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ABSTRACT

Two methods of accounting for body-lifting surface interference in
unsteady flow are considered. The first method is described in Part I
of this report, while the second will be described in Part II to follow.

The first method is a direct application of nonplanar lifting surface
elements to both the lifting surfaces and the body surfaces. The body is
treated as an annular wing. This type of idealization must be used with
an axial doublet introduced to account for body incidence effects. The
undesirable effects of the annular wing representation are then reduced.

The second approach, to be described in Part II, uses an image system
and an axial singularity system to account for the effects of the bodies.

This report also describes an improvement of the Doublet-Lattice Method
of Albano and Rodden. The improvement pertains to wing-tail problems where
there exists a small vertical (non-zero) separation between the wing and
tail planes. Such problems can now be handled with ease.

Tnae volume contains the development of the theory, correlation of
theory with experimental data, and the parametric study. Volume II is a
guide to the computer program and contains the FORTRAN listing.
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NOMENC LATURE

A Reference total area

[Aj Matrix of box areas

ainm  Polynomial mode coefficients for mode i

AIC Matrix of influence coefficients relating generalized lorces
to generalized deflections for submodes

c Chord length

EReference chord length

(momentCm Pitching moment coefficient (+ nose up)
mq AF

C Yawing morrent coefficient (moment) (+ nose right)n(q A s
• . . moment

C1 Rolling moment coefficient ( q A (+ clockwise)Sq As

C.~. Force coefficient in y-direction (o )(+ out right wing)

Force coefficient in z-direction q A (+ vertically up)

C Local moment coefficient mornent)
(Ino rmalo

c Local normal force coefficient nra force

e Strip semi-width

f Normalized deflection normal to surface (h/s)

h Deflection normal to surface

K Kernel

kr  Reduced frequency, wZ /ZU,

L Lift

M Mach number;also moment

Qii Generalized force

q Dynamic pressure

Generalized coordinates

R Body radius

Sly 2 + (z-02
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s Semi-span

U., Free-stream velocity

W Unnormalized normalwash

w w/U

wr W - Wb

x, y, z Coordinates of receving points

x, y, z Element coordinates of receiving points

x 0Gust reference axis

at Angle of attack;also a function definei by Equation 2. 1-1 5

J1 - M2 ; also control, surface deflection

g Gust dihedral angle. ( g0 if gust velocity is vertical)

V/ Dihedral angle

AC Lifting pressure coefficient Plower q Pupper
p q

6 Symmetry index (right and left symmetry); also tab deflection

E Ground effect index

X Wave length

Coordinates of sending points

Coordinates of sending points in element coordinates

P.. Density at sea level

Lateral coordinate in the plane of the surface

(0 Frequency

Subscripts and Superscripts

a body axis

B body

c center

f Body or fuselage

g gust

vii



i Deflection mode

j Pressure mode

L. E. Leading edge

LL Lower left

LR Lower right

R Axis about which moments are taken

r Receiving

V s Sending

UL Upper left

UR Upper right

y y..direction

z z-direction

1/4 One quarter chord point of a lifting surface box i

3/4 Three quarters chord point of a lifting surface box
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1.0 INTRODUCTION

This report presents a direct application of the Doublet-Lattice Method to

problems involving body-lifting surface interference. The Doublet-Lattice Me.hod

of Albano and Rodden which is used here, is an extension of the steady Vortex-

Lattice Method. Developments by Hedman, 2 Giesing, 3 and James 4 have show-n

that the Vortex-Lattice Method is (1) simple (2) accurate and (3) quite versatile.
5

Correlations by Kalman, Rodden and Giesing show that the same attributes

apply to the unsteady Doublet-Lattice Method. A survey of the development of

the steady and unsteady lattice methods is given in Reference 5.

Two methods of accounting for body-lifting surface interference in unsteady

flow are considered. The first method is described in Part I of this report,

while the second will be described in Part II to follow.

The first method is a direct application of nonplanar lifting surface elements

to both the lifting surfaces and the body surfaces. The body is treated as an

annular wing. Such an idealization has been used by Woodward 6 in the steady

case. This type of ideali..zation must be used with an axial doublet introduced _"

account for body incidence effects. The undesirable effects of the annular

wing representation are then reduced.

The second approach, to be described in Part II, uses an image system and

an axial s.ngularity system to account for the effects of the bodies. Basically it

will be an extension of the metho of Reference 3.

This report also describes an improvement of the Doublet-Lattice Method

of Albano and Rodden. The improvement pertains to wing-tail problems where

there exists a small vertical (non-zero) separation between the wing and tail

planes. Such problems can now be handled with ease.

F
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2. 0 THEORETICAL DEVELOPMENT

2. 1 The Doublet-Lattice Method

The velocity normal to an oscillating surface, W U" Re w eit, is

related to the lifting pressure 6p = q Re(ACp ei t9, by the integral equation

w IX /,Z =- K(x- , z- ,wo, M) 4 Cp d do-Z~-l
w(x,y,z) = .yr,,,Md o-(.1)

L.S.

where is the streamwise coordinate, o- is the tangential spanwise

coordinate (see Sketch 2. 1 -1), w is the frequency of oscillation, M is the

Mach Number and K is the kernel. The limit L. S. indicates integration over

all the lifting surfaces. The integral in Eq. (Z. 1-1) can be approximated

as follows:

w(xYZ)= 8 cp f K(x- , y-n, z- , o, M) d do- (Z. 1-Z)

Element

where s is an index indicating the sending element A further approximation is[ -introduced in the Vortex- and Doublet-Lattice Methods. 'The integration of K

in the streamwise direction ( ) is done simply by lumping the effect into

z Z,' 0.

ry

SKETCH Z. 1-1 WING AND ELEMENT COORDINATES

9'



a loaded line at the 1/4-chord line of the element.

w(x,y,z) AC .C.K(x- -l/4 , z- , w, M)do- (2. 1-3)
s Ps 8n f

Element
I- s

The result is an unsteady horseshoe vortex whose bound portion lies along

the 1/4-chord line of the element.

In this equation the normalwash boundary condition w(x, y, z) is known

and the lifting pressure, G i , over each element is unknown. A set ofi P s'
linear algebraic equations may be formed from (2. 1-3) if the normalwash is

satisified at as many points as there are elements. Equation (2. 1-3) can

then be written in matrix form

w [D] JzACPI (2.1-4)

where a typical element of [D], Ds, is

Drs f K(x- I y-4' , z- , 7- ,M) do- (2, 1-5)

Element s

and where x, y, z (both for Drs and w r) are the coordiiates of the receiving

point "r". There is one control or receiving point per element and the sur-

face normalwash boundary condition is satisfied at each uf these points. The

control point is centered spanwise on the three-quarter chord line of the

element (Sketch 2. 1-2). This choice of control point location, shown by

James 4 to be optimum for the two-dimensional case, results in a high degree

of accuracy. Sketch 2. 1-2 also shows the idealization of the surface into

elements or boxes which are arranged in strips parallel to the free stream

so that surface edges, fold lines, and hinge lines lie on element or box boundaries.

3
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/ ~DOUB8LETS=-
7j7

DOWNWASH I " . .

Sketch 2. 1 -2. Idealization of a Wing Panel into Boxes

2.1.1 Integration Over an Element

The general form of the nonplanar kernel, K, used is given by Rodemich7

and Landahl 8 as:

K e- (x (K 1  + K T Z )/r Z  (Z. I-6)

where K 1 , T i , K2 , and T2 are given in Appendix A. The basic idea of the

Doublet-Lattice Method is to fit the numerator of K with a parabola and

integrate (Z. 1-5) analytically. Since the steady kernel can be integrated

exactly without the parabolic fit it is apparent that the accuracy will be

improved if only the unsteady increment is integrated using the approximating

p1 4



parabola. Equation (2. 1-6) becomes

K(x- 1/4' y..r, z-1,w, M)

T e 1 KI-K 1  + T 2  e K2- K z (S) r

+ {T1KI(s) + T2 Kz( /rZ (2. 1-7)

The superscript "s" indicates the steady case (w = 0). The first of the

bracketed terms in the numerator of Equation (2. 1-7) is fitted with a parabola

and integrated while the second of the bracketed terms is integrated analytically

without the use of a curve fit.

(1))D = D ()+ D s)(2. 1-8)
rs rs rs

where
e

D -rs =f A8 + BI + C

-e r

e
(s) T (S)

rs f 2 2 rZ

and where All + B' + C = T [ee U(x 1/4 )  K )]+T [1 -K(S)]

Here "e" is the semi-width of the element in the plane of the element. The

integration involvedinD 1 )is shown in Appendix B. The term D (s)inerto novdi rs rs

represents a steady horseshoe vortex and its evaluation is given in Appendix C

The change in variable from a to -1 indicates that element coordinates are to

5



be used. (See Sketch Z. I-I) Element coordinates for a particular element

are centered on the sending element and rotated into the plane of the element.

The relations between element coordinates and the usual coordinates are

given as:

X

= y- ic cos Ys + (z- rC) sin 'Ys

= (z- r) cos 'Y (y- ' ) sin Y( s Cs

Y "r = Y 'I s

Where gcl Tic and c are the coordinates of the center of the 1/4-chord line

of the sending element and Y is the dihedral angle of the element. The

expressions for , , and are the same as above with x, y and z replaced
with , and

The integration used to obtain Drs works very well for all cases,
planar and nonplanar, with one exception. Consider the case where the

receiving point is downstream of the sending element. When there exists a

small vertical separation between the receiving point and sending element

then the numerator of the kernel has large variations with 1 and a parabolic

fit will not give accurate results.

