41 N/A N/A N/A N/A
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Fig. 8 AGARDwing 445.6 results: comparison of steady and unsteady

downwash weighting methods.
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Fig. 9 AGARDwing 445.6 results: comparison of downwashweighting

method and other methods.
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the solution with the ZTAIC method [29], and the computed flutter
speed also presents good agreement with the experimental data. The
ZTAIC procedure [27] is based in a more comprehensive theory of
AICmatrix correction. That method employs two-dimensional finite
differences solutions for the computation of three-dimensional
nonlinear unsteady pressures distributions, for a set of different
downwashmodes, by the use of the transonic equivalent stripmethod
[12]. If one considers that the downwash correction method is based
on unsteady pressures computed for a single pitch mode, it is clear
that one should expect theZTAICmethod to yield a better correlation
with the experimental data. In Fig. 9, theCAP-TSDcode calculations
[28] also yield good results, because its formulation is based on a
finite difference nonlinear solution of the three-dimensional form of
the transonic small disturbance equations. Furthermore, the ZTAIC
and CAP-TSD methods represent adequately the severity in the
flutter dip phenomenon, which in this case is a desirable feature in
transonic flutter prediction. A disadvantage regarding such
procedures is the dependency on two- and three-dimensional
unsteady finite difference solutions of the nonlinear equations,
respectively, increasing the computational cost in comparison with
the downwash correction method.

The next step is to perform a sensitivity analysis with regard to the
variation of the dynamic amplitude input, which is used to generate
the nonlinear unsteady pressure distribution, taken as reference
conditions for the computation of the correction factors. The
objective is to understand the sensitivity of the computed aeroelastic
system stability margins with respect to the amplitude of the motion,
whichmay be related to the linear/nonlinear behavior. Tables 4 and 5
present the computed flutter speeds, based on the unsteady
downwash correction method, using the resulting pressures with
respect to a set of displacement amplitudes.

Tables 4 and 5 include comparisons with the results computed
from the uncorrected aeroelastic model and experimental measure-
ments [6]. One should observe that the flutter speeds present
significant variation with the nature of the unsteady pressure data
used to compute the correction factors. These results are graphically

represented in Fig. 10, as the variation of the nondimensional flutter
speed (FSI) with the freestream Mach number.

In Fig. 10, it is possible to notice that the behavior of the
nondimensional flutter speed with the Mach number presents a
certain proportionality in the slopes of the curves up to
��� 1:0 deg. As the motion amplitude approaches this value,
the predicted flutter speed for M1 � 0:96 approaches the
corresponding experimental value. However, the transonic dip,
which is characterized as the slope of the nondimensional flutter
speed curve as a function of the Mach number, is less pronounced
than the experimental one. Also in Fig. 10, another set of computed

Table 4 Flutter speeds and frequencies for AGARD wing 445.6 until ��� 15 deg

M1 ��� 0:25 deg ��� 0:5 deg ��� 1:0 deg ��� 1:5 deg

VF , ft=s !F, Hz VF , ft=s !F , Hz VF , ft=s !F , Hz VF , ft=s !F , Hz

0.678 776.86 23.49 777.62 23.52 772.97 23.39 774.67 23.44
0.901 954.32 17.26 945.92 17.96 934.21 16.71 929.16 16.93
0.960 1046.1 15.36 1039.9 15.19 1020.5 15.47 999.35 15.26

Table 5 Flutter speeds and frequencies for AGARD wing 445.6, until ��� 3:0 deg

M1 Uncorrected ��� 2:0 deg ��� 2:5 deg ��� 3:0 deg Experimental

VF, ft=s !F , Hz VF, ft=s !F , Hz VF, ft=s !F, Hz VF, ft=s !F, Hz VF , ft=s !F, Hz

0.678 787.03 17.54 785.09 23.76 818.58 20.97 861.69 28.93 759.1 17.98
0.901 981.95 15.28 934.24 17.12 983.37 17.01 1086.22 18.03 973.4 16.09
0.960 1080.0 14.35 979.72 15.41 1021.1 15.77 1167.15 17.17 1013.8 13.89
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Fig. 10 Comparison between flutter speed plots as function of the

amplitude of motion.
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flutter speeds is presented for greater amplitudes of the dynamic
angle of attack. The best results in approaching the transonic dip
slope are when one considers a dynamic angle amplitude of
��� 2:0 deg, at the same time as the flutter speeds are slightly
underestimated. Above this value, an interesting result should be
noted. The computed flutter speeds at 2.5 deg are nearly coincident
with the experimental ones in the transonic Mach number range.
Otherwise, it is possible to note an increase of the flutter speeds
computed at 3.0 deg. In Figs. 11 and 12 the behavior of the aeroelastic
stability of the AGARD 445.6 wing is summarized graphically
representing the flutter speeds and frequencies as functions of the
amplitude of the motion.

It should be noted that up to ��� 2:0 deg, the flutter speed
decreases, and also the transonic dip is more evident, reinforcing the
fact that the transonic dip phenomenon is mainly governed by the
nonlinear unsteady flow conditions. However, as soon as the angle of
attack increases beyond 2.0 deg, it should be noted that the flutter
speed increases with the amplitude of the motion. One possible
reason for this behavior may be related to the differences in the
complex pressures which may be observed in the pressure plots for
the amplitudes 2.0 and 3.0 deg, given in Figs. 1a and 1b, at subsonic
conditions.

