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Abstract

This report documents the evaluation of the aeroelastic analysis capability
of the Unsteady Transonic Small-Disturbance code (USTSD) applied to a
business jet configuration. In USTSD, the solution to the transonic small-
disturbance equation is calculated in the frequency domain. Pressure dis-
tributions, lift, drag and pitching moment coefficients are calculated and
compared with available data. With a 2D boundary layer analysis included,
the finite-difference solution of the non-conservative TSD equation tends to
provide better correlation with data as compared with the conservative for-
mulation in steady flow. In flutter analysis, the non-conservative formulation
generates a higher flutter speed than the conservative formulation.
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Chapter 1

Introduction

This report documents the evaluation of the aeroelastic analysis capability
of the Unsteady Transonic Small-Disturbance code (USTSD). USTSD is ca-
pable of calculating the steady and unsteady aerodynamic characteristics of
general aircraft configurations. In this report, the USTSD is used to calcu-
late the generalized aerodynamic forcing function required for the solution
of the flutter equation.

Current computational aeroelastic methods are presented in Reference [2].
In this reference, the time domain methods CAP-TSD, CFL3D and ENS3DAE
are presented. Transonic small-disturbance theory (TSD) is utilized in CAP-
TSD. Both CFL3D and ENS3DAE calculate solutions of the Euler and
Navier-Stokes equations. The aerodynamic geometry and structural dynam-
ics of the model are required to perform aeroelastic analysis with these codes.
Orthogonal modes of vibration are used to represent the structural dynam-
ics. The mode shapes are interpolated from the modal grid to the compu-
tational grid on which the aerodynamic solution is obtained. For the Euler
and Navier-Stokes solutions, the grid must move with the surface. The TSD
boundary conditions are applied on a mean plane and therefore the moving
grid is not required. Once the time-domain solution is obtained, it must be
processed to generate the generalized aerodynamic forcing function for the
flutter equation. Finally, the stability of the system is calculated.

Experience from previous computational aeroelastic flutter analysis in the
time-domain suggests that approximately 100 analysis cycles are required to
determine the flutter boundary for a range of Mach numbers and dynamic
pressures. The associated computational cost limits the suitability of these
methods to analysis of conditions considered critical based on linear solutions.



This cost is not acceptable for multi-disciplinary design problems that require
as many as 10° to 10° evaluations of the system (Ref. [2]).

One approach to reducing the computational cost is to perform the anal-
ysis in the frequency domain. By performing the analysis in the frequency
domain, the post-processing of the results to obtain the generalized aerody-
namic forcing coefficient is negated. Furthermore, when the TSD equation is
solved in the frequency domain, the unsteady equations are similar in form
to the steady equation and can be solved using the same solution algorithm.
Thus, significant computational savings can be realized by performing the
solution in the frequency domain.

In the USTSD code, the frequency domain approach is applied to the
TSD equation. The frequency domain TSD equation is formulated from the
time-domain equation using the method of harmonic averaging (Ref. [6, 11]).
The USTSD code has been developed at the University of Kansas over the
past ten years for jet fighter configurations. Since fighter wings are thin
(less than 6% in thickness ratio ), it is not certain how the USTSD code will
perform for the aeroelastic analysis of a business jet configuration that has a
thicker wing. The capability of the code to perform aeroelastic analysis of a
business jet configuration is presented in this report.



Chapter 2

Unsteady Transonic
Small-Disturbance Theory

Formulation of the unsteady transonic small-disturbance (TSD) equation
used in the USTSD is presented in this chapter. In the time domain, the
unsteady TSD equation is derived from the full potential equation. Using the
method of harmonic averaging, the unsteady TSD equation is then expressed
in the frequency domain. The chapter is concluded with the formulation of
the boundary conditions.

2.1 Time Domain

The unsteady TSD equation is derived from the full potential equation. The
full potential equation is a simplification of the Euler equations assuming
isentropic and irrotational flow. In transonic flow, the assumption of isen-
tropic flow is not valid. Despite this inconsistency in the formulation of the
potential equation, adequate transonic flow estimations have been performed
using the full potential equation (Ref. [16]). The full potential equation is
expressed:

Dy +2UDy; + 2V Oy, + 2W Dy,
= (= U2) Pt (@ = V) by + (0 = W)
— WV, — 2UW,, — 2VW D, (2.1)

where ® is the velocity potential, U is the velocity in the X direction, V'
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is the velocity in the Y direction, IV is the velocity in the Z direction, a is the
local speed of sound and % is time. Subscripts denote partial differentiation of
the variable with respect to the subscript variable. The unsteady TSD equa-
tion is a simplification of the full potential equation. The velocity potential
is assumed to be the sum of the freestream potential and a perturbation or
small-disturbance velocity potential, ¢(z, vy, 2, t):

S (z,y,2,t) = Veor + ¢ (z,y, 2, 1) (2.2)

The first step of deriving the unsteady TSD equation from Equation 2.1
is to express the local velocities and speed of sound as gradient components
of the velocity potential. After substituting the expressions for velocity and
speed of sound into the full potential equation, small-disturbance assump-
tions are applied and higher order terms are subtracted from the equation,
except the ¢, term in the coefficient of ¢,,, since it is not small compared
with the other terms in the coefficient. Finally, velocity and speed of sound
terms are recast using Mach number, resulting in the classical unsteady TSD
equation:

br | M2 i 5 M, ¢,
— +2 =(1—-M2)— 1 2

Two corrections are applied to Equation 2.3 to improve the correlation
with experiment. For improved calculation of swept-back wings, the non-
linear terms 2M?2 ¢, dry/ Voo and (v — 1) M2 ¢, ¢y, /Veo are included (Ref. [13]).
As shown by Krupp [10], prediction of the shock jump condition is improved
by setting the exponent of the Mach number to 1.75 when it is a coefficient
of ¢ ¢,.. The corrected unsteady TSD equation is expressed:

b M
2 TPV
_ : ML, M26,6,
- [(1_Mm) - (7"'1) Tw:| Orz _2#
2
+ im0 o+ o (2.4



Recast in conservative form:

2
2 <L¢t + 2%@5)

ot \ a%
_ 0 2 (’Y+1)M§<575 2 (7_3)Mgo 2
= o [(1 — M%) ¢, — oV o5+ 7 o
0 (y—1) M2 0
o= O 0]+ 20 25)

2.2 Frequency Domain

The unsteady TSD equation is solved in the frequency domain in the USTSD
program. Solutions of the unsteady TSD equation in the time domain are
generally accomplished using an implicit solution algorithm. Formulation
of the equation in the frequency domain is accomplished using the theory
of harmonic averaging [14]. Successful application of the theory of har-
monic averaging to transonic aerodynamic problems has been shown in Ref-
erences [7, 8, 9, 17]. The advantage of this formulation is that a steady flow
solution algorithm can be utilized, reducing the computational requirements.

To apply the method of harmonic averaging, the small-disturbance ve-
locity potential is expressed as the superposition of steady and unsteady
components:

¢ (XY, Z,t) = ¢* (XY, Z) + ¢* (X,Y, Z) cos (6 + 6) (2.6)

Where ¢* is the steady component and ¢* is the unsteady component.
Theta is defined as # = wt. The phase angle is §. For notational purposes,
in-phase and out-of-phase velocity potentials are also defined:

¢o — ¢s+¢u(o)

where:

D = @¥cosd
¢"© = $Usind



The frequency domain TSD equation is obtained by substituting the new
velocity potential definition, Equation 2.6, into Equation 2.4. The theory
of harmonic averaging is applied to the resulting equation to remove the
time-dependent terms. This results in modeling the problem as an in-phase
and out-of-phase solutions superposed on a steady state solution. The steady
state TSD equation is obtained by neglecting all unsteady terms from the fre-
quency domain TSD equation. The steady state TSD equation is expressed:

5 . 175 , Mgo 2
0 s juoo $ 18 s\ —
T 9 [¢y —(r=1 Voo 20| T 52 (¢Z) =0 27)

Three forms of averaging are performed to obtain the equation for the
unsteady response. First, the steady terms are subtracted from the frequency
domain TSD equation, integrating the result over one cycle to obtain an
overall average unsteady response:

‘—voo A A A 28)

Then the in-phase average response is formulated by multiplying the fre-
quency domain TSD by cos# and integrating over one cycle:

_w2 u(i) _ WMQ u(o)
CAOE S
9 . 175 M2
= o |02) () - - D)+ (-9 ()
+ a—y[¢y—(7—1) T 4, +@(¢z) (2.9)

Finally, the out-of-phase average response is formulated by multiplying
frequency domain TSD by sin # and integrating over one cycle:



= ey e - 0 -0t 0 -3 1R )
a 0 Mc?o 0 10 o
s e o R+ 5 @) (210)

To obtain the in-phase unsteady response, the overall average response
(Eqn 2.8) is multiplied by cos?d and added to the steady flow response
(Egn 2.7) and the in-phase average response (Eqn 2.9). The final in-phase
frequency domain unsteady TSD equation can now be expressed:

w? wM 2
_ 2 u(d) _ U(O)

175

=%[(1—M§o)<¢;)—(v D ()" + (- 9) = (6)°
o 6

. M2 .. .
iy [¢;—(7—1) V—:¢;¢; +$(¢2) (2.11)

Similarly, to obtain the out-of-phase unsteady response, the overall av-
erage response (Eqn 2.8) is multiplied by sin?¢ and added to the steady
flow response (Eqn 2.7) and the out-of-phase average response (Eqn 2.10).
The final out-of-phase frequency domain unsteady TSD equation can now be
expressed:

;‘)72 u(o) wM2 ¢U(Z
9 175 M?
- o [(1—M2)(¢$)—(v D) S (60" + (1= 3) 3= (47)
+ = [¢0 —(y-1) M—é¢°¢” + 2 () (2.12)
dy |7V v Ve ' 57Y 0z % .