The problem can best be understood by considering the nature of

the kernel. It can be shown that the kernel is a semi-infinite line doublet

whose strength varies like exp [-iw(_- )/U.J aft of the point 1 This
1/4 1 /4'

semi-infinite line doublet is to be integrated in the Ti-direction (spanwise

in the plane of the element). When the receiving point is downstream of the

sending point of the kernel with a small vertical and lateral gap, i. e. ,

small 7 and 7, then the flow field is dominated by the local strength of the

semi-infinite doublet line.



Expressions for the various parts of the kernel valid for small lateral

distances, and downstream of the sending point, in element coordinates,

are:

lim K - 2I

r/(x -/4 0 K2 -- 4

T =cosYI r

x > t 1/4 2Z /r 2)C°Sr snr

when r2 (y)- + 2 (2. 1-9)

These terms may be used to construct the unsteady increment given by the

first term in brackets on the right-hand-side of Equation (2. 1-7). The

numerator of this term is to be fit with a pz, rabola. Investigation of the
variation of this term with 7 will show why a parabola is iradequate and

it will also suggest a way to remedy the situation.

Using Equation (Z. 1-9) above in the numerator gives:

I ,o(x- tl/4 (S- (x 1/4

lim T [l -K, TZ [e/ K ZKZ -

pzr/(x- i/ 4 ) -0 W

- e -1 Zcos - 4cos - +
r

+ 4sin -r (2.- ) (2.-10)
rZ

The terms that cause the trouble arise from the nonplanar term and are

the ones that are divided by r . Plots of rand -(-)/r 2 (when-

is zero) are given in Sketch (2. 1-3).

7
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SKETCH 2. 1 -3

When the element length, Ze, is large compared with7 the variations across f

the element are very large and a parabola is inadequate.

The obvious solution to this problem is to consider the nonplanar terms

separately from the planar. The nonplanar terms have basically a different

behavior than the planar terms. The planar terms vary like /r but the

nonplanar terms vary like /r 4  This suggests that the kernel should be

written as:

IW
K T x 2/ 4 (K T /r2 + K T*/r4 (2. 1-11)

where

2= r 2  (z-)cos yr (y-1l) sin Yr (zr )cos Y (Y-,I) sinYs)

T? T zr s8



Again the steady kernel should be considered separately to increase the

accuracy.

K T K K /r + e ]ir
K J

+ T K ( S ) /r + T/ K (S)/r 41 (Z. 1-12)

Of course, the steady kernel is integrated separately to a steady horseshoe

vortex. The numerators of each of the terms in the first bracket may now

each be fit with a parabola since they are very slowly varying functions of

across an element.

T [ e x KI K Al + B + C l

T2  
22K - A2  + B 2 1 + C2z (2. 1-13)

Equation (Z. 1-5) then becomes:

=D()+D(2) + D (s) (2. 1-14)
Drs rs rs rs

where

(I ) f AZ + 2 + lc

le r

)Dfe -2 + BZI+ C

Dr s (2 4 dl

8e r

(s) f (S)2 () 4
D =J (T K1  /r + T 2 K2 "/r )dl

The integrals Drs () and Drs (S) are the same as those encountered in Equation

(2. 1-8) except that the coefficients A, B, C in (Z. 1-8) are not the same as

9



A1, Bland C 1 in (2, 1-13). The term D (2) is new and represents the- rs(z
nonplanar unsteady increment. The evaluation of Drs is given in

rs i
Appendix II. The final expression is:

2 2 2 Z
(e/2) Ag 2(j2r+ Zg+e ) (A e +C )+4-e B2

D (Z) = 2 2 2zlye z
rs 2 ~-e ) 2 2 -2rs g+z -eZ [(Y+e)2 + -Z2] [(Y.e)Z + _2]

a 22
- y [2 +1Z )A + + C (2.1-15)

e

where

a e -£ +; 1 (e Z+1 Z e22 ta 222-
- Ze( j ( + -

Appendix B gives an expansion for a valid for small values of T and an

equation valid for small values of-y2 + 2 - e2

2. 1.2 Reflection Planes and Ground Effect

Most applications of the present method involve configurations with

one or two planes of symmetry. The X-Z plane is a plane of symmetry

for most cases, e. g. , the right side of a lifting surface is the mirror

image of the left side. In other cases an additional plane of symmetry

(the X-Y plane) exists. For instance a lifting surface attanhed to a ground

plane (as in a wind tunnel) or in the proximity of the ground (aircraft in

ground effect) represents a configuration with two planes of symmetry.

All flow conditions can be split up into symmetrical and/or anti-

symmetrical parts in relation to either plane of symmetry. If the

configuration is symmetrical and the flow is either symmetrical or

antisymmetrical then a considerable savings in computational effort can

be realized. Consider the general case of two planes of symmetry. The

10



entire lifting surface system is made up of segments in the upper rigAt

(UR) quadrant, the upper left (UL), the lower right (LR) and the lower

left (LL). If the distribution of lifting pressure and normalwash are

each split into their component segments (one per quadrant) and so designated

by the subscripts UR, UL, LR and LL the matrix equation given by Eq. 2. 1-4

can be written as,

wUR d d d d
p11 13 1UR

1 21 d22 dZ3 d24 ACpu L

S(Z. 1-16)[ LR d3 1  d3 2  d 33  d34 ACpLR

w LL d 32  d3 3  d 3 4  d 3 5  ACp LL

where d.. are submatrices of D...

Let the flow symmetry betweer right and left be indicated by the term

I i symmetry

6 1 antisymmetry

0 no symmetry

In addition let c indicate symmetry between upper and lower.

I 1 symmetry

I antisymmetry (ground effect)

0 no symmetry

11



Then AC pUL = 6 ACUR

ACpLR RAC (2.1-17)

AC 6 AC = 6EAC
pLL pLR pUR

The distributions for all of the quadrants have been reduced to one

distribution for the upper right quadrant ACpuR. Using (2. -17) in (2. 1-16)

gives

W Rd11 12di cd 1 3 +cd141 i" p URI

Thus only that part of the configuration that appears in the upper right hand

quadrant needs to be considered.

Configurations such as T-tails pz:esent no special problems; however,

the results obtained by the present method for these cases must be properly

interpreted. The vertical surface of the T-tail is in reality two surfaces.

Consider the configuration in Sketch 2. 1-4.

Plane of Symmetry

a rSurface a

~-y

Sketch 2. 1-4. Symmetry considerations for T-tails

~1z

•--



The T-tail is formed in the limit as the dihedral of surface "a" (Ya)

approaches 90. The vertical fin is then made up of surface "a" plus its

reflection a'. The present method determines the loading only on sur-

faces in the right hand sector and thus only half of the loading is determined

for the vertical fin. The lifting pressure distribution and the spanwise

loading and moment are off by a factor of two. (Program H7WC tests for this

condition and adjusts these distributions. See Vol II) The image lifting surface

is always accounted for when calculating stability derivatives or generalized

forces. Since the vertical fin surface "a" has an image a' the derivatives are

calculated correctly. When dealing with aeroelastic problems the

structure 's always cut in half along a symmetry plane. This cut splits the

vertical fin of a T-tail into two equal surfaces. Only half of the aero-

dyna-mic forces are applied to each half of the fin. Thus the AIC calculation,

to be described in Section 2. 5 for use in aeroeidsLic problems, is formed

properly by the present method.

Z. 2 Lifting-Surface/Body Interference

The treatment of lifting-surface/body combinations presented in this

report (Part I) is similar to that of Woodward . Woodward considered

only the stead7 case for a single body whereas the more general oscillatory

case for multiple bodies is dealt with here. The effects of the isolated

bodies are obtained using slender body theory. Body -lifting surface inter-

ference is obtained by placing lifting surface elements on the body surface

near the body-lifting surface intersection.

The order of solution again is similar to that employed by Woodward.

The slender body solution for the longitudinal force distribution on all

bodies is obtained first. The !lender body solution used (J. W. Miles 9

handles bodies of circular cross-section whose radius varies in the longi-

tudinal direction, The motion of the body ma.y be arbitrary. The longitudinal

force distribution on the bodies causes a flow field which affects the lifting

surface elements. The normalwash due to this flow field is then determined

at all lifting surface elements except those on the body surfaces. The axial

singularities found for a single isolated body using the slender body theory

13



divert the flow around that body. The resulting values of normalwash found

at the interference lifting &urface elements, for that body, are therefore zero.

For the case of several bodies there is a small nonzero normalwash caused

by the singularity systems of the other bodies. Exact solutions to the unsteady

compressible wave equation are used to determine the flow fields generated

by the bodies. Specifically, pressure doublet distributions are used. The

normalwash caused by the body axial force distributions is added to the normal-

wash generated by the motions of the lifting surface. The resulting boundary

value problem is then solved exactly as outlined in the last Section (Z. 1).

Z. 2,1 Slender Body Force Distributions and their Resulting Flow Fields

The slender body theory of J. W. Miles 9 is used for the unsteady case.

The longitudinal lift distribution for harmonic motion is given by Equation

16 of Reference 9 and is

_8L + i Z I 1f)
Ox = U.° -'+i ) m(x) W (x) e (2. 2-1)

where m(x) is the virtual mass of the cross section and w(x) is the normal-

ized upwash" (W(f)/Uc,) in the direction of L. For a circular cross-section
2

of radius R 0 (x), m(x) = UpTrR 0 (x). Introduction of this value of m(x) into

Equation (2. 2-1) gives:

1_ L Iw (f'%1 _L __._I2R' w(f)+ R W + io fW (2.2-Z)
q Ox ZR 0 T Zo R U w

The term on the left-hand-side of Equation (2. 2-2) may be regarded as a

lifting pressure coefficient, AC (f), acting on the projected body area. The
p

force per unit length is obtained simply as this pressure multiplied by the

local body diameter and dynamic pressure.

