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SECTION I

Introduction

Aircraft flutter is a destructive phenomenon which requires special attention in

the design process. The elements of flutter are structural dynamics and unsteady

aerodynamics. Of these, it is generally recognized that unsteady aerodynamics

are the more difficult to model and the least reliable. In 1935, Theodorsen was

the first to develop a practical unsteady incompressible aerodynamic formula1

for a flutter analysis of a two dimensional airfoil. It was fifty years ago that

Smilg and Wasserman of the Aircraft Laboratory of the Wright Air Development

Center wrote their landmark report on flutter clearance using the K-method and

strip theory. Of course such methods can be addressed with manual calculations.

Compressibility is normally associated with the flutter of high speed aircraft. It
is impractical to solve the compressible unsteady aerodynamic equations by

hand. The doublet lattice method2 was developed along with improvements in
digital computer technology. Hopefully, the doublet lattice method represents

the most rudimentary unsteady aerodynamic technique in practice where

subsonic compressible flow is a consideration. With the introduction of today's
supercomputers, non-linear aerodynamics are now heiag addressed, in spite of

the high cost. It is because of the high cost a.-"' -,x-iical complications

associated with non-linear Computational Fluid Dynamics (CFD) that the

doublet lattice method is still used almost exclusively for the subsonic flutter
clearance of flight vehicles being designed today. It is difficult to imagine the

day when non-linear CFD will replace the doublet lattice method in the

preliminary design environment.

1. Secd 5-6 oM e wok by Riv 'ois ai& cocui a m e uioa~modba"R's famuaL

2. Gksi&. kXaim &W R



Inoduction

While this document is not a survey report, it is appropriate to acknowledge the

original authors of the doublet lattice method, Dr. Edward Albano and Dr.

William P. Rodden. The subsequent work of Mr. Joseph P. Giesing, Mrs. Terez P.

Kalman, and Dr. William P. Rodden of the Douglas Aircraft Company was

sponsored by the Air Force Flight Dynamics Laboratory under the guidance of

Mr. Walter J. Mykytow. The two computer codes which resulted from this

contractual effort are H7WC 1 and following that, N5KA 2. These codes are still

the de facto standard where the flutter clearance of military aircraft is involved.

The geometric options offered in these codes are extensive, including multiple

surfaces and slender bodies. The purpose of this document is to derive the
fundamental formulae of the doublet lattice method. In order to keep focused on

the fundamentals, the formulae derived in this report are restricted to planar

wings. The additional work to extend the formulae to wings with dihedral is not

conceptually significant. Unsteady aerodynamics over slender bodies is not

addressed here.

The mathematical background leading to the doublet lattice method is found

among many documents and texts. Considering the importance of the doublet

lattice method, it seems surprisiag that we lack a single consistent derivation.

This document attempts to answer the need for a unified derivation of all the

important formulae from first principles to the integral formula and also includes

a simple doublet lattice souirce code. The target audience is the graduate student

or engineer who has had a first course in aeroelasticity and would like to focus

on the mathematics of the doublet lattice method. The author has assumed the

reader has a familiarity with the classical topics of potential aerodynamics and
linear boundary value problems.

The author takes no credit for developing the formulae. All the work presented

here was compiled from many references to create a unified derivation. The

author does take credit for any additional illumination which he may cast on

1. Giecing et al. A14ML71-.. Vi IM Pan Iis the orifina pilot code. hi uses dooaba pvs to model bodies a aular wf••g.

2. See Giesing eit &. AFFtL-7 1-3. Vol iL Pau 11 i the final delbvmble code mad uwe &ual doublets wd Wzderawo pmels
for bodies as astee"ofic e2

2



Inutoduction

these derivations. The main contribution of this report is that all these

derivations are presented in a logical sequence in a single document not

available elsewhere. The hope is that the reader will gain an accurate

appreciation of the doublet lattice method by following this single derivation.

This report focuses on presenting the general mathematical procedure behind the

doublet lattice method. Such mathematics do not make easy reading. The task of

making these mathematical derivations pleasurable may be impossible. Learning

these mathematics requires that one take pen and paper in hand and derive

unfamiliar formulae. The integral formulae of Sections XHI and XIII may seem

excessively complicated. However, this complication is a matter of bookkeeping

and not a matter of high level mathematics beyond undergraduate calculus.

In short, the doublet lattice method is based on the integral equation (276). The

integrand of this equation models the effect of the pressure difference (across the

plane of the wing) at one wing location on the induced upwash (component of
velocity which is normal to the plane of the wing) at another wing location. In a

sense, it can be said that equation (276) is entirely equivalent to the linear

aerodynamic potential equation (42) and the linearized pressure equation (52).

While equation (276) is a specialization of equations (42) and (52), no

Approx~mations were assumed in its derivation from the Euler equations.

Euler's five differential equations of inviscid flow are the starting basis for all

derivations in this report. These five equations are comprised of one equation of

continuity, three equations of momentum and one equation of state. The
equations of momentum model pressure equilibrium in each of three coordinate
directions. The inviscid restriction of Euler's equations means the momentum
equations lack terms of shear force. With no shear force on a fluid, no vorticity
(flow rotation) can be developed. While the Euler equations are restricted from
generating rotation, they are not restricted from convecting rotation if rotation
exists in the initial or boundary conditions to Euler's differential equations. This

is the starting assumption in All the subsequent mathematical developments.

3



Inuoduction

The solution to a boundary value problem satisfies both the coupled partial

differential equations and the associated boundary condition equations. When a

single unique solution exists, the number of variables equals the number of

partial differential equations. For the Euler equations, we have five variables and

five differential equations. These five equations describe the flow within the

domain. The boundary condition is a description of the flow on the boundary of

the domain. The important point here is that once Euler's boundary value
problem has been stated, all that remains is the mathematical solution. After a

general mathematical procedure has been identified, engineers can proceed to

make automated applications to their design procedures.

Section I1 starts with Euler's differential equations with five unknown variables

representing flow density, pressure and three components of velocity. Euler's

equations are non-linear. The doublet lattice method is linear. The objective of

Section II is to reduce Euler's non-linear boundary value problem (five differen-

tial equations and associated boundary conditions with five unknown variables)

to a linear boundary value problem (one linear differential equation (42) with

linear boundary conditions in terms of one unknown variable, the velocity

potential). The derivation of this linear (potential) equation follows the approach

taken in the text by Bisplinghoff, Ashley and Halfman. The text by Karamcheti
provides an excellent explanation of the velocity, potential. Equation (42) and the

boundary conditions developed in Section IV are sufficient for generating a

unique solution for the velocity potential.

Section 11 assumes the velocity potential of Section UI is now a known quantity.

The objective of Section 11 is to develop a single linear differential equation for

the unknown pressure variable. After all, the aerodynamicist is interested in the

pressure loads on the aircraft, not the velocity potential. The desired linear for-

mula is equation (52). The remainder of Section III provides the derivation of

the reverse relation. In other words, given the pressure over the domain, what is

the potential over the domain. This relation is equation (73).

4



Intaouction

If one accepts the linear differential equations (42) and (52) as a linear model for

the flow, then Euler's non-linear differential equations are somewhat irrelevant

to the subsequent mathematical development of the doublet lattice method.

Again, all that remains is the identification of a solution which satisfies the aero-

dynamic potential equation (42) and the boundary condition.

In Section IV, the non-linear tangential flow boundary condition for Euler's
boundary value problem are stated and then linearized The linear boundary

condition, together with the linear aerodynamic potential equation (42) form the

boundary value problem that will be solved by the doublet lattice method.
Finally, the special case of the boundary condition on an oscillating wing is

presented. The form of the doublet lattice method pre;,-Yited here assumes the
wing, and therefore the flow, oscillate harmonically. Complex notation is

assumed here and the reader must be familiar with solving complex algebra

problems.

At this point, all the preliminary aspects leading to the doublet lattice method

have been completed. The linear boundary value problem has been completely
described. The solution procedure begins to take shape in Section V.

Mathematicians will typically solve simple linear boundary value problems

using the method of separation of variables. This approach is not at all practical

for solving the flow over even simple wing planforms. Another method is to
identify a set of solutions to the linear aerodynamic potential equation (42). If

these solutions can be linearly superimposed such that the boundary conditions

are at least approximately satisfied, then the solution is complete.

Simple solutions to the aerodynamic potential equation are not easily identified.
This is the motivation for Section V in which we transform the aerodynamic
potential equation to the well known acoustic potential equation. We will

* identify an elementary source solution to this acoustic equation in Section VI.
Finally, this solution is modified and transformed back to the coordinates of the

aerodynamic potential equation in Sections VI, VII and VIII. Equation (152) is
the elementary source solution *s (x' y, z, 1, 0 , t) to the aerodynamic

5
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potential equation. The definitions for R and r, found in equation (152) are

given in equations (149) and (151). The arguments x, y, : and t in the function

are identical to the arguments of the potential 4 (x, y, z, t) . The arguments •,

T" and ý represent the x, y and z coordinates of the reference point which labels

the elementary source solution. In other words, each source solution

0, (x, y, z, 4, ri, t, t) represents the potential at coordinates (x, y, z, t) due to a
spherically symmetric flow originating from a point located at ý, TI and .

Clones of the elementary source solutions can be placed throughout the flow

domain. The resulting potential field is a superposition of the potential arising

from each point source as given by equation (152). It turns out that the point

sources are placed at coordinates ý, i, ý on the boundary of the vehicle. If

insufficient point sources are used, the approximating composite potential

solution will be "bumpy". In order to provide sufficient smoothness, the

approximating solution requires sufficient point sources on the surface. As a

matter of fact, one can take the limiting case of a continuun of point sources on

the surface. Each differential area of the aerodynamic boundary (excluding the

far field boundary) contains a coordinate point identifying another clone of the

elementary solution with its own strength. The linearized aerodynamic boundary

on a wing is a two dimensional plane or sheet.

Section IX describes a continuous source sheet. A source sheet is a two
dimensional surface which has been partitioned into differential areas. Each

differential area is assigned a point sour- ! of varying flow rate (or strength). In

the limit, as the partition is infinitely refined, a continuous source sheet is

formed. This pupose of this section is for illustration only. A source sheet will

not solve all the boundary conditions for flow over a wing. The potential field

associated with a source sheet is the same above and below the plane of the

sheet. The pressure field is entirely dependent on the potential field. If the

potential is the same above and below, then it is not possible for a single source

sheet to generate a pressure difference. However, two opposing source sheets

can generatc a pressure difference.

6



Introduction

Section X describes a continuous doublet sheet. This is the limiting condition as

two source sheets are brought together. Each sheet has an opposite strength
proportional to the inverse of the distance between them. A single doublet sheet

can be used to mathematically model the pressure difference between the upper

and lower surfaces of a thin wing. One could use this doublet formulation to

solve a boundary value problem for flow over a thin wing. However, this doublet

sheet formula is in terms of the (velocity) potential. We are really interested in
the pressure load. Therefore, given the solution for the potential, we then have to

solve a second problem using differential equation (52) to obtain the pressure
field from the potential field. A more direct approach is taken in the remaining

sections. Unfortunately, this direct approach increases the complexity of the
formulation.

In Section XI, the pressure potential and the acceleration potential are

introduced. The pressure potential is the unknown variable of the pressure
potential equation (185). The pressure potential equation arises as a direct

consequence of the aerodynamic potential equation (42) and the pressure

formula (52). The form of the pressure potential equation is identical to the
aerodynamic potential equation. Therefore, any elementm'y solution to the

aerodynanmic potential equation is also a solution to the pressure potential

equation. Therefore, the elementary solution to equation (185) is a source
function. Again, the pressure source sheet is symnmetric and cannot generate a

pressure difference above and below its plane. A pressure doublet solution for
oscillatory flow, otherwise known as the acceleration potential 'P, is deveioped

in equation (191). A pressure doublet sheet can gcnerate a pressure difference.

Now that an elementary pressure doublet solution has been identified., it is

necessary to formulate the potential field (and then the velocity at the wing
boundary) which arises with this pressure. This is given in equation (197).

In Section X)I, we use the point pressure doublet solution of Section XI to create

a pressure doublet sheet using the same approach taken earlier to expand the
point source to a source sheet. This results in integral equation (203) which

describes the acceleration potential (pressure) which arises from a pressure

7



Introduction

doublet sheet. What we really need and subsequently derive is Equation (224)

which is the w component of velocity which arises with a pressure doublet sheet.

This is the integral formula of Section XII. If one determines a pressure doublet

distribution which satisfies the tangential flow boundary conditions using this

integral formula, then the boundary value problem has been solved. In a sense,

the linear boundary value problem and the specialized integral formula are

equivalent. While the concept is simple enough, the procedure for determining

the distributed strength of the pressure doublet is not immediately obvious.

Within the integral formula is the kernel function. The kernel function is highly

singular (division by zero valued variables of power higher than one) at the

surface of the pressure doublet sheet. Th.e purpose of Section XIII is to reduce

the severity of the singularity and to put the kernel function in a form which
lends itself to numerical evaluation with a computer. (Note: the singularity of the

integral formula is not entirely removed.) Section XIII is very detailed and

inherently difficult to follow with all the variable substitutions. The kernel
function for a planar wing is simply summarized in the following section as

equation (277) with supporting equations (278) through equation (281).

The doublet lattice inethod is a solution procedure for the integral formula. The

normal velocity component w is the known boundary condition. What we don't

know is the pressure difference Ap across the thin wing. Unfortunately, the

unknown pressure falls within the integrand. In the doublet lattice method, the
pressure doublet sheet is divided into trapezoidal areas. Within each trapezoid,

the unknown pressure function is assumed to take a form with unknown constant

coefficients. More specifically, the pressure is assumed spatially constant within

the trapezoidal area. The integral formula is evaluated over each trapezoidal area

independently. The uniknown constant coefficients come out from under the
integrand. Some of the remaining singularities in the integrand are avoided by

replacing the pressure doublet sheet with a pressure doublet line. Remaining

singularities in the resulting line integial (over the doublet line) are addressed

using the concept of principle values.

8



Introduction

The formulae of Section XIV are encoded in the doublet lattice program of

Appendix A as described in Section XV. The reade, must keep in mind that the

solutions obtained here will not agree exactly with the results of Giesing et. al.
because in this report, there have been no steady state coi-rections. Furthermore,

the formulae of Section XIV are restricted to a single wing in the (x, y) plane.

One misconception about the doublet lattice method is that the formulae are
made non-singular by replacing the doublet sheet with a lattice structure. This is

not the case. The doublet lattice method is made non-singular only by using the
concept of principle values. T:•e appeal of the doublet lattice method is solely in

its programming simplicity. The assumed form of the pressure function would

normally change according to the proximity to the edges of the wing. With the

doublet lattice method, the form is the same for all elements. This is a major sir-

plification.

In providing this overview of the doublet lattice method, the reader will

hopefully be better prepared to investigate the mathematical details of the

following report. Again, the interested reader will find that by using pen and

paper while reading this report, he will obtain a special level of ownership of the
material presented here. There ieally is no other way to learn.

9



SECTION II

From First Principles to the Linearized Aerodynamic Potential Equation

The equations describing an inviscid fluid flow over a solid body will be
descibed in a frame of refeience that is attached to the body and travels with it.
Here., the three car.esian components are indicated by x, y and z. Time t is a

fourth coordinate or dimension. The five state variables are pressure,
p (x, y, z, t), density, p (x, y, z, t), and the three czartesian components of the
velocity with respect to the frame, u (.x, y, z, f), v (x, y, z, t), and w (x, y, z, t).
A control vol-me is identiiied and five appropriate equations are formulated to

solve for the five state variables. These are the partial differential equation of
continuity, thee partial differential equations of momentum and an equation of

state. These formulae are presented here without derivation1 .

The continuity equation is given as

i ap a(pu) a(pv) 0?(pw)
+ + + =a0 ()

The three components of the momentum equations are given here. For momen-

tum in the xy and z directions

" UT+u•'- + wT - 1p (2)

al. av av ay -I aPt~ + F+Vý-- - T (3)

I. One is dimaetd toeib tbxer Oie 5 cf LroInd:s -m AjppetixU 3 of Kued~e wn4 Chiow. bn the 1w~ev. dih* fW Navic-Stokes
equ~aicam~ decaid from otmii th Ealaer quuaoc am obtaknod by wtw*zz %be -iscxw taw to nw.
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From First Prindcpe. tc, the Linearized Aerodynamic Potential Equation

-w aw aw aw -1 aPT+u+T-•+VT w-T= -TP (4)

With the following isentropic relation1 , we complete the desired set of five equa-

tions which we use to solve for the five unknown state variables u, v w, p and

p.

P__ =(5)
P p0

The constant y is the ratio of specific heats. The variables p0 and p,, are

c.onstant referet -2 values of pressure and density. This ratio of pressure and

cl.nsi.%y is constant for any element of fluid. If the entire fluid field originates

from a single stptic reservoir thin the ratio of equation (5) is constant for the

entire fluid field. The formula for the 6peed of sound is also presented here

without development.

a 2 = dp (6)

As a first step in -educing the problem, we denne the fluid velocity vector

q =l4V+W (7)

The condition of irrotationality, Vx' = 0, allows us to introduce the velocity
potential 0 (x, y, z, k), a new state variable. The relationship between the velo..

ity potential and the three unknown ,alocuty components is presented here with-

out further explanation3 .

1. Sqtaiiono is the .-hsiLW aq"isio of asi zmdfictd tu iwmvi* caAl~ouL Such flud flow is caidW barntiwp. Sao
pqte 0ot of Uuw and Rohiio.
2. ot htehqxZ.. of Lkjq.at.", ad Rx•,ka Anew.aivey, moe cb•ate 92 of Kie. aud Cow.
3. S paW 244 of KuAwtL
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From First Principles to the Linearized Aerodynamic Potential Equation

q = ( ax-+Jw+kz (8)

With the velocity potential, we can reduce our five equations and five unknowns

to three equations and three unknowns. The three unknowns are 0, p and p.
l •These three equations will be (23), (18) and (5).

S. We denote the magnitude of the velocity as q. It should now be clear from equa-

tions (7) and (8) that the relationship between the velocity magnitude and the

velocity potential is

q = u2+v2 + w2 j )2 2 2 (ýU+ W= y1 + ;+0 (9)

We can explicitly state the basis for the irrotational condition V x q = 0 in

terms of the following three relations. This is obtained using the components of
q given in equation (7) or equation (8).

aw av (10)

=w au (11)

a au (12)

The remainder of this section elaborates on chapter 5.1 of the work by Bispling-

hoff Ashley and Halfman (or Dowell et. al.). The three momentum equations (2)

- (4) can be put into a single vector equation.

a4 -Vp
- = -- -(13)

We now substitute for 4 with the gradient of the velocity potential 0> as defined

in equation (8). In addition, equations (10), (11) and (12) are used to obtain

equation (14) from equation (13).