Note that Equations 2.11 and 2.12 have the same form as the steady flow
equation (Equation 2.7) if the unsteady terms on the left hand side are set
to zero. In this form, the in-phase and out-of phase equations can be solved
using the same solution algorithm as the steady flow equation.
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2.3 Boundary Conditions

To solve the TSD equation, boundary conditions must be specified on the
wing, body, wake and far-field. The wing and body boundary conditions are
formulated to restrict flow from passing through the surface. Wake boundary
conditions are formulated so that there are discontinuities in pressure across
the wake. Far-field boundary conditions are broken into subsonic and su-
personic conditions. For subsonic freestream flow, the boundary conditions
are formulated so that there is zero flux normal to the boundary. In the
case of supersonic freestream flow, far-field boundary conditions must be ap-
plied so that outgoing waves are not reflected. Formulation of the boundary
conditions is presented in this section.

2.3.1 Wing Boundary Conditions

Wing boundary conditions are enforced on the wing reference plane. The
wing reference plane approximates the wing with a planar sheet of zero
thickness upon which the surface slopes are specified. For steady state cal-
culations, the fluid velocity normal to the wing is zero. When considering
unsteady flow, the fluid velocity normal to the wing is set equal to the ve-
locity of the wing surface. Fixing the coordinate system with the flow field,
the flow tangency condition is expressed:

DF 0F &
—=—+V-VF=0 2.13
Dt ot (2:13)
Velocities in Equation 2.13 must be expressed in terms of the small-
disturbance potential. The velocity potential applied to the wing boundary

condition in the fixed coordinate system is expressed:

S =XVycosa+ ZVsina+ ¢(X,Y, Z,1) 2 XV + ZVea+ ¢ (2.14)

The vector F' is the instantaneous vertical location of the wing surface,
defined by F' = Z — f(X,Y,t). The wing reference plane is vertically located
at Z. To model the flutter motion, the function f(X,Y,t) should express
the vertical elastic deformation motion. However, the rigid pitching motion
will also be included for pitch damping calculations. The motion is defined



in a moving coordinate system, illustrated in Figure 2.1. The equation is
expressed as (Ref. [9]):

fX,Y,t) = —f(x,y) cos 8 + f*(z,y) cosa™ — (x — x,) sina” (2.15)
where the relation between the fixed and moving coordinate system is:
X = (x —xp) cosa™ + fi(z,y)sina” + z, (2.16)

The function f¥(x,y) describes the displacement of a structural mode
shape in free oscillation. The function f*(x,y) describes the wing surface
shape. The instantaneous pitch angle is o*(t) = @ cos ), where @ is the pitch
amplitude.

The boundary condition is formulated by substituting Equation 2.14 for
velocities and Equation 2.15 for the vector F' into Equation 2.13. To main-
tain compatibility with the Krupp correction applied to the TSD equation,
a Krupp-type [10] scaling factor, 1/M%2° is applied to the boundary condi-
tions. The wing boundary condition is expressed as:

¢: = %01-1250 [f"(1+a%) +a(z— )]

n Voo [—flcosO+ fi—dcost
-
MO-25 1+ aficosf

(2.17)

Now the method of harmonic averaging is applied to remove the time-
dependent terms. This results in steady state, in-phase and out-of-phase
equations. To apply the method of harmonic averaging, the normal velocity
potential is redefined ¢, = ¢% + ¢%cos(f + §). The steady state equation is
formulated by neglecting all time dependent terms. It is expressed:

Voo

¢ = 0 (fs —a) (2.18)

The in-phase response is formulated in 2 steps. First, the wing boundary
equation is multiplied by cos #, integrating the result over one cycle to obtain
an in-phase average response. Then the average response is added to the
steady state equation, Equation 2.18. The in-phase wing boundary condition

becomes:



Figure 2.1: Relation between moving and fixed coordinate system.

. Vi
¢ 7

=l -ed) - fr-a—a]-afis  (219)

The out-of-phase response is similarly formulated. First, the wing bound-
ary equation is multiplied by sin 6, integrating the result over one cycle to
obtain an out-of-phase average response. Then the average response is added
to the steady state equation, Equation 2.18. The out-of-phase wing boundary
condition becomes:

Voo ofa) -
ot = gy U2 =)= o [ (145 #atea] 0

2.3.2 Body Boundary Conditions

Body boundary conditions are enforced on a fixed length, constant cross-
section rectangle denoted the boundary condition support surface (BCSS).

10



Use of the BCSS simplifies grid generation while applying the boundary
conditions in a manner that is consistent with the accuracy of the unsteady
TSD equations. On the upper and lower surfaces of the BCSS, the boundary
condition is similar to Equation 2.19.

The upper and lower unsteady boundary conditions are based on the con-
cept in slender body theory in which a distribution of doublets that perturb
the flow to correspond to the shape of the body are specified on the body
axis. The strength of the doublet distribution is proportional to the body
cross-sectional area. This concept is applied to Equation 2.19 by multiply-
ing the angle of attack terms by the cross section area, S,. The in-phase
component becomes:

i % o —~ v
P, = <83:)b Sea+a+ f7] (2.21)

The wing surface slope, f*, has been replaced in Equation 2.21 by the
body slope, 0z/0x. Since the boundary condition is applied on a surface with
finite radii in the TSD theory instead of on the axis, the doublet strength
should be inversely proportional to the surface area. The surface area is
proportional to the radius for a unit distance in the length-wise direction of
the body. The adjusted upper and lower surface in-phase body boundary
condition is expressed:

6= (5) - Velerarr (222

Similarly, the out-of-phase body boundary condition is expressed:

o= (5) - VEerolrrae-s) @2

The boundary condition on the sides of the BCSS is simply expressed:

¢y = Fy (2.24)

11



2.3.3 Wake Boundary Conditions

The wake boundary condition is defined such that the pressure difference
across the wake vortex sheet is zero. This is equivalent to satisfying the
circulation convection equation:

Dr or + >6F .

Dt ot dx

where (U) is the local average velocity, defined as the average of velocity
components U above and below the wake. Circulation at the trailing edge can

be obtained numerically by calculating the difference of velocity potentials
above and below the wake. The circulation is defined as:

0 (2.25)

' = Ve¢*cos(d + 0) (2.26)

where V¢* = ¢*" — ¢*~. The superscripts “+” and “” denote limits as
the sheet is approached from above and below, respectively. Expressing (U)
in term of the unsteady velocity potential results in:

(U™ = (1+ ¢, + ¢" cos(0 + 5)) (2.27)

Then, using the averaging technique, the in-phase and out-of-phase com-
ponents for the wake boundary conditions are obtained:

- (Vi) ) 4 (Uuinr«® = g (2.28)

w .
— | @ 4 (guleypul) —
(i) 0+ )

where (U*®) = (14 ;) and (U*)) = (1 + ¢4

2.4 Far-Field Boundary Conditions

Far-field boundary conditions are prescribed on the side and outflow bound-
ary of the computational domain. The outflow boundary is defined as the

12



boundary downstream of the model in the x-direction. Side boundaries
bound the model above and below in the z-direction and on the left and right
in the y-direction. The conditions are formulated separately for subsonic and
supersonic freestream flow. For subsonic freestream flow, the boundary con-
ditions are specified such that there is no perturbation velocity component
normal to the boundary. On the boundaries normal to the z-axis above and
below the model, the boundary conditions are:

¢, =
¢ = 0 (2.29)
¢; = 0

The boundary conditions on the left and right of the model in the y-
direction are:

6 =
¢, = (2.30)
# = 0

And on the outflow boundary:
=0
o = 0 (2.31)
¢y =

When the freestream flow is supersonic, the boundary conditions are for-
mulated from Equation 2.3 using the method of characteristics so that dis-
turbances are not reflected from the boundary. For notational purposes,
define:

