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The purpose of this paper is to demonstrate the effect of coupling at the laminate level
on coupling at the structural level. Four extension-shear coupled laminates are examined.
The laminates are then used in structures with circular, square and airfoil cross-sections.
The properties of those cross-sections are used to describe a general elastic beam using a
method from Kosmatka. The coupling properties of the beam are compared with those of
the laminate using a normalized coupling coefficient, stiffness coupling ratio and compliance
coupling ratio. The normalized compliance ratio compared well between the laminate and
the cross-sections for all cases.

Nomenclature

α Coupling coefficient.
δΠ Virtual work.
ε Axial strain.
γ Shear strain.
κ “beam” strain.
σ Axial stress.
τ Shear stress.
A Laminate extensional stiffness matrix.
C Material constitutive matrix.
D Cross-sectional stiffness matrix.
E Axial modulus.
G Shear modulus.
N Shape function.
S Laminate compliance matrix.
S16/S11 Shear coupling ratio.
u x displacement.
U(x, y) x warping function.
v y displacement.
V (x, y) y warping function.
w z displacement.
W (x, y) z warping function.
C Carbon.
CLT Classical lamination theory.
DB Double bias.

I. Introduction

Modern wind turbines are being designed with blades approaching 100-m and greater in length. The
mass of blades is proportional to the length by as little as a power of 2.31 and as much as 3.2 In either case,
it is desirable to minimize the weight of the blade, and thereby the cost. As noted in Reference,1 methods
for minimizing the weight include employing alternative composite materials such as carbon fiber3,4 and
introducing twist-bend coupling to passively alleviate loads on the blades.5–11 Effective design of twist-bend
coupled blades requires understanding the correspondence between laminate schedule design, cross section
coupling and thereby global blade behavior.

A correspondence between the laminate shear coupling ratio, S16/S11, and the blade section coupling
will be presented in this paper. The shear coupling ratio will be directly calculated from the constitutive
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laminate properties using classical lamination theory(CLT). The cross-sectional coupling properties will be
calculated using a procedure developed by Kosmatka12 for arbitrary cross-sections with extension-bending-
torsion coupling

Four coupled, hybrid, laminate types are examined, listed in Table 1. The laminates are constructed from
6 layers of 15oz/yd2 unidirectional carbon between two layers of 12oz/yd2 double bias glass fabric. Four of
the layers are rotated to introduce coupling. Four angles were examined, 10, 15, 20 and 25 degrees. Tension,
compression and shear tests of these laminates have been performed at the National Institute for Aviation
Research (NIAR) to determine the elastic moduli.

II. Laminate Coupling

For blade designs with bend-twist coupling the level of coupling at the laminate level can be quantified
using either the laminate compliance matrix, [S], or the laminate extensional stiffness matrix, [A].13 The
resulting extensional strains can be written in terms of the “average laminate stresses” as

εxx

εyy

γxy

 =

S11 S12 S16

S12 S22 S26

S16 S26 S66




σ̄xx

σ̄yy

τ̄xy

 (1)

The extensional and shear strains corresponding to an axial stress state (σ̄xx 6= 0, σ̄yy = τ̄xy = 0) can be
written as

εxx = S11σ̄xx (2)
γxy = S16σ̄xx

This results in a shear strain to axial strain ratio of

γxy/εxx = S16/S11 (3)

where S16/S11 is the laminate shear coupling ratio, which represents the shear strain per unit axial strain.
The laminate shear coupling ratio is listed in Table 2 and plotted in Figure 1. Reviewing Table 1,

laminate 1 is the uncoupled basis laminate against which to compare laminates 2 through 5 which have
varying amounts of off-axis layers. Four layers are oriented off-axis 10◦ in laminate 2, 15◦ in laminate 3,
20◦ in laminate 4 and 25◦ in laminate 5. With increasing angle, there is an acceleration in reduction of
the axial stiffness. The shear coupling ratio is maximum at 15◦ in laminate 3 and decreases after that.
Laminate 2, with 0.86 of the axial stiffness of laminate 1, exhibits a shear coupling ratio approximately equal
to laminate 4, which has 0.61 of axial stiffness of laminate 1.