L R AC (Z, Z-3)
ax 0 p

14



and thus from (2.2-2):

ACp = 2r R + w R /2 + ikr wfRo/9 (2,2-4)
p 0 01

where the reduced frequency kr 2U has been introduced.

The pressure AC (f) actu'ally acts only on the body axis and thus
p

acts like a delta function whose integrated value is Z R AC M Further-
f)0 p

more, AC has two components in general, a vertical, ACZ, and a
horizontal, AC, as does the upwash to the fuselage w f . Thus

-- f 8(y-VaZ-al{ C- + A Ci}AC p 6= -Ta - AzY

where na and ra are the coordinates of the body axis. Also it can be shown that

if a pressure doublet is placed within a circular body the total integrated force

is 0. 5 (ACp AA); i. e. , the pressure doublet is only half as effective when it

lies within a circular body. Thus, if the lifting surface theory is to be used to
-- (f p(f)

obtain the flow field due to ACp then ZA must be used. A slight generali-

zation of (2. 1-1) gives:

wB(x, Y, z) JJKz(X-' Y-', z- 'W' M) 6(Y-11aZ- a)6C d~dl

(2. Z-4)

+ - IT Ky(X-, y-'1, z-,W, M) 6(y-1 a ' a ACy

where the subscripts Z and Y on K indicate the direction of the pressure

doublet sheet, and the B subscript on w indicates that the normal wash is

caused by the bodies. Integration of the delta function, 6, in the rj and

directions gives

W /(XYZKz(X.,ya Z_a IOM ) fACz ZR d

(Z. 2-5)

If+ 1. J K(x- ,y- a , z- a , ,1M) AC 2 R d

15



/

Integration in the longitudinal direction is done numerically. Each body

axis is divided into a number of elements over which RC Y and R CZ

are assumed constant.

WB(x, y, z) = (A R f KZ ('C-a,a' Z-a,, M)d)

Element s

[ (2. 2-6)

s Zt (A Os f Ya$ ap
Elements

Integration over each element is done by lumping the effect at the leading

edge of each element, i. e. , at gas

w Ix yF) T AC; Ro &g KZ(~a Sy41 Zr 'Wpm) 27
B(x' Y0 Z) Z 0 (x - g a s  a '  a

+Z Z-7
+ ZCs Rs s s as a a

The values of the normalwash at wing (or tail, etc. ) lifting surface control

points and other body lifting surface control points may be assembled into
a column matrix w B}. Using (Z. 2-7) this column matrix may be written as

{wB} [Fzl {ACZ} + [Fy] {ACY1 (2. Z-8)

where typical elements of the non-square matrices [FZ ]and [Fy] are

1
FZ I - Ro As Kz  (2.2-9)

rs s rs

16



where KZ K(X- y- z- w, M) and Kyrs Ky(X-as y- 1 a ,

z-- a'w, M) are evaluated at the rth receiving point whose coordinates are

given by x, y, z.

Equation (2. 2-8) may be written in a partitioned form as

(WB ( F] JA C~() 2 -1

where [F] z  FY

The boundary conditions at the lifting surfaces are obtained from
the motions of the surfaces, Specifically, the substantial derivative of the

surface deflection produces the required normalwash velocity w. Both

lifting surface and body axis singularities are introduced to produce this

normal velocity. If lifting surfaces alone are considered the matrix

formulation is taken from Equation (2. 1-4), i.e.,

When axial singularities are introduced as in the present method this

formula becomes:

In this matrix equation only the boundary conditions on the lifting surfaces

are considered. The matrix [D ) represents the effect of lifting surfaces on

themselves and is square. The matrix [F] represents the effect of the body

axial singularities on the lifting surfaces and is rectangular.

17



Using equation (2. 2-11) in (2. 2-12) gives

This is the final matrix eqution to be solved for the unknown lifting pressures

{AC}.

2. 2. 2 Interference

The slender body theory satisfies the boundary conditions on bodies

undergoing general oscillatory motions. That is, the slender body theory

satisifies the upwash and sidewash boundary conditions given by w(f) , When

lifting surfaces (or other bodies) are introduced into the flow, the body

Boundary conditions are no longer satisified. The region of greatest dis-

turbance is near the body-lifting surface intersection. An initial attempt

to account for this interference is presented here (Part I). The basic idea

is to apply lifting surface elements directly to the body surface in regions

where the body boundary condition is most seriously disturbed. Each lifting

surface element possesses its own wake. Each wake trails straight back

from the element in the x-direction (see Reference 10). Because of this

fundamental characteristic the configurations that may be considered are

limited. Specifically, placing lifting elements on the actual body surface*

is not acceptable since the wakes may thread in and out of the body surface

aft of the lifting element in question (see Sketch 2. 2-1). The actual wake, if

any exists at all, springs from the separation regions of the body.

* Consideration of forward or rearward inclined surfaces requires a
10

kernel of the type developed by Berman

18



Element--

Wake U,

Sketch 2. 2-1

The shape of that section of the body on which lifting surface elements

are placed must be idealized. Specifically, the interference region of the

body must have a constant cross-sectional shape. Sketch 2. 2-2 presents a

graphical example.

Sketch 2. 2-2
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The body, then, is made up of two separate components. (1) an

axial pressure potential doublet distribution whose strength is obtained

from slender body theory and (Z) lifting surface elements placed on the

body surface whose strength is obtained by a solution of equation (2, 2-13).

20



2. 3 The Normalwash Boundary Conditions

The normalwash boundary conditions for Lhe lifting surface elements

are determined by assuming the surfaces move normal to themselves with

a displacement distribution given by h. These -normal motions are given

by a series of mode shapes, f and generalized coordinates

h = s fi (Z. 3-1)

The normalwash boundary condition iz given by the substantial derivative

of h, i. e., Dh/Dt. The normalwash for mode i is:

W. df.
-- = w. = f
U, 1 d (x/s) U

d f.
--- I- + i k f. (Z. 3-2)d (x/s)r

where k 2 2U

The mode shapes may be input numerically (both f. and dfi/d(x/s) may be! 1 1

input) or as polynomials.

5 5n,,) m

f. coef ( EJ (Z. 3-3)
1 n=0 m=O

Here T is a lateral parameter representing the radial distance from the

x-axis to a point on the surface or the radial distance from the inboard

edge of a particular lifting surface panel to a point on the surface (see Input

Procedure, Part I, Vol II ). The constant coef is simply a scale factor.

21
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The x-derivative of fi is used in Equation (2. 3-2) and is-

5 5

df/d(xls) = coef a n a. (2.3-4)
n=0 m-08

The upwash and sidewash to the bodies, i. e., w( f ) are also determined from

Equation (2. 3-2) except that there are separate modes for the z and y-directions

of motion.

The slender body theory of Miles requires the derivative of w (f )

•£
____ I dw- f 1 _ _ 1 1
dx = "- d(x I xis) i s (2. 3-5)s S rdd~x/s)

where

d~f = c n~ n(n-l (2.3-6(t)d 2(x/s) n=0 m=0

If modes are -input numerically (fi and df./d(x/s) then d f./dZ(x/s) must be1 1

determined numerically. An alternate procedure may be suggested here.

Instead of fi and df./d(x/s) the terms f., and d f./d(x/s) could be input The

term dfi/d(x/s) is then obtained by rumerical integration of d fi/d(x/s)

which is more accurate than numerical differentiation*.

Also required for the slender body solution is dR /dx. This quantity

may be obtained numerically from the input Ro . An alternate approach may
again be suggested whereby dRo/dx is input and R is obtained by numerical

integ ration.

*Actually the first value of df./d(x/s) is input along with the second derivatives

to establish the proper level for df./d(x/s).

-2z
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2. 4 Loads and Forces

2. 4. 1 Generalized Forces

The lifting pressures, AC , on the lifting surfaces are given by the~P
(f)solution of (2. 2-13). The lifting pressures, 66Cp, on the bodies are given

p
by (2, 2-4). These two distributions may be combined into one partitioned

array, AC as follows:P

ppThe lftingpressrefA is composed of two components, i. e. ,AC Z

and AC

AC~ICp(f) = ACy

The lifting pressure AC Z acts on the area of the body projected onto the

z = 0 plane. The lifting pressure AC acts on the area of the body projected

onto the y = 0 plane. All loadings are in the form of pressures acting on

areas and the calculation of the generalized forces may proceed on this basis.

There are as many lifting pressure distributions as there are modes. The

subscript "i" identifying the mode will be added to AC P

AG =AC q;
pi Pi

The generalized forces, Qi, associated with the generalized coordi-
nates, Ti are determined using the principle of virtual work. The virtual

.th
work, 6W. associated with the j mode is:

6W. fAC 6h ds (2. 4-2)

L. S.
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The same virtual work is obtained using the generalized forces

&W. -2 s 3 q Q (Z 4-3)

Recalling, from (2. 3-1), t1 at

h = s Z fi

and equating (2. 4-2) and (2. 4-3) gives

-2 S Zq Q sq sq fj f C f ds= -2s q Qj 6qiL. S. pj q

Solving for Q.. gives:

Iff
Q ,-- -- f. ds (2.4-4)
ij s L.S. pi 1

Numerically, the double integral is replaced by a sirinmation:

Qi_ . J.s -C "n  n Sn (Z 4-5)

13 -21n ni(24-5)

where As is the box area on the lifting surfaces and where As isn n

Ro A n on the projected body surfaces. The factor 1/2 is accounted for

by restricting the range of the subscript "n" to the right-half of the aircraft.
(Even the projected area of the body is halved, i. e. , As n = R0 A n if it

lies on the plane of symmetry. )

2. 4. 2 Aerodynamic Parameters

It is desirable and sometimes necessary to generate conventional

aerodynamic data. Such data, in addition to being useful in tbernselves,

Z4
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provide an excellent check for the computer program and/or specific cases

to be run by it. For example, a check of the span loading for rigid body

pitching and/or plunging could bring to light some geometrical data error

in a particular case. Thus the aerodynamic data output acts as a program

monitor.