A M2
B 2M?2
E 1— M2
B2
D? = 8A+ —
tE



In the far-field, linear small-disturbance assumptions are applied to Equa-
tion 2.3, to result in:

Ady + Byt = Edpy + Oy + ¢ (2.32)

Although Equation 2.32 is a four-dimensional equation, the method of
characteristics will be applied to only two of the dimensions at each bound-
ary. Simplification to two-dimensions at the far-field boundary is consistent
with linear small-disturbance assumptions and does not detract from the ac-
curacy of the solution. Formulation of the steady boundary conditions from
Equation 2.32 will be illustrated on the outflow boundary. On the outflow
boundary, disturbances in the spanwise direction are ignored. Equation 2.32
is expressed in the characteristic coordinates by the transformation:

S = 5.1' — TZ
1 E
no= g+ gz (2.33)

In Equation 2.33, the direction s is parallel to the characteristics. The
direction n is normal to the characteristics. Expressed in characteristic co-
ordinates, Equation 2.32 is:

d)st + ¢8’I’L

A¢tt+B( 9

> = E¢,, (2.34)
Applying the linear small-disturbance theory, ¢, is deducted from Equa-
tion 2.34. Utilizing another coordinate transformation, Equation 2.34 can be

expressed as the two-dimensional wave equation. The coordinate transfor-
mation is:

é_ _ S
VE
- 5.2 (2.35)
T = EDS D .

where:
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B2
D?=8A+ —
+E

The resulting equation is:

Equation 2.36 and the Cauchy data form a system of three linear equa-
tions and three unknowns, ¢z, ¢¢r and ¢,;.

Pee — e = 0
¢§§ dé- + ¢§7- dr = d(¢§) (237)
¢£T d§ + ¢TT dr = d(qu)

The characteristic condition is the condition under which the determinant
of this system is equal to zero:

1 0 -1 it
de dr 0 |=(dr)’—(d6)’=0=>—=+1 (2.38)
0 df dr dr

Equation 2.38 defines the characteristic lines. The relation that holds
along the characteristic lines is determined by applying Cramer’s rule to
solve for the right hand side of Equation 2.37.

1 0 0
de dr d() | = d(¢,) dr — d(g¢) dE =0 (2.39)
0 de d(e,)

Integrating Equation 2.39 results in:

by + e = C (2.40)

Equation 2.40 is only valid along the characteristic lines. For correct for-
mulation of the far-field conditions, the constant, ¢, in Equation 2.40 equals
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zero. To utilize Equation 2.40 in the USTSD, it must be mapped to the zy
space. From the £7 space, Equation 2.40 is mapped to the st space:

D B
Dot (VBo— S 20) =0 (241)

Then, from the st space, Equation 2.41 is mapped to the zy space:

% (D - %) ot + (\/E¢m - ¢z) =0 (2.42)

Equation 2.42 is the equation for the boundary condition at the outflow
boundary below the z datum line. Supersonic boundary conditions on the
remaining boundaries are formulated using the same method. The resulting
equation for z above the datum at the outflow boundary is:

3 (D=2 ) o (VB +0.) =0 (2.13)

For the top boundary in the z-direction:

% (D - %) ¢ + (\/Ecbm + cbz) =0 (2.44)

For the bottom boundary in the z-direction:

% (D - %) o+ (\/Eﬂsz - ¢z> =0 (2.45)

For the right hand side boundary in the y-direction:

% (D - %) by + (\/Eqbz + qﬁy) =0 (2.46)

For the left hand side boundary in the y-direction:
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% <D - %) b+ (VE 6 = 6,) =0 (2.47)

The equations for the unsteady boundary conditions are formulated sim-
ilarly. The in-phase outflow boundary condition above the z datum:

Hp_ BY (2 ) g0 iy
2<D ﬁ)(voo)¢ +VE + 4. =0 (2.48)

Out-of-phase outflow boundary condition above the z datum:

1y B\ (w) wo 0 1o _
2<D ﬁ)(voo)¢ +VE@ + ¢ =0 (2.49)

In-phase outflow boundary condition below the z datum:

Lip_ B\ (L) g0 g
5(9 \/E> (Vm>¢ +VE¢. — ¢ =0 (2.50)

Out-of-phase outflow boundary condition below the z datum:

Lip_ B Y (Ym0 o _ jo_

In-phase top boundary condition in the z-direction:

1 _i i u(0) i i
{0~ ) () rieame o

Out-of-phase top boundary condition in the z-direction:

Lip_ BN\(w) 0 o so_
2<D \/E> (Vw)¢ +VE¢ +¢° = (2.53)

In-phase bottom boundary condition in the z-direction:
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Lip_ BY(¥) uo i
(0= 85) () v

Out-of-phase bottom boundary condition in the z-direction:

1 B w .
- - Y 4@ 4 NSFA — 4 —
2(D @)(m)‘ﬁ FVEG =0 =0

In-phase right boundary condition in the y-direction:

Hp_ BY () g0 i gl =
(0~ 2) () ot

Out-of-phase right boundary condition in the y-direction:

1 B w )
_ _ It u(i) 0 o __
5 (D T?) (Voo>¢ +VE¢, + ¢, =

In-phase left boundary condition in the y-direction:

1 B w .
- - ) pu® o _ 4o _
(2= 5) (i) o+ VB -0

Out-of-phase left boundary condition in the y-direction:

1 _ B (W) i o o _
(0= ) i)+
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Chapter 3

Linear Flutter Equation

Formulation of the linear flutter equation is presented in this section. The
linear flutter equation is derived from the non-conservative Lagrange equa-
tion. The derivation presented in this chapter is adapted from Reference [3].
An artificial damping term is added to the equation. Use of the artificial
damping term is commonly referred to as the “k” or “V-g” method. The
non-conservative Lagrange equation is expressed as:

d (8(T—U)) (T -U)

% 8qn aq'n = Cn (31)

where 7' is the kinetic energy, U is the potential energy and ¢, is the general-
ized coordinate. The elastic deformation of the system is described in terms
of the structural mode shape, z,, and the generalized coordinates:

2(2,y,1) = ) Zn(2,y)aa(t) (3.2)

Equation 3.2 is similar in form to an eigenfunction expansion for an ar-
bitrary function z(x,y,t). The kinetic energy of the system is expressed in
terms of the velocity of the distributed mass of the system:

T= %// m(z,y)2(z,y,t)? do dy (3.3)
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Expressing Equation 3.3 in terms of the generalized coordinates:

T = % [ZZ(}z‘(t)dj(t) // m(x,y)zi(x, y)zi(z,y) de dy] (3.4)

i=1 j=1

Recognizing that normal modes are orthogonal, the generalized mass of the
i structural mode satisfies:

0 i
M;; = // m(x,y)ziz; de dy = {M z ij (3.5)

Equation 3.4 can be simplified to:

N
1
T =— § G M; 3.6
2 — qZ ( )

Similarly, the potential energy is expressed in terms of the spring forces
of the system:

LA
U= 3 ZZQinKij (3.7)

i=1 j=1

Utilizing the orthogonality relation and the definition of natural frequency
of an undamped system, w = y/k/m, the generalized stiffness, K;;, can be
related to the generalized mass, M; by K; = w? M. w; is the natural frequency
of the i® mode. The potential energy can now be expressed in terms of the
generalized mass:

N
1 2072
U= 3 ;_1 q; Mw; (3.8)

The Lagrange Equation, Equation 3.1, can now be expressed in terms
of the generalized coordinates and mass. Substituting Equation 3.6 and
Equation 3.8 into Equation 3.1 results in:

G My, + g2 M, =Q, n=1,2,3,... (3.9)
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The first term on the left-hand side of Equation 3.9 represents the inertial
forces acting on the system. The second term represents the spring forces
arising from structural stiffness acting on the system. The term on the right-
hand side represents the external, i.e. aerodynamic, forces acting on the
system. Assume that the motion of the system and the forces acting on
the system are harmonic:

twt

Gn = (Qne
Qn = Qneth (310)

Substituting Equation 3.10 into Equation 3.9 results in:

Gn (W2 =W M, =Q, n=1,2,3,... (3.11)

The generalized force amplitude @, can be expressed as a function of the
lifting pressure amplitude, Ap, and the modal deflection. The lifting pressure
amplitude is expressed:

N _
Ap =" Api(z,y,w, MOO)Z—J (3.12)
=1 ¢

In Equation 3.12, b, is the reference length and Ap; is the normalized lifting
pressure amplitude due to the motion of the jth structural mode. The lifting
pressure amplitude is determined from the unsteady aerodynamic calculation
in the frequency domain. Since the calculation is performed in the frequency
domain, the lifting pressure amplitude for each mode is expressed as in-phase
and out-of-phase components. The overall in-phase and out-of-phase pressure
force amplitudes are calculated by integrating over the aircraft surface:

Unj = // AC iz (z, y) di dj
bnj = // ACY (2, y) dit dj (3.13)

In Equation 3.13, Z = z/b, and § = y/b,. The lifting pressure coefficient
amplitudes are related to the lifting pressure amplitudes by:
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N Api
_ J
aG, =
oo
_ Ap?
ace, = = (3.14)
Goo
The 7 superscript refers to the in-phase components and the o superscript
refers to the out-of-phase component. g, is the freestream dynamic pressure.