III. Section Coupling

The current cross-sectional modeling procedure is based on the approach presented by Kosmatka12 for
arbitrary cross-sections with extension-bending-torsion coupling. Cross-sectional properties are determined
in terms of four strain measures: extension, two bending curvatures, and twisting. These four stain measures
are used in conjunction with generalized warping functions that are determined by applying the principle of
virtual work.

III.A. Cross-Sectional Stiffness Matrix

The beam cross-section, Figure 2, is assumed to lie in the x-y plane with axial loading P in the z direction,
bending moments Mx and My about the x and y axes, and torsion T about the z axis. For these stress
resultants the beam x-y-z displacements (u, v, w) are assumed to be of the form:

u(x, y, z) = −yzθ +
z2

2
κx + U(x, y)

v(x, y, z) = xzθ − z2

2
κy + V (x, y) (4)

w(x, y, z) = ze− xzκx + yzκy + W (x, y)
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Table 1. Composite laminates.

Laminate Schedule Angle Behavior
1 [±45DB/(0C)3]s 0 Quasi-Orthotropic
2 [±45DB/(10C)2/0C ]s 10 Coupled, Extension/Shear
3 [±45DB/(15C)2/0C ]s 15 Coupled, Extension/Shear
4 [±45DB/(20C)2/0C ]s 20 Coupled, Extension/Shear
5 [±45DB/(25C)2/0C ]s 25 Coupled, Extension/Shear

Table 2. Effect of coupling on axial modulus.

Ex Ey Gxy Ex S16
S11Laminate (GPA) (GPa) (GPa) Reduction

1 106.4 10.26 6.00 1.00 0.000
2 87.9 10.27 6.72 0.83 -1.300
3 74.9 10.34 7.60 0.70 -1.417
4 64.7 10.50 8.75 0.61 -1.327
5 57.3 10.80 9.98 0.54 -1.150
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Figure 1. Effect of the angle of the off-axis plies on the level of coupling.
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Figure 2. Beam cross-section coordinate system, stress resultants, and displacements.

where e, κx, κy and θ are the “beam” strain measures and the two-dimensional warping functions U ,
V , and W are added to accommodate both in-plane and out-of-plane changes in shape that are compatible
with the beam strain measures. Expressions for U , V , and W can be determined using the finite element
method. The basic approach consists of the following steps:

1. Create a two-dimensional finite element model of the beam cross-section.

2. Determine the displacements U , V , and W corresponding to unit strain measures.

3. Integrate the stresses over the cross-section to determine the cross-sectional stiffness matrix [D],
where {F} = [D]{h}

with

{F}T = {P My Mx T}
{h}T = {e κx κy θ}

For completeness, a description of the detailed finite element procedure is given in Appendix A.

III.B. Cross-Sectional Modeling

Five different cross-sections, Figure 3, were modeled in order to evaluate the difference between laminate
coupling and cross-sectional coupling. Laminate 1 is the uncoupled laminate from Table 1; laminates 2
through 5, also listed in Table 1, have varying amounts of coupling. Finite element meshes for these cross-
sections are shown in Figure 4. Note that the thickness is not to scale. All of the meshes were generated
using three grid(or node) points through the thickness of the laminate, which resulted in approximately 600
grids with 3 degrees-of-freedom at each grid.

III.C. Cross-Sectional Coupling

As previously mentioned laminate level coupling can be examined based on the laminate shear coupling ratio
S16/S11. The results shown in Figure 1 indicate a maximum level of coupling for laminate 3 which has an
angle of 15◦. The cross-sectional coupling can be determined based on the cross-sectional stiffness matrix,
[D]. Bend-twist coupling between the bending moment Mx and the torsion T is due to the stiffness term
D34. Coupling results for wind blade applications have typically been presented in terms of the coupling
coefficient α, which is defined as5

α = −D34/
√

D33D44 (5)

For the cross-sections shown in Figure 3, coupling coefficients for the 4 laminate styles are given in Table 3.
Normalized values were also calculated by dividing the actual α value by the maximum α value, αmax, for
the given cross-section. These normalized coupling coefficients are plotted in Figure 5.