13



From Fist Principles to the Linearized Aerodynamic Potential Equation

a- [v) + v -'P (14)

It is desirable to express the right hand side of equation (14) purely in terms of a

gradient operator. As an intermediate step we may see that

Vp _f (15)

where X is the dummy or umbral variable of integration. If this is not clear, the

explanation follows here. From equation (5) we see that density p can be

evaluated as a function of pressure alone (independently of x, y, z or t) such that

p = p (p) explicitly. The lower limit of integration, p0 (t) is not spatially
variable. The upper limit is p (x, y, z, t) . How do we prove that equation (15) is

correct? This is shown by using Leibnitz's Rule1 on the right hand side of

equation (15), to obtain the left hand side. Equation (15) is often written in a less

rigorous form
Vntd

VP Vf d (16)

Substitute equation (16) into the right hand side of equation (14). Next, reverse
the order of integration with respect to time and space on the left hand side of

equation (14). Combining all the terms gives

t 2 p+!+f =0 (17)

1. Leibnitz's Rule il given herm. Keep in mind thai ). is an uubral vatil" and will not be bUsed as a Nbction of x
See page (365) of Hildeband.

B (s) 40a
d ff4 X a fx de dA

Aa A 14
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From First Principles to the Linearized Aerodynamic Potential Equation

We can interpret equation (17) as a single vector equation with three components

or as three scalar equations. The differentiated quantity in each of the three sca-

lar equations is identical. Clearly, the three derivatives are zero and therefore, the

differentiated quantity is independent of x, y and z. We can obtain a single

expression which states this more directly. Integrate each of the three vector

components of equation (17) with respect to x, y and z independently. In each

case, a constant of integration is added which is independent of x, y and z

respectively. Since the same quantity must result from the integration of each of

the three vector components, the constant of integration must be independent of

x, y and z. The only variable left is t and the constant of integration is a function

of time alone. Thus, the integration of (17) leads to the well known Kelvin's (the

unsteady version of Bernoulli's) equation.

S+ q- + = F (t) (18)

We are left with the task of determining the meaning of the function F (t) which

arose as a result of mathematical manipulation and without physical insight.

Now, equation (18) must be applicable to the whole flow field and to any part of
it. We now specify a far field condition (the region far from the disturbance).

Here, the flow is steady and the streamlines are straight. Thus, 0 is time

invariant, the pressure is constant and the velocity is assigned a constant

magnitude of U. So our far field conditions are q2 = U2, dp = 0 and the

derivative D, = 0. By restricting equation (18) to these far field conditions, we

obtain

F (t) = U2/2 (19)

We can redefine the velocity potential such that

t2

D - f-F (t)dt Ut0 (20)
0
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From First Princnples to the Lmearzed Aerodynamuc Potential Equaton

This has no effect in the interpretation of the velocity vector and the substitution

is made in equation (18). The resulting equation is the modified BemouUli'

equation.

q + q- 2 = 0 (21)
at 2 .ip

We momentarily put equation (21) aside and consider the continuity equation.

The continuity equation (1) can be put into vector form

S+ (q. Vp) + p (V. q) = 0 (22)

Divide by p and substitute q = Vý from equation (8) and equation (20).

+[ PI (V,-Vp)+(V.VO) =0 (23)

We now step back and see what we have accomplished. Euler's formulation has

been reduced from five equations and five unknowns to a system of three equa-

tions and three unknowns. The three equations are, (23), (21) and (5). The three

unknown system variables are 0, p and p. While the three velocity components

no longer appear, they can be obtained from the potential 0. We still have the

goal of formulating a single equation in terms of a single system variable and

independent of the others. We will choose the velocity potential 0 as this single
system variable. The other variables, p and p, can be obtained subsequently to

the solution for 0.

In attaining this single equation, we start with equation (23) which has three

parts. The third part is already a function of 0. The first part can be made a func-
tion of 0 with the following manipulations based on equations (5) and (6) and

Leibnitz's Rule.

[a 2]a, [17dp,,p [1]• ad• a Adp

P FP P
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From rst Principles to the Linearized Aerodynamic Potential E..tion

Interchanging the first and last steps gives a useful intermediate formula.

-fdp (24)PJ -Lt

The left hand side of equation (24) employs abbreviated notation which is
consistent with the meaning used earlier in equation (16). We see where the right
hand side of equation (24) fits in a time differentiated form of equation (21).
Making the substitution in equation (21) we obtain

Divide by a2 to obtain

1[ap = [ Ila ao +ý(25)

Equation (25) can be substituted into the left hand side of equation (23). Finally,
the second term of equation (23) can also be put in terms of € with the following
manipulations. Starting with equation (21) we obtain

F q2 1 dp

First, using equation (16) and then equations (5) and (6), we see that equation
(26) can also be written as

- - + P + 27

I 2 p 3

Interchanging the first and last stop and dividing by a 2gives

VP [2[~ 2 (27)
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Prom Fint Prnaples to the Lineawmd Aerodynamc PotentW Equaton

Finally, taking the dot product with VO, it follows that

(VO. V) [-i 2 (28)

This is in the desired form, ready to substitute into equation (23). But, first we
carry out the operations on the right hand side of equation (28) to give

(Vp -Vp) -1 + q.

Pa2

Now, use equations (8) and (9) and note that (q2 = VO. VO)

(29

Equations (25) and (29) can be substituted into equation (23) to give the full
potential equation.

-N4 [ 2]] 00.1l (30)
a, Lt 2 + (q2)+V t2J

Equation (30) is almost in the desired form of a single equation in 0 alone. We
address the parameter, a = a (x, y, z, t) in the following development Starting
with equation (21), we substitute for p (p).

Pdq _Y (Y2)p dpy-
T 2 = .. YJp(Y- 2)dp = [( 7 r-.)]P (31)

PO Po

Using equations (5) and (6), we see a = yp (Y- 1) nd substitution in equation
(31) gives the following result.
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From First Principles to the Linearized Aerodynamic Potential Equation

_ q 2  
_ a2_a2 )

_( a 1a, (32)

Here, a, (t) is the speed of sound associated with the reference (e.g.: the far

field) conditions p = p0 and p = p0 . So, by equation (32) we have a formula

for a in terms of 0. This formula for a can be used in equation (30) to obtain the
one single equation in 0. However, the form of this equation is complicated and
we don't solve it anyway. At this point, we assume a is somehow restricted and

address this issue later. We expand equation (30) using subscripts to denote

differentiation.

- 2 1 2+ +

-f-a (2xo) 0@ + 2o4 x:Ox:+ 2ýyo:o4 y:) = 0 (33)

The steady state form of equation (33) is obtained by setting to zero the deriva-

tives with respect to t. We proceed under the assumption that a steady state solu-

tion to this non-linear equation exists.

We now turn our attention back to equation (33). The unknown 6, is divided int..

two components, a steady state component (bar) and a small disturbance

component (tilde) which is time dependent. Likewise, p and p will be divided
into a steady state component and a small disturbance component (tilde).

0 (x, y, 2, t) = (x, y, z) +4 (x, y, zt) (34)

p(x,y,z,t) = j(x,y,z) +j(x,y,z,t) (35)

p (x, yz, t) = (x, y, z) + (x, y, z, t) (36)

The speed of sound is assumed time invariant in this linearization process. So we

denote this restriction as
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From First Principles to the Linearized Aerodynamic Potential Equation

a (x, y, z, t) = a (x, y,z) (37)

(Ultimately, we will keep a constant. One will see that a higher order approxi-

mation has no effect on the resulting linear formulation.) We substitute equations

(34) and (37) into equation (33) and delete any non-linear terms in p and its

derivatives. Furthermore, we subtract out the steady state condition. We obtain

the following time linear partial differential equation (PDE).

( yxy+z) - [ + 2 x + 2 ýy4 v, + 2ý•:•)t +
La"

*x4 xx+4 y4) YY y + 4 z:+()xyxy y ) 4 x+4)x4 xy4 y) +

2 (4)xY:+ + +

2(o) O:OVZ+O:O) 4)+O ))] I = 0 (38)

Here, we can clarify our restriction on the speed of sound a. If we had assumed

that a was of a higher order, the high order terms would have dropped out when

we dropped all the non-linear terms.

While partial differential equation (38) is linear in $, the solution for $ is still

difficult to analyze for any general description of the steady state field

4 (x, y, z). This spatally variable x -,;) r~ults in spatially variable coem-f-

cients in this PDE for $). Certainly, there are no elementary solutions available

for the entire flow field described in equation (38). So, we choose to further

restrict our PDE to simple steady mean flows. If we let the steady mean flow

have a unifonn velocity of U with streamlines in the x direction, then for the

entire flow field, the coefficients are simply

(x, y, :) = Ux (39)

a (x, y, z) =ao (40)

where ao is the constant value of a in the far field.
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From Firt Piinciples to the Linearized Aerodynamic Potential Equation

Substituting steady-state components given by equations (39) and (40) into

equation (38), we obtain

+ y + + - - +U + U2'ý) (41)

By collecting similar terms we produce the classical linear small disturbance
velocity potential PDE. We now name this equation the aerodynamic potential
equation given here as equation (42). We have defined the Mach number as
M = U/a. Both the steady velocity U and steady speed of sound a were
assumed to be constant throughout the flow field in the process of arriving at
linear equation (41). For a non-linear solution, these quantities would not be
constant. It follows that for linear small disturbance theory, the Mach number is
assumed constant for the entire flow field. Later, we will use the notation,

2U a. ~ it (42)

Now, all the coefficients are constant and we can identify elementary solutions.
This will be assumed to be the govermng PDE for describing the aerodynamic
behavior. Thne bou-ndan.y vaslu prbbl= ;%- oompricd Of equi ku •(z4) and the

linear boundary conditions to be specified in Section IV. It can be shown that the
solution to this boundary value problem is unique.
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SECTION MI

The Linearized Pressure Equation

We can solve for j) (x, y, z, t) using the boundary value problem comprised of

the aerodynamic potential equation (42) and the boundary conditions to be

described later. However, we are really interested in the pressure. For this

reason, we use Bernoulli's equation (21) to develop a linear expression for p as a

function of 4. In other words, having developed a boundary value problem for

0 (x, y, z, t) , independent of the pressure p, we now develop a linear formula for

determining pressure. This functional relationship will be given as equation (52).

Furthermore, we will express i as a function of p in equation (73).

Using equation (5) we can write pressure as an erplicit function of density.

dp = Yp- y-2 (43)

Carying ov! tle integration on the right hand side of equation(4), weoin

* I>p P A L (45)

- I P.|23
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The Liarized Premsmn Equation

Equation (45) can be substituted into integra: equw.4ion (21) to obtain the non-

linear algebraic expression for pres,. %re in terms of ý alone. In equations (35)

and (36) we introduced the Gmall disturbance notation for pressure and density.

Here, we will linearize about the constant far field pressure condition

ý (x, y, z) = p, and density j (x, y, z) = p,. Since we are interested in linear

aerodynamics, we use the linear part of a Taylor equation identified here for

some function F (p) synonymous with the right hand side of equation (45).

JR- = F (p) =F (p,,) + F'(p0,) (p - p,) +hot (46)P

Carrying out these operati :is on equation (45) and simplifying gives

P , I ý
op P - P) = I • P (47)

This linear expressinn can be substituted into equation (21). The derivative 0, in

equation (21) is eaily linearized as

(48)

Finally, the term q2/2 in equation (21) is linealized about the free stream

velocity components u = U, v 0, and w = 0. Starting with

q (. + +W2 (49)

We use a multi-variable Taylor series expansion on equation (49) to obtain

2
q 2 1

t-U 2+U(-U) = PU2 +Uý1  (50)
22
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The Lineaized Pressure Equatio

We substitute equation (47), (48) and (50) into Bernoulli's equation (21) to
obtain the linearized expression

(P-P, =-, +Uk+IU (51)

It may appear that this expression is not satisfied at the far field condition where
0, =0 and p = p0 . This is easily explained. In the development of

equation (21), we defined 0 as an alternative definition of the velocity potential
(D. In doing so, we essentially set the far field pressure to zero. If p, is to
describe the. actual far field pressure, then we subtract the constant p0 (U2/2)
factor and we obtain the result

(p -p0 ) = -P0 * + U4),) (52)

It turns out the pU2 /2 factor will be inconsequential becaus, we will be
primarily interested in the pressure differences b,'ntween the upper and lower
surface of a wing.

Equation (52) is a very important formula. In Section II, a linear boundary value
formulation for the potential 4 (x, y, z, t) was derived from Euler's equations.
Once the potential function 4 (x, y, z, t) is determined, equation (52) is used to
determine the pressure p (x, y, z, t). Later in this report, it will be useful to have
a formula for the potential given the pressure. The following development1
achieves this formula as equation (73).

We start with equation (52). We temporarily 2 define • = (p0 -Pp)/ "

fl = + U=x (53)

We use the method of characteristics to solve this problem. This method utilizes
a coordinate transformation such that equation (53) becomes an ordinary differ-
ential equation which can be easily integrated. The new coordinates are

1. See the rmenvoe by C.ozm.
2. A wu so used ealtodAte ldy duepmuThis mviaw dfi~dm is ea to be confwd Wi&. O MW a-
paIay Un0tte symq u .
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The LiWearized Pmresure Equation

= (x, 0 (54)

j =1(x, t) (55)

The potential function and the pressure function ve given new designations in

the new coordinate frame. (Do not confuse Ny here with the acceleration

potential of Section XI. No connection is intended.)

*(x (ý, 71), t (ý, 1)) =Vp (ý, ) (56)

St3(X, t) =/ (11) (57)

We ignere the role of the y and z coordinates. It will be seen that they have no

influence on the final solution. By the chain rule, we have from equation (56).

ýt Vz~t = + Vnri, (58)

+ ~xwnrix (59)

Substituting equations (57), (58) and (59) into equation (53), we obtain

P= (',+ W1,1%) + U (Mk + n+l) (60)

Rearranging the terms gives

P = V4(t k + w(i, + Ur1 1) (61)

We are free to choose the relationship between the (i, 'l) coordinates and the

(x, y) coordinates. So we now specify

'(I + Unl) = 0 (62)

This is satisfied if wc. simply choose

11 (x, t) = x- (It (63)

Equation (61) b zcomes

P4 = i(, +U ) (64)

If we specify 4 such that

26



The Linearized Pressure Equatio

X =(65)

we obtain the relationship between pressure and the potential.

Pt3 = U~[ (66)

Thus, equation (61) has been reduced to equation (66). Now we simply integrate
equation (66). The constant of integration is chosen at • = x = -00, the far
upstream condition.

(, = •P (X,) dX (67)

Now we work to cast this expression in the original coordinates. From equations
(63) and (65) we have the inverse relations

X = 4 (68)

t =4-'- (69)
U

We make the change from P to , in equation (67).

S(. =X, , dX (70)

Now

*(x,t) = I(4,t1) -- p(x,x-Ut) (71)

Therefore, by substituting equation (71) into equation (70), we obtain

(x, = t);k[ + Utd A (72)

By replacing = (Po -p) /po and rearranging terms, we obtain the desired
result

27



The inearized Ptm Iquadion

X

tx,t) -0 --- U P-x (73)

In this formula, the reader is reminded that X is the dummy variable of
integration representing integration in the x direction. We dropped the y and z
dependence as a matter of convenience. Adding y and z back to the argument
list of the pressure function p (x, t) =ý p (x, y, z, t) in the integrand will not

change the integral formula. In other words, equation (73) for j (x, y. z, t) is
written as

*(X, y, Zt) f ~! [P[XYP zýt- U}Z -p0 ]d).
-0@

Again, this formula is used if we know p (xy,z, t) and we need the
corresponding function 0 (x, y, z, t). Now X appears twice in the argument list,
once in the x and once in the t place holders of the pressure function
p (x, y, z, t). This has the influence that as we integrate downstream from
x = -*o, we evaluate the pressure at time prior to t. Later in this report, we will
refer to this earlier time in the integrand as retarded time. Therefore, if we know
the pressure for all time prior to time t, we can evaluate the above integral
expression for the potential j (x, y, z, t).
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SECTION IV

Linearized Boundary Conditions from First Principles

The aerodynamic potential equation (42) was formulated in section (H_). It can be
shown that the solution to this partial differential equation is unique given the
appropriate boundary conditions. The boundary condition specifies the potential
or a directional derivative of the potential on all surfaces which define the
computational domain. The directional derivative of the velocity potential is a
component of the velocity vector. So we specify either the potential or a
component of the velocity on the surface of the computational domain.

When the flow over a flight vehicle is addressed, the computational domahi is
defined interiorly by the surface of the flight vehicle and the trailing wake and
exteriorly by the far field conditions. The domain may be nominally fixed with
respect to the vehicle body of interest. Certainly, this is usually the case for most
aerodynamic developments and this has been the case in this text. However, one
may have a reason to attach the frame of reference to the atmosphere and let the
vehicle pass through the reference frame. For this special case, the interior sur-
face of the computational domain moves and therefore, the boundary condition
is applied over a moving surface. Here, we will only address boundary condi-
tions on a surface which is nominally fixed with respect to the frame of refer-
ence.

Vehicle Surface Bouadary Condition

A time variant surface in three space can be described by the equation

F (x, y, z, t) = 0 (74)
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Linearized Boundary Conditions fwz First Principles

Of course, it is unrealistic to formulate a closed form expression for the function

F if the surface is detailed as may be the case for a flight vehicle. However, one

can always formulate the function F for a sufficieatly small patch of the total

surface.

The boundary condition on the vehicle specifies that the flow is tangential to the

surface. In other words, there is no component of flow normal to the surface.

Mathematically, this is described by1

S-7 VF = 0 (75)

This equation can be linearized about any reference shape. We have linearized

the potential equation (33) about an undisturbed uniform flow as described by

equation (39). Thus, the boundary condition will be linearized in kind, about an

undisturbed and uniform flow. As mentioned earlier, this is a severe restriction.

Basically, this limits us to modelling flow disturbances over slender bodies and

thin wings.

Here, we will linearize equation (75) specifically for a thin wing. We denote the

functional description of the surface of the wing as F = FW (x, y, z, t). This

function is now constrained to two uncoupled components, the deformation of

the midplane hm and the thickness envelope h, about the undeformed midplane.

The undeformed midplane is conveniently designated as the z = 0 plane. This

is stated mathematically as

Fw(x,y,z,t) = Z-hm(Xyt) ±ht(x,y,t) = 0 (76)

For the linearized flow about a uniform free stream, U = U2, the aerodynamic
velocity vector is mathematically described as

-= (U+u)7+ (v)`+ (w)k (77)

S1. Kimlohei, PP 191
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Linearized Boundary Conditions from First Principles

For the remainder of this text, we redefine u, v, and w differently than in equa-

tion (7) to represent the small disturbance from the uniform free stream. We sub-

stitute equations (76) and (77) into equation (75) and denote h = hm ± ht*

Ah (U +U) A VAh W = 0 (78)

We desire a linear relation between the velocity components at the surface of the

wing and the function h (x, y, t). So, we make equation (78) linear in h, u, v

and w (keeping in mind that the derivative is a linear operator) by dropping the

non-linear terms. Equation (78) now becomes

W = A + - (79)

It is now clear that the components of (h = hm ± ht) can be treated indepen-

dently in the linearized boundary conditions. This is especially important when

the dynamic response of a wing is considered. Here, we normally assume the

thickness effects are not time dependent.

h (x, y, t) = hm (x, y, t) ± ht (x, y) (80)

STherefore, when analyzing the dynamic response of a wing, we superimpose the

dynamic response due to hm on a separate time invariant solution using h,. This

has an important influence in our choice of the doublet sheet to model the aero-

dynamics for the time dependent flow over the wing midplane and our choice of
source panels to model the aerodynamics for the time invariant component of

flow the wing thickness envelope. The concepts of a doublet sheet and a doublet
lattice will be discussed later.