The generalized force amplitude is now expressed:

@ = [[awspdsdy
3 0 (3.15)

= b} ) [(anj +ibng) 5

J=1

Substituting Equation 3.15 into Equation 3.11 results in the flutter equa-
tion. To better approximate the actual system, an artificial structural damp-

ing term, g, is introduced. The resulting equation is expressed:
N _.
qf} (3.16)

{(anj + me) bo

Jj=1

an

(w2 (1 +4ig) — w?] My, = goob), Z
Equation 3.16 is non-dimensionalized by collecting all terms on the left

side and multiplied by:

1 [ w, b2
M, \w, b, V2
where w, is a reference frequency and V,, is the freestream velocity. The

non-dimensionalized Equation 3.16 becomes:
_ 2 2 2 _
qd; w '\ wob, Wobe , dn
17 el — 1 VN —0
- (wn) Veo (Vm) (1+ig) bo}
(3.17)

>

J=1

pb3w? .
{ M2 ((J,nj + anj) bo
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The system of equations formed by Equation 3.17 is more clearly ex-
pressed by defining:

1 =3
5nj = " ]
0 n#j
A q;
q; = b_z
whb,
k =
Voo
pb3 wo \?
Anj = |:2]Won (anj+ibnj)+k2(5nj] (w—z>
Wobo\ 2
/\ = ‘;OOO) (].+lg)

Equation 3.17 can now be expressed:

SN (A —Anj) G =0 n=1,2,... N (3.18)

i=1

This system of equations represents an eigenvalue problem. The eigen-
value solutions are complex. Define:

Aea tin = (@) g ((€ete) (3.19)
ST\ ) T '

where A\, = (w,b,/ Voo)2 is the real part of the eigenvalue and \;, =
9(wobo/ Vc,o)2 is the imaginary part. The artificial damping ratio of each mode
is the amount of damping the structure must possess to make the system neu-
trally stable. It is calculated from the imaginary part of Equation 3.19. The
flutter speed occurs when g is equal to zero or at the minimum speed for
which g is equal to a specified positive value. Determination of the flutter
speed from the V-g graph is illustrated in Figure 3.1. The flutter speed is
obtained from the real part of the eigenvalue:

wobo

Vi = (3.20)

$
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Figure 3.1: Examples of flutter curves.
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Chapter 4

Analysis Procedure

The procedure used to perform the steady aerodynamic and aeroelastic anal-
ysis with USTSD is presented in this chapter. Both analysis were performed
on a wing-fuselage representation of the Hawker 800XP business jet. The
steady aerodynamic analysis is performed entirely with USTSD. The aeroe-
lastic analysis procedure consisted of calculating the mode shapes, calculating
the forcing function with USTSD and then inputing the forcing function into
a code that solves the flutter equation. The USTSD procedure is detailed in
Reference [12]. The analysis is summarized in this chapter.

4.1 Steady Analysis

Predictions of the Hawker 800 steady aerodynamic coefficients by the USTSD
were evaluated against the wind tunnel data. The wind tunnel data was
obtained for a fuselage, wing, nacelle and pylon configuration. A fuselage-
wing configuration with the nacelle modelled as a solid body was analyzed in
the USTSD. Based on the geometry data, the wing incidence is 2.0 degrees.
The wing twist is -5.5 degrees.

Wind tunnel data was obtained at Mach numbers of 0.70, 0.75, 0.80 and
0.85. At each Mach number, the angle of attack was varied from 0.0 to
6.0 degrees by half degree increments. Sectional and total aircraft longitu-
dinal coefficients were measured for all Mach numbers. Upper and lower
surface wing pressure coefficients were measured at eight spanwise stations
for all Mach numbers.

Aerodynamic coefficient predictions were performed with the USTSD at
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Mach numbers of 0.70, 0.75, 0.80 and 0.85. Recognizing the limits of tran-
sonic small-disturbance theory, the angle of attack range examined was 0.0
to 3.0 degrees in half degree increments. The effects of applying the two-
dimensional viscous boundary layer corrections and using a non-conservative
formulation were also examined. Total aircraft longitudinal coefficients and
wing pressure coefficients were then compared with the wind tunnel data.

4.2 Modal Analysis

The modal analysis of the wing was performed using NASTRAN 68. The
fuselage was assumed rigid and neglected from the modal analysis. Only sym-
metric mode shapes were calculated. The analysis was restricted to mode
shapes between 1 and 60 Hertz. In that range, eight mode shapes were cal-
culated for the wing. The third and eighth mode shapes were neglected from
the unsteady aerodynamic analysis. The third mode shape, the wing yawing
mode, was neglected since it has negligible effect on the flutter solution. The
shape of the eighth mode shape was judged too wavy to produce a realistic
forcing function using USTSD and the corresponding frequency was too high
to have any significant effect on the flutter conditions. The remaining six
mode shapes are listed in Table 4.1 and presented in Figure 4.1.

A “beam” model was used to represent the wing in the NASTRAN finite
element analysis (Figure 4.2). The model was composed of three components,
the primary wing structure, the aileron and the aileron tab. All components
were modeled with the CBEAM element. The aileron was connected to the
wing with rigid bar elements. The aileron tab was connected to the aileron
with elastic bar elements. To remove aileron tab modes from the solution,
the stiffness of the elastic bar elements was increased until it was essentially
rigid. The wing was fixed at the root grid point and allowed to deflect and
rotate in all directions at all other grid points. Non structural damping was
assumed for the analysis.

4.3 Unsteady Aerodynamic Analysis
The unsteady aerodynamic analysis was performed using USTSD. The input

for this analysis was composed of geometric definition of the aircraft, mode
shape deflections and flight conditions. The analysis was performed using
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Table 4.1: Wing mode shape data.
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Figure 4.1: Wing mode shapes used in the USTSD analysis.
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Figure 4.2: Beam model of the wing structure.
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conservative and non-conservative differencing. A viscous flow correction
was applied to all analysis. The geometry was defined by a wing-fuselage
configuration. In the analysis, the fuselage was assumed rigid, included only
to affect the wing pressure distribution. Modal data required for the analy-
sis were the natural frequencies, deflection normalized mode shapes and the
generalized mass. Modal deflections were interpolated to deflections on the
aerodynamic grid using cubic spline interpolation. A symmetric analysis was
performed, so the generalized mass listed in Table 4.1 is for half of the con-
figuration. The solution was performed at several reduced frequency values
for each Mach number. All analysis were performed with the configuration
at 0 degrees angle of attack. The output for each reduced frequency value
was used in the flutter analysis.

4.4 Flutter Analysis

The flutter analysis was performed using a code entitled FLUTTER. The
input for this code is generated from the unsteady aerodynamic analysis
performed using USTSD. The forcing function used in the flutter analysis is
directly calculated in USTSD from the unsteady pressure coefficients. For
each reduced frequency, the artificial damping required to make the system
neutrally stable is calculated in FLUTTER. For a given reduced frequency,
the density inputed into the solution can be varied until negative damping
is obtained. Alternatively, for a given density, the flutter solution can be
obtained for varying reduced frequency to obtain the point where negative
damping is obtained. The method of varying the reduced frequency for a
fixed density was used in FLUTTER.
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Chapter 5

Steady Results & Analysis

Comparison of aerodynamic coefficients between the wind tunnel data and
USTSD calculations are presented in this chapter. Pressure coefficients at
root, mid and tip span stations are graphed at 3.0 degrees angle of attack
for Mach numbers 0.70, 0.75, 0.80 and 0.85. Lift, drag and pitching moment
coefficients are graphed against the angle of attack at Mach numbers 0.70,
0.75, 0.80 and 0.85. This section is concluded with a discussion of the re-
sults. Pressure coefficients at root, mid and tip span stations are graphed at
0.0 degrees angle of attack for Mach numbers 0.70 and 0.85 to substantiate
the discussion of results. in the following, conservative and non-conservative
formulations refer to solving Equations 2.4 and 2.5, respectively, in finite-
difference forms.