The local normal force coefficient and pitching moment coefficient

about the local leading edge is

If
cn - AC dt (2.4-6)

c AC ( - XLE)d (2 4-7)

where c is the local chord length. The total lift and side force c( efficients

are: (
C Z =(1 c r d ] + g R AC zd (2.4-8)

A fn

R.S. B.

C = { c c n d + g f R 0 ACydg (2.4-9)

R.S. B.

Here A is the reference area, 6 is a symmetry flag (6= 1, for symmetry,

6= -1, for antisymmetry and 6 = 0 for asymmetry). The limit, R. S.,indicates

that the integration is to be carried out over the right side of the aircraft and

the limit B. indicates that the integrals are to be taken along the lengths of the

bodies. The term g is defined in Eq. (Z. 4-12). The pitching moment, yawing

moment and rolling moment coefficients are given by:

C (+ (cZ c (XL.E. - x ) cc ) df (2.4-10)

R.S.

-g f AC (- xR R ° d (0+ nose up)

B.
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(16) -
(L(c.E. -X )c c )d,2As f m L.E.

I R. S. ( R.(2. 4-1 1)

+ g f 4c Y (4-x R ) R 0d

! 1 (+ nose right)

C
2  

_ -6) { ccn l d

2As fR. S.

f" c c d (Z.4-12)
R.S.

+1a q ACz Rod + a ] ACyRod

B. B.

Q-clockwise, right wing down)

1 if 1 =0
where g= a

Z if q a

where x R is the point about which moments are taken. The rolling moment

is taken about the x-axis.

Dynamic stability derivatives can be obtained from the complex

coefficients just described. Each complex aerodynamic coefficient

possesses an in-phase and an out-of-phase component, the real part being

the component in phase with the motion and the imaginary part the component

out of phase with the motion (900 out of phase). Reference 11 describes a
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method for determining dynamic stability derivatives. Specifically, if C

represents any aerodynamic coefficient such as .c n , cm# C C etc.,

and if the subscripts a and 0 represent modified plunging and pitching then:*

C = C a (k r = 0) static derivative

C = . Im Ca (kr = damping derivative
r1r

C" = Re { Ca (k r  0) - Ca (kr =)} acceleration derivative

r

The program must be run at two different values of reduced frequency

k r = 0 and kr = E to obtain these dynamic derivatives. The value of C

is usually small (about 0. 1). The dynamic derivatives will then be valid

for aircraft motions in the frequency range 0 to E.

The values of the q or pitch-rate derivatives are obtained as follows:

1
C - - Im Co (k Ce

q k C r (C ~r

1
C kz Re { CO(kr 0) - C (k r  C-0;

r

Similar expressions for C, C C , Cr and Cr are obtained if the

values of Ca and C O are replaced by values for modified sideslipping and

yawing. The expressions for the rolling damping and acceleration

derivatives are obtained as follows:

Cp C (k r = )

C Im C (k )Gp kr P (r

r

where C is the complex aerodynamic coefficient lue to unit rolling velocity.P

* The term "modified" indicates that the amplitude of translation (plunging
or sideslipping is normalized by the term (ikr) The resulting derivatives,

then, pertain to a and P respectively.
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2. 5 Aerodynamic Influence Coefficients and Harmonic Gust Coefficients

2. 5. 1 General Considerations

The aerodynamic influence coefficient matrix used in this method is

described in References 12 and 13. The basic idea is to produce a set of

influence coefficients that are independent of mode shape and smaller in

number than the number of elements or boxes. An obvious set of AIC's

would be [Dl whereby lifting pressures are obtained directly from the

normalwash boundary conditions. A second example would be the matrix

of generalized force.; Q 1, a typical element of which is Q... The advantage
1j'

of [D - I is that it is i'dependent of mode shape; the advantage of [Qj is that

it is small and easily handled. A compromise between [D] and [Qi is

the current [AIC 1. A preselected set of "submodes" is selected for each

lifting surface strip or bay. The submode allows motion only on the strip

or bay considered. A set of generalized forces is obtained from each of

these submodes. For instance if the submodes are pitching and plunging

and there are 15 bays then the AIC will be a 30 x 30 matrix of generalized

forces. It is assumed that the general mode shapes may be built up of

these submodes by superposition. The generalized force matrix for any

specific mode shape is then

Q {f}T [AIC] {f.}13 ~ 31

where f. are components of the i t h mode shape in terms of the submodes.

The value of using AIC's lies in the fact that once the matrices of

AIC's have been generated for a specific planform, Mach number and

reduced frequency, any number of aeroelastic analyses can be performed

in which only the inertial and stiffness propertics are altered, since the

AIC's are independent of the aircraft vibration mode shapes and/or static

deflection modes.
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The aerodynamic influence coefficients, as derived in Reference 12,

relate the oscillatory aerodynamic moments and/or forces acting at the

specified AIC (.ontrul points to the harmonic rotations and/or deflections

of these control points. By the definition of Reference 12 the equation for

the dimensional AIC matrix is

Uaz
[Chid = Po (F/Z) [B] [D] [W] (2 5-1)

r

u,
wherec-/21s the reference semi-chord, - is the reference reduced

br
velocity, [ B ] is the integration matrix described in Sec. 2. 5-3, and

[W] is the substantial derivative matrix described in Sec. 2. 5-2.

A set of dimensional static AIC's [Chsd may also be defined by

p (7!/2) [B] [D (k= [W] (2. 5-2)[hs ]d 2 0Z P r 0

These can be used in static aeroelastic analyses of lift effectiveness,

divergence, control surface effectiveness, reversal, and so forth.

The harmonic gust coefficients were also derived in Reference 12

for a gust in the plane of the surface. For a gust field in a plane with

arbitrary dihedralk E7g, Eq. (39) of Reference 12 is generalized to read

1 1 (x-xo)

Z p Uo W (BI fD I-  cos (r -Y) exp (-ik2

where UD is the aircraft velocity, W is the harmonic gust amplitude,

k r is the reduced frequency, Y is the local surface dihedral, and x is

the gust reference coordinate.

* Vertical velocities are obtained when the dihedral angle is zero. If
the dihedral angle is -90* the gust velocities are in the lateral (+y) direction.
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2. 5. Z The Substantial Derivative Matrix

The Doublet-Lattice Method requires the determination of the

oscillatory normalwash on the lifting surface at the 3/4-chord of each box

In the derivation of the substantial derivative matrix, [WI, we assume that

the aerodynamic idealization for the particular aeroelastic problem pro-

vides a sufficient number of (spanwise) strips on the lifting surface so that

the oscillatory normalwash on each box can be determined only by chord-

wise interpolation and differentiation of the assumed local deflection mode

shapes corresponding to each local aerodynamic degree of freedom, It is

assumed that an interpolation matrix, [WI], can be found such that

{h3c4} = [WI] {h}

where h3c/ 4 denotes the deflection at the 3/4-chord point of each box and

h denotes the AIC control point deflections. The matrix [WIj has the

partitioned form

(I
h 3 ,/ 4  

WI 10 0 0 h

I ._ _.

--- - I -

h3c/4 0 W1 I0 h
--4 I. __ (Z. 5-1)

• I I "

I- i I

(n) W (n) h(n)

h3/4 0 o
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where the superscripts indicate strips in the aerodynamic idealization of

the lifting surface. The oscillatory normalwash at the 3/4-chord of each

box is given by

kw(x) dh(x) r= dx + i - h (x) (2. 5-5)
U, dx +~_/

Generalizing Eq. (2. 5-5) in matrix notation we have

;7v [WI {h} (2. 5-6)

where

dW I ] k
(W] [ + i [wZ (2. -7)

Several alternatives to the computation of the [Wi matrix can be

used depending on the manner in which the deflection characteristics of

the aircraft are described. Ref. 12 desLribes three possible alternatives

for the [W] matrix; Alternative No. I is used in the generation of the AIC's

for planar surfaces by computer program H7WA. The nonplanar computer

programs, H7WB and H7WC have the capability of generating AIC's for non-

planar surfaces according to either of the two alternatives of the [W I matrix

described in Reference 13 in Appendices I and II which are reproduced in

Appendix D.

The two alternatives describe two types of submodes that can be used,

The submodes for each bay are:

1) Alternative #1: plunging, pitching, control surface rotation and

tab rotation or control surface plunging.

2) Alternative #2. Three cambering modes, control surface rotation,

or tab rotation.

Alternative #1 makes available six degrees of freedom or submodes

per bay, while Alternative #2 furnishes seven. Of these available degrees

of freedom or submodes only four may be used at one time. The reason
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for this restriction is the limited core capacity of the computer. More of

these available submodes may be made available if a core larger than 32K

is available.