The Far Field Boundary Condition

The far field boundary condition is enforced at far distances from the interior

boundary where the flow is uniform. It will be clear that the far field condition is

satisfied automatically when one uses a superposition of sources or doublets on

the interior boundary. The influence of sources and doublets dies out at infinite

distances.
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The nrailing Wake Boundary Condition

Steady state lift cannot be sustained where there is no viscosity. However, the

aerodynamic potential equation (42) is restricted to irrotational and therefore

inviscid flow. This contradiction is corrected by fixing the flow circulation about

the airfoil to meet the Kutta condition. The Kutta condition specifies a smooth
and finite flow off the sharp tailing edge of a lifting surface in incompressible

flow. The velocity vector is not allowed to deflect as the flow passes over the
trailing edge. If it does deflect, the velocity becomes locally infinite. This trailing

edge condition and wake are completely characterized for incompressible flow .

Linearized steady compressible flow over planar wings can be transformed to
the incompresible case (using the Prandtl-Glauert transformation) and therefore

the trailing edge condition is well understood. For linearized unsteady compress-

ible flow, the trailing edge condition is not as clearly characterized. For instance,

at high frequency, it is experimentally known that the flow off the trailing edge is

not tangential. This is an important topic and warrents further study2.For linear-

ized flow, we introduce a trailing wake or sheet with the property that the pres-

sure difference across the sheet is zero. This is the only condition imposed on the
wake. We allow a non-tangential flow on the wake. A few of the consequences

of these assumptions are now discussed.

For our linearized boundary value problem, the wing and therefore the trailing

edge are in the z = 0 plane. In time, the mathematical representation of the

wing slices out a plane region as it moves forward through the air at velocity U.

We will treat this planar region as the trailing wake. (We could have a non-planar

wake. However, for our linearized system of equations, the added accuracy is

not warrented.) It is assummed that there is no jump in the non-zero velocity

component, w = •z across the wake. Therefore, 4, is symmetric with respect to
z in its first approximation (eg. Fourier Series) with respect to z . With 4, sym-

metric, it follows that ý, •x and 0, are all antisymmetric with respect to z in the

first approximation. Therefore the pressure

1. See Sections 13-8 through 13-10 of Karaincheti for a discussion of the wake. CMapter 7 discusses flow discontinuity

2. The work by Guderley partially addresses this topic.
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Linearized Boundary Conditions from First Principles

p = Ot + uO (81)

is antisymmetric with respect to z in the vicinity of the wake. Since pressure

jumps are not admissible, it follows from antisymmetry that the pressure is zero

in the plane of the wake.

The trailing wake boundary condition for steady flows requires 0 to be antisym-

metric across the wake. We allow the possibility of an anti-symmetric jump in 4)
across the wake. While continuity in pressure is a requirement, continuity in 4 is
not. We are free to use the wake as a boundary on the domain of the potential

field. Since 4 is antisymmetric and discontinuous across the wake boundary, so

is

Boundary Conditions on an Oscillating and Deforming Wing

For simple wings, it is often expedient torepresent the deformations in terms of

polynomials in space and harmonic in time. Certainly, this is the case for flow

over a plate. We assume a polynomial of order nx in x and nyin y. Frequency is

denote as co and we use complex notation. So we constrain the out-of-plane

deformation to the following series expression:

n n

h (x, y, t) = e(82)

Of course, we really mean to equate h with the real part of the right hand side of

equation (82). We substitute equation (82) into equation (79) to obtain

I'I W-= F + -[X](83)

" J=Ok=O J/=Ok3
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The complex modulus of w is denoted as iv such that w = iieit. From

equation (83) we obtain

ny 1 n .,

iý= i~o Ia ky + : [ Xalk(iCX'Yk +I Uj.k'-yI) j (84)

The main reason for developing equation (84) is to provide an example of the

boundary condition formulation which may be used in the doublet lattice

method. Input for the example doublet lattice program in Appendix A is in this

form.
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SECTION V

Transformation to the Acoustic Potential Equation

In Section Zl, we started with the Euler equations and derived the aerodynamic
potential equation.

(1~ ~~ o ' !:,+ ) U; (85)

We now show the relationship between equation (85) and the classical acoustic
potential equation.

,+y,+4o- (86)

It turns out that the elementary solutions to the acoustic potential equation are
useful in identifying other elementary solutions to the aerodynamic potential
equation. This is taken up in the next section. There are two ways in which one
way obtain equation (86) from equation (85). However, the interpretation
differs.

First, we note that in the derivation of equation (85), we linearized the potential
about a uniform flow with velocity U in the positive x direction. (Or, what is the
same, the body moves in the negative x direction.) If we assume the flow has
zero velocity, then equation (85) takes the form of equation (86) and ) is
identical to ý and so are the coordinate frames.
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However, if we take a second approach, we see that equation (86) can be

obtained from equation (85) by the follow. %g simple translation (also known as

the Gaussian transformation).

xo = x- Ut (87)

yO = y (88)

zo = Z (89)

"t = t (90)

We see that the (xoyoz0 ) frame moves with velocity U7 with respect to the

(x, y, z) frame and is therefore motionless with respect to the undisturbed

atmosphere. Next, we state that the potential in the (x, y, z) frame is the same as

the potential in the (x,, y,, z.) frame. We distinguish between the functional

descriptions with an over-tilde and an under-tilde.

"4 (x, y, z, t) = 0 (xO, Yo, zo, zt) (91)

We use the chain rule and equations (87) through (90) to carry out the

differentiation process. We denote differentiation with subscripts,

$X = 0.s. (x )X = OXO (92)

.r = (xo)f +ýC-tj = -UOX,.+O. (93)

We follow through with less detail for the higher derivatives using both the
product rule and the chain rule for differentiation.

(94)

t, =- u + t.v (95)

"",= 0- 2U.O +_ (96)

Of course, there is no change for derivatives in the lateral directions.
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•yy=Oyo° (97)

= :0o0 (98)

By substituting equations (94) through (98) into equation (85), we obtain

equation (86).

The interpretation of the two approaches is different. The first approach is trivial.

We simply set the velocity to zero. The second approach is a linear transforma-

tion. The aerodynamic potential equation (85) is identically the same as the

acoustic potential equation in a uniformly moving frame.
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SECTION VI

The Elementary Solution to the Acoustic Potential Equation

in the previous section, we showed how the acoustic potential equation (86)
relates to the aerodynamic potential equation. In this section we seek an elemen-
tary solution to the acoustic potential equation. This is given in equation (109).
We introduce the linear Laplace operator V2 and restate the acoustic potential

equation (86) as equation (99). (we drop the tilde underscore.)

a 22 (99)

In equation (99), we have not specified 4 in any particular frame of reference.
We now introduce the use of spherical coordinates where r is the radial measure,

0 is the measure of longitude and I is the measure of latitude.

0 = 4(r, 0, Xt) (100)

The acoustic equation (99) takes the following form' in spherical coordinates.

atL

__•.n1 [sinl• + 1 (101)r 2 -sinX + 2 (si•)

We are looking for an elementary solution to the acoustic potential equation.

This elementary solution may then be used in computing complex solutions by

1. Hildeband, page (.113).
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The Elementay Solution to the Acoustic Potential Equation

the principle of superposition. More importantly, the elementary solution may be

adapted to solve the aerodynamic potential equation (42). We make an educated

guess and look for a solution to equation (101) which is spherically Symmetric.
We temporarily designate this solution with an overbar (not to be confused with

the steady state solution in Section II).

4) = 4(r, t) (102)

A spherically symmetric flow is the same as a pulsating source (or sink) with

radial streamlines. Physically, such a flow injects mass into the field. The

spherically symmetric form of the acoustic equation is

0 a'248r €
7 ar [ r -a] (103)

In order to maintain the undisturbed far field condition, we seek an elementary

solution which dies off as r - co. We choose the lowest order expression.

(r,t) = (r, (104)
r

By substituting equation (104) into equation (103), we obtain the following

hypcrbolic partial differential equation.

ýJ2f 2 ýf=a -- (105)

Hyperbolic equations have characteristic solutions1. The two characteristic solu-

tions to equation (105) are combined.

f(r,:) = f,(r&at) +f,(r-at) (106)

1. aw pWg 399 of HHi~bnnd
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The Elementaiy Solution to the Acoustic Potential Equation

where fi and fe are any analytic function. Usually, the classical acoustic solution

is placed in the following form which is obtained from equation (106) by modi-

fying the form of f and fe.

f (r,t) = giIt+r ,, ](107)

One can easily verify that equation (107) is a solution of equation (105). Now,

substituting equation (107) into equation (104), we obtain the result

gi t+ g] t-a
4 (r, t) - +(08

r r (108)

If we plot ge as a function of time (assuming some initial pulse) we see that ge
represents an expanding wave. Likewise, g, represents an imploding wave. We

choose g, = 0 because the acoustic phenomena of interest here takes the form

of an expanding wave from a central disturbance. We drop the subscript e and

write

•°-- ( , ) - . ](109)
r

The argument (t- r) is called retarded time because it accounts for the delay
a

between the time the radiating disturbance was initiated at r = 0 until the time

it reached the distance r. We may assume that the function g (t) is known.

It is a straightforward matter to verify that equation (109) is a solution to the

acoustic potential equation (86) given in the previous section in terms of carte-
* sian coordinates. First we establish the following relations.

(X +;+z) (110)

X -(111)
r
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The ElementMy Solution to the Acoustic Po2tial Equation

1 x 2

rX=- -r (112)
r r

We now proceed to develop expressions for the derivatives of € = • given in

equation (109).

•_- rl-= [xg t-r - g J (113)

3x2 1_ g r] + [ ar g' t-tr] + 2]g t r] (114)

The derivatives with respect to y and z are derived similarly.

3y _2 12g[t- ]+[3y2 2g'[t-r]+ 2 ]g"[t-f] (115)

2Y r4a 2 a a 2 r
[3z 2_[ 4][tr] +[Lz 2 r ] z [,]g"[t-r] (116)

5--L a', - ar a- r2a a

The derivative with respect to t is directly derived.

it_= lg,,[t_ r] (117)

We substitute equations (114), (115), (116) and (117) into the equation (86) and

we see that it is satisfied. Thus, we have confirmed that = @ is an elementary

solution to the acoustic potential equations.

Now we come to an important point Up until now, we have assumed the point

source is stationary. If the source is moving in time, relative to the point x0 , y0 ,

z,, then the definition of r changes. From equation (110), we now have
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The Elementary Solution to the Acoustic Potential Equation

r- [ (x(t) -Xo) 2+ (y(t) -yO)2 + (z(t) -Zo) 1 (118)

The expression for Ot in equation (117) is not correct for the moving source and
the acoustic equation (86) is no longer satisfied. So we formulate a new
elementary solution which represents a moving source. This is accomplished in
the next section.
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SECTION VII

The Moving Source

In this section, we obtain the elementary formula (145) for the moving source. In
the next section, we transform this solution to the moving frame of reference.
Then one may demonstrate that this formula does indeed satisfy the aerody-

namic potential equation (42).

The following explanation is a review of the derivation provided by Garrick1.
We superimpose a train of stationary sources, all in a line. These sources are
pulsed in a sequence, thus giving the same effect as a single source moving at a
constant speed. One may think of this as a motion picture film of a moving
source derived from a series of photographic frames.

The pulse function 8 (t) is defined to be 0 when t * 0 and to be 1 when t = 0.
We can define the pulse function more eloquently with the following continuous

function.

0 t-

(• 1 0 (119)
a '[jI+cos["']JJ -ýt5

0 t>a

The pulse function has the following effect when placed in the integrand. When

we view the integration process as the limit of a series summation, the pulse

1. Sao p• u671 d tU % by Gatck
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function selects only one value of the integrand and reduces the other series ele-

ments to zero.

f(t) = Jff(r) (t-'r)d-t (120)
-00

Given a set of orthogonal x,, yand z, axes, fixed to the nmospherej place a

series of stationary sources coincident with the x. axis. TIhi! is shown in figure 1.

These six sources shown are located at x0 = , where the index i ranges from

1 i<6.

zo
(x,,, y,, z")

yoo

Figure 1. Acoustic Sources on the xo Axis

All six stationary source, are assumed to act independently. Because the acoustic

potential equation is li~iear, we can superimpose the elementary formula (109)

relating the potential at (xo, y,, zo) due to a source located at xo = A and

Yo = zo = 0.

*(x0 Yy , 0t) 1= (121)
i=1
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The Moving Source

where

2 2 1 , 2)r = (x 0 _• 1)+ (Yo0 + (zo.)2 (122)

If g is the pulse function, then equation (121) represents the potential which
arises due to the six sources which are simultaneously pulsed at t = 0 with unit

strength.

6

(x0 YOyZ0 t) = [][(123)

In equation (123), we see the effect of the retarded time. Even though all six

sources are pulsed simultaneously, the effect at the point (xo, y0, zo) is picked
up (ri/a) later. In other words, six simultaneous pulses are transmitted to the
point (x,, yo, z,) with a different delay.

Now, instead of pulsing simultaneously, we pulse the sources in a sequence,
starting with the sonrce at 4, and ending with the source at 46' Each source is
pulsed with a time delay of t = r, relative to t = 0. Furthermore, rather than a
unit strength, each source is pulsed with strength F1 . Equation (123) now takes
the form

6

4(X"',Y",Z"0, 1 F)8 t-T (124)

Instead of six point sources, we may have many point sources along the xoaxis.
In fact, we may define a continuum of sources as a limiting process as the num-
ber of point sources go to infinity. (While, this argument is not rigorously
defended here, it can be, shown that the desired formula relating the potential
field due to a moving source does satisfy the aerodynamic potential equation.)
The summation process of equation (124) is now treated as an integral
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l e Moving Source

*(xo yO, z,,0 f F (Fr) (t -t)--r tdt (125)
J-Mr (c)i _ a

where r is the dummy variable of integration which one may think of as running

in parallel with time t. The variable r points to some place in time for which a

uniquely tagged point (or differential) source is active. We devise the definition

of r (r) based on r, given in equation (122).

S2 2 2 2 (126)r (x) =(xo-•o(t)) +y 0 +z0  16

F (T) dt is the differential strength of the source pulse which is uniquely identi-

fied by the time delay r. Now, let the sources be pulsed at a uniform rate of -U

along the x axis. Furthermore, we specify when T = 0, there is a pulse at
x = 0. In other words, we specify

( = -UT (127)

and equation (126) becomes
2 2 2 2

r (T) = (xO+U) 2+y2+z2 (128)

We now strive to evaluate the integral equation (125). The resulting formula,
equation (145), is the desired elementary solution for a moving source. In order

"to take direct advantage of the sifting property described by equation (120), we
employ the following change of variable in equation (125) in order to simplify

the process.

-- = t- r (129)
a

Substituting for r (,c) from equation (128), we obtain

-e = + U1) 2 + y2 + Z2 1/2

-(- ) - a) U) 0+ 0)(130)
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The Moving Source

We now modify equation (125)

00

S(x 0,y----f F(t)8(0) [-d dO (131)

In the process of changing the variable of integration from r to (), we require
S. expressions for t (0) and d¶/dO. This task is easier than one may suppose at

first. According to the sifting principle of equation (120), we evaluate the inte-
grand at E) = 0 only. This gives the result

C(xO,YO, Zo, t) = [ ! ]F(,r) [ d o=0e.(12

r (132)

We now evaluate equation (132) for the potential which arises from a moving
source. This is achieved in equation (145) using equations (135) and (143).

From equation (130), obtain the following quadratic in T for E = 0.

2 +Y2+Z)__T+ -[ ( 0  0  0 (133)

where p2 = 1 - M2 and M = U/a is the Mach number. From this quadratic
equation, we expect two solutions for T.

tV [( ¶)1~(X, +U) +I f0 +z 2 (134)
S=~~ ( t) + ýao ± •((o+u)•+•y 2~)/

For subsonic flow (M < 1), we choose to limit r < t which limits equation (134)
Sto one root1. Equation (134) becomes

1. G-lTick Sive in exfteellc explualm fo tlhb&bangk and aim• a ic ••es i , fist P* ad R& ac poe674 and 676 mpectively.
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The Moving Source

.(135)][t Ua ol-j,

where

- + 2 + Y2 + 1/2 (136)SR -- ((xo+U:) 2 +p2 yo +•~ (136

Equation (135) is the expression for r when (9 = 0 and U <a. We now
compute dc/d0 with E = 0. Equation (130) is rarranged, squared and
differentiated to obtain equation (137).

d [a2(2_t_E)2]
A[(x)+Uc) + y+zo] (137)

Carry out the differentiation and then set E = 0.

a2 (T- t) Ld -1 j= (x. + U-) Ud d (138)

Now solve for dr/dO.

2 -d'r a2[a 2 (T-t) - U(XO+ U-V)]-d•- 4 ('r- t) (139)

Next, we obsee from equation (129), for E = 0

r = a(t-,t) (140)

Making the substitution in equation (139) gives

[-ar- U (xo + U%) ] = -ar (141)

dT = a (142)
r To ar + U (xo + U%)
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The Moving Source

Using equations (140) and (135), we substitute for r and r on the right hand side

of equation (142). After some simple algebraic manipulation, we arrive at the

following simple result.

I d 1 (143)

The definition for R was given in equation (136). Finally, we use equation (143)

in equation (132) to obtain

4(X0 ,y0,z0,t) =Li()eo(144)

From equation (135), we have ail expression for -c when E) = 0. We make the

substitution in equation (144).

(XF2.A UY" R. (145)
PkL3K 2 a

where R is defined in equation (136).

This is the fundamental solution for the potential which arises due to a source

moving along the x axis with constant velocity of -UV. In the next section, we

transform the coordinates to a moving frame.
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SECTION VIII

The Elementary Solution to the Aerodynamic Potential Equation

Our objective of the past three sections has been to derive elementary solutions
to the aerodynamic potential equation (42) which may be used to model the flow
over wings and bodies. in Section V, we recognized that the aerodynamic poten-
tial equation is related to the acoustic potential equation by a simple Gaussian
transformation. The coordinates axes of the acoustic potential equation are fixed
to the atmosphere while the coordinate axes of the aerodynatuic potential equa-
tion move with constant velocity -Vi relative to the atmosphere. The elemen-
tary solution to the acoustic potential equation is a stationary point source with a
spafial decay of (1 /r). We used a modified form of this solution (109) to obtain
an elementary solution to the aerodynamic potential equation. Then a complica-
tion arose. We discovered that a simple translation of the stationary source in the
x cbreztion does not satisfy the acoustic potential equation. This mathematical
complication is the result of compressibility (also referred to as the Doppler
effect). Here, we are faced with the apparent compression of pressure wave
fronts travelling upstream and the apparent expansion of pressure wave fronts
travelling downstream. So, through the limiting process of superimposing a
series of source pulses, we simulated a constant velocity source and derived the
formula (145) for the resulting potential.