5.1 Pressure Distributions

Calculated pressure coefficient distributions on the upper and lower surface of
the wing at root, mid and tip span stations are compared with experimental
data in this section. The definition of non-dimensional span in the experiment
was with respect to the exposed wing span. The USTSD definition is with
respect to the entire wing span. In the plots presented in this section, a
conversion of the experimental span stations to correspond to the USTSD
definition has been made.
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5.1.1 Mach 0.70 Pressure Coefficients

Mach 0.70 pressure coefficients at 3.0 degrees angle of attack are presented
first. The root pressure coeflicients are plotted in Figure 5.1. On the forward
portion of the upper surface, the calculated pressure coefficients are less than
the data. On the aft portion of the upper surface, the calculated pressure
coefficients are greater than the data. The calculated pressure coefficients
along the lower surface are less than the data across the entire section.

The mid pressure coefficients are plotted in Figure 5.2. The calculated
pressure coefficients on the upper surface correlate with the data except for
the peak pressure. On the aft portion of the lower surface, the calculated
pressure coefficients correlate well with the data. The pressure peak near
the lower surface leading edge is not produced with the calculated pressure
coefficients.

The tip pressure coefficients are plotted in Figure 5.3. The calculated
pressure coefficients correlate well with the data on the aft portion of the
upper surface. Near the leading edge, the calculated pressure coefficients
are less than the data. On the lower surface, the pressure peak near the
leading edge is not produced with the calculated pressure coefficients. The
calculated pressure coeflicients are greater than the data over the middle and
aft portion of the lower surface.
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Nrac = 0.128; nysrsp = 0.145

Upper Surface Pressure Coefficient
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Figure 5.1: Root pressure coefficient at 0.70 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Nrac = 0.584; Nysrsp = 0.582

Upper Surface Pressure Coefficient
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Figure 5.2: Mid pressure coefficient at 0.70 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Nrac = 0-932; NusTtsp — 0.945

Upper Surface Pressure Coefficient
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Figure 5.3: Tip pressure coefficient at 0.70 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.

34



5.1.2 Mach 0.75 Pressure Coefficients

Mach 0.75 pressure coefficients at 3.0 degrees angle of attack are presented
next. The root pressure coefficients are plotted in Figure 5.4. On the for-
ward portion of the upper surface, the calculated pressure coefficients are
less than the data. Variation in the calculated pressure coefficients on the
forward upper surface does not correlate with the data. A shock is produced
on the upper surface at approximately 0.75 chord for the conservative formu-
lation. The non-conservative formulation produces the upper surface shock
at approximately 0.65 chord. An upper surface shock is observed in the data
at approximately 0.45 chord. The calculated pressure coefficients along the
lower surface are less than the data across the entire section.

The mid pressure coeflicients are plotted in Figure 5.5. Near the leading
edge, the upper surface, calculated pressure coefficients correlate with the
data. Through the middle section of the upper surface, the calculated pres-
sure coefficients are less than the data. Pressure coefficients calculated using
the conservative formulation produce a shock at approximately 0.6 chord.
Aft of the shock on the upper surface, the calculated pressure coefficients
are less than the data. The pressure coefficients calculated using the non-
conservative formulation produce a shock at approximately 0.45 chord, which
correlates with the data. The pressure coefficients also correlate with the data
aft of the shock. On the lower surface near the leading edge, the pressure
peak observed in the data is not produced with the calculated pressure coef-
ficients. Aft of the leading edge, the calculated pressure coefficients correlate
with the data.

The tip pressure coefficients are plotted in Figure 5.6. Near the leading
edge, the calculated pressure coefficients are less than the data. The up-
per surface shock observed in the data at approximately 0.25 chord is not
produced in the calculated data. Aft of the shock, the calculated pressure
coefficients on the upper surface correlate with the data. The pressure peak
near the leading edge on the lower surface is not produced with the calcu-
lated pressure coefficients. The calculated pressure coefficients of the middle
and aft portion of the lower surface are greater than the data.
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Nrac = 0.128; Nysrsp = 0.145

Upper Surface Pressure Coefficient
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Figure 5.4: Root pressure coefficient at 0.75 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Nrac = 0.584; Nysrsp = 0.582
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Figure 5.5: Mid pressure coefficient at 0.75 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Nrac = 0-932; NusTtsp — 0.945

Upper Surface Pressure Coefficient

-1.2 T ] ] ]
©o0 | | |
“LO 000 g oo R -
< 08 _@;/,;:‘:,\, : ‘ : 1
=
2 —0.6
Q
g
3 04 =D
O
Q ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
% 024
& 0.0
[a¥
0.2 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.4 | 1 | ]
0.0 0.2 0.4 0.6 0.8 1.0
Lower Surface Pressure Coefficient
s 08F N —_ -
i 0.6 [ - —
g
& 0.4
(5]
<)
O 0.2
5
@ 0.0
(5]
=
A 0.2
—04 P ] | | ]
0.0 0.2 0.4 0.6 0.8 1.0

Chordwise Station, x/c

O  RAC Wind Tunnel Data
------ USTSD Calculation - No viscous corrections, conservative formulation

————— USTSD Calculation - Viscous corrections, conservative formulation
——— USTSD Calculation - Viscous corrections, non-conservative formulation

Figure 5.6: Tip pressure coefficient at 0.75 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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5.1.3 Mach 0.80 Pressure Coefficients

Mach 0.80 pressure coefficients at 3.0 degrees angle of attack are now pre-
sented. The root pressure coefficients are plotted in Figure 5.7. On the
forward portion of the upper surface, the calculated pressure coefficients are
less than the data. Further, the pressure coefficient variation does not cor-
relate with the data. A shock is produced on the upper surface at approx-
imately 0.92 chord for the conservative formulation and 0.78 chord for the
non-conservative formulation. An upper surface shock is observed in the data
at approximately 0.55 chord. The calculated pressure coefficients along the
lower surface are less than the data across the entire section.

The mid pressure coefficients are plotted in Figure 5.8. A shock is ob-
served in the data at approximately 0.42 chord on the upper surface. The
calculated pressure coefficients correlate with the data from the leading edge
to the shock. Pressure coefficients calculated using the conservative formula-
tion produce a shock at approximately 0.85 chord. The pressure coefficients
calculated using the non-conservative formulation produce a shock at ap-
proximately 0.58 chord. Aft of the shock on the upper surface, the calculated
pressure coefficients are less than the data. On the lower surface near the
leading edge, the pressure peak is not produced that is observed in the data.
Aft of the leading edge, the calculated pressure coefficients are less than the
data.

The tip pressure coefficients are plotted in Figure 5.9. A shock is observed
in the data at approximately 0.37 chord. Using the conservative formulation,
the calculated pressure coefficients correlate with the data forward of the
shock, but do not produce a shock until approximately 0.55 chord. Using
the non-conservative formulation, the calculated pressure coefficients are less
than the data, but produce a shock at approximately the correct location.
Aft of the shock, the conservative pressure coefficients are less than the data.
The non-conservative pressure coefficients correlate with the data aft of the
shock. The pressure peak near the leading edge on the lower surface is not
produced in the calculated data. The calculated pressure coefficients of the
middle and aft portion of the lower surface are greater than the data.
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Figure 5.7: Root pressure coefficient at 0.80 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Figure 5.8: Mid pressure coefficient at 0.80 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.

41



Nrac = 0.932; Nysrsp = 0.945

Upper Surface Pressure Coefficient

~1.20
~1.00
& —0.80
2 —0.60
8
(&}
&  —0.40
(]
(=]
S —0.20
o
3 0.00
3
A, 0.20
0.40 §
0.60
0.0
DQ-.
]
8
(&]
&
8
(@)
(]
2
g
oy

0.0 0.2 0.4 0.6 0.8 1.0
Chordwise Station, x/c

O  RAC Wind Tunnel Data
------ USTSD Calculation - No viscous corrections, conservative formulation

————— USTSD Calculation - Viscous corrections, conservative formulation
——— USTSD Calculation - Viscous corrections, non-conservative formulation

Figure 5.9: Tip pressure coefficient at 0.80 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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5.1.4 Mach 0.85 Pressure Coefficients

Mach 0.85 pressure coefficients at 3.0 degrees angle of attack are presented
last. The root pressure coefficients are plotted in Figure /reffig:cp10. On the
forward portion of the upper surface, the calculated pressure coefficients are
less than the data. Further, the variation does not correlate with the data. A
shock is produced on the upper surface at approximately 0.97 chord for the
conservative formulation and 0.85 chord for the non-conservative formulation.
An upper surface shock is observed in the data at approximately 0.62 chord.
The calculated pressure coefficients along the lower surface are less than the
data across the entire section. Variations on the aft portion of the lower
surface in the calculated pressure coefficients are not observed in the data.

The mid pressure coefficients are plotted in Figure 5.11. A shock is ob-
served in the data at approximately 0.48 chord on the upper surface. The
calculated pressure coefficients correlate with the data from the leading edge
to the shock. Pressure coefficients calculated using the conservative formula-
tion produce a shock at approximately 0.97 chord. The pressure coefficients
calculated using the non-conservative formulation produce a shock at ap-
proximately 0.73 chord. The calculated pressure coefficients are less than
the data aft of the shock. On the lower surface near the leading edge, the
pressure peak is not produced that is observed in the data. Aft of the leading
edge, the calculated pressure coefficients are less than the data.