2. 5.3 The integration Matrix

The integration matrix, [B], relates the pressures over the lifting

surface to the AIC control point moments and/or forces (Ref. 12)

{ F }AIC q[B) {ACp} (2 5-8)

where q is the dynamic pressure. It is assumed that there is a chordwise

interpolation matrix, [Z 1, on each strip such that

hc/4 Z h (Z 5-9)

where the hec 4 are the deflections at the 1/4-chord of each box and h are
again the AIC control point deflections. Z ] has the same partitioned form

as the matrix [W I (Eq. 2.5-4),

(1) (1) , I 1(1 )

h M a

h (2.) 0 7 n n

he4Z I I
_ _ I

( I z(. I
I I
I I .1

II (n

I( ) II
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The generalized forces acting at the 1/4-chord uf each box are

given by

{F ig} q [A] {ACpj (Z. 5-10)

where [A] is the diagonal matrix of box areas. By applying the principle

of virtual work it is seen that

{F }AIC [ZIT {Fc/4 (2. 5-' 1)

By combining Eqs. (2. 5-10)and(2. 5-11) and comparing with Eq. (2. 5-8)we

have

[BI zIT [A] (2

The actual form of the [B ] matrix depends on the manner in which the

deflection characteristics of the aircraft are described, and hence, on the

form of the [W I matrix. The two alternatives for the [B 1 matrix are

described in Reference 12 along with the corresponding [W ] matrix

forms.
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2. 6 Matrix Solution

When modes are considered the matrix equation (2. 2-13) must be
solved for each mode, The symbolic solution for multiple modes is

(A C [D] [w. WB] (2.6-1)
pB

where the matrices [ B - and [AC ] are the normalwash and resulting

pressures for all of the modes. Each colurin of either [AC p or [w- w B I

represents one mode. For AIC's Equation (2. 5-1) must be solved-

[Chid " 2 Po [B (E2)[13 [D] - ' [W] (2 6-2)
r

In both cases the symbolic solution contains a term like [D] " [wr ]where
[wX ] is [ w - w B ] in(Z. 6-l)and [WI in(2. 6-2). Define the term [Df-

[wr as [P].

[P] = [D) [wr] (2. 6-3)

In the present method the desired solution matrix [P] is not obtained

exactly as shown in this equation. The inverse, in the usual sense of the

word, is not determined since this would be very inefficient for large matrices

The solution matrix [ P I is obtained directly from the equation

[wr] = [D] [P] (2.6-4)

by direct Gaussian Triangularization and back solution. This subroutine is

called SOLVIT and is described in Reference 14. The disadvantage of this

procedure is that future solutions can be obtained only by a repetition of Lhe

triangularization and back solution (a (1/3)N3 + N 2 M process), where N is

the order c. the matrix [DI and M is the order of [wr I ). Also the solution

matrix [P I must fit into the computer core. When [ P ] is small, as with the
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modal approach, this restriction is not important. However for AIC's

the solution matrix may be larger than the available storage.

A generalization of this method may be made to eliminate both

disadvantages discussed above (see Reference 14, page 37). The basic

idea is to save the instructions needed to triangularize the matrix [ D].

It just so happens that these instructions come in the form of constants, the

number of which fit into the empty space generated in [D]. by triangulari-

zation. The triangularized form of [ D] fits into the upper triangular sector,

including the diagonal, while the constants of triangularization fit into the

lower triangular sector, excluding the diagonal. This matrix is termed

the Quasi-Inverse since both halves of the matrix can be used to find a

solution using only N operations per mode or submode. The Quasi-Inverse

requires identically the same number of operations as a direct solution,

i.e., (/3)N 3 operations. In fact this modified form of SOLVIT works

exactly like SOLVIT if the solution matrix fits in core (except that the

Quasi-Inverse matrix must be read on tape as it is generated so that it can

be used in the future.

The difficulty of running future solutions is thus solved Future

solutions are solved simply by calling back the Quasi-Inverse and performing

an N M operation (where M is the number of modes or submodes).

The restrictive requirement that the solution matrix fit into core is

also eliminated since the normalwash matrix may be split into, say, two or

more parts, each of which fit into the computer core. The first part of the

solution corresponding to the first part of the normalized mstrix obtained

during the first pass through the computer((1/3)N 3  N ZM operations).

Also formed during this pass is the Quasi-Inverse. The second and sub-

sequent passes through the computer generate the remainder of the solution

(MN? operations each). The second and remaining parts are thus considered

future solutions. This method is programmed in two parts QUAS and FUTSOL

QUAS forms the Quasi-Inverse and solves for the first part of the solution

and FUTSOL generates future solutions from the Quasi-Inverse.
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3.0 CALCULATED RESULTS

3.1 Convergence of Results

The number of boxes necessary to give a converged result is

dependent on the reduced frequency. For the steady case the convergence

is very rapid. In fact, one box chordwise gives usable results (the method

of Weissinger uses one box per spanwise station).

For the other extreme, many boxes are necessary for very

high reduced frequencies. As an example, Figure 1 presents a convergence

study for a reduced frequency (based on the span 2s, k = zV) of 1. 5.

As shown in the figure the wave length corresponding to thii frequency is

approximately the length of the wing-tail assembly. This means that the

effect of the wing on the tail is out of phase with the wing motion about '80*.

Thus the downwash of the wing on the tail is opposite to the wing motion,

This is a very severe case and many chordwise boxes are required. The

figure shows that approximately 25 boxes per wave length are required.

Thus for this case the box length LXsis related to the reduced frequency by:

r where k -

Actually the wing and tail box lengths are not equal for Figure 1.

The number of chordwise boxes for wing and tail are:

TOTAL WING TAIL

9 5 4
11 6 5
14 8 6
18 10 8
22 12 10

There are twelve spanwise strips for the case presented in Figure 1. A

case using eight spanwise strips is also shown for the case of ZZ total

chordwise elements. The error for the real and imaginary parts is about

Z. 5% and 0. 80%, respectively.
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3.2 Nearly Coplanar Wing-Tail Configurations

The difficulty encountered by the Doublet-Lattice Method of

Reference 1 for nearly coplanar wing-tail combinations is discussed in

Section 2. 1. The refinement of the method is also presented there. Figure 2

presents results for a nearly coplanar wing-tail configuration using both the

original (unrefined) and the refined methods.

The wing-tail assembly is made to plunge with a reduced

frequency of 0.6 (based on a chord length of 0. 87424 s). The total lift

coefficient (wing plus tail) is given (based on total area of both surfaces).

It can be seen that the original method starts to lose accuracy when the gap

to chord ratio is about 0. 1. (Notice that the widths of the first eight strips

is 0. 1). The refined Doublet-Lattice Method gives accurate results for

small z/E. Appendix B explain- that a numerical limit must be taken in

the new or refined method. Any inaccuracies generated from this limit are

not apparent even at a value of z/F of 0. 025. Thus the refined method is

valid for all practical cases of interest.

The wing-tail configuration of Figure 1 is used to present a

,econd "gap" study (see Figure 3). A much wider range of vertical separa-

cion (gap) between the wing and tail is used.' Also the reduced frequency is

considerably higher. Again the -,.sembly is made to plunge and the total lift

coefficient (based on the area of the wing alone) is given versus verticAl

spacing or "gap". Although not entirely evident the curves of real and

imaginary parts of the lift coefficient have horizontal tangents as z-0 since

they are symmetrical with z.

3. 3 Wing-Body Combinations

The methods of Woodward (Ref. 6) and Giesing (Ref. 3) handle

wing-body combinations in steady flow, A recent unpublished extenuion of

Reference 3 allowd bodies of varying diameter to be handled. These methods

can be used to furnish test cases for the present method, at least for the

static case.

The tail moves aft as it moves up along the line x -0 875z
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Figure 4 presents the span loading (cc, /Z) for a wing-fuselage

combination as calculated by the present method and the methods of

Woodward (Ref. 6) and Giesing (modified Ref. 3). The configuration shown

in the figure consists of a low aspect ratio wing attached at midplane to a

thick parabolic body of revolution. The center of the wing root 10 at the

center of the fuselage. The maximum diameter is 1/3 the span. The con-

stant section, upon which lifting surface elements are placed, is half the

length of the body and centered longitudinally. The span loadings shown in

Figure 4 are entirely fuselage induced since thv wing is held at zero incidence.

In Figure 4(a) the fuselage is given an angle of attack of 1.0 radian. It can

be seen that the present method agrees almost exactly with the method of

Woodward* since the idealization for these two methods is about the same,

The disagreement with the method of images (modified version of Ref 3)

is due to the fact that a different idealization is used. The boundary condi-

tion on the fuselage surface is satisfied using a system of images. one for

each horseshoe vortex, plus an axial singularity system.

The span loading across the fuselage is induced by the wing

loading (which was induced by the body incidence or camber) This loading

is the fuselage lift carry-through. Slender body theory predicts no net

load since the body closes.

Figure 4(b) shows the span load on the wing when the fuselage

possesses a parabolic camber with a maximum deflection equal to the

maximum radius. The agreement between the present method and Woodward's

method is almost exact.

Figure 5 presents a comparison of calculated spanwise load

distribution obtained using three slightly different approaches to the

interference problem. The configuration and flow condition used is that of

Figure 4(a). The circles represent the present method and are the same as

those in Figure 4(a). The squares represent a method that diffe-s only

slightly from the present method. The subtle difference between the two

methods is that the flow field due to ' body axial singularities is calculated

" The control point must be placed at 85% of the box to render Woodward's
results correct. See Reference 5.

38



[ on all lifting surface panels, including the body panels, and not just on the

wing panel as in the present method. Since the body panels do not lie exactly

on the body surface, the total normalwash there is different from zero (since

the axial singularities were meant to cancel the normal flow only at the

exact location of the body surface). This slight difference is enough to

cause large differences in the spanwise loading on the body surface even

.though the loading on the wing compares favorably with the present method.