_ -In this section, we apply a change of coordinates to the moving source solution
(145) in the acoustic frame and thereby obtain the moving source solution (152)
in the original constant velocity frame. This is the desired elementary solution to
the aerodynamic potential equation. One may directly verify that equation (152)
solves the aerodynamic potential equation by direct substitution.
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The Elemenaty Solution to the Aerodynamic Potential Equation

Again, our objective is to mathematically model the flow over wings and bodies.

One approach is to position a continuum of sources on the wing or body surface

in order to disturb the flow and thereby satisfy the tangential flow boundary

condition. This concept of a spatial continuum of sources will be discussed in

the next section.

The moving coordinate frame is fixed relative to the structural geometry and has

a velocity -Ui ,.;lative to the acoustic coordinate frame. Therefore, a source

moving with velocity -Ui in the acoustic frame is now fixed relative to the

moving frame. The potential which arises from a moving source was presented

as equation (145). From equation (127) we know that at t = 0 the single moving

source is located at the origin of the (xoyozo) axes. We may modify the

elementary solution (145) to model the potential * (xoYzo,) due to a single

moving source which maintains a constant distance ( ,, ) relative to the

source located along the x. axis at (40 = -Ut). (We revert to the under-tilde to

denote the potential in the stationary acoustic frame. Furthermore, the functional

notation $ is used to denote the transitional state between the stationary and

moving frames.)

=(xY,:,f,,,t) = [RIF[a R (146)

and from equation (136)

--R = ((xo+Ut- ) 2 +p2(yo-Q)2+p2(Zo- •) 12) (147)

Now we use equations (87) through (91) to change from the fixed (xo,,y )

coordinates to the moving (x, y, z) coordinates.

• (X'y1 z, ,Tit ) = F) 1 ta a
•" a

and
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The Elementary Solution to the Aerodynamic Potential Equation

R' = ((x-•)2 +[•2 (y-fl) 2 +[32 (zL)2 1 (149-x I+p Y l( / (149)

We make algebraic simplifications to equation (148) to obtain the following

equation.

S(Xo YO, ZO, ,1•, t) = [.k]FRtF I (+ (.. 1 (150)

As a final step, we give c a new definition, not related to the dummy variable

used in the previous section. Here, r is the retarded variable and it represents the

thne delay incurred for a puise to transit from its origin at (l, il, l) to the point

(x, y, z).

-M(x-•) +R \3 (151)

af2

The form of equation (150) is simplified.

"OS (x' Y' Z' l'' 't) 1 ]F F[t -] (152)

The subscript s is added to denote the source solution. Later a subscript d will

denote the doublet solution. In the derivation of equations (152), (151) and (149)

we closely followed the approach taken by Garrick. This is the fundamental

moving point source solution to the aerodynamic potential equation. Thus, our

interim objective has been achieved. Higher order solutions can (and will) be

formulated by differentiating equation (152) with respect to x, y or z.

It can be shown by direct substitution that equation (152) solves the aerody-

namic potential equation.
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SECTIONIX