4 of 16

American Institute of Aeronautics and Astronautics



π/43π/4

5π/4 7π/4

Laminate 1Laminate 1

Coupling

Coupling

(a) Circle

( 0.5, 0.5)(-0.5, 0.5)

(-0.5,-0.5) ( 0.5,-0.5)

Laminate 1Laminate 1

Coupling

Coupling

(b) Square

0.2c 0.4c

Coupling Laminate 1Laminate 1

(c) Single-Cell

0.2c 0.3c 0.4c

Coupling Laminate 1Laminate 1

(d) Two-Cell

0.2c 0.4c

Coupling Laminate 1Laminate 1

(e) Three-Cell

Figure 3. Coupled cross-sections.
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Figure 4. Cross-section meshes.
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Table 3. Cross-sectional coupling coefficient.

NACA 0012
Laminate Angle Box Circular Single-Cell Two-Cell Three-Cell

Coupling coefficient α

2 10 0.213 0.220 0.087 0.088 0.116
3 15 0.254 0.263 0.098 0.100 0.141
4 20 0.258 0.269 0.095 0.097 0.144
5 25 0.238 0.249 0.084 0.086 0.133

Normalized coupling coefficient α/αmax

2 10 0.824 0.817 0.883 0.879 0.804
3 15 0.984 0.980 1.000 1.000 0.977
4 20 1.000 1.000 0.966 0.969 1.000
5 25 0.924 0.928 0.856 0.860 0.921

Laminate coupling coefficients were computed using three approaches. The first approach uses the lam-
inate coupling ratio, S16/S11, from Figure 1. The second approach is based on a laminate level coupling
coefficient that is calculated from the laminate extensional stiffness matrix, [A]. This coefficient, denoted as
α1, is defined as

α1 = A16/
√

A11A66 (6)

The third approach is based on a laminate level coupling coefficient that is calculated from the reduced
laminate extensional stiffness matrix, [A∗]. This coefficient, denoted as α2, is defined as

α2 = A∗
16/

√
A∗

11A
∗
66 (7)

where [
A∗

11 A∗
16

A∗
16 A∗

66

]
=

[
S11 S16

S16 S66

]−1

This approach is based on the assumption that the laminate average stress in the y-direction is equal to zero
(σ̄yy = 0). These three laminate coupling coefficients are listed in Table 4 and plotted in Figure 5. The cross-

Table 4. Laminate coupling coefficient.

Laminate Angle S16/S11 α1 α2

Actual value
2 10 1.300 0.367 0.359
3 15 1.417 0.470 0.452
4 20 1.327 0.527 0.488
5 25 1.150 0.552 0.480

Normalized value
2 10 0.917 0.664 0.737
3 15 1.000 0.852 0.925
4 20 0.936 0.956 1.000
5 25 0.812 1.000 0.983

sectional and laminate coupling results shown in Figure 5 indicate that the laminate coupling coefficients,
equations 3, 6 and 7, do not correlate well with the cross-sectional coupling coefficient, equation 5.

Two more alternatives for comparing cross-sectional and laminate coupling results are: (1) a comparison
of the stiffness ratios, and (2) a comparison of the compliance ratios. The cross-sectional stiffness ratio is
defined as D34/D33. Cross-sectional stiffness ratios for the 4 laminate styles are given in Table 5 and plotted
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Figure 5. Comparison of cross-sectional coupling coefficient with laminate coupling coefficient.

in Figure 6. For the laminate the two stiffness ratios are defined as A16/A11 and A∗
16/A

∗
11. Values for these

stiffness ratios are given in Table 6 and plotted in Figure 6.
The cross-sectional compliance ratio is defined as S̄34/S̄33 where the cross-sectional compliance, [S̄], is

the inverse of the cross-sectional stiffness, [D]. Cross-sectional compliance ratios for the 4 laminate styles
are given in Table 7 and plotted in Figure 7. For the laminate the compliance ratio S16/S11 (or coupling
coefficient) is given in Table 4 and plotted in Figure 7. For reference a ±5% variation of the laminate
compliance ratio is also shown. The results for all cross-sections are consistently in very good agreement
with the laminate results.