Looking at these plots, one may notice that there are significant
differences between the linear and the nonlinear pressures, with
regard to the prediction of the leading-edge suction peak. These
differences are resulting from the increase aerodynamic lag
associated to the displacement of a secondary pressure peak present
due to the thickness of the profile, as it was identified in Figs. 2 and 3.
Thus, the center of pressure position is changed in such way that it
modifies the moment on the wing. Consequently, its flutter
characteristics will be a function of the amplitudes of the motion, as
one should observe in Fig. 11 and 12, confirming that the
aerodynamic lag effect is playing an important role in the stability of
the aeroelastic system. Furthermore, it is possible to note that, up to
the amplitude of 2.0 deg, the transonic dip is more evident as the
angle of attack increases, indicating the nonlinearity of such
phenomenon,with regard to the aerodynamic lag due to the thickness
effect.

The present investigation indicates that computed flutter speeds
using unsteady downwash correction method depend on amplitudes
of the motion. In the linear/nonlinear investigations presented by
Silva et al. [30], the transonic flow linear behavior limit could be
established for disturbances in angle of attack below 0.35 deg,
assuming the moment coefficient criterion. One should recall that
moments play an important role in the flutter phenomenon.
Therefore, the variation of the flutter speeds and frequencies as a
function of amplitudes of the motion results from the nonlinear flow
behavior, regarding thickness effects.

The downwash weighing method based on unsteady reference
pressures requires time-accurate CFD simulations. The unsteady
flow Navier–Stokes solution uses approximately 8.2 CPU hours for
the simulation of two cycles of pitchingmotion of theAGARD445.6
wing, in a Silicon GraphicsTM Octane II workstation, with two
R12000 RISC architecture processors, for the meshes here
employed. When the flutter analysis computational time is included,
which never exceeds 5 min, the total elapsed time should be
approximately 8.5 h. Such computational times are much smaller
than those that would be required for a full Navier–Stokes time
domain aeroelastic solution, which could involve several unsteady
(aeroelastic) calculations for each flight condition.

V. Conclusion

A study on correction methods for aeroelastic stability analysis in
transonic flow has been developed. Downwash correction methods
for transonic flutter computation were evaluated, including a
sensitivity analysis of the computed transonic flutter speeds as a
function of unsteady reference pressures resulting from different
amplitudes of the lifting surface motion. The conclusions that can be
drawn from the present investigation are outlined in the forthcoming
paragraphs.

Downwash weighting methods, using either steady [10] or
unsteady pressures as reference conditions, were investigated. The
transonic dip was captured with application of both correction
approaches. However, the decrease of the flutter speed curve slope
was more evident and closer to experiments when the unsteady
downwash correctionmethodwas employed. The flutter speed curve
slope obtained by the steady downwashweightingmethodwas about
the same as the one obtained by the uncorrected aeroelastic stability
analysis. It may be concluded that the unsteady flow contribution,
embedded in the unsteady reference pressures, plays an important
role in the transonic flutter phenomenon. Furthermore, the results
obtained for fully subsonic Mach numbers is justified by the good
agreement between the linear and nonlinear flow solutions around
the AGARD 445.6 wing. When the nonlinear solution, which is the
reference condition for the construction of the downwash weighting
operator, approaches the linear solution, the effect of the correction
operator weighting is minimized.

The unsteady downwash weighting method requires unsteady
CFD computations, increasing its cost with respect to the steady
downwash weighting procedure. Furthermore, in a strict sense, it
should be applied only at the specific reduced frequency for which
the unsteady pressures were obtained. However, this is not a serious
limitation because this reduced frequency can always be estimated
from a purely linear aeroelastic analysis for the flight condition of
interest. Moreover, the unsteady downwash weighting method
depends on the nature of the unsteady reference pressures. In this
context, a sensitivity analysiswas performed to investigate the role of
the unsteady reference pressure disturbances, which are referred to a
given amplitude of the lifting surfacemotion, on the prediction of the
transonic flutter. This investigation indicated that the flutter
boundaries computed by unsteady downwash correction methods
are significantly dependent on the unsteady pressures taken as
reference conditions.

The preceding comments are consistent with the observations
regarding the linear/nonlinear investigations, where it was found that
the linear limit associated to the lifting moment is more sensitive to
the amplitude of the motion [30]. The flutter instability is mainly
governed by the lifting moment, which is associated to the
streamwise displacement of the center of pressure. Detailed analyses
of the local 2-D flow at several spanwise stations over the AGARD
445.6 wing indicated that there is a formation of a secondary suction
peak. The displacement of this secondary suction peak may alter the
position of the center of pressure. The appearance of this secondary
suction peak results from the Navier–Stokes computation of the flow
around the leading edge of a profile with finite thickness. Therefore,
aerodynamic lag appears, which is dependent on the amplitude of the
motion at a given reduced frequency. These observations explain the
dependence of the computed flutter speed on these amplitudes. The
overall results confirm that the nonlinear effects associated to the
profile thickness play an important role in flutter prediction by
correction methods based on nonlinear unsteady pressure
distributions.
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