The Source Sheet

/

In the previous section, we showed that the fundamental source solution to the
aerodynamic potential equation

~~~~( l_M,)•x +F,+;-2U

ýY ---2 - =0 (154)

is given by the following simple formula.

(X,= [0]F [t-] (155)

This is the formula for the potential at coordinates (x, y, z) due to a single point
source at coordinates (ý, il, t). The boundary condition for the flow over a thin
wing was given in equation (79).

w =h + U(156)

where h (x, v, t) describes the time dependent deformation of a thin wing in
the (x, y) plane. The obvious question remains; how do we use equation (155)
to solve for the flow over a wing? The aiswer is not simple and is the subject of
the remainder of this text. We still need to formulate the source doublet in
Section X and then we formulate the pressute doublet in Section MI. We use the
concept of the doublet sheet to develop the integral formula in Section XIL In
this section, we ace introduced to the concept of a source sheet. While we will
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not use the resulting formulae for a source sheet, the concept is directly

applicable to a doublet sheet.

If we restrict our problem to the flow over a steady wing with no deflection (i.e.

only the wing thickness is a consideration), the boundary condition equation

(156) simplifies to

ý - •(157)

Equation (155), for the elementary point source solution with temporally con-

stant strength A, simplifies to

SA
_ [, Z4] (158)

Where A is the unknown strength of the source at the coordinates (4, si, •). In

order to satisfy this boundary condition, we may superimpose n point sources

located at (x, y, z) = (4j, 7i1, 0). We satisfy the boundary condition on the

wing surface1 at n points located at (xp, y, zj) . The thickness envelope is sym-

metric above and below the (x, y) plane so it is sufficient to satisfy the bound-

ary condition on the top surface only. We differentiate equation (158) with
respect to z and substitute the result into equation (157) for each static point

source.

a F A(41,1 j)(159)

So we have a system of n equations and n unknowns which can be solved with

linear algebra. One expects the accuracy of the solution to increase as the

number of point sources and control points is increased. We can reformulate

equation (159) as an integral if we consider the source in a limiting process.

1. By swi8ying the bouwAsy conditon on the wins turface, we arm incontitent with ouw asumed hn.azization ad the wing
midplwe. Houvver, we expts the bmuuvy condidan on the win8 vuface tobe mome accurue thm the vidpian. Beides,
VX avoid problems with 6ingdaiti6CL
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U.9T f~[ @ l)]dS (160)

Here, we have discretized the (x, y) plane into differential areas of size dS and

located at x = • and y = il. Each differential area has a source strength of

AdS. Again, the steady function h is evaluated at (x, y). The radial measure R

is now defined as

- - +132 2 1 (z21/2J
R = (Yn) +P(Z)2 (161)

If one is given the value of h (x, y) at m points, equation (160) can be approxi-

mately solved for the unknown function A (ý, ir) if A (4, il) is defined in terms

of m approximating components with constant coefficients. For instance, we

may form a composite function, A (ý, '1) by superimposing m polynomials in ý

and ri, each polynomial weighted by a constant (but not yet specified) quantitiy.

We integrate equation (160) for each polynomial. This results in a linear system

of m equations with m unspecified constants. Alternatively, we may spatially

discretize the wing planform and approximate A (4,,1) with a continuous spline

function with m unspecified coefficients. Again, equation (160) is integrated to

obtain a linear system of m equations with m unknown coefficients. We may

think of this aerodynamic model as a linear system with m independent inputs

(h (x, y) at m points on the surface) and m dependent outputs (m polynomial

constants). Once the approxinating solution for A (ý, il) is obtained, the poten-

tial is determined using equation (158). Then we use the time invariant term of

equation (52) to solve for the pressure.

e (x, y) = -PU[•- (162)

Thus, one example of how one may use the elementary point source solution to

obtain a continuous solution has been given. Keep in mind that we are solving

the small disturbance problem and that the solution breaks down at stagnation
conditions.
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It turns out, that a single source sheet cannot generate a pressure difference

across the (x, y) plane. Therefore, no lift can be generated. Mathematically, this
is seen when one recognizes the symmetry of the potential above and below the

(x, y) plane. For this reason, we investigate the source doublet in the next sec-

tion.
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SECTION X

The Source Doublet

In Section IV, the tangential flow boundary condition over a thin wing was
separated into two linear components, wing thickness and wing deformation.
Thus, we can treat the linear boundary value problem for a thin wing as two

separate problems, the potential which arises due to the thickness envelope and
the potential which arises with the deformation of the wing midplane. The total
solution is the superposition of the two component solutions.

In the analysis of most linear systems, one considers the steady state condition
and then superimposes the time dependent response. The steady state solution

for a wing is a superposition of the pressure due to thickness and the pressure
due to steady deformation of the midplane. The time dependent response is asso-
ciated with the time dependent deformations of the wing midplane alone. This is
an important consideration because we can mathematically model the flow over
a deforming wing with an infinitely thin sheet.

In the previous section, we demonstrated a solution technique using a source
sheet. However, it was pointed out that due to the symmetric nature of the source
sheet (with respect to the (x, y) plane), it was not possible to develop a pressure
differential. Therefore no lift can be generated with a single source sheet.
However. it is possible to develop a pressure difference if two source sheets are
placed in parallel. This can cause numerical problems if the two sheets are
brought close together. This is not to say this has not been done. On the contrary,
there are many examples where this is exactly what is done. However, for our
linear analysis, this results in a waste of computational resources. Instead, we
can formulate the limiting condition as two source sheets with opposing
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strengths are brought close together. This is the source doublet sheet. in this

Section, we describe the elementary point doublet formula.

Given the linear aerodynamic potential equation

=ui' 10it (163)

and the fundamental source solution of equation (152).

Os1= ikf(t - T) (164)

we show that the elementary solution

d= (•s() (165)

is also a solution. We substitute equation (165) into equation (163) to obtain

pa+ + -0

(166)

Next, the order of differentiation is changed

%)x + (0$), + (0) 2 0 (167)

The term in the square brackets is known to be zero from equation (163). Equa-

tion (167) reduces to

a
2o] = o (168)

62



The Source Doublet

Thus, we have shown that equation (165) is also a solution to the aerodynamic
potential equation. We call this the source doublet or just the doublet solution. In
order to give some physical significance, we investigate the source doublet for
the steady incompressible case (set M = 0). Here we have the point source
solution for a source of unit strength located at the origin. The potential is

1

1 (169)

with

2 2 y2 2 (170)r =x +y+z(10

According to equation (165), the potential which arises from a point doublet
solution can be obtained by differentiation of the source solution with respect to
Z.

d -Z (171)

Now, we take a second approach to arrive at equation (171). We bring two
sources together from above and below the z = 0 plane as shown in figure (2).
The strength of the sources are opposite and inversely proportional to the dis-
tance between them. Using equation (169) we obtain the combined potential

" M= li[2 -- J (172)

Equation (170) is modified for each source as follows.

2 2 2r,= x +y + (z+0) (173)

22 2 2

r2 +y2 + (z-{) (174)

We temporarily assume z# •0. We can see that as -4 0, we have a zero in the
numerator and a zero in the denominator.
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z

x

Figure 2. A Source Dipole

*d-h r r1 2J 0 (170

We use L'Hopital's Rule.

=d 0i L (176)

L_ _ _ ( z -ý )

r (177)
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- I + - r - (178)r1 2rC :;2 rlr2

We now take the limit as -40 to obtain equation (179). Furthermore, we now
allow z to go to zero. We see that equation (179) agrees with equation (171).

-= (179)

So a source doublet is the limit as a source and sink (source with negative
strength) are brought together with strengths inversely proportional to the dis-
tance between them. The same result is obtained by differentiation in equation
(171).

In the same manner in which a source sheet was constructed by placing a point
source in each differential area of a sheet, we can construct a doublet sheet by
placing a point doublet solution in each differential area with the above doublet
solution. However, there were restrictions placed on the above point doublet for-

mula. It is limited to steady incompressible flow. In this report, doublets will be
formulated for unsteady compressible flow.

For a point source, the potential which arises at any other point is proportional to
1 /r. Therefore, the potential field for a source solution is symmetric with
respect to any plane passing through the point r = 0, including the (x, y)
plane. It follows that the potential field arising from a source sheet in the (x, y)
plane is symmetric with respect to the (x, y) plane. If the potential immediately
above and below the (x, y) plane is identical, then it follows from equation (52)
that the pressure immediately above and below the wing will be identical. There-
fore, a single source sheet cannot generate a pressure difference.

For a point doublet, the potential is proportional to -:/r 3 and it follows that the
potential field for a doublet sheet is antisymmetric with respect to the (x, y)
plane. Since the potential is antisymmeuic, we know from equation (52) that the
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pressure above and below the (x, y) plane must also be antisymmetric. So, in

contrast to the source sheet, we can develop a pressure difference with a single

doublet sheet. This is a fundamentally simple but important concept.
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SECTION M

The Acceleration Potential

Up to this point, we have been using the velocity potential 4) as the unknown
variable in our linear aerodynamic system1 .The input to our linear system is the

wing deformation h. The output of our linear system is pressure p. However, our
solution technique solves for the velocity potential first and pressure is computed

later in a second step. In this section, we avoid the intermediate step of solving

for the velocity potential and solve for pressure directly with the introduction of
the pressure potential and subsequently the acceleration potential2 V.

We start with the aerodynamic potential equation (42).

a2 02 (180)

Next, we differentiate with respect to t and then x to form the following equa-

tions

+,)- 0 (181)

(4) + ) + (4) ,- [2U]()-[ ()=o 0 (182)

We multiply equation (181) by po and equation (182) by p0 U and add them

together to obtain equation (183).

I. Sce WilMme, Gu and l.,ee fW Lm a f oer-ia ftt zw flatikom for the poaaia) whi• ,iach w a &v bW mhm
2. w wmay also be described us a petaut doubkt To be toisusm withA qatia (169), ux acshold u •m ft qmW ,Pto d-.

.ib. a pmfa d"elt Ha okevm we aiA c4a with Wvitan ad Antwe ,ad u••V.
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Tb. Acludo Po2ual

2]Oi Ux)- [~P"(* + Uiy = 0 (183)
a2a 2t

We recognize the following form of equation (52) within equation (183).

P = -Po + (184)

After making the substitution in equation (183), we arrive at the pressure poten-
tial equation

2 = 0 (185)[•2~P. +Py, + P.-_ [ -•'•_2 , ý •jp,=(1)

Now the variable p seems to be doubly defined as both the pressure and the pres-
sure potential. They mean the same thing. The form of equation (185) is mathe-
matically identical to the form of the werodynamnic potential equation (180).
Only the physical interpretation is different. Therefore, the elementary solutions
to the aerodynamic potential equation (180) are also elementary solutions to the
pressure potential equation (185). The elementary pressure source equation fol-
lows from the elementary potential source equation (152).

p$ ((186)

-M (x- +P (187)
W

R (x - )+ •(y -q), + 4-• I8
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The Acceleration Potential

We now restrict ourselves to harmonics in time. In other words, variable time

dependency is replaced by a dependence on a constant frequency. By restricting

the problem to constant frequencies (o, we obtain great computational savings.

The computational cost of solving the aerodynamic flow over a body or wing in

the time domain is great in comparison. So equation (186) for a pressure source

p. with strength A takes the complex form pse

rA ' [ A e-'ZPs = [I exp(ico(t -) ) L - exp(iot) =/ 5se"O' (189)

Now we use the formula (187) for retarded time t in equation (189). For the

modulus P. on the right side of equation (189)

A -io• A Fio1
p•(xyz) = =..eexp -(M (x-I)-R)i (190)

R R Lafý2

Now p, is a symmetric function with respect to the z = • plane. This means that
we cannot use equation (190) to model a pressure difference across a planar

wing. We seek a formula for a pressure doublet. As with the source doublet, we

differentiate equation (189) with respect to : to obtain the definition for the pres-

sure doublet which will be called the acceleration potential x here. We divided

by p0 in order to simplify the subsequent formulae and to bring these formulae
in line with the original derivations1.

= I I*(x,y,:)e (191)

where the modulus of it is the differentiation of equation (190) with respect to z.

V= (X [, Z O expL-ai(M(x-•)-R) (192)

1, See L• V. •Anms andl Hi. Tr. iv6
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Now N = io)t is an elementary solution to equation (185) and p = Vis the

pressure which arises with the acceleration potential. Some useful relations are

"now derived, We define the non-dimensional pressure coefficient CY and inme-

diately specialize it to the acceleration potential.

S2p _ 2__V (193)
SPOU2 UM

Next, we investigate the relationship between the velocity potential and the

acceleration potential. This is important in deriving the bound ay conditions for

the pressure potential boundary valtie problem. We denote te harmonically

oscillating potential as

"4(x,y,z,t) = 4(x,y,z)e"'3  (194)

The overvar indicates the complex modulus. The overbar here does not indicate

the steady state condition as used in Section II. From 4f = P and equation

(184), we obtain1  PO

(x, y, z, t) = - + U (195)

Carrying out the operations

iji (x, y, Z) = -U4k (x, y, z) -io (x, y, z) (196)

We arrive at tie inverse relation to equation (196) by using p = F O01 e1  in

equation (73). 0

x
-! -iF x exF• •

((x,y,z) = - e]f exp i -- jiv (X, y, z)dA (197)

1. Here, we can oew how the term "acceleration potential" arises. It is the total derivative of the velocity pontial. The total
derivative is a deuivative with respect to time rlative to a steady translating fnmne of reference. The octer of dlfferentiation is
optional. Therefore, the acceleration field is related to the acceleration potential by the gradient.
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SECTION XII

The Integral Formula

In the previous section, we identified the elementary solutions to equation (185).
We derived the following elementary pressure doublet expression (192), other-

wise known as the acceleration ential.

4 1(x,y,z) = (A) z[exp i(M(x-•)-R) (198)

where A = A (o) is the amplitude of the oscillations at any given frequency.
Also, we have

R; (x-)+ (y-=P) 2+1/ (199)

Equation (198) gives the pressure field which arises from a single pressure
doublet. In this section, we extend the single pressure doublet to a doublet sheet.
As indicated in Section X for the source doublet (velocity potential), the
pressure doublet sheet is also suitable for modelling the pressure difference
between the upper and lower surfaces of a thin wing. Our goal in this section is
to develop the integral equation' (224) which describes the upwash generated by
a pressure doublet sheet. (For our aerodynamic problem of flow over a wing, the
upwash iv is a known function. In later sections of this report, we will see how to

carry out the integral of equation (224) with unknown pressure Ap.) First we

I. L, V. Andos And R T. Vivian. pp 1-20.
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"The Intega Formula

develop the relationship between the amplitude A and the pressure difference

AP across a pressure doublet sheet. This is given in equation (215).

The first step is to carry out the derivative with respect to z in equation (198). As

a preliminary step we evaluate the following.

a k =P (Z(200)
az- R

.-- ,a'---1 _2(z-)

- I )R= 3 (201)

Now, we carry through with the derivative in equation (198).

I - I [ ]x iia I
V (x,y,z) = AP'2(z-•) --1 exp W (M(x-- R (202)

This is the formula for a single pressure doublet. This formula describes the

pressure y at coordinates (x, y, z) due to a pressure doublet at coordinates

(ý, rl, ý) . We now consider a continuum of doublets in the (ý, rl, ý = 0) plane.

Each differential area dS is given a doublet strength of AdS. While the choice of

differential partitioning is really somewhat arbitrary, we will indicate a differen-

tial area as a rectangle of area dS = d~dl for the time being.

V(X' Y'Z) = p2zfA (ý -q) [ 2 exp [-i'(M (x- t) -R) ]d~dq (203)

The next task is to detemine what value Vi takes as we approach the surface.

That is, we evaluate

1iP(x, Y, Z) (204)

The presence of the k3 and k 2 temis in the denominator of equation (203)

makes the integrand singular to order 0-3 and 0-2 when z = 0 and when the
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-The Integral Formula

coordinates (x, y) lie within the domain of S. This can be treated in the follow-

ing manner.

Construct a small circle with radius p0 around the point (x, y, z = 0) in the

plane of the wing. First, we integrate over the region outside of the circle and

clearly, in the limit as z - 0, the contribution to 4f goes to zero. Only the

portion of the doublet surface within the radius p0 contributes to 4f. Now, we

change coordinates such that

(x-•) = pcos(0)

(y -l) psin (0)

d~dri = pdpdO

For p and z sufficiently small, we can assume

exp (M(x -- ) - rln (cosE +isine) = 1 (205)
p-40

Furthermore, we make z/R 3  significantly bigger than z/R 2  by choosinig
p0 and z to be small. Finally, we assume A (4, fl) is constant within ou sma& l

circle. So we evaluate 2

lim ii(x,y,:) = m lA 2I -Ozp dpdO (206):4 f" f ( P22 )J 3/2-_- ~0 0 P 12z

linO(X, =, Z)=( f 22pz3 dp (207)
0 A L 2 z2+7P2) 3
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The Integral Formula

Po -p

lir nio(x,y,z) = limr (2nrA) 22( 2  dp (208)- 0*z -O 0 ~ 1 +

We now employ the substitution p = Pzo.

P0

lim•(i(xy,z) = lim (2inA) (1+ p2)3/2 do (209)

0p
: -4 0 0
ft. lm~(x,'yz) = l-0im (2 nA) (02 + 1) -1/21=0 (210)

We: en with th1ipereutta0an=proce h oultsetfoth
We end with the simple result that as one approaches the doublet sheet from the

top side that the acceleration potential

I"imnn°(xy,z) =-2iA (211)

We get a similar result for the case where the doublet sheet is approached from

the opposite side.

urnim T (x, y, z) = 2xA (212)

-:- -0

The jump in ij across the doublet sheet, going from top to bottom is

AiV (x, y) = 4inA (213)

We recall that the relation between the acceleration potential and pressure is pro-

portional to the density, such that p = W/p. So we see from equation (213), the

pressure jump modulus across the doublet sheet is simply
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The Intgral Formula

A/ (x, y) = 4rpA (214)

Our convention is such that positive Afi results in positive lift with negative

pressure on the positive z side of the wing and positive pressure on the negative

z side of the wing. So we have the following expression for A in terms of A!i.

A- AP- (215)

* 4ntp

We make the substitution into equation (203) and obtain the following result.

iV(x,y, z) =

P2 z
.• A(4,1)• TO exp[• (M (x-• - Rk) ] d~d (216)

We desire an explicitly linear relationship between the pressure jump across a

doublet sheet and the linear boundary condition, which is the normal component