The tip pressure coefficients are plotted in Figure 5.12. A shock is ob-
served in the data at approximately 0.40 chord. Using the conservative for-
mulation, the calculated pressure coefficients are greater than the data for-
ward of the shock, but do not produce a shock until approximately 0.9 chord.
Using the non-conservative formulation, the calculated pressure coefficients
correlate with the data, but do not produce a shock until approximately
0.5 chord. Aft of the shock, the calculated pressure coefficients are less than
the data. The pressure peak near the leading edge on the lower surface is
not produced in the calculated data. The calculated pressure coefficients of
the middle and aft portion of the lower surface are greater than the data.
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Figure 5.10: Root pressure coefficient at 0.85 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Figure 5.11: Mid pressure coefficient at 0.85 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Figure 5.12: Tip pressure coefficient at 0.85 Mach number, 3.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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5.2 Lift Coefficient

In Figure 5.13, the lift coefficient is presented for 0.70 Mach number. The
calculated lift coefficient with no viscous corrections using the conservative
formulation is approximately 0.08 greater than the data across the entire
angle of attack range. With viscous corrections, the conservative formulation
at 0.0 degrees angle of attack calculates the lift coefficient 0.06 greater than
the data. The difference decreases to approximately 0.0 at 3.0 degrees angle of
attack. No improvement in lift coefficient is observed with viscous corrections
using the non-conservative formulation.

The lift coefficient for 0.75 Mach number is presented in Figure 5.14.
Using the conservative formulation with no viscous corrections, the calculated
lift coefficient is 0.10 greater than the data. Applying viscous corrections but
still using the conservative formulation, the difference between the calculation
and the data is reduced. At 0.0 degrees angle of attack, the difference is 0.07.
At 3.0 degrees angle of attack, the difference reduces to 0.03. There is no
improvement in lift coefficient at 0.0 degrees angle of attack using viscous
corrections with the non-conservative formulation. The difference improves
with angle of attack, decreasing to 0.0 at 3.0 degrees angle of attack.

The lift coefficient for 0.80 Mach number is presented in Figure 5.15.
Using no viscous corrections with the conservative formulation, the calculated
lift coefficient is 0.20 higher than the data at 0.0 degrees angle of attack. The
difference increases with angle of attack to 0.32 at 3.0 degrees angle of attack.
Applying viscous corrections with the conservative formulation decreases the
difference between the data and the calculation. The difference between the
calculation and the data is 0.17 at 0.0 degrees angle of attack and 0.25 at
3.0 degrees angle of attack. At 0.0 degrees angle of attack, the lift coefficient
calculated using non-conservative differencing and viscous corrections is 0.10
higher than the data. The difference decreases to 0.05 at 3.0 degrees angle
of attack.

In Figure 5.16, the lift coefficient at 0.85 Mach number is plotted. The
largest discrepancy is observed with the conservative formulation, when no
viscous corrections are applied. At 0.0 degrees angle of attack, the lift coeffi-
cient is calculated to be 0.36 greater than the data. The difference increases
with angle of attack to 0.45 at 3.0 degrees angle of attack. By using viscous
corrections with the conservative formulation, the lift coefficient is decreased
by approximately 0.02 from no viscous corrections across the entire angle
of attack range. At 0.0 degrees angle of attack with viscous corrections
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and non-conservative differencing, the lift coefficient is calculated to be 0.16
greater than the data. The difference increases with angle of attack to 0.20
at 3.0 degrees angle of attack.

The lift curve slope of the data from the wind tunnel increases with Mach
numbers 0.70 to 0.75. It then decreases with Mach numbers 0.75 to 0.85. The
lift curve slope from the USTSD calculation using the conservative formu-
lation increases with Mach number 0.70 to 0.80, then decreases with Mach
number 0.80 to 0.85. Using the non-conservative formulation, the lift curve
slope increases with Mach number 0.70 to 0.85. Lift curve slope variation
with Mach number is listed in Table 5.1. The angle of attack for zero lift
coefficient of the data from the wind tunnel varies with Mach number. The
angle of attack for zero lift coefficient from the USTSD calculation also varies
with Mach number. Listed in Table 5.2 is the variation of the angle of attack
for zero lift coefficient with Mach number. As has been shown in comparing
the pressure distributions, one reason for the discrepancy in prediction with
data is the inability of the code to predict the correct locations of the shock
wave, resulting in lower pressure over most of the upper surface. As a result,
the lift is higher.
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Table 5.1: Variation of lift curve slope with Mach number.

Mach Number

Lift Curve Slope 0.70 0.75 0.80 0.85
Wind Tunnel Data 5.83 | 6.47 | 5.97 | 5.06
No viscous corrections,
conservative formulation 5.01 | 6.07 | 7.98 | 6.57
Viscous corrections,
conservative formulation 4.81 | 5.66 | 7.38 | 6.66
Viscous corrections,
non-conservative formulation | 4.71 | 5.12 | 5.14 | 5.58

Table 5.2: Variation of zero lift coefficient angle of attack with Mach number.

Angle of Attack for Mach Number

Zero Lift Coefficient 0.70 0.75 0.80 0.85
Wind Tunnel Data -0.68 | -0.61 | -0.73 | -0.21
No viscous corrections,
conservative formulation -1.7 | -16 | -2.1 | -3.3
Viscous corrections,
conservative formulation -1.5 | -14 | -1.9 | -3.0
Viscous corrections,
non-conservative formulation | -1.5 | -1.5 | -1.9 | -1.9
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Figure 5.15: Lift coefficient at 0.80 Mach number, 3,000,000 Reynold’s num-
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5.3 Drag Coefficient

The drag coefficient at 0.70 Mach number is presented in Figure 5.17. Using
no viscous corrections and the conservative formulation, the calculated drag
coefficient is 0.0026 to 0.0044 greater than the wind tunnel data. Applying
the viscous corrections decreases the error between the calculation and the
data. With viscous corrections, the error ranges from 0.005 to 0.008. No
improvements in the error between the calculation and the data are gained
by applying viscous corrections with the non-conservative formulation.

The 0.75 Mach number drag coefficient is presented in Figure 5.18. With
no viscous corrections, using the conservative formulation, the drag coefficient
varies from 0.011 to 0.016 greater then the data. Using the conservative
formulation with viscous corrections reduces the calculated drag coefficient,
resulting in the drag coefficient calculated 0.008 higher than the data over the
entire alpha range. The drag coefficient calculated using the non-conservative
formulation with viscous corrections is not improved over the conservative
formulation at low angles of attack. At higher angles of attack, the drag
coefficient is improved, reducing the error to approximately 0.005 greater
than the data.

The 0.80 Mach number drag coefficient is plotted in Figure 5.19. The
calculated drag coefficient with no viscous corrections using the conservative
formulation is from 0.026 to 0.054 greater than the data. With viscous cor-
rections, the calculated drag coefficient is from 0.019 to 0.039 greater than
the data. The least error between the calculation and the data is achieved
by using the non-conservative formulation with viscous corrections, result-
ing in drag coefficients from 0.01 to 0.005 greater than the data. The main
difference in these calculations arises from the predicted wave drag.

In Figure 5.20, the 0.85 Mach number drag coefficient is presented. Using
the conservative formulation with no viscous corrections, the calculated drag
coefficient is 0.035 to 0.062 greater than the data. This error is greater than
the error observed at 0.70, 0.75 and 0.80 Mach numbers. By applying vis-
cous corrections, the calculated drag coefficient is reduced by approximately
0.005. The smallest error between the data and the calculation is observed
by applying viscous corrections and using the non-conservative formulation.
With these calculation options, the largest error is 0.009 to 3.0 degrees angle
of attack.
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Figure 5.17: Drag coefficient at 0.70 Mach number, 3,000,000 Reynold’s num-
ber, for a Hawker 800 fuselage-wing-nacelle configuration.
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Figure 5.18: Drag coefficient at 0.75 Mach number, 3,000,000 Reynold’s num-
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5.4 Pitching Moment Coefficient

The pitching moment coefficient at 0.70 Mach number is presented in Fig-
ure 5.21. The calculation performed using the conservative formulation with
no viscous corrections is greater than the data by approximately 0.008. Ap-
plying viscous corrections increases the difference by approximately 0.006
using both the conservative and non-conservative formulation.

The 0.75 Mach number pitching moment coefficient is plotted in Fig-
ure 5.22. The calculated lift coefficient using the conservative formulation
with no viscous corrections is higher than the data by approximately 0.003.
The difference increases with the application of viscous corrections. At 0.0 de-
grees angle of attack the error is 0.009 and 0.016 at 3.0 degrees angle of attack.
At low angles of attack, a decrease in pitching moment coefficient of approx-
imately 0.0003 is observed between the conservative and non-conservative
formulation. At 3.0 degrees angle of attack, this difference is reversed.