A second alternative (method of Reference 5) is to use body panels

alone to simulate the body surface. For this method no axial singularities

are used. When the body possesses no angle of attack (boundary condition

of zero normalwash to the body surface) the results are accurate (see

Reference 5, Figure 12). However,when the body possesses an angle of

attack or camber, then the results seem to be very inaccurate especially

over the body surface. Figure 5 shows such a calculation. The reason for

this inaccuracy at angle of attack is that the body panels are simulating an

annular or ring wing. Such an annular wing is much more effective in lift

than the body it represents. If the body has no region of separation and if

no vortices are shed from the body then the only lift it can carry is the lift

carry-through which is induced by the wings. The spanwise distribution of

lift carry-through has the characteristic shape shown on Figures 4(al and 4(b)

The lift, over and above the lift carry-through, is caused by the annular

wing effect of the body elements. A possible solution to this problem

would be to use wakeless elements on the body surface. Such wakeless

elements can be generated using two steady or unsteady horseshoe vortices:

one placed behind the other such that the wakes cancel out.

Figure 6 presents an example of an unsteady wing-fuselage

calculation. The configuration used is that of Figure 4. The two modes

of oscillation are again the same as those used in Figure 4, for the static

case. Specifically:

Mode I (Figure 6(a)) z = (x - x c ) efWt

Mode Z (Figure 6(b)) z = 4.0 R ax...- -Z:-)2 et
L 1
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Here x, L and R are the center, length and maximum radius of
c max

the body respectively. The frequency of oscillation (based on the average

chord, F= 7) is k = . 1. 0. The wing remains stationary while only
r 2V

the body is in motion. The span loading across the wing is induced by the

body motions while the span loading across the body n, induced by the loading

on the wing. The span loading across the fuselage does not include the

unsteady slender body component* ard is just the lift carry-through,

A second wing-body case is presented in Figures 7, 8, and 9. The

specific configuratior considered, which is shown in Figure 7, is a wing

with an engine nacelle mounted at its tip. The %.ing nacelle combination is

made to plunge and pitch harmonically with a reduced frequency, (based on

the semispan), of 1,72. The pitch axis is shown in Figure 7 The real and

imaginary parts of the distribution of lift coefficient are given for both

pitching and plunging. In addition, the distribution of lift coeffiLient for the

wing alone is presented for referente. Notice that the nacelle has a sub-

stantial effect on the distribution of lift coeffitient. Th , effect arises from

two sources; the first is the upwash generated by the motion of the nacelle

while the second is the end-plate effecLt of the nacelle or the wing tip.

The slender body simulation of the nacelle is accomplished using two

bodies. The axes of the bodies are centered within the nacelle spanwise

and given a vertical displacement of ±0. 108252. The radius of these bodies

is 0. 108252. Even though these two bodies do not quite fill up the nacelle

cross-sectional area, it can be shown that this choice of (enter and radius

gives the best representation of the flow around the nacelle c ross-sec-tion

(in two-dimensions).

Figures 8 and 9 present comparisons of experimental and calculated

lifting pressure coefficient. Specifically, Figure 8 gives the pressure at

two spanwise stations, y/s - 0, 27 and 0. 715 for the plunging case. The wing-

Unsteady slender body thcory gives a non-zero lifting force on a body
even if a closed body is considerd.
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alone pressure distribution is also given at the spanwise station closest to

the nacelle; i. e. , y/s = 0. 715.

Figure 9 gives the pressures at the same two stations for the

pitching case. The test and theory correlate best at station y/s = 0. 27 for

both the pitch and plunge case. This may be due to flow separation on the

aft portion of the wing which seems to be present in the vicinity of y/s - 0.716.

The loss ,f lift aft of about the 80-Q chord point indicates that this is the case.

3.4 Conclusions

(1) The Doublet-Lattice Method is a simple, versatile and

accurate lifting surface theory. The: method is capable

of analyzing lifting surfaces with arbitrary planform and

dihedral. Control surfaces, .,ther full- or partial-span.

may be included. Problems of intersecting and/or inter-

fering nonplanar configurations, such as a wing-pylon

combination, a T- or V-tail, a wing-tail combination, etc.

may be analyzed. The method documented hcre is also

capable of solving problems involving lifting surfaces and

bodies where the bodies may be in motion lncluded in the

calculations are options for

(a) Aerodynamic data including lifting pressures, span-

wise lift and moment distributions, aerodynamc
center locations, total lift and side force coeffic ients,
and total pitching, yawing and rolling moments;

(b) Generalized forces for polynomial mo'jes of motion

specified by the_ usier;

(c) Aerodynamic Influence Coefficients;

() ,,s,, loads from , harmonic gust field.

(e) Symmetry and ground effects.
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(2) A refined version of the original Doublet-Lattice Method

is required for nearly coplanar wing-tail combinations

The refinement consists of considering the planar and non-

planar parts of the Kernel separately. The details are

given in Appendix B. As a control point approaches the

plane of the sending element a limit is taken numerically

This limiting procedure Ls accurate for all practical values

of vertical displacement.

(3) The number of chordwise boxes must increase in proportion

to the frequency; specifically, Ax s/ I ir/25k r  Other require-

ments exist for the placement of strips and boxes These

requiirements are discussed in Part I, Vol II.

(4) The boundary condition on the lifting surface elements,

placed on body surfaces for wing-body interference purposes,

must be zero normalwash. The elements on the body surface

represent a ring or annular wing,. This annular wing must

be used for interference purposes only; any angle of attack

will produce an undesirable annular wing lift. A slender body

theory for circular bodies is used to reduce the normalwash,

generated by a body in motion, to zero.

(5) The tube on which lifting surface elements are placed, to

generate wing-body interference, must have a constpni cross-

section along its length. The cross-sectional shape may be

noncircular. The reason for this is that each element has a

wake trailing straight back downstream to infinity If the

tube were of varying radius, element wakcs would be thread-

ing in and out of the body surface. Such an idealization has

not been tried and its validity has not been proven.

The synthesis of a noncircular slender body theory out

of one for circuilar bodies is accomplished by placing more

than one circular body in close proximity. The distance

* Actually, the body cross-section may be of ibitrary shape even though the
slender body theory is for a circular cross-section. A slender body theory for
cross-sections of different shape could replace this simp)e theory.
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between axes and the radius of the various bodies may

be obtained frori a two-dimensional analysis. This

approach, although only approximate, is reasonably

accurate. In general, the interference generated by

the body elements is less than it should be by a small

amount. Convergence studies have shown that as the

number of elements on the body surface is increased the

results tend toward those obtained using the image method

(6) The inverse of t-he normalwash factor matrix [D] need not

be found to obtain a solution. Direct solution by triangu-
larization is always preferable If the same problem is

to be solved repeatedly, a method for saving the triangu-

larization instructions (these are numbers which may be

saved in the lower half of the triangularized [Dl matrix)

is used.
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APPENDIX A. THE KERNEL FUNCTION FOR LIFTING SURFACES

The velocity normal to an oscillating surface, W = U~ Re:(We ), is

related to the pressure difference, P = q Re(AC el ), across the surface byP
the integral equation (Ref. 16)

~(xr Yrz = i(x0 z0  ; w, M)AC (, r, )dd - (A. 1)7xrl Yr' r 8n ff -opYfP

where x or t is the streamwise coordinate and a- is the tangential coordinate

on the surface (see Figure A-I), w is the frequency of oscillation, M is the

Mach number, and subscript r denotes the downwash or receiving point and

the subscript s denotes the doublet or the sending point, and

x 0 = x-g (A. 2)

y - (A. 3)

z 0 : z- (A. 4)

The symbol means that the integral in Equation (A. I) is defined in the sense

of its "finite part" (Ref. 17).

Rodemich (Ref. 7 ) has derived an expression for the kernel function

for a nonplanar surface in the form

K =iTxo/U (KiTl/r2 KT 4 (A. 5)

where

r (yz + zz)/2 (A. 6)

T = cos, Yr YS) (A. 7)
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T 2  (z 0 Cos Yr -Y sin yr ) (z 0 cos Y. -Y sin-ys) (A. 8)

(N. B., the definition of T2 in Equations (A. 5) and (A. 8) differs from that of T2 in

Refs. 7 and 8 by the factor r 2 .)

and Landahl ( 8) has simplified the forms of K1 and K2 to read

"1K Ul 2I/

K 1  =I + [Mr /R]-[e /(i + U ] (A. 9)

22 -iklu
ikMr 11

= -31 1 e
2 R (i + u)7

(A. 10)

Mr1  -ik u~
Mr 1  (u2 1r Mr u 1  1e

- L1+u I + + R (1+u) 3/Z

where

u I  (MR - x0)/P z (A. 11)

k1  =or /UC, (A. 12)

= 2 1/2 (A. 13)

/R (x2 (A. 14)

and
C  "ik u

I
(u,, k 23/2 du (A, 151
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O -ik u

I(ul kl) =j 1 du (A. 16)
42 5/2

°u

1

z, r,

Figure A-1

At zero frequency the planar part of the kernel is

(S) Mr 1 17)
1 1 + 2 1/2 (A. 11

1 + R (l+u 1 )

where

f fO du

I u: (l+u)3/Z 
(A. 18a)

I u I ( + u 
- 1/ 2 

(A . 18b)I I
so that

x0 I
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The zero frequency value of the nonplanar part of the kernel is easily

found from the planar part (Refs. 7 and 8).