of flow. Our attention was diverted in order to obtain equation (215). We will use

this relation later in our effort to obtain the final integral formula. So we reorient

our attention and begin our development of this formulation with equation (197)
of the last section. For a single oscillating doublet located at x = we have an

oscillating potential of

((x,y,z) =-U exp- U exp[I° -T] (xy,z)dA (217)

We substitute for iý with the expression found in equation (198).

((x,y,z) = -exp U x

-exp exp (L (X- ) -• ')dk (218)

We can move the derivative with respect to z from under the integral and we can

combine exponential terms. Equation (218) becomes
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The Itegral Formula

4(--Az = i)(-• uM

-- •---I exp f / exp i~o +aa- a -
U z .00 V A (219)

The z component of velocity is related to the velocity potential as

- a-
S(x, y, z) = a- (220)

Thus, we compute W- (x, y, z) from equation (219).

,(x, y,z) =

_A] a2 _ _-io(x-__) x e Mx A (221)
-U -z2 e L ue i -+a2 d, (

We now consider a continuous sheet of doublets in the identical sense as was

introduced in equation (203). Then substitute for A using equation (215).

I~~ R-1 .xM
= . exp io) (A+ a -2d d~ddl (222)

This expression can be condensed slightly1 . Again, equation (223) is the formula

for the upwash iv generated by a harmonically oscillating doublet sheet in the
z = 0 plane.

I. Tlheby Ipuni equazi• (M22) in the Ieoac fam as in the xmtite of Andow Ld Mlviw.
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The Inmgral Fomula

i,(x,y,z) = - (Aý)exp U

-- (X - MR) d(223)
p,[Xf exp[P2  ](223)r

We choose to abbreviate this equation as follows.

iý(x, y,z) = [ 4 U]JfAýK( (x- ), (y-rq) , z)ddil (224)

where

-icOXo a2X o
K (xo, yo, zo) = exp(- )-az2 exp (X -MR) A (225)

and we essentially repeat equation (199).

R =) (226)

K (xo, yo, zo) is known as the Kernel function and is the topic of the next sec-
tion.

For the purpose of this report, we have restricted ourselves to a single planar
wing. As such, we may be tempted to immediately take the limit as z -4 0 in

equation (224). However, we still need to evaluate the derivatives with respect to
z in equation (225).
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SECTION XHI

The Kernel Function

In the last section, we derived the integral equation (224) which relates the mod-
ulus of the unknown pressure difference Ap (x, y) to the modulus of the z com-
ponent of flow w (x, y, z). We know the z component of flow at the wing
surface (boundary condition) where z = 0. This will manifest singular behavior
which will be addressed in the following section. In this section, we evaluate the
Kemal function.

K (xt yo, z) = p fIexp i(I -MR) l] l (227)

The objective of this section is to carry out the differentiation with respect to z in
equation (227). The resulting formula is given in equation (257). We isolate the
integral expression in equation (227) and label it as 4o.

K (x,,, y,, zo) = exp [Lt°] ]2 [1 (228)

I o f f exp (X(•-MR) ]d (229)

We define two new variables r, and k, which will be used throughout the
remainder of this section.
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Q- +Z0 ) (230)
mr1

k - -U- (231)

This results in the following formula for)4

R= (12+o 2 rZ) (232)

In the evaluation of equation (229), we use a variable substitution. Let

V-- = x(233)

VI

I0= 7-2 +1 it exp[(')(vk1-Mk,(v 2 +l)")]dv (234)

where

VI VU k (235)

Now use another variable substitution. We define a new vr.siable u.

U = -v-M(I + VI)(236)

We obtain from equation (234)

S- exp(-ikau) d u (237)(I+ u2)•

where
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S-xo+MK 1• Kernel I~mctioa

U1 = -xO+MR (238)
rip 2

Equation (237) is used in conjunction with equation (228). In the course of eval-
*uating the derivative of equation (228), we use the chain rule

a -r -(239)

and we obtain

K(x, yo, z.) = exp (~ -)I 0 0 r (20

This can be put in a convenient form proposed by Landahl1. We will eventually
restrict our formula to modelling the flow over planar surfaces in the (x, y)
plane. Landahl's equation represents a more general case for any planar surface
parallel to the x axis. We follow his development and then leA zo go to zero.
Equation (240) is equivalent to the following equation (241).

K (xO, yoz) = e L +L0 IL ar (241)

Again, the expression for 10 is given in equation (237). Now we use Landahl's
approach and make the following substitution of variable in equation (237).

t = ur, (242)

eP[ -iw.tI
2e 2 J dt (243)*,,(r 1 +: )

L Sm the maid by I adahl
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where

t- = ulr= - (MR-xo) (244)

In order to evaluate the derivatives of Io in equation (241), we use Leibnitz's
Rule1 and equation (243).

a got (exp[ -hog ii , at
~ (10) f ar •2 -- • d . .... (245)

S1

Consider equation (245). From equations (232) and (244) we have

at ]=J L NJ ] =Ty[2r r (246)

Noxt, we carry out the derivative in the integrand and equation (245) bwomes

,,t (r) 1+C) k ( )q )

Next, change the vanable of integrt'o back froni t to asu sin quation (242).
QUaon (247) beo24r-Ii f [ exp-i - 1 ) AMFx(ii 1 24

~~j~lo) 1'30uL j

Next, we evaluate the rest of equation (241). Starting with equation (247),

1. Sa "e 4om as p. 14 d this an
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f1c Keiwl Funcdon

F l- r, T 2)3 /2 R2 1/2

Lý ti (Tr+I + J1

Due to the complexity of the formulation, we partition the right hand side of
equation (249).

a ]=H1 +H2  (250)

H, and H2 are defined in equations (251) and (254).

eo ," -io)t 1
H( U Jdt (25)

f i+ ?)3Y/2(21

Now, use Leibaitz's rule in equation (25 1).

~'f 3r1 expF-i L 
-Pi al 22H, (+ + ?) Jdt + " --- (252)I

We get the folowng rtsult using the relationship between t to u in equation

(2,42).

exp (-i, U) p(-ik, u)

H, = (4) (E---i)du+.,) (253)
(1+u) J rlI( 3

Next, we evaluate H, in equation (250).

83



[ M e. tp -iU tl

H2 =(254) r "+"-)

We carry out the differentiation operation.

, l exp (-)

2 __ _fJ U 1+
212

L (r 2 +t 2)32L

; " ( ýf ) J [ ®R 325
Now uso equation (246) in equation (255). After m tasic aWgebraic operatio• s

the following result is obtained.

~~1e (ik)1/

(\~( + \1F______ (Z56)

(1+i4) 3/2
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The Kernel Function

We now have an algebraic expression for the Kernel function given in equation

(241) using equations (248) and (250). Equation (253) and (256) are used in

place of equation (250). It is left to the reader to consolidate these equations. The

operation is simple; it is not practical to display such a lengthy formula in this

text. This completes our differentiation with respect to z in equation (227).

Landahl has provided a compact form of our lengthy formula. At this point, we

switch over to Landahl's t notation in order to follow his work closely. We will

use the expanded terms following equation (241). Equation (241) can be placed

in the form
i V~IOX. [Ki Ti + K2T2]

K (xo, y,, z,) = exp F * -0 r2 (257)

where the terms are directly relatable to the two terms of equation (241).

K 1 = r, •- j (258)

K = r~[ (259)
2 1 1l

In our development, we have limited ourselves to a doublet sheet in the (x, y)
plane. The formula given by Landahl is more general, representing any doublet

sheet which is paral,,l to the x axis. We make the appropriate modification tc the

expressions for T1 and T2 by setting y(s) = 0 and '(a) = 0. Thus T1 and T2

become

T1 = 1 (260)

1. Take imet that in the report by LandahL, there is an eror in the K2 tem., This is clear when compared to equation (241) in
thi. odtion.
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lh Ken Function

2

T2 =[5O] (261)Lr,

We use equation (248) in Landahl's expression for K1 and we use equation (250)
in his expression for K2. We obtain Landahi's resulting' formula for K, and K2.

KI= -I-F Mr[i exp(-iklU1 ) (2U)

K 1 ~ ~ 2L i21/2(2)
L (I + u)2

rk M22r 1 x -k,K2=312 + k2 I (+u 2) 1/2 +

where

(exp ( -iklud) +
-2 2 2 3/2

U1'

and

(exp (-ik,)u)26

12 f +UP 2 i) )/2du (264)

U1

.Differentiation with respect to z within the kernel function equation (227) is

complete. The resulting equation for the kernel function is given by equation

1. The diMcmnme in he ims sipn bvwea this nimsk and Lmndahs' remit is e•cwow foc in the minux s• addd W -qu-
tion (224).
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The Kernel Function

(257). We might feel free to take the limit as z goes to zero for our planar wing.
In equation (257) it turns out that, because of the singular nature at z = 0, this is
not entirely recommended. However, we note that

. ~Zo.-+O 2,

except when y, = 0 in which case

limr
Zo +o T2 = 1.

We also note that K2 is finite everywhere. When K2T2 is added to KT, in equa-
tion (257) and K is integrated in equation (224), the contribution of K2T2 is zero
when zo is zero. Therefore, for a planar wing, we can immediately state,

lima K (xo, y,, zo) = (I2')exp (266)
zo 0 r I U I

Equation (264) for I,, can be modified for improved computation. We assume1

u1 >0.

I exp (-ikiu) du ~[exp(-ik du]F(du71

(1+u 2) 3/2 L (1 +u 2) 3/2 (267)

Integrate by parts to obtain

I, (=[ex(ikiU) 21+u))/2 +

00

ikl 2ep-kud (268)
U1 (1 +U2))

1. Un equadoe (275) for uI <0.
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Evaluate the term in square brackets.

I= exp (-ikloo) - exp (-iklu,) U11/2 +

ikJ' ( 1 / Jexp (-iku) du (269)

U1 (+ +u)

The term exp (-ikoo) is somewhat meaningless. We fold this back in the inte-
gral

11 = -exp (-iku1 ) U1 + e+-iku +

ikjf 1 + ul )exp (-iklu) du (270)
1(1 +U2 )1 ,2

This can be abbreviated as follows.

= exp.(-iku 1) [i- ( 1  1 + (-iklJ,) (271)(1+ uI)

where

J = exp(ik u 1) fI- U 1/ 2 exp(-iku) du (272)

UtL (+U) J
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The Kemel Amtion

Laschkal provides the following accurate approximation for u Ž 0

1- ne-c (273)

where c=0.372 and the a. are given in the following table

n an

1 +0.24186198

2 -2.7918027
3 +24.991079

4 -111.59196

5 +271.43549

6 -305.75288

7 -41.183630

8 +545.98537

9 -644.78155

10 +328.72755

11 -64.279511

Substitute equation (273) into equation (272) to obtain an approximate expres-
sion for J1

J, 2 2.. k'-_ (nc - ikl) (274)
n=I In I kl

We use equation (274) in equation (271) to obtain a formula for I,. This formula
is valid only for u1 > 0. We see that the integrand of I in equation (264) is sym-

1. S aUspointowouOby Gianmgb.Le onpW 55 of Pait 1 W L
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The Kpnl( Function

metric. For u, < 0 we can take advantage of the symmetry of the integrand and

still use the algorithm of equation (274). We evaluate the real and imaginary

components separately. For u, < 0:

I, (up, k1) = 2Re [1, (0, k1) -Re [I, (-ul, k1)] + fim [I, (-u,, k1) ] (275)
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SECTION XIV

The Doublet Lattice Method

There is no precise definition of the doublet lattice method and the associated

formulae. Basically, this Section restricts the approach' of Giesing et. al. to

planar wings. In addition, we deviate in the treatment of the sweep angle. This

deviation will be identified.

For a wing in the z = 0 plane, we have the following integral formula from

equation (224).

w (x, y, O) = 4lnu UffApK ( (x - 4) , (y -'q) , 0) d~drI (276)

S

with the following supplementary formulae from equations (266), (262), (264),

(231) and (238). Here, we have substituted E for z to emphasize the limitation

process.

K(x,, y. 0) = (277)

e"*O[•o I+U

K, = -I- MY° 1 exp (-ikul) (278)

2+ 2yo) 1/2 (1+ 2 1/2

1. Set Gieing, Kalman and Rodde.
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The Doublet Latice Method

I, expelu)---(-iklu) du(29

1=f (jdu (279)

k, CYU (280)

2(x + P2Y2) 1/2

SMxO 0+3 2  0 (281)
IY'OIfV

The Kernel function in equation (277) is 0-2 singular as y goes to zero. This

requires special consideration as one integrates equation (276). This singularity
occurs when the y and il coordinates are the same. Furthermore K, is singular

when x0 and y, are both zero. This occurs when (x, y) is coincident with
(ý, ii). Finally, as uI ranges from --w to +m, we must give special consider-

ation to equation (279). The following question remains. Can we evaluate the
integral equation (276) with these mathematical difficulties. All these difficulties
can be overcome analytically if one uses approximating functions. In this ana-
lytic approach, one appeals to principle values1. The principle values procedure

requires the limit ase -- 0 be taken as the absolutely final step. If one is ever in
doubt about this procedure, it may prove reassuring to evaluate the integrand for

several cases and plot the value as the integrand approaches the limiting singu-
larity.

The doublet lattice method is an empirical device which simplifies the integra-
tion of this singularity. But primarily, the advantage gained by the doublet lattice

method is the relative simplicity in the resulting computer program, especially
for complex configurations. There are other methods which are not as simple to
implement. On the other hand, there is a simpler method called the doublet point

method2. With the doublet lattice method, the continuous pressure doublet sheet

1. setM&4"~9
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TIe Doublet Lattice Method

in equation (276) is replaced by a set of pressure doublet lines with finite length.

In figure 3 we picture the pattern of nine doublet lines for a rectangular wing.

Each line is contained in its own box. The simplicity is that all boxes are treated

identically, regardless of its proximity to the wing boundary (i.e. leading edge,

trailing edge or wing tip). Other methods, based on a continuous doublet distri-

bution require special square root singularities in the pressure distribution near

the wing boundaries.

-y

0 0

0 0 0

x

Figure 3. A Rectangular Lattice

The doublet line is placed at the quarter chord of each box. (To call this a "dou-

blet lattice" is really a misnomer. If one views the doublet line segments alone,

no lattice is formed. The name "doublet lattice" arises from the correctly named
"44"vortex lattice" methods1 applicable to unsteady incompressible or steady com-

pressible flow over planar wings.) The upwash w (x, y, 0) is evaluated at the 3/4

chord midspan of each box. The empirical nature of the doublet lattice method

2. See Ued and Dowall
I. SeJames
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The Doublet Lattice Metbod

arises in the choice of the 3/4 chord and 1/4 chord. By no means is there any

mathematical proof that this is the correct location. As a matter of fact, for non

rectangular wings with swept and tapered boxes, the programmer is left to his
own devices1 to invent meaningful 1/4 chords ar•d 3/4 chords. However, in

defense of the doublet lattice method, this level of empiricism is probably con-
sistent with the level of approximation employed in formulating the linear aero-

dynamic potential equation (42). One must be on guard and realize that the flow

field generated by this lattice of doublets will not be smooth, especially near the

wing surface. What is important is that the upwash at the 3/4 chord is approxi-

mately the same whether one has a constant strength doublet line at the 1/4 chord

or has a continuoui doublet sheet with the correct strength.

Rather than dwell on rectangular wings, we assume we can invent a meaningful

location for the doublet line and the upwash point for general trapezoidal boxes.

A discretized swept and tapered wing is pictured here in Figure 4.
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So the area integral of equation (276) is truncated to a line integral along the 1/4

chord of each box. This line is depicted in Figure 5. Furthermore, we assume Ap

is spatially constant for each box. For a rectangular box, the box chord is

denoted as Aý. Equation (276) becomes

-ApU(A) ( (x - (y - il), di (282)
i~7(xyO - 4xpU E-+K(x(22

II
-LL

Figure 5. Local Swept Coordinates

Substituting for K from equation (277) gives

f(X' ,y0)=

1_pU1 i2K , ( (x - 4), (y2-T) exp 2... U

L J t-(y_•)m+I U dl (283)
95(y- +
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Let 11 = -L and 12 = L. We abbreviate equation (283) as follows

A ~L --

i- (, ,0)= i f k((x- (y -,n))d (284)w~~yo) 4nPU J£-4oL (y--) +E Jd

where

(x,, y,, 0) = K1 (x0 y.) exp " 1 (285)
L-U-

Now, it is clear k is a complex function. It turns out that K can be approximated
with a complex parabolic function of 1.

K(Xoyo) = Ao+A 1 1+A 2 # (286)

where A0, A, and A2 are complex coeffiients. We identify the coordinate
(XL, YL) to represent (xo, yo) at I = -L. At the opposite end, we identify the

coordinate (xR, yR) to represent (xo, Yo) at I = L. Finally, at the midpoint, we
use (xC, Yc) to represent (x,, yo) at I = 0. Equation (286) can be formulated
as

k (x~pYO) [2e ik (XL'Yd +f e- ]k (xC.yc) +

2L+ k (x] , YR) (287)

which is easily verified at I = -L, I = 0 and I = L. We regroup equation (287)
in terms of common powers of 1. Thus, we can identify the coefficients in equa-
tion (286) as follows
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Ao = KG (XC yc) (288)

SK(xR, yR) - K (xL, yL) (289)
2L

A 2  X (x., YL) - 2K (xc, Yc) + K (xR, YR) (290)

U2

Now we substitute equation (286) into equation (284). Furthermore, we note

l = lsinA.

L [[-ApA _ Ao+All+A 2?
i (x, Y,0) 4tpU _ lsin A2  ] dl (291)

We abbreviate equation (29 1) in the following fashion.

i (x, y, 0) -= 4[pU [B° +1+ Bz] (292)

The definitions of BO, 81 and B2 are given as equations (293), (297) and (299).

L0 Af IBo Ldm![ 2 2  (2ysiA)I+(y (293)

We integrate equation (293) to obtain the following inverse tangent function

BO= li tn[ sn (294)
-L
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We use the standard tangent identity for the difference of two angles to simplify

equation (294). We obtain

[ = _irn atan 2E LsinA 1
B0  in E-So11E-AJ E2 +Y 2 (sinA)2 (295)

Now we take the limit.

B 2LAo (26
B0 -- [y2L---A)2] (296)

We follow a similar procedure for to obtain algebraic expression for B, and B2.

The definition of B1 is

BI L (297)
ofe-oI (sinA)2 2ysinA)j+(y2+E.

After integrating, we take the limit and obtain the following formula.

B, Al log ( sinA) 2 L2 -_(2y sin A) L + "-)
2 (siuA)2 (sinA) 2 L2 + (2ys-inA)L + (y')

yAV 2L
Sm y2'L2 i (298)

y- (sinA)-J

The definition of B2 is

L - 11
B2 = iTnJ sn~~ AVi 2Id (299)

= L ,° (sina) - (2ysinA)l+ (y + E2)

Again, after integrating, we take the limit and obtain the following formula.
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B+[ 2L A2 ] logA21[ (sinA)2 2- (2ysinA) L+ (y2) +
2 (sinA) 2 sinA (sinA) 2/L2 + (2ysinA) L + (y2)

(sinA)2 y2L2 (sinA)2

The values for BO, B1 and B2 are substituted in equation (292) to obtain the rela-
tionship between Af of one element and the ii generated at the control point of
another elcment. Again, A4 is the average chord of an elemnenw box.

It is important for the doublet lattice user to understand the approximations
incurred in discretizing a doublet sheet into trapezoidal boxes. It should be
immediately obvious that, since we have assumed the pressure to be constant
within each box, a sufficient number of boxes is requirzd to capture the steady
state (zero frequency) pressure function accurately. L is not obvious that we need
to increase the number of boxes as we increase the frequency of oscillation. For
instance, the pressure field over a rigid wing, plunging at high frequency, is not

trivial and requires a significant number of boxes to resolve the standing (pres-
sure) waves. The required box density depends on a combination of wing defor-
mation and the frequency of motion. The box density should be increased as the
deformation becomes more. spatially wavy and as !he temporal frequency of
motion increases The doublet lattice user must performt convergence studies to
determine the appropriate box density for their application.
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The Example Program

The purpose of this section is to introduce a clear and simple version of a doublet
lattice computer code. The mathematics of this text are tedious. Unless one is
somehow inspired, these mathematics seem to exceed the bounds of reasonable-
ness. It is possible that one may overcome this hurdle by browsing through a
well annotated version of a doublet lattice code. Other existing computer codes
for full aircraft configurations are difficult to follow because of the programming
details. Clearly, this is not a criticism of the usefuilness of these. codes. Afterall,
the aerospace community has depended on them for over twenty years now.
They function well for a wide variety of configurations.

At the beginning of this effort to provide a tutorial on the doublet lattice method,
this author had a hope that he could start with an existing code, simplify it to the
planar case and then add comments. It nuned out that it was more effort than was
warrented. This author decided that the algorithm was so conceptually simple