Plotted in Figure 5.23 is the pitching moment coefficient for 0.80 Mach
number. The pitching moment coefficient calculated using no viscous cor-
rections and the conservative formulation is from 0.042 to 0.12 less than the
data. Applying viscous corrections positively increases the pitching moment
coefficient by approximately 0.03 over the case with no viscous corrections.
The calculated pitching moment coefficient is 0.015 greater than the data
when viscous corrections are applied with the non-conservative formulation.

The pitching moment coefficient at 0.85 Mach number is illustrated in
Figure 5.24. The pitching moment coefficient calculated using no viscous
corrections and the conservative formulation is form 0.19 to 0.23 less than the
data. Applying viscous corrections positively increases the pitching moment
coefficient by approximately 0.15 over the case with no viscous corrections.
The calculated pitching moment coefficient is approximately 0.05 lower than
the data when viscous corrections are applied with the non-conservative for-
mulation. To summarize, the prediction of pitching moment is very much
affected by the predicted shock position and strength. In general, the pre-
dicted shock is more aft and its strength is larger when the conservative
formulation is used as compared with the non-conservative formulation.
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Figure 5.21: Pitching moment coefficient at 0.70 Mach number, 3,000,000
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5.5 Analysis of Predicted Results

At all Mach numbers, the lift coefficient calculated with USTSD is greater
than the wind tunnel data lift coefficient. The calculated drag coefficient is
also greater than the data drag coefficient. The calculated pitching moment
coefficient is more positive than the data at 0.70 and 0.75 Mach numbers. It
is more negative at 0.80 and 0.85 Mach numbers. The difference between the
total aerodynamic force coeflicients calculated with USTSD and measured in
the wind tunnel can be attributed to:

e Wing-fuselage interference effects at the root
e Strong shock-boundary layer interactions.

e Nacelle and pylon effects

The wing-fuselage interference effects are not determined correctly at the
root section in USTSD. Near the leading edge of the root, the calculated
pressure coefficients on the upper surface are less than the data at all Mach
numbers. Calculated aft pressure coefficients on the upper surface are greater
than the data. Along the entire lower surface, the calculated pressure coef-
ficients are less than the data. These discrepancies between the calculated
pressure coeflicients and the wind tunnel data are also observed at 0.0 degrees
angle of attack, illustrated in Figure 5.25 and Figure 5.28. The experimen-
tal pressure coefficients exhibit a variation that is not matched well by the
calculated pressure coefficients.

The effect of the nacelle modelled as a solid body was neglible on the
results. The body boundary conditions used in the analysis are derived
from slender body theory. Considering the body as a source-sink pair, no
circulation is generated by the body. Therefore, the body has little effect
in the far-field. Another aspect of the nacelle results is the grid generation.
Since the nacelle is modeled in a separate fine grid domain from the wing,
nacelle effects on the wing must be transmitted by the course grid. The
nacelle may not be properly covered by the course grid to transmit the effects.
This results in a weak coupling between the wing and the nacelle, where the
wing influences the nacelle, but the nacelle has no influence on the wing.

The root, mid and tip pressure coefficients at 0.0 degrees angle of attack,
0.70 Mach number are presented in Figures 5.25 through 5.27. No strong
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shocks are observed in the data. Consequently, the calculated pressure coef-
ficients correlate with the data. The root, mid and tip pressure coefficients at
0.0 degrees angle of attack, 0.85 Mach number are presented in Figures 5.28
through 5.30. At the root and mid sections, shocks are observed on both
the upper and lower surfaces. On the upper surface, the calculated shock
position is aft of the shock position observed in the data in Figures 5.28 and
5.29. The calculated shock position on the root lower surface is forward of
the shock position observed in the data in Figure 5.28. No shocks in the data
are observed on the mid, lower surface, although the USTSD calculates one,
illustrated in Figure 5.29. The error in calculated pressure near the lower sur-
face leading edge coupled with the error in calculated shock position account
for the lift and pitching moment coefficient discrepancies.

The calculated mid and tip pressure coefficients near the leading edge,
on the lower surface do not produce the pressure peak observed in the data.
At 0.70 and 0.75 Mach numbers (Figure 5.1 - Figure 5.6), the upper surface
calculated pressure coefficients at the tip are less than the data. At 0.80 and
0.85 Mach numbers (Figure 5.7 - Figure 5.12), the upper surface calculated
pressure coefficients at the tip correlate with the data.The error in calculated
pressure near the lower surface leading edge coupled with the error in cal-
culated shock position account for the lift and pitching moment coefficient
discrepancies. When no viscous corrections are performed during the USTSD
solution, the drag coefficient should be less than the data. The skin friction
coefficient for all inviscid calculations was approximately 0.013, which is less
than the data. The remaining component of drag is the pressure compo-
nent. Since the lower surface, leading edge pressure coefficients calculated
with the USTSD were smaller in magnitude than the data, the calculated
leading edge thrust would be less. Lower leading edge thrust would result
in higher pressure drag, accounting for the error observed in the calculated
drag coefficient.

The presence of a strong shock in the flow reduces the correspondence be-
tween the experimental and calculated pressure coefficients. At Mach num-
bers 0.75, 0.80 and 0.85, the presence of a shock is observed in the data. When
the shock is strong, the shock position calculated with the USTSD is aft of
the observed shock position. Prediction of the shock being too aft may result
from not modeling the vorticity and entropy effects associated with strong
shocks (Ref. [1]) or from strong shock-boundary layer interactions (Ref. [4]).
In the USTSD code, the effects of vorticity and entropy in calculating the
pressure coefficient have been included. Therefore, the main deficiency in
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the code is the inability in accounting for the strong shock-boundary layer
interaction that affects not only the shock position, but atlso the pressure
distribution ahead and behind the shock. The discrepancy between the con-
servative and non-conservative solution can be attributed to the generation of
mass after the shock in the non-conservative solution (Ref. [15]). Interactions
between the shock and the boundary layer can relieve the required pressure
jump across the shock, resulting in a shock the is forward of the theoretically
predicted position. The mass generated using the non-conservative formula-
tion mimics the effect of the boundary layer after a strong shock, resulting in
a solution that corresponds more closely to experiment than the conservative
solution.

60



Nrac — 0.128; NusTrsp — 0-145

Upper Surface Pressure Coefficient

—0.60

—0.40

—0.20

0.00

0.20

Pressure Coeflicient, Cp

0.40

1.00
0.80
0.60 |
0.40
0.20 F
0.00

~0.20

—0.40

—0.60
0.0 0.2 0.4 0.6 0.8 1.0

Chordwise Station, x/c

Pressure Coefficient, Cp

O  RAC Wind Tunnel Data
------ USTSD Calculation - No viscous corrections, conservative formulation

————— USTSD Calculation - Viscous corrections, conservative formulation
——— USTSD Calculation - Viscous corrections, non-conservative formulation

Figure 5.25: Root pressure coefficient at 0.70 Mach number, 0.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Figure 5.26: Mid pressure coefficient at 0.70 Mach number, 0.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Nrac = 0.932; Nysrsp = 0.945
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Figure 5.27: Tip pressure coefficient at 0.70 Mach number, 0.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Figure 5.28: Root pressure coefficient at 0.85 Mach number, 0.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Nrac = 0.584; Nysrsp = 0.582
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Figure 5.29: Mid pressure coefficient at 0.85 Mach number, 0.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Figure 5.30: Tip pressure coefficient at 0.85 Mach number, 0.0 degrees angle
of attack, 3,000,000 Reynold’s number.
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Chapter 6

Aeroelastic Results & Analysis

The results of the aeroelastic analysis of the Hawker 800XP are presented
in this chapter. No experimental data is available with which to compare
the results. The trends of the solutions are compared with the trends in
Reference [5] and the difference in results between the conservative and non-
conservative solutions are discussed.

6.1 Flutter Curve

The unsteady aerodynamic calculations were performed at Mach numbers
0.60, 0.70, 0.80, 0.85 and 0.90. Solutions were obtained for Mach numbers
0.60, 0.70 and 0.80. Above Mach 0.80, the variation in artificial damping
was such that no flutter point could be resolved. The flutter results are
summarized in Table 6.1 and Table 6.2.

The conservative and non-conservative flutter curve for the Mach 0.60 so-
lution is presented in Figure 6.1. Both solutions were obtained at a density
of 3.00E-4 (slug/ft?), which corresponds to a U.S. Standard Atmosphere
altitude of 54,000 feet. At Mach 0.60, the conservative and non-conservative
solutions exhibit the same trend in variation of artificial damping, except at
the low end of the flutter speed. A higher flutter speed is calculated from
the non-conservative solution than from the conservative solution as a result
of the difference in the predicted shock position of each solution. The dis-
crepancy in shock position between the two formulations is discussed in Sec-
tion 5.5. The flutter speed from the conservative calculation is 788.1 (ft/s)
at a frequency of 16.70 (Hz). The non-conservative calculation results in a
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Table 6.1: Conservative flutter results.