To further explain and understand the differences between laminate and cross-sectional results, compli-
ance and stiffness coupling terms are tabulated in Table 8, where the laminate compliance terms are the
same as the results given by equations 2 and 3. The various coupling ratios can be described as follows:
(1)S16/S11 is the ratio of laminate shear strain to laminate axial strain due to an axial stress, (2)A16/A11

is the ratio of laminate shear stress to laminate axial stress due to an axial strain, (3)S̄34/S̄33 is the ratio
of cross-sectional shear strain to cross-sectional bending strain due to a bending moment, (4)D34/D33 is the
ratio of cross-sectional bending moment to cross-sectional torsional moment due to a bending strain. The
compliance ratios S̄34/S̄33 and S16/S11 are both consistent since an applied bending moment at the cross-
section level is equivalent to a laminate level axial stress in the flanges. On the other hand, the stiffness ratios
D34/D33 and A16/A11 are measures of the moments and stresses due to a cross-sectional bending strain and
a laminate axial strain. In general, these two strain fields are equivalent only when the cross-section and the
laminate are both restrained such that θ and γxy are zero. Furthermore, since the cross-section finite element
model is capable of local cross-sectional distortions, laminate level shear strains (in the cross-sectional model)
can occur even when θ is zero. The conclusion is that the stress fields at the laminate and cross-sectional
levels are equivalent, but the strain fields are not. Further study is required to determine whether this same
conclusion always applies to bend-twist coupled blade designs.
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Table 5. Cross-sectional stiffness ratio.

NACA 0012
Laminate Angle Box Circular Single-Cell Two-Cell Three-Cell

Stiffness coupling ratio
2 10 0.0722 0.0824 0.0395 0.0395 0.0526
3 15 0.0943 0.1085 0.0465 0.0467 0.0672
4 20 0.1041 0.1208 0.0464 0.0467 0.0720
5 25 0.1027 0.1201 0.0420 0.0424 0.0686

Normalized stiffness coupling ratio
2 10 0.693 0.682 0.849 0.846 0.730
3 15 0.906 0.898 1.000 1.000 0.933
4 20 1.000 1.000 0.997 1.000 1.000
5 25 0.986 0.995 0.903 0.908 0.953

Table 6. Laminate Stiffness ratio.

Laminate Angle A16/A11 A∗
16/A

∗
11

Actual value
2 10 0.100 0.099
3 15 0.147 0.144
4 20 0.190 0.179
5 25 0.227 0.200

Normalized value
2 10 0.439 0.496
3 15 0.646 0.718
4 20 0.836 0.896
5 25 1.000 1.000

Table 7. Cross-sectional compliance ratio.

NACA 0012
Laminate Angle Box Circular Single-Cell Two-Cell Three-Cell

Compliance coupling ratio
2 10 0.626 0.585 0.190 0.195 0.255
3 15 0.682 0.638 0.207 0.213 0.294
4 20 0.638 0.597 0.194 0.200 0.288
5 25 0.553 0.517 0.168 0.173 0.256

Normalized compliance coupling ratio
2 10 0.917 0.917 0.917 0.914 0.865
3 15 1.000 1.000 1.000 1.000 1.000
4 20 0.936 0.936 0.936 0.938 0.978
5 25 0.811 0.811 0.811 0.815 0.870
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Table 8. Summary of Compliance and Stiffness Ratios.

Compliance Stiffness

Laminate
(

εxx

γxy

)
=

"
S11 S16

S16 S66

# (
σ̄xx

τ̄xy

) (
σ̄xx

τ̄xy

)
=

"
A11 A16

A16 A66

# (
εxx

γxy

)
εxx = S11 ¯σxx γxy = S16σ̄xx σ̄xx = A11εxx τ̄xy = A16εxx

γxy/εxx = S16/S11 τ̄xy/σ̄xx = A16/A11

Cross-Section
(

κy

θ

)
=

"
S̄33 S̄34

S̄34 S̄44

# (
Mx

T

) (
Mx

T

)
=

"
D33 D34

D34 D44

# (
κx

θ

)
κy = S̄33Mx θ = S̄34Mx Mx = D33κy T = D34κy

θ/κy = S̄34/S̄33 T/Mx = D34/D33
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Figure 6. Comparison of cross-sectional stiffness ratio with laminate stiffness ratio.