that he would develop his own code. Aftzrall, the whole raison d'etre for the
doublet lattice method is that it is relatively easy to encode on a computer.

The choice of computer language was not easily made. While there is a tremen-
douw sentiment for engineers to use FORTRAN, it is nowhere near the most
overall popular computer language. The C language is very popular, especially
on personal computers (PC), and it is adequate for encoding the doublet lattice
method. The most important feature of the C language, as far as this tutorial is
concerned, is the easy to read format. Comments can be placed just about any-
where. It is much easier to point out the relationship between the lines of the
compkuter code to the matefial of this text. In addition, the C language is vary
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popular within the computer graphics community. With the doublet lattice

method encoded in C, it is far easier for the PC programmer to connect it with a

graphics library. This author believes that some day, a visually enhanced version

of a doublet lattice code on a PC computer will be used to effectively motivate

students toward the study of unsteady aerodynamics. The main advantage of the

FORTRAN language is the COMPLEX data type. There is no equivalent data
type m' C. This author chose to accept this shortcoming and use the C language.

The source code for this doublet lattice code for a simple trapezoidal wing is

give- iii Appendix A. The comments within the source code are sufficient for

one to relate to the equations of this report. The example input and example out-

put arc given in Appendicies B and C. This example case is for a simple plung-

ing rectangular wing of aspect ratio two.

As mentioned earlier, there is no strict mathematical basis for the doublet lattice

method. It seems to work for rectangular wings. For swept and tapered wings,

we define what we mean by the 1/4 chord and the 3/4 chord. Geising et. al. seem

to use a hybrid approach. The integration process treats the line doublet as

though it was not swept. However, the Kernel function is evaluated at three

points along the swept doublet line. The approach taken in Appendix A is to

integrate along a swept doublet line. The effect of changing the sweep of the

doublet line may be an interesting topic for study.

In a sense, the doublet lattice method is empirical. Giesing et. al. point out that

for steady state analysis, the integral formulae can be integrated "exactly". In

order to achieve increased mathematical accuracy (this does not guarantee that

correlation with test data will improve) Giesing et. al. chose to subtract out the

steady state component computed by the doublet lattice method and replace this

component with "exact" computations. While this could be done in Appendix A,

it wasn't. The point of Appendix A was to explain the implementation of the

doublet lattice method without added complication. The reader should be able to

see how to implement a correction to the steady state component. However, this
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author is not ready to say that anything is really gained for the effort. This is

another suggested topic for study.

All the equations presented in this report made no mention of the units of mea-

sure. It turns out that there may be a benefit in non-dimensionalizing these equa-

tions. The non-dimensional solution depends on the Mach number, the reduced

(non-dimensional) frequency, the shape of the wing planform and the non-

dimensional deformation. The solution can then be scaled to meet a variety of

different conditions such as vehicle velocity and air density. Therefore, at the

expense of possibly complicating the interpretation of Appendix A, all the vari-

ables are assumed to be non-dimensional. Non-dimensional time i is scaled by

i = W'lt(301)

and non-dimensional length x. is scaled by the characteristic length b
- X

- = (302)

The reader should have no trouble in fomulating non-dimensional upwash w.

One merely divides the dimensional upwash by the freestream velocity U.

The example case is for a simple rectangular wing with aspect ratio of two. Only

half of the wing is modelled. The wing is symmetric about the x axis in all

respects. The wing is plunged with a reduced frequency of one. There can be no

correction for steady state because the zero frequency load is zero. The solution
agrees with data computed with the method of Giesing et. al.

The point of this report is not to provide a detailed explanation of the implemen-

tation. The point is to compile all the mathematics which lead to the doublet lat-

tice method in one single document. This has been done. The utility of the code

in Appendix A is not assured. The author of this report decided to include this

code with the hope that its meae inclusion would help illuminate the doublet lat-

tice method. The reader should feel free to use the example source code pro-

vided here as a starting point for developing their own utility. However, before
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doing so, one should give serious consideration to using the code of Geising et.

al. As indicated, their code is very versitile and is well proven. It has been the

mainstay of aeroelastic analysis and design for two decades.
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APPENDIX A

The Doublet Lattice Program Source Code

def initions

/* the following parameters may be adjusted */
#define MAXDIVX 20/* maximum number of chordwise boxes */
#define MAXDIVY 20/* maximum number of spanwise boxes */
#define MAX POL:Y 20/* maximum number of polynomial coeff */
#define PAUSE ON OUTPUT 2 /* time to pause for reading output */
/* Remember to recompile after adjusting the above */

/* do not adjust the following parameters: */
#define MAXBOX (MAX_DIVX * MAXDIVY)
#define MAXDIM (MAXBOX * MAXBOX)
#define ABS(x) (((x)<0) ? -(x) : (x))
#define PI (3.141592653589793)
#define EPS (1.0e-6)
#define BIGP (1.0e+20)
#detine BIGM (-1.0e+20)
/* end of define */

"struct element
(
float xiyi;/* coord of inboard 1/4 chord */
float xm,ym;/* coord of midspan of 1/4 chord "!

float xoyo;/* coord of outboard 1/4 chord */
* float xc,yc;/* coord of control point at 3/4 chord */

float chord, area;/* box chord and area */
float xcent,ycent;/* x and y coord of centroid */

struct trapezoid

int symIm;
int numboxx, numbox y, totalboxes;

107



MAIN: dlO

float xible, yible;
float xibte, yibte;
float xobte, yobte;
float xoble, yoble;
float meanchord,area;

struct polynomial
{
float a;
int px,py;

S;

/********************t**************t*******************************
"* This is a doublet lattice code for a single trapezoidal wing. *

"* You can assume symmetry or anti-symmetry about the x axis. *
"* This code was written by Max Blair of USAF Wright Labortory. *
"* Neither Dr Blair or the USAF assume legal responsibility for *
"* potential errors which exist in this computer code. The user *
"* is encouraged to validate the code for his or her design cases*
"* of interest. Send comments to: *

* Dr Max Blair *

* WL/FIBRC *

* WPAFB, OH 45433-6553 *

"* This code was written primarily for educational purposes. For *
"* complete aircraft configurations, the user is encouraged to *
"* use the doublet lattice codes H7WC and N5XA. *
* *

* The input is placed in files dl.INPUT and bc. INPUT

* dl.INPUT: *
* BLAIRCRAFT 2100 ATTACK FIGHTER(title line) *

* 5.0 characteristic length (b) *
* 0.5 Mach
* 1.0 reduced frequency wb/U *
3 s a: symmetric a: anti-symmetric n: no symmetry

* 0.0 0.0 x and y coord of inboard leading edge
* 10.0 0.0 x and y coord of inboard trailing edge
* 10.0 10.0 x and y coord of inboard leadiag edge
* 0.0 10.0 x and y coord of outboard leading edge
1 10 number of chordwise cuts (discretized x)
1 10 number of spanwise cuts (discretized y)
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"* bc. INPUT: *

"* flag constant x power y power *

*1 -1.0 0 0 *
*0 -1.0 1 0 *
*0 -1.0 0 1 *

* 0 -1.0 2 0 *

*0 -1.0 1 1 *
*0 -1.0 0 2 *
* end of data *

* interpretation of bc.INPUT: *

* w(x,y) - aOO + alO*x + aOl*y + a20*x^2 + all*x*y + aO2*y^2 *
* where w has been non-dimensionalized by the velocity, U. *
* Only lines with "10 in the first column is considered data. *
* Replace the "1" with a '0" to ignore any data. *

"* A line which begins with an "e" will terminate the input. *

"* There must be at least one line which begins with an 'e". *

"* NON-DIMENSIONAL INPUT: *

"* If wing coordinates are already normalized with respect to *
"* a characteristic length, then input bul.

"* DIMENSIONAL INPUT: *
"* If wing coordinates are input in other units (such as inches) *

"* then input any value for b such as the mean aerodynamic chord *
"* in consistent units (inches). The upwash is input in *

"* non-dimensional form, normalized with respect to the free *

"* stream velocity. Non-dimensional pressure coefficient will *
"* be printed out. *
ft *

* Output: *
* complex modulus of the pressure coefficient (Cp) at each box *
* Cp - pressure/(density*velocity squared) *

#include 'dl. define"
#include <math.h>
#include <stdio.h>
#include 'dl. structure"

main ()

FILE *fopeno;
FILE *aicdat, *odat;/* pointers to I/O files */
int discretizeOread inputo,IKbaro,bco;
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unsigned seconds;
int i, symm, ic;
int ierr; /* error code */
int rb,sb; /* receiving box and sending box indicies*/
int vectorindex; /* how the [D] matrix is placed in a vector */
float xO,yO; /* distance from receiving to sending coordinates */
float M, k; /* Mach and reduced frequency */
float b, b2; /* characteristic length (also bA2) */
float ulbeta2; /* ul is eqtn 281 */
float KbarrL,KbariL; /* real and imag Kbar for left point */
float KbarrCKbariC; /* real and imag Kbar for center point *1
float KbarrR, bariR; /* real and imag Kbar for right point *1
float L,L2,dLx,dLy; /* related to length of the doublet line */
float Yt,Yt2; /* y relative to the sending midpoint */
float sl,sl2,sl3-; /* sine of the doublet line angle (fig 5)*/
float factor,factO,factlfe,;t2,fact3; /* working space */
float AOr,AOi,Alr,Ali,A2r,A2i; /* equation (xxx) in the text */
float BO,BI,B2; /* equation (zzz) in the text */
float wr[MAXBOX],wi[MAXBOX]; /* real and imag upwash at boxes *1
float Dr DDIM],Di[MAXDIM4]; /* The real and imag AIC matrix */
float liftr,lifti; /* The complex lift in cartesian form *
float liftm,3liftp; /* The complex lift in polar form '1
struct element box[MAXMOX]; /* box geometric data */
struct trapezoid ving; /1 wing geometric data */

seconds - PAUSE ON OUT3PUT; /w seconds the program will paia~e */

if ( (odat-fopena("dl. •RkSuw, *wvi) ) NULL)
(
printf("\ncannot open file &llTRASH for output\k)l;
exit (0)
I

printf('\n\n Auxillary. data placed in file jdI.TRASHl]\n*);

i f ( a c d a ~ p e ( • ! . A C " , " w " ) "V L L )
(
printf("\ncannot open gile dl.AIC for output\n");
exit (O,;

printf('\n AIC placed in file fd!.AIC1\)
printf(%\n %MAXBOX: W MMXIM: %d\n"(MAXBOX,KMA)GIM);

/* BEGIN INrUT *1

printfC(\nBegin input\-") ;
ierr = readinput (odat,&M,&k 4 &b,&wing);
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printf ("Input complete\n");
ierr = quadrilateral (odat, wing. xible, wing. yible,

wing. xibte,wing. yibte,
wing.xobte,wing. yobte,
wing. xoble, wing. yable,
&factor &xO, &yO);

* wing.area = factor;
printf("\nWing area used to non-dimensionalize lift is:%12.4e\n",

wing. area) ;
printf(""Tle wing centroid is at x: %f and y: %f\n',xO,yO);
sleep (seconds) ;

1* INPUT IS NOW COMPLETE , DISCRETIZE THE WING INTO BOXES *

printf ("Begin discretizing the wing. \n');
ierr = discretize(odat,wing,box);
printf("Discretiza'tion is now complete.\n");

/* non-dimensional variables are computed *

beta2 = 1-M*M;
b2 = b*b;
printf(" reduced freg (k): %12.4e \n",k);-
printf(" beta"2 (I-M.r2): %12.4e \nO,beta2);

/* Zero out the ED) matrix of AMC coefficients *

for (rb-0 ;rb<wing .total boxes; ++rb)

for (eb=0.tab<wing.total-boxes;++sb)

vector index - rb~ving.total-boxeasab;
Drfve~t~or index] = 0.01
D I~vector7 index] - 0.0;

/* PROCME TO POPJWLXLTE THE COMPLEX A.IC MATRIX D[IJ] *

for (aymmkl sym<*AABS (vinq.3y=n) ;++aymm) 1* consider symmetry *

for(rb~u0;rb<wing.tota1_boxes;++rb) 1' receiving box index *
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for(sb=O;sb<wing.total boxes;++sb) 1* sending box index *

1* Kbar is defined as equation 285 *
1* compute Kbar for left terminus of doublet segment *
xO = box frb] .xc - box[sbj .xi;
if(symm==O)yC box~rbj .yc - boxfab] .yi;
else yO = box[rb].yc + box~sb].yo;
fprintf (odat,

"\n!ZFT syznm: %2d rb: %2d sb: %2d xO: %12.4e YO: %12.4e\n",
symnm, rb, sb .xO, yO) ;

ie-rr= Kbar(odat,M,k,xO,yO,&KbarrL,&KbariL);

1* compute Kbar for midpoint of doublet segment *
xO = box~rb].xc - boxfsbj.xm;
if(syznm==O)yO = boxfrbJ.yc - box[sb].ym;
else yO =box~rb].yc + box~sb].ym;
fprintf (odat,
"\nCENTER symm: %2d rb: %2d sb: %2d xO: %12.4e yO:%12.4e\nm,
symm,rb, sb~xOyO) ;

ierr = Kbar(odat,M,k,xO,yOr&KbarrC,&KbariC);

/* compute Kbar for right terminus of doublet segment *
xO = box[rb].xc - box[sb].xo;
if(syzmm==O)yO - box[rb].yc --box(sb].yo;
else yO = box~rbj.yc + box~sb].yi;
fprintf (odat,

"\nRIGHT symm: %2d rb: %2d sb: %2d xO: %12.4e yO:%12.4e\nm,
symm,rb,sb,xO,yO);

ierr Kbar (odat ,M, IcxO, yO ,&lbarrR, &KbariR);

dLx =boxfsb].xo-box~sb].xi; dLy - box~sb].yo-box(abl.yi;
L =sqrt((double) (dLx*dLxc+dLy*dLy))/2.O;
L2 = L*L;
/* set the sweep angle here for the doublet line segment *
if(syimm-=O) si = (box~sb].yo-bxs]y)L
else al - (box(sb].ym-box~sb].yi)/L; 1* left half of wing *
s12 - sl*sl;
a13 - s1*6.".2,
if(syium-=Oj Yt - box~rb].yc - box~sbj.ym; /* local y axis ~
else Yt = box~rb].yo + box~sbj-ym; /* left half of the wing *

Yt2 - Yt*Yt;

/* The real and imaginary components of the A coeffiecients
of equations 288-290: *
AOr - RbarrC;
A~i - KbariC;
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Air = (KbarrR-KbarrL)/(2*L);-
Ali = (KbariR-KbariL)/(2*L);
A2r = ( KarrL - 2.0*KbarrC + KbarrR )/(2.C*L*L);
A2i = ( bariL - 2.0*KbaxiC + EUbariR )/(2.0*L*LJ);

factO =(sl2*L2-2.O*Yt*sl*L+Yt2)/(s12*L2-+2.0*Yt*sl*L+Yt2);
factO =log((double) (factO)); 1* nat log *1
BO = (2.O*L)/(Yt2-L2*sl2); 1* equation 296) *
facti = (0.51sl2)*factO;
fact2 = (Yt/sl)*BO;-
BI = (factl+fact2); 1* equation 298 *
factl = 2.0*L/sl2.:
fact2 = (Yt/sl3)*factO;
fact3 = (Yt2/sl2)*DO);
B2 = (factl4-fact2+fact3).; 1* eqiue.tion 300 *

factor =(-box(sb3 .c~hord/(8.O*PI));

Here, we will c(,; p -ss square matricies DL and Di into vectors.
The matricies Dx aaid Di are the real and imaginary parts of (D].
{w) = D] {Cp}
{w} is a vector of non-dim upwash w/U at the control points.
{Cp} is the vector of non-dimensional pressure dP/(rho*UAZ2).
[D) is compressed into (Dr) and {Di) in row packets.

vector -index -rb*wing.total-boxes+eb;
if(symm=-0) /* for any symmetric case ~

Dr~vector-index] Dr~vector index] +
factor* (BO*A~r+Bl*Alr+B2*A2r);

Di(vector index] - Di~voctor-index] +

else if(symmm-l&&wing.symm>O) /* left half wing is symm *

Dr(vector-index] -Dr~vactor index] +
factor* (BO*AOr+BI*Alr+B2*A2r);

Di~vector-index] -Di--vector -index) +
factor* (BO*AOi+B1*Ali+B2*A2i);

* ~~else if(symm--=1&&wing.symw1<0) /* left wing is anti-symm *

Dr (vector-index] - Drivector index) -

factor* (BO*AOr+B1*Alr+B2*A2r) ;
Dilvector-inidex] - Di~vector index] -

factor* (BQ*AOi+B1*Mi3'+B2*A2i);
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I
else

printf ("I\n CONFUSED about the ving symmetry... \nexit\n");
exit (0);

} * end of loop on sb *

if (++ic>l0)

printf ("*\n"v);

printf (4 %d" ,rb);
I * end of loop on rb *
I/* end of loop on symm *

1* Print out the ID] inatrix of AIC co~efficients *
for (rb=0;rb<wing.total bozes;++rb)

for (sb-O; sb<wing .total boxes; ++sb)

vector index - rb*wing.total boxes+sb;
fprint-f(aicdat,"row: %5d col:. %5d inch %10d *15.7e %15.7e\n",

rb, eb, vector index, Dr (vector index3 ,Di (veotor-itkdex2):

1* Input the (w) boundary condition, return #of monom2ials *
if( (ierr - bc(odat,ktwrjvi,box,wing)) w-0

printfV("\nNo upwash specified and no pressure computed\nO)t
fclose (odat) ;
folose (aiodat);
exit(0) ;

else

printf('1'\n Upwagh 3,POCified and pressure will be computed\nw);

for (i-O;i<wing.total-boxes;++i)

printf('%Sd Real(wJ: t12.4e Imag~v:. t22.4e \n*,
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fprintf(odat,"%5d Real[w]: %12.4e Imagfw]: %12.4e \n'.
i,wr liJ,wi (ij);

P, solve the complex problem {w} = [D] {p} *
£printf,(""\nSolve the complex problem {w} -= (jn)

ierr=complex -solve (Dr, Di, wr, wi, wing. total boxes);
if(aierr5=O)

printfQ'\nerror number %d in complex-solve\nw,ierr);
exit (0);

/* note: the [D] matrix is now the complex identity matrix *

/* Print out the pressirre coefficients and sum the lift*/

printf (""\n\n'z'p PRESSURE COEFFICIENTS (P=0 .5*rho*UA2*Cp)"~);
printf ( "\nbox # (rea"' Cp) (imag Cp) (box axrea)\n');-
fprintf(odat, "\n\.iCp, PIRESStrý.E COEFFICIENTS (Pu-0.5*rho *UA 2*Cp)N);
fprintf(odart,"\nbox # (real Cp) (imeg Cp) (box area) \n");
liftr - 0.0; lifk-i -60
for (iý0;i<wing.totalboxea;++i)

printf( "%5d %12.4e %12.4e %12.4e\n"f,

fprintf(odat, "%5d %12.4e %31.ke %12.4e\nN,

.13iftr + wrfi]*boxfil .areaa

liftr /awing.areat
lifti 1"wing.area;

printf('"\nThe characteristic length b: '",b);
prin tf (*4The wing area used to .non.-dim lift is:t12.4e\n0,

wing.area);
priratf ("Lift Coefficient aC L*q*A\n');
printf('"THE COMPLEX NI14G LIF-T COEFFICIENT (C L) IS: 'i);

* printf(UU(%11.4e) + (%11.4e)i)\n1,liftr,lifti);
printf("HAGNITUDE: (411.4e) PHASE; (%9.4f)deg'%n",,liftm,liftp);-

fclnee (odat);
folose (aicdat);
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exit (0)

FUNCTION: readj in=()

# include '"dl. define"
#include <math.h>
#include <stdio .h
#include <string. h>
#include "dl. structurel

read -input (odatM~k~bling)
float *M, *k, *b;
struct trapezoid *wing;
FILE *odat;

FILE *fopeno;
FILE *idat;
char csymm;
char line(200];
mnt ierr;
mnt n;
float X, Y;

if ( (idat-fopen ("Adl. INPUT", "r*) ) - NULL)

printf(""\ncannot open file dl.INPUT for input\nO);
exit (0);

printf ("Input data will be read from file Edl.flWUT]\n"):

/* BEGIN INPUT *1

if( in line(idat,line)-0 ) 1* read title line *

fprintf(odat, "\ntext: (%al',lirie);
printf("TILZ:\ntext: [s\"ln)

if( in lin-e(idat~line)-0 ) /* read characteristic length *

escanf (line, "%f", &);

printfC'*characteristic length: %f\n,#*b);*
fprintf (odat, "characteristic length: %~',~i

if( in-line(idat,line)-m0 ) /* read Mach number ~
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sscanf (line, "%f ", &x);
*M = X

printf ('Mach: %"\n", *M);
fprintf (odat, "Macti: %f\n", *M);

if( in -line(idat,line)==0 ) /* read reduced frequency *

sscanf (line, "%f", &x);

printf ("reduoced frequency: %f\n"',*k);
fprintf (odat, "reduced frequency: %f\fl", *k)I)

if( in line(idat,line)-~O ) /* read symmetry flag -1, 0 or +1 *

sscanf (line, "%c", &csyuim);
line[OJ = csyrum; line~l] ) \l
wing->Bymm = 0;
if( strcmp (line, "s`)==0

wing->symm =1

printf("'Assume symmetry about the x axis\nN);
fprintf (odat, "Assume symmetry about the x axis\nN);

else if( strcmp(line,"a") -0)

wing->symm - -1;
printf('"Assume anti-syrmmetry about the x axie\n");
fprintf (odat,I"Assume anti-symmetry about the x axie\n")i

else

wing->symm -0;
printf("'Assume no symmetry about the x axis\nl*);
fprintf (ocat#, Assume no symmetry about the x axis\n"w);

if( in line(idat,line)-0 ) /* read inbrd lead edge coord *

sscanf (line, "%f %f", &x, &y);
* ving->xible - x

wing->yible - y
printf(~inboard leading edge: x %f y %f\nftt

fprintf (odat, "inboard leading edge: x %f y %f\nO,
wing->xible, wing->yible);
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wing->xible /= *b.;
wing->yible /= *b;

if( in line(idat,line)==O ) /* read inbrd trail edge coord *

sscanf (line, "%f %f ",,ix, &y);
wing->xibte =x
wing->yibte =y;
printf ("inboard trailing edge: x %f y *f\n',

wing->xibte, wing->yibte);
fprintf(odat,"inboard trailing edge: x %f y %f\n",

wing->xibte 1= b;

if( in line(idat,line)=-O ) /* read outbrd trail edge coord *

sscanf (line, "%f %f', &x, &y);-
wing->xobte =x
wing->yobte -y
printf ("'outboard trailing edge: x %f y %f\n",

wing- >xobte, wing->yobte);
fprintf(odat,"outboard trailing edge% x %f y %f\n',

wing- >xobte, wing->yobte);
wizg->xobte /a*b;
wing->yobte /E*b;

if( in -line(idat,line)-O ) /* read Outbrd lead edge ooord *

sscanf (line, "%f %f", &x, &y);
wing->xoble - x
wing->yoble -y
printf ("outboard leading edge: x %f y %f\n',

wing- >xoble, wing->yoble);
fprintf(odat,"outboard leading edge; x %f y %f\nft,

wing- >xoble, wing->yoble);
wing->xoble /* b;
wing->yoble /m b;

if( in line(idat,line)-O ) /* read number of boxes in x

ssca-nf (line, #%dw, &n);
wing->num -box -x - n
printf("number of boxes in the x direction: %d\nO,

ving->num box x);
fprintf(odat,M nxQber of boxes in the x direction: td\n",
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wing->num. -box x);
if(wing->num box x >7M&XDIV X)