-K r] ( 1 ) (A. 20)

where

ar1 18rl 0 K1I/r (A,Z!}

so that

K = r r . (13 +--) (A. ZZa)

2 - (x 0 /R) (2 + 2 r2 /R 2 (A.ZZb)

Although the integrals I1 and I2 [Equations (A. 15) and (A. 16) are easily

evaluated at zero frequency, no explicit solution is possible for nonzero

frequency. However, the symmetry properties of the integrands permit

consideration of only nonnegative arguments uI since, for u1 < 0, we note

that

I (Ul, k) ZReIl (0, kl) - Rel (-u,, kl) . iIml, (-ul, k ) (A 23)

and

I (ul, k ) ZReIZ (O, kI) - ReI(-uI , kI) + ilml2 (-u,, kI )  (A 24)
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A~i-I

o ,i~

The integration of I! by parts once gives

I (U k e-ik U u (1+u) -  - iklI 0 (u1 , kl)] (A. 25)I 1 - 1l 0 1

where fkl2- "ik U

Io(Ui , kl) = e [ - u(l+uZ) - ' / Z ] e du (A. 26)

Integrating 12 by parts twice leads to

-ik 2 1/2

312 (Ui, k) = e (2+iklUl) [I -Ul(l+u 1  )
(A. 27)

(1+U)-312 _ iki!0 (ul, k1) + k'J 0 (u l f k

where i u
J 0 (Ulkl) e I u- u(l+uZ) "I / 2 ] e du (A. 28)

ul

The integrals 10 and J0 can be evaluated using approximations to u(l+u 2) - / 2

Laschka ( 18 ) has obtained an extreme'y accurate approximation in exponential

form for u - 0
11

I u(l+u )- l ] Z  a n e) n c u  (A.Z9)

n=l

where c = 0. 37Z and the an are given in Table I. The maximum error of

this approximation is 0. 13556. The integrals J0 and J0 for ii - 0 then

become
-ncu

1

10(u I , ki) -+ . (nc- ikl) (A 30)

n= n c + kI
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and .~ncul'
a ne22 e 22 22 "

1J0 (Ul, k n nc

n=I (n c + k1 )

(A. 31)

+ ncu l (n2 c
2 + k1 ) ik[2nc + u (n2 c + k1 ) ]2

The desired integrals II and 12 then follow from Equations (A. 25) and (A. 27)

for U 1 0, and from Equations (A. 23)-(A. 25) and (A. 27) for u 1 < 0.

Table I Coefficients in Laschka's Approximation
2 -1/2

to u(l + u

n a
n :1

1- + 0.24186198

2 - 2.7918027

3 + 24. 991-079

4 - 111.59196

5 + 271. 43549

6 - 305. 75288

7 - 41. 183630

8 + 545. 98537
9 - 644. 78155

10 + 328. 72755

ii 64.279511

f
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4 APPENDIX B. INCREMENTAL OSCILLATORY DOWNWASH FACTORS

The planar part of the incremental downwash factor is approximated by

tAx e P iTI) -

.D S 2 dT- (BA 1)rs 81r fJ G (- TI) + i

F2 e

where P is the parabolic approximation

P (11) = A 'n + B i1 + C1  (B. Za)

(s)
{exp [-iw(-I tan XS)U] T1  (B. Zb)

If we denote the inboard,, center, and outboard values of P1 (ii) by P1 (-e),

P (0), and P1 (e), respectively, the parabolic coefficients are

A = [P 1 (-e) -2P 1 (0) + P1 (e) ]]Ze2  (B. 3)

BI = [P1 (e) - P1 (-e) ]/Ze (B. 4)

C1  = P 1 (0) (B. 5)

The integral of Eq. (B. 1) is given in Rcf. 1. However, some discussion of

the integral

-eF d 1 (B. 6 a)
f4 (- - + z

i1 - Z e I 1

Izi tan z z 1 (B. 6b)
- y + z -e5
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. . ..... _ ___________________- ____- --__________.-,-il.. .

is warranted. The value of the arctangent is taken in the range (-r -n 7T).

2 .2 2
When y + z > e , Equation B. 6b is well behaved and approaches zero

as z approaches zero. Under these circumstances it is convenient to

introduce a parameter a defined by

F 2 + e (B. 7)
2 2 22

where

47

4e (-lf / 2e n-4
~(B. 8)

2 -2 22 2 2 2(7 n=z ?n-1 + z -e

Eq. (B. 8) has been used for 2 e/(2 + z - e)I -< 0.3 when
+ + > e. Then the planar downwash factor becomes

Axrs S [(7Z .~ 2)A 1 + ?B 4 C1 ]F

rs 87T

'2 2
+ (-LB + 7A 1 ) log _ + ZeA! (  9)(2+e) + z

The incremental nonplanar oscillatory downwash factor is approximated by

(2)e P ()(-2) = x ___- -_
Drs 8 Z 2 d (B. 10)

8=r -e [(7-T)+
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where P,(T) is another parabolic approximation

P (q) = A2 rI + B2 r + C2 (B. 11a)

[ {K 2 exp[-iw(-7i tan Xs)/U ] - (2 )T (B. llb)

Letting PZ(-e), PZ(O), and P,(e) denote the inboard, center, and outboard

values of P (i), respectively, we have

A2  = [P,(-e) ZPZ(O) + P,(e) ]Ze 2  (B. 12)

B Z  [P,(e) P 2 (-e) 1/ Ze (B. 13)

0 z  = p2 (o) (B. 14)

The nonplanar downwash factor is then evaluated to be

DZrs - {[-2 )A2 B 2 + C] F (B. 15)

+ (...±)2 + 2 ([7(z2)Y + (-yz2 ) e ]A 2 + (y +'z +e) B 2 + (Y+e) C 2 )

( ( +- + (--e) C
+ - J 2 y
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Eq. (B. 15) tends to lose significance for small values of 2. Introducing

a into Eq. (B. 15) thru Eq. (B. 7) leads to

A 2 22 2 2
D(-) = _ As { (7 +z +e ) (e A2 +C 2 ) + 4 e B2

rs 8..72 Z Z Z + Z

a
- -- [(7z+2 Z ) Az + 7B z + C z ] (B. 16)

e

The simplification of Eq. (B. 15) via Eq. (B. 7) is somewhat tedious but

results in the more accurate form above in which a is again given by

Eq. (B. 8). Eq. (B. 16) has been used in general except when

( r+'-e 2 ) e I - 0.1 in which case Eq. (B. 15) is used.

2 2 2
When 7 + Z ( e then the expression for F is not well behaved but

approaches infinity as z-0. The-specific behavior is

lim r-2 _Z.. 2
l-o F - r/j.I , for y + Z < e

Under these circumstances it can be shown that the term

lir F C  + ", ( 2-IZ)A + I--- 2 1-- YB z2 (Cz+ B2 +(Y +%7 )Az)'
(-01 1~ 22 Z )

-0

even as F - o. Numerically, of course, this expression will lose accuracy

at some value of E. An example calculation has shown that for .- .5,

k = 6. 0 and e = I/120,the gap, F/e, at which numerical difficulties arose was

0. 0025. Since e is small 2 = e (.00Z5) is very small and can be assumed to

be zero; i. e., the planar case.
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APPENDIXC. THE STEADY NONPLANAR DOWNWASH FACTOR 

The steady nonplanar downwash factor is

()T 1  (s) *U
rs es 4

The downwash factor has been given by Hedman (Ref. 2, App. C) and is

equivalent to Equation (C. 1-), although it is derived from fundamental vortex

considerations rather than evaluating the integral in Equation (C. 1). We

find it convenient to rederive ,Hedman's results in order to facilitate the

programming of the equations.

The vector geometry for a finite-length, constant-strength vortex is

shown in Figure C--. The vector form of the Biot-Savart Law for this

segment is

V -x d (cosO - cos q)) (C Z)4ir d&

where

d = iRI - (P/P)R I cose (C 3)

cos e- = -(R/R 1 ) . (rp) (C. 4)

61



R R

Figure C. 1

Figure C. 1
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and

Cos ( = (R /R.) . ( r ) (C. 5)

and where an arrow indicates a vector. The normalwash at the receiving

point, where the dihedral angle is 'r , is

r Trw(V sin Yr k cos r) (C. 6)

where

V= jV + kV (C.7)

The general result desired for a horseshoe vortex system applies the
foregoing equations to the bound and two trailing vortex components of

the horseshoe system.

The physical geometry of a horseshoe vortex system is shown in

Figure C. 2(a); the geometry modified by the Prandt-Glauert Transformation

is shown in Figure C. 2(b). The transformations are

x = xo/P (C. 8)

and

tan A (tan "Y) /P (C. 9)

The Biot-Savart Law is to be applied using the geometry of Figure C. 2(b).

Let the origin of coordinates be the center of the bound vortex. Then the

distance -to the receiving point (X0 , Y0 , z 0 ) is

S=iX 0 + jyo 4- kz 0  (C. 10)
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and the distances from the inboard and outboard ends of the bound vortex

are

r. = - e (itanA + j:cos s + ksin ys) (C. 11)

and

T e (i tanA + j cos yS + k sin Y) (C. 12)
0 S

respectively. The distance to the receiving point from the inboard end

is

R. = R - r. (C. 13a)

= T(X0 + e tan A) + (y0 + e coss) +k(z 0 + esin s)

(C. 13b)

= i R + ji. + kR (C. 13c)
ix 1y z

from which

2 2 2 1/2 (.4Ri = (R.x + R . + R.)1 (C. 14)1 l i 1z

The distance to the receiving point from the outboard end is

Ro  =R -ro (C. 15a)
0 0

Si(X - e tanA) +j(y 0 - e cos s) + k(z - e sin s) (C. i5b)

= iRox + j + kRo (C. 15c)
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from which

2 2 /R (R 0o + R t R (C. 16)

The vorticity vectors for the three components of the horseshoe vortex

complete the basic data required for calculation of the downwash factors.

rb . 1(isinA+ cosAcos "Ys + kcosA sin Ys)  (C. 17)

(C. 18)
1

r = r(+i) (C. 19)
0

We begin the final calculations by finding the cosines of G and 9 and

the normal distance vectors d for the bound, inboard, and outboard vortices.