Mach Flutter | Dynamic Flutter
No. Density Speed | Pressure | Frequency
(~) | (slug/ft%) | (ft/s) | (slug/ft’) | (Hz)
0.6 3.00E-04 | 788.1 93.2 16.70
0.7 2.20E-04 | 910.8 91.1 16.33
0.8 | 1.50E-04 | 1015.7 775 14.98

Table 6.2: Non-Conservative flutter results.

Mach Flutter | Dynamic Flutter
No. Density Speed | Pressure | Frequency
(~) | (slug/ft) | (ft/s) | (slug/ft) | (Hz)
0.6 3.00E-04 | 798.9 95.7 16.73
0.7 2.20E-04 | 972.8 104.1 16.55
0.8 1.50E-04 | 1038.6 80.9 15.05

flutter speed of 798.9 (ft/s) at a frequency of 16.73 (Hz).

The conservative and non-conservative flutter curves for the Mach 0.70 so-
lution are presented in Figure 6.2. Both solutions were obtained at a density
of 2.20E-4 (slug/ ft*) which corresponds to an U.S. Standard Atmosphere al-
titude of 60,000 feet. The trend of the conservative flutter curve at Mach 0.70
does not correspond to the trend of the non-conservative flutter curve. The
flutter speed calculated from the non-conservative flutter solution is greater
than the speed calculated from the conservative flutter solution. The con-
servative flutter speed is 910.8 (ft/s) at a frequency of 16.33 (Hz). The
non-conservative flutter speed is 972.8 (ft/s) at a frequency of 16.55 (H z).

The conservative and non-conservative flutter curves for the Mach 0.80 so-
lution are presented in Figure 6.3. Both solutions were obtained at a density
of 1.50E-4 (slug/ ft3) which corresponds to an U.S. Standard Atmosphere al-
titude of 68,000 feet. The trend of the conservative flutter curve at Mach 0.80
does not correspond to the trend of the non-conservative flutter curve. The
flutter speed calculated from the non-conservative solution is greater than
the speed calculated from the conservative solution. The conservative flutter
speed is 1016.5 (ft/s) at a frequency of 14.98 (Hz). The non-conservative
flutter speed is 1038.6 (ft/s) at a frequency of 15.05 (Hz).
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6.2 Analysis

Non-dimensionalized parameters flutter speed index and flutter frequency
ratio are used to judge the USTSD flutter results. The trend of the data is
similar to trends in flutter parameters observed in Reference [5]. The trend of
these parameters is to decrease in value with increasing Mach number up to
Mach 1.0. Beyond Mach 1.0, the parameters increase with Mach number. A
rapid decrease near Mach 1.0 is the so-called “transonic dip”. The transonic
dip occurs in the Mach region where strong shocks, boundary layer separation
and viscous effects are significant to the solution. In this analysis, the flutter
speed index is defined:

Vi
C, =
f bowor/ 1t

Where V7 is the flutter speed, b, is the reference dimension, w, is the reference
frequency and the mass ratio, u, is defined:

m

M:V—p

m is the mass of the wing and p is the flutter density. The volume, V' is the
volume of a conical frustrum with a base diameter equal to the wing root
chord, tip diameter equal to the wing tip chord and height equal to the wing
semispan. The frustrum volume is expressed:

7s (¢ + crer + ¢2)
12

The reduced frequency in the USTSD program is defined:

V=

bowo

Vi

In this analysis, b, = 7.263 ft and w, = 17.38 Hz. The non-dimensionalized
flutter parameters are listed in Table 6.3 and Table 6.4. The flutter param-
eters are plotted in Figure 6.5 and Figure 6.6.

The flutter frequency ratio exhibits the expected trend of decreasing with
increasing Mach number. The difference in the flutter frequency ratio be-
tween the conservative and non-conservative solution is negligible. The con-
servative flutter speed index also exhibits a decrease in value with increasing

k=
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Table 6.3: Conservative flutter parameters.

Mach | Reduced | Frequency | Mass | Flutter Speed
No. | Frequency Ratio Ratio Index
0.6 0.9673 0.961 173.5 0.0471
0.7 0.8182 0.940 236.6 0.0467
0.8 0.6726 0.862 347.0 0.0430

Table 6.4: Non-Conservative flutter parameters.

Mach | Reduced | Frequency | Mass | Flutter Speed
No. | Frequency Ratio Ratio Index
0.6 0.9555 0.963 173.5 0.0478
0.7 0.7766 0.952 236.6 0.0498
0.8 0.6615 0.866 347.0 0.0439

Mach number. The non-conservative flutter speed index increases at first
and then decreases, nearly equal to the conservative solution. Solutions were
not obtained at high enough Mach numbers to observe the transonic dip.
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Table 6.5: Conservative flutter eigenvector magnitude.
Mach | Mach | Mach
Ratio | 0.60 0.70 0.80

Ga/q1 | 3.1843 | 2.4468 | 1.2673
g3/q1 | 0.4746 | 0.4324 | 0.3245
gs/q: | 0.0402 | 0.0211 | 0.0118
gs/q1 | 0.0254 | 0.0260 | 0.0200
gs/q1 | 0.0074 | 0.0091 | 0.0274

Table 6.6: Non-Conservative flutter eigenvector magnitude.
Mach | Mach | Mach
Ratio | 0.60 0.70 0.80

g2/q1 | 3.1583 | 2.4897 | 1.2813
gs/q1 | 0.4676 | 0.4187 | 0.3351
gs/q1 | 0.0419 | 0.0353 | 0.0115
gs/q: | 0.0241 | 0.0235 | 0.0197
gs/q1 | 0.0066 | 0.0068 | 0.0233

The relative participation of each mode in the flutter is quantified by the
magnitude of eigenvectors. The normalized magnitude of the eigenvectors
from the flutter solution are listed in Table 6.5 and Table 6.6. The second
bending mode is the primary participant in flutter at each Mach number.
The flutter frequency decreases with Mach number, evident in the increased
participation of the first bending mode with increasing Mach number.

The solutions obtained indicate that USTSD provides a flutter analysis
capability when there is not a strong shock jump in the flow. Flutter results
were obtained below Mach 0.80. This mirrors the steady results correspond-
ing to experimental data until Mach 0.80. Above Mach 0.80, the presence of
a strong shock reduced the correspondence of the calculated shock position
to the experimental shock position. In the unsteady calculation, the gen-
eralized aerodynamic forcing function would be inaccurately calculated as a
result of the error in calculated shock position. Therefore, the flutter speed
could not be resolved above Mach 0.80.
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Chapter 7

Conclusions &
Recommendations

An evaluation of the aeroelastic analysis capabilities of the USTSD code
was performed. The analysis was applied to the Hawker 800XP business jet
wing-fuselage configuration. A steady analysis was performed with USTSD
to calculate the lift, drag, pitch and pressure coefficient. The steady re-
sults were compared with experimental data. An unsteady calculations was
performed to generate the generalized aerodynamic forcing function of the
flutter equation. The flutter equation was in turn solved to calculate the
flutter speed. No experimental flutter data was available for comparison.

The steady results corresponded well with experiment for Mach num-
bers 0.70, 0.75 and 0.80. Above Mach 0.80, the position of a strong shock was
not correctly calculated with USTSD, resulting in poor correlation between
the calculated and experimental pressure coefficients. This was reflected in
the poor correlation of the lift, drag and pitch coefficients with data above
Mach 0.80. The USTSD code provided a steady transonic analysis capability
when there was not a strong shock in the flow.

The unsteady analysis yielded a flutter solution for Mach numbers 0.60,
0.70 and 0.80. As with the steady results, the breakdown of the solution
above Mach 0.80 could be attributed to the incorrect calculation of the shock
position. Below Mach 0.80, the flutter solution trend matched flutter solution
trends observed for a similar business jet configuration. In the absence of
strong shocks, the USTSD code provided an aeroelastic analysis capability
of business jet configurations.

To improve the capability of the USTSD to perform aerodynamic analy-

75



sis with the presence of a strong shock, corrections for shock-boundary layer
interactions should be added to USTSD. These corrections have provided im-
proved correlation with experiment when applied to time-domain solutions.
Further improvements could be obtained by modelling the nacelle as a flow-
through nacelle that is adequately covered by the grid to effect the wing. The
applicability of the USTSD code aeroelastic analysis should be characterized
by parameters such as Mach number, dynamic pressure, mass ratio, reduced
frequency, angle of attack and airfoil thickness. An analysis of the sensitivity
of the results to the structural dynamics data should also be performed.
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