printfQ'"\n EXCEEDED MAXIMU24 DIMENSION ON DIVISIONS IN X\nl);
exit (0);

if( in-line(idat,Jline)=O0 ) /* read number of boxes in y *

sscanf (line, "%d", &n);-
wing->num -box~y = n;
printf (""number of boxes in the y direction: %d\nN,

wing->num-boxjY);
fprintf(odat,"number of boxes in the y direction: %d\nff,

wing->num box"y) ;
if (wing- >num-box~y > MAkXDIVY)

printf(""\n EXCEEDED MAXIMUM DIMENSION ON DIVISIONS IN Y\n"v);
exit (0);

wing->total boxes =wing->num box x * wing->num-box~y;
if (wing->to~tal boxes>MAXY3OX)

printf("\n EXCREED, MAXIMUM DIMENSION ON BOXES\n");
exit (0);

folose (idat);

1* INPUT IS NOW COMPLETE *

return(0) ;

FUNTION: dicretize 0-

*Calculate the coordinates of the discretized wing.

#include 'd1 .defineo
#include <math.h>
#include <stdio. h>
#includle '"dl. structure"w
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FUNCIION: discretize()

int discretize (odat,wing, box)
FILE *odat;
struct element box(];
struct trapezoid wing;

int quadrilateral();
int ierr;
mnt rx,ry; /* x index and y index *
int box index;
float dx~ib,dxob; /* delta x on the inboard and outboard chords ~
float dy; /* delta y is constant over the span *
float xl,x2,x3,x4;
float yltyZty3ty4;
float ix,iy;
float arealtotal-area;

total area = 0.0;
1* delta x along the inboard and outboard: *
dxib -(wing.xibte-wing. xible)/I(float)wing.num box-x;
d~ob -(wing. xobte-wing. xobie) /(float) wing.num box x;
1* delta y of all boxes: *1
dy m(wing. yoble-wing. yible) /(float) wing, n~mbox~y;
fprintf(oda-t,"dxib:. %f dxob: %f dy: %f\a"fdxibjdxobpdy);

for(ry'-0;ry<wi-ag.num box~y;++ry) /* box y index *

for(rxw;rx<wincgnum box-x;++rx) /* box x index *

box-index -ry*wing.num-box-x + rx;
1* Printf(I'rx-, %3d ry: %Od receitve index: %4d\nl,

rx,,ry,,box -index); */
/*inboard leading edge coordinates of receiving box: /

ix a(float) rx;
iy =' (floa&t)ry/ (float)wing.num box~y;
xl oix*dxib + ix*(dxob-dxib)*iy; /*ible*/
yl -ry*dy;
1* iniboard trailing edge coordinates of receiving box: *
ix = (float) (rx+l);
.iy m(float)ry/(float)wing.num box_y;

x2= ix*dxib + ix*(dxob-dxib)*iy; /*ible*/
y2 a ry*dy;
1* outboard trailing edge coordinates of receiving box: *
ix -(float) (rx+l);
iy (float) (ry+1) /(flof~t)wing.num box~y;
x3 i*x*dxiLb + ix*(dxob-dxibý*iy; /*ible*/
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FUJNCTION: discretizeG

y3= (ry+l)*dy;
1* outboard leading edge coordinates of receiving box: *
ix = (float)rx;
iy = (float.)(ry+1)/(float,)wing.num box_y;
x4 = ix*dxib + ix*(dxob-~dxib)*iy; /*ible*/
y4 =(ry+l)*dy;
/* coord of the receiving control pt at 314 chord centerspan *
box[box index] .xc = ( xl+O.75*(x2-xl) + x4+O.75*(x3-x4) )/2.0;
box~box indeby.]y = (y2+y3)/2.O;-
/* inboard coord of the sending doublet line along 1/4 chord *
box~box index] .xi = xl+0.25*(x2-xl);
boxtbox -index] .yi = yl;
1* outboard coord of the sending doublet line along 1/4 chord ~
box (box index] .xo -x4+0.25* (x3-x4);
box~box -index] .yo =y4;
/* midspan coord of the sending doublet line along 1/4 chord *
box (box -index] .m =i (box (box index] .xi+box (box index] . x) /2.0;
box(box -index] .ym = (box (box-index] .yi+box~box-index] .yo) /2.0;
1* average chord */
box(box index] .chord = ((x2-xl)+(x3-x4) )/2.0;
/* box area and x and y coordinates of the box centroid *
ierr = quadrilateral(odat,xl,yl,x2,y2,x3,y3,x4,y4,,

&area, &ix, &iy);-
box~box index] .area area;
box (box index] .xcent ix;
box (box -index] .ycent iy;
total area +- area;
fprintf(odat, w\n BOX: %5d\n',box -index);
fprintf(odat,'" xl: %8.4f x2: %8.4f x3: %8.4f x4: %8.4f\n',

xl, x2, x3,x4) ;
fprintf(odat,w yl: %8.4f y2.- %8.4f y3: %8.4f y4: 48.4f\n",

yl, y2, y3, y4) ;
fprintf(odat," 3/4 chord midapan x: %f yi %f\n~v.

box(box Iindex] .xc,box~box -index] .yc),*
fprrintf(odat,.v 1/4 chord inboard x: %f y: %f \n',

box~box index] .xi,box(box index] .yi);
fprintf(odat," T/4 chord midspan ;: %f y; %f \n',

box (box Tindex] .xml box (box -index] .y)
fprintf(odat," 1/4 chord outboard x: %f y: %f W,

box~box index] .xo~box(box index] .yo),
fprintf(odatt,'ý verage chord: %f \ýn',boxfbox_.andex].chord);
fprintf(odat,l area: %f \n",area);
fprintf(odat,O' x centroid: %f y cantroid: tf\n'l,ixliy);

)/* end of loop on rx.
}/* end of loop on ry *
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fprintf(odat,,"\nTOTAL APEA OF WING: Pkf\nP",total area);*
return (0);

I

FUNCTION: KbArfl

*This subroutine computes K bar.*
*K bar is given as equation 273 in the text).*
*KI is given as equation 266 in the text.*

#include 'dl..defines
#include <math.h>
#include <stdio~h

mnt Kbar(odat,14,kfxO,yO,Kbr,Kbi)

FILE *odati
float H,;/* mach *
float k;/* reduced freq wb/U *
float xO,yO;/* non-dimensional (x-xi)/b and (y-eta)/b *
float *Kbr,*Kbi; /* return these values *

int ierr,I1O);
float ul,kl;
float alpha, beta2;
float Klr,Kli, factor)
float exr, exi, eur, eui;
float Ilr,Ili;
float Ul;

fprintf (odat1 "In IQbar now\n');

fprintf(odat,'k: %12.4e\n*,k);
fprintf(odat,"xO: %12.4e yO: %12.4e\a",xO,yO);

beta2 - IM*M;
kl' )c*ABS(yO);
fprintf(odat-, "kl± %12.4e\n",kl);
if((ABS(yO))<!EPS) /* if yO - zero, we need to take care for ul *

if(xO>O.O) (u1-EXGMj)
else iulin3IGP;I
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else 1* yO is not equal to zero *

ul =(M*sqrt ((double) (xO*xO+beta2*yO*yO) )-xO) /(ABS (yO) *beta2);-

alpha= -xO*k;
exr= cos ((double) (alpha));
exi= sin ((double) (alpha));-
ierr =Il(odat,ul,kl,,&Ilr,&Ili); 1* compute the 11 integral *

* 1/* compute 1(1 (Kir + i*Kli) *
if( ul>=BIGP Hul<=BIGM

fprintf (odat, "BIG ul: %12.4e\n',ul);
Kir =-Ilr;
Kli = -Ili;

else if( ul<BIGP && ul>BIGkM

fprintf (odat, "bounded ul: %12.4e\nO,ul);
alpha = -kl*ul;
eur = cos((double)(alpha)l);
eui =sin((double)(alpha));
factor -(1.0) *

(M*ABS (yO)/sqzt((double) ((xO*xO)+(beta2*yO*yO)))
Isqrt ((double) (l.O+ul*ul));

Kir - factor*eur - Ilir;
Kli - factor*eui - 11i;

else

printf("\inConfused with ul i~n function Kbaz\a");

Pcorapute Kbar - Kr + i*Kb1)*
ierr - cmult (KlrK1i,exxr,exi,KbrKbi);
return (ierr);

FUNCTION: 11 (1

"* This soubroutine computes the integral 11.
"* Il is given as equation 267 in the text
"* Ii com~putes the 11 inttegral for -any ul.
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#include <math.h>
#include <stdio .h
#include ",dl .define"

int I1(odatlul,kl,Ilr,Ili)

FILE *odat;
float ul,kl;/* input these values *
float *Ilr,*Ili;/* return these values *

int ierr, cmulto;
float Ul, Ireal;

fprintf(odat,"(IN Il) ul: %12.4e ki: %12.4e\n",ulk1)i
if (ul>-0 .0)

if(ul>-BIGP) /* +BIG < ul *

*Ilr -0.0;
*Ili 0.0;

else /* 0 <w ul < +BIG *

ierr - il(odatfu1,k1#Ilr,Zli):

else /* ul < 0 *

fprintf(odatt~ul < -BIG \nO);
U1 - 0.0;
iea-r - il(odat,U1,k1,Ilr.Ili):
*Zlr '-2.0:

*Ilii* 2.0;

else /* -BIG < ul < D *

*ompute 11 for 0cu<isbfinity: *
fprintf(odat.0 -BIG < ul < 0\no);
01 - 0.0;
ierr - il(odat.Ul,k1,Ilr,,Ili);
Ireal *lr
Ul - (-1.O)*u1j
ierr a il(odat,Ul,k1OIlr,Ili);
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*Ilr = (2.0*Ireal) -(*Ilr);-

rtr ier
I

*~E U~ION iiL()

*Function to compute the 11 integral for ul >x- 0*

int ii (odat,ul,kl~ilr, ili)

FILE *odat;
float ul,kl;
float *ilr,*ili;

int ierr, cmultO J1O
float ird~ii, alp~ha, factorler,ei;
float jlr, jli;

fprintf(odat,"(IN 11) ul: %12.4e ki: 4l2.4e\n",ul,kl);
if(ul<O.0)

printf('\n ul cannot be less than zero...ul %12.40\n*,ulL?

factor w-1.0 - ul/9qrt((,dou~ble)(1.0+ul*ul)),
ir-factor + kl*Dlit

ii -- kl~jlr;
alpha - -k1*u1;
or w cosa(dou.ble) (alpha));
ei - ain{(double) (alpha));
ie-rr -cute~ii~~~~~~

"rturn (ierr);

FUNCTION - 1 (I

*This subroutine computes the integral Ji *
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"* The integrand of J1 is appre-: Lmated as Am-
"* algebraic expression and thet... integrated.*
"* The series expression for al is given as*
"* equation xxx in the text.*

#include <math.h>
#include <stdio .h

int JI (odat,ul,kl,J.lr,Jli)l

FILE *odati
float ul,kl;/* input theba values *
!Uoat *Jlr,*Jl1i;/* return these values *

int i,ierr;
static mnt n =11;
f.Loat j,zero,sj'rsji,jr,ji;
double djrfdjiý
static float c = 0.3172;
static float afll] - ( 0.24186198,

-2.7918027t
24. 991079,

271,43549,
-305.75288,
-41.183630,
545. 9853'7,

-644.78155,
328.72755,
-64.279511 }

fprintf (odat," (IN J1) ul: %12.4e ki: %12.4s\nm,ulrk1);
ierr - 0;
zero - 0.0;
djr = (double)zero;
dji - (double)2,ero;

for (i=1;i<-n;++i)

j - j1 (i-'i*exp((doub1e)(-i*c*u1))/
( (floz~t) WiOi * (c*c) + (kl *kl) )

sjr - J*(f~oat)i*c;*
sjj = -~l
djr - djr + (double)sjr;

dji - dji + (double)sjit
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*Jlr (float)djz;
*Jli =(float)dji;

return~ierr);

#include "Xil definem
#includc- <math.h>
#include <stdio .t
#include -,tring.h
# include "dl. structure"

int bc(odat,k,,wr,wi,box,wing)
FILE *oc~at;
float kc;
float wr[],wi[J;
struct element box[];
struct trapezoid wing;
f
FILE *fopeno;
FILE *idat;
char c,flagC2j ,line [200];r
int ierr,,do-flag~number;-
int i,j*pxPy
float a, x, y, sumr, sumi;*
float powero;
struct polynomial poly[k4AXPOLY];

if ( (idatu-fopn (""bc. INPUT', "r') mmNULL)

printf("'\ncannot open file bc.INPUT for input\nwA);
exit (0);

* ~printf ("'Boundary data will be read 1erom file (dl. INPUT] \nO);
printf ("reduced frequency (kc): %12.4e\n"1,k);

number - 0;

/* BEGIN INPUT /

dot
do-flag - 1;
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if( in-line(idat,,line)--0

1* fprintf(odat,"\ntext: [,%s]"v,line); *
/* printf("Itext: (%s]\n,line); *
sscanf (line, "I%c"I, &c);
flag[1c
flag [I 1-' \O0;
if( strcmpfflag,"el) -0 / end of data *

do-flag=O;
I

if( strcmp(flag,"Il")--0 / a line of data is in line[] *

sscanf (Q in., 'to Uf %d Wd", &c, &a, &px, &py);
poly~nunmber].a -a; /* coefficient *
poly [number] .px -px; /* power of x
poly[number].py -py; /* power of y *
printf(" [tc] a: %f pxt %d py: %d\nI,c,&,Px,py);
++number;
do-flag - 1;

)while(do flag-wi);

fclose (idat) ;
iflnumber-O)return(numuber); 1* return zero if no data input '

/* Compute the upwash at each box 3/4 chord */

printf("\n compute the upvash at %d control points\nO,
wing. total boxes) ;

for (i=O;ikving.to-tal boxeat++i)

X - box~iI.Xc;
y - box~i].yc;
sumr a 0.0;
sumi 0 0.0;
for Ij-0; J'number;++j)

our. r umr + (1poly~i a j I I ~j .I jx) *
pov~r(x, (poly~jJ .px-1)) * power(yjpolyEj3 .py):

suml = suini + k * poly(J].a *
poW~r(Xjpol~yjj].px) * pover(y#POly~j] .Py),

vr~i) = sumr;
vi~i] - sumi;
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fprintf(odat," %5d Real[w]: %12.4e Imag[w]: %12.4e\n",
iwr i ,wi Ii I

return (number);
}

FUNCTIO comlex solve (1

/,
solve is a function to solve the complex linear system [a] {x}={c}
using Gaussian elimination and back substitution with pivoting
on each step. (a] is input in vector form a(k) - a(ij) where
k=i*nc+j. nc is the utilized portion of a[nc] [nc] and c[nc]
where nc <= the declared dimension. The complex solution {x}
is returned in {c}.

The real and imaginary parts of a[] [] are designated as
ar[] and ai[]. Likewise for the c vector.*/

#include <stdio.h>
#define ABS (z) ( ((x) <0) ? - (x) : (z))

int complex solve(arai,cr, ci,nc)
int nc;
float ar[],ai[],cr[],ci[];{

int ierr,i,j,i2,nr,ir,jc;
int cdivo, cmulto;
float rmaxabs,tmpabs, tmprtmpidr, dibig-l.Oe+20, epsul.Oe-20;
float cmago;

/* Consider nc rows: */
for (i-0; i<nc; ++i)
{

/* find max diagonal value and switch rows */
nr-i;
rmaxabs-cmag(ar[i*nc+i],ai([i*nc+i]);
for (i2-i; i2<nc! ++i2)
{
tmpabs'-rmaxabs-cmag (ar (i2*nc+i ], ai [i2*nc+i]);
if (tmpabs<O.0)

1
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FUNCFION compexjsoivcO

nr=i2;
rmaxabs=cmag(ar~i2*nc+i] ,ai~i2*nc+ifl,

/* end i2 loop*/

for (jO; j<nc;++j)

tmpr-ar (nr*nc+j];
tmpi-ai [nr*nc+j];
ar~nr*nc+j]=ar[i*nc+jl;
ai [nr*nc+j]=ai [i*nc+j];
ar Ei*nc+jJ =tmpr;
ai (i*nc+jJ -tmpi;

tmpr-cr[nr];
tmpi=ci Cnr];
cr~nn] -or Ci];
ci [nr ]-ci C i]
or Ci]-tmpr;
ci Ci]-tmpi;
1* rows have been switched *

cdr-ar~i*rlc+i];
di-ai (i*nc+i];
if (ABS (mmAg (dr ,di) ) <-Gps) returti(1);
for (j~inij<nc;++j)

ierr-cdiv(ar~i*no+i] ,aili*nc+j] ,dr,,di,Gt~apr,&tmpi))
arli*nc+j] - tmpr;
aili*nc+j] - tmpi;

ierr-odiv(crli],ci(i],dz,,dip&tmpr,,&tap±) p
cr~i] - tmpr;
cili] - tmpi;
if( ABS(cmag(crtil~ci(i])) >m big )retuxnt(5);

for (ir-O; ir<nc;++ir)

if (ir-mi) continue;
dr - ar~ir*no~il;
di - ai(ir*no+i];
if ( ABS (cmag (drr di)) >- big) return (2);

for (ic-i; jc~no; ++Jc)

ierrsm=ult (dro,di,a~rli*nc+jcJ ,ai [i~nc+3c) ,~tapr,~tapi)I
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FUNCMON owmplex.mtbO

ar[ir*nc+jc] -= tmpr;
ai[ir*nc+jc] -= tmpi;

/* end jc loop */
ierr=cmult(dr,di,cr[i] ,ci[i],&tmpr,&tmpi);
cr[ir) -= tmpr;
ci[ir] -= tmpi;
}/*ir loop*/

} /* i loop*/

return (0);
I

FU*CTION egq*e* **MAth(

This file is the source for a collections of subroutines
written by Max Blair to perform simple complex operations.

#include <stdio.h>
#include <math.h>
#define ABS(x) (((x)<0) ? -(x) : (x))
#define EPS (1.0e-20)
#define BIG (1.Oe+20)

/* add c-a+b */
int cadd(ar,aibrbi, cr,ci)
float ar,ai;/* input this complex number */
float brbi;/* input this complex number */
float *cr,*ci;/* return this complex number *1

*cr ar+br;
*ci - ai+bi;
return (0);
I

/* add c-a-b */
int csub (ar, ai,br,bi, cr, ci)
float arai;/* input this complex number */
float brbi;/t input this complex number */
float *cr,*ci;/* return this complex number */
{
*cr - ar-br;
*ci - ai-bi;

return (0);
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FU~I'ON compkxmathO

I* multiply c-a*b *I
int cmult(ar,aibrbi, cr, ci)
float ar,ai;/* input this complex number */
float br,bi;/* input this complex number *1
float *cr,*ci;/* return this complex number */
{
*cr = (ar*br) + (ai*bi) ;

*i= (ar*bi) +(ai*br) ;

return (0);
}

/* divide c=a/b */
int cdiv(araibr,bi,cr,fci)
float ar,ai;/* input this complex number */
float br,bi;/* input this complex number */
float *cr,*ci;/* return this complex number */
f
float d;
d - (br*br)+(bi*bi);
if(d<EPS)
{
printf('\n division by complex zero in cdiv\nO);
exit(0);

}
else

{
*cr - ((ar*br)+(ai*bi))/d;
*ci - ((ai*br)-(ar*bi))/d;
)

return (0)i
)

/* transforms complex number from cartesian to polar form */
int polar(ar, ai,bm,bp)
float ar,ai; /* input cartesian form of oomplex number a */
float *bm,*bp; /* return polar form of b, mag and phase (rad)*/
{
float ftheta(;
*bm - squat((double) ((ax*ar)+(ai*ai)));
*bp - ftheta(arai);

return (0);
)

/* transforms complex number from polar to cartesian form */
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FUNMrON poweIG

int cartesian (am, ap, br, bi)
float anm,ap; 1* input polar form of complex number a, magnitude

and phase (rad) *1
float *br,*bi; /* return cartesian form of complex number b *
f
*br =am*cos((double)ap);
*b = am*sin((double)ap);,
return (0);

/* return the value of theta (rad) given x and y coordinates: *
float ftheta(x,y)
float x,y;

float pi, xtest, theta;

pi=acos ((double) (-1.0));-
xtest=fabs( (double) (y*1.0e-05) )
theta=pi/2. 0;
if (y<0. 0) theta= (-pi) /2. 0;
if (fabs ((double) x) <-xtest) return (theta);
theta-atan ((double) (y/x));
if (x<0. 0)theta-t~heta+,pi;
return (theta);

/* absolute value of complex number in cartesian form *
float cmag(arjai)
float arjai; /* input cartesian form of complex number a ~
I
float mag; 1* return polar form of b,, magnitude and phase (rad)*/
if ( ABS (ar) >BIG HABS (ai) >BIG

printf ("potential error in cmag ar: to ai: %e\n",arjai);
if( ABS (ar) >BIG ) mag - ar;

return (mag);

if( ABS(ar)<EPS && ABS(ai)<EPS )return(0.0);
mag - sqrt((double) ((ar*ar)+(ai*ai)));.
return (mag);

FUNCTION R2MEr(
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FUNCTION qumdriaera1O

float power (x, i)
1* carry out the operation x~j where x is real and i is integer *
int i;
float x;
f
int J;
float p;
if (i==O) return (1);
if (i-1) return (x);
pmx;
for (j-2; j<=i; j++)

return (p);

FUCTION quadrilateral 0

1* input the coordinates in a counter-clockwise order *

#include "Idl .define"
#include <math.h>
#include <stdio .h
#include Idl. structure"

int quadrilateral (odat,xl,yllx2,y2,x3,y3,x4,y4,razeaoxc..yc)
FILE *odat;
float xllx2,x3,x4;
float y1,y2ry3,y4;
float *area, *xc *yc;

float al,a2,a3,a4;
float bl,b2,b3,b4;
float c1,c2,c3;

al - (-xl+x2+x3-x4)/4.O;
a2 - ( xl-x2+x3-x4)/4.0;
a3 a (-xl-x2+x3+x4)/4.O;
a4 - ( xl-x2+x3-x4)/4.O;
bi (-yl-y2+y3+y4)/4.O;
b2 - ( yl-y2+y3-y4)/4.O;
b3 - (-yl+y2+y3-y4)/4.0;
b4 - ( yl-y2+y3-y4)/4.O:
ci - ( al*bl-a3*b3) ;
c2 - ( al*b2-a2*b3) ;
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FEUNCnION kLnjinO

c3 a2*bl-a3*b2);
*area =4.O*cl;
if (*area<=O.0) return (1);

al = ( xl+x2+x3+x4)/4.O;*
a2 =(-xl+x2+x3-x4)/4.O;
a3 = (-xl-x2+x3+x4)/4.O;
a4 = (xl-x2+x3-x4)14.O;
bi = (yl+y2+y3+y4)/ 4 .Q;
b2 =(-yl+y2+y3-y4)/4.O;*
b3 = (-yl-y2+y3+y4)/4.O;
b4 = (yl-y2+y3-y4)/4.O;

= ( 4.O*(al*cl) + 4.O*(a2*c2)/3.0 + 8.O*(a3*c3) )/(*area);
= ( 4.O*(bl*cl) + 4.O*(b2*c2)/3.O + 8.O*(b3*c3) )/(*area);

return (0);

I

FUNTION in miane(L

#include <std.Lo.h>

int in-line(idat~line)

char line(J;

FILE *idat;

f
char cl;
mnt j;-

ci-getc (idat);

line [0] -' \0'
return (1);

else if(cl-10)

line (0]-' \0I;
return (0);

else

line[0]-cl;
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end of doublae lMaice sounoe code

while( (line~j]-getc(idat)) !- 10

if (line C[j I EOF)

printf("\nEND OF FILE ENCOUNTEMD IN itn lineO)\n");
exit(0);

1 inefj-'0;
return (0);

anid of doublet lattiaesou coda
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APPENDIX B

The Doublet Lattice Program Input File

dl INRUT

BLAIRCRAFT 2100 ATTACK FIGHTER
6.0 characteristic length (b)
0.5 Mach
1.00 reduced frequency wb/U
s s: symmetric a: anti-symmetric n: no symmetry

0.0 0.0 x and y coord of inboard leading edge
12.0 0.0 x and y coord of inboard trailing edge
12.0 12.0 x and y coord of outboard trailing edge
0.0 12.0 x and y coord of outboard leading edge

3 number of chordwise cuts (discretized x)
3 number of spanvise cuts (discretized y)

COMMENTS:

Pdimensional pressure
Cpnon-dimensional pressure
rhoair density

P w rho*UA2*Cp

For typical "non-dimensional' input, set Unbul.
The output is interpreted accordingly.
Only Cp is printed out for each box.

Boundary condition (upvash) input for doublet lattice:

flag constant x power y power
1 -1.0 0 0
o -1.0 1 0
0 -1.0 0 1
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0 -1.0 2 0
0 -1.0 1 1
0 -1.0 0 2
end of data

interpretation:

w(xy) - aOO + alO*x + a01*y + a20*xA2 + a&1*z*y + &a2*yA^

instructions:

Only data with a "I" in the first columii vidi be cohoidaied

data.
Replace the "1 with a "0" to ignore any data.
A line which begins with an '"e will toftifate the ihput;
There must be at least one line which bblinb with an "e".

and Of data
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APPENDIX C

The Doublet Lattice Program Output Listing

4

Auxillary runtime data placed in file [dl.TRASH]

Aerodynamic influence coefficients placed in file [dl.AIC)

MILXBOX: 400 MAXDIM: 160000

Begin input
Input data will be read from file [dl.INPUT]
TITLE:
text: (BLAIRCRAFT 2100 ATTACK FIGHTER]
characteristic length: 6.000000
Mach: 0.500000
reduced frequency: 1.000000
Assume symmetry about the x axis
text: [ 0.0 O.Ox and y coord of inboard leading edge]
inboard leading edge: x 0.000000 y 0.000000
inboard trailing edge: x 12.000000 y 0.000000
outboard trailing edge: x 12.000000 y 12.000000
outboard leading edge: x 0.000000 y 12.000000
number of boxes in the x direction: 3
number of boxes in the y direction: 3
Input complete

The uing area used to non-dimensionalise lift is: 4.0000e+00
The wing centroid is at x: 1.000000 and y: 1.000000
Begin discretizing the wing.
Discretization is now complete.

reduced freq (k): 1.0000e+00
betaA2 (1-M42): 7.5000e-01

0123456780
1 234 5 67 A
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Boundazy condition data will be read from file [dl. PMPUT]
reduced frequ~ency (k): 1.0000e+00
[1] a: -1.000000 px: 0 py: 0

compute the upwash at 9 control points

Upwash specified and pressure will be computed
0 Real~w]: 0.0000e+00 Imag~w]: -1.0000e+00
1 Real~w]: 0.0000e+00 Imag~w]: -1.0000e+00
2 Real~w]: 0.0000e+00 Imagfw]: -1.OOO0e+00
3 Realfwj: 0.0000e+00 ImaglwJ: -1.0000e+00
4 Real[w]: 0.0000e+00 Imag~w]: -1.0000e+00
5 Realfw]: 0.0000e+00 Imag~w]: -1.0000e+00
6 Realfw]: 0.0000e+00 Imag~w]: -1.0000e+00
7 Rsal~w]: 0.0000,e+00 Imagfw]: -1.0000e+00
8 Real~w]: 0.0000e+00 Imagtw]: -1.0000e+00

Solve the complex problem {w} - [D] {p}

Cp PRESSURE COEFFICIENTS (P-0.5*rho*U^2*Cp)
box # (real Cp) (imag Cp) (box area)
0 -5.4900e-01 6.2682e+00 1.6000e+01
1 -3.0862e+00 2.4495e+00 1.6000e+01
2 '-3.8736e+00 1.1745e+00 1.6000e+01
3 -5.9144e-01 5.8092e+00 1.6000a+01
4 -3.6405e+00 2.1530e+00 1.6000e+0l
5 -3.6234e+00 1.0281e+00 1.6000e+01
6 -5.8286e-01 4.5474e+00 1.6000e+01
7 -2.8983e+00 1.4663e+00 1.6000e+01
8 -2.8893e+00 7.1186e-01 1.6000e+01.

The characteristic length b: The non-dimanaiotual uiing area used
to non-dimensionalize lift is: 4,0000e+00
Lift Coefficient - C Lq*
THE COMPWLEX WING LFTi COEFFICIENT (C .L) IS:
[(-2.5038e+00) + ( 2,8453e+00)i]
MAGNITUDE: ( 3.7901e+00) PHASE: ( 131.3471)deg 1
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