10 of 16

American Institute of Aeronautics and Astronautics



0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

5 10 15 20 25 30
Off-axis ply angle, degrees

N
on

di
m

en
si

on
al

 c
om

pl
ia

nc
e 

ra
tio

Box
Circular
NACA 0012 Single-Cell
NACA 0012 Two-Cell
NACA 0012 Three-Cell
Laminate Coupling Coefficient S16/S11
Laminate Coupling Coefficient +5%
Laminate Coupling Coefficient -5%

Figure 7. Comparison of cross-sectional compliance ratio with laminate compliance ratio.

IV. Conclusions and Recommendations

This paper examined the effect of coupling at the laminate level on coupling at the structural level. Four
extension-shear coupled laminates are examined. The laminates are then used in structures with circular
and square cross-sections followed by cross-sections representative of wind turbine blades. The properties of
those cross-sections were used to describe a general elastic beam using a method from Kosmatka.

Laminate and cross-sectional coupling were compared using a normalized coupling coefficient, stiffness
coupling ratio and compliance coupling ratio. Normalized coupling coefficients and stiffness coupling ratios
did not compare well between the laminate and the sections. The normalized compliance ratio compared well
between the laminate and the cross-sections for all cross-sections. The worst correlation of the normalized
compliance ratio was observed between the laminate and the three-cell airfoil.
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A. Cross-Sectional Modeling Details

The three-dimensional strain components can be determined by differentiating equations 4, the result is

εxx = u,x = U,x, γxy = u,y + v,x = U,y + V,x

εyy = v,y = V,y, γyz = v,z + w,y = xθ + W,y (8)
εzz = w,z = e− xκx + yκy, γxz = u,z + w,x = −yθ + W,x

Three-dimensional stresses (σxx, σyy, σzz, τyz, τxz, τxy) can be determined using Hooke’s law

{σ} = [C]{ε} (9)

where

{σ}T = {σxx σyy σzz τyz τxz τxy}
{ε}T = {εxx εyy εzz γyz γxz γxy}

Expressions for the functions U , V , and W can be determined using the principle of virtual work:

δΠ =
∫

V

{δε}T {σ}dV =
∫

V

{δε}T [C]{δε}dV = 0 (10)

Since all of the strain terms are either constant or depend only on x and y, the volume integral in
equation 10 can be reduced to an area integral over the cross-section. Furthermore, the functions U , V ,
and W can be approximated using two-dimensional finite element shape functions. The resulting element
displacements are of the form

U = {N(x, y)}T {dU} V = {N(x, y)}T {dV } W = {N(x, y)}T {dW } (11)

where {dU}, {dV } and {dW } are nodal displacements. Substitution of equations 11 into equations 8 produces
element strains that depend on the constants e, κx, y and θ as well as the nodal displacements:

{ε} = [B]{d}+ [f ]{h} (12)
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where

[B] =



{N}T
,x 0 0

0 {N}T
,y 0

0 0 0
0 0 {N}T

,y

0 0 {N}T
,x

{N}T
,y {N}T

,x 0


{d} =

dU

dV

dW



[f ] =



0 0 0 0
0 0 0 0
1 −x y 0
0 0 0 x

0 0 0 −y

0 0 0 0


{h} =


e

κx

κy

θ



and [B] is the standard finite element matrix that relates the strains to the nodal displacements. Using
equation 12 and taking the variation with respect to the functions U , V , and W produces virtual strains

{δε} = [B]{δd} (13)

Substitution of equations 12 and 13 into equation 10 yields the following system of linear algebraic
equations to solve for the nodal displacements [∆]:

[K][∆] = [R] (14)

where

[K] =

number of
elements∑

i=1

[Ki] [Ki] =
∫

A

[B]T [C][B]dA

[R] =

number of
elements∑

i=1

[Ri] [Ri] = −
∫

A

[B]T [C][f ]dA

[∆] =
[
{D1} {D2} {D3} {D4}

]
and [Ki] and [Ri] are element matrices, and the displacement vectors {D1} through {D4} are the nodal
displacements corresponding to “unit” values of the strain measures. That is, for displacement vector
{D1}, the strain measure vector is {h1} where {h1}T = {1 0 0 0}, for displacement vector {D2} it is
{h2}T = {0 1 0 0}, etc. Thus, the element displacement vector {d} can be written as

{d} = [∆i]{h} (15)

where [∆i] is the element [∆] matrix. Substitution of equation 15 into equation 12 yields the following strain
vector for each element

{ε} =
(
[B][∆i] + [f ]

)
{h} (16)

With the strains determined, element stresses can be determined using equation 9:

{σ} = [C]{ε} = [C]
(
[B][∆i] + [f ]

)
{h} (17)

The desired cross-sectional stiffness matrix can be obtained by integrating the stresses over the cross-
section. This produces stress resultants (Figure 2) that are defined as

P =
∫

A

σzzdA Mx =
∫

A

yσzzdA

T =
∫

A

(xτyz − yτxz)dA My = −
∫

A

xσzzdA (18)
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For each element, these stress resultants can be written in matrix form as

{Fi} =
∫

A

[f ]T {σ}dA =
(∫

A

[f ]T [C][B]dA[∆i] +
∫

A

[f ]T [C][f ]dA

)
{h} (19)

where
{Fi}T = {P My Mx T}i

Summing over all of the elements produces the result

{FE} = [D]{h} (20)

where

[D] = [D1]− [R]T [δ] (21)

[D1] =

number of
elements∑

i=1

∫
A

[f ]T [C][f ]dA

−[R]T [δ] =

number of
elements∑

i=1

∫
A

[f ]T [C][B]dA[δi] (22)

{FE}T = {F}T = {P My Mx T}

[D] is the desired cross-sectional stiffness matrix, and the subscript“E” denotes forces due to elastic
deformation

A.A. Element Coordinate System

All stress-strain relations are based on orthotropic material properties for each layer of material. These
properties are specified in the material 1, 2, 3 coordinate system shown in Figure 8. The transformation
from material 1, 2, 3 coordinates to global x, y, z coordinates consists of two steps. First, the transformation
is determined between material 1, 2, 3 coordinates and element x̄, ȳ, z̄ coordinates. The material 1, 2 axes
are obtained by rotating the element x̄, ȳ axes through an angle θ about the z̄ axis as shown in Figure 8.
Note that the material 3 axis coincides with the element z̄ axis. The second transformation is between
element x̄, ȳ, z̄ coordinates and global x, y, z coordinates. The element ȳ, z̄ axes are obtained by rotating
the global x, y axes through an angle α about the z axis as shown in Figure 9. Note that the element x̄ axis
coincides with the global z axis. In general, the angle α will vary within an element and must be determined
by evaluating the Jacobian matrix.

Figure 8. Beam cross-section material and element coordinate systems.

A.B. Element Shape Functions

Rectangular Lagrange quadratic elements,14 Figure 10, were chosen for the current cross-sectional modeling
approach. These elements are used to interpolate the element displacements and the cross-sectional geometry.
The element shape functions are given in equation 23.
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Figure 9. Beam cross-section element and global coordinate systems.

Figure 10. Nine node Lagrange quadratic element.
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N1 = 1
4 (ξ

2 − ξ)(η2 − η) N2 = 1
2 (1− ξ2)(η2 − η) N3 = 1

4 (ξ
2 + ξ)(η2 − η)

N4 = 1
2 (ξ

2 − ξ)(1− η2) N5 = (1− ξ2)(1− η2) N6 = 1
2 (ξ

2 + ξ)(1− η2)

N7 = 1
4 (ξ

2 − ξ)(η2 + η) N8 = 1
2 (1− ξ2)(η2 + η) N9 = 1

4 (ξ
2 + ξ)(η2 + η) (23)

The cross-section is modeled based on defining the element ξ coordinate in the positive s direction as shown
in Figure 11.

Figure 11. Positive s direction for element coordinate.
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