For the bound vortex,

coseb = . (Fb/r) (C. 20a)

1 (Ri sinA + R. cos A cos y + R. cosAsin ) (C. 20b)
R. ix iy s 1zs

cos (°b = (R/R . (sb/V) (C. 21a)

R- (Rox sinA + R cosAcos 'y + R cosA sin ) (C. Zlb)
ooy oz

db=R - (P /f)R i cos 0 b (C. ZZa)

= i(Rix -R i cos 0b sin A)
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+j(Ri -R cos 0 cosAcos ) (C. 22b)j(Riy I b s

+ k(Riz- R. cos 0b cos Asin -Y )

STdbx +J dby + kdbz (C. Z2c)

For the inboard vortex,

nos 0 + C. Z3)

cos ei = (RiRi) (i./) (C. Z4a)

izR RR (C. 24b)ix 1

d. = jR.i + kR.i (0. 25)

Finally, for the outboard vortex,

cos O (Ro/Ro) (Fo/F) (C. 2 6 a)

= Rox/R (C. 26b)

cos 9 -1 (C. 27)

d = jRoy + kRoz (C. 28)

We next evaluate the velocity induced by each of the three vortices. 'The
bound vortex induces the velocity

V~ -- b -db  (Cos 0b  col, (Pb)'9a

b  4Trdb 2  b b
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4 r (cos 0b - cos 9 b [i (dbz cos-Acos Y - dby cos Asin Y.)

4 Trd b

+ j (db cos Asin Y - db sin A) (C. Z9b)

+ "f(dby sin A - dbx cos Acos )]

= F~i +j\T(C. 29c)
ri-Vbx + jV +-kVbz)

where

db d + d z (C. 30)b dbx + d ,g db

The inboard vortex induces the velocity

r. X d.
V 1 2 4 (cos 0. - cos i (C. 31a)

1

r(l - cos qi) --

47R2 + R2 (jRiz - kR iy) (C. 31b)

.iy iz

r(jviy + kV iz) (C. 31c)

and the outboard vortex induces the velocity

ro X do
0 - 4d (cos 0° - cos o) (C. 32a)

0

" Fr (r'os 8o "0 ) --
S 2- 2 (-JRoz +kRo) (C. 32b)
47 (R2 + Rz)

OY oz

1r(jV + kV) (C. 32c)
oy oz
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The total velocity induced by the horseshoe vortex is

V = V + V. + V (C. 33a)b o

[i (Vb + x + Vox) + J(Vby + V + V

+ k(Vbz + V. + Vo) (C 33b)
bz 1Z oz

- F(iV + jV + kV) (C. 33c)
x y z

The normalwash velocity is then given by

w = V (j sin yr  kcos y ) (C.34a)

r(V sinY - V cos ) (C. 34b)
y r Z r

which leads, finally, to the steady nonplanar downwash factor

D( s )  Ax w /27 (C. 35a)rs s r

(Vy sin V- V7 cos Y) Axs/Z (C, 35b)

A numerical difficulty arises when the receiving point is on an extension

of the bound vortex axis. The limit of Vb as db approaches zero is also

zero. Numerical accuracy can be preserved by utilizing a series expansion

of (cos 0 b - cos ('b)  For small 0 b and ' b

cos - cosP ( - 0 Z (C. 36)b b b bb
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where

9 d R (C, 37)
b b 0

and

Ob db/Ri (C. 38)

[ so that

(Cos b - cos Pb)/ db  ( "sR) C. 39)

0 1

If the angles are close to it

(Co 1 Co 1P d (G. 40)
(cos b - cos eb)/d b  - Z 1)4

1 0

In either case

(Cos -2 1 Cos 1 d 2 (C. 41)
b cos4b)Ib 2 R -

1 0

The program uses the ap - ,ximation if max ( Icos 0 b I cos 9b > 0' 999-

If 0 b - 0 and b - T, the receiving point is close to the bound vortex This

case is only of interest in induced drag calculations. Then the bound vortex

induces no velccity on itself. The program sets (cos 0 b - cos T b) I db to

zero if cos 0b cos b < 0 and max (Icosb, cos bI) > 0.999.
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APPENDIX D. THE SUBSTANTIAL DERIVATIVE AND INTEGRATION MATRICES

D. 1 The First Alternative

Alternative No. 1 for the substantial derivative matrix [W2 and the

integration matrix [B] assumes that the deflections of a given spanwise

division (aerodynamic strip) can be determined by the following degrees of

freedom.

h - plunging :f strip

a - pitching of strip

- rotation of primary control surface

6 - rotation of secondary control surface

3 - plunging of primary control surface

- plunging of secondary control surface

To describe the format of the matrices involved, we assume that a spanwise

division (strip) is idealized into 10 chordwise boxes as shown in Figure D-1.

Any number of boxes may be chosen; 10 are used only as an example. The

local deflection mode shapes corresponding to the local degrees of freedom

h, a, (3, 6, (, and 5 are also shown in Figure D-1. The [W] and [B]

matrices are constructed from the following equations.

h. = h+ ( X )a (D.1-1)
3 (x~x x < x

a.! =dh" (D. 1 -a)
dx

h. = h + x 1 (D. 1-3)

x(x. 2(x. x 3 )3+} x 4

dh.
. =a+ a (D. 1-4)

h.i h-+ - x 1t )a + (x x3)- (D. 1 -5)
h +(x.+(x -(xx.

4+ (x 6 - x) + 6 x >x 4

._ = -a+ 3+ 6 (D.1-6)
dx

4 .. 70
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(TY P)I  I I
-- (TY PI CAL Q

ii --
i! r

ti V

[ h- -PLUNG-ING

e - PITCHING

Typical distance to 1/4 chord of "box"

x. - Typical distance to 3/4 chord of "box"J

x - Distance to reference axis
x - Distance to leading edge of primary control surface
x - Distance to hinge line of primary control surface
x4 - Distance to leading edge of secondary control surface
x 5 - Distance to hinge line of secondary control surface

Figure D-l. Strip Geometry and Local Deflection Shapes for
Alternative i
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The format of -the [W] matrix which results from the above equations

for the example of Figure D-1 is shown in-Table D-1. The format of the

[B]-matrix is not shown, but can be determined by substituting j for x.

in the [W] matrix and writing

b
[B] r I m [W]T [AJ (D. 1--7)

r

where [Aj is the diagonal matrix of box -areas. The expression q [B], then

represents lifts due -to h, , 6, and moments (about x,, x x5 ) due to a, f,

6.

The present version of H7WC generates AIC's only for lifting surfaces;
fuselage elements or bays are ignored. (See Part I, Vol II).

7
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TABLE D-1. MATRIX [W] FOR TYPICAL STRIP

ALTERNATIVE NO. 1

h 61

kr 1.0
0 0[2 0 0 0 0

3 0_ 00

4 0 0 0

5 0 0 0 0

6 0 0 0 0

1.0
,,7.y.,) 0

br

8 0 0

1.0 I
9_ i ( -X5 ) _

k. 1.0 i.0 1.0 kr .kr

br IT
lo - k (. . . ._ X) 

,. -

t0 / br 5('X), .X-3 ,jX)-r br
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D. 2 The Second Alternative

Alternative No. 2 which includes parabolic camber is shown in

Figure D-2. The Lagrangian interpolation formulas are used to describe

the defleutions of the strip. The applicable formulas are:

(x. -x)(x. - x3 ) (x. - xl)(x. - x 3)
h. 3 h + 13 h

L(x - X2 )(X1 x 3 ) 1 (x, - xl)(x, - x 3 )

(x X x < x 3 when control surface

+ (x - )(x xq ) h 3 'j is present;
(x 3  1  3  - all x. with no control surface,

S)
(D. Z-1)

_dh / ((x= - )+(X. - hl + - )+(X.- x3))

dx (x x )(x x3 ) h (xz x l )(x x 3 ) h

(x )+(x x X3 when control surface
+ 2 h x < hx is present;+ (x3  xl)(x3  x,) 3 all x. with no control surface.

(D. 2-2)

When the control surfaces are present, we assume that the deflections aft

of x3 can be determined by linear extrapolation. We then have

h -(x3-X2)(x - x3) /(x3 - xl)(x" x3)
h (x3 l(X 1  xz) h + h2

3 ) x/ \(x2 - xl)(xz x 3 )/

+ + (x3  X1 +(x3 - x) ) (xj - x 3 ) h3 x.> x3  (D.Z-3)

h (x3 - x2 ) (x 3 -x)

8x I (x 1  - x2 )(xi - 3 ) + (x 2  X 1 )(X2 - x 3 )

(x 3 - x1 +( 3  xz)
+ h 3 (x3  x1 )(x 3 - x2 ) x. > x3  (D. Z-4)

3  1 ( 3  z
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Figure D-Z. Strip Geometry and Local Deflection Shapes for
Alternative 2.
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The incremental deflections due to the control surface degrees of freedom

are given by the equations below.

AIh (x - xs) x > x4  (D. Z-5)

1 [P, x , >x (D. Z-6)

A 2h (xj - x 7 ) 6, >x 7  (D. 2-7)

( i) = 6, x> (D.2-8)

A 3 h, xj > x 4  (D. Z-9)

A h j  X. > x7  (D. 2-10)

The [W] and [B] matrices can now be constructed from Equations(D. 2-1)

through (D. 2-10). Figure D-2 indicates in a qualitative manner the local

deflection mode shapes corresponding to the degrees of freedom shown.
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